I-80 Eastbound Cordelia Truck Scales Relocation Project

Final Environmental Impact Report/ Environmental Assessment

State Clearinghouse #2008052067

Solano County, California
Interstate 80, from approximately 0.2 mile east of Suisun Creek to Chadbourne Road on State Route 12
04-SOL-80-13.8/15.7; 04-SOL-SR 12-L1.8/L2.0
EA 0A5350

Prepared by the
State of California Department of Transportation

The environmental review, consultation, and any other action required in accordance with applicable federal laws for this project are being, or have been, carried out by Caltrans under its assumption of responsibility pursuant to 23 U.S.C. 327.

Caltrans

October 2009
General Information about this Document

For individuals with sensory disabilities, this document can be made available in Braille, large print, on audiocassette, or on computer disk. To obtain a copy in one of these alternate formats, please call or write to California Department of Transportation, Attn: Melanie Brent, Environmental Analysis Office Chief, California Department of Transportation, District 04, 111 Grand Avenue, P.O. Box 23660, Oakland, CA 94623; call (510) 286-5231 (voice), or use the California Relay Service at (800) 735-2929 (TTY), (800) 735-2929 (voice) or 711.
CALIFORNIA DEPARTMENT OF TRANSPORTATION
FINDING OF NO SIGNIFICANT IMPACT

For
I-80 Eastbound Cordelia Truck Scales Relocation Project
EA 0A5350

The California Department of Transportation (Caltrans) has determined that the build alternative will have no significant impact on the human environment. This FONSI is based on the attached Final Environmental Impact Report/Environmental Assessment, which has been independently evaluated by Caltrans and determined to adequately and accurately discuss the need, environmental issues, and impacts of the proposed project and appropriate mitigation measures. It provides sufficient evidence and analysis for determining that an EIS is not required. Caltrans takes full responsibility for the accuracy, scope, and content of the attached EA (and other documents as appropriate).

The environmental review, consultation, and any other action required in accordance with applicable Federal laws for this project is being, or has been, carried-out by Caltrans under its assumption of responsibility pursuant to 23 U.S.C. 327.

10.16.05
Date

Bijan Santini, District Director
California Department of Transportation, District 4
I-80 Eastbound Cordelia Truck Scales Relocation Project

Final Environmental Impact Report/
Environmental Assessment

Solano County, California
Interstate 80, from approximately 0.2 mile east of Suisun Creek to Chadbourne Road on
State Route 12
04-SOL-80-13.8/15.7; 04-SOL-SR 12-L1.8/L2.0
EA 0A5350

October 2009

Submitted Pursuant to: (State) Division 13, California Public Resources Code
(Federal) 42 USC 4332(2) C

State of California
Department of Transportation

Date of Approval: 10/16/09

Bijan Sartipi
District Director
California Department of Transportation, District 4
Summary

This final environmental impact report/environmental assessment (EIR/EA) has been prepared in compliance with the California Environmental Quality Act (CEQA) and State CEQA Guidelines and with the National Environmental Policy Act (NEPA) and the Council for Environmental Quality Regulations for implementing NEPA. The purpose of this FEIR/EA is to identify significant environmental impacts associated with the proposed project, identify mitigation measures to avoid or reduce significant impacts and disclose all substantive comments and responses on the draft EIR/EA.

The draft EIR/EA was available for public review from January 30 to March 18, 2009, during which time public comments were accepted. Written and oral comments were also accepted at a public hearing that was held on February 26, 2009 at the Solano County Administration Building. The comments received and responses to them are provided in Chapter 5 of this document.

Overview of Project Area

The Cordelia Truck Scales facility is located within the Interstate 80 (I-80)/Interstate 680 (I-680)/State Route 12 (SR 12) interchange in Solano County, in the vicinity of Fairfield and Suisun City. The project area encompasses the existing facility, the site of the new facility, and all associated on- and off-ramps and utility relocations. The project area extends along I-80 from the Scandia Family Center (at post mile 13.8) east to the SR 12 East (SR 12E) interchange with I-80 and continues east along SR 12E to Chadbourne Road, a distance of 2.1 miles (see Figure 1-1) in Chapter 1.

The land surrounding the project area is relatively flat (the average elevation is approximately 10 feet) and includes two waterways (Suisun and Dan Wilson Creeks). The land uses in the area consist primarily of agricultural and commercial uses.

Related Projects

Several related transportation projects are being planned or recently were completed in the general project area. These projects (and their Caltrans EA project numbers where appropriate) are listed below in the order of anticipated completion.

- **Interstate 80 High-Occupancy Vehicle Lane Project**: Eastbound and westbound high-occupancy vehicle (HOV) lanes will be constructed along an approximately 8.5-mile-long segment of I-80 from the Red Top Road interchange in Solano County to 0.5 mile east of the Air Base Parkway interchange in Fairfield. The project (EA-04-0A5304) will increase the overall carrying capacity of I-80 in the project area and will facilitate the already high demand for ridesharing on I-80. Construction of this project began in June 2008, and completion is anticipated in late 2009.

- **North Connector Project**: The North Connector Project would construct a parallel route to the north of I-80 between Abernathy Road at I-80 on the east to SR 12 at Red Top Road on the west. This project would provide increased east/west capacity and provide an alternative to I-80 for local traffic. Construction of the first phase of the North Connector Project is expected to begin in summer 2009, with completion anticipated in December 2010.
• **Transit Improvements:** To support increased transit ridership and expanded bus routes in the county, the *I-80/I-680/I-780 Transit Corridor Study* identifies numerous potential locations for park-and-ride lots in these major corridors, three of which could be located in the project area: Red Top Road at I-80, a surface lot at Abernathy Road between I-80 and SR 12 or an expanded parking structure at the Fairfield Multimodal Transportation Center, and Gold Hill Road at I-680. These potential lots are expected to be constructed between 2010 and 2015.

• **I-80/I-680/SR 12 Interchange Project:** The I-80/I-680/SR 12 Interchange Project (EA-04-0A5300) would include numerous improvements to the I-80/I-680/SR 12 interchange to address existing and future traffic operations and congestion, including the relocation of the westbound Cordelia Truck Scales. The improvements are intended to add freeway capacity, reduce cut-through traffic on local roads, improve local access to and from the freeway, accommodate current and future truck volumes, improve safety, and increase the use of HOV lanes and ridesharing. The environmental document for the project is currently underway and is expected to be completed in early 2010.

• **Jameson Canyon (SR 12) Widening from I-80 to SR 29:** This project would provide a continuous 4 lane expressway between I-80 and SR 29. The project currently in the final design phase and construction is planned to begin in 2011, with completion in 2013.

• **Jepson Parkway:** This project is intended to address safety concerns, accommodate traffic associated with planned growth, and enhance multi-modal transportation options for local trips in central Solano County. The project will upgrade and link a series of existing local 2- and 4-lane roadways to provide a 4-lane north-south travel route between SR 12E and I-80, passing Travis Air Force Base. The project has been approved by the STA Board and construction is expected to begin in the next 4 years.

• **I-80 Improvements through Fairfield:** Several projects are programmed between SR 12 East and Air Base Parkway. They include construction of an eastbound auxiliary lane between Abernathy Road and Auto Mall Parkway, removal of existing hook ramps at Auto Mall Parkway, construction of an eastbound auxiliary lane between Beck Avenue and Travis Boulevard, construction of an eastbound auxiliary lane from Travis Boulevard to Air Base Parkway, construction of a westbound auxiliary lane from Waterman Boulevard/Air Base Parkway to Travis Boulevard, and construction of a westbound auxiliary lane from West Texas Street to Abernathy Road. These improvements are in the early planning phases. No construction date has been determined.

• **Fairfield Corporate Commons:** Fairfield Corporate Commons consists of a mixed residential and office development located north of I-80 and east of Dan Wilson Creek. The project will provide approximately 864,000 square feet of office and hotel use, 269 multi-family housing units, and 167 single-family housing units. The project is currently under construction.

Purpose and Need

Purpose
The purpose of the project is to:
Accommodate anticipated growth in truck traffic in the corridor by 2040.

- Improve the reliability of the truck weight and safety inspection.
- Improve mainline safety by reducing truck/auto weaving and queuing.
- Provide traffic congestion relief along this segment of I-80.

Need

The existing Cordelia Truck Scales are located within the I-80/I-680/SR12 interchange, a point at which two major interstate freeways and one state highway converge. Since the facility was constructed in 1958, the San Francisco Bay Area (Bay Area) and Northern California region have experienced rapid population growth, resulting in substantial increases in truck and regional traffic passing through the interchange area, as well as substantial changes in the land uses immediately surrounding the interchange.

The truck scales substantially contribute to the congestion and safety concerns on I-80 because of the large number of trucks exiting and entering I-80 and the close proximity of the scales to both the Suisun Valley Road and I-680 and SR 12E interchanges. Congestion leads to closure of the truck scales when queuing trucks begin to back up onto the mainline freeway. The project will address these related deficiencies.

- **Inadequate Enforcement:** Currently closures to the truck scales occur approximately 15 times a week, when the queue gets too long and extends into traffic, creating a safety hazard and compromising enforcement of weight and safety requirements.

- **Truck-Related Congestion:** Trucks slowing to enter and accelerating to exit the facilities, as well as those queuing to enter, exacerbate the congestion problem, particularly during peak commute hours.

- **Unreliable Freight Transport:** Travel times for truck trips are unpredictable due to queues and congestion. This unpredictability is further increased by the likelihood of breakdowns resulting from uninspected trucks which have bypassed the scales during periodic closures.

- **Traffic Safety:** High vehicle and truck volumes, short merge and diverge maneuvers, short distances between interchanges, and trucks queuing on the entrance ramp all contribute to safety concerns in the area.

Proposed Project

The proposed Project is to construct a larger, more efficient truck scale facility on eastbound I-80 approximately 2,500 feet to the east of the current facility in a large oval configuration. Associated on- and off-ramps would be constructed, and, upon completion of the project, the existing facility would be demolished.

The new facility would be a Class B Commercial Vehicle Enforcement Facility (CVEF) (with Class B being defined as an independent command facility of the CHP located along a major highway route), which would have the capacity to inspect all eastbound I-80 trucks passing the facility 24 hours per day, seven days a week. The facility would contain up to four sets of scales to accommodate two lines of empty and loaded trucks. The new facility would contain seven inspection bays, parking for semi-truck trailer combinations and automobiles, and a roadway...
along the outer edge of the oval to allow weighed trucks to be driven around into the inspection bay or to be reweighed. An operations building would be constructed to facilitate the vehicle inspection and weighing process. Utilities would be provided from the west.

The off-ramp to the new truck scale facility would use the existing off-ramp location and geometry, which consists of a single lane exit. The new off-ramp would widen to a two-lane facility through the existing truck scale site and would widen to four lanes immediately west of Suisun Creek. The new off-ramp would cross over Suisun Creek on a new bridge before entering the new truck scale facility. Truck traffic would be sorted along the approach roadway into the appropriate lane by means of weigh-in-motion scales and signal bridges.

Trucks leaving the facility would use a new two-lane eastbound roadway that splits approximately 1,300 feet east of the facility, with one lane merging onto eastbound I-80 and the other lane connecting to the eastbound I-80–to–eastbound SR 12E connector.

The eastbound I-80 connector to eastbound SR 12E would be reconstructed as a two-lane ramp crossing over (braided with) the truck scale on-ramp to eastbound I-80. The connector overpass and associated retaining wall would be constructed to an ultimate three-lane width although the exit from I-80 proposed with this project would consist of a two-lane connection (one dedicated SR 12E lane and a shared through-exit lane). The new dedicated lane on I-80 would begin approximately 2,500 feet west of the exit point to the connector. The two-lane connector would continue east, becoming SR 12E, with the truck scale on-ramp joining as an auxiliary lane that would end at the SR 12E/Chadbourne Road interchange off-ramp.

Once construction of the new truck scales had been completed, and the new facility was operational, the existing facility would be removed.

As part of the proposed project, several utilities would need to be relocated. Relocating the utilities would occur during the construction phase of the proposed project. Impacts associated with high-voltage power line relocations are addressed in this EIR/EA pursuant to California Public Utilities Commission General Order (GO) 131 D filing requirements. The precise field location of high-risk utilities would be identified during final design in accordance with Caltrans procedures.

Other Alternatives Considered

Other alternatives were eliminated as part of the 2005 Cordelia Truck Scales Relocation Study: Summary Report and Recommendations (Solano Transportation Authority 2005a). This study determined that the Cordelia location was the preferred location based on enforcement and financial feasibility standards. This document considers only the proposed project and the no-project alternative.

No-Project Alternative

Under the no-project alternative, operations of the existing truck scales would continue, and no improvements or expansions of truck scale facilities would be constructed. Congestion would worsen over time as truck and auto traffic increases.
Joint California Environmental Quality Act/National Environmental Policy Act Documentation

The proposed project is a joint project by the California Department of Transportation (the Department) and the Federal Highway Administration (FHWA) and is subject to state and federal environmental review requirements. Project documentation, therefore, has been prepared in compliance with both the California Environmental Quality Act (CEQA) and the National Environmental Policy Act (NEPA). Caltrans is the lead agency under CEQA. In addition, the FHWA’s responsibility for environmental review, consultation, and any other action required in accordance with applicable federal laws for this project is being, or has been, carried out by Caltrans under its assumption of responsibility pursuant to 23 U.S. Code (USC) 327.

Some impacts determined to be significant under CEQA may not lead to a determination of significance under NEPA. Because NEPA is concerned with the significance of the project as a whole, it is quite often the case that a “lower level” document is prepared for NEPA. One of the most commonly seen joint document types is an environmental impact report/environmental assessment (EIR/EA).

Following the receipt of public comments on the draft EIR/EA and the circulation of the final EIR/EA, Caltrans will be required to take actions regarding the environmental document. Caltrans will determine whether to certify the EIR/EA and issue findings and a statement of overriding considerations under CEQA and to issue a finding of no significant impact (FONSI) or require an environmental impact statement (EIS) under NEPA.

Project Impacts

Project impacts would occur in the following resource areas: land use, farmlands, utilities, traffic and transportation, visual resources, cultural resources, hydrology, water quality, paleontology, hazardous waste, air quality, noise, energy and non-renewable natural resources, and biology. Implementation of environmental commitments and mitigation measures would ensure that all these project effects are not adverse (under NEPA) or less than significant (under CEQA). Project effects under NEPA are discussed fully in Chapter 2. Chapter 3 addresses impacts under CEQA.

Coordination with Public and Other Agencies

Notice of Preparation and Scoping

A notice of preparation of (NOP) for the proposed project was published on May 16, 2008. It was filed with the State Clearinghouse and sent to the appropriate elected officials, agencies, and interested parties.

A scoping meeting was held on June 5, 2008, from 6:30 to 8:30 p.m. at the Solano County Administration Building, at 675 Texas Street in Fairfield.

A number of means were utilized to inform the public of the scoping process and the public open house scoping meeting. A public notice was distributed to the project mailing list, which included property owners, elected officials, city staff, special interest organizations, and neighborhood groups. The Department mailed a letter to agency representatives and elected officials. Samples of these notification materials are included in Appendix G of this report.
Information pertaining to the scoping process and the public open house scoping meeting also appeared on the Solano Transportation Authority website at http://www.solanolinks.com.

Necessary Permits and Approvals

Table S-1 shows the permits and approvals that would be required.

Table S-1. Permits and Approvals

<table>
<thead>
<tr>
<th>Agency</th>
<th>Permit, Approval, or Consultation</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Fish and Wildlife Service (USFWS)</td>
<td>Consultation under Section 7 of the federal Endangered Species Act</td>
</tr>
<tr>
<td>National Marine Fisheries Service (NMFS)</td>
<td>Consultation under Section 7 of the federal Endangered Species Act</td>
</tr>
<tr>
<td>U.S. Army Corps of Engineers</td>
<td>Section 404 nationwide permit for placement of fill</td>
</tr>
<tr>
<td>California Department of Fish and Game (DFG)</td>
<td>Section 1602 streambed alteration agreement for waters of the state; CEQA trustee agency</td>
</tr>
<tr>
<td>San Francisco Bay Regional Water Quality Control Board</td>
<td>Nonpoint Source Section 402, National Pollutant Discharge Elimination System permit (General Construction Permit and Department Permit), 401 Water Quality Certification</td>
</tr>
<tr>
<td>Bay Area Air Quality Management District (BAAQMD)</td>
<td>Permit for air emission generating equipment</td>
</tr>
<tr>
<td>California Public Utilities Commission</td>
<td>GO-131 D filing requirements for high-voltage electrical lines</td>
</tr>
<tr>
<td>Local Agency Formation Commission (LAFCO)</td>
<td>Approval may be needed from LAFCO to allow extension of water service by the City of Fairfield to the Truck Scales Facility</td>
</tr>
</tbody>
</table>

Unresolved Issues

Section 15123(b) of the State CEQA Guidelines requires an EIR to identify areas of controversy known to the lead agency, including issues raised by agencies and the public. During preparation of the environmental document, no known issues of controversy were raised, and no issues remain unresolved.
Table of Contents

<table>
<thead>
<tr>
<th>Chapter 1</th>
<th>Proposed Project</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Preface</td>
<td>1-1</td>
</tr>
<tr>
<td>1.2</td>
<td>Introduction</td>
<td>1-1</td>
</tr>
<tr>
<td>1.3</td>
<td>Purpose and Need</td>
<td>1-2</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Purpose of the Project</td>
<td>1-2</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Need for the Project</td>
<td>1-3</td>
</tr>
<tr>
<td>1.3.3</td>
<td>Logical Terminology and Independent Utility</td>
<td>1-6</td>
</tr>
<tr>
<td>1.4</td>
<td>Project Description</td>
<td>1-8</td>
</tr>
<tr>
<td>1.5</td>
<td>Alternatives</td>
<td>1-8</td>
</tr>
<tr>
<td>1.5.1</td>
<td>Project Alternatives</td>
<td>1-8</td>
</tr>
<tr>
<td>1.5.2</td>
<td>Build Alternative</td>
<td>1-9</td>
</tr>
<tr>
<td>1.5.3</td>
<td>No-Build (No Action) Alternative</td>
<td>1-11</td>
</tr>
<tr>
<td>1.5.4</td>
<td>Alternatives Considered but Eliminated from Further Discussion</td>
<td>1-12</td>
</tr>
<tr>
<td>1.5.5</td>
<td>Final Decision Making Process</td>
<td>1-13</td>
</tr>
<tr>
<td>1.6</td>
<td>Funding and Programming</td>
<td>1-13</td>
</tr>
<tr>
<td>1.7</td>
<td>Permits and Approvals Needed</td>
<td>1-13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2</th>
<th>Affected Environment; Environmental Consequences; and Avoidance, Minimization, and/or Mitigation Measures</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Human Environment</td>
<td>2.1-1</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Land Use</td>
<td>2.1-1</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Growth</td>
<td>2.1-4</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Farmlands</td>
<td>2.1-5</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Community Impacts</td>
<td>2.1-8</td>
</tr>
<tr>
<td>2.1.5</td>
<td>Utilities/Emergency Services</td>
<td>2.1-11</td>
</tr>
<tr>
<td>2.1.6</td>
<td>Traffic and Transportation</td>
<td>2.1-14</td>
</tr>
<tr>
<td>2.1.7</td>
<td>Visual/Aesthetics</td>
<td>2.1-30</td>
</tr>
<tr>
<td>2.1.8</td>
<td>Cultural Resources</td>
<td>2.1-36</td>
</tr>
<tr>
<td>2.2</td>
<td>Physical Environment</td>
<td>2.2-1</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Hydrology and Floodplain</td>
<td>2.2-1</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Water Quality and Stormwater Runoff</td>
<td>2.2-4</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Geology/Soils/Seismic/Topography</td>
<td>2.2-12</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Paleontology</td>
<td>2.2-17</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Hazardous Waste/Materials</td>
<td>2.2-20</td>
</tr>
<tr>
<td>2.2.6</td>
<td>Air Quality</td>
<td>2.2-27</td>
</tr>
<tr>
<td>2.2.7</td>
<td>Noise</td>
<td>2.2-53</td>
</tr>
<tr>
<td>2.2.8</td>
<td>Energy and Non-Renewable Natural Resources</td>
<td>2.2-63</td>
</tr>
<tr>
<td>2.3</td>
<td>Biological Environment</td>
<td>2.3-1</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Natural Communities</td>
<td>2.3-1</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Wetlands and Other Waters</td>
<td>2.3-6</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Plant Species</td>
<td>2.3-12</td>
</tr>
</tbody>
</table>
Chapter 8 References Cited

Appendix A Farmland Consultation
Appendix B Relocation Assistance Program Information
Appendix C Title VI Policy Statement
Appendix D List of Technical Studies
Appendix E Compliance with 40 CFR 1502.22 and System-Wide Emissions Spreadsheet
Appendix F CALINE Model
Appendix G CEQA Checklist
Appendix H NOAA Concurrence Letter
Appendix I Biological Opinion
Appendix J FHWA Project Level Conformity Determination for the I-80 EB Cordelia Truck Scales Relocation Project
List of Tables

Table S-1 Permits and Approvals.. vi
Table 1-1 Existing and Forecast Peak Hour Truck Volumes.. 1-4
Table 1-2 Eastbound P.M. Weave Volumes, 2035 .. 1-5
Table 1-3 Accident History, January 1, 2004, to December 31, 2006 1-6
Table 1-4 Required Permits and Approvals... 1-14
Table 2.1-1 Property Acquisition and Displacement for the Project 2.1-3
Table 2.1-2 Growth-Inducement Checklist... 2.1-5
Table 2.1-3 Freeway Mainline, Weaving, and Ramp Junction Level of Service Criteria 2.1-15
Table 2.1-4 Intersection Level of Service Definitions for Highway Capacity Manual 2.1-15
Table 2.1-5 Existing (Fall 2004) Measures of Effectiveness 2.1-17
Table 2.1-6 Existing (Fall 2004) Mainline and Ramps Analysis 2.1-18
Table 2.1-7 Existing (Fall 2004) Intersection Analysis .. 2.1-19
Table 2.1-8 Year 2015 with Project—Eastbound Measures of Effectiveness 2.1-21
Table 2.1-9 Year 2015 with Project—Mainline and Ramps Analysis 2.1-22
Table 2.1-10 Year 2015 with Project—Intersection Analysis 2.1-24
Table 2.1-11 Year 2035 with Project—Eastbound Measures of Effectiveness 2.1-26
Table 2.1-12 Year 2035 with Project—Mainline and Ramps Analysis 2.1-27
Table 2.1-13 Year 2035 with Project: Intersections Analysis ... 2.1-29
Table 2.1-14 Visual Quality Change in the Selected Viewpoint 2.1-33
Table 2.2-1 Proposed Pollution Prevention BMPs by Reach 2.2-10
Table 2.2-2 Subsurface Soil and Groundwater Conditions 2.2-14
Table 2.2-3 Faults That Have the Potential to Cause Ground Shaking in the Project Area 2.2-15
Table 2.2-4 LUST Properties .. 2.2-23
Table 2.2-5 Summary of Identified Potential Hazardous Waste Facilities and 2.2-24
Recommendations..
Table 2.2-6 Ambient Air Quality Standards Applicable in California and the 2.2-28
Attainment Status of Solano County..
Table 2.2-7 BAAQMD Feasible Control Measures for Construction Emissions of 2.2-35
PM10..
Table 2.2-8 Ambient Air Quality Standards ... 2.2-38
Table 2.2-9 Attainment Status for the BAAQMD .. 2.2-39
Table 2.2-10 Ambient Air Quality Monitoring Data Measured at the Fairfield 2.2-43
Chadbourne Road and Vallejo Tuolumne Street Monitoring Stations
Table 2.2-11 CO Modeling Concentrations (ppm) .. 2.2-47
Table 2.2-12 Summary of Project-Level MSAT Emissions at Truck Scales 2.2-49
Table 2.2-13 System-Wide Project-Related Motor Vehicle Emissions 2.2-52
Table 2.2-14 Typical A-Weighted Noise Levels... 2.2-54
Table 2.2-15 Activity Categories and Noise Abatement Criteria........................... 2.2-55
Table 2.2-16 Summary of Short-Term Noise Monitoring 2.2-57
Table 2.2-17 I-80 Truck Scales Traffic Noise Impact Evaluation Activity Category B 2.2-58
and C Land Uses..
Table 2.2-18a Summary of Reasonableness Determination Data—Noise Barrier SB1 2.2-60
Table 2.2-18b Summary of Reasonableness Determination Data—Noise Barriers SB4A 2.2-61
and SB4B
Table 2.2-19 Summary of Reasonableness Allowances and Cost Estimates for the Evaluated Noise Barrier Designs SB1 and SB4 ... 2.2-61
Table 2.2-20 Construction Equipment Noise.. 2.2-62
Table 2.3-1 Effects on Waters of the State and Waters of the United States... 2.3-7
Table 2.3-2 Special-Status Plant Species with the Potential to Occur in the Project Region... follows 2.3-12
Table 2.3-3 Sensitive Wildlife and Fish Species with the Potential to Occur in the Project Region.. follows 2.3-14
Table 2.3-4 Summary of Stem Counts for Elderberry Shrubs Directly Affected in the Study Area.. 2.3-27
Table 2.3-5 Invasive Plant Species Located in the Study Area and Vicinity ... 2.3-39
Table 5-1 List of Agencies, Individuals, and Organizations Commenting on the draft EIR/EA ... 5-1
List of Figures

Follows Page

Figure 1-1 Project Location .. 1-8
Figure 1-2 Eastbound Cordelia Truck Scales Relocation Project Features 1-10
Figure 2.1-1 Property to be Acquired for the Project 2.1-4
Figure 2.1-2 Agricultural Land within the Project Area 2.1-6
Figure 2.1-3 Displaced Residences ... 2.1-10
Figure 2.1-4 Landscape Unit ... 2.1-13
Figure 2.1-5 Project Viewshed ... 2.1-32
Figure 2.1-6 Viewpoint Location ... 2.1-34
Figure 2.1-7 Visual Simulation ... 2.1-34
Figure 2.2-1a–b FEMA Flood Map ... 2.2-3
Figure 2.2-2 Fault Map ... 2.2-14
Figure 2.2-3 Geologic Map of the Project Vicinity 2.2-18
Figure 2.2-4 Paleontological Sensitivity Map of the Project Area 2.2-20
Figure 2.2-5a–b Site Plan ... 2.2-24
Figure 2.2-6 Locations of Sensitive Receptors 2.2-46
Figure 2.2-7 Sensitive Receptors and Potential Noise Barriers 2.2-58
Figure 2.3-1 Biological Resources I-80 Eastbound Cordelia Truck Scales Relocation Project, Solano County, California 2.3-2
Figure 2.3-2 Essential Fish Habitat in the Project Vicinity 2.3-22
Figure 2.3-3 California Red-legged Frog CNDDB Occurrences within a 5-Mile Radius of the Project Area .. 2.3-30
Figure 2.3-4 Special-Status Salmonid Habitat in the Project Area 2.3-36
Figure 3-1 Changes in CO₂ Emissions and Vehicle Speeds on 3-11
List of Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009 TIP</td>
<td>2009 Transportation Improvement Program</td>
</tr>
<tr>
<td>(\mu/m^3)</td>
<td>micrograms per cubic meter</td>
</tr>
<tr>
<td>AADT</td>
<td>annual average daily traffic</td>
</tr>
<tr>
<td>AB</td>
<td>Assembly Bill</td>
</tr>
<tr>
<td>ABAG</td>
<td>Association of Bay Area Government</td>
</tr>
<tr>
<td>AC</td>
<td>asphalt concrete</td>
</tr>
<tr>
<td>ACCM</td>
<td>asbestos-containing construction material</td>
</tr>
<tr>
<td>ACHP</td>
<td>Advisory Council on Historic Preservation</td>
</tr>
<tr>
<td>ADL</td>
<td>aerially deposited lead</td>
</tr>
<tr>
<td>AIRS</td>
<td>Aerometric Information Retrieval System</td>
</tr>
<tr>
<td>APE</td>
<td>area of potential effect</td>
</tr>
<tr>
<td>APN</td>
<td>Assessor’s Parcel Number</td>
</tr>
<tr>
<td>ARB</td>
<td>California Air Resources Board</td>
</tr>
<tr>
<td>ASTs</td>
<td>aboveground storage tanks</td>
</tr>
<tr>
<td>BAAQMD</td>
<td>Bay Area Air Quality Management District</td>
</tr>
<tr>
<td>basin plan</td>
<td>Water Quality Control Plan for the San Francisco Bay Basin</td>
</tr>
<tr>
<td>Bay Area</td>
<td>San Francisco Bay Area</td>
</tr>
<tr>
<td>BG</td>
<td>block group</td>
</tr>
<tr>
<td>BMPs</td>
<td>best management practices</td>
</tr>
<tr>
<td>BO</td>
<td>biological opinion</td>
</tr>
<tr>
<td>BOD</td>
<td>biochemical oxygen demand</td>
</tr>
<tr>
<td>BTUs</td>
<td>British thermal units</td>
</tr>
<tr>
<td>CAAQS</td>
<td>California’s ambient air quality standards</td>
</tr>
<tr>
<td>CAFE</td>
<td>Corporate Average Fuel Economy</td>
</tr>
<tr>
<td>Cal/OSHA</td>
<td>California Division of Occupational Safety and Health</td>
</tr>
<tr>
<td>Cal-IPC</td>
<td>California Invasive Plants Council</td>
</tr>
<tr>
<td>CAT</td>
<td>Climate Action Team</td>
</tr>
<tr>
<td>CCAA</td>
<td>California Clean Air Act</td>
</tr>
<tr>
<td>CCR</td>
<td>California Code of Regulations</td>
</tr>
<tr>
<td>CDFA</td>
<td>California Department of Food and Agriculture</td>
</tr>
<tr>
<td>CDFPP</td>
<td>California Department of Forestry and Fire Protection</td>
</tr>
<tr>
<td>CEC</td>
<td>California Energy Commission</td>
</tr>
<tr>
<td>CEQ</td>
<td>Council on Environmental Quality</td>
</tr>
<tr>
<td>CEQA</td>
<td>California Environmental Quality Act</td>
</tr>
<tr>
<td>CERCLA</td>
<td>Comprehensive Environmental Response, Compensation and Liability Act of 1980</td>
</tr>
<tr>
<td>CERFA</td>
<td>Community Environmental Response Facilitation Act</td>
</tr>
<tr>
<td>CESA</td>
<td>California Endangered Species Act</td>
</tr>
<tr>
<td>CFGC</td>
<td>California Fish and Game Code</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>CHP</td>
<td>California Highway Patrol</td>
</tr>
<tr>
<td>CHRIS</td>
<td>California Historical Resources Information System</td>
</tr>
<tr>
<td>CIA</td>
<td>community impact assessment</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>CNPS</td>
<td>California Native Plant Society</td>
</tr>
<tr>
<td>CO</td>
<td>carbon monoxide</td>
</tr>
<tr>
<td>CO₂</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>CPUC</td>
<td>California Public Utility Commission</td>
</tr>
<tr>
<td>CRHR</td>
<td>California Register of Historical Resources</td>
</tr>
<tr>
<td>CRLF</td>
<td>California red-legged frog</td>
</tr>
<tr>
<td>CSA</td>
<td>Critical Source Area</td>
</tr>
<tr>
<td>CT</td>
<td>census tract</td>
</tr>
<tr>
<td>CVEF</td>
<td>Commercial Vehicle Enforcement Facility</td>
</tr>
<tr>
<td>CWA</td>
<td>Clean Water Act</td>
</tr>
<tr>
<td>dB</td>
<td>decibel</td>
</tr>
<tr>
<td>dBA</td>
<td>A-weighted decibel</td>
</tr>
<tr>
<td>Department, the</td>
<td>California Department of Transportation</td>
</tr>
<tr>
<td>DFG</td>
<td>California Department of Fish and Game</td>
</tr>
<tr>
<td>DOC</td>
<td>California Department of Conservation</td>
</tr>
<tr>
<td>DPM</td>
<td>diesel particulate matter</td>
</tr>
<tr>
<td>DTSC</td>
<td>California Department of Toxic Substances Control</td>
</tr>
<tr>
<td>DWR</td>
<td>Department of Water Resources</td>
</tr>
<tr>
<td>E85</td>
<td>ethanol</td>
</tr>
<tr>
<td>EDR</td>
<td>Environmental Data Resource</td>
</tr>
<tr>
<td>EFH</td>
<td>Essential Fish Habitat</td>
</tr>
<tr>
<td>EIR/EA</td>
<td>environmental impact report/environmental assessment</td>
</tr>
<tr>
<td>EIS</td>
<td>environmental impact study</td>
</tr>
<tr>
<td>EMFAC</td>
<td>California Air Resource Board’s Emission Factors Model</td>
</tr>
<tr>
<td>EO</td>
<td>Executive Order</td>
</tr>
<tr>
<td>EPA</td>
<td>U.S. Environmental Protection Agency</td>
</tr>
<tr>
<td>EPCA</td>
<td>Energy Policy and Conservation Act</td>
</tr>
<tr>
<td>ERNS</td>
<td>Emergency Response Notification System</td>
</tr>
<tr>
<td>ESA</td>
<td>Endangered Species Act</td>
</tr>
<tr>
<td>ESA fencing</td>
<td>Environmentally Sensitive Area fencing</td>
</tr>
<tr>
<td>ESAs</td>
<td>environmentally sensitive areas</td>
</tr>
<tr>
<td>FEMA</td>
<td>Federal Emergency Management Agency</td>
</tr>
<tr>
<td>FERC</td>
<td>Federal Energy Regulatory Commission</td>
</tr>
<tr>
<td>FHWA</td>
<td>Federal Highway Administration</td>
</tr>
<tr>
<td>FIFRA</td>
<td>Federal Insecticide, Fungicide, and Rodenticide Act</td>
</tr>
<tr>
<td>FINDS</td>
<td>Facility Index System</td>
</tr>
<tr>
<td>FIRM</td>
<td>Flood Insurance Rate Maps</td>
</tr>
<tr>
<td>FMMP</td>
<td>Farmland Mapping and Monitoring Program</td>
</tr>
<tr>
<td>FONSI</td>
<td>Finding of no significant impact</td>
</tr>
<tr>
<td>FPPA</td>
<td>Farmland Protection Policy Act</td>
</tr>
<tr>
<td>FR</td>
<td>Federal Register</td>
</tr>
<tr>
<td>GHG</td>
<td>greenhouse gas</td>
</tr>
<tr>
<td>GO</td>
<td>General Order</td>
</tr>
<tr>
<td>gpm</td>
<td>gallons per minute</td>
</tr>
<tr>
<td>GSRD</td>
<td>gross solids removal device</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>HAPs</td>
<td>hazardous air pollutants</td>
</tr>
<tr>
<td>HCP</td>
<td>habitat conservation plan</td>
</tr>
<tr>
<td>HOV</td>
<td>High-occupancy vehicle</td>
</tr>
<tr>
<td>I-680</td>
<td>Interstate 680</td>
</tr>
<tr>
<td>I-80</td>
<td>Interstate 80</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>ISA</td>
<td>initial site assessment</td>
</tr>
<tr>
<td>ITS</td>
<td>Intelligent Transportation Systems</td>
</tr>
<tr>
<td>kg</td>
<td>kilograms</td>
</tr>
<tr>
<td>kV</td>
<td>kilovolt</td>
</tr>
<tr>
<td>LCCA</td>
<td>Life-Cycle Cost Analysis</td>
</tr>
<tr>
<td>LCP</td>
<td>lead-containing paint</td>
</tr>
<tr>
<td>L_EQ</td>
<td>equivalent sound level</td>
</tr>
<tr>
<td>LOS</td>
<td>level of service</td>
</tr>
<tr>
<td>LOTBs</td>
<td>Log of Test Borings</td>
</tr>
<tr>
<td>LPG</td>
<td>liquefied petroleum gas</td>
</tr>
<tr>
<td>LQG</td>
<td>large quantity generator</td>
</tr>
<tr>
<td>LUST</td>
<td>leaking underground storage tank</td>
</tr>
<tr>
<td>M85</td>
<td>methanol</td>
</tr>
<tr>
<td>Magnuson-Stevens Act</td>
<td>Magnuson-Stevens Fishery Conservation and Management Act</td>
</tr>
<tr>
<td>map ID Nos.</td>
<td>map identification numbers</td>
</tr>
<tr>
<td>MBTA</td>
<td>Migratory Bird Treaty Act</td>
</tr>
<tr>
<td>MCE</td>
<td>Maximum Credible Earthquake</td>
</tr>
<tr>
<td>MEI</td>
<td>maximally exposed individual</td>
</tr>
<tr>
<td>MEP</td>
<td>maximum extent practicable</td>
</tr>
<tr>
<td>MLD</td>
<td>most likely descendent</td>
</tr>
<tr>
<td>MOE</td>
<td>measures of effectiveness</td>
</tr>
<tr>
<td>mpg</td>
<td>miles per gallon</td>
</tr>
<tr>
<td>mph</td>
<td>miles per hour</td>
</tr>
<tr>
<td>MPO</td>
<td>metropolitan planning organization</td>
</tr>
<tr>
<td>MSATs</td>
<td>mobile source air toxics</td>
</tr>
<tr>
<td>MTBE</td>
<td>methyl tertiary butyl ether</td>
</tr>
<tr>
<td>MTC</td>
<td>Metropolitan Transportation Commission</td>
</tr>
<tr>
<td>NAAQS</td>
<td>national ambient air quality standards</td>
</tr>
<tr>
<td>NAC</td>
<td>noise abatement criteria</td>
</tr>
<tr>
<td>NAHC</td>
<td>Native American Heritage Commission</td>
</tr>
<tr>
<td>NBA</td>
<td>North Bay Aqueduct</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Policy Act of 1969</td>
</tr>
<tr>
<td>NHPA</td>
<td>National Historic Preservation Act of 1966, as amended</td>
</tr>
<tr>
<td>NMFS</td>
<td>National Marine Fisheries Service</td>
</tr>
<tr>
<td>NO</td>
<td>nitric oxide</td>
</tr>
<tr>
<td>NO2</td>
<td>nitrogen dioxide</td>
</tr>
<tr>
<td>NOA</td>
<td>naturally occurring asbestos</td>
</tr>
<tr>
<td>NOP</td>
<td>notice of preparation</td>
</tr>
<tr>
<td>NOx</td>
<td>oxides of nitrogen</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>NPDES</td>
<td>National Pollutant Discharge Elimination System</td>
</tr>
<tr>
<td>NRCS</td>
<td>Natural Resources Conservation Service</td>
</tr>
<tr>
<td>NRHP</td>
<td>National Register of Historic Places</td>
</tr>
<tr>
<td>NWIC</td>
<td>Northwest Information Center</td>
</tr>
<tr>
<td>O₃</td>
<td>ozone</td>
</tr>
<tr>
<td>OHWM</td>
<td>ordinary high water mark</td>
</tr>
<tr>
<td>OSHA</td>
<td>Occupational Safety and Health Act</td>
</tr>
<tr>
<td>PG&E</td>
<td>Pacific Gas and Electric Company</td>
</tr>
<tr>
<td>PM</td>
<td>post mile</td>
</tr>
<tr>
<td>PM10</td>
<td>particulate matter 10 microns or less in diameter</td>
</tr>
<tr>
<td>PM2.5</td>
<td>particulate matter 2.5 microns or less in diameter</td>
</tr>
<tr>
<td>Porter-Cologne Act</td>
<td>Porter-Cologne Water Quality Control Act of 2002</td>
</tr>
<tr>
<td>ppm</td>
<td>pounds per day</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>PRC</td>
<td>Public Resources Code</td>
</tr>
<tr>
<td>Programmatic Agreement</td>
<td>Programmatic Agreement Among the Federal Highway Administration, the Advisory Council on Historic Preservation, the California State Historic Preservation Officer, and the California Department of Transportation Regarding Compliance with Section 106 of the National Historic Preservation Act as It Pertains to the Administration of the Federal-Aid Highway Program in California</td>
</tr>
<tr>
<td>RAP</td>
<td>Relocation Assistance Program</td>
</tr>
<tr>
<td>RCP</td>
<td>reinforced concrete pipe</td>
</tr>
<tr>
<td>RCRA</td>
<td>Resource Conservation and Recovery Act of 1976</td>
</tr>
<tr>
<td>ROG</td>
<td>reactive organic gases</td>
</tr>
<tr>
<td>RSP</td>
<td>rock slope protection</td>
</tr>
<tr>
<td>RTIP</td>
<td>regional transportation improvement program</td>
</tr>
<tr>
<td>RTP</td>
<td>regional transportation plan</td>
</tr>
<tr>
<td>SAA</td>
<td>streambed alteration agreement</td>
</tr>
<tr>
<td>San Francisco Bay RWQCB</td>
<td>San Francisco Bay Regional Water Quality Control Board</td>
</tr>
<tr>
<td>SCWA</td>
<td>Solano County Water Agency</td>
</tr>
<tr>
<td>SFBAAB</td>
<td>San Francisco Bay Area Air Basin</td>
</tr>
<tr>
<td>SFPD</td>
<td>Suisun Fire Protection District</td>
</tr>
<tr>
<td>SGP</td>
<td>Strategic Growth Plan</td>
</tr>
<tr>
<td>SID</td>
<td>Solano Irrigation District</td>
</tr>
<tr>
<td>SIP</td>
<td>state implementation plan</td>
</tr>
<tr>
<td>SO₂</td>
<td>sulfur dioxide</td>
</tr>
<tr>
<td>SOₓ</td>
<td>sulfur oxides</td>
</tr>
<tr>
<td>SP</td>
<td>standard provision</td>
</tr>
<tr>
<td>SQG</td>
<td>Small Quantity Generator</td>
</tr>
<tr>
<td>SR</td>
<td>State Route</td>
</tr>
<tr>
<td>SR 12</td>
<td>State Route 12</td>
</tr>
</tbody>
</table>
Chapter 1 Proposed Project

1.1 Preface

The California Department of Transportation (the Department) prepared and circulated a draft environmental impact report/environmental assessment (EIR/EA) for the Interstate 80 (I-80) Eastbound Cordelia Truck Scales Relocation Project. The draft EIR/EA was made available for public review and comment for 45 days, from January 30, 2009 to March 18, 2009. This final EIR has been prepared in response to comments received during the public review period and includes both revised text and responses to oral and written comments.

Revisions to the draft EIR/EA are provided in the text and indicated by a line in the margin. Figures and tables that have been revised are labeled as such.

Chapter 5 contains a list of the persons, organizations, and public agencies commenting on the draft EIR/EA; the comments and recommendations received on the draft EIR/EA, and the Department’s responses to issues raised in the review and consultation process. This chapter contains responses to written and oral comments and a summary of the public hearing. Subsequent chapters have been renumbered.

1.2 Introduction

The California Department of Transportation (the Department) proposes to rebuild the eastbound Cordelia Truck Scales at a new location on Interstate 80 (I-80) in Solano County, California. The I-80 Eastbound Cordelia Truck Scales Relocation Project (project) would consist of the construction of a larger truck scale facility with more capacity, a longer off-ramp, and braided highway on-ramps that provide access to I-80 and State Route (SR) 12 East (SR 12E). The truck scale facility is less than 0.1 mile long, but the length of the project area with the ramps and utilities is approximately two miles.

The existing truck scales were constructed in 1958. They lack sufficient capacity to accommodate the current volume of truck traffic, and trucks entering and exiting the existing facility contribute to congestion and weaving, reducing the operating efficiency of I-80. Truck traffic on this stretch of I-80 is anticipated to increase dramatically over the next 30 years. As a result, the new truck scales facility would be designed with increased capacity to accommodate future truck traffic and to improve the enforcement of weight and safety requirements. The new off-ramp and braided on-ramps would address the issues related to weaving trucks and would improve safety along this stretch of I-80.

Due to the importance of I-80 and the Cordelia Truck Scales Facilities in freight movement, the project has been included by the California Transportation Commission (CTC) in the Proposition 1B Trade Corridors Improvement Fund (TCIF) program for infrastructure improvements along corridors that have a high volume of freight movement. The project is included in the Metropolitan Transportation Commission (MTC) 2035 Regional Transportation Plan (RTP) and
the 2009 Transportation Improvement Program (TIP). It was previously recommended as a mid-term project (ranked 10 out of 50 projects) in the I-80/I-680/I-780 MIS and Corridor Study (July 14, 2004). It was also included in the Cordelia Truck Scales Relocation Study: Summary Report and Recommendations (Solano Transportation Authority 2005a) that was prepared by the Solano Transportation Authority (STA), in coordination with the Department and the California Highway Patrol (CHP). This study identified the need to construct replacement scales and evaluated several alternative locations. It was concluded from this study that the best location was within the existing I-80/Interstate 680 (I-680)/SR 12 interchange complex.

1.3 Purpose and Need

The project area is located south of I-80 between the I-80/Suisun Valley Road interchange and the I-80/SR 12E interchange within Solano County. The project includes the relocation and reconstruction of the eastbound Cordelia Truck Scales and associated on- and off-ramps.

1.3.1 Purpose of the Project

The purpose of the project is to accommodate anticipated growth in truck traffic in the corridor by 2040. The project will improve the reliability of the truck weight and safety inspection and enforcement system and thereby protect the structural integrity of California roads. The project will also improve mainline safety by reducing truck/auto weaving and queuing and will provide traffic congestion relief along this segment of I-80. The proposed project will:

- **Accommodate anticipated growth in truck traffic:** The new scales facility will be sized to accommodate anticipated truck traffic growth to at least 2040, ensuring that all trucks are weighed and inspected according to CHP requirements. The new facility is designed to process 1,000 trucks per hour, compared to 400 per hour processed through the current facility.

- **Improve the reliability of the truck weight and safety inspection and enforcement system:** The new scales will improve reliability by processing trucks with more redundancy and fewer unplanned closures of the facility. The project also will improve overall system reliability by reducing congestion and improving safety in an unreliable section of the regional highway corridor.

- **Improve mainline safety:** By providing adequately-sized off- and on-ramps to serve truck merge and diverge movements, and adequately sized scales to serve the projected 2040 truck volume, the proposed project would reduce collisions and improve highway safety in the area.

- **Provide traffic congestion relief:** The scales are intended to reduce truck-related traffic congestion upstream and downstream of the facility, by providing adequate truck storage on the higher-capacity scales facility, standard-length off-ramp and on-ramps, and braided on-ramps to I-80 and SR 12E. The facility capacity and ramp lengths and design are being designed to serve 2040 traffic and truck volumes.
1.3.2 Need for the Project

Overview of Project Need
The Cordelia Truck Scales are located within the I-80/I-680/SR 12 interchange, a point at which two major interstate freeways and one state highway converge. When the facility was constructed in 1958, the interchange and truck scales were located in a relatively rural setting immediately surrounded by agricultural lands, with mountains to the north and the vast Suisun Marsh to the south.

Since 1958, the San Francisco Bay Area (Bay Area) and northern California region have experienced rapid population growth. The Bay Area’s population has increased by more than 86% during this time, and Solano County’s population has more than tripled. This tremendous growth has resulted in substantial increases in truck and regional traffic passing through the interchange area, as well as substantial changes in the land uses immediately surrounding the interchange.

The truck scales significantly contribute to the congestion on I-80 because of the large number of trucks exiting and entering I-80 and the close proximity of the scales to the Suisun Valley Road, I-680, and SR 12E interchanges. The location of the truck scales is ideal for monitoring and enforcing truck weight and safety requirements because it provides one location that can monitor truck traffic on I-80, I-680, and SR 12. However, because of the high volume of trucks within the corridor, it is frequently necessary for the CHP to close the scales when queuing trucks begin to back up onto the mainline freeway. The large volume of trucks exiting and entering the highway creates a severe weaving problem, which is made worse by the size, limited maneuverability, and lower speeds of large trucks.

The specific deficiencies to be addressed by the project are described below.

Deficiencies to be Addressed by the Project

Inadequate Enforcement
The Cordelia Truck Scales are currently in an optimum location for truck inspections and weight enforcement, capturing virtually all freeway truck traffic traveling on I-80, I-680, and SR 12. These inspections are an important function of a truck scales facility. Because the existing facility has inadequate inspection capacity and a substandard-length off-ramp, the queue of waiting trucks periodically extends back onto the I-80 mainline, causing a traffic safety hazard. When the queue gets too long, the CHP, which controls operations at the facility, temporarily closes the scales. Although the closures are necessary for traffic safety, allowing trucks to bypass the scales altogether compromises the enforcement of weight and safety requirements. These closures typically occur about 15 times per week, according to the CHP.

The current facility cannot reliably serve existing truck volumes, and it will be even less able to serve the projected volume of trucks in the future, to the year 2040. The volume of trucks traveling on the regional freeway and highway system has increased dramatically as the economy in northern California has grown. Within the project area, trucks constitute about 5% of the total daily traffic volume. The total daily truck volume in 2003 passing through the interchange area was 11,800. Truck traffic is forecast to increase by 70% by 2025 and by 115%
by 2040 (Solano Transportation Authority 2005a). This increase result in more than 25,300 trucks passing through the interchange area each weekday. Table 1-1 shows the existing and forecast peak hour truck volumes.

Table 1-1. Existing and Forecast Peak Hour Truck Volumes

<table>
<thead>
<tr>
<th>Location</th>
<th>Existing Peak-Hour Truck Volumes</th>
<th>Year 2025 Peak-Hour Truck Volumes</th>
<th>Year 2025 Peak-Hour Truck Volumes with 15% Reduction Assumed for Increased PrePass Use</th>
<th>Year 2040 Peak-Hour Truck Volumes</th>
<th>Year 2040 Peak-Hour Truck Volumes with 15% Reduction Assumed for Increased PrePass Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Westbound I-80 at scales</td>
<td>524</td>
<td>890</td>
<td>757</td>
<td>1,127</td>
<td>958</td>
</tr>
<tr>
<td>Eastbound I-80 at scales</td>
<td>552</td>
<td>940</td>
<td>799</td>
<td>1,187</td>
<td>1,009</td>
</tr>
<tr>
<td>Westbound I-80 at Travis Boulevard</td>
<td>401</td>
<td>680</td>
<td>578</td>
<td>863</td>
<td>734</td>
</tr>
<tr>
<td>Eastbound I-80 at Travis Boulevard</td>
<td>417</td>
<td>710</td>
<td>604</td>
<td>897</td>
<td>763</td>
</tr>
</tbody>
</table>

Source: Solano Transportation Authority 2005a.

The STA, the Department, and the CHP have recognized the need to reconstruct the scales to accommodate the current and projected volume of truck traffic. New scales within the interchange area are planned to process 1,000 trucks per hour, which—in combination with the forecasted use of the PrePass system—would accommodate the estimated increase in truck traffic to the year 2040.

Truck-Related Congestion

Although the truck scales are currently in an optimum location to capture virtually all freeway truck traffic traveling on I-80, I-680, and SR 12, they also are located on the most congested freeway segment in Solano County. Trucks slowing to enter the short (approximately 500 feet) off-ramp to the scales, and accelerating to enter I-80 on the short on-ramp from the scales, exacerbate the congestion problem, as do trucks queuing onto the mainline from the short off-ramp to the facility. The I-80/I-680/I-780 MIS and Corridor Study states,

> The Cordelia Truck Scales generate significant congestion in Segment 1 [the I-80/I-680/SR 12 Interchange complex] during peak hours. The scales also constrain the widening of I-80 in Segment 1 in their current location, and need to be relocated prior to additional improvements being pursued in this section. The recommendation of the STA Board of Directors is to relocate/reconstruct the scales in a location east of Suisun Creek within Segment 1.

Currently, congestion develops during the commute peak hours as a result of trucks weaving with traffic streams to and from the I-680 connector ramps, the local Suisun Valley/Green Valley ramps, and the SR 12E and SR 12W connector ramps. This congestion will worsen significantly by 2035. The a.m. peak hour congestion in the westbound direction extends from the I-80/I-680 junction to West Texas Street, a distance of nearly 4.5 miles. Heavy westbound on-ramp volumes from the SR 12E and Air Base Parkway interchanges also contribute to the congestion during the a.m. peak period. During the p.m. peak period, heavy eastbound on-ramp volumes

While the current combination of general vehicle traffic volumes and truck volumes create congestion, the I-80 mainline traffic volume is projected to increase by about 2% per year, to 270,000 daily vehicles, in 2035. Along with the truck traffic increase described above, the traffic increases will severely worsen current congestion and safety conditions if the scales are not expanded to accommodate the higher truck volumes and moved to a location that provides for maximum weaving lengths and for braiding critical traffic streams. Table 1-2 shows the projected 2035 eastbound p.m. weave volumes at the truck scales.

Table 1-2. Eastbound P.M. Weave Volumes, 2035

<table>
<thead>
<tr>
<th>Location</th>
<th>Total Volume (Weaving Volume Plus Through Volume to Points Farther East)</th>
<th>To Suisun Valley Road</th>
<th>To Truck Scales</th>
<th>To SR 12E</th>
</tr>
</thead>
<tbody>
<tr>
<td>From I-680</td>
<td>3,935</td>
<td>495</td>
<td>95</td>
<td>810</td>
</tr>
<tr>
<td>From I-80 west of SR 12W</td>
<td>9,580</td>
<td>340</td>
<td>320</td>
<td>1,765</td>
</tr>
<tr>
<td>From Suisun Valley Road</td>
<td>1,985</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td>435</td>
</tr>
<tr>
<td>From SR 12W</td>
<td>2,420</td>
<td>5</td>
<td>70</td>
<td>555</td>
</tr>
</tbody>
</table>

(Source: Solano-Napa Travel Demand Model, November 2006 (Solano Transportation Authority 2006).

Unreliable Freight Transport
Currently, travel times for truck trips through the corridor are unpredictable due to the queues that develop within the scales facility and congestion that is partially caused by trucks maneuvering into and out of the scales facility, described above. This unpredictability will increase as vehicle and truck volumes grow, also described above. Further unpredictability results from the increased likelihood of breakdowns due to un-inspected trucks that have been allowed to bypass the scales when they are periodically closed due to queues backing up onto the mainline.

Traffic Safety
The combination of high vehicle and truck volumes, truck diverge and merge maneuvers on substandard-length ramps, and substandard distances between adjacent interchanges (all described above) contribute to safety concerns in the project area. The large volume of trucks exiting and entering the highway creates a severe weaving problem, which is compounded by the size, limited maneuverability, and lower speed of large trucks. Additionally, truck traffic sometimes backs up on the off-ramp to the scales, slowing approaching truck traffic further (the scales are closed when the queues reach the mainline). Recent accident rates demonstrate that accidents occur more frequently along I-80 near the scales than on similar freeway facilities statewide. Accident data for three years, 2004–2006, from the Department’s Traffic Accident Surveillance and Analysis System (TASAS) for I-80 in the vicinity of the Cordelia Truck Scales are shown in Table 1-3. Locations where the actual accident rate on I-80 exceeds the statewide average for similar facilities are shaded in the table. The total accident rates for most segments of I-80 between Red Top Road and Air Base Parkway exceed the average rates for similar facilities. Rates for fatal accidents or fatal plus injury
accidents, or both, exceed the statewide average on each I-80 segment. The highest total accident rate is on I-80 between the I-80/I-680 connector structure and the Suisun Valley Road overcrossing; this segment is located just west of the eastbound off-ramp to the eastbound scales.

Table 1-3. Accident History, January 1, 2004, to December 31, 2006

<table>
<thead>
<tr>
<th>Location</th>
<th>Post Mile</th>
<th>Number of Accidents</th>
<th>Actual Accident Rate (accidents per million vehicle miles)</th>
<th>Average Accident Rate (accidents per million vehicle miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total Fatal Fatal plus Injury Total Fatal Fatal plus Injury Total Fatal Fatal plus Injury</td>
<td></td>
</tr>
<tr>
<td>I-80—westerly project limit to Red Top Road undercrossing</td>
<td>10.89 to 11.39</td>
<td>86 0 19</td>
<td>1.29 0.000 0.29</td>
<td>0.82 0.004 0.26</td>
</tr>
<tr>
<td>I-80—Red Top Road undercrossing to SR 12W/I-80 connector structure</td>
<td>11.39 to 11.98</td>
<td>83 0 19</td>
<td>1.05 0.000 0.24</td>
<td>0.83 0.004 0.24</td>
</tr>
<tr>
<td>I-80—SR 12W/I-80 undercrossing to Green Valley Road overcrossing</td>
<td>11.98 to 12.74</td>
<td>157 1 36</td>
<td>1.20 0.008 0.27</td>
<td>0.94 0.005 0.30</td>
</tr>
<tr>
<td>I-80—Green Valley Road overcrossing to I-680/I-80 connector structure</td>
<td>12.74 to 13.09</td>
<td>117 1 24</td>
<td>1.63 0.014 0.33</td>
<td>1.05 0.005 0.33</td>
</tr>
<tr>
<td>I-80—I-680/I-80 connector structure to Suisun Valley Road overcrossing</td>
<td>13.09 to 13.49</td>
<td>158 0 34</td>
<td>1.81 0.000 0.39</td>
<td>1.10 0.006 0.35</td>
</tr>
<tr>
<td>I-80—Suisun Valley Road overcrossing to SR 12E/I-80 connector structure</td>
<td>13.49 to 15.81</td>
<td>598 1 137</td>
<td>1.10 0.002 0.25</td>
<td>1.04 0.006 0.34</td>
</tr>
<tr>
<td>I-80—SR 12E/I-80 connector structure to Abernathy Road overcrossing</td>
<td>15.81 to 16.17</td>
<td>61 1 18</td>
<td>0.83 0.014 0.24</td>
<td>1.05 0.005 0.33</td>
</tr>
<tr>
<td>I-80—Abernathy Road overcrossing to West Texas Street undercrossing</td>
<td>16.17 to 17.20</td>
<td>200 2 63</td>
<td>0.95 0.010 0.30</td>
<td>1.05 0.005 0.33</td>
</tr>
<tr>
<td>SR 12E—SR 12E/I-80 connector to Chadbourne Road undercrossing</td>
<td>1.85 to 2.22</td>
<td>7 0 3</td>
<td>0.48 0.000 0.21</td>
<td>0.76 0.006 0.28</td>
</tr>
<tr>
<td>SR 12E—Chadbourne Road undercrossing to Beck Avenue</td>
<td>2.22 to 3.20</td>
<td>64 2 31</td>
<td>1.54 0.048 0.75</td>
<td>1.13 0.011 0.44</td>
</tr>
<tr>
<td>SR 12E—Beck Avenue to Pennsylvania Avenue</td>
<td>3.20 to 4.07</td>
<td>108 1 50</td>
<td>2.49 0.023 1.15</td>
<td>1.82 0.022 0.84</td>
</tr>
<tr>
<td>SR 12E—Pennsylvania Avenue to Civic Center Boulevard</td>
<td>4.07 to 4.74</td>
<td>55 0 25</td>
<td>1.51 0.000 0.68</td>
<td>1.27 0.012 0.50</td>
</tr>
</tbody>
</table>

Source: Caltrans TASAS data, 2004–2006.

Note: Shading denotes locations that exceed the statewide average accident rate.

1.3.3 Logical Termini and Independent Utility

FHWA provides guidance for establishing the logical termini and independent utility of a project (FHWA 1993). The proposed project must satisfy an identified need (e.g., safety, rehabilitation, economic development, or capacity improvements), and should be considered in the context of the local area (e.g., socioeconomics, topography, future travel demand, and other infrastructure...
improvements in the area). The U.S. DOT/FHWA regulations identify three general principles used in demonstrating a proposed project’s logical termini (or end points) and independent utility (23 CFR 7711.111[f]). To ensure meaningful evaluation of alternatives and to avoid commitments to transportation improvements before they are fully evaluated, the proposed project must meet the following criteria:

- **Connect logical termini and be of sufficient length to address environmental matters on a broad scope.** Logical termini for project development are defined as (1) rational end points for a transportation improvement, and (2) rational end points for a review of the environmental impacts. The environmental impact review frequently covers a broader geographic area than the strict limits of the transportation improvements. In the past, the most common termini have been points of major traffic generation, especially intersecting roadways. This is due to the fact that in most cases traffic generators determine the size and type of facility being proposed. Choosing a corridor of sufficient length to evaluate all impacts need not preclude staged construction. Construction may be "staged," or programmed for shorter sections or discrete construction elements as funding permits (FHWA 1993).

- **Have independent utility or significance.** A project that is independent must be usable and be a reasonable expenditure, even if no additional transportation improvements in the area are made. A project is considered “independent” when it can function, or operate, on its own, without further construction of an adjoining segment. The project must serve a significant purpose even if a second, related project is not built.

