50 PRESTRESSING CONCRETE
07-19-13

Replace "sets" at each occurrence in the 2nd and 3rd paragraphs of section 50-1.01C(3) with:

Add to section 50-1.01C(3):

07-19-13

Include a grouting plan with your shop drawing submittal. The grouting plan must include:

1. Detailed grouting procedures
2. Type, quantity, and brand of materials to be used
3. Type of equipment to be used including provisions for backup equipment
4. Types and locations of grout inlets, outlets, and vents
5. Methods to clean ducts before grouting
6. Methods to control the rate of flow within ducts
7. Theoretical grout volume calculations for each duct
8. Duct repair procedures due to an air pressure test failure
9. Mixing and pumping procedures
10. Direction of grouting
11. Sequence of use of inlets and outlets
12. Procedure for handling blockages
13. Proposed forms for recording grouting information
14. Procedure for secondary grouting
15. Names of people who will perform grouting activities including their relevant experience and certifications

Add to section 50-1.01C:

50-1.01C(5) Grout

07-19-13

Submit a daily grouting report for each day grouting is performed. Submit the report within 3 days after grouting. The report must be signed by the technician supervising the grouting activity. The report must include:

1. Identification of each tendon
2. Date grouting occurred
3. Time the grouting started and ended
4. Date of placing the prestressing steel in the ducts
5. Date of stressing
6. Type of grout used
7. Injection end and applied grouting pressure
8. Actual and theoretical quantity of grout used to fill duct
9. Ratio of actual to theoretical grout quantity
10. Records of air, grout, and structure surface temperatures during grouting.
11. Summary of tests performed and results, except submit compressive strength and chloride ion test results within 48 hours of test completion
12. Names of personnel performing the grouting activity
13. Summary of problems encountered and corrective actions taken
14. Summary of void investigations and repairs made
Replace the introductory clause in the 1st paragraph of section 50-1.01C(4) with:

Submit test samples for the materials shown in the following table to be used in the work:

Add between "the" and "test samples" in the 1st paragraph of section 50-1.01D(2):

prestressing steel

Replace the 3rd paragraph of section 50-1.01D(2) with:

The Department may verify the prestressing force using the Department's load cells.

Replace the 3rd paragraph in section 50-1.01D(3) with:

Each pressure gage must be fully functional and have an accurately reading, clearly visible dial or display. The dial must be at least 6 inches in diameter and graduated in 100 psi increments or less.

Add between the 5th and 6th paragraphs of section 50-1.01D(3):

Each jack and its gages must be calibrated as a unit.

Replace the 6th paragraph in section 50-1.01D(3) with:

Each jack used to tension prestressing steel permanently anchored at 25 percent or more of its specified minimum ultimate tensile strength must be calibrated by METS within 1 year of use and after each repair. You must:

1. Schedule the calibration of the jacking equipment with METS
2. Mechanically calibrate the gages with a dead weight tester or other authorized means before calibration of the jacking equipment by METS
3. Verify that the jack and supporting systems are complete, with proper components, and are in good operating condition
4. Provide labor, equipment, and material to (1) install and support the jacking and calibration equipment and (2) remove the equipment after the calibration is complete
5. Plot the calibration results

Each jack used to tension prestressing steel permanently anchored at less than 25 percent of its specified minimum ultimate tensile strength must be calibrated by an authorized laboratory within 6 months of use and after each repair.

Add to section 50-1.01D:

50-1.01D(4) Pressure Testing Ducts

For post-tensioned concrete bridges, pressure test each duct with compressed air after stressing. To pressure test the ducts:

1. Seal all inlets, outlets, and grout caps.
2. Open all inlets and outlets on adjacent ducts.
3. Attach an air compressor to an inlet at 1 end of the duct. The attachment must include a valve that separates the duct from the air source.
4. Attach a pressure gage to the inlet at the end of the duct.
5. Pressurize the duct to 50 psi.
6. Lock-off the air source.
7. Record the pressure loss after 1 minute.
8. If there is a pressure loss exceeding 25 psi, repair the leaks with authorized methods and retest.

Compressed air used to clear and test the ducts must be clean, dry, and free of oil or contaminants.

50-1.01D(5) Duct Demonstration of Post-Tensioned Members

Before placing forms for deck slabs of box girder bridges, demonstrate that any prestressing steel placed in the ducts is free and unbonded. If no prestressing steel is in the ducts, demonstrate that the ducts are unobstructed.

If prestressing steel is installed after the concrete is placed, demonstrate that the ducts are free of water and debris immediately before installing the steel.

Before post-tensioning any member, demonstrate that the prestressing steel is free and unbonded in the duct.

The Engineer must witness all demonstrations.

50-1.01D(6) Void Investigation

In the presence of the Engineer, investigate the ducts for voids between 24 hours and 72 hours after grouting completion. As a minimum, inspect the inlet and outlet ports at the anchorages and at high points in the tendons for voids after removal. Completely fill any voids found with secondary grout.

