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Abstract

Caltrans’ investment in driven piling to support bridges and other structures has
averaged about $25M/year over the last decade. The systems constructed have performed
well, but conservatism exists due to uncertainties in soil properties, pile drivability, soil-pile
interaction, and pile setup. A new method that could achieve modest saving of 5% in design
could save in excess of SIM per annum. This thesis presents the development of a reusable
instrumented test pile (RTP) as an in situ testing device for improved pile design in granular
soils (coarser than No. 200 sieve). The RTP system consists of short instrumented sections that
provide measurements of axial load, radial stress, pore pressure, and acceleration, and are
connected in series with standard Becker pipe sections. The RTP — Becker pipe string is driven
using the standard Becker pile driving hammer, and the TRP system was designed to handle the
high installation stresses in granular soils while retaining sufficient resolution in the
instrumentation readings for subsequent analyses of shaft and tip resistances. RTP
measurements obtained during driving provide detailed information regarding pile drivability,

measurements during static tests capture load transfer along the pile, and measurements



during pile setup capture capacity gain over time. The design, fabrication, calibration, proof

testing, and full scale field deployment are presented herein.
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Chapter 1: Introduction and Motivation

1.1 Motivation and Potential Benefit

A new in-situ system that provides measurements to assess pile drivability and
performance on a site-specific project basis has the potential to improve the efficiency and
reduce the cost of Caltrans deep foundation systems. Caltrans investment in driven piling to
support bridges and other structures has averaged $25M/year to $S30M/year over the last
decade. The final constructed systems have performed well, with no significant failures.
However, the design methods for these piling systems contain uncertainty and likely excessive
conservatism. The uncertainty in design is due, in large part, to an inability to capture the full
complexity of the soil deposit, soil properties, pile drivability, dynamic soil/pile interaction, and
pile setup on a site-specific project basis. This conservatism can have significant cost
implications. Even a modest saving of 5% in design efficiency will save in excess of $1,000,000
per annum. In addition to this, increased certainty of pile driving conditions expected during
construction may reduce change orders to a great extent. The reusable test pile (RTP)
presented herein is developed as a new in situ testing device to meet this need. The total
project cost for RTP development has the potential to be recovered within the first few RTP

deployments at Caltrans project sites.



1.2 Reusable Test Pile (RTP) Concept

The reusable test pile (RTP) is intended to operate as a mobile test pile that is deployed
during the site investigation program at Caltrans project sites where a deep foundation system
is required. Ideally the RTP could be installed, load tested, and removed within one to two
days. Data collected would include information regarding pile drivability, driving dynamics,
residual stresses, pile setup, and load distribution along the pile during tensile loading testing.
The information collected would be summarized and useful during the project design and

bidding processes.

Eventually it is hoped that a direct RTP-based pile design method for static capacity will
be developed (which was beyond the scope of this project). In the interim the pile load test
data collected may be used to assess the ability of a given design method to capture the site
conditions (by comparing the measured RTP data with that estimated by a conventional design
method). If agreement is good, then the designer would have increased confidence in using the
respective method for design of the full scale foundation system, potentially with a reduced

safety factor.

The RTP dynamic driving data in combination with the static pullout data would also
provide detailed information along the entire pile length that could significantly improve
calibration of a CAPWAP model. This would further improve estimates of static pile capacity as

well as investigate and optimize the pile driving system.



The RTP data, both the basic driving record as well as a RTP data-calibrated CAPWAP
analysis, would be useful for piling contractors during the project bidding to more accurately
estimate anticipated driving conditions. This would result in mobilization of the most suitable
equipment (e.g. rig type, hammer size) and an accurate estimate of the time and materials (e.g.

fuel) required for installation of the full scale foundation system.

13 RTP Performance Requirements

The RTP was designed within a set of practical constraints to ensure adaptation to

practice to the extent possible. These design constraints included:

e Mobility: The mobility of the RTP system must balance the issues of portability and pile
size effects. The system must be sufficiently small such that instrumented sections can
be transported and handled with relative ease. At the same time, the RTP diameter
should be as large as possible in order to minimize pile diameter scaling effects.

e Commercial Integration: To the extent possible, the equipment required for installation
and removal of the RTP system will be commercially available through a project service
contract. This specification was desirable to manage overall project costs and to
minimize the amount of equipment and/or vehicles that Caltrans must manage and own
over the long term.

e Durability and Robustness: The RTP system must be capable of surviving of dynamic

piling driving, extraction, and handling by field personnel. For context, the RTP may be



1.4

installed up to 60 m (200 feet) depths eventually, which could require up to 5,000
hammer blows for a single installation.

Measurement Types: The measurements required for the initial RTP system include the
following, in order of priority: (1) axial force at the tip and select locations along the RTP
length, (2) pile head position, (3) axial acceleration at the tip and select locations along
the RTP length, (4) pore pressure at select locations along the RTP length, and (5) radial
stress at select locations along the RTP length.

Measurement Capacity & Sensitivity: The sensors required for obtaining the above
measurements must be capable of surviving extreme loads during pile driving and
extraction while being able to resolve small changes between pile hammer blows and
during pile setup.

