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1 Introduction
The roads of almost all major cities in the world are equipped with traffic sensors – some of which video-camera-

based (Closed-Circuit Television) and some based on customized sensors installed on the surface of the pavements
(i.e., loop-detectors). These sensors continuously measure the average speed and the number of cars passed through a
certain segment of the road. For example, there are approximately 15000 loop detectors installed on the highways and
arterial streets of Los Angeles County (covering 3420 miles, cumulatively) collecting several main traffic parameters
such as occupancy, volume, and speed at the rate of 1 reading per sensor per min. These data streams enable traffic
prediction, which in turn improve route navigation, traffic regulation, urban planning, etc.

However, this dataset is far from perfect for several reasons. First, while many edges of the road network are
equipped with sensors, there are still many edges with no traffic sensors, termed the missing-sensor problem. Second,
even for the edges with sensors, every once in a while, no value is reported for some time span due to various device
and network failures, termed the missing-value problem. Meanwhile, there is an opportunity to complete this missing
information because the traffic flow is highly correlated spatially and temporally. For example, the readings before and
after a set of missing values as well as the readings of other sensors on the same road segment during the time-span of
missed values can be used to predict the missing values. The same intuition applies to predict traffic flow on edges with
no sensors. The challenge is that certain sensors (or edges) can be better predictors as they may have the same features
as the missing value (or edge). For example, a north-south edge going from a business district to a residential district is
a better predictor for a missing-sensor edge with the same set of features. However, it is difficult to manually identify
all the similar features as they are time-dependent and vary depending on various traffic conditions (e.g., morning vs.
afternoon rush-hour).

Fortunately, the huge amount of historical datasets that have been collected in the past five years from these sensors
in many major cities opens up a data-driven approach to both identify the edge and/or sensor feature similarities and
at the same time exploit them for traffic prediction. Another good news is that for traffic prediction, if one waits long
enough, the actual ground-truth will be eventually observed. For example, if the goal is to predict the traffic on a
certain segment 10 minutes into the future, after 10 minutes, the actual traffic flow will be observed, which can be
used in a feedback loop to improve the data-driven prediction approach. Therefore, in this paper, we propose a holistic
data-driven approach to deal with both missing-sensor and missing-value challenges for real-time traffic prediction,
based on the latent space modeling of road network (similar to latent space modeling for social networks), where two
nodes that have similar attributes in a latent space, are more likely to be in the same cluster or with similar traffic
patterns. Moreover, our approach takes advantage of the newly observed data as feedback to dynamically improve the
latent space model.

Many studies have focused on the traffic prediction problem. Some focused on missing values [19] or missing
sensors [11, 31], but not both. Some studies [17, 32] focus on utilizing temporal data which models each sensor (or
edge) independently and makes predictions using time series approaches (e.g., ARIMA [17], SVR [20] and Gaussian
Process (GP) [32]), and very few studies [13, 27] utilize spatiotemporal model with correlated time series based on
Hidden Markov Model (HMM), but only for small number of time series and not always using the network space as
the spatial dimension (e.g., using Euclidean space [9]). One study considers using the newly arrived data as feedback
to reward one classifier vs. the other [25] but not for dynamically updating the model. Note that many existing
studies [6, 11, 23, 26, 27, 31] on traffic prediction are based on Global Positioning System (GPS) dataset, which has a
fundamental difference with the sensor dataset, where we have fine-grained and steady readings from road-equipped
sensors. Another major distinction of our work is that we exploit the road network topology in every aspect of our
approach. For example, we use graph Laplacian on the road network graph to fill in zero entries (missing data) and
for our model update, we use topological order to perform sequential updates utilizing the new readings. We are
not aware of any study that uses latent space modeling (considering both time and network topology) for real-time
traffic prediction from incomplete (i.e., missing sensors and values) sensor datasets (see Section 2 for more detailed
discussion).

In particular, we proposed a Dynamic Topology-Aware Temporal (DTT) traffic model, which provides a unified
framework for both missing value and missing sensor completion. First, we built a static spatial traffic model on the
latent space of road network (similar to latent space modeling for social networks [28,30]), where two nodes that have
similar attributes in a latent space, are more likely to be in the same cluster or with similar traffic patterns. Specifically,
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we focused on the attributes of each vertex of the road network (e.g., highway vs. arterial, business vs. residential),
where each vertex can have an overlapping representation of attributes. The attribute distribution of vertices and how
the attributes interact with each other jointly determine the underlying traffic pattern. To tackle the sparsity of sensor
data (due to missing values and sensors), we utilized the road topology by adding a graph Laplacian constraint, so
that missing values of an edge can be completed by a set of similar edges with non-zero readings. Subsequently, we
incorporated the temporal properties into our DTT model by considering time-dependent latent attributes, where at
different timestamps one vertex could exhibit different properties. Finally, we further learned the underlying transition
process of road network via a transition matrix, which depicts the likelihood of a vertex to be transited from one
attribute to another. With these time-dependent latent attributes and the transition matrix, we were able to understand
how traffic patterns are formed and evolve.

Graph snapshots

G�, G�, , G�

Latent space learning

of the DTT model  

Edge traffic prediction 

with missing data

Real-time feedback

1 2

3

Figure 1: Overall Framework

Figure 1 shows an overview of the DTT framework. Given a series of road network snapshots, DTT processes
them in three steps: (1) discover the latent attributes of vertices at each timestamp, which capture both the spatial
and temporal properties; (2) understand the traffic patterns and build a predictive model of how these latent attributes
change over time; and (3) exploit real time traffic information to adjust the existing latent space models. Note that our
approaches are applicable for both normal and abnormal traffic conditions, and thus are able predict the spatiotemporal
impact of traffic accidents on the upstream traffic and surrounding region.

To learn those time-dependent latent attributes, we proposed a global learning algorithm which belongs to the
category of traditional multiplicative update algorithms [15]. The concept is to jointly infer the whole latent attributes
via cyclical updates until they become stable. To improve the efficiency of global learning, we proposed an incremental
algorithm, by exploiting the idea of online learning mechanism, where we sequentially and adaptively learned the latent
attribute from the temporal graph changes. During the sequential learning process, each time when the algorithm
makes a prediction with the latent attributes we already learned from the previous snapshot, it receives the feedback
(i.e., the ground truth snapshot we already have in hand) and subsequently modifies the latent attributes for more
accurate predictions. Unlike traditional online learning which only performs one single task (e.g., one single edge)
update per round, here, we made predictions for the entire road network, thus we need to update the latent attributes
for many correlated vertices. We further designed a topology-aware incremental update algorithm, which adaptively
updates the latent positions of vertices with topology constraints. Through this process, our incremental algorithm not
only well utilized the spatial and temporal properties of vertices, but also scaled to large road networks.

With our global and incremental learning algorithm, our DTT model can achieve a good trade-off between predic-
tion accuracy and efficiency under the scenario of real-time forecasting, where the edge readings arrive in a streaming
fashion. Specifically, we considered a setting with a predefined time window (a time window is composed of many
time spans): at each time span (e.g., 5 minutes), we learned our traffic model with the proposed incremental approach
on-the-fly, and made predictions for the next time span. Meanwhile, we batched the re-computation of our traffic
model at the end of one large time window (e.g., one hour). Under this setting, our DTT model enjoys the following
two nice properties: (1) real-time feedback information can be seamlessly incorporated into our framework to adjust
for the existing latent spaces, thus allowing for more accurate predictions; (2) our algorithms train and make predic-
tions on-the-fly with the given data, which avoids the concept-drift phenomenon [34] observed with non-linear time
series prediction techniques (e.g., SVR and GP).

We conducted extensive experiments using a large volume of real-world traffic sensor dataset. By exploring both
spatial and temporal properties, we demonstrated that the DTT framework achieves better accuracy than the state-of-
the-art prediction methods. Moreover, we showed our algorithm scales to large road networks. For example, it only
takes seconds to make a prediction for a network with 199,86 edges, whereas the largest network used by previous
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studies contains less than 2000 edges for multiple correlated time series prediction [26]. Finally, we showed that our
batch window setting works perfectly for streaming data, alternating the executions of our global and incremental
algorithms, which strikes a compromise between prediction accuracy and efficiency.