- **Not restrict consideration of alternatives for other reasonably forseeable transportation improvements.** A project must not foreclose the opportunity to consider alternatives for a future, related transportation improvement. Project termini must be selected to prevent a highway improvement from “forcing” further improvements which may have negative consequences not addressed in environmental studies.

The I-80 Eastbound Cordelia Truck Scales Relocation project meets these criteria as described below.

The project has logical termini and is of sufficient length to address environmental matters on a broad scope. The project involves the relocation of the eastbound truck scale facility and the project area includes the current location of the eastbound truck scales (which will be removed), the site of the new facility, and associated on- and off-ramps of sufficient length to satisfy safety concerns. The western end point on I-80 is at PM 13.8, in the vicinity of the Scandia Family Fun Center. The eastern end point along I-80 and the western end point along SR 12E is at the I-80/SR 12E interchange at I-80 PM 15.7 and SR 12E PM L1.8. The eastern end point along SR 12E is at PM L2.0, just west of Chadbourne Road. As proposed, the project meets the overall objectives and the purpose and need.

The project area encompasses a geographic area of sufficient size and scope for improvements so that environmental issues can be addressed on a comprehensive level. For the traffic and other environmental issues, a study area beyond the project limits was established to ensure that environmental impacts were analyzed beyond the proposed physical improvements/project limits. For traffic, the study area includes components of the regional freeway systems and ramp
terminal intersections in the eastbound direction on I-80 from Red Top Road to Air Base Parkway, the northbound direction on I-680 between Gold Hill Road and I-80, and on SR 12E from I-80 to Civic Center Drive.

Other improvements would not be needed for the I-80 Eastbound Cordelia Truck Scales to improve traffic conditions, safety, and enforcement. The project would result in improved network-wide freeway operations in 2015 and improved conditions or no change at most mainline sections and ramps. The construction of the eastbound relocated truck scales would also reduce accidents in the corridor by providing standard length ramps for the truck scales and reducing truck merging movements. Also, the eastbound truck scales are an independent project and a separate facility that functions independently of the highway or westbound facility to improve truck weight and safety inspection.

The I-80 Eastbound Cordelia Truck Scales Relocation project would not impede other foreseeable highway improvement projects. The project is included in the adopted RTP, Transportation 2035 Plan for the San Francisco Bay Area (Metropolitan Transportation Commission 2009a) and adopted TIP, 2009 Transportation Improvement Program (Metropolitan Transportation Commission 2008). Therefore, this project has been considered in conjunction with other planned improvement projects and would not foreclose the implementation of other transportation improvements in the area.

This project will not result in traffic impacts that would need to be addressed by future project.

1.4 Project Description

The project area is located within Solano County in the vicinity of the I-80/I-680/SR 12 Interchange (Figure 1-1). The project consists of constructing a new expanded truck scale facility to accommodate truck traffic in the eastbound direction, constructing associated on- and off-ramps, and removing the existing eastbound truck scales. The construction of the project would reduce truck-related congestion and accommodate anticipated growth in truck traffic, as well as improve mainline safety and improve the reliability of the truck weight and safety inspection enforcement.

The existing eastbound truck scales were constructed in 1958. The facility consists of four inspection bays and limited parking.

1.5 Alternatives

1.5.1 Project Alternatives

Based on extensive planning conducted by the Department, the CHP, and the STA, which is documented in the Cordelia Truck Scales Relocation Study: Summary Report and Recommendations (Solano Transportation Authority 2005a), one build alternative for the project is being considered in this environmental impact report/environmental assessment (EIR/EA).
Figure 1-1
Project Location
The California Environmental Quality Act (CEQA) also requires that a no-project alternative be considered in the EIR. The alternatives are described below.

1.5.2 Build Alternative

The build alternative (the proposed project) would consist of the construction of a new eastbound truck scale facility; the construction of associated ramps, including one bridge and one overcrossing; and the removal of the existing eastbound truck scale facility and associated ramps (Figure 1-2).

Truck Scales
The Eastbound Cordelia Truck Scales facility would be reconstructed approximately 2,500 feet to the east of its present location. The new facility would be a Class B Commercial Vehicle Enforcement Facility (CVEF) (*Class B* being defined as an independent command facility of the CHP located along a major highway route), which would have the capacity to inspect all eastbound I-80 trucks passing the facility, 24 hours per day, seven days a week. The facility would contain up to four sets of scales to accommodate two lines of empty and loaded trucks. The new facility would contain seven inspection bays, parking for automobiles and semi-truck trailer combinations, and a roadway along the outer edge of an oval to allow weighed trucks to be driven around into the inspection bays or to be reweighed. A single-story operations building would be constructed to facilitate the vehicle inspection and weighing process.

The facility will be designed to be compliant with the Americans with Disabilities Act guidelines. All parts of the building will be accessible to the physically disabled in compliance with the requirements of Chapter 11 of the California Building Code. The only exceptions are the inspection pits, which will not be accessible. In addition, accessible parking for the disabled will be provided.

The facility also will incorporate several energy efficient and environmentally conscious (green) facilities. The project seeks to achieve a USGBC Silver LEED certification. The building will be designed to use approximately 28% less energy and 30% less water than a typically designed building the same size as the truck scales facility. The building will incorporate a solar-voltaic system on the roof which is expected to generate more than 12% of the building’s energy needs; day-lighting will be used in 75% of the rooms to reduce the amount of electric lighting needed. The project will use recycled materials, locally available materials, and numerous other energy efficient and environmentally conscious materials and systems.

Associated Ramps
Associated ramps would include an off-ramp providing access to the truck scale facility from eastbound I-80 and on-ramps providing access to eastbound I-80 and SR 12E.

The off-ramp to the new truck scale facility would use the existing off-ramp location and geometry, which consists of a single-lane exit. The new off-ramp would widen to a two-lane facility through the existing truck scale site and would widen to four lanes immediately west of Suisun Creek. The new off-ramp would cross over Suisun Creek on a new bridge before entering
the new truck scale facility. Truck traffic would be sorted along the approach roadway into the appropriate lane by means of weigh-in-motion scales and signal bridges.

Trucks leaving the facility would use a new two-lane eastbound roadway that splits approximately 1,300 feet east of the facility, with one lane merging onto eastbound I-80 and the other lane connecting to the eastbound I-80–to–eastbound SR 12E connector.

Eastbound I-80–to–SR 12E Connector
The eastbound I-80–to–eastbound SR 12E connector would be reconstructed as a two-lane ramp crossing over (braided with) the truck scale on-ramp to eastbound I-80. The eastbound I-80–to–eastbound SR 12E connector would consist of a two-lane connection (one dedicated SR 12E lane and a shared through-exit lane) and would be supported by a two-column central support and retaining walls on both approaches as it crosses over the truck scale on-ramp. The new dedicated lane on I-80 would begin approximately 2,500 feet west of the exit point to the connector. The two-lane connector would continue east, becoming SR 12E, with the truck scale on-ramp joining as an auxiliary lane that would end at the SR 12E/Chadbourne Road interchange off-ramp.

Bridge over Suisun Creek
A four-lane, precast, single-span bridge would be constructed to carry truck traffic on the off-ramp over Suisun Creek. Abutments for the bridge would be located above the ordinary high water mark (OHWM) of the creek.

Utilities

Relocation
As part of the proposed project, several utilities would need to be relocated as identified below. Relocating the utilities would occur during the construction phase of the proposed project. A pole on the 12-kilovolt (kV) line crossing I-80 adjacent to Suisun Creek would be relocated to accommodate the proposed truck scale off-ramp. From this point, the line to the southeast, consisting of seven poles, would be relocated within an easement around the south side of the proposed truck scale inspection and parking facility to the existing warehouses south of the proposed facility. Two parallel 115-kV lines cross I-80 immediately west of the I-80/SR 12E interchange. The two towers (one on each line) on the south side of I-80 would be relocated within the existing tower line easement. A pole on the 12-kV line crossing I-80 immediately west of the I-80/SR 12E interchange near Hale Ranch Road would be relocated to accommodate the proposed eastbound I-80–to–eastbound SR 12E connector. Impacts associated with the various utility relocations are addressed in this EIR/EA pursuant to California Public Utilities Commission (PUC) General Order (GO)-131 D filing requirements. The precise field location of high-risk utilities will be identified during final design in accordance with the Department’s procedures.

As part of the proposed project, drainage and irrigation facilities that conflict with the project would be relocated to maintain their existing function, with the exception of the Valine Lateral, which will be abandoned and removed.

The Solano Irrigation District (SID) pipeline beneath Suisun Creek would be extended to accommodate the construction of the new eastbound truck scales off-ramp. Bore and jack
Eastbound Cordelia Truck Scales Relocation Project Features

- Existing Bridge
- New Single Spans Bridge over Suisun Creek
- Eastbound Connection from I-80 to SR-12E
- On-ramps from Truck Scales to SR-12E and I-80
- Underground Utilities
- Elevated Connector from I-80 to SR-12E
- Suisun Irrigation District Pipeline Realignment
- Extension of Existing Truck Scales Off-ramp

Legend:
- Potential Area of Disturbance
- Proposed New and Expanded/Improved Roads
- Bridge
- Creeks

Revised Figure 1-2
technology would be used to relocate the 18-inch diameter SID water pipeline approximately 150 feet to the south of its current location. The boring and receiving pits would be located approximately 30 to 50 feet from Suisun Creek on either side.

Service to Site

Water, sewer, communication, and electrical services for the truck scales would be provided by underground utilities. The underground lines would connect to existing utilities to the west (in the vicinity of the Scandia amusement park) and would follow the road shoulder, remaining entirely within the existing Department right-of-way. It is expected that excavation for these utilities would be approximately eight to 10 feet deep and would parallel existing underground utilities. The utilities, attached to the I-80 bridges, would cross both Suisun and Dan Wilson Creeks.

Removal of Existing Truck Scales

The existing eastbound facility would be removed after the new facility becomes operational.

Construction Activities

Construction activities would include grading and paving, excavation for bridge foundations and utilities, pile driving, and power pole/tower replacement. Construction equipment would access the project area from the road shoulder on the south side of I-80 or Hale Ranch Road. Staging areas would be located within 20 feet of the new ramp alignments.

Excavation associated with project construction would include grading for the new on- and off-ramp alignments and the new facility location, excavation for the installation of underground utilities and power poles/towers, excavation for retaining wall footings, and excavation for pile caps. Grading is not expected to exceed five feet of cut as part of the project construction. Underground utilities would be located within the Department’s right-of-way and the new truck scale facility footprint. Excavation for utilities would extend to a maximum depth of 10 feet.

The clear span bridge over Suisun Creek would be precast and lowered into place. The abutments would be supported by piles that would extend approximately 70 feet below the abutment. The two central columns for the eastbound I-80–to–eastbound SR 12E connector would be supported by pile caps that extend 13 to 15 feet below the ground surface and by piles that extend 70 feet below the bottom of the pile caps.

Construction equipment would not cross Suisun Creek. Access would be from the north, and all creek crossings would occur from I-80.

The new truck scales facility would be constructed on fill. Excavation for building foundations and underground utilities is not expected to extend beyond the fill.

1.5.3 No-Build (No Action) Alternative

Under the no-build alternative, the existing truck scales would remain in operation, and no expanded facility would be constructed. The facility would retain the two dynamic and one static scale and four inspection bays, and the capacity of the existing truck scales would not be
enhanced. Truck traffic exceeding the capacity of the facility would continue to result in scale closures. A single lane off-ramp would remain, continuing to contribute to congestion in the area as trucks queued as a result of the limited capacity of the facility and the increasing number of trucks exiting the highway. The single on-ramp with a 705-foot acceleration lane would not be extended or improved and trucks would continue to enter the highway at slow speeds and contribute to safety concerns associated with trucks weaving into highway traffic.

1.5.4 Alternatives Considered but Eliminated from Further Discussion

In February 2005 the STA, in coordination with the Department and the CHP, completed the *Cordelia Truck Scales Relocation Study: Summary Report and Recommendations* (Solano Transportation Authority 2005a). This study identified the need to construct replacement scales and evaluated several alternative locations along the I-80, I-505, SR 12, and SR 113 corridors. The study was conducted as a four-tier technical analysis. Tier 1 initially screened 24 sites for physical size, impact of freeway operations, and environmental fatal flaws. Eleven of the 24 sites were evaluated further in Tier 2, which screened for specific geometric requirements, traffic operations, additional environmental impacts, and right-of-way requirements. Three options were subjected to a detailed technical analysis in Tier 3. The three potential options analyzed are listed below.

- Option 1: relocating and expanding the scales within the I-80/I-680/SR 12 interchange.
- Option 2: building new scales on I-80 between Fairfield and Vacaville and on SR 12 between I-80 and SR 113.
- Option 3: building new scales on I-80 between Vacaville and Dixon, on SR 12 between I-80 and SR 114, and on I-505 between Vacaville and Winters.

The Tier 3 detailed technical analysis of these three options considered the following five criteria:

- Capital cost.
- Thirty-five–year operations and maintenance.
- Right-of-way requirements.
- Environmental considerations.
- Traffic operations.

The initial conclusion from the Tier 3 analysis was that Option 3 provided the best relocation option because it provided the lowest capital investment and the best flexibility in implementation and had the least impact on traffic operations. Additionally, the sites were in relatively rural areas, consistent with similar facilities in the state.

The Tier 4 analysis was initiated by the release of the draft *Cordelia Truck Scales Relocation Study: Summary Report and Recommendations* for public review and comment. This document addressed all three options. In addition to public comments, STA received input from the Department and CHP staff. CHP staff expressed opposition to moving the truck scale facility...
outside the I-80/I-680/SR 12 Interchange because of concerns about increased operating costs for multiple facilities, as well as concerns regarding capturing all truck traffic.

As a result of public input, Options 1 and 3 were revised, and Option 2 was eliminated. Option 1 was revised to reflect a modified design, developed through a cooperative effort of the STA, the CHP, and the Department, for the scale facilities within the I-80/I-680/SR 12 interchange. The revised design significantly reduced capital costs and increased the peak hour truck throughput when compared with the original proposed design. The revisions to Option 3 consisted of moving the proposed locations for facilities on I-80 and SR 12.

Based upon the findings of the four-tiered analysis conducted for the Cordelia Truck Scales Relocation Study: Summary Report and Recommendations, the STA board of directors recommended to the State of California that the truck scales be relocated as identified in the revised Option 1. Option 1 allowed for a comparable capital investment to Revised Option 3 and was better accepted by the public. Additionally, Option 1 allowed for more reliable enforcement, as fewer alternate routes enabling trucks to avoid the scales would need to be patrolled.

1.5.5 Final Decision Making Process

After the public circulation period, all comments were considered, and the Department selected a preferred alternative and made the final determination of the project’s effect on the environment. In accordance with CEQA, the Department will certify that the project complies with CEQA, prepare findings for all significant impacts identified, and certify that the findings had been considered prior to project approval. The Department will file a Notice of Determination with the State Clearinghouse that will identify that the project will have significant impacts, the mitigation measures included as conditions of project approval, and that findings were made. Similarly, the Department, as assigned by FHWA, has determined the NEPA action does not significantly impact the environment, and will issue a Finding of No Significant Impact (FONSI) in accordance with NEPA.

1.6 Funding and Programming

The proposed project is fully funded for $99.6 million, with $49.8 million coming from Transportation Corridor Improvement Funds (TCIF) and $49.8 million coming from Toll Bridge Funds. The proposed action is included in the MTC’s 2035 Regional Transportation Plan (RTP) and the 2009 Transportation Improvement Program (TIP). The proposed project is also included in STA’s I/80/I-680/I-780 Major Investment and Corridor Study (STA 2004) and STA’s Cordelia Truck Scales Relocation Study (STA 2005a).

1.7 Permits and Approvals Needed

Table 1-4, below, lists the permits and other approvals that would likely be necessary for the various project elements.
Table 1-4. Required Permits and Approvals

<table>
<thead>
<tr>
<th>Agency</th>
<th>Permit, Approval, or Consultation</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Fish and Wildlife Service (USFWS)</td>
<td>Consultation under Section 7 of the federal Endangered Species Act (ESA)</td>
<td>Pending</td>
</tr>
<tr>
<td>National Marine Fisheries Service (NMFS)</td>
<td>Consultation under Section 7 or the federal Endangered Species Act</td>
<td>Pending</td>
</tr>
<tr>
<td>U.S. Army Corps of Engineers</td>
<td>Section 404 nationwide permit for placement of fill</td>
<td>Pending</td>
</tr>
<tr>
<td>California Department of Fish and Game (DFG)</td>
<td>Section 1602 streambed alteration agreement for waters of the state; CEQA trustee agency</td>
<td>Pending</td>
</tr>
<tr>
<td>San Francisco Bay Regional Water Quality Control Board (San Francisco Bay RWQCB)</td>
<td>Nonpoint Source Section 402, National Pollutant Discharge Elimination System (NPDES) permit (General Construction Permit and Department Permit), 401 Water Quality Certification</td>
<td>Pending</td>
</tr>
<tr>
<td>Bay Area Air Quality Management District (BAAQMD)</td>
<td>Permit for air emission generating equipment</td>
<td>Pending</td>
</tr>
<tr>
<td>California Public Utilities Commission</td>
<td>GO-131 D filing requirements for high-voltage electrical lines</td>
<td>Pending</td>
</tr>
<tr>
<td>Local Agency Formation Commission (LAFCO)</td>
<td>Approval may be needed from LAFCO to allow extension of water service by the City of Fairfield to the Truck Scales Facility</td>
<td>Pending</td>
</tr>
</tbody>
</table>
Chapter 2 Affected Environment; Environmental Consequences; and Avoidance, Minimization, and/or Mitigation Measures

As part of the scoping and environmental analysis conducted for the project, the following environmental issues were considered but no adverse impacts were identified: wild and scenic rivers, coastal zone, parks and recreation areas, and timberlands. Consequently, there is no further discussion regarding these issues in this document.

All other environmental issues are addressed in this chapter.

Measures identified in this chapter represent environmental commitments included as part of the project.
2.1 Human Environment

2.1.1 Land Use

The information below is summarized from the community impact assessment (CIA) prepared for the proposed project (CirclePoint 2008a). This section describes the existing land uses in the study area. This includes a discussion of existing land uses and applicable Solano County General Plan (Solano County 2001) goals and policies that relate to land use in the project area.

Existing and Future Land Use
The project area lands south of I-80 are used primarily for agricultural purposes. There are two residences and associated outbuildings located within the project footprint. Surrounding land uses are also mainly agricultural in nature and include several residences located along Cordelia Road to the south of the project footprint. Suisun Creek crosses the project footprint and runs under I-80 in this area. The north/south-running creek has a narrow riparian corridor associated with it. To the west of the project footprint, land uses include commercial and retail uses situated around the I-80/Suisun Valley Road interchange. Land uses to the east include warehousing and industrial/manufacturing uses near the SR 12/Chadbourne Road interchange.

Within the immediate project area, the agricultural land uses have remained stable and have not changed in the last several decades. Because of Solano County’s (the County’s) general plan land use designation and zoning restricting use to agricultural activities, this is expected to continue into the foreseeable future. In the current Draft General Plan Update for Solano County Land Use Diagram, the project area is still designated for agricultural uses (Solano County 2008).

Development trends in surrounding areas are also relatively stable. Land uses to the west surrounding the I-80/Suisun Valley Road interchange have changed over the last decade as infill development of retail and commercial uses has occurred on vacant parcels. There remain several vacant parcels in this area that most likely will be developed with retail/commercial uses. The industrial, manufacturing, and warehousing uses to the east also have remained relatively stable, with some infill development occurring. However, the limits of the development in this area are well-defined and are not anticipated to expand because the project area is bound by lands zoned for agricultural use and the Suisun Marsh to the south and west. Land uses to the northwest are changing as a formerly agricultural parcel is being developed with residential and mixed-use development (the Fairfield Corporate Commons project). This development is located within Fairfield and is a continuation of development that has occurred along the north side of I-80 along Business Center Drive within the city of Fairfield. This development trend is not anticipated to continue eastward beyond Suisun Creek. Suisun Creek marks the border between Fairfield and Solano County.

Consistency with State, Regional, and Local Plans and Programs
All cities and counties in California are required to adopt a “comprehensive, long-term general plan for [their] physical development” (Government Code, Section 65300). The general plan acts
as a policy blueprint for the location of land uses, open space, agricultural land, and transportation facilities; for the conservation of natural resources; and for the avoidance of physical hazards. A general plan is implemented by the city’s or county’s zoning ordinance (which establishes specific development standards and regulations), subdivision ordinance (which establishes the rules for subdividing land), and other adopted plans and regulations. Each city and each county has a unique general plan and unique implementing ordinances.

The proposed project is generally consistent with the goals and objectives included in the Land Use Element of the Solano County General Plan. A primary goal of the general plan (Goal 5) is to “[p]rovide and maintain a safe, economical and efficient circulation and transportation system to ensure adequate multi-modal movement of people and goods within, to and from, the County while incurring the least social, economic, and environmental harm to existing or planned activities and land uses.” The project would improve transportation and reduce congestion, which directly serves and is consistent with this goal.

Another land use goal applicable to the project is a goal within the Solano County General Plan Development Strategy, which provides for “orderly growth which assures a harmonious relationship of land uses, both rural and urban, and maintains the distinctive character of each community in Solano County.” Although the project would affect and remove agricultural land and remove two existing residences, it would not otherwise affect the continued agricultural use of the surrounding area, and the project itself would not divide or otherwise have an adverse effect on communities or neighborhoods in Solano County.

The proposed project is included in the Metropolitan Transportation Commission’s (MTC’s) Transportation 2035 Plan and 2009 Transportation Improvement Program (identified as reference number 22701), and is therefore consistent with both of these plans.

The Solano County Water Agency has initiated preparation of the Solano Multi-Species Habitat Conservation Plan. The Draft Plan is anticipated to be available for public review in the Spring of 2009 and with adoption of the Habitat Conservation Plan sometime in the Winter of 2009.

Affected Environment
Several small parcels of undeveloped land, as well as portions of several larger agricultural parcels, are located within the project area. The project area also includes two existing residences and several associated buildings (e.g., barns and sheds). It does not appear that access to any parcels in the project area would be severed by the project.

Environmental Consequences

Impact LU-1: Minor Land Acquisition of Five Parcels and Full Acquisition of Eight

Several small parcels of undeveloped land would be acquired and used for the project, as well as portions of several larger agricultural parcels. The project would require the demolition of two existing residences and several associated buildings (e.g., barns and sheds). One residence, located on parcel 5 (Assessor’s Parcel Number [APN] 0027-272-080), would be displaced to accommodate the new truck scales facility. The other residence, located on parcel 9 (APN 0027-
Chapter 2. Affected Environment; Environmental Consequences; and Avoidance, Minimization, and/or Mitigation Measures—Human Environment

252-080), would be displaced to accommodate the braided on-ramps to I-80 and eastbound SR 12.

All parcels for which only a portion of the parcel would be affected by the project (listed as partial acquisitions in Table 2.1-1 below) are currently in agricultural use and appear to be able to remain in agricultural production, with the exception of parcel 9 (APN 0027-252-080). The majority of this parcel that is currently in agricultural production would be affected by the project for the truck scales on-ramps to I-80 and eastbound SR 12 and the eastbound I-80–to–eastbound SR 12 connector. The remaining portion of this parcel contains an electrical substation, which would not be affected by the project.

Direct land use impacts are summarized in Table 2.1-1; acquisitions are shown in Figure 2.1-1.

Table 2.1-1. Property Acquisition and Displacement for the Project

<table>
<thead>
<tr>
<th>Parcel Numbera</th>
<th>APN</th>
<th>Existing Use</th>
<th>Partial or Full Acquisition</th>
<th>Displacement</th>
<th>Area to be Acquired in Square Feet (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0027-260-120</td>
<td>Agricultural</td>
<td>Partial</td>
<td>No</td>
<td>142,305 (3.3)</td>
</tr>
<tr>
<td>2</td>
<td>0027-272-070</td>
<td>Undeveloped</td>
<td>Full</td>
<td>No</td>
<td>10,584 (0.2)</td>
</tr>
<tr>
<td>3</td>
<td>0027-272-130</td>
<td>Undeveloped</td>
<td>Full</td>
<td>No</td>
<td>48,381 (1.1)</td>
</tr>
<tr>
<td>4</td>
<td>0027-272-120</td>
<td>Undeveloped</td>
<td>Full</td>
<td>No</td>
<td>16,749 (0.4)</td>
</tr>
<tr>
<td>5</td>
<td>0027-272-080</td>
<td>Agricultural/Fairwind Farms</td>
<td>Partial</td>
<td>Yes (one residence and associated buildings)</td>
<td>417,002 (9.6)</td>
</tr>
<tr>
<td>6</td>
<td>0027-272-140</td>
<td>Agricultural (conservation easement)</td>
<td>Full</td>
<td>No</td>
<td>439,492 (10.1)</td>
</tr>
<tr>
<td>7</td>
<td>0027-272-180</td>
<td>Agricultural</td>
<td>Partial</td>
<td>No</td>
<td>272,045 (6.2)</td>
</tr>
<tr>
<td>8</td>
<td>0027-272-160</td>
<td>Agricultural</td>
<td>Partial</td>
<td>No</td>
<td>22,619 (0.5)</td>
</tr>
<tr>
<td>9</td>
<td>0027-252-080</td>
<td>Agricultural/residence/substation</td>
<td>Partial</td>
<td>Yes (one residence and associated buildings)</td>
<td>446,374 (10.2)</td>
</tr>
<tr>
<td>10</td>
<td>0027-252-090</td>
<td>Undeveloped</td>
<td>Full</td>
<td>No</td>
<td>4,849 (0.1)</td>
</tr>
<tr>
<td>11</td>
<td>0027-252-100</td>
<td>Undeveloped</td>
<td>Full</td>
<td>No</td>
<td>3,454 (0.1)</td>
</tr>
<tr>
<td>12</td>
<td>0027-252-110</td>
<td>Undeveloped</td>
<td>Full</td>
<td>No</td>
<td>3,316 (0.1)</td>
</tr>
<tr>
<td>13</td>
<td>0028-200-560</td>
<td>Undeveloped</td>
<td>Full</td>
<td>No</td>
<td>5,396 (0.1)</td>
</tr>
</tbody>
</table>

* Parcel numbers are presented as in Figure 2.1-1.

Avoidance, Minimization, and/or Mitigation Measures
Measures for farmlands (Section 2.1.3, below) and relocations (Section 2.1.4) would address the acquisition of agricultural land and the relocation of residential units.

Effects of the No-Project Alternative
Under the No-Project Alternative, no new effects associated with land use would occur.
2.1.2 Growth

Regulatory Setting
The Council on Environmental Quality (CEQ) regulations, which implement the National Environmental Policy Act of 1969 (NEPA), require evaluation of the potential environmental consequences of all proposed federal activities and programs. This provision includes a requirement to examine indirect consequences, which may occur in areas beyond the immediate influence of a proposed project and at some time in the future. The CEQ regulations, 40 Code of Federal Regulations (CFR) 1508.8, refer to these consequences as secondary impacts. Secondary impacts may include changes in land use, economic vitality, and population density, which all are elements of growth.

CEQA also requires the analysis of a project’s potential to induce growth. CEQA guidelines, Section 15126.2(d), require that environmental documents “discuss the ways in which the proposed project could foster economic or population growth, or the construction of additional housing, either directly or indirectly, in the surrounding environment.”

Affected Environment
This discussion is based primarily on the CIA prepared for this project (CirclePoint 2008a).

The Cordelia Truck Scales facility is located within the I-80/I-680/SR 12 interchange in Solano County, in the vicinity of Fairfield and Suisun City. The project area encompasses the existing facility, the site of the new facility, and all associated on- and off-ramps and utility relocations. The project area extends along I-80 from the Scandia Family Center (at PM 13.8) east to the SR 12E/I-80 interchange and continues east along SR 12E to Chadbourne Road, a distance of 2.1 miles (see Figure 1-2).

The project area lands south of I-80 are used primarily for agricultural purposes. There are two residences and associated outbuildings located within the project footprint. Surrounding land uses are also mainly agricultural in nature and include several residences located along Cordelia Road to the south of the project footprint. Suisun Creek crosses the project footprint and runs under I-80 in this area. The north/south-running creek has a narrow riparian corridor associated with it. To the west of the project footprint, land uses include commercial and retail uses situated around the I-80/Suisun Valley Road interchange. Land uses to the east include warehousing and industrial/manufacturing uses near the SR 12/Chadbourne Road interchange.

Environmental Consequences
Caltrans Environmental Handbook Volume 4: Community Impact Assessment states that “growth inducement is defined as the relationship between the proposed transportation Project and growth within the Project area.” The Department has developed a checklist for determining whether a project is considered to be growth-inducing. The questions from this checklist are presented below (Table 2.1-2). A “yes” response to any of the questions would indicate the potential for growth inducement to occur as a result of the project. No “yes” answers were provided. Therefore, there is no potential for growth inducement impacts due to the project.
Property to be Acquired for the Project

Sources: CirclePoint 2008, Google Earth 2008.
Avoidance, Minimization, and/or Mitigation Measures
There is no need for avoidance, minimization, and/or mitigation measures because the project would not be growth-inducing.

Table 2.1-2. Growth-Inducement Checklist

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Will the project attract more residential development or new population into the community or planning area?</td>
<td>No. The project does not include any residential development.</td>
</tr>
<tr>
<td>2. Will the project encourage the development of more acreage of employment generating land uses in the area (such as commercial, industrial or office)?</td>
<td>No. The project only involves the construction of a new truck scales facility.</td>
</tr>
<tr>
<td>3. Will the project lead to the increase of roadway, intersection, sewer, water supply, or drainage capacity?</td>
<td>No. The project would replace an existing truck scale facility.</td>
</tr>
<tr>
<td>4. Will the project encourage the rezoning or reclassification of lands in the community general plan from agriculture, open space or low density residential to a more intensive land use?</td>
<td>No. The project would result in direct conversion of agricultural lands to nonagricultural uses for the truck scales facility but would not result either directly or indirectly in the rezoning of surrounding lands.</td>
</tr>
<tr>
<td>5. Is the project not in conformance with the growth related policies, goals or objectives of the local general plan or the area growth management plan?</td>
<td>No. The project would replace an existing truck scales facility that is already located in the project area.</td>
</tr>
<tr>
<td>6. Will the project lead to the intensification of development densities or accelerate the schedule for development or will it facilitate actions by private interests to redevelop properties within four miles of a limited access highway interchange?</td>
<td>No. The project would replace an existing truck scales facility and would not provide improved access or other features that would lead to the intensification of surrounding properties.</td>
</tr>
<tr>
<td>7. Will the project measurably and significantly decrease home to work commuter travel times to and from or within the project area (more than 10% overall reduction or five minutes or more in commute time savings)?</td>
<td>No. The project would improve traffic flow on I-80 by increasing the capacity of the existing truck scales facility and providing longer off- and on-ramps for improved truck weaving; however, this improvement in traffic flow would not be at the levels to induce additional travel demand.</td>
</tr>
<tr>
<td>8. Is the project directly related to the generation of cumulative effects as defined by the CEQA guidelines?</td>
<td>No. The project is not directly related to cumulative growth in Solano County and surrounding communities. Future growth envisioned in the county and surrounding communities would not be altered substantially by relocating and expanding the existing truck scales facility.</td>
</tr>
</tbody>
</table>

Effects of the No-Project Alternative
Under the No-Project Alternative, no new effects associated with growth would occur.

2.1.3 Farmlands

Regulatory Setting
NEPA and the Farmland Protection Policy Act (FPPA) (7 U.S. Code [USC] 4201–4209); and its regulations, 7 CFR Part 658) require federal agencies, such as the Federal Highway Administration (FHWA), to coordinate with the Natural Resources Conservation Service (NRCS) if their activities may irreversibly convert farmland (directly or indirectly) to nonagricultural use. For purposes of the FPPA, farmland includes prime farmland, unique farmland, and land of statewide or local importance.
CEQA requires the review of projects that would convert California Land Conservation Act of 1965 (Williamson Act) contract land to nonagricultural uses. The main purposes of the Williamson Act are to preserve agricultural land and to encourage open space preservation and efficient urban growth. The Williamson Act provides incentives to landowners through reduced property taxes to deter the early conversion of agricultural and open space lands to other uses.

Affected Environment

The following discussion is based on the CIA for this project, prepared by CirclePoint (CirclePoint 2008a).

As stated in *Caltrans Environmental Handbook Volume 4: Community Impact Assessment*, “The intent of the California Department of Transportation is to avoid, whenever practical, locating public improvements within agricultural preserves or acquiring high quality agricultural land for transportation improvements.” This section presents a discussion of the agricultural resources and nature of agriculture in the project area, including a description of farmland preservation policies.

The California Department of Conservation (DOC) Farmland Mapping and Monitoring Program (FMMP) classifies farmland according to four types. Prime Farmland is considered land with the best physical and chemical features able to sustain long-term production of crops. Farmland of Statewide Importance is land that is similar to Prime Farmland but has minor faults, such as slopes or limited ability to store soil moisture. Unique Farmland has lesser-quality soils, used for the production of the state’s leading crops and may be irrigated or include non-irrigated orchards or vineyards. Together, these three farmland classifications constitute Important Farmland. The fourth classification is Grazing Land, which contains existing vegetation suitable for livestock but is not considered “important” farmland.

The lands within the project area are designated for “Intensive Agriculture,” according to the *Solano County General Plan* Land Use Map dated March 29, 2006. Lands designated by the County for Intensive Agriculture are those lands in the county that also are considered Prime Farmlands under the FMMP. Figure 2.1-2 depicts the lands within the project area that are considered Prime Farmlands.

As of 2006, Solano County had a total of 360,562 acres of land under cultivation (Solano County 2006). Of this total, 139,536 acres were designated as Prime Farmland, 7,164 acres were designated as Farmland of Statewide Importance, 11,036 acres were designated as Unique Farmland, and 202,826 acres were used for grazing purposes (California Department of Conservation 2006a). Between 1992 and 2006, 1,838 acres of Prime Farmland were converted to nonagricultural uses in Solano County (California Department of Conservation 2006b).

Williamson Act

In 2007, there were 265,629 acres of land held under Williamson Act contracts in Solano County. The project footprint does not include any properties that are currently under a Williamson Act contract.
Figure 2.1-2
Agricultural Land within the Project Area

Sources: CirclePoint 2008, Google Earth 2008.
Conservation Easements
Conservation easements are legal agreements between property owners and government agencies or nonprofit organizations that permanently limit land development. Easements can restrict land to a prior use or preserve land for the purposes of creating and maintaining open space.

The Solano Land Trust holds a conversion easement over approximately 94 acres of agricultural land in the area. The agricultural conservation easement held by the Solano Land Trust covers APNs 0027-272-070, 0027-272-080, 0027-272-120, 0027-272-130, and 0027-272-140. Of these, 11.7 acres (APN 0027-27-2401) are located south of I-80 within the project footprint. Figure 2.1-2 depicts the lands in the project area under agricultural conservation easement.

Environmental Consequences

Impact FA-1: Direct Conversion of Important Farmlands
Policy 1 of the Solano County General Plan Land Use Element seeks to “[p]reserve and maintain essential agricultural lands including intensive agricultural areas comprised of high quality soils and irrigated lands and extensive agricultural areas with unique or significant dryland farming or grazing activities.”

The project would result in the direct conversion of agricultural lands to nonagricultural uses. The direct impact of the project on agricultural lands would be the conversion of approximately 39.9 acres to nonagricultural uses (Table 2.1-1). Of this total, approximately 11.7 acres (APN 0027-272-140) are under agricultural conservation easement held by the Solano Land Trust. This conversion of agricultural lands to nonagricultural uses would be an adverse effect.

AD-1006 Farmland Conversion Impact Rating
The AD-1006 form, which was completed in conjunction with the National Resource Conservation Service (NRCS), helps to determine the impact the proposed project may have on farmlands within the project area. Specific criteria are looked at by both the NRCS and the federal agency involved. The NRCS must complete the land evaluation portion of the form, whereas the federal agency must complete the site assessment portion. Each criterion has a set number of points it may be awarded. Once those points are added up, they are compared to the “significance score” of 160 points created by the U.S. Department of Agriculture. If the total site assessment is less than 160 points, a minimal level of consideration of protection would be given, but no further alternative analysis would be needed. If the total site assessment is 160 points or greater, stronger consideration for protection should be considered such as:

- Use of existing facilities and structures or using land that is not farmland.
- Alternate sites, locations, and designs that would serve the proposed purpose but convert either fewer acres of farmland or other farmland that has a relative lower value

The completed form may be found in Appendix A. The total site assessment rating for this project is 170.3, 10.3 points above the significance threshold.

1 Caltrans Environmental Handbook Volume 4, Community Impact Assessment, Appendix C.
As described in Section 1.5.4, the Department in cooperation with STA and the California Highway Patrol (CHP) conducted an extensive alternatives evaluation for this project which included a four tier process. Tier 1 included evaluation of some 24 possible sites which were narrowed down to three sites that were evaluated in detail. This analysis included evaluation of capital costs, operation and maintenance issues, right-of-way requirements, environmental impacts, and traffic operations. The Tier 4 report was released for public review and comment. Based on the analysis and public comment the Department in consultant with the STA and the CHP determined that Option 1, the location evaluated in this environmental document, was the preferred site.

The project design has incorporated to the extent feasible design features to reduce agricultural impacts accounting for safety standards and the forecast number of trucks that will need to be processed through the new truck scales facility. However, impacts to agricultural lands cannot be fully avoided.

Avoidance, Minimization, and/or Mitigation Measures
No avoidance, minimization measures are feasible under NEPA. Mitigation measures for the loss of agricultural lands are discussed in Chapter 3 under CEQA and involve the purchase of long-term land use restrictions such as agricultural conservation easements over prime farmland in Solano County.

Effects of the No-Project Alternative
Under the No-Project Alternative, the proposed new truck scales would not be constructed. Therefore, no new effects associated with farmland would occur.

2.1.4 Community Impacts

Community Character and Cohesion

Regulatory Setting
NEPA, as amended, established that the federal government use all practicable means to ensure for all Americans safe, healthful, productive, and aesthetically and culturally pleasing surroundings (42 USC 4331[b][2]). In its implementation of NEPA (23 USC 109[h]), the FHWA directs that final decisions regarding projects are to be made in the best overall public interest. This requires taking into account adverse environmental impacts, such as destruction or disruption of human-made resources, community cohesion, and the availability of public facilities and services.

Under CEQA, an economic or social change by itself is not to be considered a significant impact on the environment. However, if a social or economic change is related to a physical change, then social or economic change may be considered in determining whether the physical change is significant. Because this project would result in a physical change to the environment, it is appropriate to consider changes to community character and cohesion in assessing the significance of the project’s impacts.
Chapter 2. Affected Environment; Environmental Consequences; and Avoidance, Minimization, and/or Mitigation Measures—Human Environment

Affected Environment
The following discussion is based on the CIA prepared for the project (CirclePoint 2008a). The community socioeconomic characteristics analyzed in the CIA include population, housing and households, employment, and income. The data presented are primarily from the 2000 census and Association of Bay Area Governments’ (ABAG’s) *Projections 2007*, the basis for regional planning activities by the Department. Other data sources include the *Solano County General Plan*. The data are summarized below.

The project area is located in the nine-county Bay Area region, the 12th-largest metropolitan area in the United States. The population of the Bay Area region increased 13% between 1990 and 2000. The population of Solano County has grown the fastest of the nine counties, with an increase of 68% between 1980 and 2000. This trend is expected to continue well into the 21st century.

Solano County has the second-highest average household size in the region, with an estimated 2.9 persons per household in 2000. Solano County is expected to experience a 50% increase in the number of households between 2000 and 2035.

The smallest geographic unit for which the U.S. Census Bureau publishes both demographic and socioeconomic data is the block group (BG). BGs are generally the size of several city blocks and are therefore useful in representing the characteristics of a “community.” The project area is located primarily within census tract (CT) 2523.05, BG 1.

The BG consists of 193 housing units with an average household size of 2.52 persons. More than 75% of the residential units are owner-occupied. The population of the BG is predominantly white (nearly 80%). The median annual household income is $56,111, and 9% of the population is below the poverty line.

The immediate project area has minimal to no indicators of community cohesion. Because of the agricultural nature of the area, homes are located far apart, there are no community facilities such as parks, and there is little to no pedestrian activity.

Environmental Consequences
The project would not alter the location or density of population substantially because it would replace the existing truck scales facility already located within the project area. For similar reasons, the project would not disrupt or divide an established community, and the location of the new truck scales facility would be in an area of predominantly agricultural uses and undeveloped land. No recreational or educational uses or facilities would be affected by the project.

Although the project would displace two residences, the area is not considered a low-income community.

Finally, the project would change the aesthetic of the immediate project area, and a separate visual impact assessment (VIA) has been prepared to evaluate that issue. (See Section 2.1.7.)
Avoidance, Minimization, and/or Mitigation Measures
No avoidance, minimization, or mitigation is necessary for the reasons cited above.

Relocations

Regulatory Setting
The Department’s Relocation Assistance Program (RAP) is based on the federal Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970 (as amended) and Title 49 CFR Part 24. The purpose of the RAP is to ensure that persons displaced as a result of a transportation project are treated fairly, consistently, and equitably, so that such persons will not suffer disproportionate injuries as a result of projects designed for the benefit of the public as a whole. Please see Appendix B for a summary of the RAP.

All relocation services and benefits are administered without regard to race, color, national origin, or sex in compliance with Title VI of the Civil Rights Act (42 USC 2000d, et seq.). Please see Appendix C for a copy of the Department’s Title VI Policy Statement.

Affected Environment
Two residences are located within the project area. One residence is located at 2525 Cordelia Road and is associated with an agricultural business, Fairwind Farms. The second residence is located at 4015 Hale Ranch Road. Figure 2.1-3 depicts the location of these two residences.

Environmental Consequences

Impact REL-1: Displacement of Two Residences

The project would displace two residences within the project area. Fairwind Farms, the agricultural business associated with one of the residences, would not be affected by the project. According to the Solano County Housing Element, the overall housing vacancy rate in unincorporated Solano County was six percent (2000 Census) which indicates that adequate replacement housing is available for those residents displaced by the project.

Avoidance, Minimization, and/or Mitigation Measures

The Department will provide relocation advisory assistance to any person, business, farm, or nonprofit organization displaced as a result of the Department’s acquisition of real property for public use. The Department will assist residential displacees in obtaining comparable decent, safe, and sanitary replacement housing by providing current and continuing information on sales prices and rental rates of available housing.

Residential replacement dwellings will be in equal or better neighborhoods, at prices within the financial means of the individuals and families displaced, and reasonably accessible to the displacees’ places of employment. Before any displacement occurs, displacees will be offered comparable replacement dwellings that are open to all persons regardless of race, color, religion, sex, or national origin and are consistent with the requirements of Civil Rights Act Title VIII. This assistance also will include supplying information concerning federal and state-assisted housing programs and any other known services being offered by public and private agencies in the area.
Figure 2.1-3
Displaced Residences

Sources: CirclePoint 2008, Google Earth 2008.
The Department will carry out the relocation plan to help eligible displaced individuals move with as little inconvenience as possible. Appraisals to determine fair market value will be conducted for each displaced property after the record of decision is signed.

Environmental Justice

Regulatory Setting
All projects involving a federal action (funding, permit, or land) must comply with Executive Order (EO) 12898 (Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations), signed by then-President Bill Clinton on February 11, 1994. This EO directs federal agencies to take the appropriate and necessary steps to identify and address disproportionately high and adverse effects of federal projects on the health or environment of minority and low-income populations to the greatest extent practicable and permitted by law. Low-income populations are defined based on the U.S. Department of Health and Human Services poverty guidelines. For 2008, this was $21,200 for a family of four.

All considerations under Title VI of the Civil Rights Act of 1964 and related statutes have been included in this project. The Department’s commitment to upholding the mandates of Title VI is evidenced by its Title VI Policy Statement, signed by the Department’s director, which can be found in Appendix C of this document.

Affected Environment
As described above under Community Character (Section 2.1.4) the population of the immediate project area is predominately white (nearly 80%) and has a relatively low poverty rate (9%). As a result, the demographic makeup of the project area does not meet the criteria necessary for consideration of a minority or low-income population that would be protected under the provisions of EO 12898.

Environmental Consequences
There would be no environmental justice impacts.

Avoidance, Minimization, and/or Mitigation Measures
Based on the above discussion and analysis, the project would not cause disproportionately high and adverse impacts on any minority or low-income populations as per EO 12898 regarding environmental justice.

Effects of the No-Project Alternative
Under the No-Project Alternative, no new effects associated with community impacts would occur.

2.1.5 Utilities/Emergency Services
Public utilities in the project area are regulated by various entities, including (depending on the utility) the Federal Energy Regulatory Commission (FERC), the PUC, and local ordinances.
Affected Environment
The information below is summarized from the CIA prepared for the proposed project (CirclePoint 2008a). This section describes the existing utilities and public services in the study area.

Water Service
Water service within the project area is provided by the Solano County Water Agency (SCWA). The county has four main sources of water: the Solano Project, the North Bay Aqueduct (NBA), groundwater reservoirs, and Sacramento River entitlements. The SCWA stores and distributes water to 29 urban and agricultural water suppliers in northern California, the Bay Area, the San Joaquin Valley, the Central Coast, and Southern California.

The project area also is located within the service area of the Solano Irrigation District (SID). The SID delivers recycled water from the SCWA treatment plant to a small number of agricultural customers within Solano County for crop irrigation. The SID also provides water to the city of Fairfield for street landscaping and commercial property landscape irrigation.

The most significant utility infrastructure in the project area is a State Department of Water Resources (DWR) water pipeline, known as the NBA. The NBA pipeline runs underground from Barker Slough in the Sacramento River Delta to Cordelia Forebay, just outside Vallejo. The pipeline varies in diameter, ranging from 72 inches at Barker Slough to 54 inches at Cordelia Forebay. A portion of the NBA runs just north of and parallel to I-80 between Abernathy Road and Suisun Creek.

Wastewater Service
The project area is located in unincorporated Solano County and outside the boundaries of the wastewater service providers for the city of Fairfield. The project area contains no wastewater infrastructure. Wastewater needs in these locations are met by septic systems installed by individual landowners.

Electricity and Natural Gas
Solano County is provided with electric and natural gas service by Pacific Gas and Electric Co. (PG&E). PG&E’s service area covers most of central and northern California, and the company maintains 123,054 circuit miles of electrical distribution lines, 18,610 circuit miles of interconnected transmission lines, 40,123 miles of natural gas distribution pipelines, and 6,136 miles of natural gas transportation pipelines. PG&E currently maintains natural gas pipelines and electrical transmission lines throughout Solano County, including lines adjacent to the I-80 corridor.

Schools
There is one elementary school and one high school located near the project area. Nelda Mundy Elementary School is located at 570 Vintage Valley Drive, north of I-80 and the project area. Angelo Rodriguez High School is located at 5000 Red Top Road, just west of I-680. In addition, three colleges are located in the project vicinity. Solano Community College is located just north of the project area, at 4000 Suisun Valley Road; the University of Phoenix is located at 5253 Business Center Drive; and Chapman University is located at 4820 Business Center Drive.
Police and Fire
The CHP has jurisdiction over I-80, I-680, and SR 12 for matters involving both traffic and emergency services. The local CHP office is located at 3050 Travis Boulevard in Fairfield. The project area is under the jurisdiction of the Solano County sheriff. The Solano County Sheriff’s Office is located at 530 Union Avenue in Fairfield.

The project area is served by the Suisun Fire Protection District (SFPD). SFPD headquarters are located at 445 Jackson Street in Fairfield, and the district serves 1,136 properties within a 136-square-mile area. The SFPD currently employs one fire chief, two fire captains, and 45 volunteer firefighters.

Parks and Recreation Facilities
There are no parks or recreational facilities located within or adjacent to the project area.

Environmental Consequences
Some adjustment to overhead power lines would be necessary. To facilitate the realignment of the overhead power line, it would be necessary to remove some utility poles and towers and relocate them. It is expected that five new utility poles would be located along the south and west sides of the proposed truck scales facility, and that two poles would need to be removed in that area. In the vicinity of the I-80/SR 12E interchange, one pole and two towers would be removed and relocated. During construction, it is expected there will be brief (one- to two-hour) power shutdowns at the Truck Scale facility itself in order to make necessary connections. Distribution and transmission of PG&E electrical facilities will undergo service interruptions for short periods of time during construction as well.

Once construction had been completed, and operation of the project had begun, on a local and community level, roadway improvements would improve access and circulation in the vicinity of the project area by relieving congestion and improving safety. Public services in the study area, including police, fire, and emergency services and hospitals, largely would be unaffected by operation of the project because existing access routes to and through the study area would be maintained and enhanced by the project. The project would not adversely affect police, fire, and emergency vehicle response times to neighborhoods within the study area, and the roadway improvements and changes would not affect public or school bus routes.

Impact UT-1: Impacts on Police, Fire, and Emergency Service Providers during Construction

Potential short-term impacts on police, fire, and emergency service providers may result from construction-related impacts. Potential impacts may include increased emergency response times within the project area caused by congestion during project construction, and temporary lane closures. Lane closures are expected to be short-term and occur in off-peak hours. No ramps would be closed, and no local roads would be affected. The effect is expected to be minimal. In addition, as part of its standard procedure, the Department prepares a Transportation Management Plan (TMP). Before initiating construction, this TMP will be provided to all emergency service providers in the area. The TMP will serve to notify all emergency service providers in the project area of the project construction schedule, and the time and location of lane closures for K-rail placement. The TMP will identify anticipated dates and hours of
construction, as well as any anticipated limits on access. Notice will be provided at least 1 week before construction begins. To the extent possible, emergency vehicles will be allowed through roadway segments temporarily closed for construction purposes. Therefore, this would be not be considered an adverse effect.

Effects of the No-Project Alternative

Under the No-Project Alternative, no new effects associated with utilities or emergency services would occur. As traffic congestion increases in the study area (shown in Tables 2.1-8 and 2.1-1), access in the area for emergency response vehicles would become more limited.

2.1.6 Traffic and Transportation

This section addresses the potential transportation-related impacts of the proposed project under existing conditions, as well as under construction-year (2015) and design-year (2035) conditions.

The information presented here has been summarized from technical reports prepared for the proposed project and the Interstate 80/Interstate 680/State Route 12 Interchange Project. These reports, listed below, are available for review at the Department’s District 4 office and are hereby incorporated by reference:

- I-80/I-680/SR 12 Interchange PR/ED: AM Peak Hour VISSIM Model Calibration/Validation Technical Memorandum (October 8, 2003) (Fehr & Peers 2003a);
- I-80/I-680/SR 12 Interchange PR/ED: PM Peak Hour VISSIM Model Calibration/Validation Technical Memorandum (October 8, 2003) (Fehr & Peers 2003b);
- I-80/I-680/SR 12 Interchange PR/ED: VISSIM Model Calibration/Validation for the Project Expansion Area Technical Memorandum (February 14, 2005) (Fehr & Peers 2005a);
- I-80/I-680/SR 12 Interchange PR/ED: Existing Weekday (Tuesday through Thursday) Traffic Operating Conditions for the Expanded Project Area—Technical Memorandum (February 2005) (Fehr & Peers 2005b);
- Cordelia Truck Scales Relocation Study: Summary Report and Recommendations, prepared by the STA (February 16, 2005) (Solano Transportation Authority 2005a);
- I-80/I-680/SR 12 Interchange PR/ED: Design Year 2035 Demand Forecasts at Project Gateways Technical Memorandum (July 14, 2006) (Fehr & Peers 2006);

The *Solano Comprehensive Transportation Plan* (Solano Transportation Authority 2005b) calls for maintenance of level of service (LOS) E on roadways of regional significance, including
freeways. LOS E represents at-capacity operation. When traffic volumes exceed capacity, stop-and-go conditions result, and operations are designated as LOS F.

For freeway mainline segments, weave segments, and ramp merge and diverge areas, the LOS is related to the vehicle density in vehicle miles per hour (mph) per lane and is calculated for the a.m. and p.m. commute peak hours. For intersection operations, the LOS is related to the average control delay per vehicle, during the a.m. and p.m. commute peak hours. Tables 2.1-3 and 2.1-4 provide the LOS thresholds for freeway and intersection analysis, respectively.

Table 2.1-3. Freeway Mainline, Weaving, and Ramp Junction Level of Service Criteria

<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Maximum Density (passenger cars per mile per lane)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Basic Freeway Sections</td>
</tr>
<tr>
<td>A</td>
<td>11</td>
</tr>
<tr>
<td>B</td>
<td>18</td>
</tr>
<tr>
<td>C</td>
<td>26</td>
</tr>
<tr>
<td>D</td>
<td>35</td>
</tr>
<tr>
<td>E</td>
<td>45</td>
</tr>
<tr>
<td>F</td>
<td>45</td>
</tr>
</tbody>
</table>

Source: Transportation Research Board 2000.

* Freeway mainline LOS based on a 65 mph free-flow speed.

Table 2.1-4. Intersection Level of Service Definitions for Highway Capacity Manual Methodology

<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Description of Traffic Conditions</th>
<th>Average Control Delay Per Vehicle (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signalized (Signal-Controlled) Intersections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Insignificant delays: No approach phase is fully used, and no vehicle waits longer than one red indication</td>
<td>≤10</td>
</tr>
<tr>
<td>B</td>
<td>Minimal delays: An occasional approach phase is fully used, and drivers begin to feel restricted</td>
<td>>10–20</td>
</tr>
<tr>
<td>C</td>
<td>Acceptable delays: Major approach phase may become fully used, and most drivers feel somewhat restricted.</td>
<td>>20–35</td>
</tr>
<tr>
<td>D</td>
<td>Tolerable delays: Drivers may wait through more than one red indication; queues may develop but dissipate rapidly, without excessive delays</td>
<td>>35–55</td>
</tr>
<tr>
<td>E</td>
<td>Significant delays: Volumes are approaching capacity, vehicles may wait through several signal cycles, and long vehicle queues form upstream</td>
<td>>55–80</td>
</tr>
<tr>
<td>F</td>
<td>Excessive delays: Conditions are at capacity, with extremely long delays; queues may block upstream intersections</td>
<td>>80</td>
</tr>
<tr>
<td>Unsignalized Intersections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>No delay for stop-controlled approaches</td>
<td>≤10</td>
</tr>
<tr>
<td>B</td>
<td>Operations with minor delay</td>
<td>>10–15</td>
</tr>
<tr>
<td>C</td>
<td>Operations with moderate delays</td>
<td>>15–25</td>
</tr>
<tr>
<td>D</td>
<td>Operations with some delays</td>
<td>>25–35</td>
</tr>
<tr>
<td>E</td>
<td>Operations with high delays and long queues</td>
<td>>35–50</td>
</tr>
<tr>
<td>F</td>
<td>Operation with extreme congestion, with very high delays and long queues unacceptable to most drivers</td>
<td>>50</td>
</tr>
</tbody>
</table>

Source: Transportation Research Board 2000.
Other “measures of effectiveness” (MOEs) used in the traffic analysis include vehicle hours of
tavel (VHT), defined as the total number of vehicle hours traveled per hour within the study
area; vehicle hours of delay (VHD), defined as the number of vehicle hours of delay per hour
resulting from congestion within the study area; vehicle miles traveled (VMT), defined as the
total number of vehicle miles traveled during the peak hours in the study area; and the average
travel times for trips within the study area.

Affected Environment
The study area for the traffic operations analysis includes components of the regional freeway
system and ramp terminal intersections in the eastbound direction on I-80 from Red Top Road to
Air Base Parkway; on I-680 northbound between Gold Hill Road and I-80; and on SR 12E from
I-80 to Civic Center Drive. I-80 is a major east-west freeway extending from San Francisco to
the East Coast of the United States, and it serves as a major connection between the Bay Area
and Sacramento regions. It is also a major truck route of statewide and national significance. The
study area on I-80 extends east to Air Base Parkway because congestion that develops in this
area affects traffic flow upstream in the area of the eastbound I-80 Cordelia Truck Scales. The
existing eastbound I-80 Cordelia Truck Scales are located between Suisun Valley Road and SR
12E. SR 12E extends eastward from I-80 into the California Central Valley and foothills. SR 12E
is included in the study area because p.m. peak-hour congestion in the eastbound direction
affects the eastbound I-80 corridor. I-680 connects I-80 to the Benicia-Martinez Bridge and
Contra Costa County to the south of the study area.

The existing conditions analysis presented below represents fall 2004 conditions. At that time,
westbound I-80 had four mixed-flow lanes plus a fifth auxiliary lane between the SR 12E
connector and the I-680 southbound connector. Eastbound I-80 had four mixed-flow lanes
because the fifth auxiliary lane between the I-680 northbound connector and SR 12E connector
had not been completed when the September 2004 data collection was conducted. SR 12E
provided two lanes in each direction, an interchange at Chadbourne Road, and at-grade
intersections at Beck Avenue and Pennsylvania Avenue. I-680 provided two lanes in each
direction within the study area.

Data Collection
Traffic counts for the a.m. and p.m. peak periods were conducted in the study area in September
2004. The peak hours in the project study area are generally 7:30–8:30 a.m. and 4:30–5:30 p.m.
Truck counts at the I-80 eastbound Cordelia Truck Scales indicated an a.m. peak hour volume of
344 trucks and a p.m. peak hour volume of 216 trucks. The Draft Traffic Operations Report
includes graphics showing the traffic volumes throughout the study area.

2 Note that although this report contains fall 2004 baseline data, Fehr & Peers has conducted a revalidation of the
VISSIM traffic analysis model to ensure that the model accurately reflects current (2008) conditions. This effort was
undertaken at the request of Caltrans Highway Operations, to ensure that the forecasts produced with the model
remain reliable. This work is described in I-80 / I-680 / SR 12 Interchange PR/ED: Updated Validation of the
work did not include a complete reassessment of existing conditions throughout the study area, which is why the fall
2004 data remain the baseline presented in this environmental document.
Operations Analysis
The existing (Fall 2004) operating conditions for the freeway sections and ramp terminal intersections within the project study area were analyzed using 13 model runs of the validated and calibrated peak period VISSIM traffic operations model. The modeling methodology is described in the Draft Traffic Operations Report. The text below summarizes the analysis results.

Mainline and Ramp Operations
The system-wide measures of effectiveness for existing conditions are summarized in Table 2.1-5, and mainline segment and ramp junction results are summarized in Table 2.1-6. Detailed calculations are contained in I-80/I-680/SR 12 Interchange PR/ED: Existing Weekday (Tuesday through Thursday) Traffic Operating Conditions for the Expanded Project Area—Technical Memorandum (Fehr & Peers 2005b).