Measurement Frequency and Duration: The frequency and duration of sampling will
vary depending on the mode of testing (i.e. pile driving, pile setup, static pile load test)
and project conditions (i.e. driving resistance, soil type). The system must be sufficiently

flexible to capture the dynamics during pile driving and long term pile setup.

RTP System Overview

The RTP system is a modular system that contains a series of instrumented pipe

sections, equipped with sensors and a down-hole computer that are assembled at selected

spacing in a Becker drill pipe string and installed by dynamic pile driving using the Becker drill

rig. A schematic of the system configured for driving is presented in Figure 1.1. The central



component is the modular instrumented pipe sections, which are 61 cm (2 ft) long with an
outer diameter of 168 mm (6.625 in). Each contains axial force, axial acceleration, pore
pressure, and radial stress transducer. The modular sections are assembled in series with
standard 152 cm (5 ft) and 305 cm (10 ft) long Becker drill pipes, enabling positioning of the
instrumented sections in the drill string at target final elevations specified by project specific
soil stratigraphy. Down-hole data acquisition computers in each RTP section record and
process sensor data before transmitting it to the surface. A separate above ground data
acquisition system measures vertical pile displacement and Becker hammer performance. The
RTP system is installed with the Becker hammer system and the tensile load test is performed
with the hydraulic lifting system. The modular nature of the RTP system and its integration
with the Becker system enables testing to be completed (with a limited pile setup period) in

one day.

1.5 Overview of Dissertation

This dissertation presents the design, fabrication, calibration, and verification of the
newly developed RTP system. It includes laboratory and field scale work, which is presented as

follows.

Chapter 2 contains a review of previous research performed in the area of instrumented
model piles as well as details about the Becker drilling system and a review of driven pile setup

behavior installed in the San Francisco bay mud deposit. Chapter 3 details the new RTP system



including its performance specifications, final design including sensor selections and system
components (e.g. instrumented sections, vibration isolation system, data acquisition systems),
intermediate testing required to finalized the design, and equipment and methods for RTP
calibration. Chapter 4 presents the Oakland field test site where RTP deployment occurred,
including its regional geology, engineering soil properties, and prior Caltrans load test results, as
well as an overview of the RTP testing program performed. Chapter 5 analyzes RTP
performance during driven installation, including driving rates and hammer performance as
well as pile driving analysis of dynamic force and acceleration measurements obtained in the
instrumented sections during driving. Chapter 6 examines the residual driving stresses within
the RTP following driving, pile setup over a period of 3 hours, and RTP capacity from tensile
(pullout) loading testing immediately after pile installation and following a period of setup.
Chapter 7 presents conclusions and recommendations for future work based on the RTP

performance.
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Chapter 2: Review of Previous Research

2.1 Introduction

The reusable test pile (RTP) was developed for use during a project’s site investigation
phase in order to obtain quantitative measurements of pile performance during installation,
setup, and load testing. For ease of use, the RTP was designed to be directly compatible with
the conventional Becker hammer drilling system. After development, the RTP was evaluated
through a series of tests in Oakland, CA at a site comprised of a stratigraphy with the common

units of surficial fill, young bay mud, and sand.

Given this scope of work (all discussed in more detail in subsequent chapters), literature
from several topics is relevant. Herein the following topics are presented and reviewed:
instrumented test piles, Becker drilling system, and pile load tests monitoring residual stresses
and setup in young bay mud. In addition to brief descriptions of the different systems, focus is
placed on aspects particularly relevant to the development, testing, and evaluation of the RTP

system.



2.2 Instrumented Test Piles

All instrumented piles developed to date have varied accordingly to meet their specific
project objective. Importantly, nearly all were installed by hydraulic jacking rather than driving,
and many focused on characterization of pile performance in clay. As a result, few focused on
the ability to predict driven pile capacity in granular soil. One primary reason for this is the
challenges associated with this latter objective in instrumentation and data acquisition
durability during the harsh installation process. A summary of all the different instrumented
pile methods developed is summarized in Table 2.1. The primary object of this project is to
develop an insitu testing device to capture the pile installation behavior in granular soils,

though the device must also work well in clayey soils.

2.2.1 Cone Penetration Test (CPT) Probe

The cone penetrometer was originally developed for site investigation purposes to
characterize soil properties, stratigraphy, and variability. It was not used for pile design until the
1930s (de Rutter 1982). The standard 10 and 15 cm? cones (ASTM D3441-05) provide measures
of base (tip) resistance, pore pressure (often at the u, shoulder location), and shaft (friction
sleeve) resistance immediately behind the tip (e.g. Lunne et al. 1997). Typical results from cone
soundings and their interpretation for soil type identification and estimation of soil properties is
reported by Lunne et al. (1997), Mayne (2007), Robertson (2009), and others. Variants on the

conventional cone can also provide multiple pore pressure measurements and multiple sleeve



friction measurements (e.g. Lunne et al. 1997, DelJong and Frost 2002). The cone is installed by

hydraulic jacking at a rate of 2 cm/s per 1 m stroke.