The remainder of this paper is organized as follows. In Section 2, we discuss the related work. We define our
problem in Section 3, and explain our DTT traffic model in Section 4. We present the global learning and increment
learning algorithms in Section 5. We discuss how to adapt our algorithms for real-time traffic forecasting in Section 6.
In Section 7, we report the experiment results and Section 8 concludes the paper.

2 Related Work and Background
In this section, we discuss related studies in traffic analysis, including whether each approach utilized temporal

and/or topology (road network) information, and which category of methods were applied. We also briefly describe
and review methods about non-negative matrix factorization, to provide more backgrounds about our modeling and
algorithms.

2.1 Traffic Analysis
In order to provide a good estimation, most of the machine learning algorithms used in traffic analysis (such as

ARIMA [17], HMM [6,13,26], GP [32], Support Vector Regression [16,20], Robust Regression [21] and Ensemble [2]
etc.) require sufficient historical training data; while our approaches train and predict on-the-fly with few given training
data. Although Zhou et. al. [32] also proposed a semi-lazy framework which selected very few training data to scale
the methods of GP, they still require a huge number of historical data to guarantee that they were able to obtain enough
similar training data as the new prediction data.

From the modeling aspect, one of the compelling features of the proposed approach is that it provides a unified
framework that accomplishes the task of missing value completion and edge traffic prediction simultaneously. Instead,
most of the exiting approaches, usually either focus on a specific task, or require to perform missing value completion
before edge/trajectory prediction such as [9]. Another advantage of the proposed approach is that it exploits the topol-
ogy information from a large road network in every aspect of our approach, seamlessly with the temporal information.
To the contrary, most of the sensor-based traffic analysis methods [17, 18, 32], simply utilize historical readings for
each edge or trajectory independently and do not utilize any topology information, especially the correlation among
sensors that are close to one another in road network. That is, for each edge/trajectory, they train a model beforehand
and then apply the learned model to either perform completion or prediction tasks in the future. For instance, Pan et.
al. [17] learned time-series regression model ARIMA for each edge in advance, and then perform traffic prediction on
top of the model. Zhou et. al. [32] proposed a new method to apply the GP model for sensor reading prediction. Few
studies [13, 27] utilized spatiotemporal model with correlated time series based on HMM, but only for small number
of time series.

Finally, from the view of scalability and other algorithmic issues, most of the existing topology-based approaches [13,
26] are not scalable to large-scale road networks; while our proposed algorithms are efficient for large networks. Fur-
thermore, most approaches failed to utilize a nice characteristic of traffic data, that is, newly arrived data provide instant
ground truth feedbacks except few notable work [25, 29]. In [25], they used feedbacks to reward one classifier versus
the other, but they did not perform any dynamic update to the pre-trained model/classifier according to feedbacks;
Zhang et. al. [29] focus on traffic clustering with instant feedback but their experiments are based on simulation. We
design a topology-aware incremental algorithm, which adaptively updates our model with topology constraints, and is
much more efficient than the global approach or the re-computing approach.

2.2 Nonnegative Matrix Factorization
Recently, many real data analytic problems such as community detection [28, 30], recommendation system [7],

topic modeling [22], image clustering [5], and sentiment analysis [33], have been formulated as the problem of latent
space learning. These studies assume that each vertex of the graph resides in a latent space, and vertices which are
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close to each other are more likely to be in the same cluster (e.g., community or topic) or form a link. Different
techniques have been proposed to learn the latent positions, where Non-Negative Matrix Factorization (NMF) is one
of the most popular method because of its ease of interpretable and flexibility. The success of these studies provides
an alternative way of understanding the underlying structure/pattern of graphs.

In this work, we explored the feasibility of applying dynamic NMF to traffic prediction domain. We applied
dynamic NMF to not only learn the correlation among different edge weights (i.e., traffic costs) in road network with
the observed structure of road network, but also learned the temporal traffic patterns across time. We also developed
a global algorithm, based on the traditional multiplicative algorithm [15]. We further designed a topology-aware
incremental algorithm, which adaptively updates the latent space representation for each node in the road network
with topology constraints. The proposed algorithms differ from traditional online NMF algorithms such as [4], which
perform single task online update independently.

Table 1: Notations and Explanations
Notations Explanations
N , n road network, number of vertices of the road network
G the adjacency matrix of a graph
U latent space matrix
B attribute interaction matrix
A the transition matrix
k the latent number
T the number of snapshots
span the time gap between two continuous snapshots
h the prediction horizon
λ, γ regularization parameters for graph Laplacian and transition process

3 Problem Definition
In this section, we formally define the problem of traffic predictions with missing data. Table 1 lists the notations

we use throughout this paper.

3.1 Preliminaries
Definition 1. Road network. A road network is denoted as a directed graph N = (V,E), where V is the set of
vertices and E ∈ V × V is the set of edges, respectively. A vertex vi ∈ V models a road intersection or an end of
road. An edge e(vi, vj), that connects two vertices, represents a directed network segment. Each edge e(vi, vj) is
associated with a travel speed c(vi, vj) (e.g., 40 miles/hour). The corresponding adjacency matrix representation of
N , is denoted as G, whose (i, j)th entry represents the edge weight between the ith and jth vertices.

Definition 2. Traffic sensor. A traffic sensor s (i.e., a loop detector) is located at one segment of the road networkN ,
which provides a traffic speed reading (e.g., 40 miles/hour) per sampling rate (e.g., 30 seconds).

We define span as the temporal interval where we temporally aggregate sensor readings, which could be 5, 10 or
15 minutes. For each time span, these aggregated readings are mapped to the segments of network N . For each edge,
we aggregate all the sensor readings located at that edge, and assign a travel speed.

Therefore, after mapping sensor readings to road network, at each timestamp t, we generate a network snapshot
Gt from the traffic sensors. As we already discussed, the dataset is incomplete with both missing values and missing
sensors. For example, Figure 2(a) shows a simple road network with 7 vertices and 10 edges. Three sensors are
located in edges (v1, v2), (v3, v4) and (v7, v6) respectively. Figure 2(b) shows the corresponding adjacent matrix after
mapping the sensor readings to the road segments for one timestamp. Here sensor s3 fails to provide reading, thus the
edge weight of c(v3, v4) is ? due to missing value. In addition, the edge weight of c(v3, v2) is marked as × because of
missing sensors.
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Figure 2: An Example of Road Network

The high-level problem is to predict the future traffic conditions with a small number of road network snapshots,
or a dynamic road network. We now first define the dynamic road network as follows:

Definition 3. Dynamic road network. A dynamic road network, is a sequence of network snapshots (G1, G2, · · · , GT )
with edge weights denoting time-dependent travel cost.

With a dynamic road network, we formally define the problem of edge traffic prediction with missing data as
follows:

Problem 1. Given a dynamic road network (G1, G2, · · · , GT ) with missing data at each timestamp, we aim to achieve
the following two goals:

• complete the missing data (i.e., both missing value and sensor) of Gi , where 1 ≤ i ≤ T ;

• predict the future readings of GT+h, where h is the prediction horizon. For example, when h = 1, we predict
the traffic condition of GT+1 at the next timestamp.

4 Dynamic Topology-Aware Temporal Traffic Model
In this section, we describe our DTT model in the context of traffic prediction. We first introduce the static

topology-aware spatial traffic model (Section 4.1), and then present our DTT model that incorporates both temporal
patterns and transition patterns (Section 4.2). With DTT model, we discuss how to solve the traffic prediction problem
with missing data in Section 4.3.

4.1 Static Topology-Aware Traffic Model
Our static spatial traffic model is built based on the latent space modeling of the observed road network, where

each dimension of a latent space denotes a hidden spatial attribute of vertices in the road network. Basically, vertices
of road network have different attributes (e.g., highway v.s. arterial street, business area v.s. residential area), and
each vertex has an overlapping representation of attributes. Therefore, in our model, two connected nodes in a road
network share similar spatial attributes. On the other hand, the attributes of vertices and how each attribute interacts
with others jointly determine the underlining traffic patterns. Intuitively, if two highway vertices are connected, their
corresponding interaction generates a higher travel speed than that from two vertices located at arterial streets.

