Executive Summary

Background
Caltrans is interested in how other states are implementing automated speed enforcement (ASE) from the following perspectives:

- Policy and legal considerations.
- Education and outreach (including signage).
- Types and effectiveness of the ASE technologies deployed.

Summary of Findings
Below we summarize findings in the three topic areas.

Policy and Legal Considerations
Overview of ASE Laws in the States

- Web sites maintained by national associations offer a wealth of information about ASE laws. Using data from these web sites we provide a summary of state programs, including the reach of each ASE program and program structure (the type of citation issued, liability, the type of image taken and ASE penalties).

 - A limited number of states are maintaining active ASE programs. Among the states most active in the use of ASE are Colorado, Illinois, Maryland, Oregon, Tennessee, Utah and Washington, and the District of Columbia.

 - Iowa and Ohio do not have state laws with regard to ASE, but there are programs operating under local ordinance.

 - Missouri also lacks a state law, but the Missouri Highways and Transportation Commission recently adopted a policy on automated traffic enforcement.
Arizona appears to be discontinuing its ASE program with the recent passage of legislation that repeals the statute establishing the Photo Enforcement Fund.

- The Insurance Institute for Highway Safety provides an extensive analysis of court decisions related to camera enforcement, providing citations and links to case documentation.

- An April 2011 report by the National Highway Traffic Safety Administration (NHTSA) provides a summary of key provisions of state speeding laws effective as of February 1, 2010, including ASE. We present data regarding the permissibility of ASE, including links to relevant statutes and a brief description of the statute or other relevant citation.

Supplementary Information on State Legislation, Policies or Programs

- Here we provide links to documents relating to:
 - Recent Arizona legislation that repeals the statute establishing the Photo Enforcement Fund effective July 2012.
 - The Missouri Highways and Transportation Commission’s policy on automated traffic enforcement. Missouri DOT does not own or operate the ASE systems but allows local governments to install the systems on state highways.
 - Washington legislation that authorizes pilot projects, overseen by the Washington Traffic Safety Commission, to implement ASE in cities west of the Cascade Mountains with a population over 195,000. The legislation also authorizes continuation of a pilot project to employ ASE in work zones on state highways.

Other Research

- A 2007 report published by the California PATH program provides a detailed assessment of the legal issues associated with ASE. In addition to examining potential challenges to ASE programs, the authors identify key program design considerations.

- Another 2007 publication, written by a traffic photographic-enforcement industry representative, discusses the value of the evidence gathered by stationary traffic surveillance systems.

Education and Outreach

Public Education

- Outreach materials for ASE programs in the United States seem to be few in number and difficult to find online; we list available materials for states, including program pages, brochures and press releases.

- A number of studies detail public education efforts:
 - In Montgomery County, MD, officials created public awareness using press releases, a program website, informational materials, a speakers bureau, and a logo to create public brand recognition of the “Safe Speed” program.
 - See especially *Demonstration of Automated Speed Enforcement in School Zones in Portland, Oregon* for a detailed description of outreach strategies, including the development of a media packet, securing of radio and TV coverage, and the use of “Photo Enforced” placards on speed signs.

- NHTSA’s *Speed Enforcement Camera Systems Operational Guidelines* includes extensive advice on how to implement a communications campaign to create awareness of ASE programs.
Public Perception

- Polls repeatedly show that the majority of the public responds positively to ASE. However, the margins of support vary widely, from a low of 51 percent in Washington, D.C. to a high of 77 percent in Scottsdale, AZ.

- In a national survey sponsored by NHTSA in 2002, 68 percent of the respondents indicated that the use of ASE systems was a good idea for those “going 20 mph or more over the posted speed limit” and 78 percent for speeding in a school zone. In a 1998 national survey sponsored by NHTSA, 71 percent of the respondents indicated that they favored the use of automated devices for speed enforcement.

- Oregon studies showed the following:
 - The public’s acceptance of the use of ASE increased for school neighborhoods after a demonstration project and public outreach.
 - A survey showed an approval rating for ASE programs after eight months of 88 percent of residents of Beaverton, OR, and 89 percent of residents of Portland.

- In a Maryland study, six months after enforcement of an automated speed program began, 60 percent of drivers were aware of the camera program and 62 percent supported it.

- Opponents of ASE programs can be vocal and generate controversies, and a number of programs—including those in Arizona and one in California, where public outreach campaigns were considered successful and public approval high—have been discontinued because of vocal opposition.

- According to the 1998 NHTSA survey, leading public objections included:
 - Invasion of privacy (26 percent).
 - Preference for in-person contact with an officer (14 percent).
 - Camera errors (12 percent).

Signage

- Iowa, Maryland, Ohio and Oregon are among the states that have adopted the national MUTCD and/or a state-specific supplement that provides guidelines for the state’s ASE signage.

- In other states, including Arizona and Colorado, statutory provisions specify the type of signage required for photo enforcement or ASE.

ASE Technologies

Effectiveness Studies

- Numerous studies have been performed regarding the effectiveness of particular implementations of ASE. All reports located for this synthesis found the practice to be effective in reducing driver speeds.

- Several studies identified, such as those performed in California, Illinois, Maryland and Oregon, specifically address the use of ASE in work zones.

- This has been enough of an area of interest in recent years that multiple syntheses are also available surveying ASE implementations, including “Automated Speed Enforcement in the U.S.: A Review of the Literature on Benefits and Barriers to Implementation” (described here under “Other Guidance and Research”).

- A Research Need Statement was issued by the Transportation Research Board in 2007 for a comprehensive effectiveness study for various ASE technologies, indicating that Caltrans may be able to leverage other states’ interest in this topic through cooperative funding efforts or in other ways.
- ASE has long been used in European countries, making effectiveness data and guidance available from additional sources. For instance, we have provided a citation to a 2008 summary effort, “Safety Effects of Automated Speed Enforcement Programs: Critical Review of International Literature.”

Best Practices and Comparison of Methods

- The case studies located for this report employ radar, photo, and in some cases laser enforcement. In some studies, the effectiveness of an ASE method was compared with the presence of patrol vehicles, and studies and guidance cover both mobile and stationary implementations, though mobile ones are much more common. While some studies such as the two listed here for California compare multiple available systems, no systematic comparison of all of the available options was located.
- An often-cited recent innovation in ASE is point-to-point monitoring, which tracks average speed between two points on a roadway.
Policy and Legal Considerations

The citations below provide a summary of automated enforcement laws and the legal decisions that relate to ASE.

Overview of ASE Laws in the States

This summary of automated enforcement laws notes that while “many states have laws explicitly authorizing automated enforcement, not all states where cameras are in use have such laws, nor are they always necessary.” The web site provides a table that summarizes automated enforcement laws in each state and the District of Columbia. The table also includes ratings of red light camera laws.

Using data from the National Conference of State Legislatures, IIHS and state highway safety offices, this web site presents a state-by-state accounting of the criteria for the use of speed and red light cameras, including information about the citation issued, the image taken and traditional penalties.

Twelve states have passed laws that prohibit the use of speed cameras—some with very narrow exceptions. Twenty-nine states have no law addressing speed cameras. Below is a summary of the states with ASE programs at the state or local level.

ASE Programs (State or Local)

- **Arizona** – statewide application. (The statute establishing funding for Arizona’s ASE program is scheduled for repeal in July 2012.)
- **California** – no state law, but program operating on Mountains Recreation and Conservation Authority park roads.
- **Colorado** – restricted to construction and school zones, residential areas or adjacent to a municipal park.
- **District of Columbia** – jurisdiction-wide authority to use automated enforcement to capture all moving infractions.
- **Illinois** – statewide only in construction zones or Illinois Toll Authority roads; local authorities are prohibited from using speed cameras; state may use speed cameras, but only when a law enforcement officer is present and witnesses the event.
- **Iowa** – no state law, but programs are operating under local ordinance.
- **Louisiana** – state law provides that convictions resulting from camera enforcement shall not be reported for inclusion in driver record; the law is silent on other issues.
- **Maryland** – Montgomery County school zones and residential districts; Prince George’s County school zones; statewide in school zones by local ordinance and work zones.
- **Missouri** – no state law, but programs are operating under Missouri DOT policy (see http://www.modot.mo.gov/documents/2011AECommissionPolicy.pdf).
- **Ohio** – no state law, but programs are operating under local ordinance.
• **Oregon** – specific cities where ASE is permitted; may not be used for more than four hours per day in any location.

• **Tennessee** – statewide except for Interstate highways that are not work zones.

• **Utah** – statewide only in school zones or where the speed limit is 30 mph or less; officer must be present; requires local ordinance.

• **Washington** – applicable in school zones only. (A recent budget bill authorizes pilot programs overseen by the Washington Traffic Safety Commission to detect speed violations within cities west of the Cascade Mountains that have a population over 195,000. A pilot project to test ASE in work zones continues under the new budget.)

Additional information about the program structure of selected state ASE programs appears in the table below.

