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SUMMARY 

 

Post-event damage assessment in structures typically requires a detailed and time-consuming 

visual inspection and evaluation.  Lack of information about damage in highway bridges, 

particularly the important toll bridges, can cause safety hazards, halt mobility of the tranportation 

network and disrupt emergency response.  On the other hand, Caltrans, with the assistance of the 

California Geological Survey (CGS), has instrumented 68 bridge structures throught California 

with strong motion sensors for the purposese of advancing understanding of how bridge 

structures react to seismic imput and validating dynamic modeling techniques. 

 

This project explores the usage of the strong motion data for automated, remote, real-time 

damage assessment of bridges immediatly after a destructive event.  Various vibration-based 

damage assessment methods are investigated for post-event damage assessment from noisy and 

incomplete measurements.  The first part of this report is devoted to experimental modal 

analysis. Output-only and input-output system identification techniques are respectively applied 

for identification of modal properties of the bridge from the measured ambient vibration data and 

responses to earthquake excitations.  The second part of the report deals with identification of 

structural damage characteristics in critical structural elements using an optimization-based finite 

element (FE) model updating methodology. A hybrid optimization procedure based on Genetic 

Algorithm (GA) and quasi-Newton optimization techniques is implemented for finding the best 

set of FE model parameters that minimizes the objective functions. Two objective functions are 

defined expressing the discrepancy between the measured and analytical response characteristics 

in time and modal domains.  The meaningful agreement between the analytical and experimental 
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demonstrates the efficiency and accuracy of the proposed damage identification procedure.  In 

the final part of the report, two vibration-based procedures are presented and applied for 

investigation of the consequences of damage in collapse capacity and functionality status of a 

damaged bridge. The first procedure applies the double-integration and filtering routine to 

estimate the maximum drift ratios experienced by the lateral force resisting elements of the 

bridge from acceleration measurements.  The estimated drift ratios along with pushover curves of 

the corresponding elements are used to calculate the ductility-based residual capacity of the 

elements and the bridge. The second procedure utilizes the incremental dynamic analysis (IDA) 

curves for estimation of collapse capacity of the bridge. A new approach for generation of FE 

model realizations of the seismically damaged structures is proposed and applied.  Generated FE 

realizations of the damaged bridge are employed to estimate the collapse capacity of the 

structure.  The amount of loss in the ultimate capacity of the bridge, along with seismic hazard 

characteristics at the bridge site and a set of tagging criteria, are proposed for tagging and 

assessing the functionality status of the damaged bridge. The proposed damage assessment and 

residual capacity estimation methods are evaluated and verified by the results of seismic shake 

table tests of a large-scale concrete bridge model. 
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CHAPTER 1  

Over the past 20 years, Caltrans, with the assistance of the California Geological Survey (CGS), 

has instrumented 68 bridge structures throught California with strong motion sensors for the 

purposese of advancing understanding of how bridge structures react to seismic imput and 

validating dynamic modeling techniques.  For the first time, this project explores the usage of the 

strong motion data for automated, remote, real-time damage assessment of bridges immediatly 

after a destructive event.   

 

Various vibration-based damage assessment methods are investigated for post-event damage 

assessment from noisy and incomplete measurements. Vibration-based structural health 

monitoring and damage assessment can revolutionize the way we inspect the bridges, 

particularly for post-event damage assessment, in a rapid, remote, automated, and objective 

fashion. By installing appropriate sensors at critical locations on a bridge structure, transmitting 

the sensor data through a communications network, and analyzing the data through a software 

platform, the location and severity of bridge damage caused by earthquakes or other damaging 

events can be automatically, remotely, and rapidly assessed, without sending inspection crew to 

INTRODUCTION 



2 
 

the bridge site. In this report, various aspects of vibration-based damage assessment of bridges 

are investigated: from damage detection to identification of it characteristics and consequences 

on the current and future functionality of the bridge. 

1.1 Literature Review 

Over the past few decades, research on vibration-based health monitoring and damage 

assessment of civil engineering structures has produced substantial literature. Numerous 

techniques and procedures have been developed and applied for evaluation of real-world and 

laboratory-tested structures from their response measurements. Rytter [1] proposed a four-level 

hierarchy for classification of damage assessment techniques based on level of assessment 

provided by each technique: (1) detection of existence of damage within the structure (2) 

determination of geometric location of damage (3) quantification of severity of damage (4) 

investigation of damage consequences and prediction of remaining service life or capacity of the 

damaged structure. The following presents a concise literature review on the vibration-based 

methods and procedures applied for health monitoring, damage assessment and residual capacity 

estimation of bridge structures: 

Several researchers have applied system identification techniques for global health monitoring of 

bridge structures through experimental modal analysis: Farrar et al.[2] applied modal 

identification and damage detection techniques for assessment of I-40 bridge from ambient and 

forced vibrations recorded at different damage states of the bridge. Shinozuka and Ghanem[3, 4] 

reviewed several system identification approaches and assessed their performance in modal 

identification of structures from the response to earthquake excitations. In another research by 

Farrar and James[5] the similarities between cross-correlation functions of the response 

measurements on an ambiently excited structure and the impulse responses of the system were 
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utilized for modal identification of a highway bridge. The standard time domain curve fitting 

procedures, typically applied to impulse responses, were used to estimate the natural frequencies 

and modal damping ratios of closely-spaced vibration modes of a highway bridge from traffic-

induced vibrations. Loh and Lee [6] applied linear system identification methodology for health 

monitoring of a 5-span continuous bridge located in Taiwan from responses to both weak and 

strong earthquake ground motions. They concluded that response level of the bridge is an 

important factor in identified dynamic characteristics of the bridge. Feng et al.[7] used ambient 

vibrations of a large-scale structure under wind loading to identify modal properties and update 

stiffness matrix of the structure. The results of study were used for the design of an active mass 

damper system targeted to suppress wind-induced vibrations of the structure. Lus et al.[8] 

proposed a system identification methodology based on eigensystem realization algorithm and 

observer/Kalman filter identification approach to study the dynamic responses of Vincent-

Thomas cable-stayed bridge, located in the Los Angeles metropolitan area, during 1987 Whittier 

and 1994 Northridge earthquakes. The identified mathematical models for the bridge were 

shown to have excellent agreement with the real systems in predicting the structural response 

time histories when subjected to earthquake-induced ground motions. Smyth et al.[9] used a 

combination of linear and non-linear system identification techniques to study the dynamic 

responses of Vincent Thomas Bridge to the Whittier and Northridge earthquakes. The results of 

study showed that the apparent nonlinearities in the system restoring forces were quite 

significant, and application of equivalent linear modal properties contributed substantially to the 

improved fidelity of the model. Weng et al.[10] applied two system identification techniques 

named as frequency domain decomposition and stochastic subspace identification, for modal 

identification of a cable-stayed bridge from response measurements acquired by a wireless array 
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of sensors. He et al. [11] applied three time and frequency domain system identification 

techniques for identification of modal properties of the Alfred Zampa memorial long-span 

suspension bridge from ambient and forced vibrations tests. The experimental modal properties 

of the few contributing modes to the measured bridge vibration were found in good agreement 

with FE model analysis results. Comprehensive reviews of the experimental modal analysis 

techniques are presented by Ewins[12] and Maia and Silva[13]. 

More recently, there has been growing interest in using time-frequency decomposition 

techniques to study the nonstationary and nonlinear vibrations of the structures. Thus far, non-

parametric methods such as short-time Fourier transform (STFT), Wigner-Ville distributions, 

Hilbert transform and wavelet-based methods are the most widely applied methods for time-

frequency analysis of such systems. However, parametric model estimation methods such as 

prediction error minimization and subspace methods offer a number of potential advantages over 

the conventional non-parametric methods including representation parsimony, improved 

accuracy, resolution, and tracking, as well as flexibility in analysis, simulation and prediction[14]. 

Dalianis et al.[15] utilized the concept of generalized transfer function as a higher order system 

representation for the analysis of nonstationary systems. They successfully applied the proposed 

methodology to identify the time-dependent dynamic characteristics of a variable-mass 

cantilever beam. Owen et al.[16] studied the application of auto-regressive time series modeling 

for time-frequency analysis of nonstationary data from large amplitude responses of a cable-

stayed bridge to wind excitation and nonlinear data from modal testing of cracked reinforced 

concrete beams. The results of study indicated the high sensitivity of the auto-regressive models 

to their design parameters (e.g. model order) for such applications. Nelid et al.[17] provided a 

general review of time-frequency methods for structural vibrations analysis. They studied the 
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nonlinear vibrations of a cracked beam at different crack-width levels using four time-frequency 

decomposition techniques. The study was supplemented by the results of another research by the 

same authors for damage assessment of the cracked beams from time-frequency analysis 

results[18]. Nagarajaiah and Li[19] presented a multi-input multi-output system identification 

technique, named as time segmented least square technique, that was applied for tracking 

piecewise linear representations of nonlinear behavior of a base-isolated building structure. 

Marchesiello and Garibaldi[20] proposed Nonlinear Subspace Identification technique handling 

the system nonlinearities as internal feedback forces. Results of application of the methodology 

to three numerical examples indicated the good conditioning and computational efficiency of the 

technique even with short data series. In another research by Marchesiello et al.[21], time-

dependent dynamic properties of bridge structures with crossing loads were investigated using 

short-time stochastic subspace identification methods. A comprehensive review of parametric 

time domain methods for analysis of nonstationary random vibrations is presented by 

Poulimenos and Fassois [22]. 

Although experimental modal analysis can provide important information about the existence of 

damage throughout the structures, most often it does not provide the answer to the questions 

about the characteristics of the structural damage. Several methods and procedures have been 

developed and applied for vibration-based structural damage characterization. A rich source of 

damage identification methods has come from the finite element (FE) model updating 

literature[23]. The first step toward vibration-based damage assessment of structures through FE 

model updating is to develop a relatively accurate FE model of the structure that, potentially, can 

capture significant vibration characteristics of the real system. A priori knowledge about the 

structure and engineering expertise should be used to tackle several issues which arise during FE 
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model development, such as determination of the size and complexity level of the FE model, 

selection of the proper set of model parameters and their respective ranges. The second step 

consists of updating the FE model parameters by minimizing the objective function expressing 

the discrepancy between dynamic properties predicted by the FE model and the ones identified 

from measurements. Comparisons of the updated model parameters with the baseline model 

parameters can be used to identify the location and extent of damage throughout the structure. A 

comprehensive review of the literature in the area of finite element model updating is presented 

by Mottershead and Friswell [24]. The success of the FE model updating approach in accurate and 

reliable identification of damage is highly dependent on the performance of adopted optimization 

technique in convergence to the global minimum of the objective function. In the past few 

decades, many classical optimization techniques have been developed and applied to structural 

damage identification problems. Most of these techniques are calculus-based search techniques 

which utilize a point-to-point search strategy. A good initial guess of the parameter(s) and 

gradient or higher-order derivatives of the objective function are generally required and there is 

always a possibility to fall into a local minimum rather than the global minimum. On the other 

hand, evolutionary-based Genetic Algorithm (GA) optimization technique is a stochastic search 

algorithm based on heuristic concepts of natural evolution. By conducting a population-to-

population search, GA is significantly more likely to converge to the global solution; Moreover, 

it does not require any information about the derivatives of the objective function, which makes 

it suitable for discontinuous, non-differentiable, stochastic or highly non-linear problems 

involving many parameters. Since introduced by Holland [25], many GA applications have been 

performed on a variety of optimization problems in the engineering area including civil 

engineering. Currently, interest in applying these techniques to structural damage assessment 
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problems is increasing. Some applications in the context of structural damage identification are 

reviewed as follows: 

In the study by Friswell et al.[26], genetic and eigensensitivity algorithms were used to optimize 

the discrete damage location variables and their extents from natural frequencies. Chou and 

Ghaboussi [27] utilized GA to identify the changes of the characteristic properties of structural 

members of a truss by minimizing an objective function defined as a function of difference 

between the measured and analytical responses under static loading. Hao and Xia [28] used GA 

for damage detection of a laboratory tested cantilever beam and a frame structure. The objective 

function was defined as weighted error between experimental and FE model predicted natural 

frequencies and mode shapes. The results of the sensitivity analysis on the error weights showed 

that cases with lower mode shape to frequency weight values yielded more accurate results. Koh 

et al.[29] combined GA with two local search operators to improve the computational efficiency 

of the optimization procedure. Au et al. [30] studied the effectiveness of GA in structural damage 

assessment using incomplete and noisy modal test data. Franco et al. [31] proposed a parameter 

estimation technique based on an evolutionary strategy. The model parameters (mass, damping 

and stiffness) of various structural systems were estimated by direct matching of the simulated 

response with the measured response of the structure in time domain. Perera and Torres [32] 

compared the performance of GA in minimization of two objective functions defined based on 

eigenvalue equations and modified total modal assurance criterion. The results of an 

experimental study on an aluminum beam showed that the application of latter objective function 

produced more accurate damage prediction results.  

Comprehensive reviews of the vibration-based structural damage assessment literature presented 

by Doebling et al.[33] Sohn et al.[34] and Carden and Fanning[35] show that majority of existing 
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damage assessment techniques focus on one of the first three levels of the hierarchy proposed by 

Rytter, without addressing the consequences of damage on the functionality status and remaining 

service life of the structure. Within the framework of performance based earthquake engineering, 

several methods and procedures have been developed for seismic performance evaluation and 

residual collapse capacity estimation of structures. 

The nonlinear static procedure, known as pushover analysis is a widely accepted method that has 

become standard among practicing engineers for estimating seismic deformation demands as 

well as local and global capacities of the structures and also for evaluation of the safety of the 

structures against an earthquake-induced collapse. The procedure is introduced in FEMA 273 [36] 

and updated in FEMA 356 [37]. In 1997, Bracci et al. [38] proposed a 5-step methodology based on 

adaptive pushover analysis for seismic performance and retrofit evaluation of reinforced concrete 

structures. Several investigators [39, 40] have found that the procedure may not provide an accurate 

assessment of the structure behavior and may lead to gross underestimation of the demand and 

may fail to identify the failure pattern throughout the structure. In recognition of these 

deficiencies, several improved versions of the procedure have been proposed [41-43]. In fact 

improved procedures lead to better predictions in some cases, but none of them have been proven 

to be universally applicable [44].  

Incremental dynamic analyses have recently emerged as powerful means to study the overall 

behavior of the structures, from their elastic response through yielding and nonlinear response 

and all the way to global dynamic instability [44]. Incremental dynamic analyses have been 

studied extensively lately by several investigators [45, 46]. Ibarra and Krawinkler[47] studied the 

global collapse of deteriorating multi-degree-of-freedom (MDOF) frame structures using IDA 

curves. They concluded that the collapse capacity of a structure strongly depends on post-
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capping stiffness, ductility capacity of the rotational hinges and the first-mode period of the 

MDOF system. The second order P-Δ effects were recognized as accelerating components in the 

collapse of such systems, while cyclic deterioration was reported as an important but not 

dominant issue. Bazzurro et al.[48] proposed a six-step procedure based on incremental dynamic 

analyses to estimate the residual collapse capacity and corresponding occupancy status of a 

building for each of the previously identified damage states of the structure. In a parallel 

research, Luco et al. [49] compared the residual capacities estimated based on static pushover 

curves and incremental dynamic analysis curves and concluded that the static computation of the 

residual collapse capacity generally underestimates the more accurate results found by 

incremental dynamic analysis curves. 

1.2 Scope of the Report and Organization of Material 

This report focuses on development, application and verification of several vibration-based 

methodologies for health monitoring, damage identification and residual capacity estimation of 

reinforced concrete bridges. Experimental measurements during a shake table experiment on a 

large-scale reinforced concrete bridge structure were utilized for performance evaluation of the 

presented methodologies. The wide range of realistic seismic damage induced to the bridge 

structure at different stages of the experiment provides a unique opportunity to examine the 

efficacy of the presented methodologies at various structural damage levels. Contents of this 

report are organized in the following order: 

Chapter 2 presents the details of the shake table experiment including test specimen properties, 

instrumentation and test procedure. Chapter 3 addresses the structural health monitoring of the 

bridge from both ambient vibrations and responses to earthquake base excitations. Structural 

damage assessment results through finite element model updating approach are presented in 
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chapter 4. Proposed residual capacity estimation procedures and corresponding results are 

presented in chapter 5; and finally the conclusions of this study are presented in chapter 6.  
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CHAPTER 2  

2.1 Background 

Catastrophic earthquakes over the past two decades which have caused immeasurable 

devastation, including extensive economic impacts and loss of lives, have directed considerable 

effort toward improving the seismic performance of the world’s infrastructure systems including 

highway bridges. A vast amount of experimental research has been concentrated on broadening 

the technology to calculate the nonlinear response and understanding the performance of 

highway bridges under earthquake loadings. Numerous experiments have been performed on 

components of bridge systems to improve and validate modeling techniques and to evaluate the 

old and novel design procedures. However, due to limitations of earthquake testing facilities, 

large scale system level experiments have generally not been conducted. To fill in the gap in the 

earthquake engineering experimental research, the George E. Brown Network for Earthquake 

Engineering Simulation (NEES) was founded under National Earthquake Hazards Reduction 

Program (NEHRP) through the National Science Foundation (NSF). The Multiple shake table 

EXPERIMENTAL SETUP, TEST SPECIMEN AND 

INSTRUMENTATION 
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facility at University of Nevada, Reno (UNR) is one of the fifteen NEES experimental research 

facilities that plays a significant role in experimental earthquake engineering research. 

The experiment that is investigated within this report is a part of collaborative research to study 

soil-foundation-structure-interaction (SFSI) of bridge systems using the state-of-the-art 

experimental facilities available in UNR. During the experiment, the bridge specimen was 

subjected to a series of earthquake excitations introducing progressive damage to the bridge 

structure which finally led to the failure of a bent of the bridge. Considering the fact that there 

has been no experimental work that includes the failure of a large scale reinforced concrete 

bridge, comprehensive measurements during this experiment provide a unique opportunity to 

evaluate the reliability and accuracy of the proposed health monitoring, damage assessment and 

residual capacity estimation procedures for the case of a large-scale structure and in presence of 

extensive seismic damage. 

2.2 Bridge Specimen 

The prototype for the experimental studies (figure 2–1) is a two-span frame of a cast-in-place 

post-tensioned reinforced concrete box girder bridge. The span lengths are 121.35 ft (37.00m), 

and the substructure is composed of 3.94 ft (1.20 m) diameter 2-column piers on extended pile 

foundations. Seismic detailing of the prototype was based on the Caltrans SDC (Caltrans 2003) 

and NCHRP12-49 Recommended LRFD Guidelines for the Seismic Design of Highway Bridges 

(ATC/MCEER 2001). General design of the prototype was based on the American Association 

of State Highway and Transportation Officials AASHTO bridge specifications (AASHTO 2002). 
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Figure 2–1 Example of prototype location in a multi-span bridge 

The bridge specimen is designed to model the system interaction between three two-column 

bents of varying heights. It is created at quarter-scale to maximize the size of the specimen while 

remaining below the capacity of the shake tables. The total length of the bridge is 67.24 ft (20.50 

m) that includes two spans of 30.00 ft (9.15 m) length and two cantilevered sections of 3.61 ft 

(1.10m) length. The bridge specimen has three double-column bents with varying clear heights 

of 6.00 ft (1.83 m), 8.00 ft (2.44 m), and 5.00 ft (1.52 m) with the tallest bent in the middle. All 

the columns of the specimen have circular sections of 0.98 ft (0.30 m) diameter with 1.56% 

longitudinal steel ratio and 0.90% spiral reinforcement ratio. The axial load index1 for the bridge 

prototype is set at 8.2% which represents a typical value for column axial load level of highway 

bridges and is equivalent to a column axial load of 46.49 kip (206.8 kN). Due to the scaling 

effects, masses of the quarter-scale model provide a smaller axial stress than in the prototype 

scale. Therefore to match the column axial load indices of the of the prototype and test specimen, 

additional weights in the forms of concrete blocks of 120.05 kip (534.0 kN) and lead pallets of 

58 kip (258.0 kN) are firmly attached to the superstructure of the bridge. The superstructure of 

the bridge consists of six precast reinforced concrete beams post-tensioned in transverse and 

longitudinal directions to function as a monotonic and continuous superstructure in both 

directions. However, the gaps provided at the connections of the beams and the cap beams cause 

the superstructure to perform as two independent simply supported spans in vertical direction. 
                                                 

1 Axial load index is defined as the ratio of the axial load and the product of the gross section and the specified 
concrete compressive strength 
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Because of the high strength and stiffness of the prototype superstructure compared to the 

substructure, the superstructure remains essentially elastic when the bridge is subjected to 

seismic excitations. Also, because of the post-tensioning of the beams, the superstructure 

remained generally un-cracked during the whole experiment. Schematic views of the test 

specimen are presented in figure 2–2. 

 
Figure 2–2 Schematic views of the bridge specimen 

 2.3 Instrumentation and Sensor Layout 

The bridge specimen and the shake tables were instrumented with 298 working channels of 

displacement transducers, accelerometers, and strain gauges. The data were recorded at a rate of 

100 Hz using both National Instruments and Pacific Instruments data acquisition systems. The 

superstructure of the specimen was instrumented with 14 accelerometers and 25 displacement 

transducers. The accelerometers were Crossbow high sensitivity LF series with a measurement 

range of plus or minus 2.00 g. The displacement transducers were UniMeasure PA series 

displacement transducers with a stroke of 3.35 ft (1.02 m). Displacements of the superstructure 

were measured in the transverse and vertical directions at the top of each bent and at the mid-
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spans of the superstructure. Superstructure accelerations were measured at the top of each bent in 

both longitudinal and transverse directions of the superstructure. At both mid-spans of the 

superstructure accelerations were measured in all three orthogonal directions. The built-in 

instruments of the shake tables were used to measure displacements and accelerations of the 

shake tables. Figure 2–3 presents the layout of the accelerometers and displacement transducers 

installed on the superstructure of the bridge specimen. 