Consequently, given a snapshot of road networkG, we aim to learn two matricesU andB, where matrixU ∈ Rn×k+

denotes the latent attributes of vertices, and matrix B ∈ Rk×k+ denotes the attribute interaction patterns. The product
of UBUT represents the traffic speed between any two vertices, where we want to use to approximate G. Note that B
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is an asymmetric matrix since the road network G is directed. Therefore, the static topology-aware traffic model could
be determined by solving the following optimization problem:

arg minU≥0,B≥0 J = ||G− UBUT ||2F (1)

Figure 3 (a) illustrates the intuition of our static traffic model. The weights of edges in road network (i.e., traffic
costs), can be approximated by the attributes of two end vertices and the interaction patterns. For example, in Figure 3,
suppose we already know that each vertex is associated with two attributes (e.g., highway and business area), and the
interaction pattern between two attributes encoded in matrix B, we could accurately estimate the travel speed between
vertex v1 and v2, using their corresponding latent attributes and the matrix B.
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Figure 3: An Example of Our Traffic Model.

Overcome the sparsity of G. In real applications, G is very sparse (i.e., zero entries dominate the items in G) for the
following three main reasons: (1) not only the average degree of a road network is small [24], but also the maximum
degree is very small. Therefore, even from a locality view, the edges of road network is far from fully connected; (2)
the distribution of sensors is non-uniform, and only a small number of edges are equipped with sensors; and (3) there
exists missing values (for those edges equipped with sensors) due to the failure and/or maintenance of sensors.

Learning from such sparse dataset ofG yields additional challenges for traffic prediction. First, the learning process
becomes extremely difficult because the estimated values would be dominated by the large number of zero entries. In
addition, because a zero entry might be caused by different factors (i.e., unlinked vertices in the road network, edges
without sensors, or missing readings from sensors), treating all zero entries the same introduces mystifying noises. As
an example, in Figure 2, only 3 out of 10 edges have sensors, and thus we have at most 3 non-zero entries. Among all
of those remaining zero entries, some of them are due to missing sensor, and the remaining of them are because of no
interactions between two vertices in the road network.

Towards this end, we define our loss function only on edges with observed readings, that is, the set of edges
with travel cost c(vi, vj) > 0. In addition, we also propose an in-filling method to reduce the gap between the
input road network and the estimated road network. In particular, we conquer the sparsity by utilizing the graph
topology, with which we estimate the traffic speed of an edge by the set of similar edges with non-zero weights. The
similarity between two edges, is evaluated via similarities among their two-end vertices. Here we consider the multi-
step similarity using graph random walk, or graph Laplacian dynamics, which has shown to be an effective smoothing
approach for finding global structure similarity [14]. Specifically, we construct a graph Laplacian matrix L, defined
as L = D − W , where W is a graph proximity matrix that is constructed from the network topology, and D is a
diagonal matrix Dii =

∑
j(Wij). With these new constraints, the traffic model for a single snapshot of road network

G is expressed as follows:

argminU,B J = ||Y � (G− UBUT )||2F + λTr(UTLU) (2)

where Y is an indication matrix for all the non-zero entries in G, i.e, Yij = 1 if and only if G(i, j) > 0; � is the
Hadamard product operator, i.e., (X � Z)ij = Xij × Zij ; and λ is the Laplacian regularization parameter.
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4.2 Dynamic Topology-Aware Traffic Model
In our static topology-aware spatial traffic model, we do not leverage any temporal information of traffic patterns.

However, time, as often perceived as the “fourth dimension”, is crucial attribute in time series data. In the following,
we combine the temporal information, including the time-dependent modeling of latent attributes and the transition of
latent attributes, with our topology-aware spatial traffic model. In this model, each vertex is represented in a unified
latent space, where each dimension of the latent space can either be a spatial attribute or a temporal attribute.

4.2.1 Temporal Effect of Latent Attributes

In practice, the travel speeds of most edges remain similar during a short time interval (e.g., 5 mins), and the
whole network tends to stay steady during this period. Despite this steadiness of the overall traffic condition, vertices
exhibit different attributes at different times of the day. For instance, the behavior of a vertex that is similar to that of a
highway vertex during normal traffic condition, maybe similar to that of arterial street node during congestion hours.
Because the behavior of each vertex can change over time, it is required to employ a time-dependent modeling for
attributes of vertices and then to perform real-time travel speed estimation using those attributes.

Therefore, we add the time-dependent effect of attributes into our traffic model. Specifically, for each t ≤ T , we
aim to learn a corresponding time-dependent latent attribute representation Ut. Although the latent attribute matrix Ut
is time-dependent, we assume that the attribute interaction matrix B is an inherent property, and thus we opt to fix B
for all timestamps. By incorporating this temporal effect, we obtain our topology-aware temporal traffic model based
on the following optimization problem:

argminUt,B
J =

T∑
t=1

||Yt � (Gt − UtBUTt )||2F +

T∑
t=1

λTr(UtLU
T
t ) (3)

4.2.2 Transition Matrix

Due to the dynamics of traffic condition, we not only want to learn the time-dependent latent attributes, but also
learn a transition model to capture the evolving behavior from one snapshot to the next. The transition should be
able to capture both periodic evolving patterns (e.g., morning/afternoon rush hours) and non-recurring patterns caused
by traffic incidents (e.g., accidents, road construction, or work zone closures). For example, during the interval of
an accident, a vertex transition from normal state to congested at the beginning, then become normal again after the
accident is cleared.

We thus assume a global process to capture the state transitions. Specifically, we use a matrix A that approximates
the changes of U between time t− 1 to time t, i.e., Ut = Ut−1A, where U ∈ Rn×k+ , A ∈ Rk×k+ . The transition matrix
A represents how likely a vertex is to transition from attribute i to attribute j for that particular time interval.

Final objective formulation. Considering all the above, the final objective function for our DTT model is defined as
follows:

argminUt,B,A
J =

T∑
t=1

||Yt � (Gt − UtBUTt )||2F +

T∑
t=1

λTr(UtLU
T
t )+

T∑
t=2

γ||Ut − Ut−1A||2F

(4)

where λ and γ are the regularization parameters.

4.3 Edge Traffic Prediction with Missing Data
Suppose by solving Equation 4, we obtain the learned matrices ofUt, B andA from our DTT model. Consequently,

the task of both missing value and sensor completion can be accomplished by the following:
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Gt =UtBU
T
t , when 1 ≤ t ≤ T (5)

Subsequently, the edge traffic for snapshot GT+h, where h is the number of future time spans, can be predicted as
follows:

GT+h =(UTA
h)B(UTA

h)T (6)

5 Learning the DTT Model
In this section, we first propose a global multiplicative algorithm, and then discuss a fast incremental algorithm

that scales to large road networks.

5.1 Global Learning Algorithm
We develop an iterative update algorithm to solve Equation 4, which belongs to the category of traditional multi-

plicative update algorithm [15]. In addition, our approach follows the popular (inexact) alternative least square update
framework [12], where we optimize the objective function by updating one variable while fixing the other variables.