<table>
<thead>
<tr>
<th>State</th>
<th>Citation Issued To</th>
<th>Liability</th>
<th>Image Taken</th>
<th>ASE Penalties / Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arizona</td>
<td>Not addressed</td>
<td>Not addressed</td>
<td>Not addressed</td>
<td>$165 fine / 3 points</td>
</tr>
<tr>
<td>Colorado</td>
<td>Registered owner</td>
<td>Driver</td>
<td>Tag and driver</td>
<td>$40 maximum fine ($80 in school zone); no points or record; warning only for first photo radar offense if speed within 10 mph of limit</td>
</tr>
<tr>
<td>District of Columbia</td>
<td>Registered owner</td>
<td>Owner</td>
<td>Not addressed</td>
<td>$75 fine; no points</td>
</tr>
<tr>
<td>Illinois</td>
<td>Registered owner</td>
<td>Driver</td>
<td>Tag and driver</td>
<td>$250 or 25 hours community service</td>
</tr>
<tr>
<td>Maryland</td>
<td>Registered owner</td>
<td>Owner</td>
<td>2 or more images of rear of vehicle and tag in any medium</td>
<td>$40 maximum fine; no points</td>
</tr>
<tr>
<td>Oregon</td>
<td>Registered owner or driver, if identifiable</td>
<td>Registered owner</td>
<td>Photographs; digital images</td>
<td>$300 maximum fine</td>
</tr>
<tr>
<td>Tennessee</td>
<td>Registered owner</td>
<td>Registered owner</td>
<td>Not addressed</td>
<td>$50; not reportable; no points</td>
</tr>
<tr>
<td>Utah</td>
<td>Not addressed</td>
<td>Not addressed</td>
<td>Photograph</td>
<td>No reportable; no points may be assessed</td>
</tr>
<tr>
<td>Washington</td>
<td>Registered owner</td>
<td>Registered owner</td>
<td>Vehicle, license tag</td>
<td>Fine up to the maximum for parking violations in the jurisdiction; no record; no points</td>
</tr>
</tbody>
</table>
ASE-Related Statutory Provisions

Summary of State Speed Laws

This publication provides a summary chart of key provisions of state speeding laws effective as of February 1, 2010, including ASE. The tables below present data taken from the report in three categories:

- ASE is expressly permitted by statutory provision.
- ASE is permitted under certain conditions.
- ASE permissibility is inferred from related legislation or case law.

ASE Expressly Permitted by Statute

<table>
<thead>
<tr>
<th>State</th>
<th>Statute(s)</th>
<th>Description</th>
</tr>
</thead>
</table>
| Arizona | AZ ST § 41-1722(A), (B), (D) http://www.azleg.gov/ArizonaRevisedStatutes.asp?Title=28
Note: This statute is scheduled for repeal July 1, 2012. | Section 41-1722 mandates the department of transportation to enter into contract(s) with private vendor(s) to establish a photo enforcement system relating to vehicle traffic and speed. A violation pursuant to this section is $165, but such violation shall not be considered for the purpose of determining driver’s license suspension/revocation. |
| District of Columbia | DC ST § 50-2209.01 http://government.westlaw.com/lkndslce/search/default.asp?RS=GVT1.0&VR=2.0&SP=dcct-1000; enter “50-2209.01” in the search box | Automated traffic enforcement systems may be used to detect moving infractions. |
| Iowa | IA ST § 321.235; IA ST § 321.236 http://search.legis.state.ia.us/nxt/gateway.dll/ic/1/13/11201/11750/11751/12008?f=templates&fn=default.htm and http://search.legis.state.ia.us/nxt/gateway.dll/ic/1/13/11201/11750/11751/12010?f=templates&fn=default.htm | It appears local governments may enact additional traffic regulations as long as they are not in conflict with the goal of uniformity throughout the state.
In *City of Davenport v. Seymore*, 755 N.W.2d 533 (Iowa 2008), the court held that those statutes, along with others in the Iowa Code, do not preempt a local government from using automated traffic enforcement systems. |
| Montana | MT ST § 6112-101(2) http://data opi mt.gov/bills/mca/61/12/61-12-101.htm | Local authorities are permitted to regulate traffic by means of police officers or other traffic control devices.
See 45 A.G. Op. 7 (1993), which holds that the city of Billings was not precluded by state statute from enacting a photo-radar ordinance regulating speeding. |
| North Carolina | NC ST § 160A-300.1 http://www.ncga.state.nc.us/EnactedLegislation/Statutes/HTML/BySection/Chapter_160A/GS_160A-300.1.html | The use of a “traffic control photograph system” (both speed and red light violations) is permitted, so long as appropriate advance warning signs are conspicuously posted (not more than 300 feet from the location of the system). |
ASE Expressly Permitted by Statute

<table>
<thead>
<tr>
<th>State</th>
<th>Statute(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohio</td>
<td>OH ST § 4511.094 http://codes.ohio.gov/orc/4511.094</td>
<td>A local authority may use a traffic law photo-monitoring device to enforce any traffic law only after it has erected signs giving notice.</td>
</tr>
<tr>
<td>Oregon</td>
<td>OR ST § 810.434 http://www.leg.state.or.us/ors/810.434</td>
<td>Speed cameras are permitted. Currently, speed cameras are in the following localities: Albany, Beaverton, Bend, Eugene, Medford, Portland and Tigard.</td>
</tr>
<tr>
<td>Tennessee</td>
<td>TN ST § 55-8-198(a) http://www.lexisnexis.com/hottopics/tncode/Default.asp</td>
<td>Automated traffic enforcement is permitted statewide for traffic violations. Any traffic citation that is solely based upon evidence obtained from a surveillance camera shall be considered a nonmoving violation.</td>
</tr>
</tbody>
</table>

ASE Permitted Under Certain Conditions

<table>
<thead>
<tr>
<th>State</th>
<th>Statute(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arkansas</td>
<td>AR ST § 27-52-110; AR ST § 27-52-111 http://www.lexisnexis.com/hottopics/arcode/Default.asp</td>
<td>Automated enforcement devices may only be used to detect and enforce violations of traffic laws or ordinances within school zone or at railroad crossings. Law enforcement officer must be present and citation must be issued at time of violation.</td>
</tr>
</tbody>
</table>
| Colorado | CO ST § 42-4-110.5 http://www.michie.com/colorado/lpExt.dll?f=templates&eMail=Y&fn=main-h.htm&cp=cocode/1/6d9fa/6ed2d/6ed2f/6ee62/6ef42 | - The state may use automated vehicle identification systems to detect speeding only within ongoing highway maintenance, repair or construction zones.
 - A local government may use automated vehicle identification systems to detect violations of traffic regulations only if posted notice is provided to drivers.
 - Signage provisions:
 - Place in a conspicuous place not fewer than 200 feet nor more than 500 feet before the automated vehicle identification system.
 - Use lettering that is at least 4 inches high for uppercase letters and 2.9 inches high for lowercase letters. |
<table>
<thead>
<tr>
<th>State</th>
<th>Statute(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Illinois</td>
<td>625 ILCS 5/11-602; 625 ILCS 5/11-605.1; 625 ILCS 5/11-612</td>
<td>Automated traffic control systems are permitted within 500 feet of signs within a construction or maintenance speed zone only, or when a state law enforcement officer is present at the scene and witnesses the event. In all other instances, speed cameras are prohibited. Illinois State Police must conduct a public information campaign to inform drivers about the use of automated traffic control systems in highway construction or maintenance zones before establishing any of those systems. Signs indicating that speeds are enforced by automated traffic control systems must be clearly posted in the areas where the systems are in use.</td>
</tr>
<tr>
<td>Maryland</td>
<td>MD TRANS § 21-809</td>
<td>The following counties/cities are permitted to enforce speed violations by using a “speed monitoring system,” which produces recorded images of motor vehicles traveling at least 10 mph over the posted speed limit on a highway, in work zones, in a residential district, and in school zones with a maximum posted speed limit of 35 mph: Prince George’s County, Montgomery County, Berwyn Heights, Baltimore County. Anyone found in violation is subject to a civil penalty of not more than $40.</td>
</tr>
<tr>
<td>Utah</td>
<td>UT ST § 41-6a-608</td>
<td>“Photo radar” is permitted in school zones or other areas with a posted speed limit of 30 mph or less; a law enforcement officer must also be present, signs must be posted providing notice to motorists of the use of photo radars, and photo radars must be approved by the appropriate local governing body. “Photo radar” means a device used primarily for highway speed limit enforcement substantially consisting of a low-power Doppler radar unit and camera mounted in or on a vehicle, which automatically produces a photograph of a vehicle traveling in excess of the legal speed limit, with the vehicle's speed, the date, time of day, and location of the violation printed on the photograph.</td>
</tr>
<tr>
<td>Washington</td>
<td>WA ST § 46.63.170</td>
<td>Speed cameras are permitted in school zones and arterial streets in cities with a population over 5,000 only. However, if a local legislative authority enacts an ordinance authorizing the use of speed cameras, then such use shall be permitted.</td>
</tr>
</tbody>
</table>
ASE Permissibility Inferred

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alaska</td>
<td>See Municipality of Anchorage v. Baxley, 946 P.2d 894 (Alaska App. 1997). This case concerns the use of photo radar and whether the specific defendants should have been found guilty of speeding in a school zone. There is no statutory provision for the use of photo radar (speed cameras), but considering the nature of this case, it appears that localities or municipalities in Alaska may use speed cameras (photo radar) to detect speeding.</td>
</tr>
<tr>
<td>Louisiana</td>
<td>Local authorities may adopt ordinances enforcing the Louisiana traffic and safety laws, by means of police officers or by the use of traffic-control devices (LA R.S. § 32:21; LA R.S. § 32:41). See La. Atty. Gen. Op. No. 07-0062 (September 4, 2007), which holds that the local government’s use of a photographic traffic signal enforcement system is an alternate method of enforcement of an existing approved traffic control device.</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>The state treasurer is authorized to pay the cost of installing suitable traffic control signs, or safety devices, and constructing necessary safety improvements at high-accident locations in cities and towns, in accordance with the following procedure (MA ST 90 § 33B). This does not specifically include or exclude speed cameras.</td>
</tr>
</tbody>
</table>

Court Decisions Affecting ASE

This summary of court decisions related to camera or automated enforcement as a method of using technology to photograph violations of traffic law considers the following:

- Decriminalization.
- Procedural adequacy.
- Separation of powers and delegation.
- Equal protection.
- Presumption.
- Conflict of laws and preemption.
- Privacy.
- Purpose of camera enforcement.
- Notice.
- Civil rights and Racketeer and Influenced and Corrupt Organization Act claims.

