SEISMIC JOINT (TYPE II, FULL CHANNEL)

<table>
<thead>
<tr>
<th>XS Sheet Numbers</th>
<th>xs8-090-1 thru xs8-090-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of Component</td>
<td>The Seismic Joint is based on a very simple concept and can be used for service and/or seismic demands. The Joint can accommodate large translational movements in the longitudinal and transverse directions, large rotations about the vertical axis, and limited vertical movements by allowing rotation about the transverse axis at its pinned end. Limited rotation about the longitudinal direction is also permitted due to flexible rubber washers at the pin. Unlike other joints systems, it shifts potential joint damage away from the critical joint opening, therefore preventing joint collapse and traffic disruption even after a major seismic event.</td>
</tr>
<tr>
<td>Standard Drawing Features</td>
<td>The Seismic Joint is a steel plate sliding system and comes in a modular form. Each module covers a half traffic lane and is made of i) a Box/Channel Assembly, ii) the Support Plate, iii) the Deck Plate and iv) the elastomeric sealant. The Deck Plate spans the joint opening and slides over the Support Plate. The elastomeric sealant accommodates the service demands and it is considered a sacrificial element at seismic. Since the sealant is located away from the joint opening on the bridge deck, the joint is still able to carry traffic after a major seismic event and the sealant could be replaced at a later time.</td>
</tr>
</tbody>
</table>
| **Design/General Notes** | • A minimum Deck Plate thickness T_d equal to 1.5 inches is required for joint openings up to 2 feet at 70 °F. Similarly, T_d equal to 2 inches is required for joint openings from 2 to 4 feet at 70 °F. For larger openings contact the Joint Seals & Bearings Specialist
• xs 8-090-8. The construction sequence is included. Any alternative construction sequence shall be reviewed and approved by the Engineer.
• xs 8-090-9. An optional barrier detail is provided. The Engineer shall provide barrier details approved for the project.
• To access the Channel Assembly, remove the Cover plate from the bridge deck. |
| **Additional Drawings Needed to Complete PS&E** | xs8-090-1 Joint information Table must be filled by the Engineer.
Joint opening @ 70 °F, $\text{min } a_{70}(\text{in}) = \{(\text{SEE (seismic closing)} + (\text{temp. rise})\}
For $a_{70}^\circ < 24''$; $\text{min } T_d=1.5''$ and for $24'' \leq a_{70}^\circ \leq 48''$; $\text{min } T_d=2''$
The thickness of the Cover plate, T_c, is equal to that of the deck plate T_d; $T_d=T_c$ |

xs8-090 User Guide For Seismic Joint Type II Full Channel Oct2016.Docx 10/10/2016
Design Example

Given: skew = 25° at joint location, Temp. 3”/3”, Cr & Sh=2”, SEE=14”/18”,
Joint opening @ 70 °F, min α70 (in) = (SEE (seismic) closing + (temp. rise)) =
= 14” + 3” = 17”

Since α70<24” we select Td=1.5” and Tc=Td=1.5”

Deck plate length, Ld (in) = (12”, channel seat) + (joint opening @ 70 °F) +
(creep & shrinkage) + (temp. drop) + (SEE (seismic) opening) + 4”) *
(1/cos(skew)) = {12” + 17” + 2” + 3” + 18” + 4”) * (1/cos (25°)) = 61.8”

MR (long)) = (3” (temp. drop) + 3” (temp. opening) + 2” (creep & shrinkage)) =
8”;

Length of RMREJ: (MR (long)) * (1/cos (skew)) = 8” * (1/cos (25°)) = 8.827”
From the available supplier lists we select a RMREJ with MR =9”,
length Lr = 35.4” and thickness Tr = 3.75”.

The Deck/Cover plate are made of a 1.5” thick steel plate and are covered by a
(3.75”-1.5”) 2.25” thick polyester concrete overlay.

Support plate length, Ls (in) = [(creep & shrinkage) + (temp. drop) + (SEE
(seismic) opening) + 4”) * (1/cos(skew)) + (Lr, RMREJ)] =
= {(2” + 3” + 18” + 4”) * (1/cos (25°)) + 35.4”) = 65.2”