5.1.1 Update Rule of Ut

We first consider updating variable Ut while fixing all the other variables. The part of objective function in
Equation 4 that is related to Ut can be rewritten as follows:

J =

T∑
t=1

Tr
((
Yt � (Gt − UtBUTt )

)(
Yt � (Gt − UtBUTt )

)T)
+

T∑
t=1

λTr(Ut(D −W )UTt ) +

T∑
t=2

Tr
(
γ(Ut − Ut−1A)(Ut − Ut−1A)

T
)

Because we have the non-negative constraint of Ut, following the standard constrained optimization theory, we
introduce the Lagrangian multiplier (ψt) ∈ Rn×k and minimize the Lagrangian function L:

L = J +

T∑
t=1

Tr(ψtU
T
t ) (7)

Take the derivation of L with respect to Ut, we have the following expression. (The detail of this solution is
described in Appendix 9.1)

∂L

∂Ut
= −2(Yt �Gt)(UtBT + UtB) + 2(Yt � UtBUTt )(UtBT + UtB)

+ 2λ(D −W )Ut + 2γ(Ut − Ut−1A) + 2γ(UtAA
T − Ut+1A

T ) + ψt

(8)

By setting ∂L
∂Ut

= 0, and using the KKT conditions (ψt)ij(Ut)ij = 0, we obtain the following equations for (Ut)ij :[
− (Yt �Gt)(UtBT + UtB) + (Yt � UtBUTt )(UtBT + UtB)

+ λLUt + γ(Uτ − Uτ−1A) + γ(UτAA
T − Uτ+1A

T )
]
ij
(Ut)ij = 0

(9)

Following the updating rules proposed and proved in [15], we derive the following update rule of Ut:

(Ut)←(Ut)�
( (Yt �G)(UtB

T + UtB) + λWUt + γ(Ut−1A+ Ut+1A
T )

(Yt � UtBUTt )(UtBT + UtB) + λDUt + γ(Ut + UtAAT )

) 1
4

(10)
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Algorithm 1 Global-learning(G1, G2, · · · , GT )
Input: graph matrix G1, G2, · · · , GT .
Output: Ut (1 ≤ t ≤ T ), A and B.

1: Initialize Ut, B and A
2: while Not Convergent do
3: for t = 1 to T do
4: update Ut according to equation 10
5: end for
6: update B according to Equation 11
7: update A according to Equation 12
8: end while

5.1.2 Update Rule of B and A

The updating rules for B and A could be derived as follows in a similar way (see Appendix 9.2 for detailed
calculation):

B ← B �
( ∑T

t=1 U
T
t (Yt �Gt)Ut∑T

t=1 U
T
t (Yt � (UtBUTt ))Ut

)
(11)

A← A�
( ∑T

t=1 U
T
t−1Ut∑T

t=1 U
T
t−1Ut−1A

)
(12)

Algorithm 1 outlines the process of updating each matrix using aforementioned multiplicative rules to optimize
Eq. 4. The general idea is to jointly infer and cyclically update all the latent attribute matrices Ut, B and A. In
particular, we first jointly learn the latent attributes for each time t from all the graph snapshots (Lines 2–4). Based on
the sequence of time-dependent latent attributes < U1, U2, · · · , UT >, we then learn the global attribute interaction
pattern B and the transition matrix A (Lines 6–7).

From Algorithm 1, we now explain how our DTT model jointly learns the spatial and temporal properties. Specif-
ically, when we update the latent attribute of one vertex Uti, the spatial property is preserved by (1) considering the
latent positions of its adjacent vertices (Yt � Gt), and (2) incorporating the local graph Laplacian constraint (i.e.,
matrix W and D). Moreover, the temporal property of one vertex is then captured by leveraging its latent attribute in
the previous and next timestamps (i.e., Ut−1(i) and Ut+1(i)), as well as the transition matrix.

In the following, we present the detailed analysis of the time complexity and convergence property of our global
multiplicative algorithm.

Complexity analysis. In each iteration, the computational complexity is dominated by matrix multiplication opera-
tions: the matrix multiplication between a n×n matrix and a n×k matrix, and another matrix multiplicative operator
between a n × k matrix and a k × k matrix. Therefore, the worst case time complexity per iteration is dominated
by O(T (nk2 + n2k)). However, since in the traffic data, all the matrices are very sparse, and thus the complexity of
matrix multiplication with two n× k sparse matrix, is much smaller than O(n2k).

Convergence analysis. Algorithm 1 converges into a local minima. In addition, with Algorithm 1, the objective
value is non-increasing in each iteration. This conclusion can be derived by following the proof shown in previous
works [5] [15] [33].

5.2 Incremental Learning Algorithm
Although global multiplicative algorithm accurately captures the latent attribute, it is computationally expensive.

As illustrated in Figure 4 (a), the latent attributes are jointly inferred from the entire set of graph snapshots and
cyclically updated until they become stable. Unfortunately, this joint and cyclic inference is very time consuming. To
improve the efficiency as well as preserve the topology and temporal properties, we propose an incremental algorithm.
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Figure 4: Illustration of Algorithms

As depicted in Figure 4 (b), our incremental algorithm sequentially and adaptively learns the latent attributes from the
temporal graph changes.

5.2.1 Framework of Incremental Algorithm

The intuition of our incremental algorithm is based on the following observation: during a short time interval
(e.g., 5 minutes), the overall traffic condition of the whole network tends to stay steady, and the travel costs of most
edges change at a slow pace. For those edges with minor travel speed variations, their corresponding positions in
the latent space do not change much either. Nevertheless, we still need to identify vertices with obvious variations
in terms of their travel speeds, and adjust their corresponding latent attributes. For example, some edges could be in
a transition state from non-rush hour to rush hour, and thus the travel speed reduces significantly. Therefore, instead
of recomputing the latent attribute of each vertex from scratch at every time stamp, we perform “lazy” adjustment,
utilizing the latent attributes we have already learned in the previous snapshot. As shown in Figure 4, to learn the latent
attribute of Ut, the incremental algorithm utilizes the latent attributes we already learned in the previous snapshot (i.e.,
Ut−1) and the dynamism of traffic condition.

Algorithm 2 presents the pseudo-code of incremental learning algorithm. Initially, we learn the latent space of U1

from our global multiplicative algorithm (Line 1). With the learned latent matrix Ut−1, at each time stamp t between
2 and T , we incrementally update the latent space of Ut from Ut−1 according to the observed graph changes (Lines
2-4). After that, we learn the global transition matrix A (Line 5).

Algorithm 2 Incremental-Learning(G1, G2, · · · , GT )
Input: graph matrix G1, G2, · · · , GT .
Output: Ut (1 ≤ t ≤ T ), A and B.

1: (U1, B)←Global-learning(G1)
2: for t = 2 to T do
3: Ut ← Incremental-Update(Ut−1, Gt) (See Section 5.2.2)
4: end for
5: Iteratively learn transition matrix A using Equation 12 until A converges

5.2.2 Topology-Aware Incremental Update

GivenUt−1 andGt, we now explain how to calculateUt incrementally fromUt−1 , with which we could accurately
approximate Gt. The main idea is similar to an online learning process. At each round, the algorithm predicts
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an outcome for the required task (i.e., predict the speed of edges). Once the algorithm makes a prediction, it receives
feedback indicating the correct outcome. Then, the online algorithm can modify its prediction mechanism, presumably
improving the changes of making a more accurate prediction on subsequent timestamps. In our scenario, we first use
the latent attribute matrix Ut−1 to make a prediction of Gt as if we do not know the observation, subsequently we
adjust the model of Ut according to the true observation of Gt we already have in hand.

However, in our problem, we are making predictions for the entire road network, not for a single edge. When
we predict for one edge, we only need to adjust the latent attributes of two vertices, whereas in our scenario we need
to update the latent attributes for many correlated vertices. Therefore, the effect of adjusting the latent attribute of
one vertex could potentially affects its neighboring vertices, and influences the convergence speed of the incremental
algorithm. Hence, the adjustment order of vertices also matters in our incremental update.

In a nutshell, our incremental update consists of the following two components: 1) identify candidate nodes based
on feedbacks; 2) update their latent attributes and propagate the adjustment from one vertex to its neighbors. As
outlined in Algorithm 3, given Ut−1 and Gt, we first make an estimation of Ĝt based on Ut−1 (Line 1), subsequently
we treatGt as the feedback information, and select the set of vertices where we make inaccurate predictions, and insert
them into a candidate set cand (Lines 3-9). Consequently, for each vertex i of cand, we adjust its latent attribute so
that we could make more accurate predictions (Line 15) and then examine how this adjustment would influence the
candidate task set from the following two aspects: (1) if the latent attribute of i does not change much, we remove
it from the set of cand (Lines 17-19); (2) if the adjustment of i also affects its neighbor j, we add vertex j to cand
(Lines 20-25).