 

Figure 2–3 Sensor layout of the superstructure of the bridge specimen 

2.4 Test Procedure 

The bridge specimen was subjected to a series of earthquake and white noise excitations in 

transverse direction of the bridge. The high amplitude earthquake input motions were coherent 

for the three shake tables. The input motion signal were calculated based on the 1994 Northridge 

earthquake as recorded from the ground station at the Century City Country Club North. For 

successive tests, scaled versions of the earthquake time history with peak ground accelerations 

ranging from 0.08 g to 1.66 g were utilized. White noise excitations were low amplitude coherent 

motions that were not large enough to induce any damage to the bridge. The acceleration history 

used as “white noise” was a random motion having a peak ground acceleration of 0.10 g and 
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frequency range of 1~30 Hz that lasted for approximately 60 seconds. The advantage of the 

white noise inputs was that, due to their wide frequency range, they could excite all of the 

significant modes of vibration of the bridge in transverse direction. Square wave motions were 

also applied following each white noise test to subject the bridge to free vibration and restore it 

to equilibrium position. The sequence of input motions to the bridge specimen is listed in table 

2-1. Damage descriptions provided in the last column of the table 2-1 reflects the results of 

visual inspections and longitudinal reinforcement strain gauge monitoring at the critical sections 

of the columns of the bridge specimen. Time-frequency decompositions of sample earthquake 

input motion (Test-12) and a white noise excitation (W.N.1) are presented in figure 2–4. The 

spectral acceleration curves corresponding to input earthquake ground motions are plotted in 

figure 2–5.  

 

 
(a) 

 
(b) 

Figure 2–4 Short-time Fourier transform of (a) earthquake and (b) white noise excitations  
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Figure 2–5 Spectral acceleration curves corresponding to input earthquake excitations 

Table 2-1 Test Procedure 

Test Ground Motion Description PGA (g) Damage Description 

W.N. 1 White Noise 0.100   

TEST 12 Low Earthquake 0.075   

TEST 13 Low Earthquake 0.150 Bent 1 Yields 

TEST 14 Moderate Earthquake 0.250 Bent 3 Yields 

W.N. 2 White Noise 0.100   

TEST 15 High Earthquake 0.500 Bent 2 Yields 

TEST 16 High Earthquake 0.750   

TEST 17 High Earthquake 1.000   

W.N. 3 White Noise 0.100   

TEST 18 Severe Earthquake 1.330   

W.N. 4 White Noise 0.100   

TEST 19 Extreme Earthquake 1.660 Bent 3 Steel Buckles 

W.N. 5 White Noise 0.100   
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2.5 Material Properties 

In order to guarantee the consistency of the concrete and reinforcing steel properties with the 

design requirements and the properties of the materials that were used in the prototype bridge, 

constitutive relationships for the concrete and reinforcing steel materials utilized during the 

construction of the bridge specimen were calculated through appropriate material testing 

procedures[50]. The results of testing procedures, reported by NEES@Reno research group were 

used in generation of linear and nonlinear FE models of the bridge. The following presents a 

brief review of the material testing results:  

The concrete material had a 0.37 in (9.50 mm) maximum aggregate size and was rated for an 

unconfined compressive strength of 5003.80 psi (34.50 MPa) with expected cured strength 

ranging from 4496.17 psi (31.00 MPa) to 6004.56 psi (41.40 MPa). The unconfined compressive 

strength of the concrete used in the columns measured at the end of shake table experiment was 

5903.04 psi (40.70 MPa) while the unconfined concrete compressive strength for the cap beams, 

spacer blocks, beams and footings ranged from 4800.75 psi (33.10 MPa) for the footings, to 

7193.87 psi (49.60 MPa) for the superstructure beams.  

Tensile testing was conducted for both the lateral W2.9 spiral wire reinforcement and the #3 

longitudinal bar reinforcement in the columns. All the reinforcements used in the construction of 

the bridge were of Grade-60 type. The average measured yield and ultimate stresses for the wire 

was 67007.43 psi (462 MPa) and 80060.83 psi (552 MPa), respectively with the elastic modulus 

of 27557.17 ksi (190 GPa). The average yield and ultimate strength for the #3 reinforcing bar 

was 66572.32 psi (459 MPa) and 97030.25 psi (669 MPa), respectively with the elastic modulus 

of 29007.55 ksi (200 GPa). Detailed material testing results and constitutive relationships may be 

found in CCEER-06[50] report provided by the NEES@Reno research group. 
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2.6 Observed Shake Table Experiment Results 

A brief review of the observed behavior of the bridge specimen during the shake table 

experiment is presented in this section. The observations included physical inspection of the state 

of the bridge between the tests that were documented as written events, drawings, and 

photographs at key locations (figure 2–6 and figure 2–7). Data recordings such as strains, 

displacements and accelerations were also monitored during the experiment to track the response 

and understand the damage state of the bridge. 

During the experiment, no damage was observed in the superstructure of the bridge including the 

cap beams, beams and their longitudinal and transverse post-tensioning strands. No visible 

damage was observed within the footings of the bents and their bolted connections to the shake 

tables. The status of the added weights and their anchorage system to the superstructure of the 

bridge was reported intact after final stage of the high-amplitude earthquake excitations. 

No damage was observed in the bridge till after test-13. During the test-13, initial hairline 

flexural cracks developed in bent-1. Flexural cracking began in bent-3 and became significant in 

the columns of both bent-1 and bent-3 during test-15. Also during test-15, initial hairline cracks 

began to develop in bent-2. During test-17, significant concrete spalling exposed the column 

lateral reinforcement in both bent-1 and bent-3. Significant spalling and exposure of lateral 

column reinforcement in bent-2 became evident during test-18. Also during test-18, the 

longitudinal reinforcement of bent-3, the shortest of the bents, became exposed and initial 

buckling was observed on the bottom west side of the west column. Both columns of bent-3 

failed in flexure during test 19. The top and bottom of bent 3 columns experienced significant 

plastic hinging and crushing of the core concrete. Four of the bent-3 spirals fractured, and 36 

longitudinal bars buckled.  
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Figure 2–6 Damage progression @ Bent-3 (Top of west column) 
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Figure 2–7 Damage progression @ Bent-3 (Bottom of west column) 
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CHAPTER 3  

3.1 Background 

Experimental modal analysis of a structural system is the process of determining the dynamic 

characteristics of a linear, time-invariant structure including natural frequencies, damping ratios, 

modal shapes and modal scaling factors from vibration measurements. Predominately, 

experimental modal analysis is used to explain dynamic problems that are not obvious from 

intuition, available analytical models, or previous similar experience. Although experimental 

modal analysis may not provide the final answers to all inquiries of typical damage assessment 

problems, but it offers critical information about the dynamic characteristics of the structures 

which are the basic inputs for many damage assessment methodologies. It is also important to 

mention that many vibration analysis problems fall outside of the basic assumptions associated 

with the experimental modal analysis (linearity of the system for example). For these situations, 

one of the available alternatives should be selected based analyst’s engineering judgment. 

As mentioned earlier, the bridge specimen tested during the shake table experiment was 

subjected to two types of input excitations: (1) White noise excitations which were input to 

STRUCTURAL HEALTH MONITORING THROUGH 

EXPERIMENTAL MODAL ANALYSIS 
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bridge to mimic the ambient vibrations of the structure and due to their low amplitude could not 

induce any damage to the bridge structure. The bridge response to these excitations is assumed 

linear and time-invariant (2) Earthquake excitations which were targeted to induce progressive 

seismic damage to the lateral force resisting elements of the bridge specimen. Due to the damage 

and associated nonlinear characteristics during earthquake excitations, basic assumptions of 

conventional modal identification techniques do not hold for the total response of the bridge to 

these excitations. For experimental modal analysis of the bridge from the responses to white 

noise and earthquake excitations two system identification approaches are proposed and applied. 

An output-only frequency domain system identification technique, named as frequency-domain 

decomposition (FDD) technique, is utilized for modal identification from the response to the 

white noise excitations. For the analysis of nonlinear responses of the bridge to the high 

amplitude earthquake excitations, a three-step procedure is proposed. The proposed procedure 

takes advantage of robust time-domain system identification techniques for time-frequency 

analysis of the response during earthquake excitations. The obtained time-frequency 

representation is subsequently used for identification of linear and stable segments of the 

response from which modal properties of the specimen are identified. Details of the mentioned 

modal identification methodologies are presented in the following sections. 

3.2 Modal Identification from White Noise Excitations 

Vibrations of the bridge specimen during white noise excitations resemble the ambient vibrations 

of the civil engineering structures under environmental and/or operational loadings such as wind-

induced vibrations or motions caused by vehicles or pedestrians traffic. Normally, in these cases 

the input loads are unknown, and thus, modal identification has to be carried out based on 

response measurements only. The FDD technique is an output-only system identification 
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technique which is an extension of classical frequency domain approach often referred to as 

basic frequency domain (BFD) technique or peak picking technique. The main advantages of 

classical approach over other approaches such as Ibrahim time domain or stochastic subspace 

identification techniques can be summarized as simplicity, user-friendliness and low 

computational cost. However in modal identification using BFD technique, the modal frequency 

estimations are limited by frequency resolution of spectral density functions, detection of close 

vibration modes can be difficult and, even if detectable, estimates of such modes could be 

heavily biased. Frequency domain decomposition technique, removes all disadvantage associated 

with BFD technique while keeping important features of simplicity and user-friendliness[51]. The 

theoretical background of the technique is presented in the following section. 

3.2.1 Frequency Domain Decomposition Technique 

The relationship between unknown inputs, ( )x t , and the measured responses, ( )y t , can be 

expressed as: 

( ) ( ) ( ) ( )yy xxG j H j G j H jω ω ω ω= . (3-1) 

Where ( )xxG jω  is the power spectral density (PSD) matrix of the input, ( )yyG jω  is the PSD 

matrix of the output responses and ( )H jω  is the frequency response function (FRF) matrix and 

the overbar and superscript T denote the complex conjugate and transpose, respectively. The 

FRF can be written in partial fraction form: 

1
( )

n
k k

k k k

R RH j
j j

ω
ω λ ω λ=

= +
− −∑ . (3-2) 

Where n  is the number of the modes, kλ  is the pole and kR  is the residue: 

T
k k kR φ γ=  (3-3) 
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Where kφ  and kγ  are the mode shape vector and modal participation factor respectively. For the 

case of white noise input ( ( )xxG j Cω = ) the output PSD can be written as: 

1
( )

n
k k k k

yy
k k k k k

A A R RG j
j j j j

ω
ω λ ω λ ω λ ω λ=

= + + +
− − − − − −∑ . (3-4) 

Where kA  is the k th residue matrix calculated as: 

1
( )

n
s s

k k
s k s k s

R RA R C
λ λ λ λ=

= +
− − − −∑ . (3-5) 

The contribution to the residue from the k th mode is given by: 

2
k

T
k

k
k

R CR
A

α
= . (3-6) 

Where kα  is the minus the real part of the pole k k kjα ωλ = − + . For the case of lightly damped 

structures kA  becomes proportional to the mode shape vector: 

k

T T T
k k k k k k

T
k k kA R CR C dφ γ γ φ φ φ∝ = = . (3-7) 

Where kd  is a scalar constant. At a certain frequency,ω , only a limited number of modes will 

contribute significantly which are denoted as ( )sub ω . As a result, the output PSD matrix of a 

lightly damped structure with white noise excitation can be written as: 

( )
( )

T T
k k k k k k

yy
k sub k k

d dG j
j jω

φ φ φ φω
ω λ ω λ∈

= +
− −∑ . (3-8) 

which represents the modal decomposition of PSD matrix of the measured responses. 

The first step in system identification using frequency domain decomposition technique is to 

estimate the PSD matrices, of the response measurement signals. The PSD matrix at each 

discrete frequency, iω , can be directly estimated by taking the Fourier transform of the cross-

correlation matrices of the output signals. The estimated PSD matrices ( ˆ
yyG ) at discrete 
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frequencies, iω , are then decomposed by applying singular value decomposition (SVD) 

technique: 

ˆ ( ) H
yy i i i iG j U S Uω =  (3-9) 

where 1 2[ , ,..., ]i i i imuU u u=  is the unitary matrix of singular vectors; iS  is the diagonal matrix of 

the singular values, ijs , and the superscript H  denotes the complex conjugate and transpose.  

In the proximity of the peak corresponding to natural frequency of the k th mode of vibration, 

this mode and possible close modes will dominate the response. If only one mode is dominating 

the first singular vector, 1iu , is an estimate of the mode shape and the corresponding singular 

values around the peak comprise the auto-PSD function of the SDOF system that have the same 

dynamic properties as that vibration mode. The limits of the auto-PSD function of each mode 

are, normally, identified by comparing the mode shape estimate (singular vector at the peak 

frequency) with the singular vectors for the frequency lines around the peak. As long as the 

singular vectors are in good agreement with the estimated mode shape, the corresponding 

singular value is assumed to be a part of SDOF auto-PSD function. Modal assurance criterion 

(MAC) is used to quantify the consistency between singular vectors and estimated mode shapes: 

( )
( ) ( )

2

1 2
1 2

1 1 2 2

.
( , )

. . .

T

T T
MAC

ϕ ϕ
ϕ ϕ

ϕ ϕ ϕ ϕ
=  (3-10) 

The MAC value ranges between zero and unit. The higher values of the MAC indicate the better 

match between mode shape vectors. For the modal analysis of the bridge specimen, the range of 

each auto-PSD function is limited to the singular values which their corresponding singular 

vector have MAC values of 0.90 and higher with the estimated mode shape vector. After SDOF 

systems corresponding to all significant modes of vibration of the structure are identified, the 
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auto-PSD functions are taken back to time domain by an inverse Fourier transform (IFFT) to 

accurately calculate the modal frequencies and damping ratios from crossing times and 

logarithmic decrement of the auto-correlation function corresponding to each mode. The modal 

identification procedure through FDD technique is shown in figure 3–1.  

 
Figure 3–1 Modal identification procedure using FDD technique  

3.2.2 Application of FDD Technique to Bridge Response Measurements 

The FDD technique is applied for identification of modal properties of the bridge specimen from 

the response measurements on the superstructure during white noise excitations. In order to 

minimize the effect of noise on the modal identification results, the PSD matrices of the response 

measurements are estimated using Welch’s averaging method with Hamming window function 

of 20.48 second long and 50% overlapping factor. The singular values of output PSD matrices 

during white noise excitations (W.N.1~5), calculated auto-correlation functions and complex 

representation of the modal shape vectors are presented in figure 3–2 through figure 3–6 and 

table 3-1 through table 3-5.
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Figure 3–2 Modal identification using FDD technique (W.N.1) 

Table 3-1 Modal identification results (W.N.1) 

Mode # if  iζ  
Mode Shape 

1iφ  2iφ  3iφ  4iφ  5iφ  

1 2.703 3.89% -0.582 -0.523 -0.438 -0.360 -0.257 

2 3.351 1.64% -0.634 -0.359 -0.196 0.322 0.572 

3 12.621 1.22% -0.417 0.405 0.616 0.380 -0.373 
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Figure 3–3 Modal identification using FDD technique (W.N.2) 

Table 3-2 Modal identification results (W.N.2) 

Mode # if  iζ  
Mode Shape 

1iφ  2iφ  3iφ  4iφ  5iφ  

1 2.326 5.43% -0.648 -0.535 -0.412 -0.299 -0.183 

2 3.368 3.15% -0.370 -0.173 0.277 0.497 0.714 

3 12.281 0.78% -0.399 0.410 0.621 0.377 -0.381 
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Figure 3–4 Modal identification using FDD technique (W.N.3) 

Table 3-3 Modal identification results (W.N.3) 

Mode # if  iζ  
Mode Shape 

1iφ  2iφ  3iφ  4iφ  5iφ  

1 1.493 2.23% -0.739 -0.529 -0.342 -0.179 0.160 

2 1.717 3.02% -0.483 -0.259 -0.238 0.429 0.678 

3 12.019 1.19% -0.359 0.443 0.627 0.378 -0.374 
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Figure 3–5 Modal identification using FDD technique (W.N.4) 

Table 3-4 Modal identification results (W.N.4) 

Mode # if  iζ  
Mode Shape 

1iφ  2iφ  3iφ  4iφ  5iφ  

1 1.394 3.45% -0.721 -0.542 -0.376 -0.210 -0.041 

2 1.468 3.46% -0.722 -0.440 -0.227 0.199 0.441 

3 12.025 1.19% -0.424 0.402 0.611 0.380 -0.376 
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Figure 3–6 Modal identification using FDD technique (W.N.5) 

Table 3-5 Modal identification results (W.N.5) 

Mode # if  iζ  
Mode Shape 

1iφ  2iφ  3iφ  4iφ  5iφ  

1 1.268 3.27% -0.653 -0.519 -0.396 -0.299 -0.241 

2 1.484 2.91% -0.608 -0.299 -0.151 0.336 0.637 

3 11.712 0.66% -0.410 0.433 0.607 0.371 -0.372 
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3.3 Modal Identification From High-Amplitude Earthquake Excitations 

Many of the vibration-based structural health monitoring techniques are based on the comparison 

of the dynamic characteristics of the structures (modal frequencies, damping ratios and mode 

shapes) before and after occurrence of damage. During damaging events, such as high amplitude 

earthquakes, structures normally exhibit nonlinear dynamic behavior with gradual or abrupt 

changes in the stiffness and damping properties of structural elements which result in time-

varying dynamic characteristics over such events. As a result, conventional modal identification 

procedures are not applicable for the analysis of the structural response to such events due to 

violation of their basic assumptions. In this study, a three step procedure is proposed for the 

analysis of nonlinear and non-stationary responses of the structures during high amplitude 

earthquake excitations. Discrete state space models are used to describe the relationship between 

the input, noise and output signals of the structural systems during earthquake excitations. Two 

well known parameter estimation techniques are applied for estimation of state space model 

parameters from input and output measurements. In the following subsections, theoretical 

backgrounds and details of state space models, adopted parameters estimation methods named as 

prediction error and stochastic subspace identification methods are presented.  

3.3.1 System Identification Approach 

3.3.1.1  State Space Models 

State-space models are mathematical models that use state variables to describe a dynamical 

system by a set of first-order differential or difference equations. State variables can be 

reconstructed from the measured input-output or output-only data, but are not themselves 
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measured during an experiment. A linear time-invariant system can be described by a discrete-

time state-space model as: 

( 1) ( ) ( ) ( )
( ) ( ) ( ) ( )

x t x t u t w t
y t x t u t v t
+ = + +

= + +
A B
C D

 (3-11) 

Where the vectors, 1( ) mu t ×∈R and 1( ) py t ×∈R  are measured inputs and outputs of the system at 

time instant t . The order of the system and the dimension of the state vector, 1( ) nx t ×∈R , is n ; 

n n×∈A R is the matrix that completely characterizes the global dynamics of the system by its 

eigenvalues. n m×∈B R is the input matrix. p n×∈C R  is the output matrix that correlates the 

internal states of the state space model with the real system physical parameters and p m×∈D R is 

the direct feed through matrix. 1( ) nw t ×∈R and 1( ) pv t ×∈R , are immeasurable noise vector 

sequences called process and measurement noise respectively. The noise vectors are assumed to 

be zero-mean, white and stationary signals. The state space model identification problem can be 

described as identification of system matrices and noise characteristics using a relatively large 

number of measured inputs and outputs of the system. Numerous methods have been developed 

and applied for identification of state space model matrices. In this study, performances of two 

model parameter estimation approaches are investigated: (1) prediction-error methods (2) 

subspace methods. Brief reviews of these methods are presented in the following section.  

3.3.1.2  State Space Model Parameters Estimation Methods 

Prediction-Error Parameter Estimation Methods  

Prediction-error methods (PEMs) are a broad family of model parameter estimation methods that 

can be applied to different modeling structures. The PEM provides a number of advantages over 

other model parameter estimation techniques such as (1) Model structure flexibility: it could be 

applied for parameter estimation of a wide spectrum of model structures. (2) Excellent 
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asymptotic properties, do to its kinship with maximum likelihood (3) ability to handle systems in 

closed loop (the input is partly determined as output feedback, when data are collected). It also 

has some drawbacks like (1) it requires an explicit parameterization of the model (2) The search 

for the parameters that gives the best output prediction fit may be laborious and involve search 

surfaces that have many local minima[52]. A brief review of the theoretical background of PEM is 

presented as follows: Let { (1), (1), (2), (2),.. , ( ), ( )}.NZ u y u y u N y N= collect all the past data 

measured up to time N . The basic idea behind prediction error approach is very simple. Describe 

the model as a predictor of the next output: 

1ˆ ( | 1) ( )t
my t t f Z −− =  (3-12) 

Here ˆ ( | 1)my t t −  denotes the one-step ahead prediction of the output and f  is and arbitrary 

function of past observed data. Parameterize the predictor in terms of a finite-dimensional 

parameter vectorθ : 

1ˆ( | ) ( , )ty t f Zθ θ−=  (3-13) 

Determine an estimate of parameter vector,θ̂ , from the model parameterization and observed 

data set NZ  so that the distance between response prediction vector ˆ ˆ{ (1| ),..., ( | )}y y Nθ θ  and 

measurements vector { (1),..., ( )}y y N  is minimized in suitable norm. The prediction error of a 

certain model parameterized with *θ  is given by: 

* ˆ( , ) ( ) ( | )t y t y tε θ θ= −  (3-14) 

When the data set NZ  is known, these errors can be computed for 1, 2,t N= … . We are 

interested in finding model parameters that can minimize the error for all of observed data. Now, 

let the prediction error sequence be filtered through a stable linear filter ( )L q : 
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( , ) ( ) ( , )F t L q tε θ ε θ=  (3-15) 

Applying the filter ( )L ⋅  allows extra freedom in dealing with non-momentary properties of the 

prediction error like high-frequency disturbances which are not essential to the modeling 

problem. Now let define the following norm: 

1

1( , ) ( ( , ))
N

N
N F

t
V Z l t

N
θ ε θ

=

= ∑  (3-16) 

Where ( )l ⋅  is a scalar-valued (typically positive) function. The function ( , )N
NV Zθ  is a natural 

measure of the validity of the selected model. Now the model parameter estimate, θ̂ , is found by 

minimization of the norm function: 

ˆ ˆ ( ) arg min ( , )
M

N N
N N N

D
Z V Z

θ
θ θ θ

∈
= =  (3-17) 

As stated earlier, prediction error identification methods refer to a broad family of identification 

approaches. Different versions of the method can be achieved by changing the choice of ( )l ⋅ , the 

choice of filter ( )L ⋅ , choice of model structure and even choice of minimization method that is 

used for finding θ̂ . In this study, the PEM function provided within Matlab system identification 

package is utilized for state space model parameter identification. The following error norm is 

utilized in definition of ( , )N
NV Zθ : 

( ) det( )Tl ε ε ε= ×  (3-18) 

The frequency weighting function, ( )L ⋅ , is calculated as the product of the input spectrum and 

the inverse of the noise model. As a result, higher weights are assigned to frequencies excited by 

the input signal and lower weights are used for frequencies in the noise range. 
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Stochastic Subspace System Identification Method 

Stochastic subspace identification methods are well-established family of identification methods 

that take advantage of robust techniques such QR factorization and singular value decomposition 

(SVD) to estimate the model order , n , and system matrices A , B , C  and D matrices in a state 

space model. Details of determination of system matrices and initial states are presented[53].  