Citations and links to case documentation are provided.
Supplementary Information on State Legislation, Policies or Programs

Arizona

Legislative Update, Committee on Superior Court, Arizona Judicial Branch, May 20, 2011.

http://www.azcourts.gov/Portals/74/COSC/3bLegislativeUpdate.pdf

See pages 11 and 12 of the PDF for a discussion of SB 1398: Moving Violations; Assessment; Equipment; Enforcement. The new law repeals the statute establishing the Photo Enforcement Fund (§ 41-1722) on July 1, 2012. Forty percent of the monies remaining in this fund in FY 2011 and FY 2012, after paying expenses and court costs and not exceeding $7 million, are to be deposited in the Public Safety Equipment Fund.

Title 28, Transportation, Arizona Revised Statutes.

See below for excerpts related to the current law on photo enforcement:

28-1203. Photo enforcement system placement; speed limit change
A photo enforcement system shall not be placed on a street or highway within six hundred feet of a posted speed limit change except that a photo enforcement system may be placed in an area around a school crossing that is delineated by signs as prescribed by section 28-797, subsection D.

28-1602. Photo enforcement violation; no duty to identify photo or respond; definitions
A. Notwithstanding any other law, if a person receives a notice of violation in the mail for a violation of chapter 3, article 3 or 6 of this title or of a city or town ordinance for excessive speed or failure to obey a traffic control device that is obtained using a photo enforcement system, the person does not have to do either of the following:
 1. Identify who is in the photo.
 2. Respond to the notice of violation.
B. The notice of violation that is described in subsection A of this section must state the following:
 1. The notice is not a court issued document and the recipient is under no obligation to identify the person or respond to the notice.
 2. Failure to respond to the notice may result in official service that may result in an additional fee being levied.
C. For the purposes of this section:
 1. "Notice of violation" means a notice issued by a photo enforcement company or municipality that is not a uniform traffic ticket or complaint.
 2. "Photo enforcement system" has the same meaning prescribed in section 28-601.

Illinois

Slide 7 of this presentation begins the discussion of photo enforcement in Illinois. A synopsis of Illinois DOT’s ASE program:

- Work zone fines apply when workers are present.
- No restriction on time of day.
- Work zone must be signed.
- Picture of driver and license plate; time, date and location.
- Violation tied to driver; sent certified mail in six business days.
- Trooper not required.
The presentation also provides a detailed description of the technology used, the proposed process flow, costs and hurdles encountered in administering the program.

Louisiana

http://www.ltrc.lsu.edu/ltc_09/pdf/Allain,%20Peter.pdf

This presentation by the Traffic Engineering Division Chief in the Louisiana Department of Transportation and Development presents a legal question as to the permissibility of ASE, citing this statute on slide 22:

RS 32:365. Television
B. Law enforcement officers of the state or any political subdivision thereof shall be authorized to operate video recording equipment and monitors in their law enforcement vehicles while in the performance of their duties. However, this provision shall not be construed to allow law enforcement officers to record vehicles in violation of traffic safety laws with citations for such violations to be mailed to the alleged violator at a later date.

Slide 23 provides this history of photo enforcement legislation in Louisiana:

- 2001: HB 1591 – municipalities – failed to pass House
- 2004: HB 1078 – municipalities – failed to pass House
- 2004: SB 612 – municipalities > 50,000 pop – died in House
- 2005: HB 368 – for New Orleans – died in House

Missouri

These meeting minutes include a report and recommendation regarding automated traffic enforcement on Missouri’s state highway system.

In October 2010, Missouri DOT suspended installations of automated enforcement on the state highway system to allow for review and development of a formal policy. MoDOT does not own or operate the automated enforcement systems but is allowing local governments to install the systems on state highways. The department does not receive revenue from automated enforcement. After discussion, the commission adopted the policy below.

This policy addresses the installation and use of ASE systems by state, city and county law enforcement agencies on the state highway system. Policy highlights include:

- Cameras may be used to assist with enforcement of state speed limit laws in school zones, work zones and Travel Safe Zones on the state highway system. Use of ASE equipment in any other location is not allowed.
- A certified law enforcement officer must review and make the determination of any violation.
- Advance signage is required.
- Cities or counties using ASE are required to conduct a public awareness campaign at least 30 days prior to issuing citations.
- Each city or county using ASE equipment will be required to submit an annual report to MoDOT for each state highway corridor in which the equipment is used. The report will include safety performance and citation data from the previous year.
- The city or county must enter into a contract with MHTC for the use of an automated speed violation enforcement system on state-maintained highways. Part of the contract will require an ordinance allowing the use and issuance of citations using ASE equipment. Once a contract is executed and a permit is issued, the city or county may proceed with the installation of the equipment.

Washington

A 2011 transportation budget bill authorizes pilot projects implementing ASE with oversight by the Washington Traffic Safety Commission. From page 7 of the PDF:

(2) The commission may oversee pilot projects implementing the use of automated traffic safety cameras to detect speed violations within cities west of the Cascade mountains that have a population over one hundred ninety-five thousand. For the purposes of pilot projects in this subsection, no more than one automated traffic safety camera may be used to detect speed violations within any one jurisdiction.

(a) The commission shall comply with RCW 46.63.170 in administering the pilot projects.

(b) In order to ensure adequate time in the 2011-2013 fiscal biennium to evaluate the effectiveness of the pilot projects, any projects authorized by the commission must be authorized by December 31, 2011.

(c) By January 1, 2013, the commission shall provide a report to the legislature regarding the use, public acceptance, outcomes, and other relevant issues regarding automated traffic safety cameras demonstrated by the pilot projects.

Page 116 of the PDF notes the continuation of a pilot program to employ automated traffic safety cameras in work zones on state highways managed by Washington State DOT in consultation with Washington State Patrol:

The department, in consultation with the Washington state patrol, may continue a pilot program for the patrol to issue infractions based on information from automated traffic safety cameras in roadway construction zones on state highways. For the purpose of this pilot program, during the 2009-11 fiscal biennium, a roadway construction zone includes areas where public employees or private contractors are not present but where a driving condition exists that would make it unsafe to drive at higher speeds, such as, when the department is redirecting or realigning lanes on any public roadway pursuant to ongoing construction.

Related Resource:

Automated Enforcement in Work Zone Pilot Project: Fall 2008/Spring 2009 Deployment. Washington State Department of Transportation, undated.

This report describes a pilot project to test the use of ASE in highway work zones. Working with the Washington State Patrol, WSDOT established two test locations in work zones on Interstate 5. At the time of this report, with less than 10 weeks of enforcement data, the authors indicate that firm
conclusions cannot be drawn but indicators show improved work zone safety. The number of vehicles greatly exceeding the speed limit (traveling over 75 mph) was reduced significantly in one of the I-5 test locations, and there were no speed-related collisions during the automated enforcement period.

Other Research

This literature review explored the potential benefits and barriers to implementing ASE programs in the United States. The authors note that ASE programs have the potential to be challenged on the grounds that they may violate constitutional rights and protections, including the right to privacy and freedom of association under the First Amendment; protection against illegal search and seizure under the Fourth Amendment; the right to due process under the Fifth and Fourteenth Amendments; the equal protection doctrine in the Fourteenth Amendment; and the taking clause of the Fifth Amendment. The authors further note that “legal scholars, however, appear to agree, based on the body of established case law—that these programs do not violate these constitutional rights.”

The authors identify key program design considerations, including:

- **Owner or driver liability.** Many automated enforcement programs assign liability to the registered owner as a civil infraction similar to a parking ticket, while others assign responsibility only to the driver.

- **Manned/mobile or unmanned/fixed operation.** Under the legal principle known as the pictorial testimony theory, automated enforcement equipment must be attended by an officer who can testify that the photograph is an accurate depiction of the event. Under the silent witness theory, the photograph itself can stand as evidence.

- **Visibility.** The degree to which automated enforcement programs notify the public about their cameras can have an effect on the program’s acceptance and safety benefits.