Algorithm 3 Incremental-Update(Ut−1, Gt)
Input: the latent matrix Ut−1 at t− 1, Observed graph reading Gt
Output: Updated latent space Ut.

1: Ĝt ← Ut−1BU
T
t−1

2: cand← ∅
3: for each i ∈ G do
4: for each j ∈ out(i) do
5: if |Gt(i, j)− Ĝt(i, j)| ≥ δ then
6: cand← cand ∪ {i, j}
7: end if
8: end for
9: end for

10: Ut ← Ut−1

11: while Not Convergent AND cand /∈ ∅ do
12: for i ∈ cand do
13: oldu← Ut(i)
14: for each j ∈ out(i) do
15: adjust Ut(i) with Eq. 14
16: end for
17: if ||Ut(i)− oldu||2F ≤ φ then
18: cand← cand \ {i}
19: end if
20: for each j ∈ out(i) do
21: p← Ut(i)BUt(j)
22: if |p−Gt(i, j)| ≥ δ then
23: cand← cand ∪ {j}
24: end if
25: end for
26: end for
27: end while

The remaining questions in our Incremental-Update algorithm are how to adjust the latent position of one vertex
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according to feedbacks, and how to decide the order of update. In the following, we address each of them separately.
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Figure 5: Two Challenges of Adjusting the Latent Attribute with Feedbacks.

Adjust the latent attribute of one vertex. To achieve high efficiency of adjusting the latent attribute, we propose
to make the smallest changes of the latent space (as quick as possible) to predict the correct value. For example, as
shown in Figure 5(a), suppose we already know the new latent position of v1, then fewer step movement (Option 1) is
preferable than gradual adjustment (Option 2). Note that in our problem, when we move the latent position of a vertex
to a new position, the objective of this movement is to produce a correct prediction for each of its outgoing edges.
Specifically, given Ut−1(i), we want to find Ut(i) which could accurately predict the weight of each edge e(vi, vj)
that is adjacent to vertex vi. We thus formulate our problem as follows:

Ut(i), ξ
∗ = arg min

U(i)∈Rk
+

1

2
||U(i)− Ut−1(i)||2F + Cξ

s.t. |U(i)BUT (j)−Gt(i, j)| ≤ δ + ξ

(13)

Note that we have non-negativity constraint over the latent space of Ut(i). To avoid over aggressive update of the
latent space, we add a non-negative slack variable ξ into the optimization problem. Therefore, we adopt the approaches
from [4]: When the predicted value ŷt (i.e., Ut(i)BUTt (j)) is less than the correct value yt (i.e., Gt(i, j)), we use the
traditional online passive-aggressive algorithm [8] because it still guarantees the non-negativity of U(i); Otherwise,
we update U(i) by solving a quadratic optimization problem. The detailed solution is as follows:

Ut(i) = max(Ut−1(i) + (k∗ − θ∗) ·BUt−1(j)T , 0) (14)

k∗ and θ∗ are computed as follows: k∗ = αt, θ
∗ = 0 if ŷt < yt

k∗ = 0, θ∗ = C if ŷt > yt and f(C) ≥ 0
k∗ = 0, θ∗ = f−1(0) if ŷt > yt and f(C) < 0

(15)

where

αt = min
(
C,

max(|ŷt − yt| − δ, 0)

||BUt−1(j)T ||2
)

ft(θ) = max
(
Ut(i)− θBUt(j)T , 0

)
·BUt(j)T −Gt(i, j)− δ

Updating order of cand. As we already discussed, the update order is very important because it influences the con-
vergence speed of our incremental algorithm. Take the example of the road network shown in Figure 2, suppose our
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initial cand contains three vertices v7, v6 and v2, where we have two edges e(v7, v6) and e(v6, v2). If we randomly
choose the update sequence as < v7, v6, v2 >, that is, we first adjust the latent attribute of v7 so that c(v7, v6) has
a correct reading; subsequently we adjust the latent attribute of v6 to correct our estimation of c(v6, v2). Unfortu-
nately,the adjustment of v6 could influence the correction we have already made to v7, thus leading to an inaccurate
estimation of c(v7, v6) again. A desirable order is to first update vertex v6 before updating v7.

Therefore, we propose to consider the topology of the road network when we update the latent position of each
candidate vertex v ∈ cand. The general principle is that: given edge e(vi, vj), the update of vertex vi should be
proceeded after the update of vj , since the position of vi is dependent on vj . This motivates us to derive an topological
order in the graph ofG. Unfortunately, the road networkG is not a Directed Acyclic Graph (DAG), and contains cycles.
To address this issue, we first generate Strongly Connected Components (SCC) of the graphG, and contract each SCC
as a super node. We then derive a topological order based on this condensed graph. For the vertex order in each SCC,
we can either decide randomly, or use some heuristics to break the SCC into a DAG, thus generating an ordering of
vertices inside each SCC. Figure 5(b) shows an example of ordering for the road network of Figure 2, where each
rectangle represents a SCC. After generating a topological order based on the contracted graph and randomly decide
the vertex order of each SCC, we obtain one final ordering < v2, v6, v7, v1, v5, v4, v3 >. Therefore, each time when
we update the latent attributes of cand, we follow this ordering of vertices.

Time complexity For each vertex i, the computational complexity of adjusting its latent attributes using Eq. 14 is
O(k), where k is number of attributes. Therefore, to compute latent attributes u, the time complexity per iteration is
O(kT (∆n + ∆m)), where ∆n is number of candidate vertex in cand, and ∆m is total number of edges incident to
vertices in cand. In practice, ∆n � n and ∆m � m � n2, therefore, we conclude that the computational cost per
iteration is significantly reduced using Algorithm 2 than using the global approach. The time complexity of computing
the transition matrix A using Algorithm 2 is same with that of using the global approach.

6 Real-Time Forecasting
In this section, we discuss how to apply our learning algorithms to real-time traffic prediction, where the sensor

reading is received in a streaming fashion. In practice, if we want to make a prediction for the current traffic, we cannot
afford to apply our global learning algorithm to all the previous snapshots because it is computationally expensive.
Moreover, it is not always true that more snapshots would yield a better prediction performance. The alternative
method is to treat each snapshot independently: i.e., each time we only apply our learning algorithm for the most
recent snapshot, and then use the learned latent attribute to predict the traffic condition. Obviously, this would yield
poor prediction quality as it totally ignores the temporal transitions.
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Figure 6: A Batch Recomputing Framework for Real-Time Forecasting.

To achieve a good trade-off between the above two methods, we propose to adapt a sliding window-based setting
for the learning of our DTT model, where we only run our global learning algorithm at the end of one time window.
As shown in Figure 6, we first apply our global learning at timestamps T (i.e., the end of the first time window), which
learns the time-dependent latent attributes for the previous T timestamps. Subsequently, for each timestamp T + i
between [T, 2T], we apply our incremental algorithm to adjust the latent attribute and make further predictions: i.e.,
we use UT+i to predict the traffic of GT+i+1. Once we receive the true observation of GT+i+1, we calculate UT+i+1

via the incremental update from Algorithm 3. The latent attributes will be re-computed at timestamp 2T . The same
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process continues in the next time window.

Figure 7: Sensor Distribution and Los Angles Road Network.

7 Experiment

7.1 Dataset
We used a large-scale and high resolution (both spatial and temporal) traffic sensor (loop detector) dataset collected

from Los Angeles County highways and arterial streets. This dataset includes both inventory and real-time data for
15000 traffic sensors covering approximately 3420 miles. The sampling rate of the streaming data, which provides
speed, volume (number of cars passing from sensor locations) and occupancy, is 1 reading/sensor/min. This sensor
dataset have been continuously collected and archived since 2010.