It is well known that the state space model input-output relationship presented in equation (3-11) 

can also be described by: 

1 1( 1) ( 1) ( ) ( )
( ) ( ) ( ) ( )

x t T Ax t T Bu t w t
y t CTx t Du t v t

− −+ = + + +
= + +

  


 (3-19) 

For any invertible matrix T . This corresponds to change of basis 1( ) ( )x t T x t−= in the state 

space. Subspace algorithms are based on the following observations: 

• If Â  and Ĉ  are known, it is an easy linear least squares problem to estimate B̂  and D̂   

1ˆ ˆ( ) ( ) ( ) ( )y t C qI A Bu t Du t−= − +  (3-20) 

Using the predictor: 

1ˆ ˆˆ( | , ) ( ) ( ) ( )y t B D C qI A Bu t Du t−= − +  (3-21) 

(The initial state (0)x  can also be estimated) 

• If the observability matrix, rO , of the system is known, then it is easy to determine C  

and A . Use the first block row of rO  and the shift property respectively. 

1

r

r

C
CA

O

CA −

 
 
 =
 
 
 


 (3-22) 

• The extended observability matrix can be consistently estimated from input-output data 

by direct least-squares like steps. 
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• Once the observability matrix has been estimated, the states ( )x t  can be constructed and 

the statistical properties of the noise contributions ( )w t  and ( )v t  can be established. 

Estimating the Extended Observability Matrix 

Using state space model ,(3-11), we find that: 

1 2

1 2

( ) ( ) ( ) ( )
( ) [ ( 1) ( 1) ( 1)] ( ) ( )

( ) ( ) ( ) ( 1)
( 1) ( )

( ) ( 1)
( 1) ( )

k k k

k k

y t k Cx t k Du t k v t k
y t k C Ax t k Bu t k w t k Du t k v t k

y t k CA x t CA Bu t CA Bu t
CBu t k Du t k
CA w t CA W t
Cw t k v t k

− −

− −

+ = + + + + +
+ = + − + + − + + − + + + +

+ = + + + +
+ + − + +

+ + + +
+ + − + +







 

 

(3-23) 

Now, form the vectors 

( ) ( )
( 1) ( 1)

( ) , ( )

( 1) ( 1)

r r

y t u t
y t u t

Y t U t

y t r u t r

   
   + +   = =
   
   + − + −   

 
 (3-24) 

and rewrite (3-23) as 

( ) ( ) ( ) ( )r r r rY t O x t S Y t V t= + +  (3-25) 

2 3

0 0 0
0 0

r

r r

D
CB D

S

CA B CA B CB D− −

 
 
 =
 
 
 





    



 (3-26) 

and the k th block component of ( )V t   

2 3( ) ( ) ( 1)
( 2) ( 1)

k k
kV t CA w t CA w t
Cw t k v t k

− −= + + +
+ + − + + −


 (3-27) 

In order to estimate rO  using measured input and output signals, now let’s define the following 

matrices: 
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[ (1) (2) ( )]
[ (1) (2) ( )]
[ (1) (2) ( )]
[ (1) (2) ( )]

r r r

r r r

Y Y Y N
x x x N
U U U N
V V V N

=
=
=
=

Y
X
U
V









 (3-28) 

Where  is the number of recorded data points. Using the above definitions equation (3-25) can 

be written in following format: 

r rO S= + +Y X U V  (3-29) 

Now, consider the problem of obtaining an estimate of  in (3-29), with knowledge of data 

matrices Y and U . If the impulse response matrix rS  was known, we could simply subtract the 

rS U  term from Y and apply SVD for extraction of rO . An unstructured least square estimate 

2min
r

r FS
S−Y U  (3-30) 

Where 
F

⋅ denotes the Frobenius norm, leads to the matrix  

ˆ
Tr U

S ⊥− = ΠY U Y  (3-31) 

Where TU
⊥Π is the orthogonal projection onto the null space of U : 

1( )T
T T

U
⊥ −Π = −I U UU U  (3-32) 

The indicated inverse exists if the input is persistently exciting and N mr>  since  

0TU
⊥Π =U  (3-33) 

We have in effect removed the part of the output ( )y t  that did not originate from the state ( )x t . 

The remaining part is 

T T TrU U U
O V⊥ ⊥ ⊥Π = Π + ΠY X  (3-34) 
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The next problem is to eliminate the last term. Since this term is made up of noise contributions, 

the idea is to correlate it away with a suitable matrix. Define the s N×  matrix ( s N≥ ). 

[ (1) (1) ( )]s s s Nϕ ϕ ϕΦ =   (3-35) 

Here ( )s tϕ  is a yet undefined vector. Multiply (3-34) from the right by TΦ  and normalize by N  

1 1 1
T T T

T T T
r r N NU U U

G O O T V
N N N

⊥ ⊥ ⊥= Π Φ = Π Φ + Π Φ +Y X V    (3-36) 

Here NT  is an n s×  matrix. Suppose now that we can find ( )s tϕ  so that: 

1 0T
T

N UN N
lim V lim

N
⊥

→∞ →∞
= Π Φ =V  (3-37) 

1
T

T
N UN N

lim T lim T
N

⊥

→∞ →∞
= Π Φ =   (3-38) 

Then (3-36) becomes: 

1
T

T
r N NU

G O T E
N

⊥= Π Φ = +Y   (3-39) 

( ) 0N r N NE O T T V as N= − + → →∞   (3-40) 

The pr s×  matrix G can thus be seen as a noisy estimate that can be used to obtain estimates of 

A  and C  The only remaining question is how to achieve (3-37) and (3-38). Using the 

expression (3-32) for TU
⊥Π  and writing out the matrix multiplications as sums gives 

1 1

1 1

1

1 1 1( ) ( ) ( ) ( )

1 1( ) ( ) ( ) ( )

T

N N
T T T

s rU

r

t t

N N
T T
r s

t t
r

V t t V t U t
N N N

U t U t U t t
N N

ϕ

ϕ
−

⊥

= =

= =

 
×

Π Φ


 

=

×

−∑ ∑

∑ ∑

V
 (3-41) 

Under mild conditions, the law of large numbers states that the sample sums converge to their 

respective expected values: 
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11lim ( ( ) ( )) ( ( ) ( )) ( ( ) ( ))

( ( ) ( ))

T
T T T T T

s r u r sUN

T
u r r

E V t t E V t U t R E U t t
N

R E U t U t

ϕ ϕ⊥ −

→∞
Π Φ = −

=

V
 (3-42) 

Here uR  is the r r×  covariance matrix of the input. Now assume that the input u  is independent 

of the noise term V . Then ( ( ) ( )) 0T
rE V t U t = . Assume also that uR  is invertible which means 

that the input is persistently exciting of order r . Then the second term of (3-42) will be zero. For 

the first term to be zero, we must require ( )V t  and ( )s tϕ  to be uncorrelated. Since ( )V t  is made 

up of white noise terms from time t  and onwards, any choice ( )s tϕ  built up from data prior to 

time t  will satisfy (3-42). A typical choice would be 

1

2

( 1)

( )
( )

( 1)

( )

s

y t

y t s
t

u t

u t s

ϕ

− 
 
 
 −

=  − 
 
 

−  





 (3-43) 

Summing up, forming 1
T

L T
U

G
N

= Π ΦY  with Φ  defined by (3-43) and (3-35) gives the 

properties of (3-39) and (3-40) which allows us to consistently determine A  and C  as presented 

in the following subsection. 

Estimation of A and C from extended observability matrix 

Suppose that a *pr n×  dimensional matrix G  is given, that is related to the extended 

observability matrix of the system,(3-22). We have to determine A  and C  from G . In the case 

of known system order, C can easily be found as the first p  rows of rO : 

ˆ (1: ,1: )rC O p n=  (3-44) 
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Similarly, Â  can be found from the following equation: 

ˆ( 1: ,1: ) (1: ( 1),1: )r rO p pr n O p r n A+ = −  (3-45) 

Which is easily seen from definition of rO . Under the assumption of observability, 1rO −  has rank 

n , so Â  can be determined uniquely. Note that the extended observability matrix depends on 

the choice of basis in the state space representation. It is easy to verify that the observability 

matrix would be: 

r rO O T=  (3-46) 

Applying (3-44) and (3-45) to rO  would thus give the system matrices associated with (3-19). 

Consequently, multiplying the extended observability matrix from the right by any invertible 

matrix before applying (3-44) and (3-45) will not change the system estimate. 

Now, suppose that the order of the system is unknown and that *n - the number of columns of 

G - is just an upper bound for the order. This means that we have:  

rG O T=   (3-47) 

For some unknown but full rank, *n n×  matrix T , where also n  is unknown to us. The rank of 

G  is n . The straightforward way to deal with this would be determine this rank, delete the last 

*n n−  columns of G  and then proceed as above. A more general and numerically sound way of 

reducing the column space is to use singular value decomposition (SVD): 
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*

1

2

3

0 0 0
0 0 0
0 0 0

0 0 0

0 0 0 0

0 0 0 0

T T

n

G USV U V

σ
σ

σ

σ

 
 
 
 
 
 = =  
 
 
 
 
  







    





    



 (3-48) 

Here U  and V  are orthonormal matrices ( TU U I= , TV V I= ) of dimensions pr pr×  and 

* *n n×  respectively. S  is a *pr n×  matrix with singular values of G  along the diagonal and 

zeros elsewhere. If G  has rank n , only the first n  singular values kσ  will be non-zero. This 

means that we can rewrite  

1 1 1
T TG USV U S V= =  (3-49) 

Where 1U  is a pr n×  matrix containing the first n  columns of U , while 1S  is the n n×  upper 

left part of S , and 1V  consists of the first n  columns of V  ( 1 1
TV V I=  still remains valid). From 

(3-47) and (3-49), and by multiplying 1V  from the right we will have: 

1 1 1r rO TV O T U S= =  (3-50) 

For some invertible matrix 1T TV=  . We are now in the situation (3-46) that we know the 

observability matrix up to an invertible matrix T  or we know the observability matrix in some 

state space basis. Consequently we can use 1 1
ˆ

rO U S=  or 1
ˆ

rO U=  or any matrix that can be 

written as: 

1
ˆ

rO U R=  (3-51) 

for some invertible R  in (3-44) and (3-45). 
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Let us now assume that the given *pr n×  matrix is a noisy estimate of the true observability 

matrix 

r NG O T E= +  (3-52) 

Where NE  is small and tends to zero as N →∞ . The rank of rO  is not known, while the noise 

matrix NE  is likely to be of full rank. It is reasonable to proceed as above and perform an SVD 

on G : 

TG USV=  (3-53) 

Due to the noise, S  will have all singular values *: 1, , ( , )k k min n prσ = …  non-zero. The first n  

will be supported by rO , while the remaining ones stem from NE . If the noise is small, one 

should expect that the latter are significantly smaller than the former. Therefore determine the n̂  

as the number of singular values which are significantly larger than zero. Then keep those and 

replace others in S  by zero and proceed as the mentioned above to determine 1S  and 1U . 

Using Weighting Matrices in the SVD 

For more flexibility we could pre- and post- multiply G  as 1 2Ĝ W GW=  before performing SVD. 

1 2 1 1 1
ˆ T TG W GW USV U S V≈= =  (3-54) 

and then instead of (3-51) use  

1
1 1

ˆ
rO W U R−=  (3-55) 

to determine the Ĉ  and Â . Here R  is an arbitrary matrix that will determine the coordinate 

basis for the state representation. The post multiplication by 2W  just corresponds to change of 



45 
 

basis in the state space and the pre- multiplication by 1W  is eliminated in (3-55) so in the 

noiseless case these weightings are without consequence. However when noise is present, they 

have an important influence on the space spanned by 1U  and on the quality of the estimates Ĉ  

and Â . 

Estimation of B and D Matrices 

For given Â  and Ĉ  model structure: 

1ˆ ˆˆ( | , ) ( ) ( ) ( )y t B D C qI A Bu t Du t−= − +  (3-56) 

is clearly linear in B  and D . The predictor is also formed entirely from past inputs, so it is an 

output error model structure. The predictor can be written in standard linear regression form: 

( )
ˆ( ) ( ) ( )

( )
Vec B

y t t t
Vec D

ϕ θ ϕ
 

= =  
 

 (3-57) 

With a ( )p mn mp× +  matrix ( )tϕ . Here ( )Vec ⋅  is the operation that builds a vector from a 

matrix, by stacking its columns on top of each other. Let ( 1)r k n j= − + . To find the r th column 

of ( )tϕ  which corresponds to r th element of model parameters ,θ , we differentiate the above 

equation with respect to this element and obtain:  

1ˆ ˆ( ) ( ) ( )r j kt C qI A E u tϕ −= −  (3-58) 

Where jE  is the column vector with the j th element equal to 1 and the others equal to 0. The 

rows for r nm>  are handled in similar way. If desired the initial state 0 (0)x x=  can be 

estimated in an analogous way: 

1 1
0 0

ˆ ˆ ˆ ˆˆ( | , , ) ( ) ( ) ( ) ( ) ( )y t B D x C qI A x t C qI A Bu t Du tδ− −= − + − +  (3-59) 

Which is linear also in 0x . Here ( )tδ  is the unit impulse at time 0. 
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Summary of Subspace-based Methods 

The complete subspace algorithm can be summarized as follows: 

1. From the input-output data, form 

1
T

T
U

G
N

⊥= Π ΦY  (3-60) 

with the involved matrices defined by equations (3-28), (3-24), (3-32) and (3-43). In construction 

of Φ , assumption of 1 2s s=  is common. 

2. Select weighting matrices 1W  ( rp rp×  and invertible) and 2W  ( 1 2( )ps ms α+ × )) 

and perform SVD: 

1 2 1 1 1
ˆ T TG W GW USV U S V= = ≈  (3-61) 

Where the last approximation is obtained by keeping the n  most significant values of the 

singular values in S  and setting the remaining ones to zero.( 1U  is now rp n×  1S  is n n×  and 

1
TV  is n α× ).  

3. Select a full rank matrix R and define the rp n×  matrix 1
1 1

ˆ
rO W U R−= . Typical 

choices for R are R I= , 1R S=  or 
1

2
1R S= ╱ . Solve  

ˆ (1: ,1: )rC O p n=  (3-62) 

ˆ( 1: ,1: ) (1: ( 1),1: )r rO p pr n O p r n A+ = −  (3-63) 

For Ĉ  and Â . The latter equation should be solved in a least square sense. 

4. Estimate B̂  and D̂  and 0x̂  from the linear regression problem:  

0

1 1
0, , 1

1 ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )
N

B D x t
min y t C qI A Bu t Du t C qI A x t

N
δ− −

=

− − − − −∑  (3-64) 
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The subspace family of methods contains a number of design variables. Different algorithms 

described in the literature correspond to different choices of these variables and it is still not fully 

understood how to choose them optimally. The design variables of this family of methods 

include (1) the correlation vector ( )s tϕ  (2) the scalar r  which is the maximal prediction horizon 

used (3) the weighting matrices 1W  and 2W  (4) matrix R  in step 3 of the procedure. 

In this study, N4SID routine of system identification toolbox of Matlab software package is 

utilized. The routine takes advantage of Akaike Information Criterion for the selection of r , 1s  

and 2s  design variables. The weighting matrices as proposed by Verhaegen[54] and implemented 

in Multivariable Output-Error State Space (MOESP) class of algorithms are calculated as: 

1W I= ,      1
2

1( )T T
T

U U
W

N
⊥ − ⊥= ΦΠ Φ ΦΠ  (3-65) 

Once the system matrices of the state space models are calculated modal properties of the 

structure including modal frequencies, damping ratios and mode shapes can easily be found. 

Details of extraction of modal properties from state space model matrices are presented in the 

following section: 

3.3.1.3  Extraction of Modal Data from System Matrices 

As stated earlier, matrix A of a state space model controls the dynamic properties of the system 

by its eigenvalues. Eigenvalue decomposition of state matrix ( A  is represented in the form of 

1A −= ΨΛΨ  (3-66) 

Where Ψ  and Λ  are eigenvector and eigenvalue matrices, respectively. The modal properties of 

a continuous-time system can be derived from the following equations: 
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( )i idiag jη µΛ = ±  (3-67) 

(ln( ) ln( ))i i s i ij f jη µ η µ± = ±  (3-68) 

2 2
i iiω η µ= +  (3-69) 

1( ( ))i
i

i

cos tan µζ
η

−= −  (3-70) 

i iCφ = Ψ  (3-71) 

Where sf  is the sampling frequency and iω , iζ  and iφ  represent natural frequency, damping 

ratio and the mode shape of the i th mode of vibration of the structure. Through the use of 

stability diagrams, the physical modal properties of the structure can be accurately identified and 

distinguished from the spurious ones generated due to the process and measurement noises. 

3.3.2 Modal Identification Methodology 

Presented system identification approaches are utilized within a modal identification framework 

for identification of post-earthquake modal properties from nonlinear responses of the structure 

to high amplitude earthquake excitations. As displayed in figure 3–7, the procedure has three 

main steps: (1) Time-frequency analysis of the nonlinear response (2) Identification of stable 

segments of the response (3) modal identification from identified stable segments. Details of 

each step are discussed in following subsections 

3.3.2.1  Step-1: Time-Frequency Analysis 

In order to study the nonlinear behavior of the bridge during damaging earthquake excitations, 

time-frequency relationships are derived from the measured acceleration responses. Time-

dependent modal properties of the structure are estimated by identifying low-order ( 20n = ) state 

space model parameters from successive and overlapping short time-windows of the response. 
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During each time-window, bridge system is approximated as a linear and time-invariant system. 

Performances of presented system identification approaches (prediction-error method and 

subspace-based method) in model parameter estimation from such short segments of the 

response are investigated and compared. The critical quantity in time-frequency decomposition is 

the duration of the segments: while short segments may lead to inaccurate and unreliable modal 

properties, long segments may not provide sufficient time resolution to adequately capture the 

evolution of dynamic properties of the system [22]. Thus, a compromise between achievable 

accuracy and time resolution is necessary. In order to study the sensitivity of the system 

identification methods to the length of the signal, two windows of 300-data -points and 600-data-

points length are utilized. The windows are shifted by 50-data-point increments over the 

measured signals. In order to evaluate and compare the model fitting results using different 

system identification approaches and window lengths, a measure of fit between model simulation 

results and bridge response measurements is adopted: 

ˆ( ( ) ( ))100 1
( ( ) ( ( )))

norm y t y tfit
norm y t mean y t

 −
= × − − 

  (3-72) 

Here, ( )y t  and ˆ( )y t  denote output measurement and simulation results and ( )norm ⋅  operator 

returns the Euclidean length of the vector. 

 
Figure 3–7 Modal identification methodology 
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3.3.2.2  Step-2: Identification of Stable Segment of Response 

The time-frequency decomposition of the bridge response measurements obtained in the 

previous step is utilized for identification of the longest segment of the response with stable 

modal properties. The errors between the modal properties identified from successive time-

windows of the response are used to determine the stability status of the dynamic characteristics 

between the center times of the windows. Three stability criteria are defined as the maximum 

acceptable errors between natural frequencies, damping ratios and modal shapes identified from 

successive windows. Applied stability criteria for the frequencies, damping ratios and mode 

shapes of significant modes of vibration are presented in equations (3-73) through (3-75): 

1 1

, 0.01
i i i i
j j j j

i
j i

f f f f
max

f f

− + − −
≤  

 
   (3-73) 

1 1

, 0.05
i i i i
j j j j

i i
j j

max
ζ ζ ζ ζ

ζ ζ

− + − −
≤  

 

   (3-74) 

( ) ( )( )1 11 , , 1 , 0.03i i i i
j j j jmax MAC MACφ φ φ φ− +   − − ≤       (3-75) 

In above equations, superscripts denote the time window sequence number while subscripts 

represent the number of the identified mode. In order to visualize the stability status of modal 

properties corresponding to each window, different visual styles are used for different stability 

levels: 

• ( ) for stable frequency  

• ( ) for stable frequency and damping  

• ( ) for stable frequency and mode shape 
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• ( ) for stable frequency, damping and mode shape 

Results of time-frequency analysis of the response of the bridge to white noise and earthquake 

excitations for the case of subspace identification from 600-data-point windows are presented in 

figure 3–8 through figure 3–18. In each of these figures, the time-history plot at the top 

demonstrates the acceleration response measurement at channel#1 (located at top of Bent-1). The 

bottom plot shows the identified time-dependent modal properties overlaid the contour plot of 

short-time Fourier transform of the response at channel#1. Identified stable segments of the 

response are marked with black double-arrows. 