50-1.01D(7) Personnel Qualifications

Perform post-tensioning field activities, including grouting, under the direct supervision of a technician certified as a level 2 Bonded PT Field Specialist through the Post-Tensioning Institute. Grouting activities may be performed under the direct supervision of a technician certified as a Grouting Technician through the American Segmental Bridge Institute.

Replace the 6th paragraph of section 50-1.02B with:

Package the prestressing steel in containers or shipping forms that protect the steel against physical damage and corrosion during shipping and storage.

Replace the 13th paragraph of section 50-1.02B with:

Prestressing steel is rejected if surface rust either:

1. Cannot be removed by hand-cleaning with a fine steel wool pad
2. Leaves pits visible to the unaided eye after cleaning

Replace the 4th paragraph of section 50-1.02C with:

Admixtures must comply with section 90, except admixtures must not contain chloride ions in excess of 0.25 percent by weight.
Delete the 5th paragraphs of section 50-1.02C.

Add to section 50-1.02C:

Secondary grout must:
1. Comply with ASTM C 1107
2. Not have a deleterious effect on the steel, concrete, or bond strength of the steel to concrete

Replace item 9 including items 9.1 and 9.2 in the list in the 1st paragraph of section 50-1.02D with:
9. Have an inside cross-sectional area of at least 2.5 times the net area of the prestressing steel for multistrand tendons

Replace "3/8" in item 10 in the list in the 1st paragraph of section 50-1.02D with:
1/2

Delete the 2nd sentences in the 1st paragraph of section 50-1.02E.

Replace section 50-1.02F with:

50-1.02F Permanent Grout Caps
Permanent grout caps for anchorage systems of post-tensioned tendons must:
1. Be glass-fiber-reinforced plastic with antioxidant additives. The environmental stress-cracking failure time must be at least 192 hours under ASTM D 1693, Condition C.
2. Completely cover and seal the wedge plate or anchorage head and all exposed metal parts of the anchorage against the bearing plate using neoprene O-ring seals.
3. Have a grout vent at the top of the cap.
4. Be bolted to the anchorage with stainless steel complying with ASTM F 593, alloy 316. All fasteners, including nuts and washers, must be alloy 316.
5. Be pressure rated at or above 150 psi.

Add to section 50-1.02:

50-1.02G Sheathing
Sheathing for debonding prestressing strand must:
1. Be split or un-split flexible polymer plastic tubing
2. Have a minimum wall thickness of 0.025 inch
3. Have an inside diameter exceeding the maximum outside diameter of the strand by 0.025 to 0.14 inch

Split sheathing must overlap at least 3/8 inch.
Waterproofing tape used to seal the ends of the sheathing must be flexible adhesive tape.
The sheathing and waterproof tape must not react with the concrete, coating, or steel.

Replace the 2nd paragraph of section 50-1.03A(3) with:

After installation, cover the duct ends and vents to prevent water or debris from entering.

Add to section 50-1.03A(3):

Support ducts vertically and horizontally during concrete placement at a spacing of at most 4 feet.

Delete "at least" in the 1st paragraph of section 50-1.03B(1).

Add to section 50-1.03B(1):

After seating, the maximum tensile stress in the prestressing steel must not exceed 75 percent of the minimum ultimate tensile strength shown.

Delete the 1st through 4th paragraphs of section 50-1.03B(2)(a).

Replace "temporary tensile strength" in the 7th paragraph of section 50-1.03B(2)(a) with:

temporary tensile stress

Add to section 50-1.03B(2)(a):

If prestressing strand is installed using the push-through method, use guide caps at the front end of each strand to protect the duct from damage.

Add to the list in the 2nd paragraph of section 50-1.03B(2)(c):

3. Be equipped with permanent grout caps

Replace section 50-1.03B(2)(d) with:

50-1.03B(2)(d) Bonding and Grouting
50-1.03B(2)(d)(i) General

Bond the post-tensioned prestressing steel to the concrete by completely filling the entire void space between the duct and the prestressing steel with grout.

Ducts, vents, and grout caps must be clean and free from water and deleterious materials that would impair bonding of the grout or interfere with grouting procedures. Compressed air used for cleaning must be clean, dry, and free of oil or contaminants.
Prevent the leakage of grout through the anchorage assembly by positive mechanical means.

Before starting daily grouting activities, drain the pump system to remove any water from the piping system.

Break down and thoroughly clean the pump and piping system after each grouting session.

After completing duct grouting activities:
1. Abrasive blast clean and expose the aggregate of concrete surfaces where concrete is to be placed to cover and encase the anchorage assemblies
2. Remove the ends of vents 1 inch below the roadway surface

50-1.03B(2)(d)(ii) Mixing and Proportioning

Proportion solids by weight to an accuracy of 2 percent.

Proportion liquids by weight or volume to an accuracy of 1 percent.

Mix the grout as follows:
1. Add water to the mixer followed by the other ingredients.
2. Mix the grout with mechanical mixing equipment that produces a uniform and thoroughly mixed grout without an excessive temperature increase or loss of properties of the mixture.
3. Do not exceed 5 gal of water per 94 lb of cement or the quantity of water in the manufacturer's instructions, whichever is less.
4. Agitate the grout continuously until the grout is pumped. Do not add water after the initial mixing.