Table 2.1-5. Existing (Fall 2004) Measures of Effectiveness

<table>
<thead>
<tr>
<th>MOE</th>
<th>A.M. Peak Hour</th>
<th>P.M. Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMT (per hour)</td>
<td>50,690</td>
<td>75,120</td>
</tr>
<tr>
<td>VHT (per hour)</td>
<td>860</td>
<td>1,835</td>
</tr>
<tr>
<td>VHD (per hour)</td>
<td>60</td>
<td>665</td>
</tr>
</tbody>
</table>

Note: The study area extends on I-80 eastbound from west of Red Top Road to east of Air Base Parkway/Waterman Boulevard and on northbound I-680 south of Gold Hill Road to I-80. The study area also includes eastbound SR 12 east of I-80 and all ramps.
Table 2.1-6. Existing (Fall 2004) Mainline and Ramps Analysis

<table>
<thead>
<tr>
<th>Segment</th>
<th>A.M. Peak Hour Density</th>
<th>P.M. Peak Hour Density</th>
<th>A.M. Peak Hour LOS</th>
<th>P.M. Peak Hour LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mainline and Weave Sections</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-680</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northbound I-680, between Gold Hill Road and Central Way</td>
<td>12</td>
<td>16</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>I-80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastbound I-80, between Red Top Road and SR 12W connector</td>
<td>13</td>
<td>19</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>Eastbound I-80, between SR 12W connector and Lopes Road (weave)(^{b})</td>
<td>17</td>
<td>56</td>
<td>B</td>
<td>F</td>
</tr>
<tr>
<td>Eastbound I-80, between the northbound I-680 Connector and Pittman Road (weave)(^{c})</td>
<td>21</td>
<td>84</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Eastbound I-80, between Pittman Road and the truck scales (weave)(^{b})</td>
<td>19</td>
<td>57</td>
<td>B</td>
<td>F</td>
</tr>
<tr>
<td>Eastbound I-80, between the truck scales and the SR 12E connector</td>
<td>22</td>
<td>30</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>Eastbound I-80, between SR 12E and Abernathy Road</td>
<td>18</td>
<td>25</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>Eastbound I-80, between Abernathy Road and Auto Mall Parkway (weave)(^{b})</td>
<td>16</td>
<td>24</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>Eastbound I-80, between Beck Avenue and Travis Boulevard (weave)(^{c})</td>
<td>16</td>
<td>40</td>
<td>B</td>
<td>F</td>
</tr>
<tr>
<td>Eastbound I-80, between Travis Boulevard and Air Base Parkway/Waterman Boulevard</td>
<td>18</td>
<td>43</td>
<td>C</td>
<td>E</td>
</tr>
<tr>
<td>Eastbound I-80, east of Air Base Parkway/Waterman Boulevard</td>
<td>17</td>
<td>27</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>On-Ramp Merge Sections</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-680</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northbound I-680, at Gold Hill Road</td>
<td>16</td>
<td>16</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>I-80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastbound I-80, at Red Top Road</td>
<td>11</td>
<td>19</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Eastbound I-80, at the truck scales</td>
<td>17</td>
<td>57</td>
<td>B</td>
<td>E(^{c})</td>
</tr>
<tr>
<td>Eastbound I-80, at AutoMall Parkway</td>
<td>12</td>
<td>32</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>Eastbound I-80, at Travis Boulevard</td>
<td>14</td>
<td>55</td>
<td>B</td>
<td>E(^{c})</td>
</tr>
<tr>
<td>Eastbound I-80, at Air Base Parkway/Waterman Boulevard</td>
<td>13</td>
<td>26</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>SR 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastbound SR 12E, at Chadbourne Road</td>
<td>12</td>
<td>18</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Off-Ramp Diverge Sections</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-680</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northbound I-680, at Gold Hill Road</td>
<td>13</td>
<td>23</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>Northbound I-680, at Central Way</td>
<td>15</td>
<td>43</td>
<td>B</td>
<td>F</td>
</tr>
<tr>
<td>I-80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastbound I-80, at Red Top Road</td>
<td>12</td>
<td>18</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Eastbound I-80, at the eastbound SR 12E Connector</td>
<td>16</td>
<td>23</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>Eastbound I-80, at Abernathy Road</td>
<td>13</td>
<td>21</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>Eastbound I-80, at Air Base Parkway/Waterman Boulevard</td>
<td>13</td>
<td>23</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>SR 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastbound SR 12E, at Chadbourne Road</td>
<td>12</td>
<td>16</td>
<td>B</td>
<td>B</td>
</tr>
</tbody>
</table>

Notes: Bold font indicates unacceptable operations.

\(^{a}\) Density is expressed in vehicles per hour per lane and is based on the average of 13 model runs.

\(^{b}\) LOS thresholds for weaving sections are different from those for mainline sections. Refer to Table 1 in the Draft Traffic Operations Report for thresholds.

\(^{c}\) This ramp operates at capacity and is by definition LOS E, per discussions with Department staff.
The primary results of the eastbound I-80 a.m. peak hour analysis are listed below.

- All freeway mainline, on-ramp merge sections, and off-ramp diverge sections operate at acceptable LOS C conditions or better.
- All study locations operate at LOS D conditions or better.

The primary results of the eastbound I-80 p.m. peak hour analysis are listed below.

- Four of the 11 freeway mainline segments (37%) operate at unacceptable LOS F conditions.
- Two of the six on-ramp merge sections (33%) operate at LOS E conditions.
- All the off-ramp diverge sections operate at acceptable LOS C conditions or better.
- Sixteen of the 22 study locations (73%) operate at acceptable LOS D conditions or better.

Ramp Terminal Intersections Operations

The ramp terminal intersection analysis results are summarized in Table 2.1-7; the detailed calculations are contained in I-80/I-680/SR 12 Interchange PR/ED: Existing Weekday (Tuesday through Thursday) Traffic Operating Conditions for the Expanded Project Area—Technical Memorandum (Fehr & Peers 2005b). Table 2.1-7 shows that 10 of the 11 (91%) study intersections operate at acceptable LOS C or better conditions during the a.m. peak hour. The all-way stop-controlled intersection of I-80 eastbound ramps/Red Top Road operates at LOS F in the a.m. peak hour as a result of a combination of heavy traffic volumes and all-way stop-controlled operations. During the p.m. peak hour, 11 of the 11 (100%) of the study intersections operate at acceptable LOS D conditions or better.

Table 2.1-7. Existing (Fall 2004) Intersection Analysis

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Traffic Control</th>
<th>A.M. Peak Hour Delay</th>
<th>A.M. Peak Hour LOS</th>
<th>P.M. Peak Hour Delay</th>
<th>P.M. Peak Hour LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-80 eastbound ramps/Red Top Road</td>
<td>All-way stop</td>
<td>>50</td>
<td>F</td>
<td>5</td>
<td>A</td>
</tr>
<tr>
<td>I-80 eastbound ramps/Pittman Road</td>
<td>Signal</td>
<td>10</td>
<td>A</td>
<td>9</td>
<td>A</td>
</tr>
<tr>
<td>SR 12E eastbound ramps/Chadbourne Road</td>
<td>Side-street stop</td>
<td>1</td>
<td>A</td>
<td>8</td>
<td>A</td>
</tr>
<tr>
<td>I-80 eastbound ramps/Abernathy Road</td>
<td>All-way stop</td>
<td>4</td>
<td>A</td>
<td>25</td>
<td>D</td>
</tr>
<tr>
<td>I-80 eastbound ramps/Magellan Road</td>
<td>All-way stop</td>
<td>11</td>
<td>B</td>
<td>21</td>
<td>C</td>
</tr>
<tr>
<td>I-80 eastbound off-ramp/West Texas Street</td>
<td>Signal</td>
<td>3</td>
<td>A</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>I-80 eastbound on-ramp—Beck Avenue/West Texas Street</td>
<td>Signal</td>
<td>17</td>
<td>B</td>
<td>42</td>
<td>D</td>
</tr>
<tr>
<td>SR 12E/Beck Avenue</td>
<td>Signal</td>
<td>26</td>
<td>C</td>
<td>35</td>
<td>D</td>
</tr>
<tr>
<td>SR 12E/Pennsylvania Avenue</td>
<td>Signal</td>
<td>21</td>
<td>C</td>
<td>28</td>
<td>C</td>
</tr>
<tr>
<td>I-80 eastbound ramps/Travis Boulevard</td>
<td>Signal</td>
<td>2</td>
<td>A</td>
<td>9</td>
<td>A</td>
</tr>
<tr>
<td>I-80 eastbound ramps/Air Base Parkway</td>
<td>Signal</td>
<td>14</td>
<td>B</td>
<td>17</td>
<td>B</td>
</tr>
</tbody>
</table>

*Notes: Bold font indicates unacceptable operations.

The signalized and all-way stop intersection LOS is based on the weighted average control delay of all movements measured in seconds per vehicle. Peak hour traffic volumes, lane configurations, and signal timing plans are used as inputs in the LOS calculations. At side-street stop-controlled intersections, the LOS rating is based on the control delay for each minor movement.*
Chapter 2. Affected Environment; Environmental Consequences; and Avoidance, Minimization, and/or Mitigation Measures—Human Environment

Accident History
Accident data for three years (2004–2006) from the Department’s TASAS were evaluated for the I-80 and SR 12E segments in the study area. Table 1-3 summarizes the TASAS data and highlights locations where the actual accident rate exceeds the statewide average for the westbound and eastbound directions.

As indicated in Table 1-3, the total accident rates for most segments of I-80 between Red Top Road and Air Base Parkway exceed the average rate for similar facilities. Fatal or fatal-plus-injury accident rates, or both, exceed the statewide average on each I-80 segment. The total accident rate also exceeds the statewide average for similar facilities for three of the four segments of SR 12E. The fatal-plus-injury accident rate exceeds the statewide average on the same three segments of SR 12E.

Environmental Consequences
This section describes the impacts of the project on traffic operations in the construction year (2015) and the design year (2035).

Methodology
The detailed methodology used to develop the travel demand forecasts is described in *I-80/I-680/SR 12 Interchange PR/ED: Design Year 2035 Demand Forecasts at Project Gateways Technical Memorandum* (Fehr & Peers 2006). The methodology used to develop the construction year (2015) travel demand forecasts is described in the *Draft Traffic Operations Report*. In summary, 2035 passenger car travel demand forecasts were developed using the STA Travel Demand Model and VISUM modeling software, while heavy vehicle forecasts were developed using peak truck hour growth projections provided in *Cordelia Truck Scales Relocation Study: Summary Report and Recommendations*, applying the growth factor to the existing commute peak hour truck counts. The construction year (2015) travel demand and truck forecasts were developed for the project by interpolating between existing and design year (2035) volumes.

Construction Year (2015) Traffic Operations Analysis

Impact TRA-1: Improved Network-Wide Freeway Operations during the Construction Year (2015)

Table 2.1-8 presents the key network-wide MOEs in 2015 with the project and without the project, as well as the change in each MOE with the project. These MOEs are the most informative measure of what a motorist traveling eastbound on I-80 would expect on a trip through the project area. As shown in the table, the project would improve operations in 2015, relative to conditions without the project, for all MOEs in both the a.m. and p.m. peak hours.
Table 2.1-8. Year 2015 with Project—Eastbound Measures of Effectiveness

<table>
<thead>
<tr>
<th>MOE</th>
<th>A.M. Peak Hour</th>
<th>P.M. Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Without Project</td>
<td>With Project</td>
</tr>
<tr>
<td>VMT (per hour)</td>
<td>116,055</td>
<td>116,095 (0%)</td>
</tr>
<tr>
<td>VHT (per hour)</td>
<td>2,020</td>
<td>1,925 (-5%)</td>
</tr>
<tr>
<td>VHD (per hour)</td>
<td>115</td>
<td>75 (-35%)</td>
</tr>
<tr>
<td>Study locations operating at LOS E or F</td>
<td>1 (0%)</td>
<td>16 (0%)</td>
</tr>
<tr>
<td>Network-wide average travel times (minutes:seconds)</td>
<td>7:31</td>
<td>7:10 (-5%)</td>
</tr>
</tbody>
</table>

* The study area extends on I-80 eastbound from west of Red Top Road to east of Air Base Parkway/Waterman and on northbound I-680 south of Gold Hill Road to I-80. The study area also includes eastbound SR 12 east of I-80 and all ramps.

a Percent change from no-project conditions is presented in parentheses.

b Total of 38 study locations under no-project conditions and 37 study locations under with-project conditions.

In the a.m. peak hour in 2015, eastbound I-80 traffic volumes are projected to increase by more than 15% over existing conditions in the vicinity of the truck scales facility with or without the proposed project. Nevertheless, eastbound I-80 would continue to be the off-peak direction during the a.m. peak hour. The analysis shows that all network-wide MOEs would improve or remain the same with the project.

In 2015, eastbound I-80 p.m. peak hour traffic volumes are projected to increase by more than 40% over existing conditions in the vicinity of the truck scales facility with or without the proposed project. The eastbound travel direction is the peak direction during the p.m. peak hour, and severe congestion would occur without the project. Although the project would improve eastbound p.m. operations in nearly all respects, its benefits would be limited by the fact that at-grade signalized intersections would remain at Pennsylvania Avenue and Beck Avenue on SR 12E, causing vehicle queues to extend back from SR 12E onto eastbound I-80. This would constrain the amount of traffic that could enter the project area from northbound I-680, eastbound SR 12W, and eastbound I-80 both with and without the project, causing significant congestion. Nevertheless, as shown in Table 2.1-8, the proposed project would improve freeway operations overall, resulting in a decrease in system-wide delay.

This would be a beneficial effect.

Impact TRA-2: Improved Conditions or No Change at Most Freeway System Analysis Locations in 2015

Conditions would be improved or would not change at all freeway system analysis locations except one in 2015: on eastbound I-80 at the eastbound SR 12E connector in the p.m. peak hour.

Table 2.1-9 presents the freeway mainline, off-ramp, and on-ramp operations results.
Table 2.1-9. Year 2015 with Project—Mainline and Ramps Analysis

<table>
<thead>
<tr>
<th>Segment</th>
<th>A.M. Peak Hour<sup>a</sup></th>
<th>P.M. Peak Hour<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Project</td>
<td>With Project</td>
</tr>
<tr>
<td></td>
<td>Density</td>
<td>LOS</td>
</tr>
<tr>
<td>Mainline and Weave Sections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-680</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northbound I-680, between Gold Hill Road and Central Way</td>
<td>21</td>
<td>C</td>
</tr>
<tr>
<td>I-80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastbound I-80, west of Red Top Road</td>
<td>17</td>
<td>B</td>
</tr>
<tr>
<td>Eastbound I-80, between Red Top Road and the SR 12W connector</td>
<td>17</td>
<td>B</td>
</tr>
<tr>
<td>Eastbound I-80, between SR 12W and Green Valley Road/ I-680 southbound (weave)<sup>b</sup></td>
<td>17</td>
<td>B</td>
</tr>
<tr>
<td>Eastbound I-80, between Pittman Road and the truck scales (weave)<sup>b</sup></td>
<td>20</td>
<td>B</td>
</tr>
<tr>
<td>Eastbound I-80, between the truck scales and Abernathy Road (weave)<sup>b, c</sup></td>
<td>N/A<sup>c</sup></td>
<td>19</td>
</tr>
<tr>
<td>Eastbound I-80, between Abernathy Road and West Texas Street (weave)<sup>b</sup></td>
<td>18</td>
<td>B</td>
</tr>
<tr>
<td>Eastbound I-80, between Beck Avenue and Travis Boulevard (weave)<sup>b</sup></td>
<td>17</td>
<td>B</td>
</tr>
<tr>
<td>Eastbound I-80, between Travis Boulevard and Air Base Parkway/Waterman Boulevard</td>
<td>16</td>
<td>B</td>
</tr>
<tr>
<td>Eastbound I-80, east of Air Base Parkway/Waterman Boulevard</td>
<td>19</td>
<td>C</td>
</tr>
<tr>
<td>SR 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastbound SR 12E, between the truck scales and Chadbourne Road (weave)<sup>b, c</sup></td>
<td>N/A<sup>c</sup></td>
<td>10</td>
</tr>
<tr>
<td>Eastbound SR 12E, between Webster Street and Civic Center Boulevard (weave)<sup>b</sup></td>
<td>11</td>
<td>B</td>
</tr>
<tr>
<td>On-Ramp Merge Sections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-680</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northbound I-680, at Gold Hill Road</td>
<td>19</td>
<td>B</td>
</tr>
<tr>
<td>I-80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastbound I-80, at Red Top Road</td>
<td>9</td>
<td>A</td>
</tr>
<tr>
<td>Eastbound I-80, at Green Valley Road</td>
<td>11</td>
<td>B</td>
</tr>
<tr>
<td>Eastbound I-80, at the connector from northbound I-680</td>
<td>18</td>
<td>B</td>
</tr>
<tr>
<td>Eastbound I-80, at the truck scales<sup>d</sup></td>
<td>22</td>
<td>C</td>
</tr>
<tr>
<td>Eastbound I-80, at Travis Boulevard</td>
<td>9</td>
<td>A</td>
</tr>
<tr>
<td>Eastbound I-80, at Air Base Parkway/Waterman Boulevard</td>
<td>12</td>
<td>B</td>
</tr>
<tr>
<td>SR 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastbound SR 12E, at Chadbourne Road</td>
<td>13</td>
<td>B</td>
</tr>
<tr>
<td>Eastbound SR 12E, at Civic Center Boulevard</td>
<td>14</td>
<td>B</td>
</tr>
</tbody>
</table>
Chapter 2. Affected Environment; Environmental Consequences; and Avoidance, Minimization, and/or Mitigation
Measures—Human Environment

<table>
<thead>
<tr>
<th>Segment</th>
<th>Off-Ramp Diverge Sections</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A.M. Peak Hour²</td>
</tr>
<tr>
<td></td>
<td>No Project</td>
</tr>
<tr>
<td></td>
<td>Density</td>
</tr>
<tr>
<td>I-680</td>
<td></td>
</tr>
<tr>
<td>Northbound I-680, at Gold Hill Road</td>
<td>20 B</td>
</tr>
<tr>
<td>Northbound I-680, at Central Way</td>
<td>21 C</td>
</tr>
<tr>
<td>Northbound I-680, at Suisun Valley Road</td>
<td>17 B</td>
</tr>
<tr>
<td>I-80</td>
<td></td>
</tr>
<tr>
<td>Eastbound I-80, at Red Top Road</td>
<td>14 B</td>
</tr>
<tr>
<td>Eastbound I-80, at the connector to eastbound SR 12E</td>
<td>23 C</td>
</tr>
<tr>
<td>Eastbound I-80, at Abernathy Roada</td>
<td>12 B</td>
</tr>
<tr>
<td>Eastbound I-80, at Air Base Parkway/Waterman Boulevard</td>
<td>13 B</td>
</tr>
<tr>
<td>SR 12</td>
<td></td>
</tr>
<tr>
<td>Eastbound SR 12E, at Chadbourne Roada</td>
<td>16 B</td>
</tr>
<tr>
<td>Eastbound SR 12E, at Webster Street</td>
<td>16 B</td>
</tr>
</tbody>
</table>

Notes: Bold font indicates unacceptable operations. Dark shading indicates an impact for CEQA considerations.

- Density is expressed in vehicles per hour per lane. Speed is expressed in mph and is the speed within the influence area.
- LOS thresholds for weaving sections are different from mainline sections.
- This analysis segment only applies to the with-project case. The corresponding no-project segments appear as standard merges in the on-ramp merge section and as standard diverges in the off-ramp diverge section.
- This analysis location is not a standard merge in the with-project case and so does not appear in the on-ramp merge section. Instead, for the with-project case, it is included within the applicable weave section.
- This analysis location is not a standard diverge in the with-project case and so does not appear in the off-ramp diverge section. Instead, for the with-project case, it is included within the applicable weave section.

The analysis shows that during the a.m. peak hour, both with and without the project, all freeway mainline segments, on-ramp merge sections, and off-ramp diverge sections are projected to continue to operate at acceptable LOS E conditions or better.

During the p.m. peak hour, 12 analysis locations are projected to operate at LOS F without the project, and 11 locations are projected to operate at LOS F with it.³ Although most individual analysis locations either would improve or have no change with the project, one analysis location would worsen with the project. Eastbound I-80 at the connector to eastbound SR 12E would be somewhat more congested with the project because there is only a single mainline lane plus a long deceleration lane serving the off-ramp, whereas without the proposed project, there is a full mainline lane plus a shared mainline lane—in effect two full mainline lanes feeding the off-ramp. This analysis location is denoted with shading in Table 2.1-9. The vehicle density at this location is projected to be well over capacity without the proposed project and is projected to increase with it. Note that the ramp diverge analysis considers only the outside lanes associated with the diverge. Because this location is projected to operate at LOS F with or without the project, this is not considered an adverse effect. The Interstate 80/Interstate 680/State Route 12

³ Note that certain analysis segments cannot be directly compared between the cases because the project design changes the lane geometry in the segment; these locations are noted in Table 2.1-10.
Interchange Project is being designed to address congestion as a result of high travel demand growth through the project area.

Impact TRA-3: Ramp Terminal Intersections Operating at LOS F in the A.M. and P.M. Peak Hours in 2015

In 2015, one ramp terminal intersection would operate at LOS F in the a.m. peak hour, and four ramp terminal intersections would operate at LOS F in the P.M. peak hour, both with and without the project.

Table 2.1-10 presents the ramp terminal intersection operations results. The intersections that are projected to operate at LOS F, with or without the project, are:

- Pittman Road/I-80 eastbound ramps (p.m. peak hour only),
- I-80 eastbound on-ramp/Beck Avenue/West Texas Street (p.m. peak hour only),
- Beck Avenue/SR 12 (a.m. and p.m. peak hours), and
- Pennsylvania Avenue/SR 12 (p.m. peak hour only)

Table 2.1-10. Year 2015 with Project—Intersection Analysis

<table>
<thead>
<tr>
<th>Intersection*</th>
<th>A.M. Peak Hour</th>
<th>P.M. Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Project</td>
<td>With Project</td>
</tr>
<tr>
<td></td>
<td>Delay</td>
<td>LOS</td>
</tr>
<tr>
<td>1</td>
<td>Red Top Road/I-80 eastbound ramps</td>
<td>22 C</td>
</tr>
<tr>
<td>2</td>
<td>Jameson Canyon Road (SR 12)/Red Top Road</td>
<td>28 C</td>
</tr>
<tr>
<td>3</td>
<td>Green Valley/Lopes Road/I-80 eastbound ramps</td>
<td>15 B</td>
</tr>
<tr>
<td>4</td>
<td>Pittman Road/I-80 eastbound ramps</td>
<td>16 B</td>
</tr>
<tr>
<td>5</td>
<td>Chadbourne Road/SR 12 eastbound ramps</td>
<td>5 A</td>
</tr>
<tr>
<td>6</td>
<td>Abernathy Road/I-80 eastbound ramps</td>
<td>7 A</td>
</tr>
<tr>
<td>7</td>
<td>West Texas Street/I-80 eastbound off-ramp</td>
<td>5 A</td>
</tr>
<tr>
<td>8</td>
<td>I-80 eastbound on-ramp/Beck Avenue/West Texas Street</td>
<td>18 B</td>
</tr>
<tr>
<td>9</td>
<td>Beck Avenue/SR 12</td>
<td>>80 F</td>
</tr>
<tr>
<td>10</td>
<td>Pennsylvania Avenue/SR 12</td>
<td>48 D</td>
</tr>
<tr>
<td>11</td>
<td>I-80 eastbound ramps/Travis Boulevard</td>
<td>2 A</td>
</tr>
<tr>
<td>12</td>
<td>I-80 eastbound ramps/Air Base Parkway</td>
<td>11 B</td>
</tr>
</tbody>
</table>

Notes: **Bold font** indicates unacceptable operations. **Dark shading** indicates an impact for CEQA considerations.

a All intersections are signalized. Signalized intersection LOS is based on the weighted average control delay of all movements measured in seconds per vehicle. Peak hour traffic volumes, lane configurations, and signal timing plans are used as inputs in the LOS calculations.

These LOS F conditions result from the highly congested conditions in the corridor that are projected to occur with or without the project. At the first two intersections, capacity improvements are being planned as part of the Interstate 80/Interstate 680/State Route 12
Interchange Project, currently in the environmental clearance phase. The second two intersections are planned to be replaced by grade-separated interchanges, as part of the same interchange project. This is not an adverse effect.

Impact TRA-4: Temporary Disruption of Traffic Patterns and Emergency Services during Construction

Construction activities associated with the proposed project would result in disruptions of traffic patterns and emergency services during the construction period. Temporary construction impacts would be substantial but are anticipated to be minimized because the construction work would occur south of the existing freeway and because phasing is planned. Temporary construction impacts are anticipated to be the greatest at the eastbound SR 12E connector from eastbound I-80. As part of the Department’s standard procedures, the following measures to reduce construction-related traffic impacts would be implemented:

- The contractor will be required to prepare and implement a TMP that will identify the locations of temporary detours and signage to facilitate local traffic patterns and through-traffic requirements.
- The project special provisions of the highway contract will require that emergency service providers (i.e., law enforcement, fire protection, and ambulance services) be given adequate advance notice of any street closures during the construction phases of the proposed project.
- The TMP will address short-term disruptions in existing circulation patterns during construction; for example, the TMP will identify the locations of temporary detours or temporary roads to facilitate local traffic circulation and through-traffic requirements.
- The project special provisions of the highway contract will require a parking plan to accommodate construction equipment and construction workers. For each construction phase, the parking plan will identify sites for construction parking.

With implementation of these measures, there would be no adverse effect related to temporary disruption of traffic patterns and emergency services during construction.

Design Year (2035) Traffic Operations Analysis

Impact TRA-5: Improved Network-wide Freeway Operations during the Design Year (2035)

Table 2.1-11 presents the key network-wide MOEs during the design year (2035) with and without the proposed project, as well as the change in each MOE with the project. The network-wide MOEs shown in Table 2.1-11 are the most informative measure of what a motorist traveling eastbound on I-80 would expect on a trip through the project area. As shown in the table, the proposed project would improve operations in 2035, relative to the no-project scenario, for all MOEs in both the a.m. and p.m. peak hours.
Table 2.1-11. Year 2035 with Project—Eastbound Measures of Effectiveness

<table>
<thead>
<tr>
<th>MOE</th>
<th>A.M. Peak Hour</th>
<th>P.M. Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Project</td>
<td>With Project</td>
</tr>
<tr>
<td>VMT (per hour)</td>
<td>153,660</td>
<td>152,570 (0%)</td>
</tr>
<tr>
<td>VHT (per hour)</td>
<td>2,820</td>
<td>2,660 (-6%)</td>
</tr>
<tr>
<td>VHD (per hour)</td>
<td>280</td>
<td>225 (-20%)</td>
</tr>
<tr>
<td>Study locations operating at LOS E or F b</td>
<td>10</td>
<td>9 (-10%)</td>
</tr>
<tr>
<td>Network-wide average travel times</td>
<td>8:03</td>
<td>7.27 (-10%)</td>
</tr>
</tbody>
</table>

Notes: The study area extends on I-80 eastbound from west of Red Top Road to east of Air Base Parkway/Waterman Boulevard and on northbound I-680 south of Gold Hill Road to I-80. The study area also includes eastbound SR 12E of I-80 and all ramps.

a Percent change from no-project conditions is presented in parentheses.

b Total of 38 study locations under no-project conditions and 37 study locations under with-project conditions.

In the a.m. peak hour in 2035, eastbound I-80 traffic volumes are projected to increase by more than 50% over existing conditions in the vicinity of the truck scales facility with or without the proposed project. Nevertheless, eastbound I-80 would continue to be the off-peak direction during the a.m. peak hour. The analysis shows that all network-wide MOEs improve or remain the same with the project.

In the p.m. peak hour in 2035, eastbound I-80 traffic volumes are projected to increase by more than 80% over existing conditions in the vicinity of the truck scales with or without the proposed project. The eastbound travel direction is the peak direction during the p.m. peak hour, and severe congestion would occur without the project. Although the project would improve eastbound p.m. operations in nearly all respects, its benefits would be limited by the fact that at-grade signalized intersections would remain at Pennsylvania Avenue and Beck Avenue on SR 12E, causing vehicle queues to extend back from SR 12E onto eastbound I-80. This would constrain the amount of traffic that could enter the project study area from northbound I-680, eastbound SR 12W, and eastbound I-80 both with and without the project. Nevertheless, as shown in Table 2.1-11, the project would improve freeway operations overall, resulting in a decrease in system-wide delay. Overall, this would be a beneficial effect.

Impact TRA-6: Improved Conditions or No Change at Most Freeway System Analysis Locations in 2035

Conditions would improve or would not change at all freeway system analysis locations in 2035, except one: on eastbound I-80 at the Red Top Road on-ramp in the p.m. peak hour.

Table 2.1-12 presents the freeway mainline, off-ramp, and on-ramp operations results.
Table 2.1-12. Year 2035 with Project—Mainline and Ramps Analysis

<table>
<thead>
<tr>
<th>Segment</th>
<th>A.M. Peak Hour<sup>a</sup></th>
<th>P.M. Peak Hour<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Project</td>
<td>With Project</td>
</tr>
<tr>
<td></td>
<td>Density</td>
<td>LOS</td>
</tr>
<tr>
<td>Mainline and Weave Sections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-680</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northbound I-680, between Gold Hill Road and Central Way</td>
<td>36</td>
<td>E</td>
</tr>
<tr>
<td>I-80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastbound I-80, west of Red Top Road</td>
<td>31</td>
<td>D</td>
</tr>
<tr>
<td>Eastbound I-80, between Red Top Road and the SR 12W connector</td>
<td>18</td>
<td>C</td>
</tr>
<tr>
<td>Eastbound I-80, between SR 12W and Green Valley Road I-680 southbound (weave)<sup>b</sup></td>
<td>22</td>
<td>C</td>
</tr>
<tr>
<td>Eastbound I-80, between Pittman Road and the truck scales (weave)<sup>b</sup></td>
<td>29</td>
<td>D</td>
</tr>
<tr>
<td>Eastbound I-80, between truck scales and Abernathy Road (weave)<sup>b</sup></td>
<td>N/A</td>
<td>25</td>
</tr>
<tr>
<td>Eastbound I-80, between Abernathy Road and West Texas Street (weave)<sup>b</sup></td>
<td>25</td>
<td>C</td>
</tr>
<tr>
<td>Eastbound I-80, between Beck Avenue and Travis Boulevard (weave)<sup>b</sup></td>
<td>25</td>
<td>C</td>
</tr>
<tr>
<td>Eastbound I-80, between Travis Boulevard and Air Base Parkway/ Waterman Boulevard</td>
<td>23</td>
<td>C</td>
</tr>
<tr>
<td>Eastbound I-80, east of Air Base Parkway/Waterman Boulevard</td>
<td>25</td>
<td>C</td>
</tr>
<tr>
<td>SR 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastbound SR 12E, between the truck scales and Chadbourne Road (weave)<sup>b</sup></td>
<td>N/A</td>
<td>13</td>
</tr>
<tr>
<td>Eastbound SR 12E, between Webster Street and Civic Center Boulevard (weave)<sup>b</sup></td>
<td>15</td>
<td>B</td>
</tr>
<tr>
<td>On-Ramp Merge Sections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-680</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northbound I-680, at Gold Hill Road</td>
<td>37</td>
<td>F</td>
</tr>
<tr>
<td>I-80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastbound I-80, at Red Top Road</td>
<td>12</td>
<td>B</td>
</tr>
<tr>
<td>Eastbound I-80, at Green Valley Road</td>
<td>14</td>
<td>B</td>
</tr>
<tr>
<td>Eastbound I-80, at the connector from northbound I-680</td>
<td>26</td>
<td>C</td>
</tr>
<tr>
<td>Eastbound I-80, at the truck scales<sup>d</sup></td>
<td>36</td>
<td>E</td>
</tr>
<tr>
<td>Eastbound I-80, at Travis Boulevard</td>
<td>14</td>
<td>B</td>
</tr>
<tr>
<td>Eastbound I-80, at Air Base Parkway/Waterman Boulevard</td>
<td>18</td>
<td>B</td>
</tr>
<tr>
<td>SR 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastbound SR 12E, at Chadbourne Road</td>
<td>20</td>
<td>B</td>
</tr>
<tr>
<td>Eastbound SR 12E, at Civic Center Boulevard</td>
<td>17</td>
<td>B</td>
</tr>
</tbody>
</table>
The analysis shows that, during the a.m. peak hour, both with and without the proposed project, one merge section and three diverge sections are projected to operate at LOS F; all other mainline, weave, merge, and diverge sections would operate at acceptable LOS E conditions or better.

During the p.m. peak hour, 17 analysis locations are projected to operate at LOS F without the proposed project, and 16 locations are projected to operate at LOS F with it. While most individual analysis locations either would improve or have no change with the project, two analysis locations would worsen with it. Eastbound I-80 at the Red Top Road on-ramp merge section and Eastbound I-80 between Red Top Road and the SR 12W connector are somewhat more congested with the project because of the longer queue backing up from the eastbound I-80-to-eastbound SR 12 connector; this queue affects the outside lanes at the Red Top Road on-ramp merge area and between Red Top Road and the SR 12W connector. These analysis locations are denoted with shading in Table 2.1-12. The vehicle density at these locations are projected to be well over capacity without the project and the vehicle densities are projected to increase slightly to moderately with the project. These effects would be minimal.

4 Note that certain analysis segments cannot be directly compared between the cases because the project design changes the lane geometry in the segment; these locations are noted in Table 2.1-13.
Note that the on-ramp merge analysis considers only the outside lanes associated with the merge. These locations are projected to operate at LOS F with or without the project. The Interstate 80/Interstate 680/State Route 12 Interchange Project is being designed to address congestion as a result of high travel demand growth through the project area.

Impact TRA-7: Intersections Operating at LOS F in the A. M. and P.M. Peak Hours in 2035

In 2035, four ramp terminal intersections would operate at LOS F in the a.m. peak hour, both with and without the project. In the p.m. peak hour, eight intersections would operate at LOS F without the project, and seven intersections would operate at LOS F with the project.

Table 2.1-13 presents the 2035 ramp terminal intersection operations results. The LOS F conditions indicated in bold would result from the highly congested conditions in the corridor that are projected to occur with or without the project. Capacity improvements are being planned for these locations as part of the Interstate 80/Interstate 680/State Route 12 Interchange Project, currently in the project report phase. In the case of Beck Avenue/SR 12E and Pennsylvania Avenue/SR 12E, grade-separated interchanges are being planned as part of the interchange project. This is not considered an adverse effect.

The intersection of Abernathy Road/I-80 eastbound ramps would improve from LOS F to LOS E with the proposed project. This would be a beneficial effect.

Table 2.1-13. Year 2035 with Project—Intersections Analysis

<table>
<thead>
<tr>
<th>Intersectiona</th>
<th>A.M. Peak Hour</th>
<th>P.M. Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Project</td>
<td>With Project</td>
</tr>
<tr>
<td></td>
<td>Delay</td>
<td>LOS</td>
</tr>
<tr>
<td>1 Red Top Road/I-80 eastbound ramps</td>
<td>>80</td>
<td>F</td>
</tr>
<tr>
<td>2 Jameson Canyon Road (SR 12)/Red Top Road</td>
<td>>80</td>
<td>F</td>
</tr>
<tr>
<td>3 Green Valley/Lopes Road/ eastbound I-80 ramps</td>
<td>52</td>
<td>D</td>
</tr>
<tr>
<td>4 Pittman Road/I-80 eastbound ramps</td>
<td>21</td>
<td>C</td>
</tr>
<tr>
<td>5 Chadbourne Road/SR 12 eastbound ramps</td>
<td>5</td>
<td>A</td>
</tr>
<tr>
<td>6 Abernathy Road/I-80 eastbound ramps</td>
<td>9</td>
<td>A</td>
</tr>
<tr>
<td>7 West Texas Street/I-80 eastbound off-ramp</td>
<td>7</td>
<td>A</td>
</tr>
<tr>
<td>8 I-80 eastbound on-ramp/Beck Avenue/West Texas Street</td>
<td>23</td>
<td>C</td>
</tr>
<tr>
<td>9 Beck Avenue/SR 12</td>
<td>>80</td>
<td>F</td>
</tr>
<tr>
<td>10 Pennsylvania Avenue/SR 12</td>
<td>>80</td>
<td>F</td>
</tr>
<tr>
<td>11 I-80 eastbound ramps/Travis Boulevard</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>12 I-80 eastbound ramps/Air Base Parkway</td>
<td>15</td>
<td>B</td>
</tr>
</tbody>
</table>

Notes: Bold font indicates unacceptable operations. Light shading indicates a beneficial impact.

a All intersections are signalized. Signalized intersection LOS is based on the weighted average control delay of all movements measured in seconds per vehicle. Peak hour traffic volumes, lane configurations, and signal timing plans are used as inputs in the LOS calculations.
Impact TRA-8: Reduced Potential for Accidents in the Corridor

The project would lessen the potential for accidents in the corridor by providing standard-length ramps for the I-80 eastbound truck scales and braiding the truck scales’ ramps with the I-80 eastbound connector to SR 12 eastbound.

The higher-than-average accident rates experienced in the project corridor are partially related to the congestion caused by slow-moving trucks in the outside lanes and to truck queues backing up onto mainline lanes, combined with passenger car and truck weave, merge, and diverge movements in close proximity to the truck ramp diverge and merge areas. The project would provide standard-length ramps that would be braided—i.e., the flows would be separated—with one of the key nearby diverge movements, the I-80 eastbound-to-SR 12 eastbound connector ramp. This would promote smooth traffic flow and reduce the potential for accidents. This would be a beneficial effect.

Impact TRA-9: Improved Mobility for Emergency Service Providers, Transit Vehicles, and Goods Movement Vehicles

As discussed under Impact TRA-1 and Impact TRA-5, the project would improve network-wide measures of effectiveness in the corridor, reducing VHD and the average travel time for trips through the corridor, in the eastbound direction. These improvements would benefit emergency service providers, buses, and goods movement vehicles, by reducing overall travel times. This would be a beneficial effect.

Effects of the No-Project Alternative

As shown in Tables 2.1-8 and 2.1-11, under the No-Project Alternative traffic operations in the project area would continue to worsen and operate at unacceptable LOS.

2.1.7 Visual/Aesthetics

The information below is summarized from the VIA prepared for the proposed project (CirclePoint 2008b). This section describes the existing visual and aesthetic conditions in the study area, including a discussion of applicable Solano County General Plan goals and policies that relate to visual and aesthetic conditions in the project area.

Regulatory Setting

NEPA, as amended, establishes that the federal government should use all practicable means to ensure all Americans safe, healthful, productive, and aesthetically [emphasis added] and culturally pleasing surroundings (42 USC 4331[b][2]). To further emphasize this point, the FHWA in its implementation of NEPA (23 USC 109[h]) directs that final decisions regarding projects are to be made in the best overall public interest, taking into account adverse environmental impacts, including the destruction or disruption of aesthetic values.

Likewise, CEQA establishes that it is the policy of the state to take all action necessary to provide Californians “with … enjoyment of aesthetic, natural, scenic and historic environmental qualities” [emphasis added] (PRC Section 21001[b]).
Chapter 2. Affected Environment; Environmental Consequences; and Avoidance, Minimization, and/or Mitigation Measures—Human Environment

Affected Environment
The project is located in Solano County. The project footprint, as shown in Figure 2.1-2, is defined as the area proposed for any ground-disturbing activities, such as construction activities, construction staging areas, and construction access. The project corridor spans approximately 2 miles along eastbound I-80 and SR 12. Portions of the project area not currently part of the highway are used primarily for agriculture.

Background on Visual Analysis
The visual impacts of project alternatives are determined by assessing the visual resource change resulting from the project and predicting viewer response to that change. Visual resource change is the sum of the change in visual character and change in visual quality. The first step in determining visual resource change is to assess the compatibility of the proposed project with the visual character of the existing landscape. The FHWA’s method of visual resource analysis is used to determine visual character and visual quality. As part of this process visual quality was determined by rating the existing vividness, intactness, and unity of each viewpoint on a scale from 1 to 7. These scores were averaged to determine an overall visual quality score.

The second step is to compare the visual quality of the existing resources with projected visual quality after the project is constructed. For this analysis, a simulation of the project was prepared. The visual impact is determined by subtracting the visual quality score of the existing view from the visual quality score of the same view after project construction. Changes in visual character are also discussed.

Landscape Unit
To provide a framework for understanding visual effects of a proposed highway project, the regional landscape can be divided into distinct landscape units. A landscape unit is a portion of the regional landscape and can be thought of as an outdoor room that exhibits a distinct visual character. A landscape unit will often correspond to a place or district that is commonly known among local viewers.

One landscape unit has been identified in the project area. As shown in Figure 2.1-4, the landscape unit consists mainly of flat agricultural fields in Suisun Valley on the south side of I-80 between the hill just west of Suisun Creek and the I-80/SR 12E interchange. This landscape unit includes the existing I-80/SR 12E interchange and the existing truck scales (Figure 2.1-5).

Existing Visual Character
I-80 creates a line of manmade development through flat farmland on the valley floor. Several rural homes and farm buildings are scattered throughout the landscape unit on the agricultural land. The presence of agriculture creates a texture and a brown/green color. Because of its scale relative to other elements in this landscape unit, one building, a Budweiser brewery, dominates the eastern end of the landscape unit. The existing truck scales dominate the western end of the landscape unit. The rural character of this landscape unit is continuous with the exception of the Budweiser brewery and the existing truck scales.

Existing Visual Quality
The rural nature of this landscape unit creates a moderately high level of vividness. Although the majority of this landscape unit appears intact and unified in its agricultural character,
encroachment of industrial uses (e.g., the brewery) in the eastern portion of this landscape unit and the existing truck scales to the west, detract from the overall intactness and unity.

Project Viewshed

A viewshed is composed of broad-range views from a specific viewing location. Viewsheds are generally quite large. The limits of a viewshed are defined as the visual limits of the views located from the proposed project. The viewshed also includes the locations of viewers likely to be affected by visual changes brought about by project features.

The viewshed for this analysis was determined by the height of the landforms and the absence of buildings along I-80. Because the project is on the valley floor, the viewshed stretches far to the south to Suisun Marsh (Figure 2.1-5). Views to the west currently are obstructed by the existing truck scales, although after project implementation the existing truck scales will be removed, and views to the west will be interrupted only by hills. Views to the east end at the I-80/SR 12 interchange and the Budweiser brewery.

Sensitive Viewers

According to the FHWA’s *Visual Impact Assessment for Highway Projects* (Federal Highway Administration 1980), viewer response is composed of two elements: viewer sensitivity and viewer exposure. These elements combine to form a method of predicting how the public might react to visual changes brought about by a highway project.

Local and regionally designated roads may reflect viewer sensitivity. The portion of I-80 within the project area is listed as a scenic roadway in *Scenic Roadways Element: A Part of the Solano County General Plan* (Sedway/Cooke 1977). No roadways in the project area are listed as state or city scenic highways, roads, or vistas.

Motorists would be the primary viewer group affected by the project. Motorists include both drivers and passengers traveling on I-80 in the project area. Motorists in approximately 160,000 vehicles drive through the project area during each weekday. These viewers would have moving views of the project from I-80.

Motorist sensitivity to visual change would vary based on whether viewers were passengers or drivers and based on the level of traffic congestion. Drivers traveling at normal speeds usually need to focus their attention on long-range, non-peripheral views. However, passengers would likely have more of a heightened awareness of a wide range of views because they are not concentrating on the task of driving. Motorists traveling at normal speeds would have a much shorter duration of views than motorists driving slowly because of congested traffic (which is common in the project area during peak periods).

Visual Impact Analysis

Because it is not feasible to analyze all of the views in which the proposed project would be seen, it is necessary to select one or more viewpoints that would most clearly represent the visual effects that the project would have. Due to the fact that the project site is confined to one location along the side of the highway, a single viewpoint was selected in this case. The viewpoint was

5 *Visual Impact Assessment for Highway Projects*, Federal Highway Administration (FHWA), March 1981
Figure 2.1-5
Project Viewshed

Legend
- Viewshed

Sources: CirclePoint 2008.
selected in consultation with the Department’s Landscape Architecture office to represent the most predominant view of the proposed truck scales (that of motorists traveling in the eastbound direction on I-80). The location of this viewpoint is shown in Figure 2.1-6.

As shown in Figure 2.1-7, this view from I-80 eastbound is characterized by the flat brown/green open agricultural fields of Suisun Valley. Agricultural fields make up the majority of the view south of I-80, and some trees and shrubs are seen adjacent to the highway. The foreground of this view also includes the wide, straight, flat, paved surface of I-80 and corresponding highway signs. In the distance, manmade elements, including a large tan building (the Budweiser brewery) and a tall, metal utility tower, are visible encroaching on this natural setting. These encroaching elements detract from the intactness and unity of the view, creating a moderately high intactness and unity. Views of the large expanse of agricultural fields are considered to have a moderately high vividness.

Environmental Consequences

The new truck scales, the size and shape of which are shown in Figure 2.1-7, are visible from the selected viewpoint. Also visible are the new paved surfaces alongside I-80, including the off-ramp to the truck scales, as well as the truck bays, parking, and inspection areas.

The addition of truck scales, a highway-related use, to the side of the highway would not substantially alter the existing character, especially because the existing truck scales would be removed. The project would change the visual quality, however, as shown in the chosen viewpoint.

The new paved surfaces and building will eliminate views of agricultural fields, reducing vividness from moderately high to moderately low. The majority of the new view would be of new project elements. The truck scale elements correspond with the existing highway elements, keeping the unity of the scene moderately high. Although the visual simulation from the selected viewpoint shows a relatively intact scene, the new truck scales would interrupt views of open agricultural fields as seen by motorists along I-80, reducing the intactness from moderately high to moderate.

A comparison of visual quality before and after the project is shown in Table 2.1-14. As shown in Table 2.1-14, development of the truck scales (without mitigation) would change the visual quality in this viewpoint from 5, moderately high, to 4, moderate.

<table>
<thead>
<tr>
<th>Visual Quality Criteria</th>
<th>Vividness</th>
<th>Intactness</th>
<th>Unity</th>
<th>Visual Quality (Average Scores for Vividness, Intactness, and Unity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing conditions</td>
<td>Moderately high (Score: 5)</td>
<td>Moderately high (Score: 5)</td>
<td>Moderately high (Score: 5)</td>
<td>Moderately high (Score: 5)</td>
</tr>
<tr>
<td>Future conditions (with and without mitigation)</td>
<td>Moderately low (Score: 3)</td>
<td>Moderate (Score: 4)</td>
<td>Moderately high (Score: 5)</td>
<td>Moderate (Score: 4)</td>
</tr>
</tbody>
</table>
Viewer Response
The viewpoint represents motorists’ views along eastbound I-80. Because this change would occur on I-80, potentially more than 100,000 of people per day would be exposed to the change. Daily commuters would have a higher cumulative duration of this view because they would see it on a daily basis. The general view duration of motorists and passengers would vary based on the amount of traffic. Motorists are anticipated to have a moderate level of sensitivity to visual change.

The analysis of visual and aesthetic impacts is based on a qualitative assessment of the change in views at the key viewpoints identified above. The project would have a negative visual impact if it would:

- adversely affect a scenic vista,
- damage or remove scenic resources,
- degrade the existing visual character or visual quality, or
- create a new source of substantial light or glare.

The project footprint is open farmland. There are no rock outcroppings on the site. The two residential structures on the site that would be displaced by the project are not considered historic or scenic resources.\(^6\) The project footprint does contain several trees, but these are not unique in terms of size, shape, or character. These trees are not considered scenic resources. There are no scenic resources on the project footprint.

Impact VIS-1: Degradation of Visual Quality with Adverse Affects to a Scenic Vista
The project would affect a scenic vista by decreasing the visual quality of views of open farmland from I-80. As previously discussed, completion of the project would decrease the existing visual quality, as seen by motorists along I-80, by one point. The project would result in a slightly adverse change to the existing visual quality, with moderate viewer response. This adverse change would be offset, to some degree, by the demolition of the existing scales (see Impact VIS-2). Additionally, architectural and landscaping minimization measures, described below, will increase the visual quality of the proposed truck scales.

Impact VIS-2: Beneficial Effect from Demolition of Existing Facility
In addition to the visual change represented in Figure 2.1-7, the project also would include the demolition of the existing eastbound truck scales. Demolition of the existing facility could create a beneficial visual impact by opening up views of the vegetated hill behind the existing truck scales, thereby increasing the vividness and intactness of views from I-80. However, since the future use of this site has not been determined, the extent of change in visual quality is unknown. For example, were this area to be used for maintenance or storage facilities, these uses would introduce elements that would decrease the vividness and intactness of the landscape. Future uses

\(^6\) For a structure to be considered a scenic resource due to its historic nature, it does not need to qualify as a historic property under CEQA. Older buildings with historic significance to the local community can qualify as scenic resources.
Existing view from I-80 eastbound looking east.

Visual simulation of proposed truck scales.
Source: CirclePoint 2008.
of this site are likely to have a lower intensity of development than the current truck scales and therefore would result in somewhat of a beneficial impact. Since demolition of the existing scales would be likely to increase visual quality in this area, it would offset some degree of the visual impacts from the new truck scale facility.

Impact VIS-3: Alteration of the Existing Visual Character from Project Sound Walls

Sound walls associated with the project’s highway on-ramps would not greatly change the existing visual character or substantially alter existing views. Current views from the highway to the south in this location are obstructed by an orchard. With project implementation, views would remain obstructed by the new on-ramp structures and sound walls. Views of the highway from residences in this area would also experience slight changes. These views would change from views of the highway to views of the new ramps and associated sound walls. Since existing views would not substantially change, visual impacts from project sound walls are not considered an adverse effect.

Furthermore, sound wall aesthetics are part of a corridor aesthetics plan that is under development, as discussed under the Avoidance, Minimization, and/or Mitigation Measures section below. Such planned sound wall aesthetics will help increase the visual quality of the I-80 corridor.

Impact VIS-4: Temporary Decrease of Visual Quality during Construction

During construction, the small trees and shrubs adjacent to the freeway would be removed. Crops also would be removed during grading, exposing the soils underneath. Construction equipment would be visible along the highway. Disturbed earth and construction equipment would disrupt and introduce an encroaching element into an otherwise agricultural setting. Although the immediate area is undeveloped, the surrounding area is developed, and construction from the Fairfield Corporate Commons project and the Interstate 80 High Occupancy Vehicle Lane Project is visible in the immediate vicinity. However, the construction site would be out of character with the farmland surrounding it. The construction process would decrease visual quality by interrupting and decreasing the vividness of views and creating encroaching elements that would reduce the intactness and unity of the view. In addition, the construction site may include lighting, which would create a new source of light and glare.

Although adverse visual impacts would occur during construction, these effects would be temporary and would not contrast with the existing visual character of the area. After construction of the truck scales is completed, the view would be permanently altered as described above for Impacts VIS-1.

Avoidance, Minimization, and/or Mitigation Measures

The Department and the FHWA mandate that a qualitative/aesthetic approach should be taken to address visual quality loss in the project area. This approach fulfills the letter and the spirit of FHWA requirements because it addresses the actual cumulative loss of visual quality that would occur in the project viewshed when the project is implemented. It also constitutes mitigation that can more readily generate public acceptance of the project.
Measures to minimize the visual change resulting from the project will consist of adhering to the following design requirements. The requirements are arranged by project feature and include design options in order of effectiveness. All measures will be designed and implemented with the concurrence of the Department’s district landscape architect.

The project sponsors will implement the following measures to improve visual quality at the site of the proposed truck scales.

- As directed by the Department, landscaping shall be used around the perimeter of the site to screen the truck bays, building, and associated facilities from the view of sensitive land uses to the south. Landscape planting shall be used in front of the office portion of the building to provide privacy for building occupants and soften the appearance of the building. The landscaping shall not interfere with the line of sight or other operational aspects of the truck scales facility.

- The architectural design depicted in Figure 2.1-7 incorporates several key elements intended to reduce the visual scale of the proposed building, provide visual interest while not creating a visual distraction for motorists and an overall aesthetic which is compatible with the surrounding visual environment. These elements include:
 - The roof line of the truck bay building incorporates element (e.g. clearstory windows) which reduce the perceived scale and height of the structure.
 - To break up the large wall expanse of the truck bay building, architecture facade treatments such as curved metal canopies should be used as depicted in the simulation.
 - The color palette should be predominately neutral warm tones with colors used in key elements of the building architecture to create visual interest.
 - CHP signage on the building should be sized and placed on the building to both be visible from the freeway and not overly obtrusive in the view. The signage should be coordinated with the architecture of the building.

- The Department and STA are currently (as of October 2008) preparing a corridor aesthetics plan for the I-80 corridor in Solano County. The plan will provide recommendations as to signage, sound wall, retaining wall, structure and landscape aesthetics. These recommendations should be incorporated into the roadway, structures, sound wall and landscape designs for the truck scales project to the extent feasible.

Effects of the No-Project Alternative

Under the No-Project Alternative, the proposed new truck scales would not be constructed. Therefore, no new visual or aesthetic effects would occur.

2.1.8 Cultural Resources

Regulatory Setting

Cultural resources in this document refer to all historical and archaeological resources, regardless of significance. Laws and regulations dealing with cultural resources include those described below.
The National Historic Preservation Act of 1966, as amended (NHPA), sets forth national policy and procedures regarding historic properties, defined as districts, sites, buildings, structures, and objects included in or eligible for the National Register of Historic Places (NRHP). Section 106 of the NHPA requires federal agencies to take into account the impacts of their undertakings on such properties and to allow the Advisory Council on Historic Preservation (ACHP) the opportunity to comment on those undertakings, following regulations issued by the ACHP (36 CFR 800). On January 1, 2004, a Section 106 programmatic agreement between the ACHP, FHWA, State Historic Preservation Officer, and the Department went into effect for the Department’s projects, both state and local, with FHWA involvement. The Programmatic Agreement Among the Federal Highway Administration, the Advisory Council on Historic Preservation, the California State Historic Preservation Officer, and the California Department of Transportation Regarding Compliance with Section 106 of the National Historic Preservation Act as It Pertains to the Administration of the Federal-Aid Highway Program in California (Programmatic Agreement) implements the ACHP’s regulations, 36 CFR 800, streamlining the Section 106 process and delegating certain responsibilities to the Department. The FHWA’s responsibilities under the Programmatic Agreement have been assigned to the Department as part of the Surface Transportation Project Delivery Pilot Program (23 CFR 773) (July 1, 2007).

Historic properties also may be covered under Section 4(f) of the U.S. Department of Transportation Act, which regulates the “use” of land from historic properties.

Historical resources are considered under the CEQA, as well as PRC 5024.1, which established the California Register of Historical Resources (CRHR). PRC 5024 requires state agencies to identify and protect state-owned resources that meet NRHP listing criteria. It further specifically requires the Department to inventory state-owned structures in its rights-of-way.

Affected Environment
Cultural resources studies completed in support of this document included a historic properties survey report (ICF Jones & Stokes 2008a), a historic resources evaluation report (ICF Jones & Stokes 2008b), an archaeological survey report (ICF Jones & Stokes 2008c), and an Extended Phase I report (XPI) (ICF Jones & Stokes 2008d).

The area of potential effect (APE) for archaeology includes the project footprint and a 20-foot radius around it. The APE for architectural resources includes the project footprint, any parcels of which there is a partial take, and any parcels where there are indirect effects.

The archaeological study consisted of a pedestrian survey of the entire project area, as well as a literature search at the Northwest Information Center (NWIC) of the California Historical Resources Information System (CHRIS) and consultation with the Native American Heritage Commission (NAHC) and six individuals listed by the NAHC as individuals with knowledge of or interest in the area.

The records search indicated that two archaeological sites are located within a 0.5-mile radius of the APE, and an additional six are located within a 1-mile radius. Although no previously recorded archaeological sites were located within the APE, and no resources were located within the APE as a result of the 2004 pedestrian survey, an XPI was conducted. Mechanical excavations were conducted and documented in the XPI because the project area was considered
sensitive based on the presence of buried archaeological resources in similar deposits, the proximity of Suisun Creek, and the undeveloped nature of the project area.

The XPI was conducted over seven days in July 2008. A total of 20 trenches were mechanically excavated to between 10 and 15 feet in depth in areas of proposed ground disturbance. A buried “A” Horizon (or prehistoric ground surface) was noted, indicating the potential for buried sites, but no cultural materials were located.

An architectural inventory of the APE was conducted on November 1, 2007; April 23, 2008; and June 4, 2008. The project area includes seven properties containing built-environment resources in addition to an irrigation feature constructed before 1964 that have been formally evaluated for this project (Appendix A in ICF Jones & Stokes 2008b). None of the pre-1964 buildings, structures, or linear resources in the APE appears to meet the criteria for listing in the NRHP, either individually or as a group. Similarly, none of these resources is a historical resource for the purposes of CEQA. The remaining properties within the APE met the criteria presented in the Programmatic Agreement, Attachment 4 (Properties Exempt From Evaluation), and did not require evaluation. These properties include a substation located on APN 0027-252-080 and a complex located on APN 0027-272-050. Overall, there does not appear to be potential for a historic district or a historic landscape in the project area, which might include any of these properties as contributing elements.

There are no historic properties located within the direct or indirect APE. Therefore, there is a finding of “No Historic Properties Affected.”

If cultural materials are discovered during construction, all earth-moving activity within and around the immediate discovery area will be diverted until a qualified archaeologist can assess the nature and significance of the find.

If human remains are discovered, further disturbances and activities will cease in any area or nearby area suspected to overlie remains, and the County coroner will be contacted, according to State Health and Safety Code Section 7050.5. Pursuant to PRC 5097.98, if the remains are thought to be Native American, the coroner will notify the NAHC, which then will notify the most likely descendent (MLD). At this time, the person who discovered the remains will contact the District Environmental Branch so that the branch may work with the MLD on the respectful treatment and disposition of the remains. Further provisions of PRC 5097.98 are to be followed as applicable.

Environmental Consequences
Because there are no historic properties in the project area, no historic properties would be affected by the project. However, there is always the possibility that unrecorded or buried archaeological resources or prehistoric- or historic-period human remains may be located within the project area. Construction activities associated with project construction, such as grading and excavation, may disturb these resources. If these resources were to meet the criteria for listing in the NRHP, the disturbance or destruction of the resources would be considered an adverse impact.
Chapter 2. Affected Environment; Environmental Consequences; and Avoidance, Minimization, and/or Mitigation Measures—Human Environment

Avoidance, Minimization, and/or Mitigation Measures
No avoidance, minimization, or mitigation measures are necessary. Stipulation XV.B of the Section 106 Programmatic Agreement addresses “Discoveries without Prior Planning.” In the case of the discovery of a previously unidentified property or an unanticipated effect on a known property, it requires Caltrans to stop construction activity in the vicinity; evaluate the find; implement reasonable measures to avoid, minimize, and mitigate further harm to the property; notify appropriate agencies and Native American groups; and carry out appropriate actions.

Effects of the No-Project Alternative
Under the No-Project Alternative, the proposed new truck scales would not be constructed. Therefore, no effect on cultural resources would occur.

2.2 Physical Environment

2.2.1 Hydrology and Floodplain

Executive Order 11988 (Floodplain Management) directs all federal agencies to refrain from conducting, supporting, or allowing actions in floodplains unless it is the only practicable alternative. The FHWA requirements for compliance are outlined in 23 CFR 650 Subpart A. In order to comply, the following must be analyzed.

- The practicability of alternatives to any longitudinal encroachments.
- Risks of the action.
- Impacts on natural and beneficial floodplain values.
- Support of incompatible floodplain development.
- Measures to minimize floodplain impacts and to preserve/restore any beneficial floodplain values affected by the project.

The base floodplain is defined in 23 CFR 650.105 as “the area subject to flooding by the flood or tide having a one percent chance of being exceeded in any given year.” An encroachment is defined as “an action within the limits of the base floodplain.”

Affected Environment

The following text is based on the location hydraulic study and summary floodplain encroachment report for the proposed project (Mark Thomas & Co. and Nolte Associates 2008a) and the stormwater data report for the proposed project (Mark Thomas & Co. and Nolte Associates 2008b).

Solano County, a central region of California, is characterized by a Mediterranean climate. Summer is dominated by subtropical high pressure cells, with dry sinking air capping a surface marine layer of varying humidity, making rainfall impossible or unlikely but for the odd thunderstorm. During winter, the polar jet stream and associated periodic storms reach into the lower latitudes of the Mediterranean zones, bringing approximately 95% of the total precipitation for the region. Temperatures range from 27°C (80°F) to 43°C (110°F) in summer and from -1°C (30°F) to 10°C (50°F) in winter.

The San Francisco Bay RWQCB lists this region as Area 2 of its domain. The San Francisco Bay RWQCB further notes that its rainy season is from October 15 to April 15. Average rainfall for this area is 16 inches, and average rainfall for the western mountains is 30 inches.

The land gradually slopes to the south toward Suisun Bay. The area is composed of relatively flat grazing plains and rural open space with gently sloping hills adjacent to the I-80/I-680 interchange. The Vaca Mountains lie to the north of Suisun Valley and Fairfield. Along the reach
of the project area, two named creeks convey runoff to Suisun Bay to the south: Suisun Creek and Raines Drain. Historically, agriculture has affected runoff patterns in the areas adjacent to the project. There is extensive urban development in areas to the west and east of the project but not in the immediate project area. The affected drainage areas are on-site areas only, with minimal impacts on the flood plain. The watersheds will not be affected.

Suisun Creek and Raines Drain

The 100-year flow in Suisun Creek passes under the I-80 bridge without flooding the highway. However, at several locations within 2 miles upstream of I-80, 100-year flows escaped from the banks of Suisun Creek, flowing away from the creek. Some of these flood flows encounter the I-80 embankment at Raines Drain. The capacity of the Raines Drain cross culverts is not sufficient to carry the 100-year flood flows across the highway, causing flood flows to overtop the highway at this location, as defined on the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Maps (FIRM) (Figures 2.2-1a and 2.2-1b). Downstream of the highway the concrete lined portion of the Raines Drain has limited capacity, approximately 125 cfs, with the FEMA defined floodplain limits greatly exceeding the limits of the lined channel.