 

 
Figure 3–8 Time-dependent modal properties (WN-1) 
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Figure 3–9 Time-dependent modal properties (Test-12) 

 
Figure 3–10 Time-dependent modal properties (Test-13) 
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Figure 3–11 Time-dependent modal properties (Test-14) 

 

 
Figure 3–12 Time-dependent modal properties (Test-15) 
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Figure 3–13 Time-dependent modal properties (Test-16) 

 

 
Figure 3–14 Time-dependent modal properties (Test-17) 
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Figure 3–15 Time-dependent modal properties (WN-3) 

 

 
Figure 3–16 Time-dependent modal properties (Test-18) 
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Figure 3–17 Time-dependent modal properties (WN-4) 

 

 
Figure 3–18 Time-dependent modal properties (Test-19) 
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Figure 3–19 Time-dependent modal properties (WN-5) 

Results of analysis show stable results over the whole time history of Test-12 and all white noise 

excitations which is in complete consistency with the visual inspection results that indicated no 

damage during these input motions. It is important to mention that stable segment of the response 

is selected based on the stability of the vibration modes that have been appropriately excited by 

the input motion. As an example, during the ending segment of Test-16 the third mode of 

vibration has very small contribution to the total response of the structure. As a result, 

corresponding modal properties are accurately identified only from a limited number of time 

windows and in other cases estimations are biased or corrupted by other modes’ properties; 

hence stability criteria are not met for properties of this mode which shouldn’t be interpreted as a 

result of nonlinearity within the structure. In such cases, the stability criteria are only checked for 

the significant modes of vibration to find the stable segment of the response.  
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3.3.2.3  Step-3: Modal Identification from Stable Segments 

Stable segment of the response estimated during the second step of the procedure is used for 

identification of modal properties of the bridge in post-damage condition of the bridge. One of 

the key steps in experimental modal analysis of large-scale structures is the selection of order of 

the mathematical model, n , used for describing the behavior of the structure. Normally, model 

orders are chosen higher than the number of significant modes of vibration of the structure in 

order to reduce the bias on the estimates and increase the accuracy of the identified 

characteristics even in presence of large amount of measurement noise. As a consequence, 

excessive mathematical poles are added to the identified properties of the system. In order to 

discriminate between physically meaningful poles and the mathematical poles, stabilization 

diagrams are used. The basic idea is to perform several system identification runs with increasing 

model orders and combine identified poles in a single diagram with pole frequency as horizontal 

axis and model order as vertical axis. Experience on a very large range of problems shows that in 

such analysis, the pole values of the physical modes always appear at a nearly identical 

frequency, while mathematical poles tend to scatter around the frequency range [55]. Pole stability 

criteria are utilized to discriminate between the stable physical modes and mathematical modes. 

Different levels of pole stability are defined based on the deviation of the identified frequencies, 

damping ratios and modal shapes from the values obtained at a lower system order. The same 

criteria and visual styles as the ones used for identification of stable segments of the response are 

utilized for the analysis of the stability of identified poles. In all cases, the minimum model order 

that produces stable physical poles is selected.  

The stabilization diagrams corresponding to the identified stable segments of the response during 

the second step of the procedure are presented in figure 3–20 through figure 3–26.  
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In these figures, left vertical axis shows the model order while right axis is used for complex 

mode indication function (CMIF) plot (dotted lines) of the stable segment of the response. The 

CMIF is the generalized version of the FDD technique and is frequently used for locating 

vibration modes of the physical systems in frequency domain. It is defined as the eigenvalues 

solved from the normal matrices of the system. The normal matrix at the spectral line ( iω ω= ) is 

formed from the FRF matrix of the system at the same frequency: [ ( )] [ ( )]H
i iH j H jω ω . By this 

definition, the CMIF is equal to the square of the magnitude of the singular values. Therefore, 

the peaks detected in CMIF plot indicate the existence of modes and corresponding frequencies 

gives the corresponding damped natural frequencies. 

 

2( ) ( ) ( ) 1, 2, ,k k k dCMIF j j j k Nω µ ω σ ω≡ ≡ =   (3-76) 

( ) ( ) ( ) ( ) ( )2H H
H j H j V j j V jω ω ω ω ω= Σ                (3-77) 

 

Here ( )kCMIF jω  is the k th CMIF at frequency ω . ( )k jµ ω  is the k th eigenvalue of the normal 

matrix of FRF at frequency ω . 2 ( )k jσ ω  is the k th singular value of the FRF matrix at frequency 

ω  and dN  is the number of dominant modes of vibration of the structure. For more details of the 

method, interested reader is referred to Shih et al. [56]. 
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(a) 

 
(b) 

Figure 3–20 Stabilization diagram (a) W.N.1 (b) Test-12 

 
(a) 

 
(b) 

Figure 3–21 Stabilization diagram (a) Test-13 (b) Test-14 

 
(a) 

 
(b) 

Figure 3–22 Stabilization diagram (a) W.N.2 (b) Test-15 
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(a) 

 
(b) 

Figure 3–23 Stabilization diagram (a) Test-16 (b) Test-17 

 
(a) 

 
(b) 

Figure 3–24 Stabilization diagram (a) W.N.3 (b) Test-18 

 
(a) 

 
(b) 

Figure 3–25 Stabilization diagram (a) W.N.4 (b) Test-19 
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Figure 3–26 Stabilization diagram (WN-5) 

Using the selected model order post-damage modal properties of the bridge are identified from 

stable segment of the response resulted from the second step of the procedure. Both prediction 

error and subspace-based methods are applied for system identification of the bridge. In figure 

3–27 through figure 3–39 the results of simulation using prediction error method are compared 

with the acceleration response measurements at channels 1,3 and 5 located at the top of the bents 

of the bridge. The good matches between the response measurements and results of simulation 

using a single linear time-invariant state space model indicate the efficacy of proposed procedure 

for identification of linear segment of the response with stable dynamic properties. It is also 

important to mention that both system identification approaches showed outstanding 

performance for parameter estimation from short signals with non-zero initial conditions. Further 

analysis of the results is presented in the following section. 
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Figure 3–27 Acceleration measurements and simulation results (WN-1) 

 
Figure 3–28 Acceleration measurements and simulation results (Test-12) 

 
Figure 3–29 Acceleration measurements and simulation results (Test-13) 
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Figure 3–30 Acceleration measurements and simulation results (Test-14) 

 
Figure 3–31 Acceleration measurements and simulation results (WN-2) 

 
Figure 3–32 Acceleration measurements and simulation results (Test-15) 



65 
 

 
Figure 3–33 Acceleration measurements and simulation results (Test-16) 

 
Figure 3–34 Acceleration measurements and simulation results (Test-17) 

 
Figure 3–35 Acceleration measurements and simulation results (WN-3) 
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Figure 3–36 Acceleration measurements and simulation results (Test-18) 

 
Figure 3–37 Acceleration measurements and simulation results (WN-4) 

 
Figure 3–38 Acceleration measurements and simulation results (Test-19) 
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Figure 3–39 Acceleration measurements and simulation results (WN-5) 

 

The modal properties (natural frequencies, damping ratios and mode shapes) of the first three 

transverse vibration modes of the bridge identified from white noise and stable segments of 

earthquake excitations using prediction-error and subspace-based methods are listed in table 3-6 

through table 3-11. In the last column of each table, modal shapes of the bridge identified from 

different types of motion but from the same damage states of the bridge are compared. As an 

example, modal shapes identified from stable ending segment of Test-14 are compared with the 

shapes identified from W.N.-2 (which was input to the bridge right after Test-14 ). 
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Table 3-6 Properties of the first transverse vibration (prediction error method) 

 f1 (Hz) ζ1 1iφ  2iφ  3iφ  4iφ  5iφ  MAC 

WN-1 2.920 1.9% 0.649 0.545 0.423 0.295 0.127 
1.000 

Test-12 2.810 2.1% 0.654 0.544 0.417 0.291 0.134 

Test-13 2.390 2.4% 0.663 0.543 0.407 0.288 0.128  

Test-14 2.240 3.7% 0.667 0.543 0.406 0.282 0.124 
0.998 

WN-2 2.490 2.0% 0.678 0.548 0.405 0.261 0.087 

Test-15 1.850 3.0% 0.633 0.531 0.419 0.322 0.194  
Test-16 1.500 6.0% 0.653 0.534 0.415 0.297 0.166  

Test-17 1.500 7.1% 0.653 0.534 0.415 0.297 0.166 
0.970 

WN-3 1.530 4.0% 0.711 0.551 0.377 0.218 0.029 

Test-18 1.360 7.0% 0.553 0.503 0.436 0.386 0.319 
0.993 

WN-4 1.390 7.7% 0.592 0.527 0.428 0.346 0.263 

Test-19 1.200 10.2% 0.242 0.348 0.424 0.515 0.613 
0.666 

WN-5 1.330 7.3% 0.626 0.525 0.424 0.323 0.222 

 

Table 3-7 Properties of the first transverse vibration mode (subspace method) 

 f1 (Hz) ζ1 1iφ  2iφ  3iφ  4iφ  5iφ  MAC 

WN-1 2.925 1.7% 0.653 0.548 0.418 0.290 0.121 
1.000 

Test-12 2.825 1.8% 0.655 0.546 0.414 0.292 0.129 

Test-13 2.410 2.6% 0.649 0.543 0.414 0.299 0.151  

Test-14 2.260 3.2% 0.655 0.541 0.415 0.293 0.141 
0.994 

WN-2 2.498 2.4% 0.684 0.547 0.400 0.258 0.076 

Test-15 1.862 3.1% 0.671 0.539 0.403 0.281 0.133  

Test-16 1.508 6.9% 0.661 0.536 0.409 0.293 0.151  

Test-17 1.496 8.2% 0.679 0.538 0.402 0.272 0.123 
1.000 

WN-3 1.541 4.9% 0.678 0.536 0.403 0.274 0.122 

Test-18 1.377 8.2% 0.595 0.516 0.429 0.355 0.265 
0.995 

WN-4 1.402 7.0% 0.564 0.499 0.430 0.384 0.316 

Test-19 1.199 8.5% 0.321 0.390 0.432 0.496 0.559 
0.814 

WN-5 1.342 7.0% 0.593 0.515 0.431 0.357 0.265 
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Table 3-8 Properties of the second transverse vibration mode (prediction error method) 

 fi (Hz) ζi 1iφ  2iφ  3iφ  4iφ  5iφ  MAC 

WN-1 3.660 2.5% 0.410 0.082 -0.228 -0.492 -0.729 
0.998 

Test-12 3.660 2.3% 0.381 0.051 -0.216 -0.495 -0.749 

Test-13 3.320 0.6% 0.346 0.029 -0.245 -0.505 -0.751  

Test-14 2.970 0.9% 0.323 0.017 -0.247 -0.511 -0.757 
0.999 

WN-2 3.360 3.2% 0.341 0.020 -0.261 -0.512 -0.743 

Test-15 2.200 14.9% 0.375 0.094 -0.211 -0.493 -0.751  
Test-16 1.840 5.6% 0.365 0.073 -0.219 -0.475 -0.767  

Test-17 1.820 11.9% 0.384 0.082 -0.192 -0.467 -0.769 
0.995 

WN-3 1.830 7.5% 0.346 0.031 -0.220 -0.487 -0.770 

Test-18 1.610 13.1% 0.547 0.209 -0.091 -0.391 -0.704 
1.000 

WN-4 1.580 8.4% 0.536 0.209 -0.089 -0.387 -0.715 

Test-19 1.440 7.6% 0.721 0.410 0.170 -0.198 -0.495 
0.652 

WN-5 1.560 5.9% 0.455 0.119 -0.158 -0.435 -0.751 

 

Table 3-9 Properties of the second transverse vibration mode (subspace method) 

 fi (Hz) ζi 1iφ  2iφ  3iφ  4iφ  5iφ  MAC 

WN-1 3.855 2.5% 0.357 0.028 -0.242 -0.509 -0.744 
1.000 

Test-12 3.710 2.5% 0.361 0.029 -0.238 -0.507 -0.745 

Test-13 3.348 0.6% 0.341 0.015 -0.251 -0.511 -0.748  

Test-14 3.007 0.9% 0.330 0.022 -0.245 -0.507 -0.757 
0.997 

WN-2 3.474 3.9% 0.306 -0.015 -0.268 -0.520 -0.751 

Test-15 2.200 13.4% 0.207 -0.102 -0.307 -0.526 -0.759  
Test-16 1.832 6.0% 0.488 0.158 -0.136 -0.425 -0.733  

Test-17 1.820 11.1% 0.407 0.095 -0.193 -0.467 -0.755 
0.980 

WN-3 1.835 6.3% 0.303 0.021 -0.235 -0.502 -0.775 

Test-18 1.572 11.5% 0.654 0.328 0.100 -0.295 -0.607 
0.876 

WN-4 1.581 9.6% 0.496 0.208 -0.148 -0.418 -0.717 

Test-19 1.442 9.1% 0.699 0.392 0.145 -0.230 -0.532 
0.776 

WN-5 1.559 5.1% 0.499 0.167 -0.127 -0.413 -0.732 
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Table 3-10 Properties of the third transverse vibration mode (prediction error method) 

 fi (Hz) ζi 1iφ  2iφ  3iφ  4iφ  5iφ  MAC 

WN-1 12.780 2.0% 0.409 -0.409 -0.607 -0.385 0.385 
1.000 

Test-12 12.640 1.9% 0.411 -0.411 -0.616 -0.376 0.376 

Test-13 12.440 2.5% 0.404 -0.404 -0.590 -0.404 0.404  

Test-14 12.390 4.0% 0.388 -0.388 -0.582 -0.355 0.485 
0.996 

WN-2 12.500 2.4% 0.390 -0.404 -0.598 -0.376 0.431 

Test-15 11.770 5.0% 0.404 -0.404 -0.607 -0.404 0.376  
Test-16 11.020 7.7% 0.386 -0.386 -0.675 -0.434 0.241  

Test-17 11.470 5.1% 0.416 -0.416 -0.594 -0.416 0.357 
0.981 

WN-3 12.100 2.6% 0.301 -0.402 -0.652 -0.402 0.402 

Test-18 11.300 7.8% 0.374 -0.421 -0.654 -0.421 0.280 
0.989 

WN-4 12.080 1.7% 0.313 -0.402 -0.671 -0.402 0.358 

Test-19 11.870 5.1% 0.341 -0.426 -0.511 -0.426 0.511 
0.962 

WN-5 11.900 1.4% 0.323 -0.415 -0.645 -0.415 0.369 

 

Table 3-11 Properties of the third transverse vibration mode (subspace method) 

 fi (Hz) ζi φ1i φ2i φ3i φ4i φ5i MAC 

WN-1 12.709 1.7% 0.407 -0.416 -0.616 -0.366 0.384 
1.000 

Test-12 12.608 1.9% 0.401 -0.414 -0.624 -0.364 0.382 

Test-13 12.305 2.7% 0.390 -0.416 -0.620 -0.376 0.385  

Test-14 12.141 4.3% 0.395 -0.407 -0.616 -0.372 0.399 
1.000 

WN-2 12.375 2.2% 0.388 -0.416 -0.619 -0.371 0.394 

Test-15 11.732 5.1% 0.391 -0.407 -0.609 -0.411 0.375  
Test-16 11.033 8.6% 0.375 -0.412 -0.646 -0.458 0.250  

Test-17 11.557 5.1% 0.402 -0.397 -0.604 -0.408 0.387 
0.991 

WN-3 12.064 2.3% 0.318 -0.422 -0.636 -0.389 0.406 

Test-18 11.505 7.5% 0.368 -0.424 -0.599 -0.433 0.373 
0.991 

WN-4 12.084 1.8% 0.305 -0.413 -0.648 -0.394 0.400 

Test-19 11.777 4.5% 0.441 -0.402 -0.506 -0.363 0.506 
0.964 

WN-5 11.895 1.7% 0.350 -0.410 -0.628 -0.397 0.397 
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3.4 Summary of Modal Identification Results 

The results of modal identification from the responses to white noise and earthquake excitations 

are analyzed and compared in this section. As the first step, modal properties identified from the 

responses to white noise excitations using output-only and input-output techniques are compared. 

Table 3-12 presents the relative error between identified frequencies and MAC values between 

identified mode shapes using FDD technique as an output-only technique and prediction-error 

and stochastic subspace methods as input-output identification techniques.  

Table 3-12 Comparison of modal data identified from white noise excitations 

  Mode – 1 Mode – 2 Mode – 3 

 Id. Methods 1f∆  1MAC  2f∆  2MAC  3f∆  3MAC  

WN-1 

PEM-FDD 7.43% 0.974 8.44% 0.672 1.24% 1.000 
SS-FDD 7.59% 0.971 13.07% 0.607 0.69% 0.999 

PEM-SS 0.17% 1.000 5.33% 0.994 0.56% 0.999 

WN-2 

PEM-FDD 6.59% 0.988 0.24% 0.975 1.75% 0.997 

SS-FDD 6.89% 0.985 3.05% 0.959 0.76% 1.000 

PEM-SS 0.32% 1.000 3.39% 0.997 1.00% 0.998 

WN-3 

PEM-FDD 2.42% 0.961 6.17% 0.729 0.67% 0.993 
SS-FDD 3.11% 0.906 6.43% 0.699 0.37% 0.997 

PEM-SS 0.72% 0.986 0.27% 0.998 0.30% 0.999 

WN-4 

PEM-FDD 0.29% 0.915 7.09% 0.724 0.46% 0.983 

SS-FDD 0.57% 0.869 7.15% 0.665 0.49% 0.984 

PEM-SS 0.86% 0.994 0.06% 0.994 0.03% 0.997 

WN-5 

PEM-FDD 4.66% 0.998 4.87% 0.833 1.58% 0.989 
SS-FDD 5.51% 0.991 4.81% 0.882 1.54% 0.994 

PEM-SS 0.90% 0.996 0.06% 0.994 0.04% 0.998 
 

Considering the approximation involved in modal identification from output-only data, the 

results of the FDD technique are in good agreement with input-output methods’ results. 
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Comparisons of the modal data from prediction-error and subspace methods indicate almost 

perfect agreement between the results of two input-output methods. The largest discrepancies 

between modal data appeared on the second mode properties. The proximity of natural 

frequencies of the first two modes and lower participation of the second mode in total response 

contributed to the biased estimated of the second mode properties. 

In order to evaluate the performance of applied system identification approaches, the results of 

each system identification method during the time-frequency analysis and modal identification 

process are compared. The time-dependent modal frequencies of the bridge over the whole 

experiment identified using prediction error and subspace-based method s are compared in figure 

3–40 through figure 3–42. In these figures, the plot on the left shows the modal frequency 

tracking results using 300-data-point time windows and right plot presents the results of 600-

data-point windows. Moving averages curves of the identified modal frequencies are added for 

general comparison purposes (dashed and dotted lines). 

 
(a) 

 
(b) 

Figure 3–40 Time-dependent first mode frequency: (a) 300-point (b) 600-point window 
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(a) 

 
(b) 

Figure 3–41 Time-dependent second mode frequency: (a) 300-point (b) 600-point window 

 
(a) 

 
(b) 

Figure 3–42 Time-dependent third mode frequency: (a) 300-point (b) 600-point window 

The comparison of the identified time-dependent modal frequencies demonstrates the good 

agreement between natural frequencies identified from both applied system identification 

approaches. As it was expected, both methods produced more scattered (and less reliable) modal 

frequencies from the shorter time windows (300-point). In order to investigate the effect of the 

window length and the choice of system identification technique in a quantitative manner, model 

fitness values defined in equation (3-72) are utilized. The fitness values of all state space models 
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fitted by either of the system identification approaches using either of time windows are 

calculated for the responses to white noise and earthquake excitations. Due to different 

characteristics of the responses to these different motion types, corresponding fitness values are 

analyzed separately. Density distributions of fitness values are presented in figure 3–43 and 

figure 3–44. As listed in table 3-13 in all variations of input motion type and time window 

length, prediction error system identification technique produced higher mean fitness values with 

lower dispersion properties. This could be interpreted as the higher reliability of the PEM results 

which are generally produced at higher computational costs.  

 
(a) 

 
(b) 

Figure 3–43 Fitness distribution for earthquake responses (a) 300-point (b) 600-point window 

 

Table 3-13 Fitness distributions properties 

Identification Method Prediction Error Method Stochastic Subspace Method 
Window Length 300-points 600-points 300-points 600-points 

Earthquake 
Responses 

fitµ  93.26 94.06 90.55 91.98 

fitσ  4.01 2.34 4.87 3.03 

White Noise 
Response 

fitµ  82.91 83.65 80.84 82.31 

fitσ  5.57 4.34 6.21 4.41 
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(a) 

 
(b) 

Figure 3–44 Fitness distribution for white noise responses (a) 300-point (b) 600-point window 

As the last step, modal data identified from stable segments of the response of the bridge are 

investigated. The comparison of the modal data identified from the stable segments with the 

values extracted from white noise excitations which excited the specimen at the same damage 

state shows that (1) modal shapes identified from both types of motions are in a very good 

agreement (last column of table 3-6 through table 3-11), (2) natural frequencies identified from 

white noise excitations are slightly higher than the values identified from stable segments of the 

response to earthquake excitations (specially during low-damage states of the bridge) which 

could be interpreted as a  result of lower amplitude levels during white noise excitations which 

lead to the closure of cracks and stiffer behavior of the reinforced concrete elements. 