- **Location.** ASE programs in the United States primarily target speeding on surface streets with speeds from 30 mph to 50 mph, and many are restricted to residential streets. At the time of publication, there was only one ASE program on high-speed, high-volume roadways (Washington, D.C.).

- **Revenue distribution.** Few existing programs actually generate revenue and many are either revenue-neutral or require a subsidy.

This article, written by a traffic photographic-enforcement industry representative, discusses the value of the evidence gathered by stationary traffic surveillance systems. The most important factor is that the evidentiary chain is not broken by gaps in the photographic evidence. The first step listed is detection (radar); the next step is the actual image data capture. The third and final element in the chain is that of the actual evidence provided by the cameras.
Education and Outreach

Public Education and Perception by State

Arizona

Available Outreach Materials
Arizona seems to have ceased using ASE. See “Arizona Halts Photo Enforcement of Speed Laws,” available at http://www.nytimes.com/2010/07/16/us/16camera.html: “The state, the first to adopt such cameras on its highways in October 2008, has become the first to pull the plug, bowing to the wishes of a vocal band of conservative activists who complained that photo enforcement intruded on privacy and was mainly designed to raise money.”

Related Research

Public Perception
Public opinion surveys found widespread concerns about speeding on the Loop 101 freeway and high levels of support for speed camera enforcement on this road.

Public Perception
Thirteen agencies that have used or are currently using a photo speed enforcement system were interviewed via email and phone. Most of the users report strong public support of their enforcement system, with only two out of 13 stating that there was an even split in public support. See pages 35-39 for a general discussion of public attitudes, common objections and results of opinion surveys outside of Arizona. Pages 39-41 detail the results of a survey of Scottsdale, AZ, residents concerning its red light and speed camera programs, with a strong majority of residents supporting the programs.

Public Education
The information campaign before and during the ASE period was substantial. The details of the project location and dates were widely publicized. Morning radio talk shows, local TV news, and the Internet all covered the story.

Local newspapers published dozens of related articles during 2006. Several potential legislative bills regarding ASE systems received publicity during the project. This traffic enforcement project was one of the most publicized in Arizona history; the attention alone may have had a significant effect on its results.
California

Available Outreach Materials
San Jose’s NASCOP (Neighborhood Automated Speed Copliance Program) seems no longer to be in operation; see http://www.sanjoseca.gov/transportation/traffic_photoradar.htm.

Related Research

Public Education
- Many experts assert that public acceptance of ASE programs may hinge on the public’s recognition of speeding as an important community problem.
- Public involvement appears to increase the odds of program success. In Hawaii, the lack of public involvement in the development of their ASE program may have contributed to the public backlash that eventually led the state Legislature to shut down the program.
- The degree to which automated enforcement programs notify the public about their cameras can have an effect on the program’s acceptance and safety benefits (see page 14 of the PDF).

Public Perception
Pages 8-12 cover stakeholder support:
- Overall, survey results indicate that the majority of the public supports ASE. However, the margins of support vary widely, from a low of 51 percent in Washington, D.C. to a high of 77 percent in Scottsdale, AZ.
- In a national survey sponsored by NHTSA in 2002, 68 percent of the respondents indicated that the use of ASE systems was a good idea for those “going 20 mph or more over the posted speed limit” and 78 percent for speeding in a school zone. In a 1998 national survey sponsored by NHTSA, 71 percent of the respondents indicated that they favored the use of automated devices for speed enforcement.
- According to the 1998 NHTSA survey, leading public objections included:
 - Invasion of privacy (26 percent).
 - Preference for in-person contact with an officer (14 percent).
 - Camera errors (12 percent).
- In 1989, telephone surveys were conducted in and around a number of cities in the United States that had recently initiated ASE programs. The results indicated that a majority of survey respondents were aware of the use of ASE systems and supported their use.

Colorado

Available Outreach Materials
Boulder
- Boulder describes its photo radar program here and allows users to respond to citations online: http://www.bouldercolorado.gov/index.php?option=com_content&task=view&id=301&Itemid=1206.
Colorado Springs

- Presentation: http://www.springsgov.com/units/police/miscDocs/PhotoEnforcement_PPCouncil.pdf

Denver

District of Columbia

Available Outreach Materials

- Program page: http://mpdc.dc.gov/mpdc/cwp/view,a,1240,Q,547970,mpdcNav_GID,1552,mpdcNav,%7C,.asp
 - FAQs: http://mpdc.dc.gov/mpdc/cwp/view,a,1240,q,547977,mpdcNav_GID,1552,mpdcNav,%7C31886%7C.asp
 - News and links: http://mpdc.dc.gov/mpdc/cwp/view,a,1240,Q,547998,mpdcNav_GID,1552,mpdcNav,%7C31886%7C,.asp
 - Also includes links to laws, locations and other information.
Related Research
[Link](http://www.ltrc.lsu.edu/TRB_82/TRB2003-002012.pdf)
From page 3 of the PDF: “City officials generated publicity and awareness of the new program through the news media.”

Illinois

Available Outreach Materials

- FAQ: http://www.dot.state.il.us/workzone/Q%26AsPhotoEnforce.pdf
- Press release: http://www.dot.state.il.us/press/r040709_2.html

Iowa

Available Outreach Materials

City of Davenport

While this brochure focuses on red light enforcement, it is a good example of an agency advocating automated enforcement.

Safe Routes to School: http://www.iowadot.gov/saferoutes/grants.html

Louisiana

Available Outreach Materials

New Orleans

- FAQs: http://www.google.com/url?sa=t&source=web&cd=2&ved=0CBwQFjAB&url=http%3A%2F%2Fwww.nola.gov%2FFRoot%2FRESIDENTS%2F-%2Fmedia%2FFFiles%2FDepartment%2520of%2520Public%2520Works%2FRed%2520Light%2520Camera%2520FAQs.ashx&rct=j&q=%22new%20orleans%22%20safety%20camera%20program%22&ei=MaY4TqOSN8nX0QGbveHQAw&usg=AFQjCNEwivVJyK1rjLQxpR0JPcNIIIAyA&sig2=6FwBPcBAeFwRA0mpKi50Q
• Press releases:
 o “61,000 Photo Enforcement Violations Cited 2008,”

Maryland

Available Outreach Materials
Maryland Department of Transportation information on ASE:

Maryland Safe Zones
• Program page: http://safezones.maryland.gov/
 o Facts: http://safezones.maryland.gov/mdsafezones.html
 o Work zone safety information: http://safezones.maryland.gov/workzonesafety.html
• Public service announcement (PSA): http://www.youtube.com/watch?v=EWr_JGgdhk
• Fact sheet: http://www.marylandroads.com/OC/Speed_camera_law_fact_sheet.pdf (with pictures of signs, rule about conspicuous signs)
• Former MDOT Secretary Porcari’s letter to the editor in the Gazette Newspapers:
 http://www.marylandroads.com/OC/PorcariLetterApril09.pdf
• Presentation: http://www.outreach.psu.edu/programs/transportation/files/1a_tabacek.pdf

Montgomery County Safe Speed Program
• Program page: http://www.montgomerycountymd.gov/poltmpl.asp?url=/content/pol/districts/FSB/sod/speed/Speed.asp
• Speed enforcement video: http://www.montgomerycountymd.gov/content/pol/districts/FSB/sod/speed.wmv

City of Laurel
• Program page: http://www.laurel.md.us/content/automated-speed-enforcement-program

City of Frederick

School Zones
• FAQs: http://www.marylandroads.com/pages/faqs.aspx?CatId=0&QId=7
Related Research
http://safety.fhwa.dot.gov/speedmgt/ref_mats/fhwasa09028/resources/Evaluation%20of%20ASE%20in%20Montgomery%20County,%20MD.pdf

Public Education
From pages 2 and 3:

In line with recommendations by Delaney et al. (2005), Montgomery County officials placed considerable emphasis on creating public awareness of the speed camera program and building public support for automated speed enforcement. Police officials developed a public information and education campaign that initially emphasized the dangers of speeding and the role of speed cameras, and later informed drivers that speed cameras were in use. The campaign included press releases, a program website, informational materials, a speakers bureau, and a logo to create public brand recognition of the “Safe Speed” program (Figure 1). This logo was used by Montgomery County as well as three smaller municipalities within the county (Chevy Chase, Gaithersburg, and Rockville) that planned to implement speed camera programs.

Public Perception
To assess public awareness of the speed camera program and attitudes toward camera enforcement, telephone surveys were conducted approximately 6 months in advance of camera enforcement and the public education campaign and then approximately 6 months following implementation of the speed camera program.

Public opinion surveys found 74 percent of Montgomery County drivers thought speeding on residential streets was a problem. Six months after enforcement began, 60 percent of drivers were aware of the camera program and 62 percent supported it.

Although a majority of drivers supported automated speed enforcement on residential streets in Montgomery County, about one-third opposed it. Opponents can express strong views that generate controversies wherever speed cameras are used. Jurisdictions planning to implement speed camera programs should draw on international experience to anticipate the controversies that generally arise (Delaney et al., 2005) and take steps in advance to address them.