Coordination on the existing conditions and the potential project impacts to the existing waterways and floodplains of Suisun Creek and Raines Drain has included specific discussions with Caltrans District 4 Hydraulics Office, the County of Solano, the Solano County Water District, and the Solano Irrigation District (the owner of Raines Drain).

Environmental Consequences

The project would not involve construction of housing in the local 100-year floodplain, and the truck scale facility structures would be elevated above the floodplain. The project is not downstream of any dams or large bodies of water (as it is located approximately 8 miles north of Suisun Bay) and would not pose any risk of flooding hazards as a result of dam failure. Although levees line some of the creeks that cross under the highway, the risk of a levee failure significantly affecting people or structures would be low. The project area is located in an area of relatively flat topography that is not near any large bodies of water (Suisun Bay being located approximately 8 miles to the south). The potential for a seiche, tsunami, or mudflow is low.

Impact HYD-1: Impacts on Hydraulic Capacity at Suisun Creek Bridge

The existing highway bridge is 190 feet wide and 73 feet long (in the direction of traffic), while the new Suisun Creek bridge will be significantly longer, at 100 feet long by 63 feet wide (in the direction of traffic). The Suisun Creek side slopes and bottom would not be affected by the new Suisun Creek bridge. In addition, there are no planned modifications to Suisun Creek, and no impacts on the creek are anticipated. Existing FEMA 100-year flow elevation is 5.9 feet beneath the top of the highway elevation, 10.0 feet beneath the top of the new Suisun Creek bridge deck elevation, and 2.9 feet below the lowest point of the deck soffit. There are no planned longitudinal encroachments to the floodplain.

Because the 50-year design flood and the 100-year base flood are both contained within the existing bridge, and the new single-span bridge is higher and wider than the existing bridge, there will be no adverse effects on the hydraulic capacity of Suisun Creek as a result of the project.
Figure 2.2-1a
FEMA Flood Map
Figure 2.2-1b
FEMA Flood Map
Impact HYD-2: Impacts on the Hydraulic Capacity of Raines Drain

The location where Raines Drain crosses the highway is a low point in the highway vertical profile. Originally constructed for irrigation purposes, Raines Drain also serves as a storm drain. The waterway crossing consists of four culverts ranging in size from 42 inches to 66 inches in diameter. One of the 42-inch culverts is blocked at both the upstream and downstream ends per agreement between the Department and the Solano Irrigation District. Because of poorly defined drainage patterns and low channel capacity, this area is prone to sheet flow flooding from areas to the north and from flood overflows from the upstream reaches of Suisun Creek and Ledgewood Creek. Certain reaches of Suisun Creek and Ledgewood Creek can flood, with overflows flowing away from Suisun Creek toward the Raines Drain crossing. The combined capacity of the three open culverts cannot convey the 50- or 100-year flows under the highway without overtopping. A previous hydraulic study of Raines Drain identifies the flow that reaches the edge of pavement as 300 cfs, and the flow that just begins to overtop the centerline of the highway as 475 cfs. Both of these flow rates are significantly below the 50-year flow rate of 925 cfs. Flood flows in excess of the total culvert capacity cause ponding upstream of the highway, and the FEMA FIRMs indicated that the 100-year high-water elevation crests the highway. Just south of the highway Raines Drain has a bank full capacity of 130 cfs; flows greater than 130 cfs will spread onto the floodplain as shown on the FEMA maps. Presently, one of the 3 existing 42-inch culverts has a control gate in a closed locked condition. Flood flows enter the 66-inch culvert first. At higher runoff rates and elevations, flow will begin to enter the 42-inch culverts. For flows to enter the 42-inch culverts they must first overtop the existing access road and bike lane immediately upstream of the highway.

The project would extend the southern ends of all existing culverts clear of the grading limits of the truck scales and approach ramps. The four existing reinforced concrete pipe (RCP) culverts (1 at 66 inches in diameter and 3 at 42 inches in diameter) would be lengthened approximately 150 feet; the headwalls would be relocated and a portion of Raines Drain would be shortened to match the culvert modifications. The extensions of the three 42-inch culverts and the 66-inch culvert should end at the same new headwall. From the new headwall, a concrete-lined transition will be constructed to match the existing downstream concrete-lined Raines Drain.

The new roadways (the on-ramps and connector) both would have reaches of low elevation that would allow the overtopping flows to cross over them and the freeway. The final roadway design would verify that the Raines Drain overtopping floodplain flows cross the two new roadways with no greater constraint than the existing freeway median. With this design in place, there would be no adverse effect on hydraulic capacity.

Impact HYD-3: Impact on Floodplain

The first flows in Raines Drain and on the Raines Drain floodplain are conveyed in a concrete lined ditch and flow southward under the freeway via four cross culverts. These existing culverts will be extended to match the width of the new freeway improvement. Currently when the capacity of the existing culverts is exceeded, floodwaters rise on the north side of the freeway and eventually overtop it. The FEMA maps show that the existing 100-year floodplain at Raines Drain overtops I-80. The new truck scales and associated improvements would not impede these
Chapter 2. Affected Environment; Environmental Consequences; and Avoidance, Minimization, and/or Mitigation Measures—Physical Environment

flood flows. They would continue to overtop the freeway and flow to the existing floodplain on the south side. This project would not create an adverse effect on the floodplain upstream of I-80.

To the south of the highway, the construction of the facilities associated with the relocated eastbound scales will result in fill placed on the defined floodplain. The FEMA floodplain in this area is defined as sheet flow with less than 1 foot depth. Placement of fill in the area would not impede flood flows, but rather would displace them, causing water to move eastward of the current location farther into an agricultural field. Although the primary area of flooding would shift slightly, the flood flows would not extend outside the existing 100-year floodplain as defined by FEMA FIRM maps. No ponding would occur and flood water would continue to drain according to the same basic pattern as it does without the project. Flood depths would not increase to a depth of more than the current condition of 1 foot or less.

Placement of fill would not result in a significant encroachment as defined under 23 CFR 650. There would be no increased interruption of the operation or use of this transportation facility and no significant adverse impact on the natural beneficial floodplain values, i.e., the existing agriculture.

Because flood flows would not be impeded north or south of the freeway, and because there would be no significant encroachment on the floodplain, fill in this area would not have an adverse effect on the floodplain.

Avoidance, Minimization, and/or Mitigation Measures
No avoidance, minimization, or mitigation measures are necessary.

Effects of the No-Project Alternative
Under the No-Project Alternative, no new effects on hydrology or floodplain would occur.

2.2.2 Water Quality and Stormwater Runoff

Regulatory Setting
Section 401 of the Clean Water Act (CWA) requires water quality certification from the State Water Resources Control Board (SWRCB) or from an RWQCB when the project requires a CWA Section 404 permit. Section 404 of the CWA requires a permit from the U.S. Army Corps of Engineers (USACE) to discharge dredged or fill material into waters of the United States. Along with CWA Section 401, CWA Section 402 establishes the NPDES permit for the discharge of any pollutant into waters of the United States. The U.S. Environmental Protection Agency (EPA) has delegated administration of the NPDES program to the SWRCB and nine RWQCBs. The SWRCB and RWQCB also regulate other waste discharges to land within California through the issuance of waste discharge requirements (WDRs) under authority of the Porter-Cologne Water Quality Control Act of 2002 (Porter-Cologne Act).

The SWRCB has developed and issued a statewide NPDES permit to regulate stormwater discharges from all the Department’s activities on its highways and facilities. The Department’s construction projects are regulated under the statewide permit, and projects performed by other
entities on the Department’s right-of-way (encroachments) are regulated by the SWRCB’s statewide general construction permit. All construction projects on more than 1 acre require a stormwater pollution prevention plan (SWPPP) to be prepared and implemented during construction. The Department’s activities on less than 1 acre require a water pollution control program.

Affected Environment

The following discussion is based on information taken from the stormwater data report for the proposed project (Mark Thomas & Co. and Nolte Associates 2008b) and the water quality report for the proposed project (Mark Thomas & Co. and Nolte Associates 2008c).

The project area is located within the Suisun Hydrologic Unit; the Fairfield Hydrologic Area; Hydrological Subarea 207.21, Benicia; and Hydrological Subarea 207.23, Suisun Slough. There are two water bodies (Dan Wilson Creek and Suisun Creek) and one drain (Raines Drain) that cross the project area. Although it is a manmade canal, Raines Drain acts to drain runoff from adjacent land and excess flood flows from Suisun Creek and Ledgewood Creek. Raines Drain is concrete-lined within the project limits.

The project footprint is within the Suisun Creek watershed. The receiving water bodies closest to the project footprint are the Suisun Marsh wetlands, which are between approximately 1 and 2 miles downstream; Suisun Bay, which is approximately 12 miles downstream; and the Carquinez Strait, which is approximately 19 miles downstream. The general topography of the land is gradually sloping to the south toward Suisun Bay.

The Water Quality Control Plan for the San Francisco Bay Basin (basin plan) establishes beneficial uses for waterways and water bodies within the region. Existing beneficial uses for Suisun Creek include freshwater supply, areas of special biological significance, cold freshwater habitat, fish migration, water contact recreation (potential), noncontact water recreation (potential), fish spawning, warm freshwater habitat, and wildlife habitat (San Francisco Regional Water Quality Control Board 2007).

Section 303(d) of the 1972 CWA states that territories and authorized tribes are required to develop a list of water quality–limited segments. These waters on the list do not meet water quality standards, even after point sources of pollution have the minimum required levels of pollution control technology. The water bodies to which the project discharges are not listed on the EPA’s 303(d) List of Water Quality Limited Segments.

Of the named water bodies within the project vicinity, the San Francisco Bay RWQCB only lists the Suisun Marsh wetlands as impaired. Specifically, metal concentrations such as arsenic, cadmium, chromium, copper, lead, nickel, and zinc from urban runoff and storm sewers exceed the targeted design total maximum daily loads (TMDLs). However, these constituents also have low TMDL priority. Farther downstream, the Suisun Bay and Carquinez Strait also contain several CWA Section 303(d) listed pollutants (organic compounds, PCBs, mercury, selenium, general particulates and dissolved metals, nutrients and salinity).
Constituent testing in the project area has revealed that aerially deposited lead (ADL) soils are present within the project footprint. That material would be disposed of in accordance with guidance and regulations (see section 2.2.5).

The project is located in the Suisun-Fairfield Valley groundwater basin (basin 2-3). The depth to groundwater ranges from 3 to 20 feet as reported in the as-built Log of Test Borings (LOTBs) from 1950, 1960, and 1970. These depths should be confirmed during the plans, specifications, and estimates (PS&E) phase. Identified existing beneficial uses are municipal and domestic supply, industrial service supply, industrial process supply, and agricultural supply.

Environmental Consequences

The Department has performed many studies to monitor and characterize highway stormwater runoff throughout the state. Commonly found pollutants are total suspended solids (TSS), nutrients, pesticides, metals, pathogens, litter, biochemical oxygen demand (BOD), and total dissolved solids (TDS). Some sources of these pollutants are natural erosion, phosphorus from tree leaves, combustion products from fossil fuels, the wearing of brake pads, and droppings of wild and domestic animals within state right-of-way.

Impact WQ-1: Increased Runoff and Paved Area

The project would slightly widen the eastbound I-80 mainline and add several thousand feet of separate roadway leading into and out of a new eastbound truck scale area. The project would increase the amount of stormwater runoff within state right-of-way. The project also would add a significant paved area on acquired right-of-way for parking and inspection areas in support of the scales. No project drainage improvements would occur within Suisun Creek, as the new bridge would clear-span the creek. At Raines Drain, the existing culverts would be extended, replacing a segment of concrete-lined trapezoidal channel. With the increase to the paved area, a tributary to Raines drain, there is the potential for increased volume and peak runoff. To manage the stormwater runoff, the on-site drainage facilities would be reconfigured within the proposed right-of-way, as part of the project design. In addition, inline storage and infiltration facilities will be designed to minimize the impact of increased runoff. The associated watersheds would be only minimally affected. The minor impacts on the receiving water bodies are the result of capacity changes to hydraulic features of the drainage system and are not considered an adverse effect.

Impact WQ-2: Potential Water Quality, Erosion and Sediment Control Issues during Construction

The project has an estimated total disturbed soil area of 49.5 acres. There are about 28.4 acres of new pavement (on existing unpaved ground) and about 2.5 acres (the existing truck scales facility) that may have pavement replaced with natural ground. These aspects of the project could cause potential erosion and sediment control impacts during construction. Proper erosion and sediment control measures would be effective because of the relatively flat terrain and low grading heights.

Construction of the project would involve the use of construction equipment and associated fuels, solvents, lubricants and other pollutants. These substances may be released into the
environment during construction and could result in adverse effects to water quality. Implementation of Measure WQ-2 would avoid these potential adverse effects.

Impact WQ-3: Potential to Require Dewatering during Construction

This area historically has high groundwater levels. Groundwater may be encountered in structure excavations. Early discussion would be initiated regarding the handling and disposal of this water during the design phase. Although handling of groundwater is not anticipated, proper handling, treatment, and discharge would be performed. No adverse effect is expected.

Impact WQ-4: Potential Decreased Surface Water Quality Resulting from Bore-and-Jack Construction

Bore-and-jack technology would be used to relocate an 18-inch-diameter Solano Irrigation District (SID) pipeline beneath Suisun Creek. The bore-and-jack would be constructed approximately 150 feet south of the study area. The boring and receiving pits would be set in row crops approximately 30 feet east of riparian woodland on the east side of Suisun Creek and in orchard approximately 50 feet west of riparian woodland on the west side of the creek, respectively. Construction would require approximately 4 weeks, and occur in 2010 or 2011. The microtunneling process may use a mixture of bentonite (inert clay) and petroleum as a lubricant for the drilling mechanism. Drilling near the ground surface or close to the bed of a surface water body introduces the potential for an unplanned “frac-out,” in which the pressure of the bentonite or other drilling lubricant generates a surface rupture, causing a release of bentonite to the ground surface or water column. Although bentonite is not toxic, it can smother habitat and increase turbidity and suspended sediments in the water column. Measure WQ-4 ensures that this would not be an adverse effect.

Avoidance, Minimization, and/or Mitigation Measures

Measure WQ-2: Prepare and Implement Stormwater Pollution Prevention Plan and Best Management Practices

According to the Department’s NPDES permit and the Construction General Permit (U.S. Environmental Protection Agency 2008c), best management practices (BMPs) will be incorporated into this project to reduce the discharge of pollutants during construction, as well as permanently to the maximum extent practicable (MEP). These BMPs fall into three categories: temporary construction site BMPs, design pollution prevention BMPs, and permanent treatment BMPs.

Construction Site BMPs

Construction site BMPs are applied during construction activities to reduce the pollutants in the stormwater discharges throughout construction. One critical construction activity, dewatering, may be necessary for this project because of the high groundwater. Early discussion will be initiated regarding the handling and disposal of this water during the design phase. If the water is found to be uncontaminated and acceptable by the RWQCB to be discharged back into the creek, appropriate temporary construction site BMPs will be required to reduce any potential discharge of pollutants to the extent feasible as described in section A.9 of the Construction General
Permit. A project-specific WDR permit may be required from the RWQCB, if substantial dewatering is to be done.

No dewatering is anticipated at Suisun Creek, and no construction is anticipated within the stream banks.

Raines Drain is a concrete-line trapezoidal channel upstream and downstream of the existing cross culverts. Construction of the culvert extensions can be staged while one or more of the culverts is kept open to pass runoff, eliminating the need for dewatering.

At this phase of the project, no specific coordination with the Department’s Division of Construction has occurred yet for the stormwater management issues.

Permanent Design Pollution Prevention BMPs
Design pollution prevention BMPs are permanent measures to improve stormwater quality by reducing erosion, stabilizing disturbed soil areas, and maximizing vegetated surfaces. Erosion control measures will be provided on all disturbed areas. These BMPs are shown in Table 2.2-1.

Downstream Effects Related to Potentially Increased Flow
The project should have little impact on the velocity of downstream flow in most locations because of the condition of the already significant existing highway facility and the very flat terrain. In the existing condition, much of the pavement runoff is directed to pervious strips or unlined ditches along the outside right-of-way. The project improvements in general will replicate this drainage pattern, using longitudinal ditches and drainage systems to convey site runoff to proper receiving drainage facilities.

There is potential for increased peak flow discharge, but the construction of planned longitudinal ditches will act to attenuate possible increase in peak flow runoff from the paved areas.

Drainage improvements for the highway widening will affect and change the existing ditches or channels along the outside of the highway. These project drainage improvements will not connect directly to unlined ditches, but will connect to velocity reduction systems or stormwater management facilities that discharge to unlined ditches.

There is minimal potential for increased sediment loading. All graded fill slopes (no cut slopes are anticipated) will be constructed with proper erosion control and permanent plantings. All new unlined ditches will be constructed with relatively flat grades and maximum 4:1 side slopes. If erosive velocities are anticipated, ditches will be constructed with lining, and the side slopes may be steepened.

Slope/Surface Protection Systems
Construction of fill slopes are necessary to create the proposed vertical profiles. No cut slopes are anticipated.

To minimize erosion from any of the new slopes, mitigating design features have been considered, including minimizing cut and fill slopes, shaping slopes to reduce concentrated flow, and collecting concentrated flows in stabilized channels. All graded slopes, either cut or fill,
would be constructed with proper erosion control and permanent plantings. Except at bridges, no retaining walls are anticipated.

Certain areas of the project will be hardscaped as required for safety (ramp gores), maintenance (pullout areas), and slope stability (under bridges).

Construction of the project will remove moderate amounts of vegetation within the project right-of-way. In many locations, the project would replace existing unpaved areas with pavement or impervious structures. At all areas where new slopes are constructed, proper vegetation would be planted, monitored and maintained to establish permanent cover. Approval of the erosion control plan by the Department’s Division of Design, Landscape Architecture will occur during final design.

Concentrated Flow Conveyance Systems
There are a variety of concentrated flow conveyance devices along the length of the project. Along most of the existing reach of the highway, runoff sheet flows off of the pavement, crossing several feet of vegetated strips before entering a swale oriented longitudinally to the right-of-way. The existing concentrated flow conveyance devices include: lined and unlined ditches and swales, drainage inlets and culverts, asphalt concrete (AC) dikes and overside drains, flared end sections, rock slope protection (RSP) pads, flow energy dissipation devices, and other approved drainage design devices. For this project, the planned drainage pattern will replicate as much as possible the existing runoff pattern. The drainage improvements will direct pavement runoff to sheet flow to the outside edge of the new pavement where improved drainage devices will collect and convey the project runoff.

Preservation of Existing Vegetation
One goal of the project and construction activities will be to preserve areas of existing vegetation wherever possible. At all areas where existing vegetation (on land to remain) is affected, or where new slopes are constructed, proper vegetation will be placed, monitored, and maintained to establish permanent cover. For those areas on the outside of the highway, pavement will be minimized in favor of retaining existing vegetative cover.

Bridge construction will occur at Suisun Creek, with additional major storm drain facilities at Raines Drain. The Suisun Creek bridge will span Suisun Creek, and the Raines Drain improvements are planned to be extensions of the existing cross culverts, minimizing impacts on the existing waterways. Environmentally sensitive areas (ESAs) that potentially would be affected, exist within the project area. Measures to reduce effects for ESAs are addressed in other sections of this document (section 2.3, Biological Environment). To the maximum extent practicable, areas outside the active work area will be excluded from construction access.
Table 2.2-1. Proposed Pollution Prevention BMPs by Reach

<table>
<thead>
<tr>
<th>Reach</th>
<th>Proposed Design Pollution Prevention BMPs: Minimize Downstream Effects; Protect Slopes; Design Concentrated Flow Conveyance Systems; Preserve Vegetation</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-80/Truck Scales</td>
<td>Flat terrain with large area of short fill proposed. Critical area for placement of treatment BMPs. Biostrips and bioswales are anticipated along the perimeter of truck scale grading.</td>
</tr>
<tr>
<td>I-80/SR 12E</td>
<td>Very minor impact on the velocity or volume of downstream flow. Existing flat terrain; fill required to construct. Slopes <1:4. Erosion control plan to be prepared by landscape architect. Catch basins and piping or bioswales to biofilters within the right-of-way. Velocity not to exceed vegetative lining and soil scour velocities. Sustainable vegetation to be established.</td>
</tr>
</tbody>
</table>

Permanent Treatment BMPs

Because this project is considered a major reconstruction project, it is not exempt from incorporating treatment BMPs. Treatment BMPs are permanent devices and facilities treating stormwater runoff. The Department’s approved treatment BMPs are biofiltration swales, infiltration basins, detention basins, traction sand traps, dry weather flow diversions, media filters, gross solids removal devices (GSRDs), multi-chamber treatment trains, and wet basins. Those most feasible in the Bay Area are biofiltration swales, infiltration basins, detention basins, media filters, multi-chamber treatment trains, and wet basins.

Because of potential high groundwater within the project area, infiltration and detention basins do not seem feasible. Biofiltration swales and biostrips have been investigated as possible alternatives. Both treatment BMPs treat the same types of constituents: TSS, particulate metals, and litter. Both biofiltration swales and strips are viable cost-effective treatment BMPs.

The targeted design constituents for this project are metals. Because of the limited permeability of the soils and potentially high groundwater, infiltration devices and other filters allowing percolation of stormwater back into the ground are no longer a consideration. However, engineered biofiltration strips and swales are proposed. Biofiltration strips and swales are effective at trapping litter, TSS, and particulate metals. Where possible, it is recommended that the existing vegetation be evaluated for use as effective biostrip cover, or the project should establish the proper vegetative cover and/or swale dimensions at each treatment location.

Locations within the project limits (primarily in the area between the toe of fill slopes and the right-of-way) are available to be used for permanent treatment BMPs. Plans developed at a later stage in design will be more specific in their location, size, vegetative characteristics, and performance measures.

Biofiltration Swales/Strips

Much of the area beyond the proposed roadway embankment limits is flat and wide enough to support stable and effective biofiltration. Therefore, biofiltration is considered throughout the project, and separate areas have been identified as potential biofiltration. Plans in the attachments identify all potential BMP locations. Biostrips are designed to provide the maximum treatment length. Water quality flow (WQF) is not defined for this BMP. The tributary area to the biostrips is the length of pavement from the highway median to the outside edge of pavement. Bioswales are to be designed according to the Department’s guidance documents, with minimum bottom width and maximum side slopes and longitudinal slopes. Additional right-of-way for the project
improvements and treatment BMPs has been identified and is included on the project layout sheets.

Dry Weather Diversion
Dry weather flow diversion BMPs were dropped from further considered for this project because there is no dry weather flow.

Infiltration Devices
Infiltration device BMPs are not feasible for this project for the following reasons: through much of the project, the groundwater is too high; most of the soils are Hydraulic Soil Group C or D, limiting the usefulness of infiltration; for infiltration basins, a gravity outlet cannot be created because of the flat terrain; and along most of the project, there is no room within the right-of-way, and areas beyond the right-of-way are mostly prime farmland under cultivation.

Detention Devices
Detention basin BMPs are not feasible for this project for the following three reasons: There is not enough hydraulic head available for proper design; there are several locations where the groundwater is high; and along most of the project, there are significant constraints on acquiring new right-of-way, with areas beyond the existing right-of-way consisting mostly of prime farmland under cultivation. Detention as a treatment device may have negative hydraulic impacts because the project is located far downstream in the watershed, and detaining the peak runoff from the tributary shed may increase the peak runoff from the entire shed. If hydromodification control is a requirement of this project, then detention facilities can be designed for that mitigation, but they would not specifically function as treatment for the reasons stated.

Gross Solids Removal Devices
Litter is not on the 303(d) list or identified as a TMDL for the water bodies near the project; therefore, GSRDs are not incorporated.

Traction Sand Traps
Traction sand trap BMPs are not appropriate for the project because traction sand is not applied within the project limits.

Media Filters
Media filter BMPs are not considered for this project for the primary reason that the seasonally high groundwater table is likely to be too close to the invert of the filter. Depending on the specific location within the project limits, there are two other reasons that media filters are not an appropriate consideration: 1) there is not enough hydraulic head available for proper design, and 2) along most of the project, there is no room within the right-of-way, and areas beyond the right-of-way are completely developed.

Multi-Chambered Treatment Trains
Multi-chambered treatment train BMPs are not feasible for the project because the highway is not considered a “Critical Source Area” (CSA). The Cordelia Truck Scales within the project limits may be considered a CSA and may require a specific spill containment area. At this time, direction from the Department is to treat the general pavement area of the truck scales in the same fashion as stormwater runoff from highway pavement areas.
Wet Basins
Wet basin BMPs are not feasible for this project for the following reasons: There is not enough hydraulic head available for proper design; there are several locations where the groundwater is high; along much of the project, there is limited ability to purchase additional right-of-way, and areas beyond the right-of-way are largely developed; and along most of the route, there is not a permanent source of water available to maintain a permanent wet pool.

Maintenance BMPs (Drain Inlet Stenciling)
The project improvements are located within highway controlled access right-of-way. For inlets within the truck scales, inlet stenciling will be placed on inlets.

Effects of the No-Project Alternative
Under the No-Project Alternative, no new effects on water quality or stormwater runoff would occur.

Measure WQ-4: Develop and Implement a Frac-Out Contingency Plan for Bore-and-Jack Activities
For bore-and-jack tunneling activities that use drilling lubricants, a frac-out contingency plan will be prepared that will minimize the potential for a frac-out associated with tunneling activities; provide for the timely detection of frac-outs; and ensure an organized, timely, and “minimum-impact” response in the event of a frac-out and release of drilling lubricant (i.e., bentonite). The contingency plan will require, at a minimum, the following measures.

a. A full-time monitor will attend all drilling to look for observable frac-out conditions or lowered pressure readings on drilling equipment.

b. If a frac-out is identified, all work will stop, including the recycling of drilling lubricant. In the event of a frac-out into water, the pressure of water above the tunnel will keep excess mud from escaping through the fracture. The location and extent of the frac-out will be determined, and the frac-out will be monitored for 4 hours to determine whether the drilling lubricant congeals (bentonite usually hardens, effectively sealing the frac-out location).

c. If the drilling lubricant congeals, no other actions will be taken that would potentially suspend sediments in the water column.

d. Surface releases of bentonite will be allowed to harden and will then be removed.

e. The contingency plan will identify additional measures to be taken to contain or remove the drilling lubricant if it does not congeal.

2.2.3 Geology/Soils/Seismic/Topography
This section is adapted from the Geologic and Seismic Section in Support of Environmental Document (Parikh and Associates 2008).
Regulatory Setting

For geologic and topographic features, the key federal law is the Historic Sites Act of 1935, which establishes a national registry of natural landmarks and protects “outstanding examples of major geological features.” Topographic and geologic features also are protected under CEQA.

The following acts, regulations, and codes pertain to the proposed action.

- The Uniform Building Code.

This section also discusses geology, soils, and seismic concerns as they relate to public safety and project design. Earthquakes are prime considerations in the design and retrofit of structures. The Department’s Office of Earthquake Engineering is responsible for assessing the seismic hazard for the Department’s projects. The current policy is to use the anticipated Maximum Credible Earthquake (MCE), from young faults in and near California. The MCE is defined as the largest earthquake that can be expected to occur on a fault over a particular period of time.

Affected Environment

The proposed project lies in the southwest portion of Solano County, which is the western gateway to the Sacramento Valley. The majority of the project footprint is mapped as alluvial fan deposits (Holocene) (Qhf), the most aerially extensive Quaternary map unit in the region, and natural levee deposit (Holocene) (Qhl) and modern stream channel deposits (Qhc), as evaluated with reference to the Geologic Map and Map Database of Northeastern San Francisco Bay Region, California (Graymer et al. 2002). Holocene fan deposits are the sediments deposited by streams emanating from mountains as debris flow, hyperconcentrated mudflow, or braided stream flows. The particle size of the deposits typically decrease down slope from the fan apex. In places, Holocene fan deposits (Qhf) may be only a thin veneer over Pleistocene deposits (Qpf). Holocene fan levee deposit (Qhl) is formed by streams that overtop their banks and deposits sediment adjacent to the channel.

Descriptions of the main geologic units (deposits) are provided below.

- **Qhf**—Alluvial fan deposits (Holocene): Moderately to poorly sorted and moderately to poorly bedded sand, gravel, silt, and clay deposited where streams emanate from upland regions onto more gently sloping valley floors or plains. Holocene alluvial fan deposits are mostly “undissected” by later erosion. In places, Holocene deposits may only form a thin layer over Pleistocene and older deposits.

- **Qhl**—Natural levee deposits (Holocene): Moderately to well sorted sand with some silt and clay deposits by streams that overtop their banks during flooding.
Countywide Setting

Geology
Solano County includes portions of the Sacramento and San Joaquin Valleys and a small part of the Coast Ranges. The Sacramento River–San Joaquin River Delta is underlain primarily by intertidal deposits, consisting of the remains of hydrophytic vegetation and predominantly fine-textured mineral deposits. The Montezuma Hills, in the southeastern corner of the county, are underlain by the poorly consolidated clayey sand of the Montezuma Formation. The nearby Potrero Hills are underlain by Markley sandstone, Nortonville shale, and marine sandstone of the Capay Formation. The narrow valleys scattered throughout the county and the large alluvial plain located north of the Delta and west of the Vaca Mountains are underlain primarily by unconsolidated Quaternary alluvium and sedimentary rocks. The Vaca Mountains and other portions of the Coast Ranges uplands in the county are composed primarily of Markley sandstone, sedimentary and metasedimentary rocks of the Upper Cretaceous Great Valley and Lower Cretaceous–Upper Jurassic Great Valley Sequences, and Sonoma Volcanics (Wagner and Bortugno 1987; Wagner et al. 1987).

Subsurface soil and groundwater conditions based on the as-built LOTBs are summarized in Table 2.2-2 below.

<table>
<thead>
<tr>
<th>Location</th>
<th>Subsurface Soil Conditions</th>
<th>Groundwater Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-80/Dan Wilson Creek</td>
<td>10 to 15 feet of hard clayey silt underlain by dense to very dense sand with some gravel</td>
<td>Not encountered to the elevation of -8 feet.</td>
</tr>
<tr>
<td>and its vicinity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-80/Suisun Creek and</td>
<td>30 to 75 feet of interbedded layers of soft to very stiff lean clay and medium dense sands,</td>
<td>Encountered at depths between 10 feet and 30 feet below ground surface to the minimum elevation of +30 feet</td>
</tr>
<tr>
<td>its vicinity</td>
<td>underlain by dense clayey sand</td>
<td></td>
</tr>
<tr>
<td>I-80/SR 12E interchange and its vicinity</td>
<td>45 to 60 feet of stiff to hard clay underlain by interbedded layer of stiff to hard clays and medium dense to dense sands</td>
<td>Encountered at the depth of 12 feet below ground surface to the minimum elevation of +27 feet</td>
</tr>
</tbody>
</table>

Groundwater may vary with the passage of time because of seasonal groundwater fluctuation, surface and subsurface flows, ground surface runoff, water level in adjacent creeks, and other factors that may not be present at the time of the reference investigations.

The truck scales facility is located primarily in existing open farmland. Subsurface soil conditions in this area may be relatively soft at this location. New fill is expected to be placed in these areas.

Seismic Conditions
The project is located in a seismically active part of northern California. Faults existing in the vicinity of the project area include Cordelia fault, Green Valley fault, and Vaca–Kirby Hill–Montezuma Hills/E fault. These faults are capable of producing earthquakes and may cause strong ground shaking in the project area. Figure 2.2-2 presents the locations of the fault systems relative to the project area.
Figure 2.2-2
Fault Map

Based on the study *Summary of Earthquake Probabilities in the San Francisco Bay Region: 2003–2032* (Working Group on California Earthquake Probabilities 2003), the Green Valley fault, which is part of the Concord–Green Valley fault, has a 4% probability of one or more major (magnitude greater than 6.7) earthquakes during the coming 30 years. According to the same study, there is a 62% probability of at least one earthquake of magnitude 6.7 or greater within the San Francisco Bay region before 2032.

MCE magnitudes for some of the major faults in the project region are summarized in Table 2.2-3 below. These MCE magnitudes represent the largest earthquakes that could occur on the given fault based on the current understanding of the regional tectonic structure.

Based on this and other calculations, the controlling fault is the Cordelia fault (magnitude 6.5). This site-specific seismic information would be used in designing the proposed project structures.

<table>
<thead>
<tr>
<th>Fault</th>
<th>Closest Distance to Project Area (mi)</th>
<th>Maximum Credible Earthquake (Magnitude)</th>
<th>Peak Bedrock Acceleration (PBA) (g)</th>
<th>Peak Ground Acceleration (PBA) (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cordelia (Style: strike-slip)</td>
<td>0.9</td>
<td>6.5</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Green Valley (Style: strike-slip)</td>
<td>20.</td>
<td>6.75</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Vaca–Kirby Hill–Montezuma Hills/E (Style: not known/published)</td>
<td>6.7</td>
<td>6.75</td>
<td>0.4</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Seismic Hazards/Liquefaction Potential

Because no active fault passes through the immediate project area, the potential for fault rupture within the project limits is considered relatively low.

Liquefaction is a phenomenon in which saturated cohesion-less soils are subject to a temporary but essentially total loss of shear strength associated with earthquake shaking. Submerged cohesion-less sands and silts of low relative density are the type of soils that usually are susceptible to liquefaction. Clays generally are not susceptible to liquefaction. The project area is generally underlain by layers of stiff to hard lean clay and medium dense to dense sands underlain by dense sands. The majority of the submerged cohesion-less subsoils are primarily medium dense to very dense, and thus the liquefaction potential within the project area is generally moderate, except at Suisun Creek, where it is high.

Environmental Consequences

Based on the preliminary design of the proposed project, the potential to expose people or structures to substantial adverse effects, including the risk of loss, injury, or death, due to rupture of a known fault or landslides is considered low. No known faults run through the project area, however, faults are located in the vicinity. Most construction activities would occur on flat land previously used for agriculture. The project would not be located on expansive soil and thereby would not create a substantial risk to life or property.
The proposed project would not be located on a geological unit or soil that is unstable or that would become unstable as a result of the project. The Green Valley fault passes through I-80 in the area of SR 12W/Jameson Canyon Road, and the Cordelia fault crosses I-80 near Green Valley Creek. Both faults are located west of the project area. Therefore, the potential for ground surface rupture as a result of faulting within this section of the project is considered relatively low.

The potential for the project area to experience liquefaction is moderate to high, while the potential for post-liquefaction settlement is considered moderate.

Impact GEO-1: Exposure of People to Injury or Structures to Damage from Strong Groundshaking, Seismic-Related Ground Failure, or Liquefaction

Groundshaking caused by an earthquake on any active and potentially active faults in the region could damage project facilities and result in injury to people using these facilities. While no known faults are located within the project area, they do occur in the vicinity. Soils in the immediate vicinity of Suisun Creek have a high potential for liquefaction. However, as part of its standard procedures, the Department will conduct a site-specific geotechnical investigation for seismic hazards and design all project facilities to avoid or minimize seismic hazards. This investigation of the alternative alignment will be conducted during final design to identify obvious indicators of recent fault displacement and groundshaking hazards and to ensure that project facilities are designed to avoid or minimize the potential for damage resulting from surface fault rupture, liquefaction, or landslides. The exact measures that would be used to avoid or minimize damage resulting from fault rupture could include reinforcing project-related structures and designing and constructing all facilities according to the most appropriate Uniform Building Code standards or the Department’s requirements. Other measures could include:

- Removal or treatment of potentially liquefiable soils and sediments.
- Construction of edge containment structures (e.g., berms, dikes, retaining structures, compacted soil zones).
- Installation of drainage structures to lower the groundwater table.
- In-situ ground densification.
- Other types of ground improvements.

With implementation of these measures, there would be no adverse effect related to the exposure of people to injury or structures to damage from strong groundshaking, seismic related ground failure, or liquefaction.

Impact GEO-2: Potential Construction-Related Soil Erosion and Sedimentation

Construction would involve some land clearing, grading, and other ground-disturbing activities that could temporarily increase soil-erosion rates during and shortly after project construction. Construction-related erosion could result in the loss of nonrenewable topsoil and adversely affect water quality in nearby surface waters. Implementation of Measure WQ-2 in Section 2.2.2 would reduce construction-related soil erosion and sedimentation impacts.
Impact GEO-3: Potential Damage to Facilities and Injury to the Public from the Presence of Expansive Soils

The Soil Survey of Solano County indicates that soils with high shrink-swell potential (i.e., potentially expansive soils) occur throughout the county. The presence of expansive soils could result in damage to project facilities and injury to people using these facilities. However, standard Department practice includes conducting site-specific geotechnical investigation for expansive soils, and the design of project facilities to avoid or minimize damage. A site-specific geotechnical investigation will be conducted during final design to identify areas with expansive soils and to ensure that project facilities are designed and constructed to avoid or minimize the potential for damage from the presence of expansive soils and sediments. The methods are likely to include the selective placement of expansive fill materials; use of imported, non-expansive fill materials; or other methods of ground improvement. With this investigation and corresponding design of project facilities, there would be no adverse effect related to the potential damage to facilities and injury to the public from the presence of expansive soils.

Avoidance, Minimization, and/or Mitigation Measures
No avoidance, minimization, or mitigation measures are necessary.

Effects of the No-Project Alternative
Under the No-Project Alternative, no new effects on geology, soils, seismicity, or topography would occur.

2.2.4 Paleontology

Regulatory Setting
Paleontology is the study of life in past geologic time based on fossil plants and animals. A number of federal statutes specifically address paleontological resources, their treatment, and funding for mitigation as a part of federally authorized or funded projects. (e.g., the Antiquities Act of 1906 [16 USC 431–433] and the Federal-Aid Highway Act of 1935 [20 USC 78]). Under California law, paleontological resources are protected by CEQA, 14 CCR Division 3, Chapter 1, Sections 4307 and 4309, and PRC Section 5097.5.

Affected Environment
The information in this section is based on the Paleontological Sensitivity Analysis for the I-80 Eastbound Cordelia Truck Scales Relocation Project (ICF Jones & Stokes 2008e).

The project area is located near the east flank of the Coast Ranges, in the east-central portion of California’s Coast Ranges geomorphic province (e.g., Norris and Webb 1990).

The Coast Ranges province is characterized by en echelon northwest-trending mountain ranges formed over the past 10 million years or less by active uplift related to complex tectonics of the San Andreas fault/plate boundary system (e.g., Norris and Webb 1990; Busing and Walker 1995; Atwater and Stock 1998). The eastern range front is defined by faults that have been interpreted as contractile features associated with shortening along an axis approximately normal to the range front (e.g., Wong et al. 1988; Sowers et al. 1992; Unruh et al. 1992; see also
Jennings 1977 for regional mapping) but also may accommodate a right-lateral component of motion locally (e.g., Richesin 1996).

The eastern Coast Ranges are broadly antiformal. At the general latitude of the project area, they consist of a central “core” of Mesozoic units—including mafic and ultramafic rock allied with the Coast Ranges ophiolite and lithologically diverse units of the Franciscan complex—flanked on the west by extensive exposures of Miocene volcanic rocks (Sonoma Volcanics) and on the east by an upward younging sequence of marine and terrestrial sedimentary units that ranges in age from Cretaceous (Great Valley Group) to Neogene (Montery Group, San Pablo Group, Sonoma Volcanics, and Huichica Formation). The area’s larger drainages preserve several generations of alluvial fan and stream deposits ranging in age from Pleistocene to Holocene (Wagner and Bortugno 1982; Graymer et al. 2002).

The project footprint extends through three geologic units: alluvial fan deposits (Holocene), Natural Level deposits (Holocene), and Sonoma Volcanics (ash-flow tuff).

- Alluvial fan deposits (Holocene) are moderately to poorly sorted sand, gravel, silt, and clay that occurs locally as a thin veneer over older deposits.
- Natural levee deposits are moderately to well-sorted sand, with some silt and clay. These deposit as low ridges adjacent to channels.
- Sonoma Volcanics and ash-flow tuff of Sonoma Volcanics are tuff, obsidian, flow rock, pyroclastic breccia, and intrusives of varying composition (rhyolite to basalt).

The vast majority of the project is located in what is characterized as Holocene fan deposits or Holocene fan levee deposits (Graymer et al. 2002) (Figure 2.2-3). These deposits are young and have no potential to contain paleontological resources (in contrast to older sediments associated with the Pleistocene). Test trenches mechanically excavated to a depth of 15 feet indicated that deposits were uniform throughout (ICF Jones & Stokes 2008d). The Holocene deposits appear to be more than 15 feet thick, and therefore excavation would not extend into underlying Pleistocene deposits that are more sensitive for paleontological resources.

There are 69 records of vertebrate fossils in Solano County (University of California Museum of Paleontology 2007a). No fossils are known to occur in the Holocene geologic units that make up the bulk of the project area. However, Sonoma Volcanics, which comprises a small portion of the project area, is considered very sensitive for paleontological resources. Of the 69 vertebrate fossil records in the county, 29 occur in this unit. These records include horse, deer, and unidentified mammals.

Environmental Consequences

In evaluating a proposed project’s potential to disturb or damage significant paleontological resources, it is important to keep two points in mind. First, most vertebrate fossils are rare and therefore are considered important paleontological resources. Second, unlike archaeological sites, which are narrowly defined, paleontological sites are defined by the entire extent (both areal and stratigraphic) of a unit or formation. In other words, once a unit is identified as containing vertebrate fossils, or other rare fossils, the entire unit is a paleontological site (Society of Vertebrate Paleontology Conformable Impact Mitigation Guidelines Committee 1995).
Figure 2.2-3
Geologic Map of the Project Vicinity

Base Map: Graymer et al. 2002.

Geologic Unit (and Age)
- af Artificial fill (Historic)
- afbm Artificial fill over bay mud (Historic)
- alf Artificial levee fill (Historic)
- Qhf Alluvial fan deposits (Holocene)
- Qhff Fine-grained alluvial fan deposits (Holocene)
- Qhl Natural levee deposits (Holocene)
- Qhbm Bay mud deposits (Holocene)
- Qls Landslide deposits (Holocene and Pleistocene)
- Qpf Alluvial fan deposits (Late Pleistocene)
- Tsv Sonoma Volcanics (Pliocene and late Miocene)
- Tsva Andesite to basalt flows
- Tsvr Rhyolite flows
- Tsvt Ash-flow tuff
- Tsvw Welded ash-flow tuff
- Ku Undivided sandstone, siltstone, and shale of the Great Valley complex (late Cretaceous)
Impact PALEO-1: Potential Disturbance or Destruction of Paleontological Resources in a Sensitive Area

Based on the project footprint’s geologic context, only a small portion of the project area is sensitive for significant fossils (Figure 2.2-4). The remainder of the project area is not sensitive for significant fossils because excavation would be within Holocene units that generally do not contain significant fossils. Test trenches have indicated that the Holocene unit extends to the depth of the maximum excavation.

Though the bulk of the deposits within the project area are not sensitive for paleontological resources, a small portion of the project area is sensitive. Construction in this area would occur within the Department’s right-of-way and would parallel an existing utility line. Even though this area appears to be disturbed, subsurface deposits and significant fossils may be encountered during excavation.

It is the policy of the department to implement a mitigation and monitoring plan for construction in sensitive areas, such as the ash-flow tuff of the Sonoma Volcanics geologic unit, where significant fossils may be encountered.

The monitoring and mitigation strategy would include a site- and project-appropriate mitigation strategy consistent with the SVP guidelines (Society of Vertebrate Paleontology Conformable Impact Mitigation Guidelines Committee 1995). For this project, mitigation would be likely to entail a combination of the following components:

- Monitoring by a qualified paleontologist during key portions of the project (typically, those involving substantial disturbance in previously undisturbed materials with paleontological sensitivity).
- A requirement that construction crews stop work if fossil materials are encountered.
- Appropriate recovery, documentation, and curation of fossil materials.

Because of the implementation of this procedure, this is not considered an adverse impact.

Impact PALEO-2: Potential Destruction of Buried Paleontological Resources or Unique Geologic Features

Though most of the project area is not sensitive for paleontological resources, and the area that is sensitive will be monitored by a qualified paleontologist, there is the remote possibility that excavations may extend into older deposits and that buried paleontological resources may be inadvertently unearthed during construction. Activities such as excavation and grading into native soils, and trenching for drainage systems could damage such resources. Caltrans has standard provisions (SPs) to address inadvertently discovered paleontological resources. These SPs may require that construction personnel stop all work in the vicinity of the discovery, protect the area, and notify the engineer. These measures would prevent any adverse effect.
Impact PALEO-3: Damage to Buried Paleontological Resources as a Result of Pile Driving

Pile driving up to 85 feet would occur as part of project construction. This driving could damage buried paleontological resources. However, because the areal extent of the pile driving would be small, this effect is not considered an adverse effect.

Avoidance, Minimization, and/or Mitigation Measures
No avoidance, minimization, and/or mitigation measures are necessary.

Effects of the No-Project Alternative
Under the No-Project Alternative, the proposed truck scales would not be constructed. Therefore, no effect on paleontology would occur.

2.2.5 Hazardous Waste/Materials

The information below is summarized from the initial site assessment (ISA) prepared for the proposed project by Geocon Consultants, Inc. in September 2008 (Geocon Consultants 2008a). This section describes the existing conditions in the study area.

Regulatory Setting
Hazardous materials and hazardous wastes are regulated by many state and federal laws. These include not only specific statutes governing hazardous waste, but also a variety of laws regulating air and water quality, human health, and land use.

The primary federal laws regulating hazardous wastes/materials are the Resource Conservation and Recovery Act of 1976 (RCRA) and the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). The purpose of CERCLA, often referred to as Superfund, is to clean up contaminated sites so that public health and welfare are not compromised. The RCRA provides for “cradle to grave” regulation of hazardous wastes. Other federal laws include:

- The CWA.
- The Clean Air Act (CAA).
- The Safe Drinking Water Act.
- The Occupational Safety and Health Act (OSHA).
- The Atomic Energy Act.
- The Toxic Substances Control Act (TSCA).
- The Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA).

In addition to the acts listed above, EO 12088, Federal Compliance with Pollution Control, mandates that necessary actions be taken to prevent and control environmental pollution when federal activities or federal facilities are involved.
Figure 2.2-4
Paleontological Sensitivity Map of the Project Area

Base Map: Graymer et al. 2002.

Geologic Unit (and Age)
- af Artificial fill (Historic)
- afbm Artificial fill over bay mud (Historic)
- alf Artificial levee fill (Historic)
- Qhf Alluvial fan deposits (Holocene)
- Qhff Fine-grained alluvial fan deposits (Holocene)
- Qhl Natural levee deposits (Holocene)
- Qhbm Bay mud deposits (Holocene)
- Qls Landslide deposits (Holocene and Pleistocene)
- Qpf Alluvial fan deposits (Late Pleistocene)
- Tsv Sonoma Volcanics (Pliocene and late Miocene)
- Tsva Andesite to basalt flows
- Tsvr Rhyolite flows
- Tsvt Ash-flow tuff
- Tsvw Welded ash-flow tuff
- Ku Undivided sandstone, siltstone, and shale of the Great Valley complex (late Cretaceous)

Potential to Contain Significant Fossils
- None
- Low
- High

Fairfield
Suisun City
Cordelia

Project Location

Miles
0 1 2 3

Graphics...00342.08 (9-08) tm
Chapter 2. Affected Environment; Environmental Consequences; and Avoidance, Minimization, and/or Mitigation Measures—Physical Environment

Hazardous waste in California is regulated primarily under the authority of the federal Resource Conservation and Recovery Act of 1976, and the California Health and Safety Code. Other California laws that affect hazardous waste are specific to handling, storage, transportation, disposal, treatment, reduction, cleanup, and emergency planning.

Worker health and safety and public safety are key issues when dealing with hazardous materials that may affect human health and the environment. Proper disposal of hazardous material is vital if it is disturbed during project construction.

Asbestos Regulations
Title 8 CCR Section 1529 regulates asbestos exposure in all construction work and defines permissible exposure limits and work practices. Typically, removal or disturbance of more than 100 square feet of material containing more than 0.1% asbestos must be performed by a registered asbestos abatement contractor, but associated waste labeling is not required if the material contains 1% or less asbestos. When the asbestos content of materials exceeds 1%, virtually all requirements of the standard become effective. With respect to potential worker exposure, notification, and registration requirements, the California Division of Occupational Safety and Health, known as Cal/OSHA, defines asbestos-containing construction material (ACCM) as construction material that contains more than 0.1% asbestos (8 CCR 341.6).

Aerially Deposited Lead
Aerially deposited lead (ADL) in soils adjacent to highways is attributed to the historic use of leaded gasoline. Areas of primary concern are soils along routes that have had high vehicle emissions from large traffic volumes or congestion during the time period when leaded gasoline was in use (generally prior to 1986). Typically, ADL is found in the top 2 feet of material in areas within the highway right-of-way. Soils within the Department’s right-of-way that contain hazardous waste concentrations of ADL can be reused under the authority of variances issued by the California Department of Toxic Substances Control (DTSC). The variances allow stockpiling, transporting, and reusing soils with concentrations of lead below maximum allowable levels on the Department’s right-of-way when specific conditions are met.

Affected Environment
The project area is characterized by a mix of undeveloped, residential, and agricultural use on the land south of the eastbound I-80 corridor from the western end of the project area at Dan Wilson Creek to Hale Ranch Road, located south of the off-ramp from SR 12E to Chadbourne Road. Anheuser-Busch’s Budweiser brewery is located east of the I-80/SR 12E interchange, and land use adjacent to the I-80/SR 12E interchange consists of commercial development. A review of aerial photographs, combined with site reconnaissance, indicate that portions of the project area have undergone significant changes (roadway expansion and industrial and commercial development) between 1937 and the present. A Union Pacific Railroad track is south of the project area, oriented southwest-northeast. There are no schools, churches, airports, or other sensitive receptors within 0.25 mile of the project area.

Wildland fires are a seasonal hazard in northern California and represent more than half the fires occurring in the unincorporated areas. According to the California Department of Forestry and Fire Protection (CDFFP) Solano County Natural Hazard Disclosure (Fire) map (California Department of Forestry and Fire Protection 2000), the project area is not located in a region
identified as a “wildland area that may contain substantial forest fire risks and hazards, or very high fire hazard severity zone.”

According to information presented in the DOC Division of Mines and Geology map, naturally occurring asbestos is not indicated in the project footprint or in the vicinity of the project.

The eastbound I-80 truck scales facility consists of five structures and asphalt-paved areas. The structures include those listed below.

- A single-story, on-slab building that contains a control room and offices, is situated on the western portion of the facility; a modular addition is located on the southern portion of the building and contains locker rooms.
- A single-story on-slab building containing restrooms is located west of the office building.
- A modular structure used as a training classroom and a storage trailer are located between the restroom structure and the control room/office building.
- A three-sided metal-frame structure, on a concrete slab, containing four truck bays is situated on the northern portion of the facility; this structure contains an inspection shed.
- A storage building is located adjacent to the eastern side of the truck bay structure; the shed was observed to contain bags of an Oil-Dri product and miscellaneous tools.

CHP Lieutenant Mike Ferrell provided information regarding the operation and history of the existing truck scales facility. Lt. Ferrell indicated that ASTs and USTs have never been present at the facility. He also indicated that there were no wells at the facility. A sewage holding tank is located directly west of the control room/office building. The holding tank is accessed by two manholes and is connected by piping beneath the I-80 right-of-way to a 3-tank septic system that in turn is connected to the municipal sewer.

Aerially Deposited Lead

Testing for levels of ADL was conducted within the existing right-of-way in the summer of 2008 and documented in the *Draft Aerially Deposited Lead Investigation Report* (Geocon 2008b). More than 100 soil samples were collected at intervals along the project alignment approximately 2 feet from the edge of pavement. Another 24 samples were collected from borings located 10 and 15 feet further from the initial borings. These samples were analyzed for total and soluble lead concentrations. Based on the soil samples, the top one foot of soil in the central portion of the project area (from just west of Suisun Creek to approximately 1000 feet east of the proposed truck scale facility) would be classified as a California hazardous waste based on lead content. In this excavation scenario, the underlying soil would not be classified as hazardous waste based on lead content. Additionally, soil from the eastern and western portions of the project area, would not be classified as hazardous waste based on lead content.

Environmental Data Resources Database Search

Environmental Data Resources (EDR) performed a search of federal, state, and local databases for the project footprint and the surrounding area (Appendix E in Geocon Consultants 2008a). The following sections provide additional information regarding properties with potential hazardous materials located within approximately 0.25 mile upgradient of the project footprint.
Leaking Underground Storage Tank Listings
There are six facilities in the vicinity of the project area that are referenced on the leaking underground storage tank (LUST) database (Table 2.2-4).

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Substance</th>
<th>Affected Media</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old Fruitbowl Mobil Station, Valine property</td>
<td>4000 Russell Road</td>
<td>Petroleum hydrocarbons</td>
<td>Soil and groundwater (drinking water aquifer)</td>
<td>Case closed in January 2008</td>
</tr>
<tr>
<td>Fairfield Suisun Sewer District</td>
<td>1010 Chadbourne Road</td>
<td>Diesel</td>
<td>Soil and groundwater</td>
<td>Case closed in 1998</td>
</tr>
<tr>
<td>Mangels Ranch Property</td>
<td>287 Suisun Valley Road</td>
<td>Gasoline</td>
<td>Soil</td>
<td>Case closed in 1998</td>
</tr>
<tr>
<td>Texaco Terminal Stations Inc./JS&J Ser Shell</td>
<td>100 Suisun Valley Road</td>
<td>Gasoline</td>
<td>Soil and groundwater</td>
<td>Case closed in 2001</td>
</tr>
<tr>
<td>Shell</td>
<td>4450 Central Way</td>
<td>Gasoline</td>
<td>Soil and groundwater</td>
<td>Case closed in 1996</td>
</tr>
<tr>
<td>Campbell’s Carpet</td>
<td>4731 Central Way</td>
<td>Gasoline and methyl tertiary butyl ether (MTBE)</td>
<td>Soil and groundwater</td>
<td>Case closed in 1998</td>
</tr>
</tbody>
</table>

Underground Storage Tank/Aboveground Storage Tank Listings
The EDR report notes that five facilities located at or in the vicinity of the project area contain registered underground storage tanks (USTs) or aboveground storage tanks (ASTs). The listed facilities include:

- ARCO AM/PM, Cordelia, 4449 Central Place.
- Nella Oil Co. #28 Flyers, 4444 Central Place.
- Anheuser-Busch, 3101 Busch Drive.
- The Valine property at 4000 Russell Road.
- The Department, with an address of Russell (I-80) Road, Suisun City, listed as an inactive UST facility.

Resource Conservation and Recovery Act Small Quantity Generator, Facility Index System, and HAZNET Listings
Three facilities in or in the vicinity of the project area are referenced on the HAZNET database: Anheuser-Busch, at 3101 Busch Drive; Wal-Mart, at 300 Chadbourne Road; and Texaco Terminal Stations, at 100 Suisun Valley Road.

Based on a review of the listings, the Anheuser-Busch facility may be located at property proposed for partial Department acquisition as part of the proposed project. In addition to the UST database, this facility also is listed in the following: the Emergency Response Notification System (ERNS); the RCRA Small Quantity Generator (SQG); the Facility Index System (FINDS); HAZNET, which lists facilities that have filed hazardous waste manifests; the Toxics Release Inventory System (TRIS); and the Aerometric Information Retrieval System (AIRS).
Information available from the EDR report regarding the Anheuser-Busch facility indicates that it is an RCRA-SQG, which generates between 100 and 1,000 kilograms (kg) of hazardous waste per month and was a large quantity generator (LQG) until 2004. The FINDS listing relates to chemical use, storage, and disposal. Wastes removed from the facility include contaminated soil from site cleanups and asbestos-containing waste. An ERNS site report for the facility documents an ammonia spill from a refrigeration unit in 1990. In addition, the facility reportedly is registered with the BAAQMD, AIRS, and TRIS, for air emissions. No violations are reported for the facility.

The “Orphan Summary” section in the EDR report identifies properties that have incomplete address information and could not be specifically plotted. Two properties listed on the “Orphan Summary” are located within or adjacent to the project area.

- “Eastbound I-80 at CHP Scales in Fairfield” has a reported ERNS listing because of a spill of anhydrous ammonia from a truck onto the ground surface in 1993. The incident reportedly did not affect any waterways or require cleanup.
- “Fairfield STP, located south of Highway 80 and Busch Lane, east of Abernathy,” is listed as a known or suspected abandoned, inactive or uncontrolled hazardous waste site, with no further remedial action planned. The site reportedly was archived in 1989.

Site Reconnaissance

Site reconnaissances were performed on April 16 and May 8, 2008. The purpose of the reconnaissances was to survey the existing eastbound I-80 and SR-12E corridors, adjacent roadway connectors, and private property conditions within and adjacent to the ESA. A walkover of the truck inspection facility also was performed. Reconnaissance was conducted from public thoroughfares and Department-owned property to attempt to identify visual indicators of potential hazardous waste facilities/impacts.

Site plans depicting the project boundaries and potential hazardous waste facilities with indicated map identification numbers (Map ID Nos.) are presented in Figures 2.2-5a and 2.2-5b. Table 2.2-5 lists the identified facilities, along with their respective Map ID Nos., the potential impact (low and moderate risk) on the project ESA, and potential right-of-way acquisitions.

Environmental Consequences

This analysis of potential impacts is based on the ISA, which was based on information derived from the following sources.