The comparisons of the modal data from prediction-error and subspace methods are presented in 

figure 3–45. In most of the cases, identified natural frequencies and mode shapes from both 

methods are in good agreement. In order to make a choice between the results of two methods 

for the next step of health monitoring and damage assessment procedure the fitness of fitted 

models using these methods are compared (figure 3–46). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 3–45(a, c, e) Comparison of natural frequencies identified from stable segments of the 
response (b, d, f) MAC values between mode shapes identified from two approaches  
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Figure 3–46 Fitness of state-space models identified from stable segments of the response 

 

As presented in figure 3–46, the fitness values of the state space models identified by prediction-

error method are generally higher than the fitness of the models identified using subspace 

methods. As a result, modal data identified from the prediction error system identification 

technique are used in the following chapters of this report. Although, higher computational 

efficiency of the stochastic subspace method, make that more suitable for time-frequency 

analysis which involves significant number system identification runs. 
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CHAPTER 4  

4.1 Background 

The problem of FE model updating can be formulated as an optimization problem with the 

objective of minimizing the error between measured and analytical responses of the structure. In 

this study, two objective functions are defined using time and modal domains. In time domain, 

the objective function is defined as the summation of normalized errors between measured and 

analytical acceleration responses at different sensor locations. In modal domain, weighted errors 

between experimental and analytical modal frequencies and shapes are utilized for formulation 

of the objective function. For accurate identification of FE model parameters, a hybrid 

optimization strategy is proposed and implemented. The optimization strategy takes advantage of 

global and local search techniques to guarantee the convergence to the global minimum of the 

objective function. First, the GA is applied for global search of the parameter space using its 

robust global search capabilities. A local search algorithm, named as quasi-Newton optimization 

technique, is subsequently utilized for fine tuning of the final population of individuals obtained 

by the GA. At the final stage of the optimization procedure, the fittest individual with the least 

DAMAGE ASSESSMENT THROUGH FINITE 

ELEMENT MODEL UPDATING 
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objective value is selected as the best solution. Figure 4–1 presents the details of the proposed 

optimization strategy. Details of the GA optimization technique, utilized objective functions and 

damage assessment results are presented in the following subsections.  

 
 

Figure 4–1 Flow chart of implemented optimization strategy 

4.2 Genetic Algorithm (GA) 

The GA optimization technique is a stochastic search algorithm based on heuristic concepts of 

natural evolution. The motivation behind the application of GA as an optimization technique is 

the great success of natural evolution in solving complex optimization problems such as 

development of new species and their adaptation to drastically changing environmental 

conditions. Unlike conventional optimization techniques that require a good initial guess of the 
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solution, GA relies on a population of randomly generated individuals. By conducting a 

population-to-population search, GA is significantly more likely to converge to the global 

optimum of the objective function; Moreover, it does not require any information about the 

derivatives of the objective function, which makes it suitable for discontinuous, non-

differentiable, stochastic or highly non-linear problems involving many parameters. The 

algorithm takes advantage of bio-inspired genetic operators such as crossover and mutation to 

improve the individuals of the current population and generate a new population with higher 

fitness level. The steps that are involved in a common GA optimization scheme are: 

1. Choose an initial population of S individuals (parameter points): 

0 1,0 2,0 ,0[ , , , ]Sθ θ θΘ = … . 

2. Evaluate the fitness of all individuals of the initial population: 0( )Fit Θ . 

3. Iterate for 1, 2,k = …. 

4. Perform selection 1( )new kSelect −Θ = Θ . 

5. Apply genetic operators ( )k newGenOpsΘ = Θ . 

6. Test for the termination criteria and either go to step 3 or stop[57]. 

Brief reviews of common GA operators are presented in the following subsections: 

4.2.1 Selection 

With this operation, individuals are selected for reproduction of future populations based upon 

their fitness values (inverse of error, loss or objective function values). Selection is a very 

important step within GA. Although the quality of an individual is measured by its fitness value, 

but if selection involves only the most highly fit individuals the solution space may be very 

limited due to the lack of diversity. On the other hand, random selection without considering the 
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fitness of the individuals does not guarantee that future generations will improve in fitness. 

Therefore, selection operator performs the delicate task of adjustment of probability of selection 

of each individual based on its relative fitness to the whole population and selecting the parents 

of the next generation through a consistent procedure. Numerous selection functions have been 

proposed and implemented by different researchers. In this study, Tournament selection operator 

is utilized which selects each parent by successively choosing a preset number of individuals 

from the population at random and then choosing the best individual out of that set to be a parent 

of the next generation. 

4.2.2 Crossover 

The crossover is the most important operator within GA. This operator switches randomly 

selected chromosomes (parameters values) of two previously selected parent individuals, to 

produce two new individuals for the new generation. Therefore, the crossover does not create 

new material (parameter value) within the population; it simply inter-mixes the existing 

population. The usual schemes to generate new individuals are single-point, multi-point, 

scattered crossover. In this study, scattered crossover function is utilized. The function creates a 

random binary vector with the same length as the individuals. It then selects each gene from the 

either first or second parent based on the value of the corresponding element in the randomly 

generated vector. 

4.2.3 Mutation 

The mutation operator introduces a change in one or more of the genes (parameters) of each 

individual. Therefore, with this operator new material is introduced to the population. As a result, 

it provides genetic diversity within the population and enables the genetic algorithm to search a 

broader space. Gaussian mutation operator, developed under Matlab’s optimization toolbox, is 
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utilized to introduce perturbations within the genes of individuals. The operator adds a random 

number taken from a zero-mean Gaussian distribution to the individual’s parameter value. As the 

generations pass by, the algorithm gradually shrinks the standard deviation of the distribution in 

order to improve the local search and fine tuning capabilities of the GA. 

4.2.4 Elitism 

The elitism is an operator which ensures that the most highly fit individuals of the population are 

directly passed on to the next generation without being altered by other genetic operators. Using 

elitism ensures that the minimum fitness of the population can never reduce from one generation 

to the next. Elitism usually brings about a more rapid convergence of the population and in many 

applications elitism improves the chances of locating an optimal individual. 

4.3 Formulation of Objective Functions 

As stated earlier, the FE model updating problem can be formulated as a constrained 

optimization problem to find the optimal set of model parameters ( B̂ ) which minimizes the 

objective function ( J ), defined as a function of the error between measured responses of the 

physical structure with the responses predicted by the FE model of the structure: 

( ) ( )
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}N li i ui

J J

β β β β β β

≤ ∀

= ≤ ≤

B B B

B
  (4-1) 

Here, iβ ’s are the FE model parameters, N  is the total number of model parameters to be 

updated, and liβ  and uiβ  are the lower and upper bounds for the i th model parameter, 

respectively. In this study, depending on the data type used for the model updating, the FE model 

parameter set ( B ) is defined as a combination of correction factors for the stiffness of structural 

components and Rayleigh damping coefficients. Two objective functions are defined using 
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modal and time domain data. In modal domain, the objective function is defined as the 

summation of weighted errors in frequencies and mode shapes of the dominant modes of 

vibration of the structure.  
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Here, dn  is the number of dominant modes of vibration of the structure; fiW  and iWφ  are the 

relative weights assigned to error in natural frequency and mode shape of the i th mode of 

vibration of the structure. Details of the weight adjustment procedure are presented in the 

following subsection. Relative error in frequency ( if∆ ) and modal assurance criterion ( iMAC ) 

are defined as: 

e a
i i

i e
i

f ff
f
−

∆ =   (4-3) 

( ) ( )( )
( ) ( )( ) ( ) ( )( )

2

.

. . .

Te a
i i

i T Te e a a
i i i i

MAC
φ φ

φ φ φ φ
=   (4-4) 

where if  and iφ  represent ith natural frequency and mode shape of the structure; superscripts e  

and a  correspond to experimental and analytical dynamic properties respectively.  

The second objective function is defined as the summation of normalized errors between 

measured and simulated acceleration responses at different sensor locations on the structure: 
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Here, mn  is the number of measurement channels intended to be used for model updating and ky  

represents the response at the k th measurement location. In the definition of 2J , errors between 
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FE model simulated and measured responses at each sensor location are normalized by the total 

power of the measured signal at the same location. Such normalization scheme will prevent the 

FE model updating process to over-fit the response at the locations with higher amplitude levels 

(higher absolute error values) and produce poor fits for the low-amplitude channels. 

The first objective function ( 1J ) could be applied for damage assessment of the bridge specimen 

from modal data identified from either white noise or stable segment of the earthquake 

excitation; but the application of second objective function ( 2J ) is limited to the linear responses 

of the bridge during white noise excitations or low-amplitude earthquakes.  

Adjustment of Weights 

The weighting factors ( fiW , iWφ ) in equation (4-2) are calculated based on two main parameters: 

(1) relative importance of each mode of vibration in the total response of the structure and (2) 

reliability of the measured dynamic parameters. There are two factors that control the relative 

importance of any mode in the total dynamic response of the structure: (1) the modal 

participation factor (MPF) which depends on the interaction of the mode shape with spatial 

distribution of the external load and (2) the dynamic magnification factor that depends on the 

ratios of the applied loading harmonic frequencies to the modal frequency [58]. Therefore, the 

weighting factors ( fiW , iWφ ) are calculated as the product of two factors representing the relative 

importance of each mode of vibration in the total response ( iW ) and the reliability of the 

measured dynamic parameters ( dW ). The relative importance of each mode is estimated using 

the transfer function of identified natural modes. The decoupled transfer function corresponding 

to each mode is defined as: 
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Where iλ  is the i th eigenvalues of the identified state matrix , A , ib is the i th row of the input 

matrix, B ,and ic is the i th column of output matrix, C . The relative importance of each mode is 

calculated as the ratio between the 2H  norm of the decoupled transfer function corresponding to 

that mode and sum of the 2H  norms of significant modes of vibration: 
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here (.)tr denotes the sum of diagonal elements of the matrix and * represents the conjugate 

transpose. As stated earlier, relative importance of the each modal parameter is used for 

adjustment of the weight assigned to error in the respective parameter. However, these values are 

subject to change during the experiment, because of structural damage and change in dynamic 

properties of the bridge. For consistency of FE model updating results, average values of (0.55), 

(0.35) and (0.10) are used as relative importance index ( iW ) for the first three transverse modes 

of vibration of the bridge, respectively. The higher reliability and damage sensitivity of natural 

frequencies in comparison to mode shapes is incorporated into the objective function by 

assigning higher relative weight ( dW ) to the relative error in frequencies (0.67) in comparison to 

the weight assigned to error in mode shapes (0.33). The final set of weighting factors are 

presented in table 4-1. 
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Table 4-1 Weighting factors for 1J  

 Mode - 1  Mode - 2  Mode - 3 

Parameter f 1W  1Wϕ   f 2W  2Wϕ   f 3W  3Wϕ  

Value 0.368 0.182  0.234 0.116  0.067 0.033 

4.4 Finite Element Model Updating Results 

The presented FE model updating procedure is applied for damage assessment of the bridge 

specimen at different stages of the experiment. As the first step a FE model of the bridge 

specimen is generated. The baseline values for the stiffness of the critical elements of the bridge 

and Rayleigh damping ratios are calibrated using the recorded responses from the intact bridge. 

4.4.1 FE Model and Calibration 

A relatively low-order three dimensional FE model of the bridge is developed using the Open 

System for Earthquake Engineering Simulation (OpenSees) software framework. The FE model 

of the bridge is generated using linear elastic beam column elements incorporating the second 

order P-Delta effects. Geometric data and material properties of the bridge are provided by 

Nees@Reno research group that conducted the experiment [50]. For FE model updating using the 

first objective function ( 1J ) correction factors for the stiffness of the plastic hinge areas of the 

columns and in-plane bending stiffness of the deck of the bridge are selected as the FE model 

parameters. For the case of model updating using second objective function ( 2J ) which involves 

response history analysis, correction factors for modal damping ratios of the first two transverse 

modes of vibration of the bridge are added to model parameter set used in the previous case. As 

the first step for damage assessment, FE model parameters are calibrated using the modal 

properties extracted from the response of the intact bridge to (W.N.1). These values are used as 

the baselines for assessment of damage within the bents and the deck of the bridge at various 
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stages of the experiment. Figure 4–2 compares the experimental modal shapes corresponding to 

the first three transverse modes of vibration with the modal shapes calculated by the calibrated 

FE model. The comparison of the measured acceleration response histories with the responses 

simulated by the calibrated FE model at five sensor locations on the superstructure of the bridge 

are presented in figure 4–3. The final calibration factors estimated using modal domain and time 

domain data are presented in table 4-2.  

 
Figure 4–2 Analytical and experimental modal shapes of the bridge specimen (W.N.1) 

 
Figure 4–3 Analytical and measured response histories on the superstructure of bridge (W.N.1) 
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Table 4-2 Calibration factors estimated using modal and time domain data 

Objective Function 0, 1bentβ −  0, 2bentβ −  0, 3bentβ −  0,deckβ  

1J  0.761 1.019 0.780 0.983 

2J  0.760 1.048 0.776 0.976 

4.4.2 Damage Assessment Results 

The presented FE model updating procedure is utilized for damage assessment of the bridge 

specimen at various stages of the experiment. The modal domain approach ( 1J ) is performed by 

matching the analytically calculated modal properties of the bridge with experimental properties 

identified from the white noises and stable segments of the damaging earthquakes using 

prediction-error system identification technique (table 3-6, table 3-8 and table 3-10). Table 4-3 

presents the identified stiffness correction factors for the bents and deck of the bridge.  

Table 4-3 FE model updating results using ( 1J ): stiffness correction factors 

Test 
1bentβ −  2bentβ −  3bentβ −  deckβ  

W.N.1 1.000 1.000 1.000 1.000 
Test-12 0.892 1.011 1.022 0.978 

Test-13 0.604 0.892 0.851 0.966 

Test-14 0.546 0.710 0.669 0.976 

W.N.2 0.687 0.819 0.868 0.976 

Test-15 0.381 0.482 0.346 0.903 

Test-16 0.243 0.331 0.246 0.801 

Test-17 0.258 0.274 0.237 0.873 

W.N.3 0.267 0.280 0.265 0.974 

Test-18 0.243 0.130 0.197 0.855 

W.N.4 0.207 0.315 0.172 0.975 

Test-19 0.209 0.143 0.124 0.950 

W.N.5 0.223 0.130 0.201 0.951 
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The final values of the relative errors between experimental and analytical frequencies and the 

MAC values between identified and analytical mode shapes are listed in table 4-4. Comparison 

of the error levels at different stages of experiment indicate that for the match between analytical 

and experimental properties of the first and the third modes of the bridge is consistently good 

over the whole experiment. However, the bias in estimation of second mode properties, 

especially during the latter stages of the experiment and due to the proximity of the first and 

second modes frequencies, led to increased error levels for these properties. 

Table 4-4 FE model updating results using ( 1J ): error decomposition  

Test 
1f∆  1MAC  2f∆  2MAC  3f∆  3MAC  

W.N.1 1.852E-07 1.000 1.273E-05 0.999 8.840E-06 0.993 
Test-12 1.144E-06 0.985 3.088E-05 0.981 7.303E-06 0.994 

Test-13 2.162E-06 0.995 1.044E-05 0.999 3.355E-07 0.993 

Test-14 5.671E-07 0.998 7.206E-06 1.000 1.415E-06 0.994 

W.N.2 7.536E-06 0.994 2.374E-06 0.990 1.522E-06 0.993 

Test-15 1.109E-05 0.988 1.030E-01 0.973 1.803E-04 0.991 

Test-16 2.599E-06 0.998 1.306E-05 0.979 3.605E-05 0.977 

Test-17 2.499E-06 1.000 1.281E-05 0.988 4.875E-07 0.988 

W.N.3 6.767E-05 0.981 2.838E-03 0.968 5.943E-04 0.992 

Test-18 4.649E-05 0.986 6.793E-03 0.952 1.785E-06 0.980 

W.N.4 7.285E-06 1.000 3.021E-02 0.988 2.053E-05 0.994 

Test-19 4.457E-05 0.964 6.952E-03 0.930 1.853E-06 0.954 

W.N.5 7.491E-06 0.970 2.933E-02 0.959 2.033E-05 0.977 

As stated earlier, due to linearity assumption of the implemented procedure, the FE model 

updating procedure using time domain data is only applied to response measurements during 

white noise excitations. Identified stiffness correction factors of the bents and superstructure of 

the bridge along with modal damping ratios of the first two transverse modes of vibration and the 

fitness values of the fittest individual of the last GA population are presented in table 4-5. The 
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comparisons of the measured and simulated acceleration response histories on the superstructure 

of the bridge specimen are presented in figure 4–4 through figure 4–7. 

Table 4-5 FE model updating results using ( 2J ) 

Test 
1bentβ −  2bentβ −  3bentβ −  deckβ  1ζ  2ζ  fit  

W.N.1 1.000 1.000 1.000 1.000 3.9% 5.3% 0.963 
W.N.2 0.735 0.800 0.773 0.955 5.3% 5.5% 0.951 

W.N.3 0.231 0.352 0.211 0.961 4.9% 5.0% 0.906 

W.N.4 0.225 0.249 0.171 0.944 4.7% 4.8% 0.845 

W.N.5 0.193 0.201 0.163 0.939 4.7% 4.8% 0.822 

 

 
Figure 4–4 Analytical and measured response histories on the superstructure of bridge (W.N.2) 
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Figure 4–5 Analytical and measured response histories on the superstructure of bridge (W.N.3) 

 
Figure 4–6 Analytical and measured response histories on the superstructure of bridge (W.N.4) 
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Figure 4–7 Analytical and measured response histories on the superstructure of bridge (W.N.5) 

As it presented in table 4-5 and even apparent from response history comparison figures, the 

quality of match between the analytical and measured acceleration response histories decreases 

drastically after second white noise input. This could happen as a result of lower structural 

response level hence lower signal-to-noise ratios (SNRs) of the measurements during the latter 

tests of the experiment. In order to check the validity of this claim, SNR values of the response 

measurements to white noise excitations are estimated. The SNR is estimated by calculating the 

noise power over a frequency range that neither input excitation nor bridge specimen can 

contribute to measurements in that frequency range. Considering the frequency content of the 

input white noise excitation and dynamic properties of the bridge specimen, the total power of 

the measurements over [30~50 Hz] range is considered as measurement noise. The noise power 

is then generalized to the whole frequency range assuming uniform noise power over the whole 

frequency range (white noise). Figure 4–8 compares the average SNR values for measured 
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signals on the superstructure of the bridge at different stages of experiment. The figure has two 

ordinate axes representing the SNR and second objective function 2J  values.  

 
Figure 4–8 Estimated average SNRs for measured signals during white noise excitations 

The results of analysis show the close correlation between the SNR values and time domain 

based FE model updating procedure performance ( 2J ). Identified stiffness correction factors for 

the bents and the deck of the bridge are compared and validated in the following section. 

4.4.3 Validation of the Results 

In general, experimental force-displacement relationships are used for the estimation of the 

stiffness and damping properties of the laboratory tested columns. The relative displacement is 

typically measured using displacement transducers installed at the top and the bottom of the 

column and the force is measured using load cells. Since there is no practical solution for 

including a load cell into the columns of the tested bridge system, acceleration responses 
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recorded at the top of the bents are used as indicators of the shear force acting on the bents of the 

bridge. Implicit in this approach is the assumption that the inertial forces applied to each bent are 

proportional to the tributary mass and the acceleration recorded at the top of the bent.  

 
Figure 4–9 Acceleration-drift relationships of the bents of the intact bridge specimen (W.N.1) 

Figure 4–9 shows the lateral acceleration-drift relationships of for the bents of the bridge 

specimen during (W.N.1) when the bridge is in intact condition. Lateral drifts of the bents are 

calculated using displacement measurements at the top and bottom of the bridge. A linear 

regression technique is applied to estimate the average slope of the curves. Ignoring the effects of 

damping forces and the interaction between the bents in dynamic equilibrium equation of each 

bent, the average slopes of the curves are proportional to the stiffness of the bents. As a result, 

changes in lateral stiffness of the bents could be tracked by calculation of these values at 

different stages of experiment. For white noise excitations, the slopes are calculated for the full 

length of the recorded signals but in the case of damaging earthquakes, the stable segments of the 

response identified during modal identification procedure (explained in previous chapter) are 

used for calculation of the average slopes. For comparison purposes, the average slopes 

calculated at each stage of the experiment are normalized by the values found during (W.N.1). 