We chose two months of sensor dataset (i.e., March and April in 2014) for our experiments, which include more
than 60 million records of readings. As for the road network, we used Los Angeles road network which was obtained
from HERE Map dataset [10]. We constructed two subgraphs of Los Angeles road network, termed as SMALL and
LARGE. The SMALL network contains 5984 vertices and 12538 edges, and LARGE contains 8242 vertices and
19986 edges. As described in Section 3, the sensor data is mapped to the road network edges. Figure 7 shows sensors
locations and road network segments, where the green lines depict the sensors, and blue lines represent the road
network segments. After mapping the sensor data, we have two months of network snapshots for both SMALL and
LARGE.

7.2 Experimental Setting
7.2.1 Algorithms

Our methods are termed as DTT-All (i.e., global learning algorithm) and DTT-Inc (i.e., incremental learning
algorithm).

We first consider the task of missing-value and missing sensor completion. For the task of missing-value comple-
tion, we compare our algorithms with two methods: (1) KNN [9], which uses the average values of the nearby edges in
Euclidean distance as the imputed value, (2) DTT-One, a local version of DTT-All, which applies Global-learning on
each snapshot independently without considering the temporal factors, then uses the latent attributes of vertices to ap-
proximate the edge readings. We also implemented the Tensor method [1, 3] for missing value completion. However,
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it cannot address the sparsity problem of our dataset and thus produce meaningless results (i.e., most of the completed
values are close to 0). Although our framework is very general and supports missing sensor completion, we do not
evaluate it through our experiments since we do not have ground truth values to verify.

For edge traffic prediction, we compare our algorithms with two representative time series prediction methods: a
linear model (i.e., ARIMA [17]) and a non-linear model (i.e., SVR [20]). We train each model independently for each
time series with historical data. In addition, because these methods will be affected negatively due to the missing values
during the prediction stages (i.e, some of the input readings for ARIMA and SVR could be zero), for fair comparison
we consider ARIMA-Sp and SVR-Sp, which use the completed readings from our global learning algorithm. We also
compare with DTT-One, which always uses the most recent latent attribute as the prediction.

To evaluate the performance of online prediction, we consider the scenario of a batch-window setting described
in Section 6. Considering a time window [0, 2T ], we sequentially predict the traffic condition for the timestamps
during [T +1, 2T ], with the latent attributes of UT and transition matrixA learned from the previous batch computing.
Each time when we make a prediction, we receive the true observations as the feedback. We compare our Incremental
algorithm (Inc), with three baseline algorithms: Old, Mini-batch and Full-batch. Specifically, in order to predictGT+i,
DTT-Inc utilizes the feedback of GT+i−1 to adjust the time-dependent latent attributes of UT+i−1, whereas Old does
not consider the feedback, and always uses latent attributes UT and transition matrixA from the previous time window.
On the other hand, Mini-batch ignores the previous snapshots, and only applies the global learning algorithm to the
most recent snapshot GT+i−1. Finally, Full-batch applies the global learning algorithm consistently to all historical
snapshots (i.e., G1 to GT+i−1) and then makes a prediction.

Table 2: Experiment Parameters
Parameters Value range
T 2, 4, 6, 8,10, 12
span 5, 10, 15, 20, 25, 30
k 5, 10, 15,20, 25, 30
λ 2−7, 2−5, 2−3, 2−1, 21,23, 25

γ 2−7,2−5, 2−3, 2−1, 21, 23, 25

7.2.2 Configurations and Measures.

With our missing value completion and edge traffic prediction experiments, we selected two different time ranges
that represent rush hour (i.e., 7am-8am) and non-rush hour (i.e., 2pm-3pm) respectively. For the task of missing
value completion, during each timestamps of one time range (e.g., rush hour), we randomly selected 20% of values as
unobserved and manipulated them as missing, with the objective of completing those missing values. For each traffic
prediction task at one particular timestamp (e.g., 7:30 am), we also randomly selected 20% of the values as unknown
and use them as ground-truth values.

We varied the parameters T and span: where T is the number of snapshots, and span is time gap between two
continuous snapshots. We also varied k, λ, and γ, which are parameters of our model. The default settings (shown
with bold font) of the experiment parameter are listed in Table 2. Because of space limitations, the results of varying γ
are not reported, which are similar to result of varying λ. We use Mean Absolute Percentage Error (MAPE) and Root
Mean Square Error (RMSE) to measure the accuracy. In the following we only report the experiment results based
on MAPE, the experiment results based on RMSE are reported in the Appendix. Specifically, MAPE is defined as
follows:

MAPE = (
1

N

N∑
i=1

|yi − ŷi|
yi

)

With ARIMA and SVR, we use the dataset of March to train a model for each edge, and use 5-fold cross-validation
to choose the best parameters. All the tasks of missing value completion and edge traffic prediction tasks are conducted
on April data. We conducted our experimentswith C++ on a Linux PC with i5-2400 CPU @ 3.10G HZ and 24GB
memory.
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Figure 8: Missing Value Completion Mean Average Percentage Error (MAPE)

7.3 Comparison for Missing Value Completion
In this set of experiments, we evaluate the completion accuracy of different methods. The experiment results on

SMALL are shown in Figure 8 (a) and (b). We observe that both DTT-All and DTT-Inc achieve much lower errors
than that of other methods. This is because DTT-All and DTT-Inc capture both spatial and temporal relationships,
while DTT-One and KNN only use spatial property. DTT-All performs better than DTT-Inc by jointly infer all the
latent attributes. On the other hand, we note that DTT-One and KNN have similar performances, which shows that the
effect of utilizing either Euclidean or Topology proximity are similar for the task of missing value completion. This
also indicates that utilizing both spatial and temporal property yields a large gain than only utilizing spatial property.

As shown in Figure 8(b), the completion performance on the non-rush hour is better as compared to on the rush
hour time interval. This is because during rush hour range, the traffic condition is more dynamic, and the underlying
pattern and transition changes frequently. All of these factors render worse performance during rush hour. Figure 8
(c) and (d) depict the experiment results on LARGE, which are similar on that of SMALL.

7.4 Comparison with Edge Traffic Prediction
In the following, we present the results of edge traffic prediction experiments.

7.4.1 One-Step Ahead Prediction

The experimental results of SMALL are shown in Figure 18 (a) and (b). Among all the methods, DTT-All and
DTT-Inc achieve the best results, and DTT-All performs slightly better than DTT-Inc. This demonstrates that the
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Figure 9: One-Step Ahead Prediction MAPE

effectiveness of time-dependent latent attributes and the transition matrix. We observe that without the imputation of
missing values, time series prediction techniques (i.e., ARIMA and SVR) perform much worse than DTT-ALL and
DTT-Inc. Meanwhile, DTT-One, which only considers the spatial factor, cannot achieve good prediction results as
compared to DTT-All and DTT-Inc. This indicates and enforces our claim that utilizing either temporal or spatial
factors is not enough for making accurate predictions. We also note that even with completed readings, the accuracy
of SVR-Sp and ARIMA-Sp is still worse than that of DTT-All and DTT-Inc. One reason is that simply combination of
the spatial and temporal properties does not necessarily yield a better performance. Another reason is that both SVR-
Sp and ARIMA-Sp also suffer from missing data during the training stage, which renders less accurate prediction. In
Appendix 9.4, we also show how the ratio of missing data would influence the prediction performance. Finally, we
observe that SVR is more robust than ARIMA when encountering missing value on prediction stages: i.e., ARIMA-Sp
performs significantly better than ARIMA, while the improvement of SVR-Sp over SVR is not much. This is because
ARIMA is a linear model which mainly uses the weighted average of the previous readings for prediction, while SVR
is a non-linear model that utilizes a kernel function. Figure 9 (c) and (d) show the experiment results on LARGE, the
overall results are similar to those of SMALL.

7.4.2 Multi-Steps Ahead Prediction

We now present the experiment results on multi-step ahead prediction, with which we predict the traffic conditions
for next 30 minutes (i.e., h = 6). The prediction accuracy comparison among different methods on SMALL are
shown in Figure 10 (a) and (b). Although DTT-All and DTT-Inc still outperforms other methods, the margin between
our methods and the baselines is smaller. The reason is that, when we make multiple-step ahead prediction, we use
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Figure 10: Six-Steps Ahead Prediction MAPE

the predicted values from the past for future prediction. This leads to the problem of error accumulation, i.e., errors
incurred in the past are propagated into future predictions. We observe the similar trends on LARGE, from the results
reported in Figure 10 (c) and (d).

