Using Micro-simulation to Evaluate Traffic Delay Reduction from Workzone Information Systems

Lianyu Chu
CCIT, UC Berkeley

Henry X. Liu
University of Minnesota

Will Recker
UC Irvine
Introduction

• Work zone
 – Noticeable source of accidents and congestion

• AWIS:
 – Automated Workzone Information Systems
 – Components:
 • Sensors
 • Portable CMS
 • Central controller
 – Benefits:
 • Provide traffic information
 • Potentially
 – Improve safety
 – Enhance traffic system efficiency
• AWIS systems in market
 – ADAPTIR by Scientex Corporation
 – CHIPS by ASTI
 – Smart Zone by ADDCO Traffic Group
 – TIPS by PDP Associates
 – Quixote, Road Traffic Technology
 – Intelligent Zones, National Intelligent Traffic Systems (NITS)

• Evaluation studies
 – Most
 • System functionalities
 • Reliability
 – Few
 • Effectiveness
 • Delay saving
Study site and CHIPS system

• Site Location
 – City of Santa Clarita, 20 miles north of LA
 – On I-5: 4-lane freeway with the closure of one lane on the median side
 – Construction zone: 1.5 miles long
 – Parallel route: Old Road
 – Congestion: occurred in Holidays and Sundays

• CHIPS configuration
 – 3 traffic sensors
 – 3 message signs
System Setup

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Queue Detector</th>
<th>CMS Combo Message</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RTMS-1</td>
<td>RTMS-2</td>
</tr>
<tr>
<td>SBS01</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>SBS02</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>SBS03</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>SBS04</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

T = Queue being detected, F = No queue being detected

- **CMB06**: SOUTH 5/TRAFFIC/JAMMED, AUTOS/USE NEXT/EXIT
- **CMB07**: JAMMED/TO MAGIC/MOUNTAIN, EXPECT/10 MIN/DELAY
- **CMB08**: JAMMED/TO MAGIC/MOUNTAIN, EXPECT/15 MIN/DELAY
- **CMB09**: JAMMED TO MAGIC MTN, AVOID DELAY USE NEXT EXIT
- **CMB11**: SOUTH 5 ALTERNAT ROUTE, AUTOS USE NEXT 2 EXITS
CHIPS System Structure
Caltrans pilot evaluation study

• Evaluation aspects
 – Functionality
 – Reliability
 – Effectiveness
 • Safety
 • Diversion
 • Drivers’ acceptance
 – Cost and benefits

• Method
 – Field operational test for the first three aspects
Purpose of this study

• Traffic delay reduction because of AWIS
 – Quantify delay reduction
 – To justify the benefits of AWIS

• Methods?
 – Field operational test
 • Uncontrolled factors, e.g. incidents, variations of demands
 – Traffic analysis tools
 • Microscopic simulation
 – Model vehicles in fine details

• When to select micro-simulation?
 – ITS strategy
 – System wide congestion that changes dynamically, etc
 – Diversion

• AWIS planning, last slice
Microscopic simulation introduction

• Microscopic simulation
 – a software tool to model traffic system, including roads, drivers, and vehicles, in fine details.
 – models: AIMSUN, CORSIM, MITSIM, PARAMICS, TransModeler, VISSIM…

• Why simulation?
 – Can capture detailed traffic flow dynamics
 – Can be calibrated to reproduce real world scenarios
 – Can provide a visualization tool to evaluate traffic management and operational strategies
 – answer “what if” questions
Applications

- Traffic control
 - Signal
 - Ramp metering
- ITS evaluation
- Policy investigation
- Operational improvement
- Corridor management planning
- Construction management
- TMC operator training
PARAMICS: PARAllel MICroscopic Simulation
- a suite of software tools for micro traffic simulation, including:
 - Modeller, Analyzer, Processor, Estimator, Programmer
- developer: Quadstone, Scotland

Features
- large network simulation capability
- modeling the emerging ITS infrastructures
- OD estimation tool
- Application Programming Interfaces (API)
 - access core models of the micro-simulator
 - customize and extend many features of Paramics
 - model complex ITS strategies
 - complement missing functionalities of the current model
How to model ITS: Application Programming Interfaces

Diagram:
- User
- Input Interface
- Output Interface
- API
- Core Model
- Professional Community Oversight
- GUI
- Tools

Legend:
- Application Programming Interfaces
- User Interface
- API
- Delay saving after the use of AWIS: Before-after study