The average slopes of the curves and corresponding normalized values ( eβ ) for are presented in 

figure 4–10 through figure 4–12 and table 4-6 through table 4-8.  
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Figure 4–10 Acceleration-drift relationships for Bent-1 

Table 4-6 Average slopes and experimental stiffness indices (Bent-1) 

Test Y
X

∆
∆  eβ  Test Y

X
∆

∆  eβ  

W.N.1 33.73 1.00 Test-17 8.99 0.27 

Test-12 32.19 0.95 W.N.3 9.57 0.28 

Test-13 25.26 0.75 Test-18 8.16 0.24 

Test-14 20.67 0.61 W.N.4 8.21 0.24 

W.N.2 24.55 0.73 Test-19 7.22 0.21 

Test-15 14.02 0.42 W.N.5 7.84 0.23 

Test-16 9.26 0.27    
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Figure 4–11 Acceleration-drift relationships for Bent-2 

Table 4-7 Average slopes and experimental stiffness indices (Bent-2)  

Test Y
X

∆
∆  eβ  Test Y

X
∆

∆  eβ  

W.N.1 32.56 1.00 Test-17 8.63 0.27 
Test-12 31.31 0.97 W.N.3 9.76 0.30 
Test-13 26.28 0.81 Test-18 6.78 0.21 
Test-14 24.83 0.77 W.N.4 7.61 0.24 
W.N.2 24.87 0.77 Test-19 5.81 0.18 
Test-15 13.32 0.41 W.N.5 7.15 0.22 
Test-16 9.05 0.28    
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Figure 4–12 Acceleration-drift relationships for Bent-3 

Table 4-8 Average slopes and experimental stiffness indices (Bent-3)  

Test Y
X

∆
∆  eβ  Test Y

X
∆

∆  eβ  

W.N.1 52.64 1.00 Test-17 12.44 0.24 
Test-12 51.76 0.99 W.N.3 12.70 0.24 
Test-13 44.17 0.85 Test-18 7.28 0.14 
Test-14 35.29 0.68 W.N.4 7.87 0.15 
W.N.2 43.81 0.84 Test-19 5.68 0.11 
Test-15 16.34 0.31 W.N.5 8.93 0.17 
Test-16 11.48 0.22    
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The stiffness correction factors of the bents identified using modal ( 1J ) and time ( 2J ) data are 

compared with experimental stiffness indices in figure 4–13 through figure 4–15. The 

experimental indices are generally in good agreement with the FE model updating results except 

for correction factors for Bent-1 during Test-13 and Test-14 where the modal frequencies and 

experimental stiffness indices were found highly sensitive to the choice of start point of stable 

segment of the response. This highlights the fact that, despite the enormous amount of effort that 

is being made to bundle the vibration-based health monitoring and damage assessment 

techniques into fully automated black-box modules, engineering judgment practiced by 

professionals is an integral part of these techniques that still plays a key role in condition 

assessment of the structures.  

 
Figure 4–13 Stiffness correction factors (Bent-1) 
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Figure 4–14 Stiffness correction factors (Bent-2) 

 
Figure 4–15 Stiffness correction factors (Bent-3) 

The stiffness correction factors of the deck of the bridge specimen identified using modal ( 1J ) 

and time ( 2J ) domains data are compared in figure 4–16. The identification results show small 

variations in the stiffness of the deck of the bridge during the whole experiment which is quite 
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consistent with the visual inspection results that indicated almost no damage within the deck of 

the bridge at the end of the experiment.  

 
Figure 4–16 Stiffness correction factors (Deck) 

The comparison of the experimental analytical results show that, FE model updating using either 

modal domain or time domain data can produce accurate and reliable damage assessment results 

even in the presence of measurements noise and for complex structures with close vibration 

modes. The next chapter of this report addresses the fourth level of damage assessment hierarchy 

by investigating the consequences of damage in the current and future operation of the bridge.  
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CHAPTER 5  

5.1 Background 

In this study, an effort has been made to bridge the gap between the vibration-based damage 

assessments techniques with the residual capacity estimation methods developed within 

performance based earthquake engineering framework. Two vibration-based procedures have 

been proposed and applied to incorporate acceleration measurements as the most common and 

easiest-to-achieve vibration data for estimation of residual collapse capacity and determination of 

functionality status of the bridge after a major earthquake event. The procedures are tailored to 

provide bridge officials with information that could improve and expedite the decision making 

process on whether to permit, restrict or deny access to the bridge after a major damaging event. 

The first procedure relies on pushover curves and double-integration technique to estimate the 

experimental ductility ratios of lateral force resisting elements of the bridge. The ductility-based 

residual capacity of structural elements could be used to assess the safety of the whole bridge 

system for public use. The second procedure takes advantage of incremental dynamic analysis 

(IDA) curves to estimate the collapse capacities of the intact and damaged bridges. Estimated 

residual capacity of the bridge together with bridge-site-specific hazard curves are used to update 

RESIDUAL COLLAPSE CAPACITY ESTIMATION 
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the functionality status of the bridge. Details of the proposed procedures are discussed in the 

following sections as they are applied to vibration measurements during the shake table 

experiment on the bridge specimen. 

5.2 Ductility-based Residual Capacity Estimation Using Acceleration Data 

The outline of the ductility-based residual capacity estimation method is presented in figure 5–1. 

 
Figure 5–1 Flowchart of ductility-based residual capacity estimation method  

5.2.1 Pushover Analysis of Bents of the Bridge Specimen 

As the first step of the analysis, nonlinear FE models of the bents as the only lateral force 

resisting subsystems of the bridge are generated. The Opensees software framework is utilized 

for FE model generation and static pushover analysis of the bents. The section properties of the 

columns of the bents are modeled using fiber sections with concrete02 and reinforcing steel 

material models (figure 5–2). The results of material testing procedures, reported in CCEER06-

02 [50], are utilized to accurately capture the nonlinear behavior of the bents.  

Maximum Ductility Ratios 
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(a) 

 
(b) 

Figure 5–2 Stress-strain relationship models for (a) concrete02 (b) reinforcing steel 

Column elements of the bents are modeled using BeamWithHinges elements with concentrated 

plasticity at both ends of the columns. P-Delta Coordinate Transformation object is utilized to 

take the second order P-∆ effects into consideration. A displacement-based pushover analysis is 

performed by applying incremental displacements to mid-points of the link beams of the bents. 

The failure of the bents is assumed to occur when the confined concrete at the extreme 

compression fiber of the core concrete reaches the ultimate concrete compressive strain. 

Pushover curves of the bents of the bridge specimen are presented in figure 5–3.  

 
Figure 5–3 Pushover curves of the bents 
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5.2.2 From Measured Accelerations to Structural Drifts 

With careful signal post-processing; double integration of acceleration time histories can yield 

meaningful displacement data; although slight errors will occur, particularly if shocks are present 

in the original acceleration time histories [59]. In general, integration of acceleration data 

introduces baseline drifts and numerical errors due to convolution of noise in measurements. 

Several methods and procedures have been proposed to minimize the errors due to the baseline 

drifts [60-64]. In this study, high-order band-pass digital filters are used to eliminate the low-

frequency drifts after each integration step. Designing a proper digital filter is a critical aspect of 

structural deformation analysis. A 100th-order finite impulse response (FIR) filter with passband 

of 0.5 30.0Hz f Hz≤ ≤  is designed and applied to signals in both forward and reverse directions 

to produce precisely zero-phase filtering distortion(figure 5–4). In order to validate the double-

integration procedure results, estimated analytical column drifts are compared with the drift 

ratios calculated using measured displacements at the top and bottom of the bents of the bridge in 

figure 5–5 through figure 5–12. 

 
Figure 5–4 Frequency response of designed digital filter  
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Figure 5–5 Comparison of double integration results with displacement measurements (Test-12) 

 
Figure 5–6 Comparison of double integration results with displacement measurements (Test-13) 

 
Figure 5–7 Comparison of double integration results with displacement measurements (Test-14) 
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Figure 5–8 Comparison of double integration results with displacement measurements (Test-15) 

 
Figure 5–9 Comparison of double integration results with displacement measurements (Test-16) 

 
Figure 5–10 Comparison of double integration results with displacement measurements (Test-17) 
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Figure 5–11 Comparison of double integration results with displacement measurements (Test-18) 

 
Figure 5–12 Comparison of double integration results with displacement measurements (Test-19) 

5.2.3 Ductility-based Residual Capacity of the Specimen  

Using the displacement time histories calculated by double-integration of the measured 

acceleration signals at the top and bottom of each bent of the bridge, maximum drift ratios 

reached by the bents of the bridge during each earthquake excitation are obtained. These values 

are used to estimate the ductility ratios of the bents at different stages of the experiment. 

Maximum drift ratios during each earthquake excitation and pushover curves of the bents are 

shown in figure 5–13 through figure 5–15. The double-integration procedure results with 

experimental drift measurements and relative errors between these parameters are listed in table 
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5-1 through table 5-3. The average relative error value of (5.51%) between analytical and 

experimental drift rations indicates that the implemented procedure could effectively be used for 

estimation of the maximum drift ratios from acceleration measurements. 

 
Figure 5–13 Pushover curve and drift ratios estimated using double-integration (Bent-1) 

Table 5-1 Maximum Drift Ratios (Bent-1) 

 Bent-1  
(ΔY = 9.30E-3   ΔU = 7.50E-2 ) 

 Max. Drift Ratio 
(Double Integration) 

Max. Drift Ratio 
(Measurement) 

Relative 
Error (%) 

Ductility 

( 1DIµ − ) 
Test-12 2.90E-03 3.00E-03 3.33% 0.322 

Test -13 8.30E-03 8.50E-03 2.35% 0.922 

Test -14 1.08E-02 1.08E-02 0.00% 1.200 

Test -15 1.99E-02 2.11E-02 5.69% 2.211 

Test -16 3.15E-02 3.64E-02 13.46% 3.500 

Test -17 2.46E-02 2.57E-02 4.28% 2.733 

Test -18 3.73E-02 3.90E-02 4.36% 4.144 

Test -19 4.54E-02 4.88E-02 6.97% 5.044 
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Figure 5–14 Pushover curve and drift ratios estimated using double-integration (Bent-2) 

 

Table 5-2 Maximum Drift Ratios (Bent-2) 

 Bent-2 
 (ΔY = 1.08E-2   ΔU = 8.82E-2 ) 

 Max. Drift Ratio 
(Double Integration) 

Max. Drift Ratio 
(Measurement) 

Relative 
Error (%) 

Ductility 

( 2DIµ − ) 
Test-12 1.90E-03 1.80E-03 5.56% 0.173 

Test -13 4.50E-03 4.50E-03 0.00% 0.409 

Test -14 5.90E-03 5.90E-03 0.00% 0.536 

Test -15 1.18E-02 1.16E-02 1.72% 1.073 

Test -16 2.15E-02 2.34E-02 8.12% 1.955 

Test -17 1.93E-02 1.90E-02 1.58% 1.755 

Test -18 3.07E-02 3.44E-02 10.76% 2.791 

Test -19 4.27E-02 4.36E-02 2.06% 3.882 
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Figure 5–15 Pushover curve and drift ratios estimated using double-integration (Bent-3) 

 

Table 5-3 Maximum Drift Ratios (Bent-3) 

 Bent-3  
(ΔY = 8.51E-3   ΔU = 6.74E-2 ) 

 Max. Drift Ratio 
(Double Integration) 

Max. Drift Ratio 
(Measurement) 

Relative 
Error (%) 

Ductility 

( 3DIµ − ) 
Test-12 2.00E-03 1.90E-03 5.26% 0.222 

Test -13 4.80E-03 5.10E-03 5.88% 0.533 

Test -14 7.80E-03 8.00E-03 2.50% 0.867 

Test -15 2.16E-02 2.39E-02 9.62% 2.400 

Test -16 3.27E-02 3.15E-02 3.81% 3.633 

Test -17 2.31E-02 2.25E-02 2.67% 2.567 

Test -18 4.60E-02 5.46E-02 15.75% 5.111 

Test -19 6.23E-02 7.46E-02 16.49% 6.922 
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5.2.4 Summarization of the Results 

In order to summarize the results of the first residual capacity estimation method, estimated 

ductility ratios ( DIµ ) along with the maximum ductility capacity ( cµ ) of bents (calculated during 

pushover analysis) are used to define the residual capacities (RC) for the bents and for the bridge 

specimen. The residual capacity of each bent of the bridge is defined as: 

1 DI
i

c

RC µ
µ

 
= −  

 
 
 

(5-1) 

Because of the low redundancy level of the bridge specimen the residual capacity of the whole 

bridge system is defined as the minimum of the residual capacities of the bents. Residual 

capacity values for the bents and bridge are listed in table 5-4. 

Table 5-4 Residual capacity of the bridge 

Test 
Bent-1 

( 8.333cµ = ) 

Bent-2 

( 8.000cµ = ) 

Bent-3 

( 7.441cµ = ) 
BridgeRC  

( )1:3DImin µ −  
1DIµ −  1RC  2DIµ −  2RC  3DIµ −  3RC  

Test-12 0.322 96.13% 0.173 97.84% 0.222 97.02% 96.13% 

Test -13 0.922 88.93% 0.409 94.89% 0.533 92.84% 88.93% 

Test -14 1.200 85.59% 0.536 93.30% 0.867 88.35% 85.59% 

Test -15 2.211 73.46% 1.073 86.59% 2.400 67.74% 67.74% 

Test -16 3.500 57.98% 1.955 75.56% 3.633 51.17% 51.17% 

Test -17 2.733 67.19% 1.755 78.06% 2.567 65.50% 51.17% 

Test -18 4.144 50.25% 2.791 65.11% 5.111 31.30% 31.30% 

Test -19 5.044 39.45% 3.882 51.48% 6.922 6.96% 6.96% 

5.2.5 Application to a Toll Bridge Road 

The ductility-based residual capacity estimation method has been tested on the San Diego – 

Coronado bridge, better known just as Coronado bridge. Constructed in 1969, the 11,179 feet-

long-bridge is composed by 29 spans and is characterized by a 90° curve in plan. The 

superstructure is formed by steel plate girders, except for the 3 spans over the navigation 
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channels, which are orthotropic box girders. The substructure is composed by 2-column concrete 

bents of different heights, with the tallest one reaching 200 feet on the navigation channel.  

The bridge had been originally instrumented in 1994 with 9 accelerometers within the California 

Strong Motion Instrumentation Program (CSMIP), then it was more extensively instrumented in 

2002 during the retrofit work, reaching a total of 72 acceleration sensors. Figure 5–16 shows the 

elevation and the plan view of the bridge, together with the sensors location.  

 

Figure 5–16 Elevation and plan view of Coronado bridge and sensors layout 

Up to now, the sensor network has recorded just one earthquake, the 2004 San Clemente 

earthquake, and such acceleration data will be used to investigate the post-event residual capacity 

of the structure within the frame of the ductility-based residual capacity estimation technique. 

Although 72 channels are installed on the bridge, only 12 of them actually recorded the structural 

vibration during the 2004 San Clemente earthquake; moreover, only at bent 19 the sensors on 

both the top and the bottom of the pier in both the longitudinal and transverse direction were 
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recording the seismic response of the structure. For these reasons the residual capacity estimation 

method will be applied to pier 19. Figure 5–17 shows pier 19 and the location of the sensors on 

the bent. The sensors installed on pier 19 that actually collected acceleration data during the 2004 

San Clemente earthquake, and so will be used in the analysis, are: 

- sensor 48: at the top of the bent, in longitudinal direction; 

- sensor 49: at the top of the bent, in transverse direction; 

- sensor 50: on the pile cap, in transverse direction; 

- sensor 51: on the pile cap, in longitudinal direction.      

 

Figure 5–17 Elevation and plan view of Coronado bridge and sensors layout 
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Figure 5–18 Response histories measured by channels 48, 49, 50, and 51 at pier 19 
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Figure 5–18 provides the acceleration time histories measured by the 4 sensors mentioned above. 

Double integration of the acceleration histories will yield the maximum drift ratio experienced 

by the pier in both transverse and longitudinal directions; then the pushover curves (in transverse 

and longitudinal direction) of the pier will be entered with the respective drift values and the 

residual capacity of the bent will be assessed. The procedure adopted and the results obtained 

will be detailed in the following.  

In order to avoid numerical errors in the double integration procedure due to convolution of 

noise in the measurements, an accurate signal post-processing has been adopted. A 160th-order 

finite impulse response (FIR) filter with passband of 0.5 30.0Hz f Hz≤ ≤  was designed and 

applied to signals in both forward and reverse directions to produce precisely zero-phase filtering 

distortion. The accuracy of the results obtained by the double integration procedure has been 

proved by the analysis conducted on the bridge specimen described in the previous paragraphs. 

Figure 5–19 provides the results of the double integration process in terms of relative drift ratio 

histories in transverse (difference between the drift ratios of channels 49 and 50) and longitudinal 

(difference between the drift ratios of channels 48 and 51) directions. From the figure it is 

possible to read the maximum absolute relative drift ratio in the transverse direction, which is 

0.0001045, and in the longitudinal direction, which is 0.0001383. 

The two pushover curves of the structure were generated by using the Opensees FE software. A 

nonlinear FE model of the pier was constructed by using the nonlinear beam column elements in 

Opensees; the elemental section properties were modeled using fiber sections with concrete01 

and reinforcing steel material models (figure 5–20). The geometry and the material properties of 

the FE model were carefully reproduced on the base of the structural drawings of the bridge in 
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order to accurately capture the nonlinear behavior of the structure. Figure 5–21 provides a 

schematic view of the FE model built.    

 

 

Figure 5–19 Relative drift ratios from double integration procedure 
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Figure 5–20 Stress-strain relationship models for (a) concrete01 (b) reinforcing steel 
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Figure 5–21 FE model of pier 19 

A displacement-based pushover analysis was performed in both transverse and longitudinal 

direction (x and z directions with reference to figure 5–21, respectively) by applying incremental 

displacements to the mid-point of the link beam of the two columns composing the bent. The 

failure of the bent is assumed to occur when the confined concrete at the extreme compression 

fiber of the core concrete reaches the ultimate concrete compressive strain. The two pushover 

curves obtained, in transverse and longitudinal direction, are presented in figure 5–22. In order to 

assess the residual capacity of the bent, the curves have to be entered with the maximum absolute 

drift ratio experienced by the pier during the 2004 San Clemente earthquake (Figure 5–19). Such 

values, calculated by double integration of the acceleration measurements, are indicated in figure 

5–22 with a red dot. From the plots, it emerges that the maximum absolute drift ratio due to the 

seismic event in both of the two directions is so small that it does not cause any excursion of the 

structure in the nonlinear range of the materials. Consequently, the 2004 San Clemente 

earthquake induced no loss of capacity of the structure, whose post-event residual capacity will 

be equal to 100%.     
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Figure 5–22 Pushover curves in transverse and longitudinal directions, and drift ratios estimated 
by double integration 

 

5.3 Residual Capacity Estimation Using Incremental Dynamic Analysis 

In this section of the study, incremental dynamic analysis (IDA) curves are utilized for 

estimation of the residual collapse capacity of the intact and damaged structures. A five step 

procedure is proposed to incorporate experimental modal identification data for residual collapse 
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capacity estimation and functionality status update of the bridge specimen at different phases of 

the experiment. Figure 5–23 presents the flowchart of the proposed procedure. 

 
Figure 5–23 Flowchart of IDA-based residual capacity estimation method 

An IDA involves performing a series of nonlinear response history analyses in which the 

intensity of input ground motions are incrementally increased until the global collapse capacity 

of the structure is reached. It also involves plotting a measure of the ground motion intensity 

(e.g. spectral acceleration at the fundamental natural frequency of the structure) against a 
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response parameter (demand measure) such as peak drift ratio. In order to incorporate the large 

variation in intensity and frequency content of the ground motions, statistical properties of IDA 

curves corresponding to a large number of ground motions are generally used for more accurate 

prediction of seismic demand at the structure site. For this study, 40 ground motions (denoted as 

LMSR-N ground motion set) that represent the characteristics of ordinary California earthquakes 

are utilized (table 5-5). Only California earthquakes of moment magnitude (Mw) between (6.5) 

and (6.9) with the closest distance to the fault rupture between (13 km) and (40 km) are 

considered. All ground motions were recorded on NEHRP site Class D[65]. Spectral accelerations 

of the ground motions in LMSR-N set and corresponding sectional median and 16 and 84 

percentiles are presented in figure 5–24(a).  