The advantage of the cone penetrometer is its nearly ubiquitous use around the world
for site investigations. Therefore this information is often readily available for pile design.
Shortcomings of the CPT include its inability to penetrate very dense sands and gravels, its
jacking installation not mimicking dynamic driving installation, its small diameter (relative to
typical pile diameters) introducing scaling effects that must be accounted for, and the lack of
shaft resistance measurements along the cone rod string. Nonetheless, recent CPT-based
design methods such as Fugro-05, ICP-05, NGI-05, and UWA-05 (Kolk et al. 2005, Fugro 2004,
Jardine et al. 2005, Clausen et al. 2005, Lehane et al. 2005) perform well in predicting pile
capacity in sands. Fewer cone-based methods exist for estimating the capacity of piles installed
in clays since empirical methods based on the normalized undrained strength ratio perform
well (e.g. Randolph 2003), with the Canadian Foundation Engineering Manual (Canadian

Geotechnical Society 2006) method likely being the most widely adopted.

A study by Schneider (2007) explored the factors that influence the relationship
between measured cone tip resistance and the shaft friction of displacement piles. The primary

factors identified were:

e initial increase in radial stress due to displacement of soil during pile installation,
e level of soil displacement induced by type of driving shoe,
e reduction of radial stress as a function of distance behind the tip,

e friction fatigue behavior on radial stress reduction as pile advances further,
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e changes of radial stress during loading,
e constant volume interface friction angle between soil and steel, and

e changes of these mechanisms with setup time.

Of all cone based pile design methods, the UWA-05 method (Lehane et al. 2005)
captures the above factors in the most explicit, mechanics-based formulation. As described by
Schneider (2007), this method was developed based on previous research on friction fatigue,
pile setup, prior CPT based design methods, and regression analysis on a large pile load test

data base.

The primary equation for the unit base pile resistance is:

qu.l/E = 0.15+ 0-45Arb,eff (21)

where,

qpo.1 = unit base resistance of pile

d. = cone resistance averaged using Dutch method
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N2
Aypesr = effective area ratio, = 1 — FFR X (%) (2.2)

where,
D; = pile inner diameter

D = pile outer diameter for closed ended pile, and effective diameter (D* = D X

A%, o¢5) for open ended piles
FFR = Final filling ratio measured at the end of driving, averaged over 3D;,

If FFR is not measured, it can be approximated as a function of D; in meters as:
0.2
FFR = min |1, (Di (m)/l 5) (2.3)

The associated equations for unit shaft friction are:
Tf = 0yp X tandg, = %C X (oyc + Aoy ,z) tan &, (2.4)
where,

Tr = local shear stress at failure along the shaft of the pile

O, = constant volume interface friction angle

o, =radial effective stress at failure

o, = radial effective stress after installation and equalization

Ao, = increase in radial stress due to loading stress path (dilation)

L - 1 for compression loading and 0.75 in tension
[
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The radial effective stress after installations and equalization is given as:
no\-05
o = 0.03 X g X AD3 ¢ X [max (E’Z) ] (2.5)

where,
q. = local cone resistance
D = pile outer diameter
h = relative distance above the pile tip
h = pile length — depth (2.6)

Ay o = effective area ratio

Ayepr=1—IFR (%)2 (2.7)
where,

IFR = incremental filling ratio

D; = pile inner diameter

A simplified approximation for average incremental filling ratio can be given by:

. 0.2
IFR g = min [1, () ] (2.8)

This design method is appealing from a fundamental perspective, but the effort to

separate and explicitly consider different factors also results in a level of complexity that

exceeds the other methods and that arguably exceeds the level of detail available in current

measurements and databases. Subsequent implementation of UWA-05 at several sites has

shown it to perform very well, in most cases exceeding the performance of more simplified

methods (Lehane et. al. 2012). The UWA-05 approach and formulation is appealing for the RTP

based pile design approach that is planned to be developed in the next phase of the project.
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This is due to the manner in which individual parameters that influence pile design are utilized

in calculations and that many of these parameters will be directly measured by RTP in the field.

2.2.2 Piezo Lateral Stress (PLS) Cell

The piezo lateral stress cell (PLS) pile was developed in 1978 to evaluate pile
performance in clay (Morrison 1984). The PLS cell is 470 mm long and 384 mm outer
diameteral cylinder. The PLS cell consisted of a pore pressure sensor, load cell, lateral stress
cell and temperature sensor. A cylindrical lateral stress cell measures the horizontal stress
acting on a discrete segment of the instrumented pile, and therefore measures the local lateral
stress acting on the pile shaft. The PLS pile was installed by hydraulic jacking at the rate of 20
mm/s (Azzuz and Lutz 1986). The PLS pile was tested successfully in Empire, Louisiana at a site
comprised of a thick deposit of plastic clay where previous full scale pile testing results were

available (Azzuz and Lutz 1986) and also at three Boston blue clay sites (Baligh et al. 1985).