- A review of as-built and right-of-way plans.
- A review of environmental records, conducted using a commercial database search, for current and past areas with records of hazardous material storage, use, generation, spills, disposal, investigations, and remediation as readily available in selected agency records.
- Interviews with pertinent agency and site personnel regarding site use and a history of potential hazardous materials use, spills, investigations, and remediation.
- A review of historical aerial photographs over several different time periods for evidence of past land uses involving disposal and other practices.
<table>
<thead>
<tr>
<th>Map ID No.</th>
<th>Facility</th>
<th>Address</th>
<th>Assessor’s Parcel Number</th>
<th>Potential Impact on Right-of-Way and Acquisitions</th>
<th>Information Source(s)</th>
<th>Known or Potential Environmental Impacts</th>
<th>Regulatory Status</th>
<th>Potential Impact on the Proposed Project and Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I-80 eastbound truck inspection facility</td>
<td>Existing right-of-way in western portion of project environmental study area</td>
<td>N/A</td>
<td>Moderate impact on existing I-80 right-of-way</td>
<td>Recon</td>
<td>Existing structures to be removed</td>
<td>N/A</td>
<td>Asbestos and lead-containing paint surveys should be conducted at the TIF prior to any planned renovation or demolition to evaluate worker health and safety, abatement and waste disposal options and comply with applicable regulations, including Bay Area Air Quality Management District requirements. Subsurface structures, including sewage holding tanks, should be removed and disposed in accordance with state and county requirements.</td>
</tr>
<tr>
<td>2</td>
<td>Former Old Fruit Bowl Mobil Station (Valine Ranch property)</td>
<td>4000 Russell Road</td>
<td>0027-271-060</td>
<td>Low impact on environmental study area</td>
<td>SCDRM files LUST</td>
<td>The property is a former service station (operated from 1946 to 1972) located west of and adjacent to I-80 north of the project environmental study area. Five USTs removed in 2000 under observation by SCDRM. Onsite petroleum impacts on soil and groundwater identified. Impacted soil over-excavated and stockpiled for onsite remediation and groundwater pumped for offsite disposal. Residual petroleum impacted soil stockpile remains on-site.</td>
<td>SCDRM and SFRWQCB approved case closure in January 2008</td>
<td>This facility is located north of I-80 westbound and presents a low risk of affecting the project site, as petroleum-impacted soil has been excavated and is stockpiled onsite. According to the closure document, stockpiled soil is to reused on site as existing road base or disposed.</td>
</tr>
<tr>
<td>3</td>
<td>Moore Tractor Co.</td>
<td>4088 Russell Road</td>
<td>0027-510-040</td>
<td>Low impact on environmental study area</td>
<td>Recon prior Phase I SCDRM files</td>
<td>Currently an operating tractor sales and service facility. SCDRM inspections reported bulk automotive fluids stored at the property including diesel fuel (500-gallon AST), engine oil, and waste oil. A cement sump associated with a wash rack was also noted. Past SCDRM violations have included an overflowing sump, onsite automotive fluid spills, and improper drum storage.</td>
<td>No pending regulatory action or active violations are noted for this facility</td>
<td>This facility is located southwest of the I-80/SR 12E interchange and north of the project environmental study area. The facility presents a low risk of impacting the project Site based on proposed construction area boundaries.</td>
</tr>
<tr>
<td>Map ID No.</td>
<td>Facility</td>
<td>Address</td>
<td>Assessor’s Parcel Number</td>
<td>Potential Impact on Right-of-Way and Acquisitions</td>
<td>Information Source(s)</td>
<td>Known or Potential Environmental Impacts</td>
<td>Regulatory Status</td>
<td>Potential Impact on the Proposed Project and Recommendations</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>---------</td>
<td>--------------------------</td>
<td>---</td>
<td>-----------------------</td>
<td>--</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>Concrete Pipe Distributors</td>
<td>4974 Abernathy Road</td>
<td>0027-510-070</td>
<td>Low impact on environmental study area</td>
<td>Recon prior Phase I</td>
<td>Currently a concrete pipe distributor. A prior UST was reportedly removed in approximately 1985. No SCDRM information regarding the removal. 55-gallon drums from the adjacent Moore Tractor Co. were observed stored at the facility in 1994.</td>
<td>No pending regulatory action or active violations are noted for this facility</td>
<td>This facility is located north of eastbound I-80 and presents a low risk of affecting the project site based on proposed construction area boundaries.</td>
</tr>
<tr>
<td>5</td>
<td>Pacific Gas & Electric substation</td>
<td>South of the I-80/ SR 12E interchange</td>
<td>0027-252-080</td>
<td>Low impact on environmental study area</td>
<td>Recon</td>
<td>Active PG&E electrical substation with fluid-cooled pad-mounted transformers; possible polychlorinated biphenyl (PCB) compound impacts on soil at the facility.</td>
<td>No pending regulatory action or active violations are noted for this facility</td>
<td>This facility is located south of eastbound I-80, in the central portion of the project environmental study area, and presents a low risk of affecting the project site based on proposed construction area boundaries.</td>
</tr>
<tr>
<td>N/A</td>
<td>I-80/SR 12E Right-of-way acquisition</td>
<td>N/A</td>
<td>Moderate impact on new right-of-way</td>
<td>Recon</td>
<td>Properties with current or historical agricultural land use may contain residual agricultural chemicals in shallow soil, including APNs 0027-252-080, 0027-270-080, 0027-272-140, 0027-272-160, 0027-272-180.</td>
<td>N/A</td>
<td>Conduct soil and groundwater investigations for pesticides, herbicides, petroleum hydrocarbons, and metals as applicable on land proposed for full or partial acquisition based on past agricultural land usage to evaluate soil reuse and soil/groundwater disposal options.</td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td>I-80/SR 12E Right-of-way acquisition</td>
<td>N/A</td>
<td>Moderate impact on new right-of-way</td>
<td>Recon</td>
<td>Existing structures within the project environmental study area and on parcel takes requiring demolition.</td>
<td>N/A</td>
<td>Asbestos and lead-containing paint surveys should be conducted prior to any planned renovation or demolition of buildings either within the Caltrans right-of-way or on properties proposed for full or partial takes to evaluate worker health and safety and abatement and waste disposal options, and to comply with applicable regulations, including Bay Area Air Quality Management District requirements.</td>
<td></td>
</tr>
<tr>
<td>Map ID No.</td>
<td>Facility</td>
<td>Address</td>
<td>Assessor’s Parcel Number</td>
<td>Potential Impact on Right-of-Way and Acquisitions</td>
<td>Information Source(s)</td>
<td>Known or Potential Environmental Impacts</td>
<td>Regulatory Status</td>
<td>Potential Impact on the Proposed Project and Recommendations</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------</td>
<td>--------------------</td>
<td>--------------------------</td>
<td>--</td>
<td>-----------------------</td>
<td>--</td>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>N/A</td>
<td>I-80/SR 12E</td>
<td>Existing corridors</td>
<td>N/A</td>
<td>Existing I-80/SR 12 east right-of-way</td>
<td>Recon prior nearby ADL study</td>
<td>Planned excavation and grading within existing right-of-way.</td>
<td>N/A</td>
<td>Perform shallow soil sampling to evaluate potential ADL in soil for worker health and safety and soil disposal options related to historical automobile exhaust emissions.</td>
</tr>
<tr>
<td>N/A</td>
<td>I-80/SR 12E</td>
<td>Existing corridors</td>
<td>N/A</td>
<td>Existing I-80/ SR 12E right-of-way</td>
<td>Recon</td>
<td>Planned excavation and pavement work within existing right-of-way.</td>
<td>N/A</td>
<td>Further evaluate potential hazardous waste issues or provide construction special provisions for thermoplastic traffic paint, asbestos pipe, bridge rail post sulfur and proper abandonment of wells, septic systems, and encountered unidentified USTs.</td>
</tr>
</tbody>
</table>

Notes: Properties and locations listed in bold print have a moderate risk of affecting the project environmental study area and are recommended for further evaluation. SCDRM = Solano County Department of Resource Management. N/A = not applicable. SFBRWQCB = San Francisco Bay RWQCB. AST = aboveground storage tank. LUST = leaking UST. ADL = aerially deposited lead. I = interstate. SR = State Route. TIF = truck inspection facility. Recon = reconnaissance.
The ISA identified the following potential hazardous materials/waste conditions.

- **Impacts associated with nearby agricultural uses:**
 - Aerially applied chemicals associated with agricultural use, which could act as a respiratory irritant.
 - Soil impacts associated with pesticides, herbicides, petroleum hydrocarbons, and metals from agricultural use.

- **Other soil impacts:**
 - Contaminated soil associated with leaking storage tanks, and sanitary sewer pipelines.

- **Impacts associated with traffic or roadway maintenance:**
 - ADL.
 - Lead-containing paint (LCP) associated with yellow pavement striping.

- **Impacts associated with the removal or modification of facilities or structures:**
 - ACCMs.
 - LCP.
 - Treated-wood waste.

ADL is present in the surface and near-surface soils as a result of past emissions from vehicles powered by leaded gasoline. Yellow thermoplastic and paint striping, potentially containing lead chromate, is present on roadway surfaces within the project area. The truck inspection facility structure may harbor ACMs and possible LCPs. Potential LCP and ACMs also may be present in bridge construction materials within the project area. A review by Geocon Consultants (2008a) shows that plans for the Suisun Creek bridge indicate the use of asbestos sheet packing as guard rail shims on the bridge. The Suisun Creek bridge would not be dismantled or modified during this project.

Impact HAZ-1: Potential for Exposure of Construction Workers or Nearby Land Uses to Previously Unknown Hazardous Materials

The ISA indicates that the ESA generally has a low risk of previously unreported hazardous materials that could be discovered during project construction. However, previously unreported hazardous materials could be discovered during project construction. Standard Department procedures include development of a health and safety plan to address worker health and safety. As part of this plan, the location of underground pipeline crossings will be determined and safety plans will be prepared for excavation work at these pipeline crossings before construction. These plans will include emergency plans in the event of a pipe rupture or if a preexisting leak has occurred. The safety plan will also include remediation plans to handle and remove contaminated soil. As necessary, a health and safety plan will be prepared to address worker safety when working with potentially hazardous materials, including biological contaminants, potential LCPs, soils potentially containing ADL, and other construction-related materials within the right-of-way for any soil disturbance. With development of this plan, there would be no adverse effect
related to potential exposure of construction workers or nearby land uses to previously unknown hazardous materials.

Impact HAZ-2: Potential for Exposure of Known Hazardous Materials to Humans or the Environment

The ISA indicates that the project area generally has the potential for hazardous materials in the form of heavy metals, such as chromium and lead in yellow pavement striping; ACCMs; soils contaminated with pesticides, herbicides, and metals; treated-wood waste; bridge rail post sulfur; and petroleum hydrocarbons. In addition, the Draft ADL investigation report (Geocon 2008b) confirmed the presence of ADL within the project area. Soil sampling and analysis to evaluate ADL in shallow soil within the existing eastbound I-80 right-of-way indicates that the top one foot of soil in the central portion of the project area would be classified as hazardous waste based on lead content. A sewage holding tank and associated pump station are located at the existing truck scales facility. These structures and their contents and other subsurface utilities present in the project area would be removed and disposed in accordance with county and state requirements.

Yellow thermoplastic and paint striping that is removed during planned roadway improvements may require special handling and disposal requirements unless combined with sufficient asphalt grindings per the Department’s Special Provisions. Asbestos-containing pipe, treated wood, and the use of molten sulfur for bridge rail posts also may be encountered during construction of the planned highway improvements. Any encountered asbestos-containing pipe, treated-wood waste, and bridge rail post sulfur would require proper handling and disposal in accordance with regulatory requirements.

Other potential sources of contamination include aerially applied chemicals during agricultural use of adjacent parcels that could present a respiratory irritant to construction workers. Construction may require the movement or disposal of soils or materials containing some or all of these hazardous materials.

Standard Department procedures include the conduct of sampling, testing, removal, storage, transportation, and disposal of yellow pavement striping along existing roadways. It will be ensured that sampling and testing of yellow pavement striping scheduled for removal is performed to determine if lead is present. All aspects of the proposed project associated with removal, storage, transportation, and disposal will be in strict accordance with appropriate regulations. Disposal of the stripes will be at a Class 1 disposal facility.

Standard Department procedures include disposal of soils contaminated with ADL, pesticides, and herbicides in accordance with appropriate regulations. Contaminated soil will be handled or disposed of in accordance with DTSC requirements. Under the DTSC Variance, this soil may be reused onsite if the excavated soil is placed under clean fill or pavement and a minimum of 5 feet above the maximum water table elevation.

In accordance with standard Department procedures, all aspects of the removal, storage, transportation, and disposal of soil subsequently characterized as a hazardous waste will be conducted in strict accordance with the appropriate regulations. The contractor will prepare a
health and safety plan to address worker safety when working with potentially contaminated soils during construction.

Standard Department procedures also include the timing of construction to avoid exposure of construction workers to respiratory irritants from aerially applied chemicals. The Department or the appropriate local agency will ensure that the contractor coordinates the timing of aerially applied chemicals with the individual growers on parcels within or adjacent to the project area to avoid effects on workers during construction.

With the implementation of the relevant standard Department procedures described above, there would be no adverse effects related to the potential for exposure of known hazardous materials to humans or the environment.

Construction would involve the use of heavy equipment, small quantities of hazardous materials (e.g., petroleum and other chemicals used to operate and maintain construction equipment), and larger quantities of potentially hazardous road construction materials (i.e., blacktopping materials) that may result in hazardous conditions on site. In addition, sanitary sewer pipelines may cross or exist within the planned roadway construction alignment. If pre-existing leaks are encountered, or if pipelines are ruptured during construction, construction workers or nearby land uses could be exposed to biological contamination. However, implementation of standard Department procedures to ensure worker safety would reduce the severity of this effect and therefore, it is not considered adverse.

Avoidance, Minimization, and/or Mitigation Measures

No avoidance, minimization, and/or mitigation measures are necessary.

Impacts of the No-Project Alternative

Under the No-Project Alternative, no new impacts related to hazardous waste or hazardous materials would occur.

2.2.6 Air Quality

This chapter describes the environmental setting (existing conditions and regulatory setting) for air quality relating to the proposed project; the impacts on air quality that would result from the proposed project; and measures that would reduce these impacts, if applicable. The information contained in this section is based upon the *Interstate-80 Eastbound Cordelia Truck Scale Relocation Project Air Quality Technical Report* which is hereby incorporated by reference in its entirety (California Department of Transportation 2008).

Regulatory Setting

The proposed project is located in the Solano County portion of the BAAQMD. The BAAQMD has jurisdiction over air quality issues in southwestern Solano County, in addition to the counties surrounding the San Francisco Bay. It administers air quality regulations developed at the
Chapter 2. Affected Environment; Environmental Consequences; and Avoidance, Minimization, and/or Mitigation Measures—Physical Environment

federal, state, and local levels. Federal, state, and local air quality regulations applicable to the proposed project are described below.

Federal Requirements
The federal CAA, enacted in 1970 and amended twice thereafter (including the 1990 amendments), establishes the framework for modern air pollution control. The EPA has established national ambient air quality standards (NAAQS) for criteria pollutants (Table 2.2-6). Criteria pollutants include carbon monoxide (CO), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), ozone (O₃), particulate matter 10 microns or less in diameter (PM₁₀), particulate matter 2.5 microns or less in diameter (PM₂.₅), and lead. Most standards have been set to protect public health. For some pollutants, standards have been based on other values (such as the protection of crops, the protection of materials, or the avoidance of nuisance conditions).

The Clean Air Act as amended in 1990 is the federal law that governs air quality. Its counterpart in California is the California Clean Air Act of 1988. These laws set standards for the quantity of pollutants that can be in the air. At the federal level, these standards are called National Ambient Air Quality Standards (NAAQS). Standards have been established for six criteria pollutants that have been linked to potential health concerns; the criteria pollutants are: carbon monoxide (CO), nitrogen dioxide (NO₂), ozone (O₃), particulate matter (PM), lead (Pb), and sulfur dioxide (SO₂).

Regional level conformity in California is concerned with how well the region is meeting the standards set for carbon monoxide (CO), nitrogen dioxide (NO₂), ozone (O₃), and particulate matter (PM). California is in attainment for the other criteria pollutants. At the regional level, Regional Transportation Plans (RTP) are developed that include all of the transportation projects planned for a region over a period of years, usually at least 20. Based on the projects included in the RTP, an air quality model is run to determine whether or not the implementation of those projects would conform to emission budgets or other tests showing that attainment requirements of the Clean Air Act are met. If the conformity analysis is successful, the regional planning organization, such as Metropolitan Transportation Commission (MTC) for Solano County and the appropriate federal agencies, such as the Federal Highway Administration, make the determination that the RTP is in conformity with the State Implementation Plan for achieving the goals of the Clean Air Act. Otherwise, the projects in the RTP must be modified until conformity is attained. If the design and scope of the proposed transportation project are the same as described in the RTP, then the proposed project is deemed to meet regional conformity requirements for purposes of project-level analysis.

Conformity at the project-level also requires “hot spot” analysis if an area is “nonattainment” or “maintenance” for carbon monoxide (CO) and/or particulate matter. A region is a “nonattainment” area if one or more monitoring stations in the region fail to attain the relevant standard. Areas that were previously designated as nonattainment areas but have recently met the standard are called “maintenance” areas. “Hot spot” analysis is essentially the same, for technical purposes, as CO or particulate matter analysis performed for NEPA purposes. Conformity does include some specific standards for projects that require a hot spot analysis. In general, projects must not cause the CO standard to be violated, and in “nonattainment” areas the project must not cause any increase in the number and severity of violations. If a known CO or particulate matter violation is located in the project vicinity, the project must include measures to reduce or eliminate the existing violation(s) as well.
<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Symbol</th>
<th>Average Time</th>
<th>Standard (parts per million)</th>
<th>Standard (micrograms per cubic meter)</th>
<th>Violation Criteria</th>
<th>Attainment Status of Solano County¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone</td>
<td>O₃</td>
<td>1 hour</td>
<td>0.09</td>
<td>N/A</td>
<td>180</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 hours</td>
<td>0.070</td>
<td>0.075</td>
<td>137</td>
<td>147</td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>CO</td>
<td>8 hours</td>
<td>9.0</td>
<td>9</td>
<td>10,000</td>
<td>10,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 hour</td>
<td>20</td>
<td>35</td>
<td>23,000</td>
<td>40,000</td>
</tr>
<tr>
<td>(Lake Tahoe only)</td>
<td></td>
<td>8 hours</td>
<td>6</td>
<td>N/A</td>
<td>7,000</td>
<td>N/A</td>
</tr>
<tr>
<td>Nitrogen dioxide</td>
<td>NO₂</td>
<td>Annual average</td>
<td>0.03</td>
<td>0.053</td>
<td>N/A</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 hour</td>
<td>0.18</td>
<td>N/A</td>
<td>338</td>
<td>N/A</td>
</tr>
<tr>
<td>Sulfur dioxide</td>
<td>SO₂</td>
<td>Annual average</td>
<td>N/A</td>
<td>0.030</td>
<td>N/A</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24 hours</td>
<td>0.04</td>
<td>0.14</td>
<td>105</td>
<td>365</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 hour</td>
<td>0.25</td>
<td>N/A</td>
<td>655</td>
<td>N/A</td>
</tr>
<tr>
<td>Hydrogen sulfide</td>
<td>H₂S</td>
<td>1 hour</td>
<td>0.03</td>
<td>N/A</td>
<td>42</td>
<td>N/A</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>C₂H₃Cl</td>
<td>24 hours</td>
<td>0.010</td>
<td>N/A</td>
<td>26</td>
<td>N/A</td>
</tr>
<tr>
<td>Inhalable particulate matter</td>
<td>PM10</td>
<td>Annual arithmetic mean</td>
<td>N/A</td>
<td>N/A</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24 hours</td>
<td>N/A</td>
<td>N/A</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>PM2.5</td>
<td>Annual arithmetic mean</td>
<td>N/A</td>
<td>N/A</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24 hours</td>
<td>N/A</td>
<td>N/A</td>
<td>35</td>
<td>N/A</td>
</tr>
<tr>
<td>Sulfate particles</td>
<td>SO₄</td>
<td>24 hours</td>
<td>N/A</td>
<td>N/A</td>
<td>25</td>
<td>N/A</td>
</tr>
<tr>
<td>Lead particles</td>
<td>Pb</td>
<td>Calendar quarter</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 days</td>
<td>N/A</td>
<td>N/A</td>
<td>1.5</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Source: California Air Resources Board 2008a.

Notes: All standards are based on measurements at 25°C and 1 atmosphere pressure; national standards shown are the primary (health effects) standards; N/A = not applicable.
¹ the portion of Solano County within the San Francisco Bay Area Air Basin.
Ozone and its precursors, reactive organic gases (ROG) and oxides of nitrogen (NOx); sulfates; visibility reducing particles; NO2; and PM10 and PM2.5 are considered to be regional pollutants because they affect air quality on a regional scale. NO2 reacts photochemically with ROG to form ozone, and PM10 and PM2.5 can originate from chemical reactions of atmospheric chemicals, including NOx, sulfates, nitrates, and ammonia. These processes can occur at some distance downwind of the source of pollutants. Pollutants such as CO, SO2, and lead are considered to be local pollutants because they tend to disperse rapidly with distance from the source. PM10 is considered a localized pollutant, as well as a regional pollutant, because direct emissions of PM10 from automobile exhaust can accumulate in the air locally near the emission source.

The CAA requires states to submit a state implementation plan (SIP) for areas designated as nonattainment for federal air quality standards. The SIP, which is reviewed and approved by the EPA, must demonstrate how the federal standards will be achieved. Failing to submit a plan or secure approval could lead to a denial of federal funding and permits. In cases where the SIP is submitted by the state but fails to demonstrate achievement of the standards, the EPA is directed to prepare a federal implementation plan.

Transportation Conformity

Transportation conformity, a concept introduced in the 1977 federal CAA, requires that no federal dollars be used to fund a transportation project unless it can be clearly demonstrated that the project would not cause or contribute to violations of the NAAQS. Conformity requirements were made substantially more rigorous in the CAA amendments of 1990. The U.S. Department of Transportation and the EPA developed guidance for determining conformity of transportation plans, programs, and projects in November 1993 in the transportation conformity rule (40 CFR 51 and 40 CFR 93).

Conformity for transportation projects typically is assessed by evaluating whether a project is included in a conforming RTP or a transportation improvement program (TIP), or both. Any project listed in an RTP or a TIP must demonstrate conformity with the SIP. The local metropolitan planning organization (MPO) is responsible for the preparation of regional transportation plans and associated demonstration of conformity to the SIP. In addition, a local pollutant impact analysis usually is required.

In Solano County, the MTC is the responsible MPO and develops the RTP and TIP for the region. The RTP and TIP include projects whose emissions are within the budget planned in the SIP, with the goal of attaining the NAAQS. The TIP is also in accord with the EPA’s transportation conformity rule as it pertains to the attainment of air quality standards in the BAAQMD. The description of the project is the same in the RTP, TIP, and in this environmental document.

The federally required RTP and TIP are comprehensive listings of all transportation projects that receive federal funds or that are subject to a federally required action, such as a review for impacts on air quality. The TIP sets forth the MTC’s investment priorities for transit and transit-related improvements, highways and roadways, and other surface transportation improvements in the Solano County region. The MTC prepares and adopts the TIP every 2 years.
In addition to demonstrating that a proposed project has been identified in an approved regional transportation improvement program (RTIP) and incorporated in an EPA-approved SIP or demonstrating that a proposed project is exempt from conformity requirements, agencies constructing transportation projects must demonstrate that they do not exacerbate an existing violation of an NAAQS or create a new exceedance under Section 93.114 of the EPA transportation conformity regulations. The section states that “there must be a currently conforming regional transportation plan and transportation improvement program at the time of project approval.” The proposed project (identified as reference number 22701 for the Cordelia Truck Scales’ relocation) is included in the Transportation 2035 Plan and the 2009 Transportation Improvement Program (2009 TIP). The MTC adopted the 2009 TIP on May 28, 2008. The FHWA is reviewing the conformity determination for the Transportation 2035 Plan and made its conformity determination for the 2009 TIP November 17, 2008. In a letter dated September 25, 2009, FHWA found that the I-80 EB Cordelia Truck Scales Relocation project conforms to the State Implementation Plan (SIP) in accordance with 40 C.F.R. Part 93 (Appendix J).

Under the 1990 Clean Air Act Amendments, the U.S. Department of Transportation cannot fund, authorize, or approve Federal actions to support programs or projects that are not first found to conform to the SIP for achieving the goals of the Clean Air Act requirements. Conformity with the Clean Air Act takes place on two levels – first, at the regional level and second, at the project level. The proposed project must conform at both levels to be approved.

An evaluation to determine if a project is included in a conforming RTP or TIP is done to determine regional transportation conformity for ozone precursors. For project level conformity, because PM10/PM2.5 and CO are localized pollutants, the determination of transportation conformity for these pollutants is assessed by identifying whether the proposed project would generate elevated hot-spot concentrations for these two pollutants. For PM10/PM2.5, the determination of conformity is qualitative; for CO, the determination is quantitative.

For regional conformity, we conclude that the project’s operational emissions (which include the ozone precursors ROG and NOx) meet the transportation conformity requirements imposed by the EPA and the BAAQMD. Although the proposed project is a conforming project for regional emissions, it requires a CO “hot spot” analysis to determine any localized emissions effects. A CO hot spot analysis is required because the region is classified as a maintenance area for the federal CO standard. The PM hot spot analysis is not required for project level conformity because the area is in attainment or unclassified for the national PM10 and PM2.5 standards.

Mobile Source Air Toxics

The CAA of 1990 identified 188 pollutants as hazardous air pollutants (HAPs), also known as air toxics. From this list, the EPA identified a group of 21 as mobile source air toxics (MSATs) in its final rule, “Control of Emissions of Hazardous Air Pollutants from Mobile Sources” (66 Federal Register [FR] 17235) in March 2001. From this list of 21 MSATs, the EPA has identified six MSATs—benzene, formaldehyde, acetaldehyde, diesel particulate matter/diesel exhaust organic gases, acrolein, and 1,3-butadiene—as being priority MSATs. To address emissions of MSATs, the EPA has issued a number of regulations that will dramatically decrease MSATs through cleaner fuels and cleaner engines. The area of air toxics analysis is a new and emerging issue and is a continuing area of research. Although much work has been done to assess the overall health
risk of air toxics, many questions remain unanswered. In particular, the tools and techniques available for assessing project-specific health impacts from MSATs are limited. Given the emerging state of the science and of project-level analysis techniques, there are no established criteria for determining when MSAT emissions should be considered a significant issue in the NEPA context. The FHWA currently is preparing guidance as to how mobile source health risks should factor into project-level decision-making under NEPA. In addition, the EPA has not established regulatory concentration targets for the six relevant MSAT pollutants appropriate for use in the project development process.

In light of the recent development regarding MSATs, the FHWA has issued interim guidance for the assessment of MSATs in NEPA documents for highway projects. The FHWA has developed a tiered approach for analyzing MSATs in NEPA documents. Depending on the specific project circumstances, FHWA has identified three levels of analysis, listed below.

1. No analysis for exempt projects or projects with no potential for meaningful MSAT effects.

 The types of projects included in this category are:
 - Projects qualifying as a categorical exclusion under 23 CFR 771.117(c).
 - Projects exempt under the CAA conformity rule under 40 CFR 93.126.
 - Other projects with no meaningful impacts on traffic volumes or vehicle mix.

 Projects that are categorically excluded under 23 CFR 771.117(c), or are exempt under the CAA pursuant to 40 CFR 93.126, require no analysis or discussion of MSATs. Documentation sufficient to demonstrate that the project qualifies as a categorical exclusion or exempt project will suffice. For other projects with no or negligible traffic impacts, regardless of the class of NEPA environmental document, no MSAT analysis is required.1 However, the project record must document the basis for the determination of “no meaningful potential impacts” with a brief description of the factors considered.

2. Qualitative analysis for projects with low potential MSAT effects.

 This category covers a broad range of projects, as projects included in this category are those that serve to improve operations of highway, transit, or freight without adding substantial new capacity or creating a facility that is likely to meaningfully increase emissions.

 The FHWA anticipates that most highway projects will fall into this category. Any projects not meeting the threshold criteria for higher potential effects set forth in subsection 3 below and not meeting the criteria in subsection 1 above should be included in this category.

 Examples of these types of projects are minor widening projects and new interchanges, such as those that replace a signalized intersection on a surface street or where design year traffic is not projected to meet the 140,000–150,000 annual average daily traffic (AADT) criterion.2

1 The types of projects categorically excluded under 23 CFR 771.117(d) or exempt from conformity under 40 CFR 93.127 do not warrant an automatic exemption from an MSAT analysis, but they usually will have no meaningful impact.

2 The FHWA guidance for the assessment of MSATs in NEPA documents does not specifically address the analysis of construction-related emissions because of their relatively short duration. The FHWA is considering whether more guidance is needed on construction activities in future versions of its guidance.
A qualitative assessment of emissions projections should be conducted for these projects. The qualitative assessment would compare, in narrative form, the expected effect of the project on traffic volumes, vehicle mix, or routing of traffic and the associated changes in MSATs for the project alternatives, based on VMT, vehicle mix, and speed. It also would discuss national trend data projecting substantial overall reductions in emissions because of stricter engine and fuel regulations issued by the EPA. Because the emission effects of these projects are low, the FHWA expects there would be no appreciable difference in overall MSAT emissions between the alternatives. In addition, quantitative emissions analysis of these types of projects will not yield credible results that are useful to project-level decision-making because of the limited capabilities of the transportation and emissions forecasting tools.

3. Quantitative analysis to differentiate alternatives for projects with higher potential MSAT effects.

Projects included in this category have the potential for meaningful differences among project alternatives. The FHWA expects only a limited number of projects to meet this two-pronged test. To fall into this category, projects must:

- Create or significantly alter a major intermodal freight facility that has the potential to concentrate high levels of diesel particulate matter in a single location.

- Create new or add significant capacity to urban highways such as interstates, urban arterials, or urban collector-distributor routes with traffic volumes where the AADT is projected to be in the range of 140,000 to 150,000, or greater, by the design year (and projects also must be proposed to be located in proximity to populated areas or in rural areas, in proximity to concentrations of vulnerable populations, such as schools, nursing homes, or hospitals).

Projects falling within this category should be more rigorously assessed for impacts, and the FHWA should be contacted for assistance in developing a specific approach for assessing impacts. This approach would include a quantitative analysis that would attempt to measure the level of emissions for the six priority MSATs for each alternative, to use as a basis of comparison. This analysis also may address the potential for cumulative impacts, where appropriate, based on local conditions. How and when cumulative impacts should be considered would be addressed as part of the assistance outlined above. If the analysis for a project in this category indicates meaningful differences in levels of MSAT emissions, mitigation options should be identified and considered.

State Requirements
Responsibility for achieving California’s ambient air quality standards (CAAAQS) (Table 2.2-6), which are more stringent than federal standards for certain pollutants and averaging periods, is placed on the California Air Resources Board (ARB) and local air pollution control districts. State standards are to be achieved through district-level air quality management plans that are

3 Using the EPA’s MOBILE6.2 emissions model, FHWA technical staff determined that this range of AADT would be roughly equivalent to the CAA definition of a major hazardous air pollutant (HAP) source (i.e., 25 tons per year [tpy] for all HAPs or 10 tpy for any single HAP). Significant variations in conditions such as congestion or vehicle mix could warrant a different range for AADT.
incorporated into the SIP. In California, the EPA has delegated authority to prepare SIPs to the ARB, which, in turn, has delegated that authority to individual air districts.

The ARB traditionally has established state air quality standards, maintained oversight authority in air quality planning, developed programs for reducing emissions from motor vehicles, developed air emission inventories, collected air quality and meteorological data, and approved SIPs.

Responsibilities of air districts include overseeing stationary source emissions, approving permits, maintaining emissions inventories, maintaining air quality stations, overseeing agricultural burning permits, and reviewing air quality–related sections of environmental documents required by CEQA.

The California Clean Air Act (CCAA) of 1988 substantially added to the authority and responsibilities of air districts. The CCAA designates air districts as lead air quality planning agencies, requires air districts to prepare air quality plans, and grants air districts authority to implement transportation control measures.

The CCAA focuses on attainment of the CAAQS and requires the designation of attainment and nonattainment areas with respect to these standards. The act also requires that local and regional air districts expeditiously adopt and prepare an air quality attainment plan if the district violates CAAQS for CO, SO₂, NO₂, or ozone. These plans are specifically designed to attain state standards and must be designed to achieve an annual 5% reduction in district-wide emissions of each nonattainment pollutant or its precursors. No locally prepared attainment plans are required for areas that violate the state PM10 standards; the ARB is responsible for developing plans and projects that achieve compliance with the state PM10 standards.

The CCAA requires that the state air quality standards be met as expeditiously as practicable, but, unlike the federal CAA, the CCAA does not set precise attainment deadlines. Instead, the act establishes increasingly stringent requirements for areas that will require more time to achieve the standards.

The CCAA emphasizes the control of “indirect and area-wide sources” of air pollutant emissions. The act gives local air pollution control districts explicit authority to regulate indirect sources of air pollution and to establish traffic control measures (TCM). The CCAA does not define the terms indirect and area-wide. However, Section 110 of the federal CAA defines an indirect source as “a facility, building, structure, installation, real property, road, or highway which attracts, or may attract, mobile sources of pollution. Such term includes parking lots, parking garages, and other facilities subject to any measure for management of parking supply.”

TCMs are defined in the CCAA as “any strategy to reduce trips, vehicle use, VMT, vehicle idling, or traffic congestion for the purpose of reducing vehicle emissions.”

California Department of Transportation Standard Specification 7-1.01F and Standard Specifications Section 10

Construction activities are subject to Department requirements found in the Department document *Standard Specifications* (California Department of Transportation 2006). Standard
Specification 7-1.01F in Section 14 stipulates that construction activities must comply with all rules, regulations, ordinances, and statutes of the local air pollution control district, and Standard Specifications Section 10 addresses dust control requirements.

Global Warming Solutions Act of 2006 (Assembly Bill 32)

On June 1, 2005, California Governor Arnold Schwarzenegger signed EO S-3-05. The goal of this EO is to reduce California’s greenhouse gas (GHG) emissions to: 2000 levels by 2010, 1990 levels by 2020, and 80% below the 1990 levels by 2050. In 2006, this goal was reinforced further with the passage of Assembly Bill (AB) 32, the Global Warming Solutions Act of 2006. AB 32 sets the same overall GHG emissions reduction goals while further mandating that the ARB create a plan, which includes market mechanisms, and implement rules to achieve “real, quantifiable, cost-effective reductions of greenhouse gases.” EO S-20-06 further directs state agencies to begin implementing AB 32, including the recommendations made by the state’s Climate Action Team.

Climate change and GHG reduction are also concerns at the federal level; however, at this time, no federal legislation or regulations specifically addressing GHG emissions reductions and climate change have been enacted.

Local and Regional Implementation of Federal Requirements

The air quality management agencies of direct importance to western Solano County include the EPA, the ARB, and the BAAQMD. The EPA has established NAAQS for which the ARB and the BAAQMD have primary implementation responsibility. The ARB and the BAAQMD are also responsible for ensuring that the CAAQS are met.

Local Standards

Guidance for the determination of significant air impacts under CEQA within western Solano County is found in the BAAQMD document *BAAQMD CEQA Guidelines: Assessing the Air Quality Impacts of Projects and Plans* (Bay Area Air Quality Management District 1999).

The BAAQMD does not require quantification of construction emissions. Instead, it requires the implementation of effective and comprehensive feasible control measures to reduce PM10 emissions (Bay Area Air Quality Management District 1999). PM10 emitted during construction activities varies greatly depending on the level of activity, the specific operations taking place, the equipment being operated, local soils, and weather conditions. Despite this variability in emissions, experience has shown that a number of feasible control measures can be reasonably implemented to reduce PM10 emissions during construction; these measures are summarized in Table 2.2-7. According to the BAAQMD, if all control measures listed in Table 2.2-7 are implemented (as appropriate, depending on the size of the project area), air pollutant emissions from construction activities would be considered less than significant (Bay Area Air Quality Management District 1999). Construction equipment also emits CO and ozone precursors. Construction-related emissions of these pollutants were not estimated, however, because they are included already in the emission inventory that forms the basis for the BAAQMD’s regional air quality plans and because those emissions are not expected to impede attainment or maintenance of ozone and CO standards in the Bay Area (Bay Area Air Quality Management District 1999).
Table 2.2-7. BAAQMD Feasible Control Measures for Construction Emissions of PM10

<table>
<thead>
<tr>
<th>Basic Control Measures (Controls That Should Be Implemented at All Construction Sites)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water all active construction areas at least twice daily.</td>
</tr>
<tr>
<td>Cover all trucks hauling soil, sand, and other loose materials or require all trucks to maintain at least 0.6 meters (2 feet) of freeboard.</td>
</tr>
<tr>
<td>Pave; apply water three times daily; or apply (nontoxic) soil stabilizers on all unpaved access roads, parking areas, and staging areas at construction sites.</td>
</tr>
<tr>
<td>Sweep daily (with water sweepers) all paved access roads, parking areas, and staging areas at construction sites.</td>
</tr>
<tr>
<td>Sweep streets daily (with water sweepers) if visible soil material is carried onto adjacent public streets.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Enhanced Control Measures (Additional Measures That Should Be Implemented at Construction Sites Greater than 4 acres in Area)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroseed or apply (nontoxic) soil stabilizers to inactive construction areas (i.e., previously graded areas inactive for 10 days or more).</td>
</tr>
<tr>
<td>Enclose, cover, water twice daily, or apply (nontoxic) soil binders to exposed stockpiles (e.g., dirt and sand).</td>
</tr>
<tr>
<td>Limit traffic speeds on unpaved roads to 24.1 kilometers per hour (15 mph).</td>
</tr>
<tr>
<td>Install sandbags or other erosion control measures to prevent silt runoff to public roadways.</td>
</tr>
<tr>
<td>Replant vegetation in disturbed areas as quickly as possible.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Optional Control Measures (Control Measures That Are Strongly Encouraged at Construction Sites that Are Large in Area, Located Near Sensitive Receptors, or for Any Other Reason May Warrant Additional Emissions Reductions; the Project Applicant Is Not Required to Implement Them)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Install wheel washers for all exiting trucks or wash off the tires or tracks of all trucks and equipment leaving the site.</td>
</tr>
<tr>
<td>Install windbreaks or plant trees or vegetative wind breaks at windward sides of construction areas.</td>
</tr>
<tr>
<td>Suspend excavation and grading activity when winds (instantaneous gusts) exceed 25 mph.</td>
</tr>
<tr>
<td>Limit the area subject to excavation, grading, and other construction activity at any one time.</td>
</tr>
</tbody>
</table>

Source: Bay Area Air Quality Management District 1999.

For project operations, the BAAQMD identifies a significant air quality impact as being a:

- Net increase in pollutant emissions of 80 pounds per day (ppd) or 15 tons per year (tpy) of ROG, NOx, or PM10.
- Project-related contribution to CO concentrations exceeding the CAAQS for the 1- and 8-hour standards.

According to the BAAQMD, localized CO concentrations should be estimated for projects in which:

- Vehicle emissions of CO exceed 550 ppd.
- Project traffic affects intersections or roadway links operating at LOS D, E, or F.
- Project traffic causes intersection or roadway link LOS to decline to D, E, or F.
- Project traffic increases traffic volumes on nearby roadways by 10% or more (unless the increase in traffic volume is less than 100 vehicles per hour).

Affected Environment
This chapter evaluates the potential air quality effects of the proposed action. The information contained in this section is based upon the I-80 Eastbound Cordelia Truck Scale Relocation Project Air Quality Impacts Technical Study which is hereby incorporated by reference in its entirety (California Department of Transportation 2008).
Chapter 2. Affected Environment; Environmental Consequences; and Avoidance, Minimization, and/or Mitigation Measures—Physical Environment

Physical Setting
Ambient air quality is affected by climatological conditions, topography, and the types and amounts of pollutants emitted. The following discussion describes relevant characteristics of the air basin and offers an overview of conditions affecting pollutant ambient air concentrations in the basin.

Climate and Topography
The project lies within the Carquinez Strait region of the San Francisco Bay Area Air Basin (SFBAAB). The Carquinez Strait is the only sea-level gap between the San Francisco Bay and the Central Valley. Within the region, the prevailing winds are from the west, but during the summer and fall months, marine air flows eastward through the Carquinez Strait due to high pressure offshore and low pressure in the Central Valley. These easterly winds usually contain more pollutants from the Sacramento and San Joaquin Valleys in the east than the cleaner marine air from the west. During summer and fall months, this can result in elevated pollutant levels as pollutants move through the strait into the central Bay Area from surrounding areas. The high-pressure periods during the summer and fall months often are accompanied by low wind speeds, shallow mixing depths, higher temperatures, and little or no rainfall. Mean maximum temperatures reach about 32.2°C (90°F) during the summer, and mean minimum temperatures are typically 1.6–4.4°C (35–40°F) in the winter. In distant areas like Fairfield, where the region is sheltered from the moderating effects of the strait, temperature extremes are especially pronounced.

Many industrial facilities, such as chemical plants and refineries, are located within the Carquinez Strait region and generate significant air pollutant emissions. However, the high wind speeds in the region often help moderate the pollution potential of this area. Occasionally, short-term pollution episodes can result from upsets at industrial facilities, while unpleasant odors may occur anytime. The result is that receptors downwind of these facilities could suffer more long-term exposure to air contaminants than individuals elsewhere. Areas of the region that are traversed by major roadways, such as I-80, also may be subject to higher local concentrations of CO and particulate matter, as well as certain toxic air contaminants (TACs), such as benzene.

Environmental Consequences

Regional Air Quality Conformity
Transportation conformity, a concept introduced in the 1977 federal CAA, requires that no federal dollars be used to fund a transportation project unless it can be clearly demonstrated that the project would not cause or contribute to violations of the NAAQS. Conformity requirements were made substantially more rigorous in the CAA amendments of 1990. The U.S. Department of Transportation and the EPA developed guidance for determining conformity of transportation plans, programs, and projects in November 1993 in the transportation conformity rule (40 CFR 51 and 40 CFR 93).

In Solano County, the MTC is the local MPO and develops the RTP and TIP for the region. The RTP and TIP include projects whose emissions are within the budget planned in the SIP, with the goal of attaining the NAAQS. The TIP is also in accord with the EPA’s transportation conformity rule as it pertains to the attainment of air quality standards in the BAAQMD.
Under Section 93.114 of the EPA transportation conformity regulations, the section states that “there must be a currently conforming regional transportation plan and transportation improvement program at the time of project approval.” The most recent regional transportation plan in the project area is the MTC’s *Transportation 2035 Plan*, which the FHWA is reviewing for its conformity determination. The proposed project (identified as reference number 22701 for the Cordelia Truck Scales relocation) is included in the *Transportation 2035 Plan* and the 2009 TIP. The MTC adopted the 2009 TIP on May 28, 2008. The FHWA made its conformity determination for 2009 TIP on November 17, 2008. The project description is the same in the RTP, TIP, and in this environmental document. In a letter dated September 25, 2009, FHWA found that the I-80 EB Cordelia Truck Scales Relocation project conforms to the SIP in accordance with 40 C.F.R. Part 93 (Appendix J).

Project Level Conformity

National and State Ambient Air Quality Standards

As required by the CAA, the NAAQS have been established for major air pollutants: ozone, CO, NOx, sulfur oxides (SOx), particulate matter, and lead. Pursuant to the CCAA, the state has established the CAAQS. The CAAQS are generally more stringent than the corresponding federal standards (NAAQS) and incorporate additional standards for sulfates, hydrogen sulfide, vinyl chloride, and visibility-reducing particles. Because the CAAQS are more stringent than the NAAQS, the CAAQS are used as the comparative standard in the air quality analysis contained in this report.

Both state and federal standards are summarized in Table 2.2-8. The “primary” standards have been established to protect public health. The “secondary” standards are intended to protect the nation’s welfare and account for air pollutant effects on soil, water, visibility, materials, vegetation and other aspects of the general welfare.

Attainment Status

The CCAA requires the ARB to designate areas within California as either attainment or nonattainment for each criteria pollutant, based on whether the CAAQS have been achieved. Under the CCAA, areas are designated as nonattainment for a pollutant if air quality data show that a state standard for the pollutant was violated at least once during the previous three calendar years. Exceedances that are affected by highly irregular or infrequent events are not considered violations of a state standard and are not used as a basis for designating areas as nonattainment.

The ARB has classified the county as being a serious nonattainment area for the ozone CAAQS. For the CO CAAQS, the ARB has classified the county as being an attainment area (California Air Resources Board 2008c). For the PM10 and PM2.5 CAAQS, the ARB has classified the county as a nonattainment area. Solano County’s attainment status for each of these pollutants relative to the NAAQS and CAAQS is summarized in Table 2.2-9.
Table 2.2-8. Ambient Air Quality Standards

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Average Time</th>
<th>California Standards</th>
<th>National Standards</th>
<th>Measurement Method</th>
<th>Primary</th>
<th>Secondary</th>
<th>Measurement Method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Concentration</td>
<td>Method</td>
<td>Concentration</td>
<td>Method</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Ozone (O₃)</td>
<td>1 hour</td>
<td>0.09 ppm</td>
<td>Ultraviolet</td>
<td>0.075 ppm</td>
<td>N/A</td>
<td>N/A</td>
<td>Ultraviolet photometry</td>
</tr>
<tr>
<td></td>
<td>8 hours</td>
<td>0.07 ppm</td>
<td>N/A</td>
<td>0.075 ppm</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>8 hours</td>
<td>9.0 ppm</td>
<td>Non-dispersive</td>
<td>9 ppm</td>
<td>N/A</td>
<td>None</td>
<td>Non-dispersive infrared spectroscopy</td>
</tr>
<tr>
<td></td>
<td>1 hour</td>
<td>20 ppm</td>
<td>infrared spectroscopy</td>
<td>35 ppm</td>
<td>N/A</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Nitrogen dioxide (NO₂)</td>
<td>Annual</td>
<td>0.03 ppm</td>
<td>Gas phase</td>
<td>0.053 ppm</td>
<td>N/A</td>
<td>None</td>
<td>Gas phase chemiluminescence</td>
</tr>
<tr>
<td></td>
<td>arithmetic</td>
<td></td>
<td>chemiluminescence</td>
<td>0.053 ppm</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>mean</td>
<td>1 hour</td>
<td>0.18 ppm</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Sulfur dioxide (SO₂)</td>
<td>Annual</td>
<td>N/A</td>
<td>Ultraviolet</td>
<td>0.03 ppm</td>
<td>N/A</td>
<td>None</td>
<td>Ultraviolet photometry</td>
</tr>
<tr>
<td></td>
<td>arithmetic</td>
<td></td>
<td>fluorescence</td>
<td>0.03 ppm</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>mean</td>
<td>24 hours</td>
<td>0.04 ppm</td>
<td>0.14 ppm</td>
<td>N/A</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 hours</td>
<td>N/A</td>
<td>0.5 ppm</td>
<td>N/A</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 hour</td>
<td>0.25 ppm</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Particulate matter 10</td>
<td>Annual</td>
<td>24 hours</td>
<td>50 µg/m³</td>
<td>150 µg/m³</td>
<td>N/A</td>
<td>N/A</td>
<td>Inertial separation and gravimetric analysis</td>
</tr>
<tr>
<td>microns or less in diameter</td>
<td>arithmetic</td>
<td></td>
<td>Gravimetric or beta attenuation</td>
<td>150 µg/m³</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
</tr>
<tr>
<td>(PM10)</td>
<td>mean</td>
<td>20 µg/m³</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Particulate matter 2.5</td>
<td>Annual</td>
<td>24 hours</td>
<td>12 µg/m³</td>
<td>15 µg/m³</td>
<td>N/A</td>
<td>N/A</td>
<td>Inertial separation and gravimetric analysis</td>
</tr>
<tr>
<td>microns or less in diameter</td>
<td>arithmetic</td>
<td></td>
<td>Gravimetric or beta attenuation</td>
<td>15 µg/m³</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
</tr>
<tr>
<td>(PM2.5)</td>
<td>mean</td>
<td>35 µg/m³</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Lead</td>
<td>30-day</td>
<td>1.5 µg/m³</td>
<td>Atomic absorption</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>High volume sampler and atomic absorption</td>
</tr>
<tr>
<td>average</td>
<td>Calendar</td>
<td></td>
<td></td>
<td>1.5 µg/m³</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>quarter</td>
<td></td>
<td></td>
<td>1.5 µg/m³</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
</tr>
<tr>
<td>Visibility reducing particles</td>
<td>8 hours</td>
<td>Extinction coefficient of 0.23 per kilometer—visibility of 10 miles or more due to particles when relative humidity is less than 70%; Method: beta attenuation and transmittance through filter tape</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Sulfates</td>
<td>24 hours</td>
<td>25 µg/m³</td>
<td>Ion chromatography</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Hydrogen sulfide (H₂S)</td>
<td>1 hour</td>
<td>0.03 ppm</td>
<td>Ultraviolet</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fluorescence</td>
<td></td>
<td>None</td>
<td>N/A</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>24 hours</td>
<td>0.010 ppm</td>
<td>Gas chromatography</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Source: California Air Resources Board 2008b.

Notes: ppm = parts per million.

µg/m³ = micrograms per cubic meter.

N/A = not applicable.
Chapter 2. Affected Environment; Environmental Consequences; and Avoidance, Minimization, and/or Mitigation Measures—Physical Environment

Table 2.2-9. Attainment Status for the BAAQMD

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Federal Designations</th>
<th>State Designations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone (1-hour)</td>
<td>N/A</td>
<td>Nonattainment</td>
</tr>
<tr>
<td>Ozone (8-hour)</td>
<td>Nonattainment</td>
<td>Nonattainment</td>
</tr>
<tr>
<td>PM10 (annual)</td>
<td>N/A</td>
<td>Nonattainment</td>
</tr>
<tr>
<td>PM10 (24-hrs)</td>
<td>Unclassified/Attainment</td>
<td>Nonattainment</td>
</tr>
<tr>
<td>PM2.5 (annual)</td>
<td>Attainment</td>
<td>Nonattainment</td>
</tr>
<tr>
<td>PM2.5 (24-hrs)</td>
<td>Unclassified/Attainment</td>
<td>N/A</td>
</tr>
<tr>
<td>CO</td>
<td>Attainment/Maintenance</td>
<td>Attainment</td>
</tr>
<tr>
<td>NO₂</td>
<td>Attainment</td>
<td>Attainment</td>
</tr>
<tr>
<td>SO₂</td>
<td>Attainment</td>
<td>Attainment</td>
</tr>
<tr>
<td>Pb</td>
<td>Attainment</td>
<td>Attainment</td>
</tr>
<tr>
<td>Sulfates</td>
<td>N/A</td>
<td>Attainment</td>
</tr>
<tr>
<td>H₂S</td>
<td>N/A</td>
<td>Unclassified</td>
</tr>
<tr>
<td>Visibility</td>
<td>N/A</td>
<td>Unclassified</td>
</tr>
</tbody>
</table>

Note: N/A = not applicable.

Description of Pollutants

The following is a general description of the pollutants for which there are standards (criteria pollutants) and ambient measurements.

Ozone

Ozone is a respiratory irritant that increases susceptibility to respiratory infections. It is also an oxidant that can cause substantial damage to vegetation and other materials.

Ozone is not emitted directly into the air, but is formed by a photochemical reaction in the atmosphere. Ozone precursors (ROG and NOₓ) react in the atmosphere in the presence of sunlight to form ozone. Because photochemical reaction rates depend on the intensity of ultraviolet light and air temperature, ozone is primarily a summer air pollution problem.

Ozone is a regional pollutant. Because photochemical reactions take time to occur, high ozone levels often occur downwind of the emission source. Because the predominant wind direction in the project area is from the west, Solano County is a receptor of regional pollutants, such as ozone, from the Bay Area. The ARB has identified the SFBAAB as a transport contributor to the Sacramento region, the Mountain Counties Air Basin, the North Central Coast Air Basin, the North Coast Air Basin, the San Joaquin Valley Air Basin, and the South Central Coast Air Basin. The amount of transport impact varies from day to day, depending in large part on meteorology. To the extent that the Bay Area continues to reduce ozone precursor emissions, the transport impact on downwind areas should decrease also (California Air Resources Board 2005).

State and federal standards for ozone have been set for 1- and 8-hour averaging times. The state 1-hour ozone standard is 0.09 parts per million (ppm), not to be exceeded. The federal 1-hour ozone standard recently was replaced with an 8-hour standard of 0.075 ppm, not to be exceeded more than three times in any 3-year period. The state 8-hour standard is 0.07 ppm, not to be exceeded.
Carbon Monoxide

CO is a public health concern because it combines readily with hemoglobin and reduces the amount of oxygen transported in the bloodstream. CO can cause health problems, such as fatigue, headache, confusion, dizziness, and even death.

Motor vehicles are the dominant source of CO emissions in most areas. High CO levels develop primarily during winter when periods of light winds combine with the formation of ground-level temperature inversions (typically from the evening through early morning). These conditions result in reduced dispersion of vehicle emissions. Motor vehicles also exhibit increased CO emission rates at low air temperatures.

State and federal CO standards have been set for 1- and 8-hour averaging times. The state 1-hour standard is 20 ppm, not to be exceeded, whereas the federal 1-hour standard is 35 ppm, not to be exceeded more than 1 day per year. Both state and federal standards for the 8-hour averaging period are 9 ppm; the state standard may not be exceeded, and the federal standard may not be exceeded more than 1 day per year.

Inhalable Particulate Matter

Particulates can damage human health and retard plant growth. Health concerns associated with suspended particulate matter focus on those particles small enough to reach the lungs when inhaled. Particulates also reduce visibility and corrode materials.

Sources of PM10 in Solano County comprise both rural and urban sources, including agricultural burning, tilling of agricultural fields, industrial emissions, dust suspended by vehicle traffic, and secondary aerosols formed by reactions in the atmosphere.

The NAAQS and CAAQS for particulate matter apply to two classes of particulates: PM2.5 and PM10. The state PM10 standards are 50 micrograms per cubic meter (µ/m³) as a 24-hour average and 20 µ/m³ as an annual arithmetic mean. The federal PM10 standards are 150 µ/m³ as a 24-hour average. For PM2.5, the state has adopted a standard of 12 µ/m³ for the annual arithmetic mean. The federal PM2.5 standards are 35 µ/m³ for the 24-hour average and 15 µ/m³ for the annual arithmetic mean. The Bay Area is now classified as non-attainment area for the federal 24-hours PM2.5 standard.

Nitrogen Dioxide

Nitrogen oxides are a family of highly reactive gases that are primary precursors to the formation of ground-level ozone, reacting in the atmosphere to form acid rain. NOx, a mixture of nitric oxide (NO) and NO2, are produced from natural sources, motor vehicles, and other fuel combustion processes.

NO is colorless and odorless and is oxidized in the atmosphere to form NO2, an odorous, brown, acidic, highly corrosive gas that can affect human health and the environment. Nitrogen oxides (denoted as NOx) are critical components of photochemical smog. NO2 produces the yellowish-brown color of the smog. The EPA has set an NAAQS standard for NO2 but not for NO.

NOx can irritate and damage the lungs and lower resistance to respiratory infections such as influenza. The effects of short-term exposure are still unclear, but continued or frequent exposure
to concentrations that are typically much higher than those normally found in the ambient air may cause increased incidence of acute respiratory illness in children. Health effects associated with NOx are an increase in the incidence of chronic bronchitis and lung irritation. Chronic exposure to NO2 may lead to eye and mucus membrane aggravation along with pulmonary dysfunction. NOx can cause fading of textile dyes and additives, deterioration of cotton and nylon, and corrosion of metals as a result of the production of particulate nitrates. Airborne NOx can impair visibility also. NOx is a major component of acid deposition in California. NOx may affect both terrestrial and aquatic ecosystems. NOx in the air is a potentially significant contributor to a number of environmental effects, such as acid rain and eutrophication in coastal waters. Eutrophication occurs when a body of water suffers an increase in nutrients that reduces the amount of oxygen in the water, producing an environment that is destructive to fish and other animal life.

Sulfur Oxides

SOx gases are a family of colorless, pungent gases, which include SO2 and are formed primarily by combustion of sulfur-containing fossil fuels (mainly coal and oil), metal smelting, and other industrial processes. SOx can react to form sulfates, which significantly reduce visibility. SOx is a precursor to particulate matter formation, which is in nonattainment in the project area.

The major health concerns associated with exposure to high concentrations of SOx include effects related to breathing, respiratory illness, alterations in pulmonary defenses, and aggravation of existing cardiovascular disease. Major subgroups of the population that are most sensitive to SOx include individuals with cardiovascular disease or chronic lung disease (such as bronchitis or emphysema), as well as children and the elderly. Emissions of SOx can also damage the foliage of trees and agricultural crops. Together, SOx and NOx are the major precursors to acid rain, which is associated with the acidification of lakes and streams and accelerated corrosion of buildings and monuments.

Lead

Lead is a metal that is a natural constituent of air, water, and the biosphere. Lead is neither created nor destroyed in the environment, so it essentially persists forever. Lead was used several decades ago to increase the octane rating in automotive fuel. Because gasoline-powered automobile engines were a major source of airborne lead through the use of leaded fuels, and the use of leaded fuel has been mostly phased out, the ambient concentrations of lead have dropped dramatically.

Short-term exposure to high levels of lead can cause vomiting, diarrhea, convulsions, coma, or even death. However, even small amounts of lead can be harmful, especially to infants, young children, and pregnant women. Symptoms of long-term exposure to lower lead levels may be less noticeable but are still serious. Anemia is common, and damage to the nervous system may cause impaired mental function. Other symptoms are appetite loss, abdominal pain, constipation, fatigue, sleeplessness, irritability, and headache. Continued excessive exposure, as in an industrial setting, can affect the kidneys.

Lead exposure is most serious for young children because they absorb lead more easily than adults do and are more susceptible to its harmful effects. Even low-level exposure may harm the intellectual development, behavior, size, and hearing of infants. During pregnancy, especially in
the last trimester, lead can cross the placenta and affect the fetus. Female workers exposed to high levels of lead have more miscarriages and stillbirths.

Toxic Air Contaminants
Although ambient air quality standards exist for criteria pollutants, no ambient standards exist for TACs. Many pollutants are identified as TACs because of their potential to increase the risk of developing cancer or because of their acute or chronic health risks. For TACs that are known or suspected carcinogens, the ARB consistently has found that there are no levels or thresholds below which exposure is risk-free. Individual TACs vary greatly in the risk each presents. At a given level of exposure, one TAC may pose a hazard that is many times greater than another. For certain TACs, a unit risk factor can be developed to evaluate cancer risk. For acute and chronic health risks, a similar factor, called a hazard index, is used to evaluate risk.

In the early 1980s, the ARB established a statewide comprehensive air toxics program to reduce exposure to air toxics. The Toxic Air Contaminant Identification and Control Act (AB 1807) created California’s program to reduce exposure to air toxics. The Air Toxics “Hot Spots” Information and Assessment Act (AB 2588) supplements the AB 1807 program by requiring a statewide air toxics inventory, notification of people exposed to a significant health risk, and facility plans to reduce these risks.

Naturally Occurring Asbestos
Naturally occurring asbestos (NOA) is present in approximately 44 of California’s 58 counties. Asbestos is often found in serpentine rock and ultramafic rock near fault zones. Asbestos is a human health hazard when airborne. Asbestos fibers can be inhaled into lungs, causing inflammation and respiratory ailments and cancers. *A General Location Guide for Ultramafic Rock in California—Areas More Likely to Contain Naturally Occurring Asbestos* (California Department of Conservation 2000) indicates that there is no naturally occurring asbestos located near or in the project area.

Existing Air Quality Conditions
The existing air quality conditions in the project area can be characterized by monitoring data collected in the region. The closest air quality monitoring station is located in Fairfield at Chadbourne Road; this station monitors for ozone. The closest monitoring station that monitors for CO and particulate matter is located in Vallejo at Tuolumne Street. Table 2.2-10 summarizes air quality monitoring data from the Fairfield and Vallejo monitoring stations during the last 3 years for which complete data are available (2005–2007). Table 2.2-10 indicates that the Fairfield monitoring station has exceeded the state ozone standard on three occasions and the national ozone standard only once during the 3-year monitoring period, while the Vallejo station has no exceedance of the federal and state ozone standards. The Vallejo station has exceeded the state PM10 standards three times in the same period. No other violations occurred at these monitoring stations during this 3-year monitoring period.
Table 2.2-10. Ambient Air Quality Monitoring Data Measured at the Fairfield Chadbourne Road and Vallejo Tuolumne Street Monitoring Stations

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum 1-hour concentration (ppm)</td>
<td>0.090</td>
<td>0.106</td>
<td>0.089</td>
<td>0.087</td>
<td>0.080</td>
<td>0.078</td>
</tr>
<tr>
<td>Maximum 8-hour concentration (ppm)</td>
<td>0.073</td>
<td>0.087</td>
<td>0.067</td>
<td>0.070</td>
<td>0.069</td>
<td>0.066</td>
</tr>
<tr>
<td>Number of days standard exceeded<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAAQS 1-hour (> 0.09 ppm)</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NAAQS 8-hour (> 0.075 ppm)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Carbon Monoxide (CO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum 8-hour concentration (ppm)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>3.09</td>
<td>2.94</td>
<td>2.70</td>
</tr>
<tr>
<td>Maximum 1-hour concentration (ppm)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>3.9</td>
<td>3.7</td>
<td>3.3</td>
</tr>
<tr>
<td>Particulate Matter (PM10)<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>National<sup>e</sup> maximum 24-hour concentration (µg/m<sup>3</sup>)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>49.4</td>
<td>46.6</td>
<td>49.1</td>
</tr>
<tr>
<td>National<sup>e</sup> second-highest 24-hour concentration (µg/m<sup>3</sup>)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>49.1</td>
<td>43.9</td>
<td>47.3</td>
</tr>
<tr>
<td>State<sup>e</sup> maximum 24-hour concentration (µg/m<sup>3</sup>)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>52.3</td>
<td>50.1</td>
<td>52.4</td>
</tr>
<tr>
<td>State<sup>e</sup> second-highest 24-hour concentration (µg/m<sup>3</sup>)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>50.4</td>
<td>47.2</td>
<td>51.1</td>
</tr>
<tr>
<td>National annual average concentration (µg/m<sup>3</sup>)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>16.8</td>
<td>19.1</td>
<td>18.2</td>
</tr>
<tr>
<td>State annual average concentration (µg/m<sup>3</sup>)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>19.8</td>
<td>19.0</td>
</tr>
<tr>
<td>Particulate Matter (PM2.5)<sup>c</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>National<sup>e</sup> maximum 24-hour concentration (µg/m<sup>3</sup>)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>43.8</td>
<td>42.2</td>
<td>40.8</td>
</tr>
<tr>
<td>National<sup>e</sup> second-highest 24-hour concentration (µg/m<sup>3</sup>)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>41.0</td>
<td>40.5</td>
<td>40.0</td>
</tr>
<tr>
<td>State<sup>e</sup> maximum 24-hour concentration (µg/m<sup>3</sup>)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>47.2</td>
<td>44.0</td>
<td>41.5</td>
</tr>
<tr>
<td>State<sup>e</sup> second-highest 24-hour concentration (µg/m<sup>3</sup>)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>47.1</td>
<td>43.2</td>
<td>41.3</td>
</tr>
<tr>
<td>National<sup>e</sup> annual average concentration (µg/m<sup>3</sup>)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>9.7</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>State<sup>e</sup> annual average concentration (µg/m<sup>3</sup>)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>12.4</td>
<td>12.0</td>
</tr>
<tr>
<td>Number of days standard exceeded<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAAQS 24-hour (> 35 µg/m<sup>3</sup>)<sup>f</sup></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CAAQS 24-hour (> 50 µg/m<sup>3</sup>)<sup>f</sup></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Notes:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAAQS = California ambient air quality standards.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAAQS = national ambient air quality standards.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ppm = parts per million.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>µg/m<sup>3</sup> = micrograms per cubic meter.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– = insufficient data available to determine the value.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sources: California Air Resources Board 2008b; U.S. Environmental Protection Agency 2008a.