The collapse capacity of the structure is defined in terms of median ground motion intensity level 

necessary to induce either global lateral instability or local collapse anywhere within the 

structure. A double-clause composite rule based on the slope of the IDA curves and the 

maximum demand measure is used for identification of the collapse capacity point on each IDA 

curve. The slope-based criterion identifies the last point on the IDA curve with tangent slope 

equal or less than 20% of the elastic slope as the collapse capacity point. The second rule 

restricts the maximum drift ratio within the bents of bridge to 10%[66].In the following 

subsections, details of the five-step vibration-based residual collapse capacity estimation 

procedure are discussed as they are applied to shake table experiment results. 
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Table 5-5 LMSR-N ground motion set 

GM # Event Year Mw Station 
Distance 

 (Km) 
Site Mechanism 

PGA 
(g) 

PGV 
(cm/s) 

PGD 
(cm) 

1 Imperial Valley 1979 6.5 Calipatria Fire Station   23.8 D strike-slip 0.078 13.3 6.2 
2 Imperial Valley 1979 6.5 Chihuahua     28.7 D strike-slip 0.27 24.9 9.1 
3 Imperial Valley 1979 6.5 Compuertas     32.6 D strike-slip 0.186 13.9 2.9 
4 Imperial Valley 1979 6.5 El Centro Array #1  15.5 D strike-slip 0.139 16 10 
5 Imperial Valley 1979 6.5 El Centro Array #12  18.2 D strike-slip 0.116 21.8 12.1 
6 Imperial Valley 1979 6.5 El Centro Array #13  21.9 D strike-slip 0.139 13 5.8 
7 Imperial Valley 1979 6.5 Niland Fire Station   35.9 D strike-slip 0.109 11.9 6.9 
8 Imperial Valley 1979 6.5 Plaster City    31.7 D strike-slip 0.057 5.4 1.9 
9 Imperial Valley 1979 6.5 Cucapah     23.6 D strike-slip 0.309 36.3 10.4 

10 Imperial Valley 1979 6.5 Westmorland Fire 
   

15.1 D strike-slip 0.11 21.9 10 
11 Loma Prieta 1989 6.9 Agnews State Hospital   28.2 D reverse-oblique 0.172 26 12.6 
12 Loma Prieta 1989 6.9 Capitola     14.5 D reverse-oblique 0.443 29.3 5.5 
13 Loma Prieta 1989 6.9 Gilroy Array #3   14.4 D reverse-oblique 0.367 44.7 19.3 
14 Loma Prieta 1989 6.9 Gilroy Array #4   16.1 D reverse-oblique 0.212 37.9 10.1 
15 Loma Prieta 1989 6.9 Gilroy Array #7   24.2 D reverse-oblique 0.226 16.4 2.5 
16 Loma Prieta 1989 6.9 Hollister City Hall   28.2 D reverse-oblique 0.247 38.5 17.8 
17 Loma Prieta 1989 6.9 Hollister Differential 

   
25.8 D reverse-oblique 0.279 35.6 13.1 

18 Loma Prieta 1989 6.9 Halls Valley    31.6 D reverse-oblique 0.134 15.4 3.3 
19 Loma Prieta 1989 6.9 Salinas-John & Work 32.6 D reverse-oblique 0.112 15.7 7.9 
20 Loma Prieta 1989 6.9 Palo Alto-SLAC Lab. 36.3 D reverse-oblique 0.194 37.5 10 
21 Loma Prieta 1989 6.9 Sunnyvale-Colton Ave.  28.8 D reverse-oblique 0.207 37.3 19.1 
22 Northridge 1994 6.7 LA-Centinela St.   30.9 D reverse-slip 0.322 22.9 5.5 
23 Northridge 1994 6.7 Canoga Park - Topanga 

  
15.8 D reverse-slip 0.42 60.8 20.2 

24 Northridge 1994 6.7 LA-N Faring Rd.  23.9 D reverse-slip 0.273 15.8 3.3 
25 Northridge 1994 6.7 LA-Fletcher Dr.   29.5 D reverse-slip 0.24 26.2 3.6 
26 Northridge 1994 6.7 Glendale-Las Palmas   25.4 D reverse-slip 0.206 7.4 1.8 
27 Northridge 1994 6.7 LA-Holywood Stor FF  25.5 D reverse-slip 0.231 18.3 4.8 
28 Northridge 1994 6.7 Lake Hughes #1 #   36.3 D reverse-slip 0.087 9.4 3.7 
29 Northridge 1994 6.7 Leona Valley #2 #   37.7 D reverse-slip 0.063 7.2 1.6 
30 Northridge 1994 6.7 Leona Valley #6    38.5 D reverse-slip 0.178 14.4 2.1 
31 Northridge 1994 6.7 La Crescenta-New York    22.3 D reverse-slip 0.159 11.3 3 
32 Northridge 1994 6.7 LA - Pico & Sentous  32.7 D reverse-slip 0.186 14.3 2.4 
33 Northridge 1994 6.7 Northridge - 17645 

   
13.3 D reverse-slip 0.368 28.9 8.4 

34 Northridge 1994 6.7 LA - Saturn St   30 D reverse-slip 0.474 34.6 6.6 
35 Northridge 1994 6.7 LA - E Vernon Ave  39.3 D reverse-slip 0.153 10.1 1.8 
36 San Fernando 1971 6.6  LA - Hollywood Stor 

 
21.2 D reverse-slip 0.174 14.9 6.3 

37 Superstition Hills 1987 6.7  Brawley     18.2 D strike-slip 0.156 13.9 5.4 
38 Superstition Hills 1987 6.7  El Centro Imp. Co. 

 
13.9 D strike-slip 0.358 46.4 17.5 

39 Superstition Hills 1987 6.7  Plaster City    21 D strike-slip 0.186 20.6 5.4 
40 Superstition Hills 1987 6.7  Westmorland Fire 

   
13.3 D strike-slip 0.172 23.5 13 
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(a) 

 
(b) 

Figure 5–24 (a) Spectral acceleration of LMSR-N ground motion set (b) IDA curves for the 
intact bridge. 

5.3.1 Step-1: Incremental Dynamic Analysis of the Intact Structure 

As the first step for the estimation of the residual collapse capacity of the bridge specimen, a 

nonlinear FE model of the bridge that incorporates P-delta effects and strength degradation of the 

structural elements is generated using Open System for Earthquake Engineering Simulation 

(OpenSees) software framework. The IDA curves corresponding to the 40 ground motions in 

LMSR-N ground motions set are generated by relatively large number of nonlinear response 

history analyses. Figure 5–24(b), shows the IDA curves and corresponding cross-sectional 

median and 16 and 84 percentiles for the intact bridge. Since damage within the structural 

elements affects the modal properties of the structure, these properties are frequently used to 

detect, locate and quantify damage within the structures [35, 67]. In order to characterize the 

damage caused by each ground motion-intensity pair, modal properties of the bridge including 

natural frequencies and mode shapes of significant modes of vibration of the bridge are 

calculated after each nonlinear response history analysis. These properties along with the input 

ground motion characteristics are stored in a database to be used on the third step of the 

50% 

84% 

16% 
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procedure. Figure 5–25 shows the variation of post-earthquake natural frequencies of the first 

three transverse modes of the bridge with the intensity level of the earthquake ground motion. 

The median frequency curves (dashed lines) can readily be used by bridge owners after a 

damaging earthquake for a primary assessment about damage status of the bridge. 

 
Figure 5–25 Post-earthquake modal frequencies of the bridge 

5.3.2 Step-2: Experimental Modal Analysis of Damaged Structure 

Natural frequencies and mode shapes are the most common features used in vibration-based 

damage assessment and characterization of the structures. These features are identified from 

response histories measured during either ambient or forced vibrations of the structure. The 

modal properties identified from white noise excitations using prediction-error state space 

system identification technique are utilized. Identified natural frequencies, modal damping ratios 

and the mode shapes of the bridge identified from white noise excitations are listed in table 5-6. 

As it was shown earlier, the first and second transverse modes of vibration of the bridge consist 

of translation and torsion of the deck of the bridge, respectively, which are mainly controlled by 

the lateral stiffness of the bents. The third mode of vibration of the bridge imposes significant in-

plan bending to the deck of the bridge which makes it more sensitive to the in-plane bending 

stiffness properties of the deck in comparison to the lateral stiffness of the bents. As a result, 

small reduction in the third mode frequency over the whole experiment (less than 7% in 
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comparison to 55% and 60% for the first two modes frequencies) can be described as a result of 

minimal damage to the superstructure of the bridge which is consistent with the visual 

inspections results that indicated no damage within the superstructure of the bridge.  

Table 5-6 Experimental modal analysis results  

Test Mode # f (Hz) (%)ζ  
1iφ  2iφ  3iφ  4iφ  5iφ  

W.N. 1 

1 2.937 3.5% 0.664 0.549 0.412 0.278 0.107 
2 3.860 3.9% -0.404 -0.066 0.219 0.494 0.735 

3 12.683 1.9% -0.416 0.418 0.612 0.367 -0.378 

W.N. 2 

1 2.528 5.5% 0.694 0.548 0.394 0.243 0.064 
2 3.443 5.1% -0.440 -0.097 0.200 0.475 0.729 

3 12.274 1.9% -0.402 0.421 0.616 0.371 -0.380 

W.N. 3 

1 1.532 5.1% 0.687 0.542 0.399 0.259 0.092 
2 1.817 5.7% -0.287 0.012 0.247 0.511 0.772 

3 11.982 2.5% -0.397 0.437 0.601 0.381 -0.381 

W.N. 4 

1 1.383 5.3% 0.544 0.498 0.437 0.395 0.332 
2 1.569 7.3% -0.497 -0.171 0.114 0.419 0.732 

3 11.960 1.7% -0.425 0.425 0.603 0.380 -0.360 

5.3.3 Step-3: Generation of FE Realizations of Damaged Bridge 

In this step, the modal properties database created during the IDA of the intact bridge is utilized 

to identify the ground motion-intensity pairs that can drive nonlinear FE model of the bridge into 

the current damage state of the bridge and produce FE realizations of the damaged structure. In 

an ideal case, we are interested in ground motion-intensity pairs that after their application to the 

FE model of the bridge, analytical post-earthquake modal properties of the bridge exactly match 

the experimental values identified from vibration measurements of the damaged bridge. In order 

to quantitatively compare the matches between the analytical and experimental post-earthquake 

modal properties, an error function, E , defined in terms of discrepancy between the analytical 
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and experimental post-earthquake modal properties is utilized to rank all the ground-motion 

intensity pairs available in the database: 

( ) ( )( )
1

ˆ, 1
dn

a fi i i i
i

E GM S W f W MACϕ
=

= ∆ + −∑  (5-2) 

Here dn  is the number of dominant modes of vibration of the bridge (estimated during 

experimental modal analysis procedure); fiW  and iWφ  are the weights assigned to error in 

natural frequency and mode shape of the ith mode of vibration of the structure. These weights are 

assigned based on importance of each mode of vibration in total response of the bridge and 

reliability of measurement of each modal parameter. Relative error in frequency, if∆ , and modal 

assurance criterion, iMAC , are defined as follows: 
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Here if  and iφ  represent the natural frequency and mode shape corresponding to the ith mode of 

vibration of the structure; superscripts e  and a  denote experimental and analytical modal 

properties respectively. For the case of the bridge specimen under investigation, the relative 

importance of each mode is quantified based on the average ratio between the H2 norm of the 

isolated transfer function corresponding to that mode and the sum of H2 norms of the transfer 

functions of all significant modes of vibration of the bridge. As a result, the relative weights of 

the error in the first three natural transverse modes of vibration of the bridge are adjusted at 

(0.55), (0.35) and (0.10) values respectively. The higher reliability in the measurement of the 

natural frequencies relative to mode shapes is incorporated by assigning higher relative weights 
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to the errors in natural frequencies (0.67) in comparison to the mode shapes (0.33). The final 

values of the weighting factors are presented in table 5-7.  

Table 5-7 Weighting factors 

 Mode - 1  Mode - 2  Mode - 3 

Parameter f 1W  1Wϕ   f 2W  2Wϕ   f 3W  3Wϕ  

Value 0.368 0.182  0.234 0.116  0.067 0.033 

In figure 5–26, the errors between analytical and experimental modal properties are plotted 

against the spectral accelerations of the input ground motions at the first period of the intact 

bridge. The minimum errors between post-earthquake analytical and experimental modal 

properties obtained using each ground motion history and the corresponding intensity levels are 

listed in table 5-8. In the ideal case, FE realizations produced by all of the best ground motion-

intensity pairs shall be used for residual capacity estimation; but in this study and due to 

computational considerations only 5 ground motion-intensity pairs with least error values are 

selected for generation of FE realizations. The selected pairs are highlighted in table 5-8.  

 

Figure 5–26 Error between analytical and modal properties 
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Table 5-8 Best ground motion-intensity pairs  
W.N.2   W.N.3  W.N.4 

G.M. # Sa(T1,ζ1) E(GM,Sa)  G.M. # Sa(T1,ζ1) E(GM,Sa)  G.M. # Sa(T1,ζ1) E(GM,Sa) 

1 0.450 0.020  1 2.195 0.029  1 2.069 0.097 
2 0.369 0.014  2 2.607 0.021  2 2.741 0.051 
3 0.471 0.010  3 2.035 0.025  3 3.344 0.091 
4 0.666 0.010  4 3.777 0.022  4 3.469 0.035 
5 0.466 0.013  5 2.351 0.027  5 1.995 0.071 
6 0.521 0.007  6 3.149 0.019  6 3.918 0.056 
7 0.565 0.019  7 4.807 0.022  7 4.407 0.092 
8 0.496 0.026  8 2.954 0.022  8 3.439 0.030 
9 0.535 0.017  9 2.118 0.027  9 2.218 0.101 

10 0.368 0.011  10 0.951 0.031  10 1.250 0.063 
11 0.655 0.011  11 3.348 0.018  11 3.261 0.066 
12 0.530 0.029  12 4.791 0.020  12 3.308 0.054 
13 0.510 0.026  13 1.537 0.028  13 2.145 0.094 
14 0.291 0.026  14 0.883 0.013  14 1.491 0.053 
15 0.318 0.016  15 1.577 0.022  15 1.707 0.099 
16 0.327 0.025  16 0.688 0.042  16 0.813 0.155 
17 0.452 0.020  17 2.133 0.024  17 1.375 0.088 
18 0.269 0.035  18 1.645 0.022  18 1.034 0.061 
19 0.430 0.029  19 2.213 0.021  19 2.363 0.081 
20 0.482 0.010  20 0.964 0.042  20 1.289 0.021 
21 0.379 0.028  21 1.250 0.028  21 1.150 0.067 
22 0.477 0.014  22 1.787 0.032  22 1.986 0.051 
23 0.403 0.027  23 2.525 0.022  23 2.119 0.089 
24 0.478 0.010  24 1.747 0.023  24 2.265 0.029 
25 0.336 0.012  25 2.340 0.021  25 2.272 0.082 
26 0.560 0.022  26 5.413 0.028  26 5.213 0.094 
27 0.545 0.012  27 2.528 0.025  27 3.500 0.096 
28 0.310 0.024  28 1.301 0.020  28 1.586 0.057 
29 0.421 0.030  29 1.463 0.026  29 1.700 0.075 
30 0.431 0.013  30 3.873 0.022  30 3.707 0.104 
31 0.467 0.031  31 2.407 0.025  31 2.272 0.113 
32 0.405 0.009  32 2.052 0.028  32 2.151 0.070 
33 0.505 0.025  33 3.383 0.020  33 3.643 0.056 
34 0.291 0.044  34 1.546 0.024  34 2.396 0.111 
35 0.628 0.009  35 1.868 0.019  35 1.868 0.120 
36 0.560 0.011  36 2.086 0.015  36 2.529 0.088 
37 0.573 0.019  37 2.049 0.021  37 2.456 0.113 
38 0.510 0.020  38 1.127 0.038  38 1.352 0.114 
39 0.350 0.024  39 1.643 0.014  39 2.052 0.056 
40 0.398 0.032  40 2.046 0.011  40 2.097 0.088 

Median 0.466   Median 2.069   Median 2.185  
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5.3.4 Step-4: Incremental Dynamic Analysis of the Damaged Bridge 

In this step, collapse capacity of the damaged structure is estimated by performing IDA on the 

previously obtained FE realizations of the damaged bridge. First, a nonlinear response history 

analysis is performed on the intact model of the bridge using one of the five ground motion-

intensity pairs selected in the previous step. The IDA is subsequently applied to the FE 

realization of the damaged bridge to estimate the collapse capacity of the damaged structure. Due 

to asymmetric distribution of damage throughout the structure, each ground motion is applied in 

positive and negative transverse directions of the bridge and the maximum absolute drift ratio of 

both analyses is taken as a point on the IDA curve corresponding to the ground motion under 

investigation. This procedure is repeated for each of ground motion-intensity pairs selected in 

step 3 of the procedure (figure 5–27 through figure 5–29 parts (a)-(e)). The collapse capacity of 

the bridge in the current damage state is subsequently calculated as the mean of the capacities 

estimated from different realizations of the damaged bridge (figure 5–27 through figure 5–29 

part (f)). Estimated mean collapse capacities of the bridge ( , .
ˆ

a capS ) at different stages of 

experiment and corresponding dispersion factors ( .capβ ) are presented in table 5-9. 

 

Table 5-9 Mean collapse capacity of the bridge 

Test W.N. 1 W.N. 2 W.N. 3 W.N. 4 

, .
ˆ

a capS  (g) 2.185 2.276 1.836 1.152 

.capβ  0.551 0.578 0.634 0.763 

Loss of , .
ˆ

a capS  (%) 0.00% 0.00% 15.97% 42.27% 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 5–27 (a)-(e) IDA curves of damaged structure (f) Median IDA curves for all realizations 
of damaged structure (W.N.2) 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 5–28 (a)-(e) IDA curves of damaged structure (f) Median IDA curves for all realizations 
of damaged structure (W.N.3) 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 5–29 (a)-(e) IDA curves of damaged structure (f) Median IDA curves for all realizations 
of damaged structure (W.N.4) 
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With the progression of damage throughout the bridge, a generally decreasing trend is observable 

within the estimated collapse capacities. Slight increase in the estimated mean collapse capacity 

of the bridge from second white noise excitation (W.N. 2) can be correlated with the slight 

reduction in the median spectral acceleration at the first natural frequency of the damaged bridge 

in comparison to the intact bridge (figure 5–24 (a)) and the increased hysteretic damping 

properties of the bridge from early stages of the earthquake excitation due to minimal damages 

induced during tests 12~14. The same phenomena is also reported as the cause for hardening of 

IDA curves and structural resurrection[45]. 

(a) 
 

(b) 

Figure 5–30 (a) Spectral accelerations of the tests (b) Seismic Hazard Curves for the southern 
California Region 

Figure 5–30(a) shows the response spectra of the input ground motions to the bridge during tests 

12, 15, 17 and 18. The first natural periods of the bridge identified from the white noise 

excitations right before these tests are shown with vertical dashed lines. The intersections of the 

spectral curves with vertical lines represent the seismic demand on the bridge imposed by each 

earthquake excitation (shown by square markers). Based on estimated residual collapse capacity 

of the bridge from W.N. 4, at that stage of experiment high probability of collapse would have 

been predicted for the earthquakes with 1( 1.383 , 5%) 1.152a s gS T ζ= = > . Obviously it is not 
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possible to verify the prediction procedure of such probabilistic phenomena with a single sample 

but at least the failure of the bridge during test-19 with 1( 1.383 , 5%) 1.413a s gS T ζ= = = could be 

interpreted as a sign of the efficacy of the proposed procedure. 

5.3.5 Step-5: Functionality Status of the Damaged Bridge 

A tagging criteria similar to the main shock-damaged building tagging criteria proposed by Yeo 

and Cornell[68] and applied by Bazzuro et al.[69] is utilized to classify or tag the bridge in into one 

of the functionality categories. The tagging criteria are defined based on the mean probability of 

exceedance of the collapse capacity ( , .
ˆ

a capS ) of the bridge estimated in the fourth step of the 

procedure. Three functionality categories are defined as green, yellow and red-tagged categories. 

The placement of a bridge in a green-tagged category indicates that the bridge could safely be 

used by public without any necessary interruption in traffic flow. Yellow-tagged bridges are the 

one accessible for emergency personnel and for repair or retrofit purposes only. Finally, red-

tagged bridges are the ones not deemed safe for any kind of access either by public or emergency 

personnel.  

The functionality tag of bridge in each damage state is identified based on two parameters: (1) 

estimated values for the collapse capacities ( , .
ˆ

a capS ) of the intact and damaged bridges (table 5-9) 

(2) bridge-site-specific mean annual frequency (MAF) of exceedance of the ground motion 

intensity level corresponding to the to collapse capacity ( , .
ˆ

a capS ) of the bridge in intact (P0) and 

damaged (P) states. Figure 5–30 (b) presents the seismic hazard curves for the southern 

California region where the bridge specimen under investigation is assumed to be located. The 

MAF of ground motions corresponding to the median collapse capacity of the bridge at different 

damages estimated from (W.N. 1~4) are shown with dark markers. The ordinate of the point 
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corresponding to the intact state of the bridge (W.N.1) indicates the value of (P0) for the bridge 

specimen. The graphical interpretation of adopted tagging criteria is presented in figure 5–31. 

The figure has two scales for the ordinate: (1) the percentage of loss in collapse capacity of the 

bridge ( , .
ˆ

a capS ) and (2) the (P/P0) ratio that measures the increase in MAF of exceedance of 

collapse capacity of the bridge due to damage. The relationship between the two scales has been 

tuned for coastal California sites[69]; in general case, the relationship should be specified by 

bridge owners. The bridge-site-specific (P0) is shown with a dashed vertical line. Using the 

amount of loss in collapse capacity of the bridge, listed in table 5-9, the functionality tags of the 

bridge at different stages of the experiment are specified. 

 

Figure 5–31 Tagging criteria and bridge status in different phases of experiment 

5.3.6 Summary of the Methodology 

The primary objective of the last part of this study was to develop a procedure based on 

vibration-based structural health monitoring data for estimation of residual collapse capacity of 
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damaged bridge to resist upcoming damaging events. A five-step procedure is proposed and 

applied for residual capacity estimation and functionality status update of bridge: (1) estimation 

of collapse capacity of the intact bridge. Incremental dynamic analysis (IDA) curves are used to 

estimate the median collapse capacity of the intact bridge. During IDA and after each nonlinear 

response history analysis post-earthquake analytical modal properties of the bridge are calculated 

and stored in a database to be used on the third step of the procedure. (2) Experimental modal 

analysis of the damaged bridge. Modal properties of the damaged bridge are extracted from 

either ending segment of the response to damaging earthquake or ambient vibrations of the 

bridge after the damaging event. (3) Generation of FE realizations of damaged bridge. Using the 

database generated during the first step of the procedure, earthquake ground motions and 

respective intensity levels that can drive the nonlinear FE model of the bridge to current damage 

status of the bridge are selected. These ground motion-intensity pairs are used to generate FE 

model realizations of the damaged bridge. (4) IDA of damaged bridge. Residual capacity of the 

damaged bridge is estimated by applying IDA to FE realizations of damaged bridge. Amount of 

loss in collapse capacity of the bridge is calculated using the mean value of collapse capacities 

estimated from different realizations. (5) Functionality status of the damaged bridge is specified 

using seismic hazard properties at the bridge site and amount of loss in collapse capacity of the 

bridge.
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CHAPTER 6  

This project explores the usage of the strong motion data for automated, remote, real-time 

damage assessment of bridges immediatly after a destructive event.  It focuses on the vibration-

based damage assessment of bridges and prediction of the damage consequencies.   

 

Eexperimental modal analysis techniques are utilized for identifying dynamic characteristics, 

including natural frequencies, damping ratios and mode shapes, of the structure from 

acceleration measurements during ambient or forced vibrations of the structure. The output-only 

frequency domain decomposition technique is applied for modal identification from response 

measurements during ambient vibrations of the bridge. For modal identification from nonlinear 

responses of the bridge to high amplitude earthquakes, a three-step procedure is proposed and 

applied. Time-frequency representations of the nonlinear responses of the bridge are used for 

identification of linear segments of these responses with stable structural modal characteristics. 