Results showed the PLS pile to be effective in measuring the unit skin friction of a long
pile and to improve the prediction of skin friction for full-scale cylindrical driven piles in clay
(Morrison 1984). The PLS pile had limitations in predicting driven pile capacity in granular soil.
Namely, the thin outer cylinder (0.38 mm (0.015 in) thickness) of the lateral load cell would be
easily damaged during penetration in granular material (sands, gravels). Further, for both clays

and sands full-scale installation by driving was not performed.
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Figure 2.1 presents representative results of the dissipation of excess pore pressure
following PLS pile penetration in both dilative and contractive soil layers. Expectedly, the
dissipation of excess pore pressure results in consolidation and an associated change in the
horizontal stress. Results of this coupling are presented in Figure 2.2 where the effective radial
stress increases and excess pore pressures decrease in contractive clays. The time duration
over which pore pressure dissipation occurs is dependent on the vertical and horizontal
coefficient of consolidation and directly indicates the pile setup time (due only to excess pore
pressure dissipation and not to other thixotropic effects). As discussed by Fleming et al. (2009),
this dissipation process can be analyzed in a dimensionless manner such that it can be upscaled

to predict the excess pore pressure dissipation time expected for full scale piles.

2.2.3 Grosch & Reese (G&R) Model Pile

The Grosch & Reese (G&R) model pile was developed to study the effect of cyclic axial
loading on the load transfer of piles in offshore structures (Grosch and Reese 1980). The model
pile was fabricated from 6061 aluminum tubing with 25.4 mm (1 in) outer diameter and 0.71
mm (0.028 in) wall thickness. This closed end model pile was installed into the ground by a
screw jack with a reversible variable speed motor. The screw jack applied cyclic loading similar
to field conditions, albeit at a lower cyclic frequency. Two strain gaged load cells were
positioned 254 mm (10 in) apart to determine the average shaft resistance between them. A
pore pressure transducer was located at midpoint between these two axial load cells. The G&R

model pile was tested at Sabine, Texas in the Sabine River (Grosch and Reese 1980).
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The G&R model pile installation effectively demonstrated the pore pressure behavior
and associated consolidation in soft normally consolidated clay due to pile insertion. The G&R
pile was installed and tested in soft soils (e.g. clay and silt), but was not tested in sands. This is
due to the thin aluminum wall being susceptible to damage during pile insertion. In addition,

the jacking method did not replicate the driven pile installation process.

Example results from the G&R model pile installed in the field are presented in Figures
2.3 to 2.6. Figure 2.3 shows one of the initial displacement cyclic load tests performed at a field
site. The degradation of load transfer with cycling is clearly evident. Figure 2.4 presents the
reduction in load transfer and the associated pore pressure variation during cyclic loading for
both the initial A-1 test with +/-1.44 mm (+/-0.055 in) displacement cycles as well as for the
subsequent A-2 test with small cyclic displacements (+/-1.44 mm). During the initial A-1 test
negative excess pore pressure developed in the soft clay. Subsequent cycling at a smaller
displacement did not cause any further reduction in load transfer or excess pore pressure
generation. The linkage between cyclic displacement amplitude and excess pore pressure
generation is further examined in Figure 2.5, where excess pore pressure is not generated until
the pile displacement reached 0.838 mm (0.033 in). Interestingly, the magnitude of excess pore
pressure generated at the two higher levels of cyclic displacement was constant. The exact
mechanism linking the generation of excess pore pressure with a minimum cyclic displacement,
while experimentally observed, was not fully understood. However, a simplified model for
capturing the reduction in unit shaft resistance with cyclic loading was developed, and is

summarized in Figure 2.6.
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2.2.4 Norwegian Geotechnical Institute (NGI) Model Pile

The Norwegian Geotechnical Institute (NGI) model pile was developed to study the
performance of offshore piles subjected to both static and cyclic loading with particular focus
on tension loading of pile anchors (Karlsrud and Haugen 1985). The NGI model pile was a 5 m
long closed ended pipe pile with 153 mm outer diameter. The model pile was installed into the
ground by jacking at a rate of 1.0 — 1.4 mm/s. The NGI model pile was instrumented with 6
levels of strain gages to measure axial loads in order to calculate average skin friction over
discrete depth intervals. Four levels of pore and earth pressure gages were installed to
measure pore and lateral earth pressures during driving and subsequent equilibration. The NGI
model pile was tested successfully in over consolidated clay deposits at the Haga test site

outside Oslo, Norway (Karlsrud and Haugen 1985).

The NGI model pile study effectively measured the skin friction of the clay due to pile
installation and linked the measurements to laboratory results of remolded, reconsolidated
clay. Similar to the other model piles, the NGI model pile has limitations that would prevent it
from being used to predict driven pile capacity in granular soils. These include structural
sections designed for application in clay, inadequate instrumentation to measure the tip

resistance, and the pile installation method not representing the dynamic pile driving.

The total horizontal stress and excess pore pressure immediately after the NGI model
pile installation and during pile setup is presented in Figure 2.7. As excess pore pressure
dissipates, total horizontal stress reduces with time. However, the effective stress increases

with dissipation of excess pore pressure. This in turn results in an increase in the pile shaft
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capacity with time. The pore pressure dissipation record in combination with the pile
dimensions can be used to estimate the pile shaft capacity after pore pressure equilibration and

the time required for pore pressure dissipation for full-scale piles.

