Roundabouts on the State Highway System

Presentation by Caltrans District 5 at SBCAG North County Subregional Meeting, May 4, 2011
Adapted from 0R750 Project Open House by Paul Valadao
What are Roundabouts?

- Modern roundabouts are circular intersections:
 - Promote safe/efficient traffic flow
 - Traffic moves in one direction
 - Circulating traffic has right of way
 - Channelized approaches
 - Slower entry speeds
 - Entering traffic yields
 - Lower number of conflict points
 - Accommodate peds/bikes
Public Opinion of Roundabouts

Anxious at the thought of driving a roundabout?

You mean I now have to stop?

After driving roundabouts most are in favor of them

Anticipate slowing but not being delayed
Benefits of a Roundabout

- Increase safety
- Increase capacity / reduce delay
- Accommodate larger vehicles
- Less maintenance
- Reduce vehicle emissions
- Reduce construction and right of way cost
Safety of a Roundabout

• Roundabouts are a proven intersection safety improvement
• Reduce number of collisions
• Reduce the severity of collisions and associated fatalities/injuries
• Improved geometry and lower speeds through the intersection
Improves Operations

- Reduce average vehicle delay
- Traffic does not stop most of the time
- Can improve overall operation of roadway

Local example – Route 217/Hollister Avenue, Goleta

- Dual roundabouts at Route 217 on- and off-ramps
- Replacement of bridge over Hollister Avenue avoided
- Increasing number of lanes on Hollister Avenue avoided
Accommodate Larger Vehicles

A truck apron accommodates vehicles with large turning radii, such as buses, trucks, tractor trailers, farm equipment, and emergency vehicles.
Maintenance Needs

• Signals require routine inspection
• Signals require a human response for a malfunction
• Landscape maintenance cost of a roundabout, is less than the lifetime maintenance cost for a signal
Sustainability

Supports Santa Barbara County Air Quality Program:

- Reduce Carbon Monoxide Emissions by 32%
- Reduce Nitrous Oxide Emissions by 34%
- Reduce Carbon Dioxide Emissions by 37%
- Reduce Hydrocarbon Emissions by 42%
- Reduce Fuel Consumption by 30%
Roundabouts on High Speed Roadways

Successfully used on high speed roadways in California, Kansas and Washington

Route 138/47th St. Palmdale, CA - 2009

Route 169, Garnett, KS - 2006

K-68 & Old K.C. Road, North of Paola, KS – 2001

SR 203/124th St., near Duvall, WA - 2004
Roundabouts on High Speed Roadways

Treatments to Transition to Roundabout

- Signing and Markings
- Long Splitter Islands
- Curvature on Approaches
SR 246/Purisima Road Safety Improvement Project

• **Need:** Collision rate at intersection is four times average

• **Purpose:** Eliminate potential of broadside collisions and reduce the severity of collisions

• **Solution:** The roundabout is the appropriate improvement to address the patterns and severity of collisions occurring today and anticipated over the design life of this project
SR 246/Purisima Road Safety Improvement Project

Aerial view of SR 246 and Purisima Rd.
Proposed Roundabout Design
SR 246/Purisima Road Safety Improvement Project
Roundabouts Compared to Signalized Intersection

Safety:
- Reduces points of conflict from 13 to 4
- Eliminates crossing conflicts entirely

Operations:
- By 2035 traffic volumes are expected to double
- LOS A/B w/ roundabout
SR 246/Purisima Road Safety Improvement Project
SR 246/Purisima Road Safety Improvement Project

Schedule:
- Advertise for Bids: May 2011
- Construction Complete: Spring 2013

Cost: $2.6 million

Public Outreach:
- Public information meetings held July 2008 and April 2009 in Lompoc
- Additionally met with groups including Farm Bureau
- Potential for driver education
SR 154/SR 246
Safety Improvement Project

Project Purpose, Need, and Status

- **Need**: Collision rate is 2.4 times state average
- **Purpose**: Eliminate potential for broadside collisions, and reduce severity of collisions
- **Status**: Project is in the preliminary design and environmental study phase (PA&ED)
- **Solution**: Signalization and roundabout alternatives considered
SR 154/SR 246
Safety Improvement Project

Aerial view of SR 154/SR 246 Proposed Roundabout Design
SR 154/SR 246
Safety Improvement Project

Aerial view of SR 154/SR 246 Proposed Signalized Intersection Design
SR 154/SR 246
Safety Improvement Project

Comparison of alternative footprints
SR 154/SR 246 Safety Improvement Project

Safety:
- Reduces conflict points from 38 to 11
- 4 crossing conflicts

Operations:
- 2035 traffic volumes will nearly double current volumes
- Roundabout LOS A/A
- Signal LOS B/C
SR 154/SR 246
Safety Improvement Project

Schedule:
- Complete Environmental/Engineering Studies
 - October 2011–2013 based on impact avoidance and public input
- Construction Complete: Fall 2015 – 2017

Cost:
- Roundabout $3.5 million
- Signal $5.0 million

Public Outreach
- Public information meeting June 2011
- Potential for driver education
For More Information

Project information on Caltrans District 5 website:

http://www.dot.ca.gov/dist05/projects/

or contact

Paul Martinez
Project Manager
(805) 549-3407
paul_martinez@dot.ca.gov