Guidelines for Automated Speed Enforcement Systems in School Zones, Maryland State Highway Administration, January 2011.
Includes a section on public outreach (page 9), and recommends that a communications campaign:

- Identify the types of behavior that are targeted by the ASE systems.
- Encourage community awareness and involvement.
- Make traffic safety an integral part of the program.
- Increase awareness of the dangers of crashes associated with driving too fast for conditions.
- Use the appropriate data to correlate ASE with reduction of speeds, crashes and injuries.
- Use various channels of communication to inform the public, such as web sites, newspapers, radio, brochures, workshops, annual evaluations and reports, newsletters, paid media spots, local association meetings, etc.
- Promote transparency.
Missouri

Available Outreach Materials
St. Ann, MO, Automated Traffic Enforcement

North Carolina

Available Outreach Materials
Charlotte
 - Safe Speed Photographic Speed Enforcement Program presentations:
 http://www.ncdot.org/doh/preconstruct/traffic/echs/DOCS/safespeed.pdf

Oregon

Available Outreach Materials
Portland
 - Program page: http://www.portlandonline.com/police/index.cfm?&c=30591&x=12&y=11
 - Q&A: http://www.portlandonline.com/police/index.cfm?a=33798&c=30591
 - FAQs: http://www.portlandonline.com/police/index.cfm?a=33788&c=30559

Related Research

Public Education
From page 2 of the PDF:

In an effort to maximize deterrence, prior to deployment of a public information and education (PI&E) campaign was targeted in the neighborhoods of the five demonstration school zones and also presented more broadly to the Portland community, including a press conference that produced citywide media attention. The program was implemented by the PDOT Public Information Coordinator, who identified key stakeholders in school zone communities; notified and informed Portland Public School District officials, neighborhood associations, and school community members about the project and secured their endorsement; installed “PHOTO ENFORCED” placards to supplement existing “SCHOOL SPEED 20” signs in demonstration school zones; coordinated media materials and events; provided materials for PDOT publications; and presented at community and professional meetings.

Section 2.3 (pages 11-14) further details public outreach efforts. Strategies included:
• Notifying Portland Public School District administration and other key personnel about the ASE project via email, phone and in-person meetings.
• Developing a media packet—media advisory and press release—for press event at start of project.
• Developing and distributing—via email, FAX and newsletters—a public information item about the project for key stakeholders.
• Securing print and TV/radio media coverage of project work at test school zones.
• Making presentations about ASE project in community and professional meetings
• Assigning responsibility for public information and education to coordinator.
• Hired a consultant to measure and assess the impacts of the public information campaign on public knowledge, awareness and attitudes.

Public Perception
From page 2 of the PDF:

Public perceptions and awareness of the safety risks at school zones and the presence of speed enforcement were surveyed on a sample of 400 residents prior to the PI&E campaign and 400 residents during the demonstration period, with both survey waves equally divided among demonstration and comparison school samples. Public attitudes and awareness were also evaluated by tracking community contacts, media outreach, and media hits.

Results (see page 5 of the PDF):

• The public’s acceptance of the use of ASE in school zones increased from pre-demonstration to demonstration periods in demonstration school neighborhoods, but did not change in comparison school neighborhoods.
• Following the implementation of ASE, the proportion of drivers in demonstration community neighborhoods who said that speeds near schools were just about right decreased and the proportion who said that people drove too fast increased to a plurality. There was no change from pre-demonstration to demonstration periods in the comparison neighborhoods, where the majority of drivers said that speeds were just about right.
• With the implementation of ASE, there was an increase in the proportion of demonstration community drivers who said they were very likely to drive slower if they saw ASE deployed three times a week in school zones. There was no such change in the comparison community driver sample.
• There was an increase from the pre-demonstration to the demonstration period in the proportion of drivers in demonstration neighborhoods who said that driving 20 mph or less in school zones would be a major safety improvement. There was also an increase in the comparison community, but it was smaller.

Tennessee

Available Outreach Materials
Morristown

• Information page: http://www.mymorristown.com/mpd_autoenf.pdf
Available Outreach Materials
WSDOT Automated Traffic Safety Cameras
- Program page: http://www.wsdot.wa.gov/Safety/ATSC.htm
 - FAQs: http://www.wsdot.wa.gov/Safety/faq.htm
- City of Auburn PSA: http://www.youtube.com/watch?v=WCxXn5ESaBk

Related Research

Public Perception
See page 15 of the PDF:

Prior to deployment the department held media awareness events and distributed press releases.

The program’s communications efforts had the following key messages:

- WSDOT and Washington State Police place a high priority on safety of workers, drivers and passengers in the work zone and speed remains the most likely cause of incidents in the work zone.
- Cameras are just one part of WSDOT’s efforts to keep work zones safe.
- WSDOT will use the cameras and accompanying signing as a deterrent, not a punishment.
- WSDOT has done its research to make sure this program is successful.
- Through communications efforts, drivers will slow down to increase worker safety, driver safety and passenger safety in work zones.

WSDOT engaged in active media outreach prior to each deployment. The department also posted program information, including a question and answer document, on the WSDOT web site. The communications campaign garnered the program stories on Seattle TV (KING and KIRO) along with Portland coverage (KATU). Daily newspapers in Seattle, Tacoma, Olympia, Longview, Vancouver and Portland ran stories.

Other Outreach Materials

PSA, Insurance Institute for Highway Safety
http://www.youtube.com/watch?v=dsWou0avdk4
This video advocates automated enforcement and includes interviews with the police chief of Montgomery County, MD, and sheriff of Sacramento, CA.
Other Guidance and Research

Questions 10 through 14 address the use of speed cameras.

FAQ 14 notes that the public supports the use of speed cameras:

- A survey conducted in the District of Columbia nine months after speed cameras were introduced showed that 51 percent of drivers favored cameras and 36 percent opposed them.
- A survey conducted six months after speed cameras were deployed in Montgomery County, MD, found that 62 percent of drivers were in favor of speed cameras on residential streets.
- In Scottsdale, AZ, 63 percent of drivers surveyed prior to the start of automated enforcement said speed cameras should be used on an urban freeway where camera enforcement was planned. After speed cameras were operational, 77 percent of drivers supported their use.

Despite substantial evidence of effectiveness and relatively high public support, photo enforcement remains controversial. Some legal challenges have produced judicial findings that negatively affect photo enforcement programs, while other findings have affirmed its legality. In order to help ensure the success of photo enforcement programs, it is recommended that agencies focus on safety benefits, emphasize fairness in program design and operations, avoid the appearance of a revenue motive, anticipate legal setbacks, pay attention to proper engineering, use effective communication strategies, and evaluate program performance and outcomes.

Public Education
Communications and Media Activities (see page 21 of the PDF):

It is important to explain the philosophy and strategy behind the ASE program through communications and marketing programs, public meetings, and hearings. ASE should be described as a tool that can enhance the capabilities of traffic law enforcement and that ASE will supplement, rather than re-place, traffic stops by law enforcement officers. The public should be made aware that ASE is used to improve safety, not to generate revenue or impose “big brother” surveillance. Saying this will not necessarily make it so in the eyes of the public, so it is important to explain how each element of the ASE program puts safety first and how controls are in place to prevent misuse of the system.

A comprehensive communications campaign is essential to maintain positive public relations and to ensure that the public understands how ASE works and why it will improve safety as a supplement to traditional enforcement. The campaign should begin several months to a year in advance of ASE implementation. The two most important goals of the communications plan are to maximize public awareness and acceptance of the ASE program. Data should be evaluated to identify at-risk drivers in the community. Special attention should focus on males and young drivers.
The report advocates:

- Promoting awareness of the ASE program and how it works, possibly including enforcement locations, procedures for violation processing, adjudication and payment. While drivers should be made aware that they will not be ticketed for traveling 2 mph or 3 mph above the speed limit, it is best not to tell drivers the threshold may be as large as 6 mph to 11 mph.

- Promoting acceptance of the ASE program by explaining why it is worthwhile. To promote acceptance of the ASE program, it is important to educate the public about the general dangers of speeding and the specific speeding-related safety problem overall and at specific locations in the jurisdiction. This effort should also emphasize the safety and congestion mitigation benefits of ASE. The report includes examples from specific studies showing the safety benefits of ASE (page 22), and a chart with responses to common arguments against ASE (page 23).

- Using the following information outlets to market ASE:
 - Media coverage by local TV, radio, and print media outlets. Press releases or video releases can be used to provide important information to the media and to announce program milestones or changes.
 - Marketing and branding, including a name for the ASE program that is memorable and favorably viewed by the public; flyers and other print materials; and the use of road signs and billboards. Marketing outlets include TV, radio, newspapers and newsletters, signs and billboards, posters, flyers, video presentations, and giveaway items such as bumper stickers, lapel pins, pens and similar incentive items. Page 25 shows an example of an advertisement used on the rear of city buses for ASE in the District of Columbia.
 - See pages 28-30 and page A-8 for information on signage, including photographs of several examples.
 - A jurisdiction web site with ASE information, marketing materials and an FAQ.
 - Public input, via telephone, email, and mail; public events such as open houses and town hall-style meetings; guest appearances on call-in TV and radio shows; focus groups; and surveys.
 - Continuing public information and education after startup, especially for new drivers.
 - Implementing a program rollout and warning period, during which the program is in full operation but violations do not carry fines or license sanctions.