The shaft friction measured by the NGI pile during penetration was compared against
the undrained strength measured by the vane shear test as well as calculated shaft friction
values computed by the o and A methods (Karlsrud et al. 1985). Results are presented in Figure
2.8. As evident, the measured shaft friction did not agree with the shaft frictions obtained from
other methods. As the model pile penetrates, the soil adjacent to the pile wall undergoes high
strains and is fully remolded. Therefore, the shaft friction measured by the NGI pile relates

more to the remolded undrained strength than the (reconsolidated) peak strength.

2.2.5 Three Inch Model Pile and X-Probe

The three inch (3-in) model pile was developed to study the soil parameters affecting
long flexible piles in the offshore environment under static and cyclic loading conditions
(Bogard and Matlock 1990b). The model pile was developed as a primary tool to investigate
plugging and non-plugging pile conditions, and had a length of about 4.9 m (16 feet) and a
diameter of 76.2 mm (3 in). The model pile was installed by jacking with a hydraulic ram.
Instrumentation consisted of two load cells to estimate shaft friction, a total pressure cell
located midway between the axial load cells to measure total lateral pressure, a pore pressure

transducer also located midway between axial load cells to measure pore pressure, and a
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displacement transducer to measure relative displacement between the pile and soil. The
model pile was successfully tested at different soil conditions including soft clay, stiff clay and

calcareous soils (Bogard and Matlock 1990a, 1990b, 1990c, Bogard et al. 1985).

The primary use of the X-probe, similar to the 3-in model pile and developed by the
same researchers, was for routine site investigation at proposed sites for offshore oil and gas
facilities (Bogard et al. 1985). The X-probe was 1.4 m (56.5 in) length and 43.7 mm (1.72 in) in
diameter. The installation method was the same as for the 3—in model pile. The X-Probe was
instrumented with a pore pressure transducer, a total lateral pressure transducer, a shear
sensing element (a 200 cm’ cylindrical sleeve supported by a load cell), and a displacement

transducer.

The 3-in model pile and X-probe tests effectively captured the time rate strength gain
and provided insights for development of soil resistance versus axial pile displacement curves
for use in design. Similar to other model piles, the 3 inch model pile and X-probe had
limitations that would prevent them from being used to predict driven pile capacity in granular
soils. These limitations included structural sections designed for application in clay, inadequate
instrumentation to measure the tip resistance, and the pile installation method not

representing the large scale driven pile.

Example results from the 3-in model pile are presented in Figures 2.9 and 2.10. Figure
2.11 presents the gradual increase in effective lateral pressure measured adjacent to the 3-in
model pile following driving. As evident, the pore pressure dissipation is characteristic of that

in normally consolidated soils, which results in gradual consolidation and an increase in the
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effective lateral stress. The resulting impact on tensile pile capacity is presented in Figure 2.12.
Tension load tests were performed following different amounts of pore pressure dissipation
(reconsolidation) following driving. The static pullout test performed after only 14 minutes of
equilibration time resulted in a unit load transfer of about 24 kPa (0.5 ksf). However, after full

dissipation, 69 hours later, the unit load transfer increased to about 65 kPa (1.35 ksf).

2.2.6 In Situ Model Pile (IMP)

The In Situ Model Pile (IMP) was developed to predict driven steel pipe pile behavior in
clayey soils (Coop and Wroth 1989). The pile section was 1135 mm long and 80 mm diameter,
and consisted of two concentric cylinders. The inner cylinder was rigidly connected to pile head
and the outer brass cylinder consisted of interchangeable instrumented sections. Each
instrumented section contained two pore pressure sensors, two total radial stress transducers,
and an axial load cell. In addition to these instrumented sections, the tip was instrumented with
a pore pressure transducer and an axial load cell. The IMP was hydraulically jacked into ground
for installation and was successfully tested at heavily over consolidated and normally

consolidated clay sites.

The IMP study further confirmed the formation of a residual shear surface adjacent to
pile shaft during pile installation. Like in the other model piles, IMP also had its limitations that

would prevent it from being used to predict driven pile capacity in granular soil. These included
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the structural sections designed for application in clay, inadequate instrumentation to measure

the tip resistance, and the pile installation method not representing the dynamic pile driving.

A summary of all pore pressure and total radial stress profiles measured by the IMP
during five separate installations is presented in Figure 2.13. The predicted total radial stress
and pore pressure using cavity expansion theory is also plotted. As evident, the measured total
radial stress and pore pressure were lower in magnitude than that predicted from cavity
expansion theory. Per Coop and Wroth (1989), this difference was due to stress relief
immediately behind the pile tip as predicted by Levadoux and Baligh (1980) using their strain
path method for cone penetrometers. In addition, experimental results indicated that the
effective radial stress at the leading instrumented section was generally higher than that on the
following instrumented sections. This was attributed to the soil continuing to degrade with
additional pile penetration (Bond and Jardine 1991). Absolute and normalized shaft friction
profiles (versus depth) are presented in Figure 2.12 to investigate this issue further. Firstly, it is
clear that the absolute value of shaft friction was identical for both the lower and upper
instrumented sections. However, when normalized by the effective radial stress it is clear that

the normalized strength ratio has decreased as a function of distance behind the driving tip.