50-1.03B(2)(d)(iii) Placing

Pump grout into the duct within 30 minutes of the 1st addition of the mix components.

Inject grout from the lowest point of the duct in an uphill direction in 1 continuous operation maintaining a one-way flow of the grout. You may inject from the lowest anchorage if complete filling is ensured.

Before injecting grout, open all vents.

Continuously discharge grout from the vent to be closed. Do not close any vent until free water, visible slugs of grout, and entrapped air have been ejected and the consistency of the grout flowing from the vent is equivalent to the injected grout.

Pump the grout at a rate of 16 to 50 feet of duct per minute.

Conduct grouting at a pressure range of 10 to 50 psi measured at the grout inlet. Do not exceed maximum pumping pressure of 150 psi at the grout inlet.

As grout is injected, close the vents in sequence in the direction of flow starting with the closest vent.

Before closing the final vent at the grout cap, discharge at least 2 gal of grout into a clean receptacle.

Bleed all high point vents.

Lock a pressure of 5 psi into the duct by closing the grout inlet valve.

50-1.03B(2)(d)(iv) Weather Conditions

If hot weather conditions will contribute to quick stiffening of the grout, cool the grout by authorized methods as necessary to prevent blockages during pumping activities.

If freezing weather conditions are anticipated during and following the placement of grout, provide adequate means to protect the grout in the ducts from damage by freezing.
50-1.03B(2)(d)(v) Curing
During grouting and for a period of 24 hours after grouting, eliminate vibration from contractor controlled sources within 100 feet of the span in which grouting is taking place, including from moving vehicles, jackhammers, large compressors or generators, pile driving activities, soil compaction, and falsework removal. Do not vary loads on the span.

For PC concrete members, do not move or disturb the members after grouting for 24 hours. If ambient temperature drops below 50 degrees F, do not move or disturb the members for 48 hours.

Do not remove or open valves until grout has cured for at least 24 hours.

50-1.03B(2)(d)(vi) Grouting Equipment
Grouting equipment must be:
1. Capable of grouting at a pressure of at least 100 psi
2. Equipped with a pressure gage having a full-scale reading of not more than 300 psi
3. Able to continuously grout the longest tendon on the project in less than 20 minutes

Grout must pass through a screen with clear openings of 1/16 inch or less before entering the pump.

Fit grout injection pipes, ejection pipes, and vents with positive mechanical shutoff valves capable of withstanding the pumping pressures. Do not remove or open valves until the grout has set. If authorized, you may substitute mechanical valves with suitable alternatives after demonstrating their effectiveness.

Provide a standby grout mixer and pump.

50-1.03B(2)(d)(vii) Grout Storage
Store grout in a dry environment.

50-1.03B(2)(d)(viii) Blockages
If the grouting pressure reaches 150 psi, close the inlet and pump the grout at the next vent that has just been or is ready to be closed as long as a one-way flow is maintained. Do not pump grout into a succeeding outlet from which grout has not yet flowed.

When complete grouting of the tendon cannot be achieved by the steps specified, stop the grouting operation.

50-1.03B(2)(d)(ix) Secondary Grouting
Perform secondary grouting by vacuum grouting under the direct supervision of a person who has been trained and has experience in the use of vacuum grouting equipment and procedures.

The vacuum grouting process must be able to determine the size of the void and measure the volume of grout filling the void.

Vacuum grouting equipment must consist of:
1. Volumeter for the measurement of void volume
2. Vacuum pump with capacity of at least 10 cfm and equipped with a flow meter capable of measuring the amount of grout being injected

50-1.03B(2)(d)(x) Vertical Tendon Grouting
Provide a standpipe at the upper end of the tendon to collect bleed water and allow it to be removed from the grout. The standpipe must be large enough to prevent the grout elevation from dropping below the highest point of the upper anchorage device. If the grout level drops to the highest point of the upper anchorage device, immediately add grout to the standpipe.

Remove the standpipe after the grout has hardened.
For vertical tendons in excess of 100 feet high or if grouting pressure exceeds 145 psi, inject grout at a higher vent from which grout has already flowed to maintain one-way flow.

50-1.03B(2)(d)(xi) Vents

Place vents at the following locations:

1. Anchorage areas at both ends of the tendon
2. Each high point
3. 4 feet upstream and downstream of each crest of a high point
4. Each change in the cross section of duct

Add to section 50-1.03B(2):

50-1.03B(2)(e) Debonding Prestressing Strands

Where shown, debond prestressing strands by encasing the strands in plastic sheathing along the entire length shown and sealing the ends of the sheathing with waterproof tape.

Distribute the debonded strands symmetrically about the vertical centerline of the girder. The debonded lengths of pairs of strands must be equal.

Do not terminate debonding at any one cross section of the member for more than 40 percent of the debonded strands or 4 strands, whichever is greater.

Thoroughly seal the ends with waterproof tape to prevent the intrusion of water or cement paste before placing the concrete.