* Use same demand in the evaluation
Building network

- Based on
 - aerial photos
 - geometry maps

- inputs:
 - roadway network,
 - traffic detection,
 - traffic control,
 - vehicle data,
 - driving behavior
 - route choice
 - traffic analysis zones
Calibration

• Calibration:
 – Adjust model parameters to obtain a reasonable correspondence between the model and observed data
 – Time-consuming, tedious
 – Models need to be calibrated for the specific network and the intended applications

• Methods
 – Trail-and-error method
 – Gradient-based and GA

• Proposed 3-step method:
 – Capacity calibration
 • One major bottleneck, i.e. lane drop (4->3 lanes)
 – Simultaneous estimation of OD matrix and route choice
 – Network performance calibration & validation
Data collection

- Before: May 18th, 2003
- After: Sep 1st, 2003 (Labor Day)
- Link flows:
 - 3 on-ramps and off-ramps
 - Several link/cordon flows
 - RTMS-1 and RTMS-3
 - Loop detector station at Hasley Canyon Rd
- Probe data
 - Two routes:
 - Mainline and the Old road
 - GPS-equipped vehicles
Capacity Calibration

- Calibrate capacities at major bottlenecks
- Three parameters:
 - Mean headway
 - Drivers’ reaction time
 - Headway factor for mainline links

- Trial-and-error method
 - Choose several parameter combinations
 - Check their performances

- Results:
 - Mean headway = 0.9
 - Drivers’ reaction time = 0.8
 - ML Headway factors
 - Before model: 1.0
 - After model: 1.2
Simultaneous estimation of OD and routing parameters

- Connected and affected each other
- Formulated as

\[
\text{Min } L(q^{rs}, \theta) = \sum \left[x_a^{\text{sim}} - x_a^{\text{obs}} \right]^2
\]

\[
x_a^{\text{sim}} = \sum_{rs} q^{rs} \left(\sum_k P_k^{rs}(\theta) \cdot \delta_{ak} \right)
\]

s.t.

\[
q^{rs} \geq 0
\]

- Solution algorithm:
 - Heuristic search method
Solution algorithm

- (1) Choose \(n \) routing parameters \(\theta_1 \) to \(\theta_n \)
- (2) Let \(i = 1 \), set \(\theta = \theta_i \).
- (3) Use PARAMICS OD estimator to estimate OD table \(\Gamma_i \).

\[
\text{Min } L(\theta) = \frac{1}{N} \sum_{a=1}^{N} GEH(x_a) = \frac{1}{N} \sum_{a=1}^{N} \left(\frac{2}{x_a^{\text{sim}}(\theta) + x_a^{\text{obs}}} \left(x_a^{\text{sim}}(\theta) - x_a^{\text{obs}} \right)^2 \right)
\]

- (4) Use PARAMICS Modeler to run simulation with OD table \(\Gamma_i \) and routing parameter \(\theta_i \).

\[
\text{MAPE}(i) = \frac{100}{N + M} \left\{ \sum_{a=1}^{N} \left| \frac{x_a^{\text{obs}} - x_a^{\text{sim}}}{x_a^{\text{obs}}} \right| + \sum_{b=1}^{M} \left| \frac{p_b^{\text{obs}} - p_b^{\text{sim}}}{p_b^{\text{obs}}} \right| \right\}
\]

- (5) If \(i < n \), set \(i = i + 1 \) and go to step 2; otherwise go to Step 6.
- (6) Obtain \(\Gamma_{\mu} \) and \(\theta_{\mu} \), whose combination yields the best calibrated OD table and routing parameter vector.
OD and routing calibration

- Route choice model
 - Dynamic feedback assignment
 - Parameters:
 - Feedback cycle (set to 1 min to simply the problem),
 - Compliance rate
- Routing parameter θ in solution algorithm:
 - 1 parameter: compliance rate
- Inputs to OD estimator:
 - Reference OD table from planning model
 - 6 cordon flows
 - 5 link flows
- Simulation period: 3-5 pm
 - Warm-up: 3-4 pm
OD and routing calibration results

- Calibrated compliance rate
 - Before model: 3%
 - After model: 18%
- Calibrated OD table:
 - Before model: mean GEH = 4.51; After model: mean GEH = 2.46
Calibrated “after” model