^a An exceedance is not necessarily a violation.

^b Measurements usually are collected every 6 days.

^c National statistics are based on standard conditions data. In addition, national statistics are based on samplers using federal reference or equivalent methods.

^d State statistics are based on local conditions data, except in the South Coast Air Basin, for which statistics are based on standard conditions data. In addition, state statistics are based on California-approved samplers.

^e State criteria for ensuring that data are sufficiently complete for calculating valid annual averages are more stringent than the national criteria.

^f Mathematical estimate of how many days concentrations would have been measured as higher than the level of the standard had each day been monitored.
Areas are classified as either attainment or nonattainment with respect to the CAAQS and NAAQS. These classifications are made by comparing actual monitored air pollutant concentrations with state and federal standards. If a pollutant concentration is lower than or meets the state or federal standard over a designated period of time, the area is classified as being in attainment of the standard for that pollutant. If a pollutant violates the standard, the area is considered a nonattainment area for that pollutant. If data are insufficient to determine whether a pollutant is violating the standard, the area is designated as unclassified. This typically occurs in nonurbanized areas where levels of the pollutant are not a concern.

The EPA has classified the portion of Solano County within the SFBAAB as being a marginal nonattainment area for the 8-hour ozone NAAQS. For the CO NAAQS, the EPA has classified the county as a moderate (≤12.7 ppm) maintenance area for urbanized areas; the rest of the county is classified as an unclassified/attainment area (U.S. Environmental Protection Agency 2008b). For the PM10 and PM2.5 NAAQS, the EPA has classified the county as an unclassified/attainment area.

The ARB has classified the county as being a serious nonattainment area for the ozone CAAQS. For the CO NAAQS, the ARB has classified the county as being an attainment area (California Air Resources Board 2008c). For the PM10 and PM2.5 NAAQS, the ARB has classified the county as a nonattainment area. Solano County’s attainment status for each of these pollutants relative to the NAAQS and CAAQS is summarized in Table 2.2-6.

Sensitive Receptors

One of the thresholds of significance includes potential impacts on sensitive receptors. The BAAQMD defines a sensitive receptor as a location where human populations, especially children, seniors, and sick persons, are present and where there is a reasonable expectation of continuous human exposure to pollutants. Sensitive receptors normally refer to land uses with heightened sensitivity to localized rather than regional pollutants. Examples include emissions of criteria or toxic air pollutants (PM10 and PM2.5) that have health effects and, to a lesser extent, odors or odorous compounds such as ammonia and sulfur dioxide. Sensitive receptors would not be directly affected by emissions of regional pollutants such as ozone precursors (ROG and NOx).

The BAAQMD identifies sensitive receptors as certain locations with populations that are more susceptible to the effects of air pollution than the general population. Sensitive receptors located in or near the vicinity of known air emissions sources, including freeways and intersections, are of particular concern. Sensitive receptors are located throughout Solano County and typically include:

- Residences.
- Schools.
- Playgrounds.
- Child care centers.
- Athletic facilities.
• Health care facilities.
• Convalescent centers.
• Rehabilitation centers.

Land use compatibility issues relative to the siting of pollution-emitting sources or the siting of sensitive receptors must be considered. In the case of schools, state law requires that siting decisions consider the potential for toxic or harmful air emissions in the surrounding area.

Possible Receptors
There are six single-family residences within 1,000 feet of the project footprint, and two of these are within 500 feet of the proposed truck scale on-ramps to the freeways (See Figure 2.2-6). The ARB has established guidelines for the siting of sensitive receptors near certain air pollution sources (California Air Resources Board 2005). These potential air pollution sources include, among others, distribution centers. While truck scales are not specifically mentioned by the ARB as a potential air pollution source, they will be similar to warehouse distribution centers in terms of multiple diesel trucks idling and traveling at slow speeds for most or all of the day. Therefore, the siting recommendations outlined by the ARB were used for this project.

Localized CO and PM10/PM2.5 Hot Spot Analysis Approach
Typically, evaluating whether a project is included in a conforming RTP or TIP is done to determine transportation conformity for ozone precursors. Because PM10/PM2.5 and CO are localized pollutants, the determination of transportation conformity for these pollutants is assessed by identifying whether the proposed project would generate elevated hot-spot concentrations for these two pollutants. For PM10 and PM2.5, the determination of conformity is qualitative; for CO, the determination is quantitative.

Traffic information provided by the traffic engineers (Fehr & Peers 2008b) indicates that LOS ratings are not expected to degrade to E or worse under future with-project conditions for freeway segments, freeway off-ramps, and surface street intersections in the surrounding area of the proposed project. In addition, the LOSs for most of the segment, off-ramps, and intersection analyzed has not change when comparing the proposed project to the no-project scenario.

The approved RTP and TIP for the project area have no CO mitigation or control measures that relate to the project’s construction or operation. Therefore, a written commitment to implement CO control measures is not required.

The PM2.5/PM10 hot-spot analysis is not required because the project is located in an area that is in attainment/unclassified for NAAQS PM10 and PM2.5. In 2006, U.S EPA lowered the 24-hour PM2.5 standard from 65 µg/m³ to 35 µg/m³. Last year, EPA issued attainment status designations for the 35 µg/m³ standard on December 22, 2008. EPA has designated the Bay Area as nonattainment for the 35 µg/m³ PM2.5 standard. The EPA designation will be effective 90 days after publication of the regulation in the Federal Register. President Obama has ordered a freeze on all pending federal rules; therefore, the effective date of the designation is unknown at this time.
Local Impacts Associated with Truck Scales

Impact AQ-1: Temporary Increase in Ozone Precursor (ROG and NOx) and PM10 Emissions during Grading and Construction Activities

Implementation of the proposed project would result in the construction of four sets of scales, seven inspection bays, parking for semi-truck trailer combinations and automobiles, roadway along the outer edge of an oval truck scale facility, as well as truck off-ramp and on-ramp improvements. In addition, the proposed project would result in the reconfiguration of the ramps at the truck scales. Temporary construction emissions would result from grubbing/land clearing, grading/excavation, drainage/utilities/subgrade, and paving activities, and from construction worker commuting patterns. Pollutant emissions would vary daily, depending on the level of activity, specific operations, and prevailing weather, and would be substantial. It is anticipated that construction activities would be completed between the years 2012 and 2015. For the purposes of this report, 2015 is considered the opening year, and 2035 is considered the horizon year.

Implementation of Department standard specifications will ensure that this effect is not adverse. The project proponent will follow Caltrans’ Standard Specification 7-1.01F in Section 14 and Standard Specifications Section 10, which address the requirements of the local air pollution control district (the BAAQMD) and requirements for dust control, respectively.

PM10 control measures required by the BAAQMD will be included in the construction contract and will be implemented unless unfeasible.

Naturally Occurring Asbestos

According to the DOC’s 2000 publication *A General Location Guide for Ultramafic Rock in California—Areas More Likely to Contain Naturally Occurring Asbestos*, there are no geologic features normally associated with NOA (i.e., serpentine rock or ultramafic rock near fault zones) in or near the project area (California Department of Conservation 2000). As such, there is no potential for impacts related to NOA emissions during construction activities.

Impact AQ-2: Potential Violations of Carbon Monoxide National Ambient Air Quality Standards

In general, CO hot spots would be anticipated near affected intersections because operation of vehicles in the vicinity of congested intersections involves vehicle stopping and idling for extended periods. To assess the potential for a CO hot-spot analysis, *Transportation Project-Level Carbon Monoxide Protocol* (Garza et al. 1997) was followed to determine whether a CO hot spot is likely to form as a result of project-generated traffic. In accordance with the protocol, CO hot spots are typically evaluated when (a) the LOS of an intersection decreases to E or worse; (b) signalization or channelization is added to an intersection; or (c) sensitive receptors, such as residences, schools, or hospitals, are located in the vicinity of the affected intersection.

Traffic information provided by the traffic engineers (Fehr & Peers 2008b) indicate that future with-project conditions are not expected to change to LOS E or worse for freeway segments, freeway off-ramps, and surface street intersections in the surrounding area of the proposed
Revised Figure 2.2-6
Locations of Sensitive Receptors

Legend:
- Red: Residences
- Black: Area of Direct Impact
- Blue: 1000 Foot Impact Area Buffer
- Yellow: Power Pole Relocation
- Light Blue: Underground Utilities
- Purple: Retaining Wall
- Orange: Potential Sound Wall

0 250 500 1,000 Feet

New Clear Span Bridge Over Suisun Creek
New Truck Scale Facility
Elevated Portion of EB I-80 to SR-12E Connector
Hale Ranch Road
Suisun Creek
Interstate 80
Interstate 80

Q: PROJECTS I80680 02166_02 MAPDOC TRUCK_SCALES FIG_2_2_5_SENSITIVE_RECEPDMX LD (04-28-09)
project. In addition, the LOS ratings for most of the segment, off-ramps, and intersections analyzed are not expected to worsen when comparing the proposed project to the no-project scenario. For the purposes of providing a worst-case analysis for the truck scales facility, CO concentrations have been modeled at the nearest residential locations to the facility. There are six single-family residences within 1,000 feet south of the project site and two of these single-family residences are within 500 feet south of the proposed truck scale. The analysis was conducted using the CALINE4 line source dispersion model. Input parameters required for the CALINE4 model include traffic volumes, CO emission factors, receptor locations, meteorological conditions, and background concentrations. The peak-hour truck volumes at the truck scales and peak-hour vehicles on the adjacent freeways that include the proposed project-generated traffic were modeled. The traffic study provided by the traffic engineers (Fehr & Peers 2008) indicated that peak-hour truck volumes will be approximately 788 and 1,104 trucks per hour in 2015 and 2035. The traffic study also indicated that eastbound peak-hour freeway volumes will be approximately 8,198 and 8,461 vehicle per hour in 2015 and 2035 and westbound peak-hour traffic volumes will be approximately 10,207 and 11,139 in 2015 and 2035, respectively. The CT-EMFAC2007 emission rate program was used to estimate CO emission factors in year 2015 and 2035. CT-EMFAC2007 model outputs are presented in Appendix E.

Meteorological inputs to the CALINE4 model were determined using methodology recommended in the CO Protocol (Garza et al. 1997). The meteorological conditions used in the modeling represent a calm winter period. The worst-case wind angles option was used to determine a worst-case concentration for each receptor.

A background concentration of 3.9 ppm was added to the modeled 1-hour values to account for sources of CO not included in the modeling. Eight-hour modeled values were calculated from the 1-hour values using a persistence factor of 0.7. A background concentration of 3.1 ppm was added to the modeled 8-hour values. All CO background concentration data (see Table 2.2-10) were taken from the highest of the three recent years of monitoring data provided by CARB (CARB 2008) and USEPA (USEPA 2008).

Table 2.2-11 presents maximum 1-hour and 8-hour CO concentrations predicted at locations 3 meters from the edge of the intersection in all directions.

Revised Table 2.2-11. CO Modeling Concentrations (ppm)

<table>
<thead>
<tr>
<th>Truck Scales Facility Sensitive Receptors</th>
<th>2015</th>
<th></th>
<th>2035</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Residence 1</td>
<td>8.0</td>
<td>6.0</td>
<td>7.9</td>
<td>5.9</td>
</tr>
<tr>
<td>Residence 2</td>
<td>8.0</td>
<td>6.0</td>
<td>7.9</td>
<td>5.9</td>
</tr>
<tr>
<td>Residence 3</td>
<td>8.3</td>
<td>6.2</td>
<td>8.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Residence 4</td>
<td>8.3</td>
<td>6.2</td>
<td>8.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Residence 5</td>
<td>8.2</td>
<td>6.1</td>
<td>8.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Residence 6</td>
<td>8.3</td>
<td>6.2</td>
<td>8.0</td>
<td>6.0</td>
</tr>
<tr>
<td>NAAQS Standard</td>
<td>35.0</td>
<td>9.0</td>
<td>35.0</td>
<td>9.0</td>
</tr>
<tr>
<td>CAAQS Standard</td>
<td>20.0</td>
<td>9.0</td>
<td>20.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Significant?</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Note: Background CO concentrations of 3.9 ppm and 3.1 ppm were added to the modeling.
The CALINE4 model outputs are presented in Appendix F. The results show that the Federal one- and eight-hour standards of 35 ppm and 9 ppm, respectively, and State one- and eight-hour standards of 20 ppm and 9 ppm, respectively, would not be exceeded at any of the five receptors. Therefore, the proposed project is not anticipated to significantly contribute to CO ambient concentration impacts. No violations of either the 1-hour or the 8-hour Federal and state CO standard were found. Therefore, there is no adverse effect.

Impact AQ-3: Conformity with the Regional Transportation Plan

The proposed project is included in the adopted RTP, Transportation 2035 Plan, and adopted TIP, 2009 TIP (Metropolitan Transportation Commission 2008). The proposed project is identified in Appendix 1 of the RTP as “RTP ID: 22701, I-80/I-680/Route 12 interchange improvements (Phase 3), including partial relocation/reconstruction of Cordelia truck weight station, ramp improvement and auxiliary lanes” (Metropolitan Transportation Commission 2008). The design concept and scope of the proposed project is consistent with the project listed in the RTP and TIP. In a letter dated September 25, 2009, FHWA found that the I-80 EB Cordelia Truck Scales Relocation project conforms to the SIP in accordance with 40 C.F.R. Part 93 (Appendix J).

Air quality modeling conducted by the MTC shows that emissions associated with the RTP are within the allowable emission budgets for CO and ozone precursors (Metropolitan Transportation Commission 2008). Consequently, the proposed project is considered a conforming transportation project for these regional nonattainment pollutants.

Impact AQ-4: Potential Generation of Significant Levels of Air Toxics Emissions

MSATs are a subset of the 188 air toxics defined by the CAA. The MSATs are compounds emitted from highway vehicles and off-road construction equipment. Some toxic compounds are present in fuel and are emitted to the air when the fuel evaporates or passes through the engine unburned. Other toxics are emitted from the incomplete combustion of fuels or as secondary combustion products. A primary source of potential air toxics associated with proposed project operations include six primary MSAT emissions from trucks (e.g., truck traffic on freeway and on-site truck idling). For construction, the greatest potential for air toxics emissions would be related to diesel particulate emissions associated with heavy equipment operations. Therefore, the project would not generate significant levels of air toxics emissions.

Operational Impacts

The area of air toxics analysis is a new and emerging field and is an area of continuing research. Currently, there are limited tools and techniques available for assessing project-specific health impacts from MSATs, because there are no established criteria for determining when MSAT emissions should be considered a significant issue in the NEPA context.

To comply with CEQ regulations (40 CFR 1502.22[b]) regarding incomplete or unavailable information, Appendix E describes how air toxics analysis is an emerging field and current scientific techniques, tools, and data are not sufficient to accurately estimate human health impacts that would result from a transportation project in a way that would be useful to decision-
makers. Also in compliance with 40 CFR 150.22(b), Appendix E contains a summary of current studies regarding the health impacts of MSATs.

Based on the FHWA’s interim guidance for MSATs, the proposed project meets the criteria for a quantitative project-level MSAT analysis. The project qualifies for a quantitative MSAT analysis because: (1) the project would serve diesel trucks with the potential to concentrate diesel particulate matter; and (2) sensitive receptors are within the project area and near the project site. At this time, a quantitative MSAT analysis is intended to provide a method to compare alternatives (i.e., Build vs. No-Build) rather than emphasizing the specific MSAT emission values or estimating health risk. This approach attempts to measure the level of emissions for the six priority MSATs for each alternative, to use as a basis for comparison. In Appendix A, the FHWA’s MSAT analysis provides a discussion of the limitations of the MSAT analysis.

The proposed truck scale relocation project is expected to help improve the flow of freeway traffic and truck queue line conditions at the site. The net differences in the MSAT emission analysis will include all vehicle traffic activities on the adjacent I-80 freeway lanes and the diesel truck activities at the truck scales relocation site.

The University of California, Davis, prepared a CT-EMFAC spreadsheet tool that incorporates EMFAC2007 emission factors and ARB speciation factors and allows analysts to input project-specific traffic activity data, such as peak hours, VMT, speed, travel times, and traffic volumes (Bai et al. 2006). The assessment presented below is derived in part from a study conducted by the university, *Estimating Mobile Source Air Toxics Emissions: A Step-by-Step Project Analysis Methodology*. Appendix G of the university study presents the MSAT spreadsheet data. The results of the impacts associated with the trucks at the truck scales are summarized in Table 2.2-12.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Diesel PM</th>
<th>Benzene</th>
<th>1,3-Butadiene</th>
<th>Acetaldehyde</th>
<th>Acrolein</th>
<th>Formaldehyde</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015 No-Build Alternative</td>
<td>4,742</td>
<td>1,674</td>
<td>292</td>
<td>1,199</td>
<td>62</td>
<td>2,825</td>
</tr>
<tr>
<td>2015 Build Alternative</td>
<td>3,693</td>
<td>1,112</td>
<td>186</td>
<td>1,132</td>
<td>37</td>
<td>2,520</td>
</tr>
<tr>
<td>Differences from the No-Build Alternative</td>
<td>-1,049</td>
<td>-562</td>
<td>-106</td>
<td>-68</td>
<td>-25</td>
<td>-305</td>
</tr>
<tr>
<td>2035 No-Build Alternative</td>
<td>1,460</td>
<td>676</td>
<td>103</td>
<td>558</td>
<td>21</td>
<td>1,260</td>
</tr>
<tr>
<td>2035 Build Alternative</td>
<td>1,441</td>
<td>653</td>
<td>97</td>
<td>639</td>
<td>19</td>
<td>1,411</td>
</tr>
<tr>
<td>Differences from the No-Build Alternative</td>
<td>-19</td>
<td>-23</td>
<td>-6</td>
<td>+82</td>
<td>-2</td>
<td>+151</td>
</tr>
</tbody>
</table>

Note: Emissions expressed in grams per day.

For the no-project scenario, it was assumed that the current scales have a capacity of 400 trucks per hour. Under current conditions, 788 and 1,104 trucks per hour for years 2015 and 2035, respectively, are assumed to pass through the area. Of those, because the CHP closes the scales when the trucks queue onto the mainstream highway, 388 and 704 trucks are assumed to bypass
the scales during the peak hour. Therefore, during the peak hour, 400 trucks travel at the assumed scale speed (5 mph), and 388 and 704 trucks travel at the assumed highway speed (55 mph). Whereas with the proposed project for both years 2015 and 2035, all projected 788 and 1,104 trucks, respectively, would travel at the assumed scale speed (5 mph). The truck scale ramps were assumed to be 5,000 feet in length combined. Truck scale speed was assumed to be 5 mph for both the off- and on-ramps because it represents the worst-case MSAT scenario.

According to the traffic study (Fehr & Peers 2008), approximately 139,250 and 176,863 vehicles under the no-project scenario will be traveling by the Cordelia truck scales area on the adjacent I-80 freeway. During the AM and PM peak hours, the average speed of all the vehicles is predicted to slow down (due to traffic congestions) to approximately 35–40 mph in year 2015 and to approximately 25–30 mph in year 2035. Under the proposed project scenario, the relocation of the truck scales would slightly increase the number of vehicles on the I-80 freeway to approximately 139,300 and 176,900 vehicles for years 2015 and 2035, respectively. The average speeds for the peak hour and off-peak hour traffic is predicted to be similar to the no-project scenario.

Relocation of the truck scale facility and improvements to the off-ramps and on-ramps would decrease the amounts of MSATs, except acetaldehyde and formaldehyde, for all vehicles when compared with the no-project scenario. The MSATs for diesel trucks would increase under the proposed project scenarios primarily because MSAT emissions are greater at 5 mph than at 55 mph (CT-EMFAC). Therefore, because the distance that trucks travel for each scenario is the same (5,000 feet), emissions at lower speeds will be greater than emissions at greater speeds. However, the freeway and truck scales traffic under the proposed project results in lower MSAT emissions than under the no-project scenario, even though the net increases in MSATs for acetaldehyde and formaldehyde are too small to be considered as a meaningful difference in the levels of MSAT emissions. More importantly, the diesel particulate matter (DPM) emissions would be reduced under with-project conditions. Therefore, the proposed project is not anticipated to significantly contribute to PM impacts. Because the PM2.5 is of primary concern, the MSAT impact is not considered an adverse effect.

The FHWA’s Interim Guidance on Air Toxic Analysis in NEPA Documents states that when the analysis for a project indicates “meaningful differences” in levels of MSAT emissions, mitigation options should be identified and considered. The guidance does not indicate, however, what threshold of emissions increase or decrease would possibly constitute a “meaningful difference.” Appendix E of the FHWA guidance document suggests several mitigation strategies, including diesel retrofit technologies, speed limit enforcements or traffic management policies, anti-idling strategies, truck-stop electrification, and establishment of buffer zones between new traffic alignments and vulnerable populations.

Construction Impacts
Construction emissions would result in an increase in PM2.5 emissions in addition to PM10 and ozone precursors. PM2.5 emissions of concern would be associated primarily with DPM because particulates generated by excavation, grading, and other soil-disturbance activities are normally outside the PM2.5 size range. Diesel exhaust particulates contain substances that are suspected carcinogens. Diesel exhaust contains both pulmonary irritants and hazardous compounds that
could affect sensitive receptors such as young children, senior citizens, and those susceptible to chronic respiratory diseases such as asthma, bronchitis, and emphysema.

In 2000, the ARB approved a comprehensive Diesel Risk Reduction Plan to reduce diesel emissions from both new and existing diesel-fueled engines. The plan focuses on reducing emissions from diesel-fueled engines (through new standards and retrofitting) and reducing the sulfur content of diesel fuel to enable the use of advanced DPM emissions controls. The plan’s goals are to achieve a 75% reduction in DPM by 2010 and an 85% reduction by 2020 (from the 2000 baseline). Though many of the new regulations are source-based controls, in 2005, the ARB approved a regulatory measure (Section 2485 of the California Health and Safety Code) to reduce emissions of toxic and criteria pollutants by limiting the idling of new heavy-duty diesel vehicles. The proposed project proponent would be required to comply with these requirements.

The BAAQMD does not have methodologies for estimating impacts from diesel exhaust or determining the significance of a project’s contribution. Recent ARB air pollution studies indicate a high correlation between traffic emissions and health impacts within 1,000 feet of a road, with the strongest association within 300 to 500 feet. Studies also show that concentrations of traffic emissions decline with distance from the road, with a dramatic decrease in the first 300 to 500 feet (up to a 70% decrease in one study). Given these studies, the ARB recommends that new sensitive land uses not be located within 500 feet of freeways, urban roads carrying 100,000 vehicles a day, or rural roads carrying 50,000 vehicles a day (California Air Resources Board 2005). Therefore, if sensitive receptors are located more than 500 feet from a construction site, potential health effects associated with elevated DPM are not considered adverse.

For the proposed project, the residence closest to the truck scale facility is approximately 930 feet south/southwest of the truck scales site; at this distance, potential health risks associated with DPM would not be considered an adverse effect. For the residences within 500 feet of the truck scales’ on-ramps to the freeway, the predicted number of trucks would not exceed 50,000 trucks per day. Therefore, according to the ARB’s air quality and land use guidance, there would be no adverse effect. Consequently, DPM emissions generated by truck traffic (excess cancer risk would be less than 1 in 1 million) under the proposed project would not constitute an adverse effect.

Regional Impacts Associated with Freeway Traffic

Impact AQ-5: Decrease in Regional Ozone Precursor (ROG and NO₃), CO, and PM10 and PM2.5 Emissions Associated with Project Operations

Implementation of the proposed project would result in increased traffic flows on roadways near the project, including I-80, I-680, and SR 12. The project would relieve congestion along eastbound I-80 by creating expanded truck scale facilities, braided on- and off-ramps for trucks exiting and entering eastbound I-80, and an auxiliary lane for trucks onto SR 12E. The relief of traffic congestion would increase freeway speeds and reduce travel time.

Emissions of criteria pollutants (ROG, NO₃, CO, CO₂, PM10, and PM2.5) for both 2015 and 2035, with and without the project, were evaluated using the ARB’s CT-EMFAC2007 emission rate model and system-wide morning and afternoon peak-hour traffic data provided by the traffic
engineers. Daily emissions were obtained based on the sum of morning and afternoon emissions and a multiplier of 5 (Fehr & Peers 2008b). Project-level emissions were obtained by comparing future with-project and future no-project emissions. Appendix E presents the system-wide emissions spreadsheet. The results of these calculations are presented in Table 2.2-13.

Table 2.2-13. System-Wide Project-Related Motor Vehicle Emissions

<table>
<thead>
<tr>
<th></th>
<th>Pounds per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ROG</td>
</tr>
<tr>
<td>2015 no-project scenario</td>
<td>187</td>
</tr>
<tr>
<td>2015 with the proposed project</td>
<td>124</td>
</tr>
<tr>
<td>Change with the project</td>
<td>-63</td>
</tr>
<tr>
<td>2035 no-project scenario</td>
<td>84</td>
</tr>
<tr>
<td>2035 with the proposed project</td>
<td>80</td>
</tr>
<tr>
<td>Change with the project</td>
<td>-4</td>
</tr>
</tbody>
</table>

Project-related emissions would decrease with the implementation of the project for each criteria pollutant. The net change in criteria pollutants would not exceed the significance threshold of 80 ppd for ROG, NOx, and PM10, or the 500 ppd threshold for CO within the BAAQMD (Bay Area Air Quality Management District 1999).

The 80 ppd significance threshold would not be exceeded for ROG and PM10. The 500 ppd significance threshold would not be exceeded for CO. The BAAQMD has not established a threshold for PM2.5. Therefore, emissions would not result in an adverse effect.

Avoidance, Minimization, and/or Mitigation Measures

The Department’s Mitigation Requirements for Construction Impacts

Construction activities are subject to Department requirements found in the Department’s document Standard Specifications (California Department of Transportation 2006b) and Standard Special Provisions Update (California Department of Transportation 2009). Standard Specification 7-1.01F in Section 14, Environmental Stewardship, stipulates that construction activities must comply with all rules, regulations, ordinances, and statutes of the local air pollution control district, and Standard Specifications Section 10 addresses dust control requirements. In addition, the BAAQMD requires the implementation of all feasible, effective, and comprehensive control measures to reduce PM10 emissions from construction activities. These control measures are summarized in Table 2.2-7.

Implementation of the following control measures would minimize air quality impacts from construction activities.

Effects of the No-Project Alternative

Under the No-Project Alternative, traffic congestion—and consequently air quality—would worsen.
2.2.7 Noise

Regulatory Setting
NEPA provides a broad basis for analysis and abatement of highway traffic noise effects. The intent of NEPA is to promote general welfare and to foster a healthy environment. The following are brief definitions of acoustical terms used in this discussion:

- Sound—A vibratory disturbance created by a vibrating object that, when transmitted by pressure waves through a medium such as air, is capable of being detected by a receiving mechanism, such as the human ear or a microphone.
- Noise—Sound that is loud, unpleasant, unexpected, or otherwise undesirable.
- Ambient noise—The composite of noise from all sources near and far in a given environment, exclusive of particular noise sources to be measured.
- Decibel (dB)—A unitless measure of sound on a logarithmic scale that indicates the squared ratio of sound pressure amplitude to a reference sound pressure amplitude. The reference pressure is 20 micropascals.
- A-weighted decibel (dBA)—An overall frequency-weighted sound level in decibels that approximates the frequency response of the human ear.
- Equivalent sound level (Leq)—The equivalent steady state sound or vibration level that, in a stated period of time, would contain the same acoustical or vibration energy.

Table 2.2-14 lists the noise levels of common activities to enable readers to compare the actual and predicted highway noise levels discussed in this section with common activities.
Table 2.2-14. Typical A-Weighted Noise Levels

<table>
<thead>
<tr>
<th>Common Outdoor Activities</th>
<th>Noise Level (dBA)</th>
<th>Common Indoor Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet Fly-over at 300 m (1000 ft)</td>
<td>110</td>
<td>Rock Band</td>
</tr>
<tr>
<td>Gas Lawn Mower at 1 m (3 ft)</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Diesel Truck at 15 m (50 ft), at 80 km (50 mph)</td>
<td>90</td>
<td>Food Blender at 1 m (3 ft)</td>
</tr>
<tr>
<td>Noisy Urban Area, Daytime</td>
<td>80</td>
<td>Garbage Disposal at 1 m (3 ft)</td>
</tr>
<tr>
<td>Gas Lawn Mower, 30 m (100 ft)</td>
<td>70</td>
<td>Vacuum Cleaner at 3 m (10 ft)</td>
</tr>
<tr>
<td>Commercial Area</td>
<td>60</td>
<td>Normal Speech at 1 m (3 ft)</td>
</tr>
<tr>
<td>Heavy Traffic at 90 m (300 ft)</td>
<td>50</td>
<td>Large Business Office</td>
</tr>
<tr>
<td>Quiet Urban Daytime</td>
<td>40</td>
<td>Dishwasher Next Room</td>
</tr>
<tr>
<td>Quiet Urban Nighttime</td>
<td>30</td>
<td>Theater, Large Conference Room (Background)</td>
</tr>
<tr>
<td>Quiet Suburban Nighttime</td>
<td>20</td>
<td>Library</td>
</tr>
<tr>
<td>Quiet Rural Nighttime</td>
<td>10</td>
<td>Bedroom at Night,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Concert Hall (Background)</td>
</tr>
<tr>
<td>Lowest Threshold of Human Hearing</td>
<td>0</td>
<td>Broadcast/Recording Studio</td>
</tr>
</tbody>
</table>

Addition of Decibels

Because decibels are logarithmic units, SPL cannot be added or subtracted through ordinary arithmetic. Under the decibel scale, a doubling of sound energy corresponds to a 3-dB increase. In other words, when two identical sources are each producing sound of the same loudness, the resulting sound level at a given distance would be 3 dB higher than one source under the same conditions. For example, if one automobile produces an SPL of 70 dB when it passes an observer, two cars passing simultaneously would not produce 140 dB—rather, they would combine to produce 73 dB. Under the decibel scale, three sources of equal loudness together produce a sound level 5 dB louder than one source.

Human Response to Changes in Noise Levels

As discussed above, doubling sound energy results in a 3-dB increase in sound level. However, subjective perception of a doubling of loudness may be different than what is measured. In noisy environments, changes in noise of 1 to 2 dB are generally not detectable. However, it is widely
accepted that the normal human ear begins to perceive a sound level increase of 3 dB in typical noisy environments. A 5-dB increase is generally perceived as a distinctly noticeable increase, and a 10-dB increase is generally perceived as a doubling of loudness. A 3-dB increase is considered a perceptible increase in noise level.

23 CFR 772
For highway transportation projects with FHWA (and the Department, as assigned) involvement, the Federal-Aid Highway Act of 1970 and the associated implementing regulations (23 CFR 772) govern the analysis and abatement of traffic noise impacts. The regulations require that potential noise impacts in areas of frequent human use be identified during the planning and design of a highway project. The regulations contain noise abatement criteria (NAC) that are used to determine when a noise impact would occur. The NAC differ depending on the type of land use under analysis. For example, the NAC for residences (67 dBA) is lower than the NAC for commercial areas (72 dBA). Table 2.2-15 lists the noise abatement criteria for use in the 23 CFR 772 analysis.

<table>
<thead>
<tr>
<th>Activity Category</th>
<th>NAC, Hourly A-Weighted Noise Level, dBA, $L_{eq}(h)$</th>
<th>Description of Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>57 exterior</td>
<td>Lands on which serenity and quiet are of extraordinary significance and serve an important public need and where the preservation of those qualities is essential if the area is to continue to serve its intended purpose.</td>
</tr>
<tr>
<td>B</td>
<td>67 exterior</td>
<td>Picnic areas, recreation areas, playgrounds, active sport areas, parks, residences, motels, hotels, schools, churches, libraries, and hospitals.</td>
</tr>
<tr>
<td>C</td>
<td>72 exterior</td>
<td>Developed lands, properties, or activities not included in Categories A or B above</td>
</tr>
<tr>
<td>D</td>
<td>Not applicable</td>
<td>Undeveloped lands.</td>
</tr>
<tr>
<td>E</td>
<td>52 interior</td>
<td>Residences, motels, hotels, public meeting rooms, schools, churches, libraries, hospitals, and auditoriums</td>
</tr>
</tbody>
</table>

Note: dBA $L_{eq}(h)$ = one-hour A-weighted equivalent sound level.

In accordance with the Department’s Traffic Noise Analysis Protocol for New Highway Construction, Reconstruction, and Retrofit Barrier Projects (Traffic Noise Analysis Protocol), a noise impact occurs when the future noise level with the project results in a substantial increase in the noise level (defined as an increase of 12 dB or more) or when the future noise level with the project approaches or exceeds the NAC (California Department of Transportation 2006c). Approaching the NAC is defined as a noise level within 1 dB of the NAC.

If it is determined that the project would have noise impacts, then potential abatement measures must be considered. Noise abatement measures that are determined to be reasonable and feasible at the time of final design are incorporated into the project plans and specifications. This document discusses noise abatement measures that likely would be incorporated into the project.

The Department’s Traffic Noise Analysis Protocol sets forth the criteria for determining when an abatement measure is reasonable and feasible. The feasibility of noise abatement is basically an engineering concern. A minimum 5 dB reduction in the future noise level must be achieved for an abatement measure to be considered feasible. Other considerations include topography, access...
requirements, other noise sources and safety considerations. The reasonableness determination is basically a cost-benefit analysis. Factors used in determining whether a proposed noise abatement measure is reasonable include: residents’ acceptance, the absolute noise level, build (project) noise versus existing noise, environmental impacts of abatement, public and local agencies’ input, newly constructed development versus development predating 1978, and the cost per benefited residence.

National Environmental Policy Act (NEPA)

For this project a traffic noise increase caused by the project is considered to result in an effect under NEPA when the increase between design-year no-project and design-year with-project would be perceptible. As discussed above, a perceptible increase is considered to be 3 dB.

California Environmental Quality Act (CEQA)

CEQA requires a strictly baseline versus build analysis to assess whether a proposed project will have a noise impact. If a proposed project is determined to have a significant noise impact under CEQA, then CEQA dictates that mitigation measures must be incorporated into the project unless such measures are not feasible. The rest of this section will focus on the NEPA-23 CFR 772 noise analysis; please see Chapter 3 of this document for further information on noise analysis under CEQA.

Affected Environment

A noise study technical report was prepared for this project and submitted for the Department’s review in July 2008 (ICF Jones & Stokes 2008f). The noise study technical report discusses potential noise impacts and related noise abatement measures associated with the construction and operation of a truck scale facility on I-80 between I-680 and SR 12 in Solano County. The report was prepared to comply with 23 CFR 772, “Procedures for Abatement of Highway Traffic Noise,” and the Department’s noise analysis policies as described in the Traffic Noise Analysis Protocol.

Single-family residences were identified as Activity Category B land uses per 23 CFR 772. Commercial and industrial areas exist in the project area and are Activity Category C uses.

As stated in the Protocol, noise abatement is considered only where frequent human use occurs and where a reduced noise level would be beneficial. In general, frequent human use is considered to occur at exterior locations where people are exposed to highway noise for at least 1 hour on a regular basis. As an extension of this concept, impacts are assessed in detail only at locations where frequent human use occurs and where a reduced noise level would be beneficial. Accordingly, impact assessment focuses on locations with defined outdoor activity areas, such as residential backyards, common-use areas at multifamily facilities, and parks with defined activity areas (e.g., playgrounds and picnic tables).

Noise-sensitive receptors affected by this project consist of single-family residences (Activity Category B) and commercial buildings (Activity Category C). One residence with outdoor use areas is located north of I-80 at the end of Russell Road, opposite the site of the proposed eastbound truck scales. Three residences with outdoor use are located near Hale Ranch Road on
the south side of I-80 (Figure 2.2-7). Outdoor commercial use is also associated with the Hale Ranch properties, but since residential use exists on those properties the more stringent Activity Category B criterion is applicable, rather than Activity Category C (refer to Table 2.2-15). A total of four noise-sensitive receptors are counted as Activity Category B, and one as Activity Category C for the noise analysis.

Noise Monitoring

Noise monitoring was conducted in this study area. These monitoring data are used to characterize existing noise conditions in the project area.

Short-term monitoring was conducted on Thursday, January 19, 2006, using a Larson-Davis Model 812 Precision Type 1 sound level meter (serial number 0239). Measurement I-80-ST-1 was taken over a 15-minute interval at a distance of approximately 400 feet from the edge of pavement of I-80, near an Activity Category B land use. Measurement I-80-ST-14 was taken over a 15-minute interval at a distance of approximately 200 feet from the edge of pavement of the SR 12 West/I-80 West transition ramp, near an Activity Category C land use. Table 2.2-16 summarizes the results of the short-term noise monitoring conducted in the project area. Noise monitoring locations are shown in Figure 2.2-7.

Revised Table 2.2-16. Summary of Short-Term Noise Monitoring

<table>
<thead>
<tr>
<th>Measurement Location</th>
<th>Description</th>
<th>Area</th>
<th>Start Time</th>
<th>Duration (minutes)</th>
<th>Existing Wall Height</th>
<th>Measured L_{eq}</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-80—ST-1</td>
<td>North of 2543 Cordelia Road</td>
<td>I-80</td>
<td>1 p.m.</td>
<td>15</td>
<td>N/A</td>
<td>60.4</td>
</tr>
<tr>
<td>I-80—ST-14</td>
<td>Russell Road</td>
<td>I-80</td>
<td>1 p.m.</td>
<td>15</td>
<td>N/A</td>
<td>69.3</td>
</tr>
</tbody>
</table>

Minute-to-minute L_{eq} values collected during the measurement period (typically 15 minutes in duration) were logged manually, and dominant noise sources observed during individual 1-minute periods were identified and logged. This allowed for the separation of minutes when traffic noise was a dominant contributor to noise levels at a given measurement site from when other noise sources contributed significantly; thus, the significance of non-traffic noise sources (such as aircraft and lawn equipment) could be evaluated. The calibration of the meter was checked before and after the measurement, using a Larson-Davis Model CA250 calibrator (serial number 0125).

Traffic volumes on I-80 were classified and counted during short-term noise measurements. Vehicles were classified as automobiles, medium-duty trucks, or heavy-duty trucks. An automobile is defined as a vehicle with two axles and four tires that are designed primarily to carry passengers. Small vans and light trucks are included in this category. Medium-duty trucks include all cargo vehicles with two axles and six tires. Heavy-duty trucks include all vehicles with three or more axles. The posted speed on I-80 is 65 mph.
Conclusions under 23 CFR 772

Predicted Traffic Noise Levels
A noise impact analysis was conducted for the proposed project. To analyze the potential for impacts, first noise-sensitive receptors were noted, and then existing noise conditions were determined through short- and long-term monitoring. A three-dimensional traffic noise model was built and calibrated using data from monitoring. Predicted traffic information (volumes, vehicle types, and speeds) was input into the model to determine whether implementation of the project would create noise impacts.

Noise levels at four Activity Category B receptor locations were predicted to approach or exceed the NAC. Noise impacts resulting from a substantial increase over existing noise levels are not predicted to occur under the full buildout. Loudest-hour traffic volumes, classification percentages, and speeds used to model traffic noise under existing and design-year (2035) conditions were provided by Fehr & Peers (2008). The largest average heavy truck volumes are predicted to occur during the a.m. peak hour, resulting in higher sound levels than the p.m. peak hour; therefore, a.m. peak-hour traffic volumes were used in the project area.

Although the widening and addition of HOV lanes would improve the LOS on I-80, most segments of I-80 would be LOS D or worse during peak hours. For this analysis, it is assumed that each project roadway lane has a maximum capacity of 2,000 vehicles per hour at the corresponding roadway design speed. For example, for the I-80 future five-lane case, total modeled traffic volumes in each direction were capped at 10,000 vehicles per hour. Table 2.2-17 summarizes the traffic noise modeling results under existing and design-year conditions.

Modeling results in Table 2.2-17 indicate that predicted traffic noise levels for the design-year with-project conditions would be in the range of 69 to 74 dBA, Leq(h). Traffic noise is predicted to exceed the NAC at one residence located at the end of Russell Road north of I-80, and three residences on Hale Ranch Road south of I-80. Therefore, under 23 CFR 772, noise abatement must be evaluated.

Noise Abatement Evaluation
In accordance with 23 CFR 772, noise abatement is considered where noise impacts are predicted in areas of frequent human use that would benefit from a lowered noise level. Potential noise abatement measures identified in the Protocol include the following:

- Avoiding the impact by using design alternatives, such as altering the horizontal and vertical alignment of the project.
- Constructing noise barriers.
- Acquiring property to serve as a buffer zone.
- Using traffic management measures to regulate types of vehicles and speeds.
- Acoustically insulating public-use or nonprofit institutional structures.

Because of the configuration and location of the project, noise barriers are the only form of noise abatement evaluated in this report.
Revised Table 2.2-17. I-80 Truck Scales Traffic Noise Impact Evaluation Activity Category B and C Land Uses

<table>
<thead>
<tr>
<th>Position</th>
<th>Location</th>
<th>Activity Category (NAC)</th>
<th>Number of Residences</th>
<th>Existing Traffic Noise Level, dBA, L_eq(h)</th>
<th>Design-Year No-Project Traffic Noise Level, dBA, L_eq(h)</th>
<th>Design Year with Project Traffic Noise Level, dBA, L_eq(h)</th>
<th>Increase from Existing, Decibels (dB)</th>
<th>Traffic Noise Impact Under 23 CFR772^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-1</td>
<td>End of Russell Road</td>
<td>B (67 dBA Leq)</td>
<td>1</td>
<td>71</td>
<td>72</td>
<td>74</td>
<td>+ 3</td>
<td>A/E (Activity Category B)</td>
</tr>
<tr>
<td>S-1</td>
<td>Hale Ranch Road</td>
<td>B (67 dBA Leq)</td>
<td>2</td>
<td>66</td>
<td>67</td>
<td>69</td>
<td>+ 3</td>
<td>A/E (Activity Category B)</td>
</tr>
<tr>
<td>S-2</td>
<td>Hale Ranch Road</td>
<td>C (72 dBA Leq)</td>
<td>0</td>
<td>67</td>
<td>69</td>
<td>71</td>
<td>+ 4</td>
<td>N/A^b</td>
</tr>
<tr>
<td>S-3</td>
<td>Hale Ranch Road</td>
<td>B (67 dBA Leq)</td>
<td>1</td>
<td>71</td>
<td>72</td>
<td>73</td>
<td>+ 2</td>
<td>A/E (Activity Category B)</td>
</tr>
</tbody>
</table>

^a A/E = approaches or exceeds the NAC listed in Table 2.2-15.

^b Activity Category C land use that does not include outdoor areas of frequent human use that would benefit from a lowered noise level.
Future Project and Analysis of Noise Barriers SB4A and SB4B
Each noise barrier has been evaluated for feasibility based on achievable noise reduction. For each noise barrier found to be acoustically feasible, reasonable cost allowances were calculated. Worksheets in Appendix B of the noise study technical report (ICF Jones & Stokes 2008f) summarize the reasonable cost allowance calculations, based on the procedure outlined in the Protocol.

For any noise barrier to be considered reasonable from a cost perspective the estimated cost of the noise barrier should be equal to or less than the total cost allowance calculated for the barrier. The cost calculations of the noise barrier should include all items appropriate and necessary for construction of the barrier, such as traffic control, drainage modification, and retaining walls. The design of noise barriers presented in this report is preliminary only and has been conducted at a level appropriate for environmental review but not for final design of the project.

Preliminary information on the physical location, length, and height of noise barriers is provided in this report. If pertinent parameters change substantially during the final project design, preliminary noise barrier designs may be modified or eliminated from the final project.

The traffic noise modeling results indicate that traffic noise levels at single-family residences on Hale Ranch Road and Russell Road would approach or exceed the NAC of 67 dBA L_{eq}(h) for Activity Category B land uses within the project area. Activity Category C land uses do not include outdoor areas of frequent human use that would benefit from a lowered noise level. Where noise impacts were identified, noise abatement options were evaluated for feasibility and reasonableness.

Russell Road (north of I-80)

Modeling results in Table 2.2-17 indicate that traffic noise levels of up to 74 dBA-L_{eq}(h) are predicted at a residential outdoor use area north of the Truck Scales project. Traffic noise impacts are predicted to occur at one residence in this area. No noise barriers are currently located in this area.

Noise Barrier SB1 was evaluated for feasibility and reasonableness as part of the I-80 HOV Noise Technical Report and NADR (Jones & Stokes 2006). The conclusions of that study regarding Barrier SB1 also apply to this report, and are provided here for reference.

Noise Barrier SB1 was evaluated for wall heights in the range of 6 to 16 feet and would meet the Caltrans line-of-sight requirement at a barrier height of 12 feet. Table 2.2-18a summarizes the calculated reasonable allowances for the barrier. Noise Barrier SB1 is shown in Figure 2.2-7.
New Table 2.2-18a. Summary of Reasonableness Determination Data—Noise Barrier SB1

<table>
<thead>
<tr>
<th>Noise Barrier SB1</th>
<th>Length: 1,240 feet (one barrier)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted Sound Level without Barrier</td>
<td>74</td>
</tr>
<tr>
<td>Design-year noise level, dBA-$L_{eq}(h)$</td>
<td></td>
</tr>
<tr>
<td>Design-year noise level minus existing noise level</td>
<td>3</td>
</tr>
<tr>
<td>Design Year with Barrier (inside I-80 right-of-way)</td>
<td>Height = 6 feet</td>
</tr>
<tr>
<td>Barrier noise reduction, dB</td>
<td>4</td>
</tr>
<tr>
<td>Number of benefited residences</td>
<td>0</td>
</tr>
<tr>
<td>New highway or more than 50% of residences predate 1978</td>
<td>Yes</td>
</tr>
<tr>
<td>Reasonable allowance per benefited residence</td>
<td>$48,000</td>
</tr>
<tr>
<td>Total reasonable allowance</td>
<td>N/A</td>
</tr>
</tbody>
</table>

N/A = not applicable. Assumes a base cost allowance of $32,000 per residence.

Hale Ranch Road (south of I-80)

Modeling results in Table 2.2-17 indicate that traffic noise levels of up to 73 dBA-$L_{eq}(h)$ are predicted at residential outdoor use areas south of the Truck Scales project. Traffic noise impacts are predicted to occur at three residences in the area. There are no existing noise barriers in this area.

Noise Barrier SB4 consists of two barriers that would provide shielding for traffic noise from both I-80 and the SR 12E flyover transition ramp. The barriers, SB4A and SB4B, have been evaluated for barrier heights in the range of 6 to 16 feet and would meet the Department line-of-sight requirement at a barrier height of 12 feet. The barriers were found to be acoustically feasible, providing at least 5 dB of noise reduction at barrier heights in the range of 10 to 16 feet. Table 2.2-18b summarizes the calculated reasonable allowances for the two barriers at equal heights. Noise Barriers SB4A and SB4B are shown in Figure 2.2-7.
Revised Table 2.2-18b. Summary of Reasonableness Determination Data—Noise Barriers SB4A and SB4B

<table>
<thead>
<tr>
<th>Noise Barrier SB4</th>
<th>Length: 4,300 feet (two barriers)</th>
<th>Predicted Sound Level without Barrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design-year noise level, dBA-Leq(h)</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>Design-year noise level minus existing noise level</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Design Year with Barrier (inside I-80 right-of-way)</td>
<td>Height = 6 feet</td>
<td>Height = 8 feet</td>
</tr>
<tr>
<td>Barrier noise reduction, dB</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Number of benefited residences</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>New highway or more than 50% of residences predate 1978</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Reasonable allowance per benefited residence</td>
<td>$48,000</td>
<td>$48,000</td>
</tr>
<tr>
<td>Total reasonable allowance</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Notes: N/A = not applicable. Assumes a base cost allowance of $32,000 per residence.

Noise Abatement Decision Report

A Noise Abatement Decision Report (NADR) was prepared to include noise abatement construction cost estimates that have been prepared by the project engineer based on site-specific conditions. These cost estimates are then compared to the total reasonableness allowances as shown in Table 2.2-19.

Revised Table 2.2-19. Summary of Reasonableness Allowances and Cost Estimates for the Evaluated Noise Barrier Designs SB1 and SB4

<table>
<thead>
<tr>
<th>Height (ft)</th>
<th>Receptors Benefited</th>
<th>Existing Noise Level, dBA-Leq[h]</th>
<th>Predicted Design Year Noise Level, dBA-Leq[h]</th>
<th>Predicted Design Year Noise Level with Barrier, dBA-Leq[h]</th>
<th>Estimated Construction Cost ($)</th>
<th>Department Reasonableness Allowance ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise Barrier SB1</td>
<td>10</td>
<td>71</td>
<td>74</td>
<td>69</td>
<td>1,081,900</td>
<td>48,000</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>71</td>
<td>74</td>
<td>68</td>
<td>1,223,500</td>
<td>50,000</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>71</td>
<td>74</td>
<td>67</td>
<td>1,334,100</td>
<td>50,000</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>71</td>
<td>74</td>
<td>67</td>
<td>1,444,700</td>
<td>50,000</td>
</tr>
<tr>
<td>Noise Barrier SB4</td>
<td>10</td>
<td>71</td>
<td>73</td>
<td>66</td>
<td>1,710,000</td>
<td>50,000</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>71</td>
<td>73</td>
<td>65</td>
<td>2,072,000</td>
<td>150,000</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>71</td>
<td>73</td>
<td>64</td>
<td>2,414,000</td>
<td>156,000</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>71</td>
<td>73</td>
<td>64</td>
<td>2,776,000</td>
<td>156,000</td>
</tr>
</tbody>
</table>

As shown in Table 2.2-19, the estimated construction costs exceed the reasonableness allowance in all cases. Accordingly, the barrier designs for both SB1 and SB4 are not considered reasonable from a cost perspective. The determination of final reasonableness will made upon completion of the public input process.
Environmental Consequences

Impact NOI-1: Exposure of Noise-sensitive Land Uses to increased traffic noise

As indicated in Table 2.2-17 Design Year with-project traffic noise levels are predicted to be 1 to 2 dB greater than Design Year no-project traffic noise levels. This increase is not perceptible. Therefore, future traffic noise levels due to the project are not expected to result in an adverse effect under NEPA.

Impact NOI-2: Exposure of Noise-sensitive Land Uses to construction noise

Construction noise is regulated by the Department’s Standard Specifications Section 14, “Sound Control Requirements,” which states that noise levels generated during construction will comply with applicable local, state, and federal regulations and that all equipment will be fitted with adequate mufflers according to the manufacturers’ specifications.

Table 2.2-20 summarizes noise levels produced by construction equipment that is commonly used on roadway construction projects. Construction equipment is expected to generate noise levels ranging from 70 to 90 dB at a distance of 50 feet, and noise produced by construction equipment would be reduced over distance at a rate of about 6 dB per doubling of distance.

Table 2.2-20. Construction Equipment Noise

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Maximum Noise Level (dBA at 50 feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scrapers</td>
<td>89</td>
</tr>
<tr>
<td>Bulldozers</td>
<td>85</td>
</tr>
<tr>
<td>Heavy trucks</td>
<td>88</td>
</tr>
<tr>
<td>Backhoe</td>
<td>80</td>
</tr>
<tr>
<td>Pneumatic tools</td>
<td>85</td>
</tr>
<tr>
<td>Concrete pump</td>
<td>82</td>
</tr>
</tbody>
</table>

No adverse noise effects from construction are anticipated, because construction would be conducted in accordance with the Department’s Standard Specifications Section 7 1.011 under Section 14, Environmental Stewardship and applicable local noise standards. Construction noise would be short-term, intermittent, and masked by local traffic noise. In addition, standard Department procedures include implementation of the following measures to minimize the temporary noise effects from construction:

- All equipment will have sound-control devices that are no less effective than those provided on the original equipment. No equipment will have an unmuffled exhaust.
- As directed by the Department, the contractor will implement appropriate additional noise mitigation measures, including changing the location of stationary construction equipment, turning off idling equipment, rescheduling construction activity, notifying adjacent residents in advance of construction work, and installing acoustic barriers around stationary construction noise sources.
Chapter 2. Affected Environment; Environmental Consequences; and Avoidance, Minimization, and/or Mitigation
Measures—Physical Environment

There would be no adverse effects related to the exposure of noise-sensitive land uses to
construction noise.

Avoidance, Minimization, and Mitigation Measures
No avoidance, minimization or mitigation measures are necessary.

Effects of the No-Project Alternative
Under no-project conditions, no new noise effects associated with the project would occur. As
shown in Table 2.2-17, noise levels associated with traffic would increase in the future as traffic
congestion associated with growth increases.

2.2.8 Energy and Non-Renewable Natural Resources

Changes were made to this section to simplify and clarify the discussion for the reader.

This section of the EIR/EA for the proposed project provides an estimate of energy and non-
renewable resource usage directly related to the project and no-project scenarios for construction
and operation. The CEQA Guidelines, Appendix F, Energy Conservation, state that EIRs are
required to include a discussion of the potential energy and non-renewable resource impacts of
proposed projects, with particular emphasis on avoiding or reducing inefficient, wasteful and
unnecessary consumption of energy and non-renewable resources.

NEPA (42 USC Part 4332) requires the identification of all potentially adverse effects to the
environment, including energy and non-renewable resource impacts.

Issues related to energy and non-renewable resource use include levels and sources for the
construction, operation, and maintenance of the facility (“indirect energy”) and for the
propulsion of modes of transportation (“direct energy”).

Regulatory Setting
Federal and state agencies regulate energy and non-renewable resource consumption through
various policies, standards, and programs. At the local level, individual cities and counties
regulate energy and non-renewable resources through their regulatory and planning activities.

Federal Regulations
The Energy Policy and Conservation Act (EPCA) of 1975 established nationwide fuel economy
standards to conserve oil. Pursuant to this act, the National Highway Traffic and Safety
Administration, part of the U.S. Department of Transportation, is responsible for revising
existing fuel economy standards and establishing new vehicle fuel economy standards.

The Corporate Average Fuel Economy (CAFE) program was established to determine vehicle
manufacturer compliance with the government’s fuel economy standards. Compliance with CAFE
standards is determined based on each manufacturer’s average fuel economy for the portion of
their vehicles produced for sale in the United States. The CAFE rules require the average fuel
economy of all vehicles of a given class that a manufacturer sells in each model year to be equal to
or greater than the standard. The current CAFE standard for passenger cars is 27.5 miles per gallon.
(mpg) and 21.6 mpg for light trucks (gross vehicle weight of 8,500 pounds or less). Heavy-duty vehicles (i.e., gross vehicle weight of more than 8,500 pounds) are not currently subject to fuel economy standards. The EPCA was reauthorized in 2000 (49 CFR 533).

In December 2007, the Energy Independence and Security Act became law. One of the key provisions of the law is to improve vehicle fuel economy. The CAFE standards for passenger cars and light trucks will be raised to 35 mpg by 2020. The law also requires automakers to improve vehicle electrification technology for plug-in hybrid vehicles and increase the production of biofuel-compatible vehicles.

State Regulations

The 1975 Warren-Alquist Act established the California Energy Resources Conservation and Development Commission, now known as the California Energy Commission (CEC). The act established a state policy to reduce wasteful, uneconomical, and unnecessary uses of energy and non-renewable resources by employing a range of measures. The California Public Utility Commission (CPUC) regulates privately owned utilities in the energy, rail, telecommunications, and water fields.

A CEQA amendment requires projects subject to EIRs to include a discussion of the potential energy and non-renewable resource impacts of proposed projects in the EIR, with particular emphasis on avoiding or reducing the inefficient, wasteful, and unnecessary consumption of energy and non-renewable resources (Consulting Engineers and Land Surveyors of California 2006).

State of California Energy Action Plan

The CEC is responsible for preparing the state’s energy action plan, which identifies emerging trends related to energy supply, demand, conservation, public health and safety, and the maintenance of a healthy economy. The current plan is the *California Energy Action Plan 2008 Update* (California Energy Commission 2008). The state’s energy policies have been significantly influenced by the passage of AB 32, the California Global Warming Solutions Act of 2006. The CEC’s *Integrated Energy Policy Report 2007* advances policies that would enable the state to meet its energy needs in a carbon-constrained world. The report also provides a comprehensive set of recommended actions to achieve these policies.

California Environmental Quality Act

Appendix F of the State CEQA Guidelines describes the types of information and analyses related to energy and non-renewable resource conservation that are to be included in EIRs. In Appendix F of the State CEQA Guidelines, energy and non-renewable resource conservation is described in terms of decreased per capita energy consumption, decreased reliance on natural gas and oil, and increased reliance on renewable energy sources. To ensure that energy and non-renewable resource implications are considered in project decisions, EIRs must include a discussion of the potentially significant energy and non-renewable resource impacts of proposed projects, with particular emphasis on avoiding or reducing the inefficient, wasteful, and unnecessary consumption of energy and non-renewable resources.
Chapter 2. Affected Environment; Environmental Consequences; and Avoidance, Minimization, and/or Mitigation Measures—Physical Environment

Affected Environment

Energy Types and Sources
In 2005, petroleum products supplied approximately 39% of the energy demand in the United States (Energy Information Administration 2007). Coal and natural gas each supply approximately 23% of the national energy demand, and nuclear and renewable sources supply the rest in roughly equal proportions.

Petroleum and natural gas supply most of the energy and non-renewable resource used in California. Petroleum products provide approximately 50% of the state’s energy requirements, and natural gas provides approximately 29% (California Energy Commission 2005). The remaining 21% of the state’s energy requirements are met by a variety of energy resources, including coal, nuclear, geothermal, wind, solar, and hydropower.

California’s transportation sector, including on-road and rail transportation, requires roughly 2 quadrillion (million billion) British thermal units (BTUs) of energy annually, which is equal to 940,000 barrels of oil being consumed every day for 1 year (there are approximately 42 gallons in a barrel). The energy consumed by transportation modes accounts for roughly 60% of California’s petroleum usage and 40% of its CO₂ emissions (California Energy Commission 2001).

The proposed project seeks to achieve a U. S. Green Building Council (USGBC) Leadership in Energy and Environmental Design (LEED) certification at the Silver level. This building will be designed to use approximately 28% less energy and 30% less water than a typically designed building the same size as the truck scales facility. The building will incorporate a solar photovoltaic system on the roof, and day-lighting will be used in 75% of the rooms to reduce the amount of electric lighting needed. The project will use recycled materials and use locally available materials.

Petroleum
Most gasoline and diesel fuel sold in California for motor vehicles is refined in California to meet state-specific formulations required by the ARB. Major petroleum refineries in California are concentrated in three counties: Contra Costa County in Northern California, Kern County in Central California, and Los Angeles County in Southern California. Valero, Tesoro, Phillips, Shell, and Chevron operate refineries in Contra Costa County, which is adjacent to Solano County, where the proposed project is located.

4 The units of energy used in this report are British thermal units, kilowatt-hours (kWh), therms, and gallons. A BTU is the quantity of heat required to raise the temperature of 1 pound of water 1 °F at sea level. Because the other units of energy can all be converted into equivalent BTUs, the BTU is used as the basis for comparing energy consumption associated with different resources. A kWh is a unit of electrical energy, and 1 kWh is equivalent to approximately 10,200 BTUs, taking into account initial conversion losses (i.e., from one type of energy, such as chemical, to another type of energy, such as mechanical) and transmission losses. Natural gas consumption typically is described in terms of cubic feet or therms; 1 cubic foot of natural gas is equivalent to approximately 1,050 BTUs, and 1 therm represents 100,000 BTUs. One gallon of gasoline/diesel is equivalent to approximately 125,000/139,000 BTUs, respectively, taking into account energy consumed in the refining process.
In 2006, refineries in California processed approximately 661 million barrels of crude oil (California Energy Commission 2007). Nearly 39% of the crude oil came from in-state oil production facilities; approximately 16% came from Alaska; and the remainder (approximately 45%) came from foreign sources. Together, the refineries in the Bay Area have a crude oil processing capacity of 767,450 barrels per day. The long-term oil supply outlook for California indicates that in-state and Alaska supplies are declining, leading to increasing dependence on foreign oil sources.