2.2.7 Imperial College Instrumented Pile (ICP)

The Imperial College Instrumented Pile (ICP) was developed with the objective to

establish a theory to explain the behavior of displacement piles based on effective stresses
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(Bond and Jardine 1991). The ICP pile was tested in a variety of soils from sensitive soft clays to
medium dense sand. The ICP pile sections were 7 m long and 10.2 cm in diameter. The ICP was
instrumented with three clusters of sensors spaced 1 m apart. Each instrumented section
consisted of a high capacity axial load cell, surface stress transducer to measure radial and
shear stress on pile wall, pore pressure transducer, and temperature sensor. The closed ended

ICP model pile was jacked into ground to prevent damage to the sensors.

The ICP study effectively captured the influence of penetration rate on mobilized skin
friction and the associated formation of shear surfaces, the zone of affected soil adjacent to a
pile due to installation (Bond and Jardine 1991). It was also effective in providing quantitative
data to support the concept of friction fatigue, where the shaft friction at a specific elevation
degrades as the pile continues to advance past it. Like other model piles, the ICP also had
limitations that would prevent it from being used to predict driven pile capacity in granular soil.
These included structural sections designed primarily for application in clay and the pile

installation method not mimicking dynamic pile driving.

Example results from ICP model tests obtained during installation at a sand site are
presented in Figures 2.13 and 2.14. Measurement profiles obtained at three distances behind
the pile tip are presented. The distance behind the pile tip was normalized by the pile radius.
Figure 2.13 presents the radial effective stress during installation of ICP. As the pile advances,
the radial effective stress of the soil acting on the pile at a specific elevation decreases with
normalized penetration distance. In general, the radial effective stress decreases by between

25% and 50% between normalized h/D distances of 8 to 50. This reduction is due to the
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gradual reworking and degradation of the soil adjacent to the pile, which results in contraction
and relaxation of the radial stress. The associated effect of this relaxation on the unit shaft
friction is clearly evident in Figure 2.14. In fact the magnitude of degradation is more severe.
This is attributed to both the reduction in radial stress and a reduction in the coefficient of

friction due to crushing of soil adjacent to the pile.

2.2.8 Multiple Deployment Model Pile (MDMP)

The main objective behind MDMP development was to simulate the installation and
stress history that full scale piles experience during all three stages of its service life:
installation, setup, and loading (Paikowsky and Hart 2000). The MDMP was a very similar
design to the three inch model pile (Paikowsky and Hart 2000). The MDMP instrumentation
included three load cells, three accelerometers, a displacement transducer, a pore pressure
transducer, and a total pressure cell. A conventional standard penetration test (SPT) hammer
was used to drive the MDMP, or a hydraulic system was used to jack the MDMP into the
ground. When driving installation was used pile dynamic analyses could also be performed. A
drill casing was advanced prior to MDMP deployment in order to prevent damage during
penetration through crustal soil layers and to control the depth interval where the MDMP

measured the soil response.

The MDMP study built on and confirmed results with prior model piles. Namely, it

effectively captured capacity gain with time in clay soil and quantified soil-pile interface load

23



transfer (shaft friction). Similar to the other model piles, the MDMP was limited to installation

in clay therefore preventing it from being used to predict driven pile capacity in granular soil.

Figure 2.15 presents the excess pore pressure dissipation following MDMP field
installation at clayey site. The dissipation data was used to examine radial drainage conditions
and pile setup periods. Figure 2.16 presents the associated change in the effective stress
measurement during pore pressure dissipation (pile setup period) after installation. Again
consistent with prior work, the effective radial stress increases as the excess pore pressure
dissipates. Interestingly, the final effective radial stress is estimated to be about 300% larger
than the initial horizontal effective stress. The ability to perform dynamic MDMP installation
using the SPT hammer enabled pile driving analysis (PDA) on a model pile for the first time.
These results were useful to begin assessing and comparing driving dynamics between a model
pile and a full scale pile. Example results during the impact driving of MDMP are presented in

Figure 2.17.

2.2.9 Summary of Instrumented Test Piles

In summary, the instrumented test piles and associated research programs to date have
provided significant contributions towards the understanding of pile performance and design.
Important outcomes specifically relevant to the RTP project presented herein include the
importance of geometrical section survivability, instrumentation durability, effective

positioning of sensors, adequate instrumentation, sensor selections and handling, pile diameter
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scaling and the importance of pile installation method among others. The challenge of
replicating pile driving dynamics during installation in sand of an instrumented model has not
been accomplished successfully and was expected to be a major challenge in development of

the RTP.