Public Perception

Pages 46 and 47 discuss the evaluation of public awareness and acceptance via surveys and other methods. Page 2 (and A-14) mentions a study of public reaction in Beaverton, OR:

The project team also evaluated public awareness and acceptance of ASE. Approximately eight months after ASE began, 85 percent of Beaverton residents and 88 percent of Portland residents were aware of the demonstration project and public approval of photo radar in school zones increased to 88 percent in Beaverton and to 89 percent in Portland. Approval for photo radar use in residential neighborhoods also increased during that time period.

Further:

- A District of Columbia ASE evaluation found that 50 percent of residents approved and 36 percent disapproved (A-14).
- An evaluation of ASE in Charlotte, NC, used focus groups with representatives from neighborhood associations, traffic engineers and police officers. Attitudes toward ASE were
generally positive, but all participants had a preexisting interest in ASE and therefore did not represent the population of Charlotte.

Signage Used in ASE Programs

National Guidance

See the relevant excerpts below:

- Examples of photo enforcement signage appear on page 57 of the report (page 13 of the PDF).

- Page 97 of the report (page 53 of the ODF) provides Section 2B.55, Photo Enforced Signs and Plaques (R10-18, R10-19P, R10-19aP):

 Option:

 A TRAFFIC LAWS PHOTO ENFORCED (R10-18) sign (see Figure 2B-3) may be installed at a jurisdictional boundary to advise road users that some of the traffic regulations within that jurisdiction are being enforced by photographic equipment.

 A Photo Enforced (R10-19P) plaque or a PHOTO ENFORCED (R10-19aP) word message plaque (see Figure 2B-3) may be mounted below a regulatory sign to advise road users that the regulation is being enforced by photographic equipment.

 Standard:

 If used below a regulatory sign, the Photo Enforced (R10-19P or R10-19aP) plaque shall be a rectangle with a black legend and border on a white background.

See page 134 of the report (page 32 of the PDF) for Section 2C.61, Photo Enforced Plaque (W16-10P):

Option:

A Photo Enforced (W16-10P) plaque or a PHOTO ENFORCED (W16-10aP) word message plaque (see Figure 2C-12) may be mounted below a warning sign to advise road users that the regulations associated with the condition being warned about (such as a traffic control signal or a toll plaza) are being enforced by photographic equipment.

Standard:

If used below a warning sign, the Photo Enforced (W16-10P or W16-10aP) plaque shall be a rectangle with a black legend and border on a yellow background.
See the example below:

General signage can be placed anywhere in the jurisdiction to notify drivers that the jurisdiction uses ASE. General signage serves a public awareness function. The goal is to indicate to drivers that ASE is being used in the jurisdiction and that they should not speed. To maximize awareness, general signage should be placed on major roads and entrances to the jurisdiction. Section 2B.46 of the MUTCD specifies a “Traffic Laws Photo Enforced” sign (sign R10-18) as an option for entrances to the jurisdiction.

Fixed advance signage can be placed on any road where ASE can be used. The goal of fixed advance signage is to alert drivers to the possible presence of ASE ahead and to encourage them not to speed. The MUTCD specifies a “Photo Enforced” sign (sign R10-19) as an optional plaque that can be mounted below a speed limit sign. If the “Photo Enforced” sign is used below a speed limit sign, the MUTCD requires that it “shall be a rectangle with a black legend and border on a white background.” Fixed advance signs should primarily be used to supplement speed limit signs, but stand-alone signs may also be used. Stand-alone signs do not need to follow the MUTCD requirements for a regulatory sign because they are not connected to a regulatory sign and can use different messages and formats.

Temporary advance signage can be placed upstream of an active enforcement unit to inform drivers that they are approaching ASE in progress. Temporary advance signage is generally undesirable because drivers become aware that they will be warned and given time to slow down before they reach the ASE unit, thereby reducing the deterrent effect of ASE. However, temporary advance signage is often desired by the public and is sometimes required by law or as a compromise to satisfy opponents of ASE. If temporary advance signage is used, it should be located somewhere that it is visible and legible to approaching drivers, yet not an obstruction to drivers, pedestrians, or cyclists. The distance between the sign and the ASE unit can be selected by the jurisdiction, but the distance should be consistent between ASE sessions and sites. The sign should be wind resistant so it does not move when hit by wind gusts.

If photo enforcement is conducted by unmarked (covert) units, the guidelines recommend noting this on general and fixed advance signs so that drivers are aware that they might not be able to see the ASE units.
State Signage Policies and Practices

Arizona
Arizona anticipates adopting the 2009 national MUTCD along with a state supplement in January 2012. Until that time, the 2004 supplement is in effect, and there are no provisions in the current supplement with regard to photo enforcement.

- At least two signs shall be placed in a location before a photo enforcement system. One sign shall be in a location that is approximately 300 feet before the photo enforcement system. Placement of additional signs shall be more than 300 feet before a photo enforcement system to provide reasonable notice to a person that a photo enforcement system is present and operational.
- A sign that clearly states the posted speed limit shall be placed between the two signs prescribed above.
- Signs indicating a photo enforcement system shall be removed or covered when the photo enforcement system is no longer present or not operating.
- Signs erected by a local authority or agency shall contain a yellow warning notice and correlate with conform to the system set forth in the most recent edition of the MUTCD.

Colorado
Colorado anticipates adopting the 2009 national MUTCD along with a state supplement in October 2011. The current MUTCD supplement does not contain provisions with regard to photo enforcement signage. State statute includes the following signage provisions:

- Place in a conspicuous place not fewer than 200 feet nor more than 500 feet before the automated vehicle identification system.
- Use lettering that is at least 4 inches high for upper case letters and 2.9 inches high for lower case letters.

See http://www.michie.com/colorado/lpExt.dll?f=templates&eMail=Y&fn=main-h.htm&cp=cocode/1/6d9fa/6ed2d/6ed2f/6ee62/6ef42 for Colorado Revised Statute § 42-4-110.5.

Illinois
The 2009 state supplement to the MUTCD contains no special provisions with regard to photo enforcement.

Iowa
This presentation is designed to acquaint practitioners with changes reflected in the 2009 edition of Iowa’s supplement to the MUTCD. See slide 26 for the signs used for photo enforcement in Iowa.
Maryland

This document is a combination of the federal MUTCD and the Maryland supplement to the MUTCD. Page 70 of the PDF describes use of photo-enforced signs:

Section 2B.46 Photo Enforced Signs (R10-18, R10-19)

Option:

A TRAFFIC LAWS PHOTO ENFORCED (R10-18) sign (see Figure 2B-1) may be installed at a jurisdictional boundary to advise road users that some of the traffic regulations within that jurisdiction are being enforced by photographic equipment.

A PHOTO ENFORCED (R10-19) sign (see Figure 2B-1) may be mounted below a regulatory sign to advise road users that the regulation is being enforced by photographic equipment.

Standard:

If used below a regulatory sign, the PHOTO ENFORCED (R10-19) sign shall be a rectangle with a black legend and border on a white background.

http://www.roads.maryland.gov/MMUTCD/2c.pdf

Page 36 of the PDF describes use of photo-enforced signs:

Section 2C.53 PHOTO ENFORCED Plaque (W16-10)

Option:

A PHOTO ENFORCED (W16-10) plaque (see Figure 2C-11) may be mounted below a warning sign to advise road users that the regulations associated with the condition being warned about (such as a traffic control signal or a toll plaza) are being enforced by photographic equipment.

Standard:

If used below a warning sign, the PHOTO ENFORCED plaque shall be a rectangle with a black legend and border on a yellow background.

Maryland expects to adopt a revised state MUTCD in December 2011.

Missouri

The 2011 Automated Traffic Enforcement Policy established by the Missouri Highways and Transportation Commission requires advance signing for the automated traffic enforcement systems installed by state, city and county law enforcement agencies on the state highway system only. See below for sample signage.

![Sample signage for Missouri]

Ohio
From page 79 of the PDF:

Section 2B.46 Photo Enforced Signs (R10-18, R10-19)
Option:

A TRAFFIC LAWS PHOTO ENFORCED (R10-18) sign (see Figure 2B-1) may be installed at a jurisdictional boundary to advise road users that some of the traffic regulations within that jurisdiction are being enforced by photographic equipment.

A PHOTO ENFORCED (R10-19) sign (see Figure 2B-1) may be mounted below a regulatory sign to advise road users that the regulation is being enforced by photographic equipment.

Standard:

If used below a regulatory sign, the PHOTO ENFORCED (R10-19) sign shall be a rectangle with a black legend and border on a white background.

Examples of the signs appear on page 37 of the PDF.

From page 112 of the PDF:

Section 2C.53 PHOTO ENFORCED Plaque (W16-10)
Option:

A PHOTO ENFORCED (W16-10) plaque (see Figure 2C-11) may be mounted below a warning sign to advise road users that the regulations associated with the condition being warned about (such as a traffic control signal or a toll plaza) are being enforced by photographic equipment.

Standard:

If used below a warning sign, the PHOTO ENFORCED plaque shall be a rectangle with a black legend and border on a yellow background.

Examples of the signs appear on page 108 of the PDF.