7.5 Scalability of Different Methods
Table 3 shows the running time of different methods. Although ARIMA and SVR is fast for each prediction,

they have much higher training cost. Note that our methods do not require extra training data, i.e., our methods
train and predict at the same time. Among them, DTT-Inc is the most efficient approach: it only takes less than 500
milliseconds to learn the time-dependent latent attributes and make predictions for all the edges of the road network.
This is because our incremental learning algorithm conditionally adjusts the latent attributes of certain vertices, and
utilizes the topological order that enables fast convergence. Even for the LARGE dataset, DTT-Inc only takes less than
five seconds, which is acceptable considering the span between two snapshots is at least five minutes in practice. This
demonstrates that DTT-Inc scales well to large road networks. Regarding DTT-All and DTT-One, they both require
much longer running time than that of DTT-Inc. In addition, DTT-All is faster than DTT-One. This is because DTT-
One independently runs the global learning algorithm for each snapshot T times, while DTT-All only applies global
learning for the whole snapshots once.
Convergence analysis. Figure 11 (a) and (b) report the convergence rate of iterative algorithm DTT-All on both
SMALL and LARGE. As shown in Figure 11, DTT-All converges very fast: when the number of iterations is around
20, our algorithm tends to converge in terms of our objective value in Equation 4.

27



Table 3: Running Time Comparisons.
data SMALL LARGE

train (s) pred.(ms) train (s) pred. (ms)
DTT-One - 1353 - 29439
DTT-All - 869 - 14247
DTT-Inc - 407 - 4145
ARIMA 484 0.00015 987 0.00024

SVR 47420 0.00042 86093.99 0.00051

 20

 40

 60

 80

 100

 120

 0  10  20  30  40  50

Objective values

Number of iterations

DTT-All

 20

 40

 60

 80

 100

 120

 0  10  20  30  40  50

Objective values

Number of iterations

DTT-All

(a) SMALL (b) LARGE
Figure 11: Converge Rate

7.6 Comparison for Real-Time Forecasting
In this set of experiments, we evaluate our online setting algorithms. As shown in Figure 12 (a) and (b), DTT-Inc

achieves comparable accuracy with Full-batch. This is because DTT-Inc effectively leverages the real-time feedback
information to adjust the latent attributes. We observe that DTT-Inc performs significantly better than Old and Mini-
batch, which ignores either the feedback information (i.e., Old) or the previous snapshots (i.g., Mini-batch). One
interesting observation is that Old performs better than Mini-batch for the initial timestamps, whereas Old surpasses
Mini-batch at the later timestamps. This indicates that the latent attributes learned in the previous time-window are
more reliable for predicting the near-future traffic conditions, but may not be good for multi-step ahead prediction
because of the error accumulation problem. Similar results have also been observed in Figure 10 for multi-step ahead
prediction. Figure 12 (c) and (d) show similar effects on LARGE.

Figure 13 (a) and (b) show the running time comparisons of different methods. One important conclusion for this
experiment is that DTT-Inc is the most efficient approach, which is on average two times faster than Mini-batch and
one order of magnitude faster than Full-batch. This is because DTT-Inc performs a conditional latent attribute update
for vertices within a small portion of road network, whereas Mini-batch and Full-batch both recompute the latent
attributes from at least one entire road network snapshot. Because Full-batch utilizes all the up-to-date snapshots and
Mini-batch only considers the most recent single snapshot, Mini-batch is faster than Full-batch. Figure 13 (c) and
(d) show the running time on LARGE. We observe that DTT-Inc only takes less than 1 seconds to incorporate the
real-time feedback information, while Mini-batch and Full-batch take much longer.

Therefore, we conclude that DTT-Inc achieves a good trade-off between prediction accuracy and efficiency, which
is applicable for real-time traffic prediction applications.
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Figure 12: Online prediction MAPE

7.7 Varying Parameters of Our Methods
In the following, we test the performance of our methods by varying the parameters of our model. Since the effect

of parameters does not have much correlation with the size of road network, we only show the experimental results on
SMALL.

7.7.1 Effect of Varying T

Figure 14 (a) and Figure 14 (b) shows the prediction performance and the running time of varying T , respectively.
We observe that with more number of snapshots, the prediction error decreases. In particular, when we increase T from
2 to 6, the results improve significantly. However, the performance tends to stay stable at T ≥ 6. This indicates that
smaller number of snapshots (i.e., two or less) are not enough to capture the traffic patterns and the evolving changes.
On the other hand, more snapshots (i.e., more historical data) do not necessarily yield much gain, considering the
running time increases when we have more number of snapshots. Therefore, to achieve a good trade-off between
running time and prediction accuracy, we suggest to use at least 6 snapshots, but no more than 12 snapshots.

7.7.2 Effect of Varying Span

The results of varying span are shown in Figure 15. It is clear that as the time gap between two snapshots
increases, the performance declines. This is because when span increases, the evolving process of underlying traffic
may not stay smooth, the transition process learned in the previous snapshot are not applicable for the next prediction.
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Fortunately the sensor dataset usually have high-resolution, therefore it is always better to use smaller span to learn
the latent attributes. In addition, span does not affect the running time of both algorithms.

30



10

15

20

25

 5  10  15  20  25  30

MAPE (%)

Span (minutes)

DTT-All
DTT-Inc

 100

 300

 500

 5  10  15  20  25  30

Running time (ms)

Span (minutes)

DTT-All
DTT-Inc

(a) Prediction error (b) Running time
Figure 15: Effect of Varying Span

10

15

20

25

30

35

40

5 10 15 20 25 30

MAPE (%)

k

DTT-All
DTT-Inc

10
15
20
25
30
35
40

2-5 2-3 2-1 2 23 25 27

MAPE (%)

λ

DTT-All
DTT-Inc

(a) Prediction MAPE with k (b) Prediction MAPE with λ
Figure 16: Effect of Varying k and λ on Prediction Accuracy.

7.7.3 Effect of Varying k and λ

Figure 16 (a) shows the effect of varying k. We have two main observations from this experiment: (1) we achieve
better results with increasing number of latent attributes; (2) the performance stays stable when k ≥ 20. This indicates
a low-rank latent space representation can already capture the latent attributes of the traffic data. In addition, our
results show that when the number of latent attributes is small (i.e., k ≤ 30), the running time increased with k but
does not change much when we vary k from 5 to 30. Therefore, setting k as 20 achieves a good balance between
computational cost and accuracy.

Figure 16 (b) depicts the effect of varying λ, which is the regularization parameter for our graph Laplacian dy-
namics. We observe that the graph Laplacian has a larger impact on DTT-All algorithm than that on DTT-Inc. This is
because λ controls how the global structure similarity contributes to latent attributes and DTT-All jointly learns those
time-dependent latent attribute, thus λ has larger effect on DTT-ALL. In contrast, DTT-Inc adaptively updates the
latent positions of a small number of changed vertices in limited localized view, and thus is less sensitive to the global
structure similarity than DTT-ALL. In terms of parameters choices, λ = 2 and λ = 8 yields best results for DTT-All
and DTT-Inc, respectively.
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8 Conclusion
In this paper, we have studied the problem of real-time traffic prediction with missing values and missing sensors

for large road networks. We proposed a dynamic traffic model where each vertex is associated with a set of latent
attributes that captures both spatial (in network space) and temporal properties. Moreover, as these attributes are time-
dependent, they also accurately estimate the traffic patterns and their evolution over time. To efficiently infer these
time-dependent latent attributes, we developed both global and incremental learning algorithms on sensor data streams,
enabling real-time traffic prediction under a batch window setting. Extensive experiments verified the effectiveness,
flexibility and scalability of our model in identifying traffic patterns, completing missing values, and predicting future
traffic conditions.