Petroleum use associated with this project will consist of gasoline and diesel fuel for vehicles, and for construction equipment and operations.

Natural Gas

Four regions supply California with natural gas. Three of them—the southwestern United States, the Rocky Mountains, and Canada—supply 86.5% of all the natural gas consumed in California (California Energy Commission 2007). The remainder of the natural gas (13.5%) is produced in California. In 2006, approximately 40% of all the natural gas consumed in California was used to generate electricity. Residential consumption represented one-fifth of California’s natural gas use, with the balance consumed by the industrial, resource extraction, and commercial sectors. PG&E is the primary natural gas provider for the Bay Area. PG&E obtains its energy supplies from natural gas fields in northern California.

Natural gas is used for space conditioning and water heating.

Electricity

Power plants in California meet approximately 78% of the in-state electricity demand; hydroelectric power from the Pacific Northwest provides another 7%, and power plants in the southwestern United States provide another 15% (California Energy Commission 2007). Among other factors, the contribution between in-state and out-of-state power plants depends upon the precipitation that occurred in the previous year and the corresponding amount of available hydroelectric power. In the Bay Area, Contra Costa County is home to one of the largest power plants in California: the Pittsburg Power Plant. It is the fourth-largest power plant in California, and it consumes natural gas. Smaller power plants and cogeneration facilities are located throughout the Bay Area. PG&E is the primary electricity supplier to northern California.

Electricity usage associated with the project is for lighting of the facility and associated parking lot, for equipment. Due to advances in equipment, and the LEED Silver Certification the project will achieve, it is anticipated that there would not be a substantial change in energy and non-renewable resource usage associated with the project.

Alternative Fuels

The U.S. Department of Transportation currently recognizes the following as alternative fuels: methanol and denatured ethanol (alcohol mixtures that contain no less than 70% of the alcohol fuel), natural gas (compressed or liquefied), liquefied petroleum gas (LPG), hydrogen, coal-derived liquid fuels, fuels derived from biological materials (i.e., biomass), and electricity. The liquid fuel referred to as methanol (M85) consists of methanol and gasoline and is derived from natural gas, coal, or woody biomass. The liquid fuel referred to as ethanol (E85) consists of ethanol and gasoline and is derived from corn, grains, or agricultural waste. Natural gas consists
of a high percentage of methane (generally above 85%) and varying amounts of ethane, propane, butane, and inerts (typically nitrogen, CO₂, and helium) and comes from underground reserves. LPG consists mostly of propane and is a byproduct of petroleum refining or natural gas processing. Current technologies for electric vehicles include lead-acid and nickel-metal hydride batteries.

The project will incorporate a solar photovoltaic system on the roof and, as previously indicated, will seek to achieve a USGBC Silver LEED certification.

Energy Use for Transportation
Transportation is the largest energy and non-renewable resource consumer in the state, accounting for 60% of total energy use (California Energy Commission 2007). On-road vehicles are estimated to consume approximately 80% of California’s transportation energy demand, with automobiles, trucks, and buses accounting for nearly all of the on-road fuel consumption. The Department estimates that in 2007, more than 3.3 billion gallons of gasoline and diesel fuel would have been consumed in the nine Bay Area counties, an increase of about 127 million gallons over 2000 consumption levels (California Department of Transportation 2008).

Long-term energy consumption trends for transportation will be largely determined by fuel efficiency trends for motor vehicles, because motor vehicles are the predominant transportation mode for passengers and commercial goods.

In the project scenario, there will be traffic operational improvements at the facility and on the mainline. These traffic operational improvements are expected to reduce queuing in comparison to the no-project scenario, thereby leading to minor improvements in vehicle energy usage.

Energy Use for Commercial-Industrial Buildings Operations
The major components of energy and non-renewable resource usage in commercial buildings are lighting, heating, cooling, ventilation (HVAC) and other electrical outlet end use amenities. HVAC refers to the equipment, distribution system, and controls that provide heating, ventilation, and air conditioning for buildings. HVAC systems are the main energy consumers in commercial buildings, accounting for approximately half of all the energy used in the buildings. Lighting systems normally account for 30 percent of the electrical energy use in these buildings. An inefficient lighting system adds excessive heat inside the building. In addition to the energy costs, lighting and HVAC systems affect building occupants’ health, comfort, and productivity. Improving HVAC and lighting system performance saves energy and promotes a healthier, more comfortable workplace.

In the project scenario, the new truck scales facility will have state of the art HVAC equipment, water-heating equipment, and lighting in comparison to the no-project scenario. We expect that there will be an improvement in energy efficiency in the new facility in comparison to the existing facility.

Energy Use for Construction Activities
Construction activities would result in energy and non-renewable resource usage to power construction equipment. In addition, construction activities would also result in embedded energy requirements for the extraction, manufacturing, and delivery of building materials (e.g.,
metals, glazings, cement, and aggregate) for the facility. In comparison, the no-project scenario would not need any energy for construction.

Energy Use for Maintenance Activities
Maintenance activities that will require energy and non-renewable resource include landscaping, sweeping, cleaning, and irrigation activities. Both the project and no-project scenarios will require maintenance; the difference in energy required for maintenance in both scenarios is expected to be negligible in comparison to the energy required for construction and operations.

Environmental Consequences

Significance Criterion
There is no threshold of significance for energy and non-renewable resources. Instead, the Department and FHWA require a discussion of the potential energy impacts of proposed projects, with particular emphasis on avoiding or reducing inefficient, wasteful, and unnecessary consumption of energy.

Impact EN-1: Direct Energy Usage
The difference in direct energy between the project and no-project scenarios is expected to be non-substantial. Although the project scenario will result in a greater throughput of vehicles because of the improvement in traffic operations and, thus, more vehicular energy usage, the increase in vehicular energy usage is likely to be offset in improvements in vehicular energy efficiency. Therefore there would be no adverse effect.

Impact EN-2: Indirect Energy Usage
The project scenario is expected to result in more indirect energy usage in comparison to the no-project scenario. The difference in energy usage of the project scenario over the no-project scenario would be attributed to the construction of the facility. The increase in energy usage under the project scenario can be tempered by design and implementation of energy conserving strategies and features.

Conserving Facility Energy
The Governor’s Executive Order S-20-04 and Green Building Action Plan establishes the sustainable building and facility goals to treat an entire facility as one system, recognizing that individual building features, such as lighting, windows, heating and cooling systems, and control systems need to be designed as a coherent whole. Sustainable design or “building green” is an opportunity to use our resources efficiently while creating healthier buildings. It provides cost savings through improved human health and productivity, lower building operational costs, and resource efficiency. Specifically, by using less energy, water, and materials, sustainable buildings save California’s natural resources. Sustainable buildings provide a healthier work environment with more natural light and cleaner air, contributing to employee wellbeing and increased productivity. Sustainable buildings are also cost-effective, saving taxpayer money by reducing operations and maintenance costs and lowering utility bills.

In designing, constructing, and operating the new facility, the Department will continue to incorporate programs and techniques that create buildings and systems with a LEED Silver or
higher rating and that help provide for a sustainable environment. Specifically, the Department will continue to implement energy-saving projects that conserve energy, improve efficiency, and reduce energy costs through a variety of programs. Project design typically incorporates energy-efficient lighting fixtures; occupancy sensors that activate lights when people enter/leave rooms; double glazed, low “E” windows to reduce heat gain/loss throughout the day; and low-flow plumbing fixtures. The Department also works to meet or improve upon the Title 24 energy efficiency standards.

Thus, as a Department facility, the proposed project will adhere to the following policies and standards regarding green building design:

- The Department will set a goal for all new building projects to outperform the required provisions of the California Energy Code’s Title 24 energy efficiency standards by at least 20%.

- The Department will design and build all new buildings to a minimum standard equivalent of LEED Silver or higher, whenever possible within the constraints of program needs and standard budget parameters.

- The Department will use its purchasing power to promote the availability of sustainable products by means that include pursuing contracts for building materials, subsystems, components, equipment, and supplies that promote sustainability.

- The Department will work with regulatory agencies and other entities to speed the development, approval, and implementation of products and technologies that improve energy efficiency, renewable energy resources, and support sustainable design, construction, and operating practices.

In addition, the operation and maintenance energy usage of the facility will be much less than the indirect energy consumption for vehicles and/or roadways. When balancing energy used during operation against energy saved by relieving congestion and other transportation efficiencies, the proposed project would not have substantial energy effects. Therefore, no adverse effects on electrical energy at the proposed facility are expected.

2.3 Biological Environment

The project area generally includes the project construction footprint and a 20-foot buffer around the project footprint to accommodate construction activities and staging. The 56.39-acre study area for biological resources includes the project area, seasonal wetlands within 250 feet of the construction footprint, and elderberry shrubs within 100 feet of the construction footprint. Where seasonal wetlands extend beyond the 250-foot boundary, the entire wetland is included in the study area.

The project area encompasses approximately 2 miles along I-80, the existing eastbound truck scales that will be removed, and the site of the new truck scales. Areas of highway widening, ramp construction, and creek crossings are included. Land use in the study area is primarily roadway with adjacent development and agriculture, with a high level of historical and ongoing disturbance.

Potential biological resources issues associated with the proposed project were identified through agency coordination, a review of existing information, and field surveys. Field surveys included botanical surveys (May 2004, May 2005, August 2007, December 2008), wetland delineation (May 2004, June 2007, August 2008) and final verification (July 2009), reconnaissance-level surveys and California red-legged frog (CRLF) site assessment (July and October 2007), fisheries habitat assessment (July 2007), valley elderberry longhorn beetle (VELB) surveys (July 2007), vernal pool crustacean habitat assessment (July 2007), and a fish passage assessment (September 2006, August 2007). The analysis presented in this chapter is based upon the following technical reports that documented the above studies:

- I-80 Eastbound Truck Scales Natural Environmental Study (ICF Jones & Stokes 2008i)
- Preliminary Delineation of Waters of the United States for the Interstate 80 Eastbound Cordelia Truck Scales Relocation Project, verified in July 2009 (ICF Jones & Stokes 2008j)
- I-80 Eastbound Cordelia Truck Scales Relocation Project Biological Assessment for California Red-Legged Frog and Valley Elderberry Longhorn Beetle (ICF Jones & Stokes 2008k)
- I-80 Eastbound Cordelia Truck Scales Relocation Project Biological Assessment/Essential fish Habitat Assessment for Central California Coast Steelhead and Central Valley Fall/Late Fall-Run Chinook Salmon (ICF Jones & Stokes 2008l)
- Draft Biological Opinion for the Proposed Interstate 80 Eastbound Cordelia Truck Scales Relocation Project, Solano County, California (Caltrans EA 0A5350) on the Threatened California Red-legged Frog (81420-2008-F-1929-2; July 2, 2009).

2.3.1 Natural Communities

This section of the document discusses natural communities of concern. The focus of this section is on biological communities, not individual plant or animal species. This section also includes
information on wildlife corridors and habitat fragmentation. Wildlife corridors are areas of habitat used by wildlife for seasonal or daily migration. Habitat fragmentation involves the potential for dividing sensitive habitat and thereby lessening its biological value.

Habitat areas that have been designated as critical habitat under the Federal Endangered Species Act are discussed below in the Threatened and Endangered Species section (section 2.3.5). Wetlands and other waters are also discussed below in section 2.3.2.

The study area supports six natural communities of special concern: riparian woodland, valley oak woodland, seasonal wetland, perennial wetland drainage, seasonal drainage, and perennial drainage (Figure 2.3-1). Only riparian woodland and valley oak woodland are discussed in this section. The wetland communities and drainages are discussed in section 2.3.2 (“Wetlands and Other Waters”). Other parts of the study area support other woodland (planted trees), orchard, ruderal (weedy) grasslands, row crops, landscaped areas, or developed areas.

Riparian Woodland

Regulatory Setting

Riparian communities are considered sensitive locally, regionally, and statewide because of their habitat value and decline in extent. The Solano County Water Agency (SCWA) habitat conservation plan (HCP) concludes that the riparian corridor along Suisun Valley Creek is important because it provides connectivity between the Inner Coast Ranges and Suisun Marsh (Solano County Water Agency 2007). The California Department of Fish and Game (DFG) has adopted a no-net-loss policy for riparian habitat values, and the streambed alteration agreement (SAA) would include mitigation requirements for a loss of riparian vegetation. The U.S. Fish and Wildlife Service (USFWS) mitigation policy identifies California’s riparian habitats in Resource Category 2, for which no net loss of existing habitat value is recommended (46 FR 7644).

Affected Environment

A total of 1.71 acres of riparian woodland is in the study area. Riparian woodland occurs along both banks of Suisun Creek. A row of mature live oak and valley oak trees grows along the I-80 roadway for several hundred feet to the west and east of Suisun Creek. This row of trees forms a continuous band of vegetation with the riparian habitat adjacent to the creek and is shown on Figure 2.3-1 as riparian habitat. Plant species that characterize riparian woodland in the study area include valley oak (*Quercus lobata*), coast live oak (*Quercus agrifolia*), willows (*Salix* sp.), white alder (*Alnus rhombifolia*), California buckeye (*Aesculus californica*), California bay (*Umbellularia californica*), and Himalayan blackberry (*Rubus armeniacus [discolor]*)). Adjacent to the south side of the study area at Suisun Creek, riparian woodland also supports elderberry shrubs (*Sambucus mexicana*). Herbaceous groundcover consists of nonnative grasses, sedge species (*Carex* sp.), and mugwort (*Artemisia douglasiana*), and the shrub understory includes poison oak (*Toxicodendron diversilobum*), California wild grape (*Vitis californica*), and other species.

Riparian woodland habitat along Suisun Creek provides a wildlife movement corridor up and downstream for fish, amphibians, reptiles, birds, and mammals on a seasonal basis. However, its biological value is reduced because of fragmentation by I-80 and nearby development.
FIGURE 2.3-1
Biological Resources
1-80 Eastbound Cordelia Truck Scales Relocation Project
Solano County, California

Legend

- Permanent Impact
- Utility Pole Relocation
- Temporary Impact
- Underground Utility
- Developed/graded
- Landscaped
- Orchard
- Other Woodland
- Drainage or Irrigation Ditch
- Perennial Drainage
- Riparian Woodland
- Row Crops
- Ruderal
- Seasonal Wetland
- Valley Oak Woodland
- Native Tree
- Elderberry Shrub
- Perennial Wetland Drainage

Aerial Photo Source: AirPhoto USA, November 2005

Sheet 1 of 5
REVISED FIGURE 2.3-1

Biological Resources
I-80 Eastbound Cordelia Truck Scales
Relocation Project
Solano County, California

Legend

- Permanent Impact
- Utility Pole Relocation
- Temporary Impact
- Bore & Jack Pit
- Proposed Right of Way
- Underground Utilities
- Developed/graded
- Landscaped
- Orchard
- Other Woodland
- Drainage or Irrigation Ditch
- Perennial Drainage
- Riparian Woodland
- Row Crops
- Ruderal
- Seasonal Wetland
- Valley Oak Woodland
- Native Tree
- Elderberry Shrub
- Proposed Right of Way
- Bore & Jack Pit
- Pit

Aerial Photo Source: April Photo USA, November 2005

Sheet 2 of 5
FIGURE 2.3-1
Biological Resources
I-80 Eastbound Cordelia Truck Scales Relocation Project
Solano County, California

Legend
- Permanent Impact
- Utility Pole
- Relocation
- Temporary Impact
- Underground Utilities
- Developed/graded
- Landscaped
- Orchard
- Other Woodland
- Drainage or Irrigation Ditch
- Perennial Drainage
- Riparian Woodland
- Row Crops
- Ruderal
- Seasonal Wetland
- Valley Oak Woodland
- Native Tree
- Elderberry Shrub
- Perennial Wetland Drainage

Aerial Photo Source: AirPhoto USA, November 2005

Sheet 3 of 5
FIGURE 2.3-1
Biological Resources
I-80 Eastbound Cordelia Truck Scales Relocation Project
Solano County, California

Legend

Permanent Impact
Temporary Impact
Developed/graded
Landscapeed
Orchard
Other Woodland
Drainage or Irrigation Ditch

Perennial Drainage
Riparian Woodland
Row Crops
Ruderal
Seasonal Wetland
Valley Oak Woodland
Native Tree
Elderberry Shrub
Perennial Wetland
Drainage

Aerial Photo Source: AirPhoto USA, November 2005
Environmental Consequences

Impact NC-1: Effect on Riparian Woodland

Construction of the project would result in a permanent loss of approximately 0.71 acre of riparian woodland in the study area along Suisun Creek (see Figure 2.3-1). The permanent effect area would include riparian trees, as well as woody understory plants, such as young trees, coyote brush (*Baccharis pilularis*), Himalayan blackberry, and elderberry adjacent to Suisun Creek.

Approximately 1.0 acre of riparian woodland vegetation would be disturbed temporarily for the construction of the Suisun Creek bridge. This effect would include the probable removal of additional trees and understory vegetation in the project footprint. Indirect effects on riparian woodland vegetation could occur from adjacent construction activity. Riparian vegetation adjacent to the construction area would not be removed for construction, but it could sustain damage from equipment. Implementation of the avoidance and minimization measures (Measures NC-1a through NC-1d) would protect trees and avoid indirect adverse effects.

State and federal agencies would require avoidance, minimization, and compensatory mitigation for the loss of riparian habitat. The loss or disturbance of riparian woodland vegetation would be considered adverse because it provides a variety of important ecological functions and values. However, implementation of Measure NC-1e would ensure that this is not an adverse effect.

Avoidance, Minimization, and/or Mitigation Measures

Implementation of the following avoidance and minimization measures would ensure that the proposed project would minimize effects on riparian habitat within and adjacent to the study area.

Measure NC-1a: Install Construction Barrier Fencing around the Construction Area to Protect Sensitive Biological Resources Outside of the Construction Area

Orange construction barrier fencing will be installed to identify environmentally sensitive areas (ESAs). A qualified biologist will identify sensitive biological resources adjacent to the construction area before the final design plans are prepared so that the areas to be fenced can be included in the plans. The area that generally would be required for construction, including staging and access, is shown in Figure 2.3-1. Pockets of this area that are to be avoided during construction should be fenced off to avoid disturbance. Sensitive biological resources that occur adjacent to the construction area include sensitive natural communities; native trees to be retained; special-status wildlife habitats for valley elderberry longhorn beetle (VELB) (*Desmocerus californicus dimorphus*), California red-legged frog (CRLF) (*Rana aurora draytonii*) and western pond turtle (*Actinemys marmorata*) (Suisun Creek); and nests of special-status birds.

Before construction, the construction contractor will work with the project engineer and a resource specialist to identify the locations for the barrier fencing and will place stakes around the sensitive resource sites to indicate these locations. The protected areas will be designated as
ESAs and identified clearly on the construction plans. The fencing will be installed before construction activities are initiated and will be maintained throughout the construction period.

Temporary fences around the ESAs will be installed as one of the first orders of work. Temporary fences will be furnished, constructed, maintained, and removed as shown on the plans, as specified in the special provisions, and as directed by the project engineer. The fencing will be commercial-quality woven polypropylene, orange in color, and at least four feet high (Tensor Polygrid or equivalent). The fencing will be tightly strung on posts set at maximum intervals of 10 feet.

Measure NC-1b: Conduct Environmental Awareness Training for Construction Employees

A USFWS-approved biologist will be retained to develop and conduct environmental awareness training for construction employees on the importance of on-site biological resources, including sensitive natural communities; native trees to be retained; special-status wildlife habitats for VELB, CRLF, and western pond turtles (Suisun Creek); nests of special-status birds; and avoidance of invasive plant introduction and spread. The environmental awareness program will be provided to all construction personnel to brief them on the life history of special-status species in or adjacent to the project area, the need to avoid adverse effects on sensitive biological resources, any terms and conditions required by state and federal agencies, and the penalties for not complying with biological mitigation requirements. If new construction personnel are added to the project, the contractor’s superintendent will ensure that the personnel receive the mandatory training before starting work. An environmental awareness handout, describing and illustrating sensitive resources that will be avoided during project construction and identifying all relevant permit conditions, will be provided to each person.

Measure NC-1c: Retain a Biological Monitor to Conduct Daily Visits during Construction around Suisun Creek

A biologist will be retained to conduct daily construction monitoring in and adjacent to all sensitive habitats when construction is taking place near sensitive habitat areas. The monitor, as part of the overall monitoring duties, will inspect the fencing along the creek and drainages in the construction area that support riparian vegetation, surrounding native trees and woodlands, and special-status wildlife habitats. The biological monitor will assist the construction crew as needed to comply with all project implementation restrictions and guidelines. The biological monitor also will be responsible for ensuring that the contractor maintains the staked and flagged perimeters of the construction area and staging areas adjacent to sensitive biological resources.

Measure NC-1d: Avoid and Minimize Potential Indirect Disturbance of Riparian Communities

To the extent possible, potential indirect disturbance of riparian communities will be avoided and minimized by implementing the following measures.

- The potential for long-term loss of riparian vegetation will be minimized by trimming vegetation rather than removing entire shrubs. Shrubs that need to be trimmed will be cut at least 1 foot above ground level to leave the root systems intact and allow for more rapid
regeneration. Cutting will be limited to the minimum area necessary within the construction zone. To protect nesting birds, the project proponent will not allow pruning or removal of woody riparian vegetation between February 15 and September 1 without preconstruction surveys.

- A certified arborist will be retained to oversee any necessary pruning of riparian trees.

- The areas that undergo vegetative pruning will be inspected immediately before construction, immediately after construction, and 1 year after construction to determine the amount of existing species cover, cover that has been removed, and cover that resprouts. If, after 1 year, these areas have not resprouted sufficiently to return to the pre-project level, the project proponent will replant the areas with the same species (native species) to reestablish the vegetation cover.

Work in riparian areas will be conducted between June 15 and October 15, and disturbed areas will be stabilized with erosion control measures and replanted as described in Measure NC-1e.

Measure NC-1e: Compensate for Temporary and Permanent Loss of Riparian Vegetation

Temporary construction-related loss of riparian vegetation will be compensated by replanting the temporarily disturbed area west and east of Suisun Creek with the native species removed. The replanting area will be located along I-80 outside of the Suisun Creek banks, which are too steep to be feasible for a mitigation area. Replanting will occur immediately after completion of the construction activities and no later than October 15 to minimize erosion, creek sedimentation, and adverse effects on fish.

The temporary loss of riparian vegetation will be compensated through the preparation of a mitigation planting plan, including a species list and number of each species, planting locations, and maintenance requirements. Plantings will consist of cuttings taken from local plants, or plants grown from local material obtained within the project vicinity.

Planted species will be based on those removed from the project area and will include valley oak, interior live oak, willows, white alder, California buckeye, California bay, and Himalayan blackberry. Native understory species, such as sedge species, mugwort, California wild rose, poison oak, California wild grape, or other suitable species will be planted. Plantings will be monitored annually for three years or as required in the project permits.

If 75 percent of the plants survive at the end of the monitoring period, the revegetation will be considered successful. If the survival criterion is not met at the end of the monitoring period, planting and monitoring will be repeated after mortality causes have been identified and corrected.

Permanent loss of riparian vegetation will be compensated for at Solano Community College, as described in the I-80 HOV Lanes/Eastbound Cordelia Truck Scales Relocation Project Mitigation and Monitoring Plan (H.T. Harvey & Associates 2009). The Department has proposed restoration of 3.0 acres to compensate for the permanent loss of 3.30 acres of upland habitat for CRLF at the Solano Community College approximately 500 feet upstream of the I-80 crossing of the creek to offset the project’s adverse effects to CRLF and provide replacement.
plantings for lost riparian vegetation (H.T. Harvey & Associates 2009). The plan includes a 10-year monitoring plan with more intense irrigation, management, and monitoring effort the initial 3 years following planting. The success of the restoration site will be reassessed in Years 5, 7, and 10 using criteria outlines in the March 2009 restoration plan (H.T. Harvey & Associates 2009).

Valley Oak Woodland

Regulatory Setting
The City of Fairfield Tree Conservation ordinance (FCC 25.36) protects native trees, including native oaks (*Quercus* spp.), bay laurel (*Umbellularia californica*), madrone (*Arbutus menziesii*), and California buckeye (*Aesculus californica*), that are greater than 6 inches in diameter at breast height (dbh). Removal of these trees requires a permit and on-site or off-site replacement for the removed trees on an inch-for-inch basis. Most of the study area is outside the Fairfield city limit line, and no native trees occur in that area. Native trees in the remainder of the project area are not protected under the ordinance. The DFG would recommend avoidance, minimization, and compensatory mitigation for the loss of native oak trees and oak woodland habitat. The loss or disturbance of oak woodland vegetation is considered adverse because this vegetation is declining and provides important wildlife habitat and other ecological functions and values.

Affected Environment
The west end of the study area extends into 0.03 acre of a valley oak woodland. This community is dominated by valley oak trees, although the overstory also contains coast live oak and blue oak (*Quercus douglasii*). The understory is open and grassy understory with blue wildrye (*Elymus glaucus*) and poison oak. Within the small portion of valley oak woodland that is in the study area, the overstory includes a coast live oak and a valley oak.

The piece of valley oak woodland in the study area provides some wildlife habitat value but it is too small and isolated to provide a movement corridor for wildlife species.

Environmental Consequences
The valley oak woodland vegetation community is not protected under any applicable federal statute. Impacts on this resource are discussed per CEQA requirements in Chapter 3.

2.3.2 Wetlands and Other Waters

The information presented here is taken from the *Preliminary Delineation of Waters of the United States for the Interstate 80 Eastbound Cordelia Truck Scales Relocation Project* (ICF Jones & Stokes 2008i) and the *I-80 Eastbound Cordelia Truck Scales Project Natural Environment Study* (ICF Jones & Stokes 2008h). The wetland delineation was submitted to the U.S. Army Corps of Engineers (USACE) in August 2008. A field verification of the preliminary delineation was conducted with Andrea Meier of the USACE San Francisco District on January 7, 2009, and the verification was finalized July 9, 2009. This section addresses waters of the United States, which are under the jurisdiction of the USACE, as well as wetland and drainage features that are outside of USACE jurisdiction (nonjurisdictional features) and are regulated...
only as waters of the state. Impacts on nonjurisdictional features are discussed per CEQA requirements in Chapter 3.

Jurisdictional wetlands and other waters (waters of the U.S.) in the study area include a perennial wetland drainage (Dan Wilson Creek) and a perennial drainage (Suisun Creek). Non-jurisdictional features (waters of the state) in the study area include two seasonal wetlands, an irrigation ditch (Raines Drain), and roadside ditches. Raines Drain connects to navigable waters in Cordelia Slough and is, therefore, considered jurisdictional by the USACE and subject to regulation under CWA Section 404. A summary of the effects on waters of the state and waters of the United States is provided in Table 2.3-1 below.

<table>
<thead>
<tr>
<th>Water of the State/ Water of the U.S.</th>
<th>Type</th>
<th>Permanent Effect (acres)</th>
<th>Temporary Effect (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water of the State (CEQA-only impact)</td>
<td>Seasonal wetland</td>
<td>0.13</td>
<td>0</td>
</tr>
<tr>
<td>Water of the U.S.</td>
<td>Perennial wetland drainage</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Water of the U.S.</td>
<td>Perennial drainage</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Water of the U.S.</td>
<td>Seasonal drainage</td>
<td>0.02</td>
<td>0.06</td>
</tr>
<tr>
<td>Water of the State (CEQA-only impact)</td>
<td>Seasonal drainage</td>
<td>0.10</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Regulatory Setting

Wetlands and other waters are protected under a number of laws and regulations. At the federal level, the Clean Water Act (CWA) (33 USC 1344) is the primary law regulating wetlands and waters. The CWA regulates the discharge of dredged or fill material into waters of the United States, including wetlands. Waters of the United States include navigable waters, interstate waters, territorial seas, and other waters that may be used in interstate or foreign commerce. To classify wetlands for the purposes of the CWA, a three-parameter approach is used that includes the presence of hydrophytic (water-loving) vegetation, wetland hydrology, and hydric soils (soils subject to saturation/inundation). All three parameters must be present, under normal circumstances, for an area to be designated as a jurisdictional wetland under the CWA.

Section 404 of the CWA establishes a regulatory program that provides that no discharge of dredged or fill material can be permitted if a practicable alternative exists that is less damaging to the aquatic environment or if the nation’s waters would be significantly degraded. The Section 404 permit program is run by the USACE with oversight by the Environmental Protection Agency (EPA).

The Executive Order for the Protection of Wetlands (E.O. 11990) also regulates the activities of federal agencies with regard to wetlands. Essentially, this EO states that a federal agency, such as the FHWA, cannot undertake or provide assistance for new construction located in wetlands unless the head of the agency finds: 1) that there is no practicable alternative to the construction and 2) the proposed project includes all practicable measures to minimize harm.

At the state level, wetlands and waters are regulated primarily by the DFG and the Regional Water Quality Control Boards (RWQCBs). Sections 1600–1607 of the Fish and Game Code require any agency that proposes a project that will substantially divert or obstruct the natural
flow of or substantially change the bed or bank of a river, stream, or lake to notify the DFG before beginning construction. If the DFG determines that the project may substantially and adversely affect fish or wildlife resources, a Lake or Streambed Alteration Program will be required. DFG jurisdictional limits are usually defined by the tops of the stream or lake banks, or the outer edge of riparian vegetation, whichever is wider. Wetlands under jurisdiction of the USACE may or may not be included in the area covered by an SAA obtained from the DFG.

The RWQCBs were established under the Porter-Cologne Water Quality Control Act to oversee water quality. The RWQCB also issues water quality certifications in compliance with Section 401 of the CWA. Please see the Water Quality Section for details.

Seasonal Wetland

Affected Environment

Two seasonal wetlands, totaling 0.13 acre, occur in the study area. These wetlands are located along the connector from eastbound I-80 to SR 12E and receive runoff from the road. The vegetation in these wetlands is correspondingly degraded, dominated by nonnative annual grasses and nonnative forbs. Dominant species observed in these wetlands include Italian ryegrass (*Lolium multiflorum*), Mediterranean barley (*Hordeum marinum* var. *gussoneanum*), curly dock (*Rumex crispus*), narrow-leaved plantain (*Plantago lanceolata*), and birds-foot trefoil (*Lotus corniculatus*). Wetland functions of seasonal wetlands in the study area include flood storage, groundwater recharge, and wildlife habitat.

Because they are isolated from any creeks, the seasonal wetlands in the study area are not considered jurisdictional by the USACE or subject to regulation under CWA Section 404. Regardless of USACE jurisdiction, however, local, state, and federal agencies recognize seasonal wetlands as sensitive natural communities, and the seasonal wetland would be considered a water of the state.

Environmental Consequences

The seasonal wetland in the study area is not protected under any applicable federal statute. Impacts on this resource are discussed as CEQA-only impacts in Chapter 3.

Perennial Wetland Drainage

Affected Environment

One perennial wetland drainage, Dan Wilson Creek (feature W-53), crosses the study area. This feature supports freshwater marsh vegetation. Dominant plant species observed in perennial wetland drainages include bog rush (*Juncus effusus*), broadleaf cattail (*Typha latifolia*), common tule (*Scirpus acutus*), Himalayan blackberry, and narrowleaf willow (*Salix exigua*). Wetland functions of the perennial wetland drainage in the study area include flood conveyance and wildlife habitat because of the presence of generally dense wetland vegetation.

Dan Wilson Creek is considered a USACE-jurisdictional wetland, because the freshwater marsh wetland occurs within a drainage that is inundated year-round and connects to navigable waters in Cordelia Slough.
Environmental Consequences

Impact WOW-1: Effect on Perennial Wetland Drainage

No direct adverse effects on perennial wetland drainage habitat would result from the project, however, indirect effects caused by sedimentation or modification of hydrology could occur due to construction activities. Implementation of the avoidance and minimization measures would protect adjacent perennial wetland drainage habitat during construction and avoid potential indirect adverse effects on Dan Wilson Creek.

Wetland habitat in Dan Wilson Creek is under USACE jurisdiction because it is connected to the creek, which flows to a navigable water. The creek and its wetlands are also considered waters of the state, and water quality effects would be regulated by the RWQCB.

Avoidance, Minimization, and/or Mitigation Measures

Implementation of the avoidance and minimization measures described in the “Riparian Woodland” section (Measures NC-1a and NC-1b) and the following Measure would ensure that the proposed project would not result in indirect adverse effects on perennial wetland drainage.

Measure WOW-1: Protect Water Quality and Prevent Erosion in Drainages and Wetlands

Water quality in drainages and wetlands that are outside the project footprint will be protected. Features to be protected include Suisun Creek, unnamed drainages, and wetlands in and adjacent to the project area. The following best management practices (BMPs) will be implemented before and during construction.

- All earthwork or foundation activities involving creeks, culverts, and bridges will occur in the dry season (generally between June 15 and October 15).
- Equipment used in and around drainages and wetlands will be in good working order and free of dripping or leaking engine fluids. All vehicle maintenance, staging, and materials storage will occur at least 300 feet from all drainages and wetlands. Any necessary equipment washing will occur where the water cannot flow into drainages or wetlands.
- Any surplus concrete rubble, asphalt, or other rubble from construction will be taken to a Solano County landfill.
- An erosion control plan will be prepared and implemented for the proposed project. It will include the following provisions and protocols.
 - Discharge from dewatering operations, if needed, and runoff from disturbed areas will be made to conform to the water quality requirements of the waste discharge permit issued by the RWQCB.
 - Material stockpiles will be located in non-traffic areas only. Side slopes will not be steeper than 2:1. All stockpile areas will be surrounded by a filter fabric fence and interceptor dike.
Erosion control measures will be applied throughout construction of the proposed project. The stormwater pollution prevention program (SWPPP) for the project will detail the applications and type of measures and the allowable exposure of unprotected soils.

Soil exposure will be minimized through the use of temporary BMPs, ground cover, and stabilization measures. Exposed dust-producing surfaces will be sprinkled daily, if necessary, until wet; this measure will be controlled to avoid producing runoff. Paved streets will be swept daily following construction activities.

The contractor will conduct periodic maintenance of erosion and sediment control measures.

All temporary erosion and sediment control measures will be removed after the working area is stabilized or as directed by the engineer.

An appropriate seed mix of native species will be planted on disturbed areas upon completion of construction.

Sandbagged silt fences will be installed in all named and unnamed waterways in which construction work occurs, both upstream and downstream of the construction site. Any accumulated sediment will be removed and trucked to a Solano County landfill or an approved disposal site.

Perennial and Seasonal Drainages

Affected Environment

Both perennial and seasonal drainages occur in the study area. A total of 0.20 acre of perennial drainage and 0.26 acre of seasonal drainage is in the study area. Drainage boundaries were indicated by changes in vegetation, shelving, or watermarks on concrete banks.

Suisun Creek is the only perennial drainage in the study, and it carries flow year-round or nearly year-round. Functions of this perennial drainage habitat in the study area include flood conveyance, fish production, and wildlife habitat. Suisun Creek is considered jurisdictional by the USACE, is subject to regulation under CWA Section 404, and is considered a sensitive natural community.

One of the seasonal drainages mapped in the study area is a concrete-lined irrigation ditch (known as Raines Drain) that connects to navigable waters in Cordelia Slough and is, therefore, considered jurisdictional by the USACE and subject to regulation under CWA Section 404. Other seasonal drainages are drainage ditches along roadsides. These roadside drainage ditches do not connect to a natural stream, are not subject to USACE jurisdiction, and are not considered sensitive natural communities, but could be regulated as waters of the state by the RWQCB. Functions of roadside seasonal drainages in the study area include flood conveyance during and after storm events.

Environmental Consequences

Construction of the project would involve the installation of culverts and placement of fill for road widening, resulting in direct disturbance of jurisdictional and nonjurisdictional seasonal
Chapter 2. Affected Environment; Environmental Consequences; and Avoidance, Minimization, and/or Mitigation Measures—Biological Environment

Drainages. Impact acreages are based on the USACE field verification of the delineation, which includes both jurisdictional and non-jurisdictional features.

Seasonal roadside drainages in the study area are not protected under any applicable federal statute. Impacts on these resources are discussed per CEQA requirements in Chapter 3.

Impact WOW-2: Disturbance of Perennial Drainage during Construction

The bridge over Suisun Creek would be a clear span, and no piers or bridge abutments would be placed within the limits of the ordinary high water mark (OHWM). All construction will occur outside the limits of the OHWM. There would be no direct adverse effects on Suisun Creek due to project construction.

Additional indirect effects caused by sedimentation or modification of hydrology could occur in portions of perennial and seasonal drainages that lie outside the project footprint.

Impact WOW-3: Disturbance of Jurisdictional Seasonal Drainage during Construction

Raines Drain, currently a concrete lined ditch would be replaced with a pipe to maintain the connection from the north side of I-80 to the south side of the proposed project. A total of 0.02 acre of jurisdictional seasonal drainage within an irrigation ditch (feature OW-56a) would be removed for construction, and 0.06 acre would be temporarily affected. Placement of fill within the irrigation ditch would require authorization from the USACE under a CWA Section 404 nationwide permit. Because the cement-lined ditch functions as part of a transport system for irrigation water and does not provide significant wildlife habitat, there is no associated impact on wildlife habitat.

Avoidance, Minimization, and/or Mitigation Measures

Implementation of the avoidance and minimization measures described in the “Riparian Woodland” section (Measures NC-1a and NC-1b) and in the “Perennial Wetland Drainage” section (Measure WOW-1) and the following measure would ensure that the proposed project would avoid and minimize direct and indirect effects on drainage habitats adjacent to the construction area.

Measure WOW-3: Obtain Required Permits, Authorizations, Certifications, and Agreements

Before construction, the following permits will be obtained.

- **RWQCB**—Waste Discharge Requirements and CWA Section 401 Water Quality Certification.
- **USACE**—CWA Section 404 Nationwide permit.
- **State Water Resources Control Board (SWRCB)**—National Pollutant Discharge Elimination System (NPDES) permit.
- **USFWS**—Biological Opinion (BO).
• National Marine Fisheries Service (NMFS)—concurrence letter.
• DFG—Section 1602 Streambed Alteration Agreement.

All conditions that are attached to the state and federal permits will be implemented as part of the project. The conditions will be identified clearly in the construction plans and specifications and will be monitored during and after construction to ensure compliance.

2.3.3 Plant Species

Regulatory Setting
The USFWS and DFG share regulatory responsibility for the protection of special-status plant species. “Special-status” species are selected for protection because they are rare and/or subject to population and habitat declines. Special status is a general term for species that are afforded varying levels of regulatory protection. The highest level of protection is given to threatened and endangered species; these species are formally listed or proposed for listing as endangered or threatened under the federal Endangered Species Act (ESA), the California Endangered Species Act (CESA), or both. No threatened or endangered species occur in the study area.

This section of the document discusses all the other special-status plant species, including non-listed California Native Plant Society (CNPS) rare and endangered plants.

The regulatory requirements for the ESA can be found at United States Code 16 (USC), Section 1531, et seq. See also 50 CFR Part 402. The regulatory requirements for CESA can be found at California Fish and Game Code (CFGC), Section 2050, et seq. Department projects are also subject to the Native Plant Protection Act, found at CFGC Section 1900-1913, and CEQA, PRC Sections 2100-21177.

Affected Environment
During prefield investigations, 52 special-status plant species were determined to have the potential to occur in the project region (Table 2.3-2). Historic alteration of the study area due to construction of I-80, SR-12E, and the existing truck scales has disturbed all habitat within the study area, making the potential for occurrence of special-status plants very low. No special-status plants have been recorded in the study area (California Natural Diversity Database 2009). Botanical surveys of the study area were conducted in May 2004, May 2005, and August 2007. No special-status plants were observed in the study area during the blooming-period botanical surveys.

Environmental Consequences
No special-status plants are located within the project area, and thus the project would not result in adverse effects on any special-status plants.

Avoidance, Minimization, and/or Mitigation Measures
No avoidance, minimization, or mitigation measures for special-status plants are necessary.
<table>
<thead>
<tr>
<th>Common Name, Scientific Name</th>
<th>Legal Status</th>
<th>Geographic Distribution</th>
<th>Habitat Requirements</th>
<th>Blooming Period</th>
<th>Habitat Present in Study Area?</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferris' milk-vetch Astragalus tener var. ferrisiae</td>
<td>— — 1B.1</td>
<td>Historical range included the Central Valley from Butte County to Alameda County, but it currently occurs only in Butte, Glenn, Colusa, and Yolo Counties</td>
<td>Seasonally wet areas in meadows and seeps, subalkaline flats in valley and foothill grassland; 16–246 feet (5–75 meters)</td>
<td>April–May</td>
<td>Yes</td>
<td>Marginal habitat is present in the study area, but the species was not observed during blooming-period surveys</td>
</tr>
<tr>
<td>Alkali milk-vetch Astragalus tener var. tener</td>
<td>— — 1B.2</td>
<td>Merced, Solano, and Yolo Counties; historically more widespread</td>
<td>Grassly flats and vernal pool margins on alkali soils below 197 feet (60 meters)</td>
<td>March–June</td>
<td>Yes</td>
<td>Marginal habitat, but no suitable soils are present in the study area, and the species was not observed during blooming-period surveys</td>
</tr>
<tr>
<td>Heartscale Atriplex cordulata</td>
<td>— — 1B.2</td>
<td>Western Central Valley and valleys of adjacent foothills</td>
<td>Alkal grassland, alkali meadow, and alkali scrub below 656 feet (200 meters)</td>
<td>April–October</td>
<td>Yes</td>
<td>No suitable vegetation communities or soils are present in the study area, and the species was not observed during blooming-period surveys</td>
</tr>
<tr>
<td>Brittle scale Atriplex depressa</td>
<td>— — 1B.2</td>
<td>Western Central Valley and valleys of adjacent foothills on west side of Central Valley</td>
<td>Alkal grassland, alkali meadow, alkali scrub, chenopod scrub, playas, and valley and foothill grasslands on alkaline or clay soils below 656 feet (200 meters)</td>
<td>May–October</td>
<td>Yes</td>
<td>No suitable soils are present in the study area, and the species was not observed during blooming-period surveys</td>
</tr>
<tr>
<td>San Joaquin spearscale Atriplex joaquiniana</td>
<td>— — 1B.2</td>
<td>West edge of Central Valley from Glenn County to Tulare County</td>
<td>Alkal grassland, alkali meadow, alkali scrub, and saltbush scrub below 1,000 feet (305 meters)</td>
<td>April–October</td>
<td>Yes</td>
<td>No suitable vegetation communities or soils are present in the study area, and the species was not observed during blooming-period surveys</td>
</tr>
<tr>
<td>Vernal pool smallscale Atriplex persistens</td>
<td>— — 1B.2</td>
<td>Central Valley, from Glenn to Tulare County</td>
<td>Dry beds of vernal pools on alkaline soils; 33–377 feet (10–115 meters)</td>
<td>July–October</td>
<td>Yes</td>
<td>No suitable vegetation communities or soils are present in the study area, and the species was not observed during blooming-period surveys</td>
</tr>
<tr>
<td>Big-scale balsamroot Balsamorhiza macrolepis var. macrolepis</td>
<td>— — 1B.2</td>
<td>Scattered occurrences in Coast Ranges and Sierra Nevada foothills</td>
<td>Chaparral, cismontane woodland, valley and foothill grassland, sometimes on serpentine soils; 295–4,593 feet (90–1,400 meters)</td>
<td>March–June</td>
<td>Yes</td>
<td>Marginal habitat is present in oak woodlands in the study area, but the species was not observed during blooming-period surveys</td>
</tr>
<tr>
<td>Common Name, Scientific Name</td>
<td>Legal Status</td>
<td>Geographic Distribution</td>
<td>Habitat Requirements</td>
<td>Blooming Period</td>
<td>Habitat Present in Study Area?</td>
<td>Rationale</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------</td>
<td>-------------------------</td>
<td>----------------------</td>
<td>----------------</td>
<td>-------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Sonoma sunshine Blennosperma bakeri</td>
<td>E E 1B.1</td>
<td>Vernal pools, mesic valley and foothill grassland; 33-360 feet (10-110 meters)</td>
<td>March–May</td>
<td>Yes</td>
<td>Marginal habitat is present in seasonal wetlands in the study area, but species occurs only in Sonoma County and was not observed during blooming-period surveys</td>
<td></td>
</tr>
<tr>
<td>Big tarplant Blepharizonia plumosa</td>
<td>– – 1B.1</td>
<td>Valley and foothill grassland; 98–1,657 feet (30–505 meters)</td>
<td>July–October</td>
<td>Yes</td>
<td>Marginal habitat is present in the study area, but the species was not observed during blooming-period surveys</td>
<td></td>
</tr>
<tr>
<td>Narrow-anthered California brodiaea Brodiaea californica var. leptandra</td>
<td>– – 1B.2</td>
<td>Broadleaved upland forest, chaparral, and lower montane coniferous forest; 295–3,002 feet (90–915 meters)</td>
<td>May–July</td>
<td>No</td>
<td>No suitable vegetation communities are present in the study area</td>
<td></td>
</tr>
<tr>
<td>Mt. Diablo fairy-lantern Calochortus pulchellus</td>
<td>– – 1B.2</td>
<td>Cismontane woodland and chaparral; 98–2,756 feet (30–840 meters)</td>
<td>April–June</td>
<td>Yes</td>
<td>Marginal habitat is present in oak woodlands in the study area, but the species was not observed during blooming-period surveys</td>
<td></td>
</tr>
<tr>
<td>Tiburon Indian paintbrush Castilleja affinis ssp. neglecta</td>
<td>E T 1B.2</td>
<td>Serpentine grasslands; 197–1,312 feet (60–400 meters)</td>
<td>April–June</td>
<td>No</td>
<td>No suitable vegetation communities or soils are present in the study area</td>
<td></td>
</tr>
<tr>
<td>Holly-leaved ceanothus Ceanothus purpureus</td>
<td>– – 1B.2</td>
<td>Chaparral on volcanic, rocky substrate; 394–2,100 feet (120–640 meters)</td>
<td>February–April</td>
<td>No</td>
<td>No suitable vegetation communities or soils are present in the study area</td>
<td></td>
</tr>
<tr>
<td>Congdon’s tarplant Centromadia [Hemizonia] parryi ssp. congdonii</td>
<td>– – 1B.2</td>
<td>Annual grassland, on lower slopes, flats, and swales, sometimes on alkaline or saline soils; below 755 feet (230 meters)</td>
<td>June–November</td>
<td>Yes</td>
<td>Marginal habitat is present in the study area, but the species was not observed during blooming-period surveys</td>
<td></td>
</tr>
<tr>
<td>Common Name, Scientific Name</td>
<td>Legal Status</td>
<td>Geographic Distribution</td>
<td>Habitat Requirements</td>
<td>Blooming Period</td>
<td>Habitat Present in Study Area?</td>
<td>Rationale</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------</td>
<td>-------------------------</td>
<td>----------------------</td>
<td>-----------------</td>
<td>-------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Pappose tarplant Centromadia [Hemizonia] parryi ssp. parryi</td>
<td>– –</td>
<td>1B.2</td>
<td>Butte, Colusa, Glenn, Lake, Napa, San Mateo, Solano, and Sonoma Counties</td>
<td>Coastal prairie, meadows and seeps, coastal salt marshes and swamps, alkaline soils in vernaly mesic valley and foothill grassland; 7–1,378 feet (2–420 meters)</td>
<td>May–November</td>
<td>Yes</td>
</tr>
<tr>
<td>Bolander’s water-hemlock Cicuta maculata var. bolanderi</td>
<td>– –</td>
<td>2.1</td>
<td>Southern Sacramento Valley, Central Coast, South Coast</td>
<td>Coastal, freshwater, or brackish marshes and swamps; below 650 feet (200 meters)</td>
<td>July–September</td>
<td>No</td>
</tr>
<tr>
<td>Suisun thistle Cirsium hydrophilum var. hydrophilum</td>
<td>E –</td>
<td>1B.1</td>
<td>Suisun Marsh, Solano County</td>
<td>Salt marsh; 0–3 feet (0–1 meter)</td>
<td>July–September</td>
<td>No</td>
</tr>
<tr>
<td>Hispid bird’s-beak Cordylanthus mollis ssp. hispidus</td>
<td>– –</td>
<td>1B.1</td>
<td>Central Valley; Alameda, Kern, Merced, Placer, and Solano Counties</td>
<td>Meadow, grassland, and playa on alkaline soils below 150 meters</td>
<td>June–September</td>
<td>Yes</td>
</tr>
<tr>
<td>Soft bird’s-beak Cordylanthus mollis ssp. mollis</td>
<td>E R</td>
<td>1B.2</td>
<td>San Francisco Bay region and Suisun Marsh; Contra Costa, Marin(^b), Napa, Solano, Sacramento(^b), and Sonoma(^b) Counties</td>
<td>Tidal salt marsh; 0–10 feet (0–3 meters)</td>
<td>July–September</td>
<td>No</td>
</tr>
<tr>
<td>Subalpine cryptantha Cryptantha crymophila</td>
<td>– –</td>
<td>1B.3</td>
<td>Alpine, Mono, and Tuolumne Counties</td>
<td>Subalpine coniferous forest on volcanic, rocky substrates; 8530-10,500 feet (2600-3200 meters)</td>
<td>July–August</td>
<td>No</td>
</tr>
<tr>
<td>Recurved larkspur Delphinium recurvatum</td>
<td>– –</td>
<td>1B.2</td>
<td>San Joaquin Valley and Central Valley of the south Coast Ranges; Contra Costa County to Kern County</td>
<td>Subalkaline soils in annual grassland, saltbush scrub, cismontane woodland, and vernal pools at 98–2001 feet (30–610 meters)</td>
<td>March–May</td>
<td>Yes</td>
</tr>
<tr>
<td>Common Name, Scientific Name</td>
<td>Legal Status</td>
<td>Geographic Distribution</td>
<td>Habitat Requirements</td>
<td>Blooming Period</td>
<td>Habitat Present in Study Area?</td>
<td>Rationale</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------</td>
<td>-------------------------</td>
<td>----------------------</td>
<td>----------------</td>
<td>-------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Western leatherwood</td>
<td>–</td>
<td>San Francisco Bay region, Alameda, Contra Costa, Marin, Santa Clara, San Mateo, and Sonoma Counties</td>
<td>Moist areas in broadleaved upland forest, closed-cone coniferous forest, chaparral, cismontane woodland, North Coast coniferous forest, riparian forest, riparian woodland; 160-1295 feet (50-395 meters)</td>
<td>January–April</td>
<td>Yes</td>
<td>Potentially suitable habitat is present in riparian woodland in the study area, but study area is below known elevation range and species was not observed during blooming-period surveys</td>
</tr>
<tr>
<td>Dirca occidentalis</td>
<td>–</td>
<td>–</td>
<td>1B.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dwarf downingia</td>
<td>–</td>
<td>Central Valley</td>
<td>Vernal pools and valley and foothill grasslands; 3–1,460 feet (1–445 meters)</td>
<td>March–May</td>
<td>Yes</td>
<td>Marginal habitat is present in the study area, but the species was not observed during blooming-period surveys</td>
</tr>
<tr>
<td>Downingia pusilla</td>
<td>2.2</td>
<td>–</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streamside daisy</td>
<td>–</td>
<td>North Coast, from Humboldt County to Marin County; Solano County</td>
<td>Moist, rocky areas in broadleaved upland forest, cismontane woodland, North Coast coniferous forest, and ledges along rivers; 98–3,609 feet (30–1,100 meters)</td>
<td>June–October</td>
<td>Marginal habitat is present in the study area, but the species was not observed during blooming-period surveys</td>
<td></td>
</tr>
<tr>
<td>Erigeron bialetii</td>
<td>–</td>
<td>–</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greene’s narrow-leaved daisy</td>
<td>–</td>
<td>Lake, Napa, and Sonoma Counties</td>
<td>On serpentine or volcanic soils in chaparral; 262-950 feet (80–290 meters)</td>
<td>May–September</td>
<td>No</td>
<td>No suitable plant communities or soils (serpentine or volcanic) are present in the study area</td>
</tr>
<tr>
<td>Erigeron greenei</td>
<td>–</td>
<td>–</td>
<td>1B.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mt. Diablo buckwheat</td>
<td>–</td>
<td>Central inner north Coast Range, northern central coast, and northern San Francisco Bay Area: Alameda, Colusa, Lake, Marin, Napa, Santa Clara, San Mateo, Solano, and Sonoma Counties</td>
<td>On serpentine in chaparral, coastal prairie, valley and foothill grassland; 0–2,297 feet (0–700 meters)</td>
<td>June–September</td>
<td>No</td>
<td>No suitable soils (serpentine) are present in the study area</td>
</tr>
<tr>
<td>Eriogonum luteolum var. caninum</td>
<td>–</td>
<td>Historically known from</td>
<td>Coarse, sandy soils in chaparral, coastal scrub, valley and foothill grassland; 10–1,148 feet (3–350 meters)</td>
<td>April–September</td>
<td>No</td>
<td>Marginal habitat is present in the study area, but the species was not observed during blooming-period surveys</td>
</tr>
<tr>
<td>Common Name, Scientific Name</td>
<td>Legal Status</td>
<td>Geographic Distribution</td>
<td>Habitat Requirements</td>
<td>Blooming Period</td>
<td>Habitat Present in Study Area?</td>
<td>Rationale</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------</td>
<td>-------------------------</td>
<td>----------------------</td>
<td>----------------</td>
<td>-------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Fragrant fritillary</td>
<td>–</td>
<td>Coast Ranges from Marin County to San Benito County</td>
<td>Adobe soils of interior foothills, coastal prairie, coastal scrub, annual grassland, often on serpentine; 10–1,345 feet (3–410 meters)</td>
<td>February–April</td>
<td>Yes</td>
<td>Marginal habitat, but suitable soils unlikely to be present in the study area, and the species was not observed during blooming-period surveys</td>
</tr>
<tr>
<td>Fritillaria liliacea</td>
<td>–</td>
<td>Northern Sierra Nevada foothills, inner Coast Ranges foothills, and Sacramento Valley; Butte, Colusa, Glenn, Lake, Napa, Plumas, Solano, Tehama, and Yolo Counties</td>
<td>Chaparral, cismontane woodland, valley and foothill grassland, often on adobe soils; 197–2,313 feet (60–705 meters)</td>
<td>February–April</td>
<td>Yes</td>
<td>Marginal habitat is present in the study area, but the species was not observed during blooming-period surveys</td>
</tr>
<tr>
<td>Adobe lily</td>
<td>–</td>
<td>Coastal California: Sonoma and Marin Counties</td>
<td>Coastal bluff scrub; 50-500 feet (15-155 meters)</td>
<td>May–July</td>
<td>No</td>
<td>No suitable vegetation communities are present in the study area</td>
</tr>
<tr>
<td>Gilia pluriflora</td>
<td>–</td>
<td>Coastal California: Sonoma and Marin Counties</td>
<td>Coastal bluff scrub; 50-500 feet (15-155 meters)</td>
<td>May–July</td>
<td>No</td>
<td>No suitable vegetation communities are present in the study area</td>
</tr>
<tr>
<td>Woolly-headed gilia</td>
<td>–</td>
<td>Inner north Coast Ranges, Central Sierra Nevada foothills, Sacramento Valley and Modoc Plateau: Fresno, Lake, Lassen, Madera, Merced, Modoc, Placer, Sacramento, Shasta, Siskiyou, San Joaquin, Solano, and Tehama Counties; also Oregon</td>
<td>Clay soils in areas of shallow water, lakes margins and vernal pool margins; 33–7,792 feet (10–2,375 meters)</td>
<td>April–August</td>
<td>Yes</td>
<td>No suitable habitat (large vernal pools) is present in the study area, and the species was not observed during blooming-period surveys</td>
</tr>
<tr>
<td>Boggs Lake hedge-hyssop</td>
<td>E</td>
<td>San Francisco Bay Area: Alameda, Contra Costa, Marin$, San Francisco§, and San Mateo Counties; also reported from San Diego County</td>
<td>At chaparral/oak woodland ecotone, often in partial shade, on rocky soils; also coastal scrub, riparian woodland, grassland; 197–4,265 feet (60–1,300 meters)</td>
<td>March–June</td>
<td>Yes</td>
<td>Marginally suitable habitat is present in riparian woodland in the study area, but the species has no known occurrences in Solano County. Species was not observed during blooming-period surveys</td>
</tr>
<tr>
<td>Gratiola heterosepala</td>
<td>–</td>
<td>San Francisco Bay Area: Alameda, Contra Costa, Marin$, San Francisco§, and San Mateo Counties; also reported from San Diego County</td>
<td>At chaparral/oak woodland ecotone, often in partial shade, on rocky soils; also coastal scrub, riparian woodland, grassland; 197–4,265 feet (60–1,300 meters)</td>
<td>March–June</td>
<td>Yes</td>
<td>Marginally suitable habitat is present in riparian woodland in the study area, but the species has no known occurrences in Solano County. Species was not observed during blooming-period surveys</td>
</tr>
<tr>
<td>Pale yellow hayfield tarplant</td>
<td>–</td>
<td>Coastal California: Mendocino, Sonoma and Marin Counties</td>
<td>Coastal scrub, valley and foothill grassland, often in fallow fields; 80-1490 feet (25-455 meters)</td>
<td>April–October</td>
<td>Yes</td>
<td>Suitable habitat is present in fallow row crop fields in the study area, but species was not observed during blooming-period surveys</td>
</tr>
<tr>
<td>Common Name, Scientific Name</td>
<td>Legal Status</td>
<td>Geographic Distribution</td>
<td>Habitat Requirements</td>
<td>Blooming Period</td>
<td>Habitat Present in Study Area?</td>
<td>Rationale</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------</td>
<td>--------------------------</td>
<td>----------------------</td>
<td>----------------</td>
<td>-------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Brewer’s western flax</td>
<td>– – 1B.2</td>
<td>Southern north inner Coast Ranges, northeast San Francisco Bay region, and Mt. Diablo; Contra Costa, Napa, and Solano Counties</td>
<td>Serpentine slopes in chaparral and grasslands at 98–2,001 feet (30–610 meters)</td>
<td>May–July</td>
<td>No</td>
<td>No suitable vegetation communities, soils, or hydrologic conditions are present in the study area</td>
</tr>
<tr>
<td>Napa western flax</td>
<td>– – 1B.1</td>
<td>Alameda, Lake, Napa, and Stanislaus Counties</td>
<td>Chaparral on serpentine; 164–2,625 feet (50–800 meters)</td>
<td>May–July</td>
<td>No</td>
<td>No suitable vegetation communities or soils are present in the study area</td>
</tr>
<tr>
<td>Santa Cruz tarplant</td>
<td>T/ E 1B.1</td>
<td>Coastal slope of the Santa Cruz Mountains, Monterey and Santa Cruz Counties</td>
<td>Coastal terrace grasslands, coastal scrub, often on light sandy to sandy clay soils; 33-720 feet (10-220 meters)</td>
<td>June–October</td>
<td>No</td>
<td>No suitable vegetation communities or soils (sandy or sandy clay) are present in the study area</td>
</tr>
<tr>
<td>Carquinez goldenbush</td>
<td>– – 1B.1</td>
<td>Deltaic Sacramento Valley and Suisun Slough; Contra Costa and Solano Counties</td>
<td>Annual grassland on alkaline soils and flats generally below 69 feet (21 meters)</td>
<td>August–December</td>
<td>Yes</td>
<td>No suitable soils are present in the study area, and the species was not observed during blooming-period surveys</td>
</tr>
<tr>
<td>Northern California black walnut</td>
<td>– – 1B.1</td>
<td>Last two native stands in Napa and Contra Costa Counties; historically more widespread through southern north inner Coast Range, southern Sacramento Valley, northern San Joaquin Valley, and San Francisco Bay region</td>
<td>Riparian forest, riparian woodland; 0–1,444 feet (0–440 meters)</td>
<td>April–May</td>
<td>Yes</td>
<td>No native stands are present in the study area</td>
</tr>
<tr>
<td>Contra Costa goldfields</td>
<td>E – 1B.1</td>
<td>Napa and Solano Counties</td>
<td>Alkaline or saline vernal pools and swales below 1,542 feet (470 meters)</td>
<td>March–June</td>
<td>Yes</td>
<td>Marginal vegetation communities, but no suitable soils are present in the study area, and the species was not observed during blooming-period surveys</td>
</tr>
<tr>
<td>Delta tule pea</td>
<td>– – 1B.2</td>
<td>Central Valley and San Francisco Bay region; Alameda, Contra Costa, Fresno, Marin, Napa, Sacramento, San Benito, Santa Clara, San Joaquin, and Solano Counties</td>
<td>Coastal and estuarine marshes below 1,001 feet (305 meters)</td>
<td>May–September</td>
<td>No</td>
<td>No suitable vegetation communities are present in the study area</td>
</tr>
<tr>
<td>Common Name, Scientific Name</td>
<td>Legal Status*</td>
<td>Geographic Distribution</td>
<td>Habitat Requirements</td>
<td>Blooming Period</td>
<td>Habitat Present in Study Area?</td>
<td>Rationale</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------------</td>
<td>-------------------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>-------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Legenere
Legenere limosa</td>
<td>–</td>
<td>–</td>
<td>1B.1</td>
<td>Central Valley</td>
<td>Vernal pools</td>
<td>April–June</td>
</tr>
<tr>
<td>Heckard’s pepper-grass
Lepidium latipes var. heckardii</td>
<td>–</td>
<td>–</td>
<td>1B.2</td>
<td>Southern Sacramento Valley, Glenn, Solano, and Yolo Counties</td>
<td>On margins of alkali scalds in annual grassland; below 656 feet (200 meters)</td>
<td>March–May</td>
</tr>
<tr>
<td>Jepson’s leptosiphon
Leptosiphon jepsonii</td>
<td>–</td>
<td>–</td>
<td>1B.2</td>
<td>Lake, Napa, and Sonoma Counties</td>
<td>Chaparral and cismontane woodland, typically in volcanic soils, 330-1640 feet (100–500 meters)</td>
<td>March–May</td>
</tr>
<tr>
<td>Woolly-headed lessingia
Lessingia hololeuca</td>
<td>–</td>
<td>–</td>
<td>3</td>
<td>Southern north Coast Ranges; southern Sacramento Valley; northern San Francisco Bay region; Alameda, Monterey, Marin, Napa, Santa Clara, San Mateo, Solano, Sonoma, and Yolo Counties</td>
<td>Clay or serpentinite soils of coastal scrub, lower montane coniferous forest, valley and foothill grassland; 49–1,001 feet (15–305 meters)</td>
<td>June–October</td>
</tr>
<tr>
<td>Mason’s lilaeopsis
Lilaeopsis masonii</td>
<td>–</td>
<td>R</td>
<td>1B.1</td>
<td>Southern Sacramento Valley, Sacramento River–San Joaquin River Delta, and northeast San Francisco Bay Area; Alameda, Contra Costa, Marin”, Napa, Sacramento, San Joaquin, and Solano Counties</td>
<td>Freshwater or brackish marsh, in tidal zone, generally at sea level</td>
<td>April–November</td>
</tr>
<tr>
<td>Sebastopol meadowfoam
Limnanthes vinculans</td>
<td>E/</td>
<td>E</td>
<td>1B.1</td>
<td>Napa? and Sonoma Counties</td>
<td>Vernal pools, vernaly mesic grasslands and wet meadows; 50-1000 feet (15-305 meters)</td>
<td>April–May</td>
</tr>
<tr>
<td>Delta mudwort
Limosella subulata</td>
<td>–</td>
<td>–</td>
<td>2.1</td>
<td>Deltaic Central Valley: Contra Costa, Sacramento, San Joaquin, and Solano Counties; Oregon</td>
<td>Muddy or sandy intertidal flats and marshes, streambanks in riparian scrub generally at sea level; 0–10 feet (0–3 meters)</td>
<td>May–August</td>
</tr>
<tr>
<td>Common Name, Scientific Name</td>
<td>Legal Status</td>
<td>Geographic Distribution</td>
<td>Habitat Requirements</td>
<td>Blooming Period</td>
<td>Habitat Present in Study Area?</td>
<td>Rationale</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------</td>
<td>-------------------------</td>
<td>----------------------</td>
<td>----------------</td>
<td>-------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Mt. Diablo cottonweed Micropus amphibolus</td>
<td>– – 3.2</td>
<td>Coast Ranges from Lake County to Santa Barbara County</td>
<td>Rocky sites in broadleafed upland forest, mixed evergreen forest, oak woodland, chaparral, Valley and foothill grasslands; 148-2706 feet (45-825 meters)</td>
<td>March–May</td>
<td>No</td>
<td>No suitable soils are present in the study area, and study area is outside known range</td>
</tr>
<tr>
<td>Robust monardella Monardella villosa ssp. globosa</td>
<td>– – 1B.2</td>
<td>North Coast Ranges and eastern San Francisco Bay Area: Alameda, Contra Costa, Humboldt, Lake, Mendocino, Napa, Santa Clara, Santa Cruz, San Mateo, and Sonoma Counties</td>
<td>Grassy openings in oak woodland and chaparral, coastal scrub and grassland; 328–3,002 feet (100–915 meters)</td>
<td>June–July</td>
<td>No</td>
<td>Marginal habitat in the study area, which is below the known elevational range for the species, and the species was not observed during blooming-period surveys</td>
</tr>
<tr>
<td>Little mousetail Myosurus minimus ssp. apus</td>
<td>– – 3.1</td>
<td>Central Valley and South Coast from Butte County south to San Diego County; Baja California; Oregon</td>
<td>Valley and foothill grassland, alkaline vernal pools at 66–2,100 feet (20–640 meters)</td>
<td>March–June</td>
<td>Yes</td>
<td>Marginal vegetation communities present, but no suitable soils are present in the study area, and the species was not observed during blooming-period surveys</td>
</tr>
<tr>
<td>Baker’s navarretia Navarretia leucocephala ssp. bakeri</td>
<td>– – 1B.1</td>
<td>Inner North Coast Range, western Sacramento Valley: Colusa, Glenn, Lake, Mendocino, Marin, Napa, Solano, Sonoma, Tehama, and Yolo Counties</td>
<td>Vernal pools and swales in woodland, lower montane coniferous forest, mesic meadows, and grassland; generally below 5,709 feet (1,740 meters)</td>
<td>May–July</td>
<td>Yes</td>
<td>Marginal habitat is present in seasonal wetlands in the study area, but the species was not observed during blooming-period surveys</td>
</tr>
<tr>
<td>Colusa grass Neostapfia colusana</td>
<td>T E 1B.1</td>
<td>Central Valley; Colusa*, Glenn*, Merced, Solano, Stanislaus, and Yolo Counties</td>
<td>Adobe soils of vernal pools generally below 656 feet (200 meters)</td>
<td>May–September</td>
<td>Yes</td>
<td>Marginal habitat is present in seasonal wetlands in the study area, and heavy clay soils may occur in the study area, but the species was not observed during blooming-period surveys</td>
</tr>
<tr>
<td>Antioch Dunes evening-primrose Oenothera deltoides ssp. howellii</td>
<td>E E 1B.1</td>
<td>Northeast San Francisco Bay region, known from 3 native occurrences; Contra Costa and Sacramento Counties</td>
<td>Inland dunes generally below 98 feet (30 meters)</td>
<td>March–September</td>
<td>No</td>
<td>No suitable vegetation communities or soils are present in the study area</td>
</tr>
<tr>
<td>Common Name, Scientific Name</td>
<td>Legal Status</td>
<td>Geographic Distribution</td>
<td>Habitat Requirements</td>
<td>Blooming Period</td>
<td>Habitat Present in Study Area?</td>
<td>Rationale</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------</td>
<td>-------------------------</td>
<td>----------------------</td>
<td>----------------</td>
<td>-------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>San Joaquin Valley orcutt grass Orcuttia inaequalis</td>
<td>T E 1B.1</td>
<td>Scattered locations along east edge of the San Joaquin Valley and adjacent foothills, from Stanislaus County to Tulare County</td>
<td>Vernal pools; 33–2,477 feet (10–755 meters)</td>
<td>April–September</td>
<td>Yes</td>
<td>Marginal habitat is present in the study area, but the species was not observed during blooming-period surveys.</td>
</tr>
<tr>
<td>Bearded popcorn-flower Plagiobothrys hystriculus</td>
<td>– – 1B.1</td>
<td>Endemic to Solano County; last recorded in 1892; rediscovered in 2005</td>
<td>Mesic grasslands and vernal pools; 33–164 feet (10–50 meters)</td>
<td>April–May</td>
<td>Yes</td>
<td>Marginal habitat is present in seasonal wetlands in the study area, but species was not observed during blooming-period surveys.</td>
</tr>
<tr>
<td>Marin knotweed Polygonum marinense</td>
<td>– – 3.1</td>
<td>Coastal Marin, Marin, Napa, Solano, and Sonoma Counties</td>
<td>Coastal salt marsh, brackish marsh; 0–33 feet (0–10 meters)</td>
<td>April–October</td>
<td>Yes</td>
<td>No suitable habitat occurs in the study area.</td>
</tr>
<tr>
<td>Slender-leaved pondweed Potamogeton filiformis</td>
<td>– – 2.2</td>
<td>Scattered locations in California: Contra Costa, El Dorado, Lassen, Merced, Mono, Modoc, Mariposa, Placer, Santa Clara*, and Sierra Counties; Arizona, Nevada, Oregon, Washington</td>
<td>Freshwater marsh, shallow emergent wetlands and freshwater lakes, drainage channels; 984–7053 feet (300–2150 meters)</td>
<td>May–July</td>
<td>No</td>
<td>No suitable habitat occurs in the study area.</td>
</tr>
<tr>
<td>California beaked-rush Rhynchospora californica</td>
<td>– – 1B.1</td>
<td>Scattered occurrences in northern California; Butte, Mariposa, Marin, and Sonoma Counties</td>
<td>Freshwater marshes and seeps, bogs and fens, and lower montane coniferous forest; 131–3,314 feet (40–1,010 meters)</td>
<td>May–July</td>
<td>Yes</td>
<td>No suitable habitat occurs in the study area.</td>
</tr>
<tr>
<td>Rayless ragwort Senecio aphanactis</td>
<td>– – 2.2</td>
<td>Scattered locations in central western and southwestern California, from Alameda County to San Diego County</td>
<td>Oak woodland, coastal scrub, open sandy or rocky areas, on alkaline soils; 49–2,625 feet (15–800 meters)</td>
<td>January–April</td>
<td>Yes</td>
<td>Marginal habitat is present in oak woodlands in the study area, but the species was not observed during blooming-period surveys.</td>
</tr>
<tr>
<td>Napa checkerbloom Sidalcea hickmanii ssp. napensis</td>
<td>– – 1B.1</td>
<td>Napa county</td>
<td>Rhyolitic soils in chaparral; 1361–2000 feet (415–610 meters)</td>
<td>April–June</td>
<td>No</td>
<td>No suitable vegetation communities or soils are present in the study area, and study area is below the known elevation range.</td>
</tr>
<tr>
<td>Common Name, Scientific Name</td>
<td>Legal Status</td>
<td>Geographic Distribution</td>
<td>Habitat Requirements</td>
<td>Blooming Period</td>
<td>Habitat Present in Study Area?</td>
<td>Rationale</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------</td>
<td>-------------------------</td>
<td>----------------------</td>
<td>----------------</td>
<td>-------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Marin checkerbloom Sidalcea hickmanii ssp. viridis</td>
<td>– – 1B.3</td>
<td>Sonoma County to San Mateo County</td>
<td>Openings in chaparral on volcanic or serpentinite substrates; 164–1,411 feet (50–430 meters)</td>
<td>May–June</td>
<td>No</td>
<td>No suitable vegetation communities or soils are present in the study area</td>
</tr>
<tr>
<td>Keck’s checkerbloom Sidalcea keckii</td>
<td>E – 1B.1</td>
<td>Fresno and Tulare Counties</td>
<td>Serpentine clay soils in cismontane woodland, valley and foothill grassland; 393-1394 feet (120-425 meters)</td>
<td>April-May</td>
<td>Yes</td>
<td>No suitable soils are present in the study area, and study area is below the known elevation range</td>
</tr>
<tr>
<td>Suisun marsh aster Symphyotrichum lentum [Ast er lentus]</td>
<td>– – 1B.2</td>
<td>Sacramento River–San Joaquin River Delta, Suisun Marsh, and Suisun Bay; Contra Costa, Napa, Sacramento, San Joaquin, and Solano Counties</td>
<td>Tidal brackish and freshwater marsh below 492 feet (150 meters)</td>
<td>May–November</td>
<td>No</td>
<td>No suitable hydrologic conditions (tidal areas) are present in the study area</td>
</tr>
<tr>
<td>Napa bluecurls Trichostema ruygtii</td>
<td>– – 1B.2</td>
<td>Lake and Napa Counties</td>
<td>Cismontane woodland, lower montane coniferous forest, valley and foothill grassland, vernal pools; 98-197 feet (30-60 meters)</td>
<td>June-October</td>
<td>Yes</td>
<td>Marginal habitat is present in seasonal wetlands in the study area, but species was not observed during blooming-period surveys</td>
</tr>
<tr>
<td>Showy Indian clover Trifolium amoenum</td>
<td>E – 1B.1</td>
<td>Coast Range foothills in the San Francisco Bay region; currently known from Marin County</td>
<td>Low elevation grasslands, including swales and disturbed areas, sometimes on serpentinite soils; 13–1,362 feet (4–415 meters)</td>
<td>April–June</td>
<td>Yes</td>
<td>Marginal habitat is present in the study area, but the species was not observed during blooming-period surveys</td>
</tr>
<tr>
<td>Saline clover Trifolium depauperatum var. hydrophilum</td>
<td>– – 1B.2</td>
<td>Alameda, Monterey, Napa, San Benito, Santa Clara, San Luis Obispo, San Mateo, Solano, and Sonoma Counties</td>
<td>Salt marsh, mesic alkaline areas in grasslands, vernal pools; 0–984 feet (0–300 meters)</td>
<td>April–June</td>
<td>Yes</td>
<td>Marginal habitat, but no suitable soils are present in the study area, and the species was not observed during blooming-period surveys</td>
</tr>
<tr>
<td>Greene’s tuctoria Tuctoria greenei</td>
<td>E R 1B.1</td>
<td>Scattered distribution along eastern Central Valley and foothills from Shasta County to Tulare County</td>
<td>Dry vernal pools at 98–3,510 feet (30–1,070 meters)</td>
<td>May–September</td>
<td>Yes</td>
<td>Marginal habitat is present in seasonal wetlands in the study area, but the species was not observed during blooming-period surveys</td>
</tr>
<tr>
<td>Common Name, Scientific Name</td>
<td>Legal Status</td>
<td>Geographic Distribution</td>
<td>Habitat Requirements</td>
<td>Blooming Period</td>
<td>Habitat Present in Study Area?</td>
<td>Rationale</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--------------</td>
<td>---</td>
<td>---</td>
<td>----------------</td>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Oval-leaved viburnum, Viburnum ellipticum</td>
<td>– State CNPS</td>
<td>Northwest California, San Francisco Bay Area, and north and central Sierra Nevada foothills; Contra Costa, Fresno, El Dorado, Glenn, Humboldt, Mendocino, Napa, Shasta, and Sonoma Counties, as well as Oregon and Washington</td>
<td>Chaparral, cismontane woodland, and lower montane coniferous forest; 705–4,593 feet (215–1,400 meters)</td>
<td>May–June</td>
<td>No</td>
<td>No suitable habitat is present in the study area, and the study area is below the elevational range for the species</td>
</tr>
</tbody>
</table>