Identified stable segments are subsequently used for state space model order selection and modal 

identification of the bridge. Although changes in dynamic characteristics of the bridge (e.g. 

reduction in natural frequencies or increase in modal damping ratios) can be correlated with the 

CONCLUSIONS 
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existence of damage within the bridge, they can merely provide direct information about the 

locations and extents of damage within the structure.  

 

Furthermore, efforts are made to locate and quantify the damage through a FE model updating 

approach. The FE model updating problem is formulated as an optimization problem with the 

objective of minimizing the error between measured and FE model simulated dynamic properties 

of the bridge by adjusting the FE model parameters. Two objective functions are defined using 

time and modal domains data. A hybrid optimization technique based on Genetic Algorithm is 

utilized for the global and local search of the FE model parameter space for the best set of FE 

model parameters. The comparison of the updated model parameters with their baseline values 

are used for identification of damage locations and extents within the structure.  

 

Finally, this project investigates the consequences of the structural damage in the future 

performance of the bridge. Two methods are proposed based on static pushover and incremental 

dynamic analyses for residual capacity estimation in element and system levels respectively. The 

pushover-based approach takes advantage of double-integration and baseline-shift-filtering 

procedure to estimate the maximum drift ratios experienced by lateral force resisting elements 

during the earthquake excitation from acceleration measurements. The estimated ratios along 

with the pushover curves of the lateral force resisting elements are utilized to find the ductility 

and residual capacity of the elements. In the second approach, collapse capacities of the intact 

and damaged bridges are estimated using incremental dynamic analyses curves. A novel 

approach is proposed for generation of FE realizations of the damaged bridge using post-

earthquake modal properties database created during the IDA of the intact bridge. Tagging 
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criteria are utilized to update the functionality status of the damaged bridge based on amount of 

loss in bridge collapse capacity and characteristics of the seismic hazard at the bridge site. 

Presented structural health monitoring and damage assessment methods and procedures have 

been applied to experimental data from a large-scale shake table experiment. Conclusions from 

each part of this study are presented in the following subsections: 

6.1 Experimental Modal Analysis 

• The comparison of modal data identified from the responses to white noise and 

earthquake excitations indicates that higher natural frequencies and lower modal damping 

ratios are identified from the responses to white noise excitations especially in lower 

damage levels where higher discrepancy was observed. This could be correlated with the 

level of response amplitude during each type of motion. Closure of the cracks during low 

amplitude white noise excitations contributes to the higher stiffness of reinforced 

concrete elements and increased modal frequencies. It also causes reduction in structural 

damping properties because of lower amount of energy dissipated through friction and 

slippage within the closed cracks. The high MAC values between the mode shapes 

identified from two types of  motions indicate that these properties are less sensitive to 

the level of structural response amplitude and unless the proximity of the vibration mode 

frequencies make modal estimations biased, reliable and consistent mode shapes could be 

identified from both types of motions. 

• It is a well known fact that modal properties of a structure are affected by damage 

throughout the structure but it is also important to consider the fact that not all modes are 

affected the same. As an example, for the case of bridge specimen under investigation, 

according to visual inspections, strain monitoring and analytical damage assessment 
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results, seismic damage was concentrated within the bents of the bridge and almost no 

damage was reported on the superstructure. Considering the variation of frequencies of 

different modes of vibration during the whole experiment, substantial reduction (more 

than 50%) was observed for the natural frequencies of the first two modes of vibration of 

the bridge while the variation in the third mode frequency was comparatively 

insignificant (less than 10%). Being lateral translational and torsional modes, 

characteristics of first two modes of vibration of the bridge are highly affected by the 

lateral force resisting elements (bents) properties. As a result, damage within these 

elements is expected to have significant impact on the properties of these two modes. On 

the other side, the third mode of vibration is the in-plane bending of the superstructure of 

the bridge the properties of which did not change significantly due to minimal damage to 

superstructure of the bridge. The same reasoning could be used to explain the increasing 

trend in identified damping ratios of the first two modes of vibration and almost invariant 

values for the third mode of vibration of the bridge. 

• Comparison of the performances of state-space model identification techniques for time-

frequency analysis indicates that prediction-error method generally produced slightly 

better fit between simulated and measured responses; however time-dependent modal 

properties identified using these two methods are shown to be in good agreement with 

each other. Considering relatively high number identification runs needed for time-

frequency analysis of the response and significantly higher computational efficiency of 

subspace-based methods in comparison to iterative prediction error method, subspace 

method is recommended for time-frequency analysis of nonlinear responses of the 

structures to high amplitude earthquake excitations. Meanwhile, prediction-error method 
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is proposed for modal identification from stable ending segments of the nonlinear 

response due to better fit produced by the method. 

6.2 FE Model Updating  

• As stated earlier, two objective functions defined using time and modal domains data are 

utilized for damage assessment through FE model updating. Identified FE model 

parameters using either of the objective functions are compared with visual inspection 

results and experimental damage indices. The damage assessment results for the 

superstructure of the bridge show slight variations in the stiffness of the superstructure of 

the bridge (Less than 20% over the whole experiment). Obtained results are in complete 

accordance with the visual inspections of the superstructure of the bridge which indicated 

almost no damage at the final stage of the experiment. For verification of the identified 

stiffness correction factors for the bents of the bridge, measured displacement data are 

used for generation of acceleration-drift relationships for each bent of the bridge 

specimen. It is shown that the variations in identified stiffness correction factors of the 

bents completely coincide with the variation of experimental stiffness indices of the bents 

over a wide range of seismic damage within the bridge. 

• One of the key points in definition of composite objective functions is the method of 

summarizing different errors into a single objective value. Weight assignment strategy is 

pretty common in such cases. Considering the fact that weighting factors can change the 

geometry of the objective function, location of the minimum point(s) and values of 

optimal parameters, extra care should be given to the calculation of the weighting factors. 

In this study, an adaptive approach is proposed for calculation of the weighting factors 

from structural response characteristics. The relative importance of the error in properties 
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of each mode of vibration is assigned based the average contribution of the mode in total 

response of the structure. The consistency of the identified model parameters using both 

objective functions indicates the efficacy of the proposed approach in weight assignment. 

6.3 Residual Capacity Estimation 

• In the pushover-based residual capacity estimation technique, comparison of the drift 

ratios calculated from displacement measurements with the values estimated by 

implemented double-integration and base-line trend removal procedure reveals promising 

results. The average relative error of 5.51% between measured and calculated maximum 

drift ratios during earthquake excitations indicates that the implemented technique can 

reliably be used for accurate estimation of structural drift ratios from acceleration 

measurements.  

• Although the pushover-based residual capacity estimation procedure can produce 

valuable information about the damage condition of the lateral force resisting elements 

through a simple and user-friendly procedure, it has few drawbacks: 

1. Element-level assessment of a structural system may fail to take several system-

level aspects of the structural behavior into consideration: (e.g. interactions 

between resisting elements, redistribution of internal forces and moments etc.)  

2. Dynamic characteristics of the damaged structure are not incorporated into the 

residual capacity estimation procedure. Increased energy dissipation properties 

due to hysteresis loops of damaged elements, variation in seismic demand on the 

bridge as a result of change in natural frequency of the damaged structure. 

3.  Ignoring the likelihood of occurrence of earthquakes that may induce local or 

global collapse within the damaged bridge. 
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• The IDA-based procedure for residual collapse capacity estimation procedure takes 

advantage of experimental modal properties of the damaged bridge to generate FE 

realizations of the bridge in the current damage state. The residual collapse capacity of 

the damaged bridge is estimated by applying IDA to generated FE realizations of 

damaged bridge. Amount of loss in collapse capacity of the bridge along with seismic 

hazard characteristics at the bridge site are utilized to update the functionality status of 

the bridge. 

• Results of the IDA-based residual collapse capacity estimation method highlight the fact 

that dynamic characteristics of the damaged bridge play a major role in the residual 

capacity of the bridge. In application of the methodology to the bridge specimen it was 

observed that estimated residual capacity of the bridge somewhat increased after first 

three earthquake excitations which introduced slight damage to the bridge structure. 

Increased energy dissipation properties, lower median spectral acceleration at the first 

mode frequency of the damaged structure in comparison to the intact bridge contributed 

to the higher median collapse capacity of the bridge. 

 

In conclusion, the project has proposed, investigated, and experimentally validated methods for 

post-event damage assessment of seismically instrumented bridges using its vibration 

measurement data.   The performance of these methods for the real world bridges with 

challenges such as higher modeling uncertainties, unknown environmental conditions, 

incomplete and noisy measurements is yet to be evaluated. 



143 
 

CHAPTER 7  

1. Rytter, A., Vibrational based inspection of civil engineering structures = 
(Vibrationsbaseret inspektion af bærende konstruktioner), 1993, Department of Building 
Technology and Structural Engineering, University of Aalborg ; Rambøll, Hannemann & 
Højlund A/S: Aalborg; Nørresundby. 

2. Farrar, C.R., R. Gallegos, and L. Los Alamos National, Dynamic characterization and 
damage detection in the I-40 bridge over the Rio Grande1994, Los Alamos, N.M.: Los 
Alamos National Laboratory. 

3. Ghanem, R. and M. Shinozuka, Structural-System Identification .1. Theory. Journal of 
Engineering Mechanics-Asce, 1995. 121(2): p. 255-264. 

4. Shinozuka, M. and R. Ghanem, Structural System-Identification .2. Experimental-
Verification. Journal of Engineering Mechanics-Asce, 1995. 121(2): p. 265-273. 

5. Farrar, C.R. and G.H. James, System identification from ambient vibration measurements 
on a bridge. Journal of Sound and Vibration, 1997. 205(1): p. 1-18. 

6. Loh, C.H. and Z.K. Lee, Seismic monitoring of a bridge: Assessing dynamic 
characteristics from both weak and strong ground excitations. Earthquake Engineering & 
Structural Dynamics, 1997. 26(2): p. 269-288. 

7. Feng, M.Q., J.M. Kim, and H. Xue, Identification of a dynamic system using ambient 
vibration measurements. Journal of Applied Mechanics-Transactions of the Asme, 1998. 
65(4): p. 1010-1021. 

8. Lus, H., R. Betti, and R.W. Longman, Identification of linear structural systems using 
earthquake-induced vibration data. Earthquake Engineering & Structural Dynamics, 
1999. 28(11): p. 1449-1467. 

9. Smyth, A.W., J.S. Pei, and S.F. Masri, System identification of the Vincent Thomas 
suspension bridge using earthquake records. Earthquake Engineering & Structural 
Dynamics, 2003. 32(3): p. 339-367. 

10. Weng, J.H., et al., Output-only modal identification of a cable-stayed bridge using 
wireless monitoring systems. Engineering Structures, 2008. 30(7): p. 1820-1830. 

11. He, X., et al., System Identification of Alfred Zampa Memorial Bridge Using Dynamic 
Field Test Data. Journal of Structural Engineering, 2009. 135(1): p. 54-66. 

REFERENCES 



144 
 

12. Ewins, D.J., Modal testing : theory, practice, and application. Mechanical engineering 
research studies, 102000, Baldock, Hertfordshire, England; Philadelphia, PA: Research 
Studies Press. 

13. Maia, N.M.M. and J.M. Montalvão e Silva, Theoretical and experimental modal 
analysis1997, Taunton, Somerset, England; New York: Research Studies Press ; Wiley. 

14. Dimitriadis, G., et al., Identification and Model Updating of a Non-Stationary Vibrating 
System. ASME Conference Proceedings, 2004. 2004(4174X): p. 143-152. 

15. Dalianis, S.A., et al., Simulation and Identification of Nonstationary Systems Using 
Linear Time-Frequency Methods. Journal of Vibration and Control, 1998. 4(1): p. 75-91. 

16. Owen, J.S., et al., The application of auto-regressive time series modelling for the time-
frequency analysis of civil engineering structures. Engineering Structures, 2001. 23(5): p. 
521-536. 

17. Neild and S., A review of time-frequency methods for structural vibration analysis. 
Engineering Structures, 2003. 25(6): p. 713-728. 

18. Neild, S.A., P.D. McFadden, and M.S. Williams, Damage Assessment in Concrete Beams 
Using Non-Linear Analysis of Vibration Measurements. Key Engineering Materials, 
2003. 245-246: p. 557-564. 

19. Nagarajaiah, S. and Z.L. Li, Time segmented least squares identification of base isolated 
buildings. Soil Dynamics and Earthquake Engineering, 2004. 24(8): p. 577-586. 

20. Marchesiello, S. and L. Garibaldi, A time domain approach for identifying nonlinear 
vibrating structures by subspace methods. Mechanical Systems and Signal Processing, 
2008. 22(1): p. 81-101. 

21. Marchesiello, S., et al., Time-dependent identification of a bridge-like structure with 
crossing loads. Mechanical Systems and Signal Processing, 2009. 23(6): p. 2019-2028. 

22. Poulimenos, A. and S. Fassois, Parametric time-domain methods for non-stationary 
random vibration modelling and analysis — A critical survey and comparison☆. 
Mechanical Systems and Signal Processing, 2006. 20(4): p. 763-816. 

23. Friswell, M.I. and J.E. Mottershead, Finite element model updating in structural 
dynamics1995, Dordrecht; Boston: Kluwer Academic Publishers. 

24. Mottershead, J.E. and M.I. Friswell, Model Updating in Structural Dynamics - a Survey. 
Journal of Sound and Vibration, 1993. 167(2): p. 347-375. 

25. Holland, J.H., Adaptation in natural and artificial systems : an introd. analysis with 
applications to biology, control, and artificial intelligence1975, Ann Arbor: Univ. of 
Michigan Pr. 

26. Friswell, M.I., J.E.T. Penny, and S.D. Garvey, A combined genetic and eigensensitivity 
algorithm for the location of damage in structures. Computers & Structures, 1998. 69(5): 
p. 547-556. 

27. Chou, J.H. and J. Ghaboussi, Genetic algorithm in structural damage detection. 
Computers & Structures, 2001. 79(14): p. 1335-1353. 

28. Hao, H. and Y. Xia, Vibration-based damage detection of structures by genetic 
algorithm. Journal of Computing in Civil Engineering, 2002. 16(3): p. 222-229. 

29. Koh, C.G., Y.F. Chen, and C.Y. Liaw, A hybrid computational strategy for identification 
of structural parameters. Computers & Structures, 2003. 81(2): p. 107-117. 

30. Au, F.T.K., et al., Structural damage detection based on a micro-genetic algorithm using 
incomplete and noisy modal test data. Journal of Sound and Vibration, 2003. 259(5): p. 
1081-1094. 



145 
 

31. Franco, G., R. Betti, and H. Lus, Identification of structural systems using an 
evolutionary strategy. Journal of Engineering Mechanics-Asce, 2004. 130(10): p. 1125-
1139. 

32. Perera, R. and R. Torres, Structural damage detection via modal data with genetic 
algorithms. Journal of Structural Engineering-Asce, 2006. 132(9): p. 1491-1501. 

33. Doebling, S.W., et al., Damage identification and health monitoring of structural and 
mechanical systems from changes in their vibration characteristics: A literature review, 
in Other Information: PBD: May 19961996. p. Medium: ED; Size: 132 p. 

34. Sohn, H. and L. Los Alamos National, A review of structural health monitoring literature 
: 1996-20012004, Los Alamos, N.M.: Los Alamos National Laboratory. 

35. Carden, E.P. and P. Fanning, Vibration based condition monitoring: A review. Structural 
Health Monitoring, 2004. 3(4): p. 355-377. 

36. Building Seismic Safety, C., A. United States. Federal Emergency Management, and C. 
Applied Technology, NEHRP guidelines for the seismic rehabilitation of buildings1997, 
Washington, D.C.: Federal Emergency Management Agency. 

37. American Society of Civil, E. and A. United States. Federal Emergency Management. 
Prestandard and commentary for the seismic rehabilitation of buildings. 2000; Available 
from: http://purl.access.gpo.gov/GPO/FDLP628. 

38. Bracci, J.M., S.K. Kunnath, and A.M. Reinhorn, Seismic Performance and Retrofit 
Evaluation of Reinforced Concrete Structures. Journal of Structural Engineering, 1997. 
123(1): p. 3-10. 

39. Krawinkler, H. and G.D.P.K. Seneviratna, Pros and cons of a pushover analysis of 
seismic performance evaluation. Engineering Structures, 1998. 20(4-6): p. 452-464. 

40. Kim, S. and E. D'Amore, Push-over Analysis Procedure in Earthquake Engineering. 
Earthquake Spectra, 1999. 15(3): p. 417-434. 

41. Bracci, J.M., S.K. Kunnath, and A.M. Reinhorn, Seismic performance and retrofit 
evaluation of reinforced concrete structures. Journal of Structural Engineering-Asce, 
1997. 123(1): p. 3-10. 

42. Gupta, B. and S.K. Kunnath, Adaptive Spectra-Based Pushover Procedure for Seismic 
Evaluation of Structures. Earthquake Spectra, 2000. 16(2): p. 367-392. 

43. Chopra, A.K. and R.K. Goel, A modal pushover analysis procedure for estimating 
seismic demands for buildings. Earthquake Engineering & Structural Dynamics, 2002. 
31(3): p. 561-582. 

44. Villaverde, R., Methods to assess the seismic collapse capacity of building structures: 
State of the art. Journal of Structural Engineering-Asce, 2007. 133(1): p. 57-66. 

45. Vamvatsikos, D. and C.A. Cornell, Incremental dynamic analysis. Earthquake 
Engineering & Structural Dynamics, 2002. 31(3): p. 491-514. 

46. Vamvatsikos, D. and C.A. Cornell, Applied incremental dynamic analysis. Earthquake 
Spectra, 2004. 20(2): p. 523-553. 

47. Ibarra, L.F. and H. Krawinkler. Global Collapse of Deteriorating Mdof Systems. in 13th 
World Conference on Earthquake Engineering 2004. Vancouver, B.C., Canada. 

48. Bazzurro, P., et al., Advanced Seismic Assessment Guidelines, 2006. 
49. Luco, N., P. Bazzurro, and C.A. Cornell. Dynamic versus static computation of residual 

capacity of a main-shock damaged building to withstand aftershock. in 13th World 
Conference on Earthquake Engineering. 2004. Vancouver, B.C., Canada. 



146 
 

50. Johnson, N.S., S. Saiidi, and D.H. Sanders, Large-Scale Experimental and Analytical 
Seismic Studies of a Two-Span Reinforced Concrete Bridge System, 2006, University of 
Nevada, Reno. 

51. Brincker, R., L.M. Zhang, and P. Andersen, Modal identification of output-only systems 
using frequency domain decomposition. Smart Materials & Structures, 2001. 10(3): p. 
441-445. 

52. Ljung, L., Prediction error estimation methods. Circuits Systems and Signal Processing, 
2002. 21(1): p. 11-21. 

53. Ljung, L., System identification : theory for the user / Lennart Ljung1999, Upper Saddle 
River, NJ :: Prentice Hall PTR. 

54. Verhaegen, M., Identification of the Deterministic Part of Mimo State-Space Models 
Given in Innovations Form from Input-Output Data. Automatica, 1994. 30(1): p. 61-74. 

55. Van der Auweraer, H. and B. Peeters, Discriminating physical poles from mathematical 
poles in high order systems: use and automation of the stabilization diagram. 
Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference 
(IEEE Cat. No.04CH37510), 2004: p. 2193-8 Vol.3|2649. 

56. Shih, C.Y., et al., Complex-Mode Indication Function and Its Applications to Spatial 
Domain Parameter-Estimation. Mechanical Systems and Signal Processing, 1988. 2(4): 
p. 367-377. 

57. Nelles, O., Nonlinear system identification2001, Berlin; New York; Barcelona [etc.]: 
Springer. 

58. Clough, R.W. and J. Penzien, Dynamics of structures1975, New York: McGraw-Hill. 
59. Croker, M.D., Determination of Displacement by Double Integration of Accelerometer 

Signals. Journal of Sound and Vibration, 1984. 93(4): p. 598-600. 
60. Thong, Y.K., et al., Numerical double integration of acceleration measurements in noise. 

Measurement, 2004. 36(1): p. 73-92. 
61. Hjelmstad, K.D. and M.R. Banan, Time-Domain Parameter Estimation Algorithm for 

Structures. I: Computational Aspects. Journal of Engineering Mechanics, 1995. 121(3): 
p. 424-434. 

62. Moschas, F. and S. Stiros, Measurement of the dynamic displacements and of the modal 
frequencies of a short-span pedestrian bridge using GPS and an accelerometer. 
Engineering Structures, 2011. 33(1): p. 10-17. 

63. Coelho, B., P. Hölscher, and F. Barends, Enhancement of double integration procedure 
through spectral subtraction. Soil Dynamics and Earthquake Engineering, 2011. 31(4): p. 
716-722. 

64. Meng, X., A.H. Dodson, and G.W. Roberts, Detecting bridge dynamics with GPS and 
triaxial accelerometers. Engineering Structures, 2007. 29(11): p. 3178-3184. 

65. Medina, R.A. and H. Krawinkler, Evaluation of drift demands for the seismic 
performance assessment of frames. Journal of Structural Engineering-Asce, 2005. 131(7): 
p. 1003-1013. 

66. FEMA, Recommended seismic design criteria for new steel moment-frame buildings 
FEMA-3502000, Washington, D.C. 

67. Farrar, C.R., S.W. Doebling, and D.A. Nix, Vibration-based structural damage 
identification. Philosophical Transactions of the Royal Society of London Series a-
Mathematical Physical and Engineering Sciences, 2001. 359(1778): p. 131-149. 



147 
 

68. Yeo, G.L. and C.A. Cornell. Building Tagging Criteria Based on AfterShock PSHA. in 13 
th World Conference on Earthquake Engineering. 2004. Vancouver, B.C., Canada. 

69. Bazzurro, P., et al. Guildlines for Seismic Assessment of Damaged Buildings. in 13 th 
World Conference on Earthquake Engineering. 2004. 