<table>
<thead>
<tr>
<th>Location/Route</th>
<th>Observed</th>
<th>Simulated</th>
<th>APE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic count (veh/hour)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>main_Hasley</td>
<td>3890</td>
<td>3867</td>
<td>0.59</td>
</tr>
<tr>
<td>main_Rye Canyon</td>
<td>4568</td>
<td>4526</td>
<td>0.92</td>
</tr>
<tr>
<td>off_Hasley</td>
<td>764</td>
<td>813</td>
<td>6.41</td>
</tr>
<tr>
<td>on_SR-126</td>
<td>480</td>
<td>477</td>
<td>0.63</td>
</tr>
<tr>
<td>on_Magic Mountain</td>
<td>713</td>
<td>674</td>
<td>5.47</td>
</tr>
<tr>
<td>Travel Time (min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mainline</td>
<td>13</td>
<td>13.1</td>
<td>0.48</td>
</tr>
<tr>
<td>Old Road</td>
<td>11</td>
<td>11.1</td>
<td>0.92</td>
</tr>
<tr>
<td>MAPE</td>
<td></td>
<td></td>
<td>2.20</td>
</tr>
</tbody>
</table>
Evaluation

- Run two simulation models:
 - Demand: after OD table
 - Before:
 - Calibrated before network, 3% compliance rate
 - After:
 - Calibrated after network, 18% compliance rate
- Number of simulation runs
 - Median run with respect to VHT

\[N = \left(t_{\alpha/2} \cdot \frac{\delta}{\mu \cdot \varepsilon} \right)^2 \]
Evaluation results

<table>
<thead>
<tr>
<th></th>
<th>Without AWIS</th>
<th>With AWIS</th>
<th>Reduction</th>
<th>Reduction Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Mainline Delay (hr)</td>
<td>1133.4</td>
<td>672.3</td>
<td>461.1</td>
<td>40.7%</td>
</tr>
<tr>
<td>Average Mainline Travel Time (min)</td>
<td>21.8</td>
<td>13.5</td>
<td>8.3</td>
<td>38.1%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Without AWIS</th>
<th>With AWIS</th>
<th>Increase</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Delay on the Old Road (hr)</td>
<td>7.6</td>
<td>29.9</td>
<td>22.3</td>
<td>293.2%</td>
</tr>
<tr>
<td>Average Travel Time on the Old Road (min)</td>
<td>9.1</td>
<td>11.1</td>
<td>2.0</td>
<td>22.0%</td>
</tr>
</tbody>
</table>
Evaluation results (cont.)

<table>
<thead>
<tr>
<th></th>
<th>Without AWIS</th>
<th>With AWIS</th>
<th>Reduction</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>VHT (Vehicle Hours Traveled)</td>
<td>2266.7</td>
<td>1434.7</td>
<td>832.1</td>
<td>36.7%</td>
</tr>
<tr>
<td>VMT (Vehicle Miles Traveled)</td>
<td>27357.6</td>
<td>31350.9</td>
<td>-3993.3</td>
<td>-14.6%</td>
</tr>
<tr>
<td>Average Speed (mph) = VMT/VHT</td>
<td>12.1</td>
<td>21.9</td>
<td>-9.8</td>
<td>-81.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Without AWIS</th>
<th>With AWIS</th>
<th>Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diversion Volume on Hasley off-ramp</td>
<td>145</td>
<td>369</td>
<td>224</td>
</tr>
<tr>
<td>Diversion Rate on Hasley off-ramp</td>
<td>3.5%</td>
<td>7.8%</td>
<td>4.3%</td>
</tr>
</tbody>
</table>
Conclusion

• Contribution
 – Introduction of a microscopic simulation method to evaluate traffic delay reduction from AWIS
 • Calibration of two simulation models
 – Calibration
 • a simultaneous estimation of OD table and routing parameters
• Evaluation shows AWIS can effectively:
 – Reduce traffic delay
 – Improve overall performance of the traffic system
• Outreach: publications
 – TRB, TRR
Use of the method for AWIS planning

- Develop a simulation model for the existing network
 - Baseline OD table
- Build simulation model for the WZ case
 - Capacity calibration (i.e. calibrate mainline headway factor)
 - Use HCM capacity value as target value
 - Routing: compliance rate α
 - Network geometry
 - Percentage of familiar drivers
- Build simulation model for the WZ+AWIS case
 - Capacity calibration
 - Use an expected capacity value, or
 - Apply 1.2 headway factor derived from this study
 - Routing: compliance rate β could vary (maximum 20%)
 - Network geometry
 - Traffic information
- Simulation for two scenarios:
 - (1) WZ model with Baseline OD table and routing α
 - (2) WZ+AWIS model with Baseline OD table and routing β
- Delay/benefit calculation
Contact Information:
Lianyu Chu
lchu@berkeley.edu
949-824-1876

Some technical information about micro-simulation:
http://www.clr-analytics.com