2.3 Becker System

The Becker hammer drill system (Figure 2.18) was selected as the pile driving installation
system for the reusable instrumented test pile (RTP) as detailed further in Chapter 3. The
Becker hammer drill system has the following advantages (Harder and Seed 1986, Harder 1988)

over other existing field systems or alternate systems that could have been developed:

e The Becker drill system is a standardized commercially available system. As a result, Becker
system services are available and competitively priced. Caltrans would not be required to
develop, own, or maintain the installation system for the RTP.

e The Becker drill system is equipped with a standard ICE-180 impact pile driving hammer,
which is a light, but standard pile driving hammer. As a result, the Becker drill system can
install the RTP under realistic pile driving conditions.

e The Becker drill system is equipped with a 890 kN (200 kip) hydraulic jacking unit that is

capable of performing tension pile load tests (Benson 2010).
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e Becker pipe sections, with a diameter of 168 mm (6.625 in), are sufficiently large such that
diameter scale effects are reduced, and yet sufficiently small that they can be safely

handled and transported.

A brief review of the Becker drill system is provided here due to it being the selected

platform for RTP installation and extraction.

2.3.1 Background

The Becker hammer drill system was developed in Alberta, Canada during late 1950s
(Harder and Seed 1986). It was developed as a new method to rapidly penetrate and obtain
disturbed samples of gravel and cobble deposits in western Canada. The system has seen
widespread adoption and is now widely used in both Canada and the United States in
geotechnical investigations for drilling, sampling and penetration testing in coarse grained

granular soils.

2.3.2 Equipment

Becker testing is performed by driving the specially designed double wall cylinder
(Becker) pipes into the ground using a double acting diesel pile driving hammer attached to

Becker driving rig. Extraction of the pipe string is performed by a hydraulic jacking system.
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Images of the equipment are presented in Figure 2.18 and a schematic presenting the primary

components of the overall system is presented in Figure 2.19.

2.3.2.1 Becker Pipe Sections

Becker pipe sections are available in standard dimensions of 3.048 m (10 feet) and 1.524
m (5 feet) long with outer diameters of 140 mm (5 1/2 inches), 168 mm (6 5/8 inches), and 229
mm (9 inches). Triple starting thread connections are fabricated from 4140 alloy steel and
welded to a center pipe section of cold-rolled steel. For the 168 mm (6 5/8 in) diameter pipe,
which is the most common in the western United States and that adopted for the RTP, the wall
thickness is 20.64 mm (13/16 in). These heavy wall Becker pipe sections are robust for harsh
driving conditions, and can even withstand penetration through boulders and into weak
bedrock formations. The pipe string can be driven into ground as open or closed ended by

unplugging or plugging the tip section as needed.

2.3.2.2 Diesel Hammer

The International Construction Equipment (ICE) Model 180 double acting diesel hammer
is the standard hammer for Becker drill rigs. Specifications of the hammer are summarized in
Table 2.2. The maximum theoretical energy rating of the hammer is 10.85 kJ (8000 foot
pounds) per blow. During field driving the hammer operates at about 30% efficiency as

detailed by Sy (1993). Typically the hammer operates at a frequency 90-95 blows per minute.
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The closed and sealed upper chamber of the hammer system stores part of the kinetic driving
energy for next blow by the entrapped air compressing as piston goes up. A schematic diagram
of a typical diesel hammer function is presented in Figure 2.20 (Note that is similar to, but not
the exact ICE 180 hammer installed on the Becker rig used in this project). By measuring the
pressure of the trapped air, commonly referred to as the bounce chamber pressure, an

estimate of driving energy can be obtained for each blow (Harder and Seed 1986).

2.3.2.3 Puller Assembly

After driving with the Becker is complete a hydraulic puller assembly is used to retract
the Becker pipe string (i.e. pullout or tension load test). The Becker pipe string is gripped with
tapered slips and raised by two 223 kN (50 ton) hydraulic grips (Benson 2010). Thus the puller
assembly has total of 445 kN (100 ton) pullout capacity and can pull out with the maximum

stroke length of 1.44 m (56.7 in).

2.3.3 Tests Performed Using Becker System

Generally, the Becker system is used for either obtaining soil samples while advancing
the hole or for performing a “Becker penetration test”. Soil sampling and characterization can
be performed with an open ended driving shoe during installation while the Becker penetration

test is performed with a closed ended driving shoe.
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Soil sampling occurs by disturbed soil entering the inner pipe of the drill string through
the cutting shoe. Compressed air is delivered to the bottom of the borehole through the
annulus between the inner and outer pipe walls. The compressed air is then released and lifts
the cut soil particles up through the inner casing to the ground surface. The transferred soil is
collected in a cyclone as shown schematically in Figure 2.19. Soil sampling with the Becker
system is typically performed at sites where other insitu penetration samplers such as the SPT
are not feasible. Collected samples are heavily disturbed (with gravel and cobble particles often
being fractured) but are still useful in identify the type of soil at specific depths and for

developing a stratigraphic profile of the site.

The “Becker penetration test” (BPT), is performed with a closed ended tip section and
the number of blows per foot of penetration is measured. Similar to the SPT N-value, the
Becker penetration test provides an indication of soil resistance (i.e. density, stiffness) to
penetration. Unlike the SPT, the BPT does not obtain a soil sample. Instead, the BPT can be
performed continuously during pipe penetration in a manner similar to monitoring blows per
foot during pile driving. The BPT number is typically converted to an equivalent standard
penetration test (SPT) blow count as design charts based on BPT N numbers are not available.
The equivalent SPT blow counts are often used in empirical correlations originally developed for

sands.