Oregon
This final draft is pending adoption by the Oregon Transportation Commission on August 18, 2011, as required by Oregon Administrative Rule 734-020-0005. Relevant sections include:

- Page 9 of the PDF begins Section 2B.55, Photo Enforced Signs and Plaques (R10-18, R10-19P, R10-19aP). The draft provides the following as support of the recommended standard:

Oregon law (ORS 810.434 through 810.439) allows photo enforcement of speed and traffic control device violations in certain jurisdictions. The law requires that signs be posted on major routes entering the jurisdiction where such photo enforcement is in use, as well as in advance of the photo radar units or cameras. When the applicable sign is a regulatory sign such as for photo radar speed enforcement, refer to the Oregon Supplement for Section 2B.55. When the applicable sign is a warning sign such as the Signal Ahead (W3-3) sign in advance of red light camera installations, refer to the Oregon Supplement for Section 2C.61.
Page 11 of the PDF provides Section 2C.61, Photo Enforced Plaque (W16-10P). The same support information as noted above is provided here.

Washington

Automated Enforcement in Work Zone Pilot Project; Fall 2008/Spring 2009 Deployment.

Washington State Department of Transportation, undated.

See page 5 of the PDF for signage used in two ASE pilot projects in work zones. In one of the two test locations, both on I-5, six signs were installed warning drivers of the photo enforcement operation on all approaches in advance of the project. The pilot project also used a portable highway advisory radio and a portable changeable message sign for advance warning.

ASE Technologies

National Guidance

This document focuses on identifying the functional requirements that ASE technologies must meet. It is intended to remain relevant as technologies evolve. Some specific configurations are identified, including both mobile and fixed systems.

http://safety.transportation.org/htmlguides/speeding/section05.htm

Under “Strategy C2—Implement Automated Speed Enforcement,” this document recounts international and domestic experiences with ASE. Additional information is given in Exhibit V-9: “Strategy Attributes for Implementing Automated Speed Enforcement”:

http://safety.transportation.org/htmlguides/speeding/section05.htm#exhibit_v_9

Note: The above information can also be found via NCHRP Report 500, Guidance for Implementation of the AASHTO Strategic Highway Safety Plan, Volume 23, A Guide for Reducing Speeding-Related Crashes, 2009.

State Research and Guidance

California

Assessing Automated Speed Enforcement in California, California PATH Program, Institute of Transportation Studies, University of California, Berkeley, Caltrans, California PATH Research Report UCB-ITS-PRR-2010-21, April 2010.

This study examines the field performance of automated speed enforcement (ASE) equipment in a real-world setting, when evaluated against other comparable traffic devices. An ASE system designed for use in work zones was acquired and tested in several field experimental sites, along with several other
commercially-off-the-shelf traffic monitoring devices. Field experiments revealed that traffic speed measurements are likely to yield discrepancies. For considerations of future deployment of ASE, the technologies can be expected to be advanced further. Since all types of sensing devices are susceptible to certain levels of interference and noises in the field, a consistent and robust method of verification and calibration for sensors used for ASE will be essential. From the design point of view, extra measures or techniques can be taken to ensure the robustness and accuracy of ASE systems. The assessment of technical performance of ASE as carried out in this project can provide insights in the process of validating functional characteristics and seeking performance enhancements.

Speeding is a significant contributor to a significant portion of highway collisions. For work zones in particular, the speeding problem is compounded by on-site road re-configuration, narrowed lanes, or poor visibility. This paper describes a recent study in California that is designed to assess the technical performance of ASE equipment in the field. Several traffic monitoring systems were field tested with an automated speed enforcement system at a study site in California. The study site was located on a rural two-lane highway, where severe collisions occurred frequently and speeding appeared to be a significant factor. The ASE equipment and other devices were found to detect 2-5 % of passing vehicles to travel in excess of 65 mph in a highway with a posted speed limit of 55 mph.

Arizona

In 2006 the city of Scottsdale, AZ, implemented a nine-month pilot program to evaluate the feasibility and effects of highly visible speed camera enforcement on a busy urban freeway. This was the first use of fixed speed cameras on a major U.S. highway. Deployment of six cameras along an 8-mile corridor was associated with large declines in mean speeds and an 88 percent decrease in the odds of vehicles traveling 11 mph or more above the 65 mph limit. Traffic speeds increased soon after the pilot program was suspended. In addition to reducing speeding along the enforcement corridor, speed cameras were associated with large reductions in speeding on the same highway but 25 miles away from the camera installations.

Photo speed enforcement systems that automatically sense a speeding vehicle and photograph it and its driver have proven effective at reducing speeding violations, primarily on city streets and arterials. The use of this technology on high-volume, high-speed, multilane freeways is technically much more challenging, and largely untested. This research investigates if the current offerings of vendors can provide a viable technical solution in this freeway environment. Twelve ideal characteristics were established that are needed for a speed camera system to operate on Phoenix, AZ, metro-area freeways. Six vendors were interviewed. Thirteen agencies that use speed camera systems were interviewed, although none were found with sufficient freeway operating experience to provide definitive information to design a field trial. Therefore, only a conceptual field trial and accompanying test plan were developed to explore the technical aspects of potential systems. No current vendor offering meets all of the 12 ideal characteristics that were established. One new technology that shows promise is "point-to-point," which tracks average speed between two points on a roadway.
District of Columbia

From the abstract: Washington, D.C., implemented a speed camera enforcement program in 2001. Vehicle speeds were measured before and after the program. Seven sites in Washington were selected randomly from a total of 60 targeted enforcement zones. Speed data were collected one year before enforcement and approximately six months after enforcement began. Results indicated that mean traffic speeds and the proportion of drivers traveling more than 10 mph above the speed limit—fast enough to warrant a speeding ticket—were reduced at each of the Washington study sites. At eight comparison sites in nearby Baltimore, MD, where speed camera enforcement was not in place, no decline in traffic speeds was observed. Overall, mean speeds at Washington sites declined by a statistically significant 14 percent compared with Baltimore sites, and the proportion of vehicles exceeding the speed limit by more than 10 mph declined 82 percent. These findings indicate that speed camera enforcement reduced speeding on surface streets throughout Washington.

Illinois

This study evaluated the performance of automated speed-radar photo enforcement implemented in work zones in Illinois. Down-the-road radar is used to provide speed feedback to motorists and give them an opportunity to reduce their speeds. Across-the-road radar then measures the speed of vehicles 150 ft. upstream of the van, and if the measured speed exceeds a certain threshold, two photographs of the violating vehicle are taken. The system reduced the average speeds of heavy vehicles significantly below the speed limit on both lanes.

From the abstract: The effects of an automated speed photo-radar enforcement (SPE) system on the speed of vehicles in highway work zones were evaluated in this study. The SPE effects were also compared to other speed management treatments, including speed display trailers, police presence (with the patrol emergency lights on and off), and the combination of speed display trailer and police presence. Three datasets were collected in two work zones and the effects were studied at the location of the treatment and also at a location about 1.5 miles downstream in the work zone (spatial effects). SPE reduced the average speed of free flowing cars in the median lane by 6.3 mph to 7.9 mph and in the shoulder lane by 4.1 mph to 7.7 mph, which brought down the average speeds near or below the posted speed limit of 55 mph.

From the abstract: The effectiveness of speed photo enforcement by radar in reducing speeds and increasing speed limit compliance in work zones was evaluated for the first time in the United States, at Illinois work zones. Details are presented on SPE implementation and its effectiveness at the point it was stationed and at a downstream location in a work zone. Speed data were collected at the location of SPE and at a location 1.5 mi downstream in the work zone to determine the point and spatial effects of SPE. Results showed that SPE is effective in reducing the average speed and increasing compliance with work zone speed limit. The percentage of vehicles exceeding the speed limit near SPE was reduced from about 40 percent to 8 percent for free-flowing cars and from 17 percent to 4 percent for free-flowing heavy
vehicles. Near the SPE van, none of the cars exceeded the speed limit by more than 10 mph, and none of the heavy vehicles exceeded it by more than 5 mph. At the downstream location, the speed reduction for cars was not significant, while it varied from 0.9 mph to 2.5 mph for heavy vehicles.

Maryland

This conference paper provides additional information on the pilot program described above, with two mobile ASE vehicles placed at three highway work zones in the Baltimore/Washington. During the first 30 days of deployment only warnings were issued to motorists traveling 12 mph more over the posted speed limit. During the same period, promotion and media campaigns were widely broadcast to raise the awareness of the general public. Following the initial 30-day period, citations were issued to the registered owner of the speeding vehicle.

This brief document summarizes the work in Montgomery County described above and also provides some additional examples and citations regarding successful use of speed cameras.

From the abstract: In 2007, Montgomery County implemented the state of Maryland’s first ASE program, with camera use limited to residential streets with speeds limits of 35 mph or less and school zones. Vehicle speeds were measured approximately six months before and six months after speed cameras were deployed, and signs were installed warning of the speed enforcement program. Relative to comparison sites in Virginia, the proportion of drivers traveling more than 10 mph above posted speed limits declined by about 70 percent at Montgomery County locations with both warning signs and speed camera enforcement, 39 percent at locations with warning signs but no speed cameras, and 16 percent on residential streets with neither warning signs nor speed cameras.