For future work, we plan to embed the current framework into real applications such as ride-sharing or vehicle
routing system, to enable better navigation using accurate time-dependent traffic patterns. Another interesting direction
is to incorporate other data sources (e.g., GPS, incidents) for more accurate traffic prediction.
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9 Appendix

9.1 Derivatives of L with Respect to Ut in Equation 7.
The objective of L could be rewritten as follows:

L = J1 + J2 + J3 +
T∑
t=1

Tr(ψtUt)

where:

J1 =

T∑
t=1

Tr
((
Yt � (Gt − UtBUTt )

)(
Yt � (Gt − UtBUTt )

)T)
J2 =

T∑
t=1

λTr(UtLU
T
t )

J3 =
T∑
t=2

Tr
(

(Ut − Ut−1A)(Ut − Ut−1A)T
)

(16)

J1 could also be rewritten as follows:

J1 =
T∑
t=1

Tr
((
Yt � (Gt − UtBUTt )

)(
Yt � (Gt − UtBUTt )

)T)
=

T∑
t=1

Tr
(
(Yt �Gt)T (Yt �Gt)− 2(Y Tt �GTt )(Yt � UtBUTt )

+ (Y Tt � UtBTUTt )(Yt � UtBUTt )
)

= const− 2
T∑
t=1

Tr
(
(Y Tt �GTt )(Yt � UtBUTt )

)
+

T∑
t=1

Tr
(
(Y Tt � UtBTUTt )(Y � UtBUTt )

)

(17)
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The second item of equation 17 could be transformed by:

O1 =
T∑
t=1

Tr
(
(Y Tt �GTt )(Yt � UtBUTt )

)
=

T∑
t=1

n∑
k=1

(
(Y Tt �GTt )(Yt � UtBUTt )

)
kk

=
T∑
t=1

n∑
k=1

m∑
i=1

(Y Tt �GTt )ki(Yt � UtBUTt )ik

=
T∑
t=1

m∑
i=1

n∑
k=1

(Yt �Gt � Yt � UtBUTt )ik

=
T∑
t=1

Tr
(
(Y Tt �GTt � Y Tt )UtBU

T
t

)

(18)

Now J1 could be written as follows:

J1 = const− 2
T∑
t=1

Tr
(
(Y Tt �GTt � Y Tt )UtBU

T
t

)
+

T∑
t=1

Tr
(
(Y Tt � UtBTUTt )(Y � UtBUTt )

) (19)

We now take the derivative of L in respect of Ut:

∂L

∂Ut
=
∂J1
∂Ut

+
∂J2
∂Ut

+
∂J3
∂Ut

+
∂
∑T
t=1 Tr(ψtUt)

∂Ut
(20)

The derivative of ∂J1
∂Ut

now could be calculated as follows:

∂J1
∂Ut

=− 2(Yt �Gt � Yt)(UtBT + UtB)

+
∂
∑T
t=1 Tr

(
(Y Tt � UtBTUTt )(Y � UtBUTt )

)
∂Ut

(21)

Suppose O2 =
∑T
t=1 Tr

(
(Y Tt � UtBTUTt )(Y � UtBUTt )

)
, the derivative of O2 could be written as:

∂O2

∂Ut(pq)
=
∂
∑n
k=1

∑m
i=1(Y Tt � UtBTUTt )ki(Y � UtBUTt )ik

∂Ut(pq)

=
∂
∑m
i=1

∑n
k=1(Yt � Yt � UtBUTt � UtBUTt )ik

∂Ut(pq)

=
∂
∑m
i=1

∑n
k=1 Y

2
t (ik)(UtBU

T
t )2(ik)

∂Ut(pq)

(22)
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Because only the pth row of UtBUTt is related with ∂O2

∂Ut(pq)
, we have the following:

∂O2

∂Ut(pq)
=
∂
∑n
k=1 Y

2
t (pk)(UtBU

T
t )2(pk)

∂Ut(pq)

= 2
n∑
k=1

(Y 2
t )pk(UtBU

T
t )pk

∂(UtBU
T
t )pk

∂(Ut)pq

= 2
n∑
k=1

(Y 2
t )pk(UtBU

T
t )pk(UtB

T + UtB)kq

(23)

The matrices derivation is then expressed as:

∂O2

∂Ut
= 2(Yt � Yt � UtBUTt )(UtB

T + UtB)

= 2(Yt � UtBUTt )(UtB
T + UtB)

(24)

Now the derivative of ∂J1
∂Ut

is as follows:

∂J1
∂Ut

=− 2(Yt �Gt � Yt)(UtBT + UtB)

+ 2(Yt � UtBUTt � Yt)(UtBT + UtB)

(25)

Similarly, we could calculate the derivatives of ∂J2
∂Ut

= 2λLUt, ∂J3∂Ut
= 2(Ut − Ut−1A) + 2(UtAA

T − Ut+1A
T ),

and ∂
∑T

t=1 Tr(ψtU
T
t )

∂Ut
= ψt, we have the following:

∂L

∂Ut
=− 2(Yt �Gt)(UtBT + UtB) + 2(Yt � UtBUTt )(UtB

T + UtB)

+ 2λLUt + 2(Ut − Ut−1A) + 2(UtAA
T − Ut+1A

T ) + ψt

(26)

9.2 Update Rule of A and B

Similar with the derivation of Ut, we add Lagrangian multiplier with φ ∈ Rk×k and ω ∈ Rk×k, and calculate the
derivatives of L in respect of A and B :

∂L

∂B
= −2

T∑
t=1

UTt (Yt �G)Ut + 2
T∑
t=1

UTt (Yt � UtBUTt )Ut + φ

∂L

∂A
= −2

T∑
t=2

UTt−1Ut + 2

T∑
t=2

UTt−1Ut−1A+ ω

(27)

Using the KKT conditions φijBij = 0 and ωijAij = 0, we get the following equations for Bkk, and Akk:

−
( T∑
t=1

UTt (Yt �G)Ut
)
ij
Bij +

( T∑
t=1

UTt (Yt � UtBUTt )Ut
)
ij
Bij = 0 (28)

−
( T∑
t=2

UTt−1Ut
)
ij
Aij +

( T∑
t=2

UTt−1Ut−1A
)
ij
Aij = 0 (29)

These lead us to the following update rules:

Bij ← Bij

( [
∑T
t=1 U

T
t (Yt �Gt)Ut]ij

[
∑T
t=1 U

T
t (Yt � (UtBUTt ))Ut]ij

)
(30)
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Aij ← Aij

( [
∑T
t=1 U

T
t−1Ut]ij

[
∑T
t=1 U

T
t−1Ut−1A]ij

)
(31)

9.3 Extra Experiment Results Based on Root Mean Square Error (RMSE)
In this set of experiments, we show the experiment results according to the measurement of RMSE, which indicates

how closest predictions are to true observations. The definition of RMSE is as follows:

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2

Figure 17 shows the experiment results for missing value completion. The one-step ahead prediction results are
shown in Figure 18, six-step ahead prediction results are depicted in Figure 19. Figure 20 shows the experiment
results of online setting. The results based on RMSE are similar with those based on MAPE. We also observe that the
predicated value by our methods deviate a small range (e.g., 4 to 11 mph) compared with the ground truth value.
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Figure 17: Missing Value Completion RMSE on SMALL
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Figure 18: Edge Traffic Prediction RMSE One Step on SMALL
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Figure 21: Missing Rate During Training Stages for Support Vector Regression (SVR) and Auto-Regressive Integrated Moving
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9.4 Effect of Missing Data
In this set of experiment, we analyze the effect of missing data on the training dataset for the time series prediction

techniques (i.e., ARIMA and SVR). The results are shown in Figure 21. As shown in Figure 21 (a) and (b), the
prediction error for both approaches increases with more number of noise. Similar to the effect of missing value on
the prediction stages shown in Figure 9, ARIMA is less robust than SVR because of its linear model. One interesting
observation is that ARIMA performs better than SVR if the missing ratio is less than 10%, this indicates ARIMA
is a good candidate for accurate traffic condition under the presence of complete data, this also conforms with the
experiment results on [17]. However, ARIMA is sensitive to the missing values during both training and prediction
stages, which renders poor performance with incomplete dataset.
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