The most common method for conversion of BPT N values to equivalent SPT N values is
that developed by Harder (Harder 1988). Figure 2.21 shows the correction curves to correct

the measured Becker blow counts and bounce chamber pressure to standardized BPT blow
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counts. For example, two sets of measured average bounce chamber pressure and
corresponding Becker blow count for 0.3 m (1 feet) penetration are marked in Figure 2.21 with
open square and open circle. By following the blow count correction curves, standard BPT blow
counts are obtained corresponding to closed square and closed circle. Corrected corresponding
SPT blow counts are obtained with an empirical correlation between corrected BPT blow counts

and standard SPT blow counts as presented in Figure 2.22.

2.4 Pile Setup in San Francisco Bay Mud

A study on the setup of driven piles in San Francisco bay mud by Hunt et al. (2000) and
Pestana et al. (2002) are reviewed herein. This is relevant since deployment and evaluation of
the reusable instrumented test pile (RTP) occurred in Oakland, CA, at a test site with a
stratigraphy that included a young bay mud deposit about 4.75 m (15.5 ft) thick (details
provided in Chapter 4). Results from this prior study, including pore pressure generation during
pile driving, pore pressure dissipation after driving, and pile setup behavior are of particular

interest.

A closed ended pipe pile 61 cm in diameter was driven 36 m, fully penetrating two bay
mud layers. The pile installation occurred at a test site in San Francisco near Islais Creek which
belongs to Department of Transportation, California (Caltrans). Prior to installation 10 pore
pressure transducers were installed in 6 borehole locations at 8.5 m, 12.8 m, and 23.8 m depths

and at radial distances ranging from 0.35 m to 4.7 m from the pile location. These pore
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pressures were allowed to equilibrate to hydrostatic conditions prior to pile installation. Pore
pressures were continuously monitored during pile installation and after, until all
measurements returned to hydrostatic conditions. In addition to pore pressure monitoring,
inclinometers were also installed to monitor the lateral deformation of the ground during pile
installation and pile setup. Instrumentation monitoring occurred before pile installation, during

pile installation, and during setup until full dissipation of excess pore pressure occurred.

2.4.1 Excess Pore Pressure Generation and Dissipation

Field measurements (Pestana et al., 2002) showed that excess pore pressure generation
in San Francisco bay mud due to pile driving can significantly exceed the total over burden
stress. Excess pore pressures generated were highest near the pile, as expected, but were also
shown to be significant up to one pile diameter away from the pile wall. The gradual
dissipation of excess pore pressure with time, from immediately after the installation of driven
pile is shown in Figure 2.23. Behavior is consistent with that expected for normally
consolidated clays (i.e. positive excess pore pressure gradually dissipating towards hydrostatic
conditions), with a period of 2 years required for complete dissipation at the shallower depths.
Figure 2.24 presents the normalized excess pore pressure (consolidation) versus time. At
shallower and closer locations to the pile wall 75 days were required for 80% excess pore

pressure dissipation.
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2.4.2 Pile Setup

Field measurements of radial consolidation, monitored by vertical inclinometers
installed at different distances from the pile, indicated soil movement towards the pile during
pore pressure equilibration. Vertical inclinometers in the borehole casings, surrounding pile
location, at different radial distances help to study soil deformation during pile driving and
consolidation during pile setup period. A polar coordinate system capturing radial deflections
towards or away from the pile and angular deflection around the pile was used to analyze soil

movement (Pestana et al. 2002)

Lateral deformation results are summarized in Figure 2.25 as profiles of total and
incremental radial displacement at different time periods following installation. Plots in the
upper portion present the cumulative lateral soil movement due to consolidation after pile
installation. Absolute measurements were taken on day 1, 47, and 678. The resulting absolute
movement from day 1 to days 47 and 678 are presented in the lower figures. The negative
values indicate soil movement towards to pile in time. As expected, the rate of deformation
decreases in time with a majority of deformation occurring within the first 47 days after

installation (Pestana, 2002).

As clearly evident, the rate of radial displacement decreases in time, which is consistent
with the rate of pore pressure dissipation. The consolidation and radial displacement of soil

towards the pile results in an increase in the radial stress acting on the pile wall.
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2.5 Summary

This chapter has reviewed prior studies and developments regarding instrumented test
piles, the Becker drilling system, and pile setup in clays. The designs, sensors, installation
methods, and methods of interpretation in the development of prior instrumented piles
informed design and equipment selections decisions presented in Chapter 3. The capabilities,
practically, and demonstrated performance and durability of the Becker drilling system
reviewed herein resulted in its selection as the installation system for the RTP. Further, the
RTP’s technical specifications of the system components, down to materials and threaded
connections, were heavily influenced by the standardized Becker system design. Finally, the
generation and subsequent equilibration of excess pore pressure around a pile installed in local
soft clay (young bay mud) provide a reference for analyzing the performance of the RTP

installed in the same regional soft clay deposit.
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