This web site reports on this “joint program of the Maryland State Police, Maryland Transportation Authority & Maryland State Highway Administration.” It includes information on a pilot mobile ASE program initiated in October 2009. “Laser technology is in the process of being integrated into the pilot program vehicles.” An explanation of laser technology used in several Maryland jurisdictions is given at the site for equipment manufacturer OptoTraffic (http://www.optotraffic.com/blog/laser-speed-camera/).

North Carolina

From the abstract: The city of Charlotte, NC, conducted a pilot evaluation of the safety effect of speed enforcement cameras. The city selected 14 key corridors with high collisions, and an ASE camera program was implemented in the corridors scattered throughout Charlotte from September 2004 through July 2006. In addition to comparing the net safety effectiveness before and after implementation of automated speed cameras, this study estimated long-term collision patterns from the speed enforcement program with the carryover safety effects after its termination by using an autoregressive integrated
moving average (ARIMA) intervention analysis as well as a before–after analysis with comparison sites. The fitted ARIMA intervention model indicated that the treatment corridors demonstrated a significant reduction in collisions over the study periods.

Oregon

From the abstract: The 2007 Oregon legislative assembly passed House Bill 2466, allowing the Oregon Department of Transportation (ODOT) to use photo radar in ODOT work zones on non-Interstate state highways and required ODOT to report back to them on the safety impacts of this enforcement action. This research project examined the impact of photo radar speed enforcement on traffic speed through an active highway work zone. The project also examined the speed data in an attempt to find speed impacts that persisted following the photo radar enforcement periods. During photo radar enforcement periods, speeding was reduced by an average 27.3 percent at the traffic sensor site within the work zone. The observed speeding reduction was temporary and did not persist beyond the departure of the photo radar enforcement van.

Mobile ASE vans were deployed two to three times per week at five school zones in Portland, OR, during a three-month period from March through May 2005. When ASE was present and the flashing beacon was off, 85th percentile speeds at demonstration school zones were reduced by approximately 5 mph compared to before the ASE demonstration. Eighty-fifth percentile speeds decreased from 32.4 mph to 27.8 mph. When ASE was present and the flashing beacon was on, 85th percentile speeds were approximately 8 mph to 9 mph lower in the demonstration zones than when neither ASE nor the beacon was present.

Other Guidance and Research

This web site reports on speed camera use in the U.K., Netherlands, France and Sweden, where this technology has been used for a long time and pervasively. In addressing the effectiveness of ASE, the site states that “The best estimate is that automatic speed enforcement results in an accident reduction of 15 to 20%... For fixed speed cameras, the effects varied from a 5 to 69% reduction in accidents, a 12 to 65% reduction in injuries and a 17-71% reduction in fatalities.”

Questions 10 through 14 address the use of speed cameras.

From the abstract: This paper analyzes the speed reductions of an automated Speed Photo-radar Enforcement system in highway work zones. A comparison with three traditional speed treatments is also
presented and includes: 1) a speed feedback trailer (Trailer), 2) a police patrol car (Police), and 3) the combination of police patrol and a speed feedback trailer (Police+Trailer). Results indicated that SPE and Police+Trailer reduced the mean speed of both the general traffic stream and free-flowing vehicles by about 5 to 7 mph. The magnitudes of the speed reductions while the treatments were deployed were sustained over time. Police presence alone also reduced the speed significantly but to a lesser degree, and the effects of the Trailer treatment alone were very limited. The frequency and degree of speeding were also influenced by the treatments to various degrees. The percentage of drivers speeding by more than 10 mph was reduced by SPE by 8.7% and by Police+Trailer and Police by 8.9%, bringing the speeding down to 0.2% for SPE and 0% for Police+Trailer and Police cases. These treatments also reduced the frequency of speeding by 10 mph or less by 36-46%. The halo effect in terms of time (after the treatment was removed) for the SPE was limited to a reduction in the mean speed of 2 mph or less, and for the police treatments it was not significant.

From the abstract: This article summarizes the growth in the use of photo speed enforcement since the first implementation in 1978, highlighting evaluations of the effectiveness of photo enforcement, effect on crash trends, public opinion and major legal challenges concerning its use. Studies evaluating the effectiveness of red light cameras suggest that they are effective in reducing red light violations and injury crashes. ASE has been shown to substantially reduce speed violations and may reduce crashes. In order to help ensure the success of photo enforcement programs, it is recommended that agencies focus on safety benefits, emphasize fairness in program design and operations, avoid the appearance of a revenue motive, anticipate legal setbacks, pay attention to proper engineering, use effective communication strategies, and evaluate program performance and outcomes.

From the abstract: This paper investigated the headway distribution of platooning vehicles, presence of very short headways, and frequency of applying of brakes and changing lane in work zones with and without law enforcement activities. Law enforcement activities include the police patrol car presence and automated speed photo-radar enforcement. Data from two work zones were collected and analyzed. Mean headway of vehicles in work zones increased when SPE or police patrol car presence was utilized in work zones. This is a beneficial effect and indicates that drivers had a longer time to react to the lead vehicles. The law enforcement presence in work zones, either the SPE or police patrol car presence, in general decreased the number of vehicles traveling with a very short headway. The difference in braking behavior was not significant when the SPE case was compared to police car presence. However, lane changing behavior was significantly different for cars traveling in the median lane; also for trucks traveling in the shoulder lane.

This paper describes a recent study designed to assess the technical performance of work zone ASE equipment in the field. Several traffic monitoring systems were field tested with an ASE system at a rural two-lane highway. The ASE equipment and other devices were found to detect 2 percent to 5 percent of passing vehicles to travel in excess of 65 mph in a highway with a posted speed limit of 55 mph.
Citation at http://trb.metapress.com/content/b5k4k42jxp7t265p/

From the abstract: ASE programs were evaluated worldwide to ascertain the effectiveness of such programs at achieving safety benefits. A critical review process was used to determine the most likely range of probable safety effects of fixed and mobile ASE programs. Among the 90 studies from 16 countries that were initially identified as potential safety evaluation studies, 13 met the criteria for detailed methodological review. On the basis of evidence from the best-controlled evaluation studies, injury crash reductions in the range of 20 percent to 25 percent appear to be a reasonable estimate of site-specific safety benefit from conspicuous, fixed-camera ASE programs. No conclusions were reached regarding site-specific effects of mobile enforcement programs. Estimates of systemwide crash reductions likely attributable to covert, mobile speed enforcement programs were based on different subsets of crashes (daytime casualty crashes and daytime speed-related crashes) and were limited to two studies, but also were in the range of 20 percent to 25 percent.

http://tinyurl.com/3caen8f

From the abstract: In the U.S., ASE programs are currently operated in only 11 states and in Washington D.C., most of which are located on residential streets and not highways. This literature review explores the potential benefits and barriers to implementing ASE programs in the U.S. by examining the large body of literature on automated enforcement programs, including background on the implementation of ASE and a discussion of research on the potential safety and financial effects of these programs. The report includes an evaluation of key program design choices, encompassing issues related to owner or driver liability, manned or unmanned systems, mobile or fixed systems, visibility, location, enforcement thresholds, program management, and revenue distribution.

http://www2.dft.gov.uk/pgr/roadsafety/speedmanagement/pdf/dfcirc0107.pdf

This document provides UK guidance and best practice advice on the deployment of speed cameras. It indicates that Vehicle Activated Signs have been shown to be effective at reducing speeds when used instead of or in conjunction with speed cameras.

Research in Progress

NCHRP 03-93: Automated Enforcement for Speeding and Red Light Running.
http://144.171.11.40/cmsfeed/TRBNetProjectDisplay.asp?ProjectID=1613
The objectives of this project are to (1) prepare a comprehensive assessment of automated speeding and red light enforcement activity in the United States and (2) develop guidelines to ensure successful operation of current and future programs. It is scheduled to have been completed 6/30/11; the contractor’s draft report is pending.

“Augmented Speed Enforcement (aSE), Parts 1 and 2,” Western Transportation Institute, expected completion date: June 30, 2012.
Sponsored by Caltrans.

From the abstract: Although fewer vehicle miles are traveled in rural areas than urban areas, there are approximately 42 percent more fatal crashes in rural areas compared to urban areas. Aggressive driving
behaviors such as speeding are primary factors contributing to major-injury and fatality crashes. Moreover, studies have shown higher crash rates at specific highway locations such as work zones that temporarily set lower speed limits. Work zone crashes rates are especially high on rural two-lane two-way highways. To reduce traffic fatalities and injuries, technologies have been developed and applied to automatically detect traffic violations. One technology employed to proactively manage speeding is Automated Enforcement Systems (ASE), which supplement traditional traffic law enforcement activities by remotely detecting speed violators and automatically processing speeding citations.

Research Needs Statements

Evaluation of Automated Speed Enforcement Technologies.

http://rns.trb.org/dproject.asp?n=14755

This study was proposed by TRB Subcommittee ANB10, Transportation Safety Management, in October 2007. It would include a literature review, interviews with individuals in three jurisdictions where ASE has been used, and data gathering on crashes and citations on roads where ASE has been implemented along with control roads.