* Status explanations:

Federal
- E = listed as endangered under the federal Endangered Species Act.
- T = listed as threatened under the federal Endangered Species Act.

State
- E = listed as endangered under the California Endangered Species Act.
- T = listed as threatened under the California Endangered Species Act.
- R = listed as rare under the California Native Plant Protection Act; this category is no longer used for newly listed plants, but some plants previously listed as rare retain this designation.

California Native Plant Society
- 1B = List 1B species: rare, threatened, or endangered in California and elsewhere.
- 2 = List 2 species: rare, threatened, or endangered in California but more common elsewhere.
- 3 = List 3 species: plants about which more information is needed to determine their status.

California Native Plant Society Code Extensions:
- .1 = seriously endangered in California (over 80% of occurrences threatened/high degree and immediacy of threat).
- .2 = fairly endangered in California (20%–80% of occurrences threatened).
- .3 = not very endangered in California (<20% of occurrences threatened or not current threats known).

b Known populations believed extirpated from that county.
2.3.4 Native Trees

Regulatory Setting
The City of Fairfield Tree Conservation ordinance (FCC 25.36) protects native trees, including native oaks (*Quercus* spp.), bay laurel (*Umbellularia californica*), madrone (*Arbutus menziesi*), and California buckeye (*Aesculus californica*), that are greater than 6 inches in diameter at breast height (dbh). Removal of these trees requires a permit and on-site or off-site replacement for the removed trees on an inch-for-inch basis. Most of the study area is outside the Fairfield city limit line, and no native trees occur in that area. Native trees in the remainder of the project area are not protected under the ordinance.

Affected Environment
The City of Fairfield Tree Conservation ordinance regulates the removal of mature native trees, but most of the study area is outside the Fairfield city limit line, and no native trees occur in the part of the study area that is within the city limit. Native trees in the remainder of the project area are not protected under the City of Fairfield ordinance, and Solano County has no specific tree protection requirements outside of hillsides and visually sensitive areas. However, most native trees in the study area occur within or adjacent to riparian and oak woodland communities. These trees are still considered sensitive resources because they occur in natural communities of special concern.

Tree surveys of the study area were conducted on November 20 and December 30, 2007, to map the locations using global positioning system (GPS) of all native trees and to record the species and dbh of each mapped tree. The locations of individual native trees that occur outside the mapped riparian and oak woodland communities are presented in Figure 2.3-1, and information for each tree is listed in Appendix D of the NES (ICF Jones & Stokes 2008i).

Environmental Consequences
Native trees are not protected under any applicable federal statute. Impacts to native trees are discussed as CEQA only impacts in Chapter 3.

2.3.5 Animal Species

Regulatory Setting
Many state and federal laws regulate impacts on wildlife. The USFWS, the National Oceanic and Atmospheric Administration’s National Marine Fisheries Service (NMFS), and the DFG are responsible for implementing these laws. This section discusses potential impacts and permit requirements associated with wildlife not listed or proposed for listing under the ESA or the CESA. Species listed or proposed for listing as threatened or endangered are discussed in the “Threatened and Endangered Species” section below. All other special-status animal species are discussed here, including DFG fully protected species and species of special concern, and USFWS or NMFS candidate species.

Federal laws and regulations pertaining to wildlife include the following.

- NEPA.
The Migratory Bird Treaty Act (MBTA).

State laws and regulations pertaining to wildlife include the following.

- CEQA.
- Sections 1600–1603 of the CFGC.
- Sections 3503, 3503.5, 3511, and 3513 of the CFGC.
- Section 4150 and 4152 of the CFGC.

During prefield investigations, 31 special-status wildlife species and 11 special-status fish species were determined to have the potential to occur in the project region (Table 2.3-3). Following field surveys, the following special-status wildlife species (western pond turtle, white-tailed kite, western burrowing owl, loggerhead shrike, migratory birds and raptors, swallows, and roosting bats) and special-status fish species (river lamprey) were determined to have potential to occur in the study area, based on the presence or absence of suitable habitat.

Western Pond Turtle
Western pond turtle is designated as a state species of special concern. Western pond turtle, one of two subspecies of western pond turtle, occurs from the vicinity of the American River in California to the lower Columbia River in Oregon and Washington (Jennings et al. 1992).

Western pond turtles are thoroughly aquatic, preferring the quiet waters of ponds, reservoirs, and sluggish streams (Stebbins 2003). The species occurs in a wide range of both permanent and intermittent aquatic environments (Jennings et al. 1992). Western pond turtles spend considerable time basking on rocks, logs, emergent vegetation, mud or sand banks, and human-generated debris. They move up to 1,300 feet or more into upland areas adjacent to watercourses where they deposit eggs and overwinter (Jennings and Hayes 1994). Western pond turtles typically become active in March and return to overwintering sites by October or November (Jennings et al. 1992).

Affected Environment
No western pond turtles were observed within or adjacent to Suisun Creek during the CRLF site assessment surveys in late summer 2007 or during the preconstruction swallow nest surveys in spring 2008 for the I-80 high occupancy vehicle (HOV) lanes project. The nearest western pond turtle was observed in Ledgewood Creek (which also drains into Suisun Bay) at I-80 in April 2008 during construction monitoring surveys for the I-80 HOV lanes project. There is moderate potential for western pond turtles to move through Suisun Creek in the project area, and turtles could nest or overwinter in upland habitat adjacent to Suisun Creek.

Environmental Consequences
Western pond turtles are very sensitive to disturbances and quickly retreat into the water when threatened. Pond turtles are not expected to be present in upland habitat in the study area where construction will occur during summer and early fall; instead they are expected to be in the creek. In addition, a biological monitor will be present during construction to ensure that there is exclusion fencing between construction activities and the creek. Thus, there will be no adverse effects on western pond turtles.
<table>
<thead>
<tr>
<th>Common Name, Scientific Name</th>
<th>Legal Status</th>
<th>Geographic Distribution</th>
<th>Habitat Requirements</th>
<th>Habitat Present in Study Area?</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invertebrates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conservancy fairy shrimp</td>
<td>E –</td>
<td>Disjunct occurrences in Solano, Merced, Tehama, Ventura, Butte, and Glenn Counties</td>
<td>Large deep vernal pools in annual grasslands</td>
<td>No</td>
<td>Suitable habitat (large, deep vernal pools) is not present in or near the study area</td>
</tr>
<tr>
<td>Branchinecta conservatio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vernal pool fairy shrimp</td>
<td>T –</td>
<td>Central Valley and central and south Coast Ranges from Tehama County to Santa Barbara County; isolated populations also in Riverside County</td>
<td>Common in vernal pools; also found in sandstone rock outcrop pools</td>
<td>No</td>
<td>Suitable habitat (vernal pools) is not present in or near the study area</td>
</tr>
<tr>
<td>Branchinecta lynchi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vernal pool tadpole shrimp</td>
<td>E –</td>
<td>Shasta County to Merced County</td>
<td>Vernal pools and ephemeral stock ponds</td>
<td>No</td>
<td>Suitable habitat (vernal pools) is not present in or near the study area</td>
</tr>
<tr>
<td>Lepidurus packardi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>California freshwater shrimp</td>
<td>E E</td>
<td>Endemic to Marin, Napa, and Sonoma Counties; extant populations in Lagunitas Creek in Marin County; Huichica Creek in Napa County; and Franz, East Austin, Sonoma, and Salmon Creeks in Sonoma County</td>
<td>Pool areas of low-elevation, low-gradient, permanent streams; among live tree roots of undercut banks; and under overhanging woody debris or vegetation</td>
<td>No</td>
<td>The study area is outside the known range of the species (53 FR 43884)</td>
</tr>
<tr>
<td>Syncaris pacifica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delta green ground beetle</td>
<td>T –</td>
<td>Restricted to Ocolt Lake and other vernal pools at Jepson Prairie Preserve in central Solano County</td>
<td>Sparsely vegetated edges of vernal lakes and pools, occurring up to 250 feet from pools</td>
<td>No</td>
<td>The study area is outside the known range of the species; the closest record occurs approximately 13 miles east of the study area at Jepson Prairie Preserve</td>
</tr>
<tr>
<td>Elaphrus viridus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valley elderberry longhorn beetle</td>
<td>T –</td>
<td>Streamside habitats below 3,000 feet above sea level throughout the Central Valley</td>
<td>Riparian and oak savanna habitats with elderberry shrubs and streamside habitats below 3,000 feet above sea level; elderberries are the host plant</td>
<td>Yes</td>
<td>Five elderberry shrubs are present in the study area</td>
</tr>
<tr>
<td>Desmocerus californicus dimorphus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Callippe silverspot</td>
<td>E –</td>
<td>San Bruno Mountains, San Mateo County, and a single location in Alameda County</td>
<td>Open hillsides where wild pansy (Viola pendunculata) grows; larvae feed on Johnny jump-up plants, whereas adults feed on native mints and nonnative thistles</td>
<td>No</td>
<td>Suitable habitat (populations of Johnny jump-up plants) is not present in the study area</td>
</tr>
<tr>
<td>Speyeria callippe callippe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common Name, Scientific Name</td>
<td>Legal Status</td>
<td>Geographic Distribution</td>
<td>Habitat Requirements</td>
<td>Habitat Present in Study Area?</td>
<td>Comments</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------</td>
<td>-------------------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Amphibians</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>California red-legged frog</td>
<td>T</td>
<td>SSC</td>
<td>Along the coast and coastal mountain ranges of California from Marin County to San Diego County and in the Sierra Nevada from Tehama County to Fresno County</td>
<td>Permanent and semipermanent aquatic habitats, such as creeks and coldwater ponds, with emergent and submergent vegetation; may aestivate in rodent burrows or cracks during dry periods</td>
<td>Yes</td>
</tr>
<tr>
<td>Rana aurora draytoni</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>California tiger salamander</td>
<td>T</td>
<td>SSC</td>
<td>Central Valley, including Sierra Nevada foothills, up to approximately 1,000 feet above sea level and coastal region from Butte County to northeastern San Luis Obispo County</td>
<td>Valley floor grasslands or low (below 1,500 feet above sea level) foothill elevations where lowland aquatic sites like large vernal pools, playa pools, sag ponds, and stock ponds are available for breeding; upland habitat consists of small mammal burrows within approximately 2,200 feet of breeding habitat</td>
<td>No</td>
</tr>
<tr>
<td>Ambystoma californiense</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reptiles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Giant garter snake</td>
<td>T</td>
<td>T</td>
<td>Central Valley from the vicinity of Burrel in Fresno County to near Chico in Butte County; extirpated from areas south of Fresno</td>
<td>Sloughs, canals, low-gradient streams, and freshwater marshes where there is a prey base of small fish and amphibians; also irrigation ditches and rice fields; requires grassy banks and emergent vegetation for basking and areas of high ground protected from flooding during winter</td>
<td>No</td>
</tr>
<tr>
<td>Thamnophis couchi gigas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northwestern pond turtle</td>
<td>–</td>
<td>SSC</td>
<td>Occurs from the Oregon border of Del Norte and Siskiyou Counties along the coast to San Francisco Bay, inland through the Sacramento Valley, and on the western slope of the Sierra Nevada</td>
<td>Ponds, marshes, rivers, streams, and irrigation canals with muddy or rocky bottoms and with watercress, cattails, water lilies, or other aquatic vegetation in woodlands, grasslands, and open forests</td>
<td>Yes</td>
</tr>
<tr>
<td>Actinemys marmorata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alameda whipsnake</td>
<td>T</td>
<td>T</td>
<td>Restricted to Alameda and Contra Costa Counties</td>
<td>Valleys, foothills, and low mountains associated with northern coastal scrub or chaparral habitat; requires rock outcrops for cover and foraging</td>
<td>No</td>
</tr>
<tr>
<td>Masticophis lateralis euryxanthus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common Name, Scientific Name</td>
<td>Legal Status*</td>
<td>Geographic Distribution</td>
<td>Habitat Requirements</td>
<td>Habitat Present in Study Area?</td>
<td>Comments</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------</td>
<td>-------------------------</td>
<td>----------------------</td>
<td>-------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Birds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>California brown pelican</td>
<td>E</td>
<td>Present along the entire coastline but does not breed north of Monterey County; extremely rare inland</td>
<td>Typically in littoral ocean zones, just outside the surf line; nests on offshore islands</td>
<td>No</td>
<td>No suitable habitat (open water) is present in the study area</td>
</tr>
<tr>
<td>Pelecanus occidentalis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>californicus</td>
<td>State</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern harrier</td>
<td>–</td>
<td>Throughout lowland California; has been recorded in fall at high elevations</td>
<td>Grasslands, meadows, marshes, and seasonal and agricultural wetlands</td>
<td>No</td>
<td>No suitable nesting foraging habitat is present in the study area</td>
</tr>
<tr>
<td>Circus cyaneus</td>
<td>SSC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White-tailed kite</td>
<td>–</td>
<td>Lowland areas west of Sierra Nevada from the head of the Sacramento Valley south, including coastal valleys and foothills, to western San Diego County at the Mexico border</td>
<td>Low foothills or valley areas with valley or live oaks, riparian areas, and marshes near open grasslands for foraging</td>
<td>Yes</td>
<td>Riparian habitat along the perennial and seasonal drainages provides potential nesting habitat in the study area</td>
</tr>
<tr>
<td>Elanus leucurus</td>
<td>FP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swainson’s hawk</td>
<td>–</td>
<td>Lower Sacramento and San Joaquin Valleys, Klamath Basin, and Butte Valley; highest nesting densities occur near Davis and Woodland, Yolo County</td>
<td>Nests in oaks or cottonwoods in or near riparian habitats; forages in grasslands, irrigated pastures, and grain fields</td>
<td>Yes</td>
<td>Riparian habitat throughout the study area provides potential nesting habitat</td>
</tr>
<tr>
<td>Buteo swainsoni</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Western burrowing owl</td>
<td>–</td>
<td>Lowlands throughout California, including the Central Valley, northeastern plateau, southeastern deserts, and coastal areas; rare along south coast</td>
<td>Level, open, dry, heavily grazed or low-stature grassland or desert vegetation with available burrows; also occurs along agricultural ditches and abandoned lots</td>
<td>Yes</td>
<td>Suitable nesting habitat is present in the study area</td>
</tr>
<tr>
<td>Athene cunicularia</td>
<td>SSC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hypugea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern spotted owl</td>
<td>T</td>
<td>A permanent resident throughout its range; found in the north Coast, Klamath, and western Cascade Range from Del Norte County to Marin County</td>
<td>Dense old-growth or mature forests dominated by conifers with topped trees or oaks available for nesting crevices</td>
<td>No</td>
<td>No suitable habitat and study area is outside of its geographical range</td>
</tr>
<tr>
<td>Strix occidentalis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>caurina</td>
<td>SSC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loggerhead shrike</td>
<td>–</td>
<td>Resident and winter visitor in lowlands and foothills throughout California; rare on coastal slope north of Mendocino County, occurring only in winter</td>
<td>Prefers open habitats with scattered shrubs, trees, posts, fences, utility lines, or other perches</td>
<td>Yes</td>
<td>Suitable nesting habitat is present in the study area</td>
</tr>
<tr>
<td>Common Name, Scientific Name</td>
<td>Legal Status*</td>
<td>Geographic Distribution</td>
<td>Habitat Requirements</td>
<td>Habitat Present in Study Area?</td>
<td>Comments</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------</td>
<td>------------------------</td>
<td>---------------------</td>
<td>-----------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>California clapper rail Rallus longirostris oboletus</td>
<td>E –</td>
<td>Marshes around San Francisco Bay and east through the Sacramento–San Joaquin River Delta to Suisun Marsh</td>
<td>Restricted to salt marshes and tidal sloughs; usually associated with heavy growth of pickleweed; feeds on mollusks removed from the mud in sloughs</td>
<td>No</td>
<td>No suitable habitat (marsh and slough) is present in the study area</td>
</tr>
<tr>
<td>California black rail Laterallus jamaicensis coturniculus</td>
<td>– T, FP</td>
<td>Known from the San Francisco Bay area and the Sacramento–San Joaquin River Delta of the south along the coast to northern Baja California and in Yuba County</td>
<td>Inhabits saltwater, brackish, and freshwater marshes</td>
<td>No</td>
<td>No suitable habitat is present in the study area</td>
</tr>
<tr>
<td>California least tern Sterna antillarum</td>
<td>E E</td>
<td>Nests on beaches along San Francisco Bay and along the southern California coast from southern San Luis Obispo County to San Diego County</td>
<td>Nests on sandy, upper ocean beaches, and occasionally uses mudflats; forages on adjacent surf line, estuaries, or the open ocean</td>
<td>No</td>
<td>No suitable habitat (sandy beaches and mudflats) is present in the study area</td>
</tr>
<tr>
<td>Snowy plover Charadrius alexandrinus nivosus</td>
<td>T –</td>
<td>Population defined as those birds that nest adjacent to or near tidal waters, including all nests along the mainland coast, peninsulas, offshore islands, and adjacent bays and estuaries; 20 breeding sites are known in California from Del Norte to San Diego County</td>
<td>Coastal beaches above the normal high tide limit in flat, open areas with sandy or saline substrates; vegetation and driftwood are usually sparse or absent</td>
<td>No</td>
<td>No suitable habitat (sandy beaches) present in the study area</td>
</tr>
<tr>
<td>Saltmarsh common yellowthroat Geothlypis trichas sinuosa</td>
<td>– SSC</td>
<td>The breeding range of salt marsh common yellowthroat as described by Grinnell and Miller (1944) is bounded by Tomales Bay on the north, Carquinez Strait on the east, and Santa Cruz County on the south</td>
<td>In California, yellowthroats are found in freshwater marshes, coastal swales, swampy riparian thickets, brackish marshes, salt marshes, and the edges of disturbed weed fields and grasslands that border soggy habitats (Shuford 1993)</td>
<td>No</td>
<td>No suitable habitat is present in the study area</td>
</tr>
<tr>
<td>Suisun song sparrow Melospiza melodia maxillaris</td>
<td>– SSC</td>
<td>The Suisun song sparrow is a distinct subspecies completely endemic to Suisun Bay</td>
<td>Intermixed stands of bulrush, cattail, and other emergent vegetation provide ideal habitat</td>
<td>No</td>
<td>No suitable habitat is present in the study area</td>
</tr>
<tr>
<td>Common Name, Scientific Name</td>
<td>Legal Status</td>
<td>Geographic Distribution</td>
<td>Habitat Requirements</td>
<td>Habitat Present in Study Area?</td>
<td>Comments</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------</td>
<td>-------------------------</td>
<td>----------------------</td>
<td>-------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Mammals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suisun shrew Sorex ornatus sinuosus</td>
<td>–</td>
<td>SSC</td>
<td>Found in the tidal marshes of the northern shores of San Pablo and Suisun Bays, as far east as Grizzly Island, and as far west as Sonoma Creek and Tubbs Island; also observed near Petaluma and north of San Rafael in Marin County</td>
<td>Occupies tidal marshes that provide dense cover, abundant food (primarily invertebrates), suitable nesting sites, and fairly continuous ground moisture</td>
<td>No</td>
</tr>
<tr>
<td>Salt marsh harvest mouse Reithrodontomys raviventris</td>
<td>E</td>
<td>E, FP</td>
<td>Vicinity of San Francisco, San Pablo, and Suisun Bays and the Sacramento River–San Joaquin River Delta</td>
<td>Salt marshes with a dense plant cover of pickleweed and fat hen; adjacent to an upland site</td>
<td>No</td>
</tr>
<tr>
<td>Pallid bat Antrozous pallidus</td>
<td>–</td>
<td>SSC</td>
<td>Found throughout California</td>
<td>Day roosts include rock outcrops, mines, caves, hollow trees, buildings, and bridges; recent research suggests high reliance on tree roosts</td>
<td>Yes</td>
</tr>
<tr>
<td>Long-eared bat Myotis evotis</td>
<td>WBWG: Medium priority</td>
<td>Found throughout California</td>
<td>Day roosts in hollow trees under exfoliating bark and crevices in rock outcrops; found roosting under bark of small black oaks in northern California</td>
<td>Yes</td>
<td>Suitable roosting habitat occurs in the structures</td>
</tr>
<tr>
<td>Fringed myotis bat Myotis thysanodes</td>
<td>WBWG: High priority</td>
<td>Found throughout most of California</td>
<td>Roosts in colonies in caves, cliffs, and attics of old buildings; also will use trees as day roosts</td>
<td>Yes</td>
<td>Suitable roosting habitat occurs in the structures</td>
</tr>
<tr>
<td>Yuma myotis Myotis yumanensis</td>
<td>–</td>
<td>WBWG: Low medium priority</td>
<td>Considered common and widespread in northern California up to 5,000 feet above sea level; colonies known from Marin and San Francisco Counties</td>
<td>Found in desert scrub, pinyon-juniper woodlands, and other open woodlands and forests; open water is a key habitat element for this species. Roosts colonially in a variety of natural and artificial sites, including caves, mines, buildings, bridges, and trees</td>
<td>Yes</td>
</tr>
<tr>
<td>Common Name, Scientific Name</td>
<td>Legal Status</td>
<td>Geographic Distribution</td>
<td>Habitat Requirements</td>
<td>Habitat Present in Study Area?</td>
<td>Comments</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------</td>
<td>-------------------------</td>
<td>---------------------</td>
<td>-----------------------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>Federal</td>
<td>State</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delta smelt Hypomesus transpacificus</td>
<td>T</td>
<td>T</td>
<td>Sacramento River–San Joaquin River Delta</td>
<td>Euryhaline estuary channels</td>
<td>No</td>
</tr>
<tr>
<td>Coho salmon—central California coast evolutionarily significant unit Oncorhynchus kisutch</td>
<td>E</td>
<td>E</td>
<td>Coastal streams from San Francisco Bay to Punta Gorda and coastal marine waters from California to Alaska</td>
<td>Coastal anadromous coldwater streams</td>
<td>No</td>
</tr>
<tr>
<td>Central California coast steelhead distinct population segment (DPS) Oncorhynchus mykiss</td>
<td>T</td>
<td>–</td>
<td>Coastal streams from the Russian River to Aptos Creek; tributaries to San Francisco, San Pablo, and Suisun Bays; Suisun Marsh; and coastal marine waters off California</td>
<td>Coldwater anadromous streams</td>
<td>Yes</td>
</tr>
<tr>
<td>California central valley steelhead DPS Oncorhynchus mykiss</td>
<td>T</td>
<td>–</td>
<td>The Sacramento and San Joaquin Rivers and their tributaries, excluding San Francisco and San Pablo Bays and their tributaries, and coastal marine waters off California</td>
<td>Coldwater anadromous streams</td>
<td>No</td>
</tr>
<tr>
<td>Central valley spring-run Chinook salmon Oncorhynchus tshawytsha</td>
<td>T</td>
<td>T</td>
<td>Tributaries to the upper Sacramento River, primarily Butte, Big Chico, Deer, and Mill Creeks, and coastal marine waters off California</td>
<td>Higher-elevation tributaries to the Sacramento River</td>
<td>No</td>
</tr>
<tr>
<td>Winter-run chinook salmon Oncorhynchus tshawytsha</td>
<td>E</td>
<td>E</td>
<td>Upper mainstem Sacramento River, Sacramento River–San Joaquin River Delta (juveniles), and coastal marine waters off California</td>
<td>Spring-fed headwaters to the Sacramento River</td>
<td>No</td>
</tr>
<tr>
<td>River lamprey Lampetra ayresi</td>
<td>–</td>
<td>SSC</td>
<td>Exact range unknown but includes coastal streams from Alaska to San Francisco Bay; in California, it is found within lower Sacramento and San Joaquin Rivers, Napa River, Sonoma Creek, Alameda Creek, Salmon Creek, Russian River tributaries, and tributaries to San Francisco Bay</td>
<td>Habitat requirements poorly understood but include anadromous streams with gravel riffle for spawning and soft-bottomed areas for rearing</td>
<td>Yes</td>
</tr>
<tr>
<td>Common Name, Scientific Name</td>
<td>Legal Status*</td>
<td>Geographic Distribution</td>
<td>Habitat Requirements</td>
<td>Habitat Present in Study Area?</td>
<td>Comments</td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
<td>--</td>
<td>--</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Sacramento splittail Pogonichthys macrolepidotus</td>
<td></td>
<td>Largely confined to Sacramento River–San Joaquin River Delta, Napa River, Petaluma River, Sacramento River, and Suisun Marsh</td>
<td>Shallow-water, low-salinity habitats throughout slow areas of rivers and sloughs; areas of flooded vegetation for spawning and rearing</td>
<td>No</td>
<td>The project area is outside the known range for this species</td>
</tr>
<tr>
<td>Green sturgeon Acipenser medirostris</td>
<td>T</td>
<td>In marine waters of the Pacific Ocean from the Bering Sea to Ensenada, Mexico. In rivers from British Columbia south to the Sacramento River, primarily in the Klamath/Trinity and Sacramento Rivers</td>
<td>Primarily marine, using large anadromous freshwater rivers and associated estuaries for spawning and rearing</td>
<td>No</td>
<td>The project area does not include large rivers and is not within the primary range of the species</td>
</tr>
<tr>
<td>Central valley fall/late fall–run Chinook salmon Oncorhynchus tshawytsha</td>
<td>SC</td>
<td>Sacramento and San Joaquin Rivers and their tributaries, as well as some tributaries to San Francisco Bay</td>
<td>Lower-elevation coldwater anadromous streams</td>
<td>Yes</td>
<td>The project is located in inland freshwater anadromous stream habitats draining to Suisun Marsh, designated essential fish habitat; species occurrence was documented in Suisun Creek</td>
</tr>
<tr>
<td>Longfin smelt Spirinchus thaleichthys</td>
<td></td>
<td>Within California, mostly in the Sacramento River–San Joaquin River Delta, but also in Humboldt Bay, Eel River estuary, and Klamath River estuary</td>
<td>Salt or brackish estuary waters with freshwater inputs for spawning</td>
<td>No</td>
<td>No suitable habitat in the project area</td>
</tr>
</tbody>
</table>

* Status explanations:

- Federal
 - E = listed as endangered under the federal Endangered Species Act.
 - T = listed as threatened under the federal Endangered Species Act.
 - SC = species of concern; species for which existing information indicates it may warrant listing but for which substantial biological information to support a proposed rule is lacking.
 - P = officially proposed (in the Federal Register) for listing as endangered or threatened.
 - C = candidate to become a proposed species.

- State
 - E = listed as endangered under the California Endangered Species Act.
 - T = listed as threatened under the California Endangered Species Act.
 - FP = fully protected under the California Fish and Game Code.
 - SSC = species of special concern in California.

- High priority = species are imperiled or at high risk of imperilment.
- Moderate priority = This designation indicates a level of concern that should warrant closer evaluation, more research, and conservation actions of both the species and possible threats. A lack of meaningful information is a major obstacle in adequately assessing these species’ status and should be considered a threat.
- Low priority = While there may be localized concerns, the overall status of the species is believed to be secure.
Avoidance, Minimization, and/or Mitigation Measures

No additional avoidance, minimization, or mitigation measures for western pond turtle are necessary.

White-Tailed Kite

White-tailed kite is a fully protected species under CFGC 3511. The species has a restricted distribution in the United States, occurring only in California, western Oregon, and along the Texas coast (American Ornithologists’ Union 1983). The species is fairly common in California’s Central Valley lowlands. White-tailed kites nest in riparian and oak woodlands and forage in nearby grasslands, pastures, agricultural fields, and wetlands. White-tailed kites use nearby treetops for perching and nesting sites. Voles and mice are common prey species.

Affected Environment

There is one white-tailed kite nest near Suisun Creek, approximately 0.5 mile south of I-80 (California Natural Diversity Database 2009). Riparian habitat within and adjacent to the study area provides potential nesting habitat for white-tailed kites. Even so, it is unlikely that white-tailed kites would nest in the study area, because of its proximity to I-80. No nesting white-tailed kites were found during the focused nest survey in spring 2008.

Environmental Consequences

Impact AS-1: Loss of White-tailed Kite Foraging Habitat

Approximately 25 acres of higher-quality foraging habitat (open agricultural fields) would be permanently lost in the study area. Because foraging habitat is not limited in the project vicinity, this is not considered an adverse effect.

Impact AS-2: Loss of White-tailed Kite Nesting Habitat and Potential Disturbance to Nesting White-tailed Kites

The project would result in a permanent loss of approximately 0.71 acre and temporary disturbance of 1.0 acre of riparian woodland within and adjacent to the study area, which provides potential nesting habitat for white-tailed kites. Although it is unlikely that birds or raptors would nest adjacent to I-80, tree removal or noise associated with construction activities could result in the disturbance of nesting birds or raptors if active nests are present within or near the construction area. These disturbances could cause nest abandonment and death of young or loss of reproductive potential at active nests located in or near the study area. Such disturbance would violate CFGC 3503.5 and 3511 and the MBTA. Implementation of the measures identified below would ensure that the proposed project would not result in the loss of white-tailed kite eggs or young, and would reduce the effect on nesting birds and raptors. Additionally, the purchase of foraging habitat for Swainson’s hawk will benefit white-tailed kite as well.

Avoidance, Minimization, and/or Mitigation Measures

Implementation of avoidance and minimization measures described in the “Riparian Woodland” section above, and the following measures, would avoid effects on nesting white-tailed kites.
Measure AS-2: Conduct Preconstruction Nesting Bird and Raptor Surveys and Establish a No-Disturbance Buffer, if Necessary

To avoid and minimize effects on nesting migratory birds, one or more of the following surveys and restrictions will be implemented.

- Tree and shrub removal will occur during the nonbreeding season for most migratory birds and raptors (generally between September 1 and February 15).

- If construction activities, including tree and shrub removal, are scheduled to occur during the breeding season for migratory birds and raptors (generally between February 15 and September 1), a qualified wildlife biologist (with knowledge of the species to be surveyed) will be retained to conduct nesting migratory bird and raptor surveys before the start of construction. The nesting surveys should be conducted within one week before initiation of construction activities (including tree removal) between February 15 and September 1. If no active nests are detected during these surveys, tree removal can proceed.

- If surveys indicate that migratory bird or raptor nests are present in the survey area, a no-disturbance buffer will be established around the site to avoid disturbance or destruction of the nest site until after the breeding season or until after a qualified wildlife biologist determines that the young have fledged (usually late June to mid-July). The extent of these buffers will be determined by the biologist (in coordination with the DFG) and will depend on the level of noise or construction disturbance, the line of sight between the nest and the disturbance, ambient levels of noise and other disturbances, and other topographical or artificial barriers. These factors will be analyzed to make an appropriate decision on buffer distances. Suitable buffer distances may vary between species.

Western Burrowing Owl

Western burrowing owl is designated as a state species of special concern. Western burrowing owl is found throughout much of California in annual and perennial grassland, desert, and arid scrubland. It also can be found in vacant lots in residential areas, railroad ballast, dirt roads, and canal levees. The presence of burrows is the most critical requirement for western burrowing owl habitat; the species uses burrows excavated by ground squirrels and badgers, as well as artificial burrows, such as cement culverts, debris piles, or openings under roads. Its breeding season extends from March through August, peaking in April and May.

Affected Environment

Several (10 or more) occurrences of burrowing owl have been reported within a 10-mile radius of the project area (California Natural Diversity Database 2009). Edges of agricultural ditches and farm roads, and ruderal fields in the project area provide suitable foraging and nesting habitat for burrowing owls. Minimal loss of foraging habitat for western burrowing owls would occur because most of the construction would occur in existing roadbeds and rights-of-way.
Environmental Consequences

Impact AS-3: Potential Loss of Burrowing Owl Habitat

The project would result in a permanent loss of approximately 8.06 acres and temporary disturbance of 3.92 acres of ruderal habitat within and adjacent to the study area that provides potential nesting habitat for western burrowing owl. If western burrowing owls are nesting in or within 250 feet of the construction right-of-way, grading and excavation activities could result in the removal of an occupied breeding or wintering burrow site and loss of adults, young, or eggs. These disturbances could cause nest abandonment and death of young or loss of reproductive potential at active nests located in or near the study area. Such disturbance would violate CFGC 3503.5 and 3511 and the MBTA. Implementation of the measures identified below would ensure that the project would not result in the loss of burrowing owl eggs or young.

Avoidance, Minimization, and/or Mitigation Measures

Implementation of avoidance and minimization measures described in the “Riparian Woodland” section above, and the following avoidance and minimization measure, would ensure that the project minimizes direct impacts, and avoids indirect impacts on burrowing owl habitats adjacent to the construction area.

Measure AS-3a: Conduct Preconstruction Surveys for Active Burrowing Owl Burrows and Implement the California Department of Fish and Game Guidelines for Burrowing Owl Mitigation, if Necessary

The DFG (1995) recommends that preconstruction surveys be conducted in suitable habitat (except paved areas) in a project study area and in a 250-foot-wide buffer zone around the construction site to locate active burrowing owl burrows. This would apply to suitable habitat on the south side of I-80. A qualified biologist will be retained to conduct preconstruction surveys for active burrows according to the DFG guidelines. The surveys will include a survey during the nesting season and a survey during the wintering season, which is the season immediately preceding construction.

If no burrowing owls are detected, no further action is required. If active burrowing owls are detected, the following measures will be implemented.

- Occupied burrows will not be disturbed during the nesting season (February 1–August 31).
- When destruction of occupied burrows is unavoidable outside the nesting season (September 1–January 31), unsuitable burrows will be enhanced (enlarged or cleared of debris), or new burrows will be created (by installing artificial burrows) at a ratio of 2:1 on protected lands approved by the DFG. Newly created burrows will follow guidelines established by the DFG.
- If owls must be moved away from the project construction area, passive relocation techniques (e.g., installing one-way doors at burrow entrances) will be used instead of trapping. At least one week will be necessary to accomplish passive relocation and allow owls to acclimate to alternate burrows.
- If avoidance is the preferred method of dealing with potential impacts, no disturbance will occur within 160 feet of occupied burrows during the nonbreeding season (September 1–
January 31) or within 250 feet during the breeding season. Avoidance also requires that at least 6.5 acres of foraging habitat (calculated based on an approximately 300-foot foraging radius around an occupied burrow), contiguous with occupied burrow sites, be permanently preserved for each pair of breeding burrowing owls or single unpaired resident bird. The configuration of the protected site will be submitted to the DFG for approval.

Measure AS-3b: Compensate for Loss of Burrowing Owl Nesting Habitat if Owls Are Present

If active burrowing owl burrows are found and the owls must be relocated, the loss of foraging and burrow habitat in the project construction area will be offset by acquiring and permanently protecting a minimum of 6.5 acres of foraging habitat per occupied burrow identified in the project construction area. The protected lands should be located adjacent to the occupied burrowing owl habitat in the project construction area or at another occupied site near the project construction area. The location of the protected lands will be determined in coordination with the DFG. A monitoring plan will be prepared and long-term management and monitoring of the protected lands will be provided. The monitoring plan will specify success criteria, identify remedial measures, and require an annual report to be submitted to the DFG.

Loggerhead Shrike

Loggerhead shrike is designated as a state species of special concern. It is a common year-round resident throughout the lowlands and foothills of California. Loggerhead shrikes prefer open habitats with shrubs, fences, utility line poles, or other perches. They tend to avoid urbanized areas but often frequent open croplands. Nests usually are hidden in densely foliaged shrubs or trees. The breeding season is from March through August.

Affected Environment

No loggerhead shrikes were observed in the study area for the project during the 2008 focused nest surveys; however, loggerhead shrikes are known to nest in Solano County, and trees and shrubs in the study area provide suitable nesting habitat for the species.

Environmental Consequences

Impact AS-4: Potential Disturbance to Nesting Loggerhead Shrikes

Implementation of the project could affect nesting loggerhead shrikes if construction activities remove or otherwise disturb occupied nests during the breeding season. Construction activities during the breeding season that result in nest abandonment, death of young, or loss of reproductive potential would violate CFGC 3503 and CFGC 3503.5 and the MBTA. Implementation of the measures identified below would ensure that the project would not result in the loss of loggerhead shrike nests, eggs, or young.

Avoidance, Minimization, and/or Mitigation Measures

Implementation of avoidance and minimization measures described in the “Riparian Woodland” section above, and Measure AS-2, would avoid and minimize effects on nesting loggerhead shrikes.
Migratory Birds and Raptors
Several migratory birds and raptors could nest in and adjacent to the study area for the project. The breeding season for most birds is generally from February 15 to August 15. The occupied nests and eggs of these birds are protected by federal and state laws, including the MBTA and CFGC 3503 and 3503.5.

Affected Environment
Potential nesting habitat for migratory birds and raptors occurs within riparian habitat, trees, oak woodlands, and shrubs in the study area. A focused nest survey was conducted along Suisun Creek in early spring 2008 as part of the preconstruction surveys for the I-80 HOV lanes project construction. No active nests were found.

Environmental Consequences

Impact AS-5: Potential Disturbance to Nesting Birds and Raptors
Implementation of the project could affect nesting birds, including raptors, if construction activities remove or otherwise disturb occupied nests during the breeding season. Construction activities during the breeding season that result in death of young or loss of reproductive potential would violate CFGC 3503 and CFGC 3503.5 and the MBTA. Implementation of the measures identified below would ensure that the project would not result in the loss of migratory bird and raptor nests, eggs, or young.

Avoidance, Minimization, and/or Mitigation Measures
Implementation of avoidance and minimization measures described in the “Riparian Woodland” section above, and Measure AS-2, would avoid and minimize effects on nesting migratory birds and raptors.

Swallows
Swallows are not considered sensitive wildlife species. However, their occupied nests and eggs are protected by both federal and state laws, including the MBTA. Cliff and barn swallows are two swallow species that frequently build mud nests on the undersides of artificial structures, such as bridges. The two species winter in South America and arrive back in California to breed in February. Nesting generally occurs from mid-February to August, and migration south occurs in September and October (Zeiner et al. 1990).

Affected Environment
No swallow nests were observed on the undersides of the bridge over Suisun Creek during the 2007 surveys. In addition, no nests or remnant nests were observed in 2008 during monitoring surveys for the I-80 HOV lanes project. New bridge construction would occur approximately 50 feet downstream of the existing bridge, and birds nesting on the south side of the existing bridge could be affected during construction.
Environmental Consequences

Impact AS-6: Potential Disturbance of Swallow Nests

Construction activities associated with bridge construction could result in the direct loss of active swallow nests. Loss of a nest could in turn result in the death of adults, young, or eggs. This would violate CFGC 3503 and the MBTA. Implementation of the measures identified below would ensure that the project would not result in the loss of migratory bird and raptor nests, eggs, or young.

Avoidance, Minimization, and/or Mitigation Measures

Implementation of the following avoidance and minimization measure would ensure that swallows do not begin nesting on the south side of Suisun bridge structures before the start of construction.

Measure AS-6: Remove Nests from the Undersides of Bridges to Prevent Swallows from Nesting Adjacent to New Bridge Construction

To avoid impacts on nesting swallows and other bridge-nesting migratory birds that are protected under the MBTA and CFGC, the following measures will be implemented.

• If bridge construction would take place during the breeding season (generally between February 16 and August 15), a qualified wildlife biologist will be hired to inspect the bridge over Suisun Creek during the swallows’ nonbreeding season (August 16 through February 15). If nests are found and are abandoned, they may be removed. To avoid damaging active nests adjacent to new bridge construction, nests must be removed before the breeding season begins (February 16).

• After nests are removed, a biologist will continue to check the underside of the bridge and remove nests throughout the construction period when it coincides with the swallows nesting season.

If appropriate steps are taken to prevent swallows from constructing new nests, work can proceed at any time of the year.

Roosting Bats

The Western Bat Working Group has provided additional rankings for species that may or may not be listed as a state species of special concern. The Western Bat Working Group held a workshop in 1998 and subsequently published a regional priority matrix for western bat species (Western Bat Working Group 1998). The matrix is intended to provide states, provinces, federal land management agencies, and interested organizations and individuals with a better understanding of the overall status of a given bat species throughout its western North American range. Subsequently, the importance of a single region or multiple regions to the viability and conservation of each species becomes more apparent. The matrix also provides a means for prioritizing and focusing on population monitoring, research, conservation actions, and the efficient use of the limited funding and resources currently devoted to bats.
Four special-status bat species were identified as potentially occurring in the study area, including pallid bat, which is a state species of special concern, and long-eared bat, fringed myotis, and Yuma myotis, which are classified as priority species by the Western Bat Working Group. Yuma myotis uses bridges and other artificial structures as roosting sites and could potentially roost in the study area. Crevices, including expansion joints, on the undersides of bridges provide potential roosting and maternity sites for bats. Bats commonly use bridges that are located over perennial waterways or are in or near open agricultural or grassland areas. These areas provide an abundant source of insects, the primary food source for bats.

Affected Environment

At the time of the March 2008 preconstruction surveys for the I-80 HOV lanes project, no evidence of bat presence (guano, urine staining, odor, or vocalizations) was observed on portions of the undersides of the existing bridge over Suisun Creek, which is the nearest bridge to the project site. However, the undersides of the bridge deck contained expansion joints that could provide roosting sites for bats. This habitat would not support a maternal roost but could support a small number of day or night roosting bats.

Environmental Consequences

Impact AS-7: Potential Disturbance of Roosting Bats

Potential bat roosting areas occur within portions of the existing bridge over Suisun Creek upstream of the project site. The existing bridge would not be directly affected during new bridge construction, and no roosting habitat would be removed. Noise disturbances associated with new bridge construction and pile driving could disturb day-roosting bats if they are present within the bridge during construction. However, these disturbances would be temporary, and construction would occur downstream of the existing bridge. The project, therefore, would not result in an adverse impact on protected bats.

Avoidance, Minimization, and/or Mitigation Measures

The proposed project would not remove bat roosting habitat. Because construction would occur downstream of the bridge and existing traffic already produces substantial noise, any noise disturbances due to construction activity are not expected to affect bats. Therefore no avoidance or minimization measures are required.

Central Valley Fall/Late Fall-Run Chinook Salmon

On March 9, 1998 (63 FR 11481), NMFS issued a proposed rule to list fall-/late fall–run Chinook salmon as threatened, but determined that the species did not warrant listing and identified it as a candidate species (64 FR 50393). On April 15, 2004, NMFS downgraded the status of fall-run Chinook salmon to a species of concern (69 FR 19975). This section focuses on fall-run Chinook salmon, because most late fall–run Chinook salmon are found mainly in the Sacramento River (Moyle 2002) and are therefore not likely to be present at the project site. Also, habitat for late fall–run Chinook salmon is not supported by streams in the project area.

Fall-run Chinook salmon spawn from early October through late December, and incubation takes place from October through March. The peak of spawning is in October and November as water temperature drops. Juvenile Chinook salmon emerge from the gravel and migrate downstream to
the ocean soon after emerging, rearing in the streams for only a few months before emigrating to the ocean.

Essential Fish Habitat

Essential Fish Habitat (EFH) is the aquatic habitat (water and substrate) necessary for fish to spawn, breed, feed, or grow to maturity (National Marine Fisheries Service 2004), allowing a level of production needed to support a long-term, sustainable commercial fishery and contribute to a healthy ecosystem. Important components of EFH for spawning, rearing, and migration include adequate substrate composition; water quality, quantity, depth, and velocity; channel gradient and stability; food; cover and habitat complexity; space; access and passage; and habitat connectivity.

The Magnuson-Stevens Fishery Conservation and Management Act (Magnuson-Stevens Act), as amended by the Sustainable Fisheries Act of 1996 (Public Law 94-265), specifies that:

- Federal agencies undertaking, permitting, or funding activity that may adversely affect EFH are required to consult with the NMFS.
- The NMFS shall provide conservation recommendations for any federal or state activity that may adversely affect EFH.
- Federal agencies shall, within 30 days after receiving conservation recommendations from the NMFS, provide a detailed response in writing to the NMFS regarding the conservation recommendations. The response shall include a description of measures proposed by the agency for avoiding, mitigating, or offsetting the impact of the activity on EFH, or reasons for not following the recommendations.

Suisun Creek is considered EFH for Chinook salmon under the Magnuson-Stevens Fishery Conservation and Management Act (Figure 2.3-2).

Affected Environment

Data describing the abundance and distribution of Chinook salmon in Suisun Creek are limited. In recent years, many tributaries of the San Francisco Bay Estuary—where salmon were previously thought to be extirpated—have seen increases in adult Chinook salmon returns (presumably from stray hatchery fish), suggesting that streams in the project vicinity may be subject to the same phenomenon (Moyle 2002; Cox pers. comm.). DFG personnel have documented Chinook salmon in Suisun and Gordon Valley Creeks (a tributary of Suisun Creek), according to information available from the NMFS. In December 2001, a spawning pair of “salmon” and two spawned-out Chinook salmon carcasses were documented in Wooden Valley Creek, a tributary of Suisun Creek (Leidy et al. 2005). Query results from the DFG anadromous fish distribution data available through CalFish (2008) indicated that the range of Chinook salmon included lower portions of Suisun Creek. The sections of the creek in the specified area were far downstream of the project area, however, and likely comprise estuarine rearing habitats. Apart from these accounts, Suisun and Gordon Valley Creeks are named in the NMFS’s designation of EFH (National Marine Fisheries Service 1998) (Figure 2.3-2). As a result of this designation and the recent accounts of their occurrence, it is reasonable to assume that Chinook salmon are seasonally present in the streams passing through the project vicinity.
Figure 2.3-2
Essential Fish Habitat in the Project Vicinity
The known life history of the species indicates that Chinook salmon are not likely to be present in the project area during the construction period (June 15–October 15). Habitat conditions that support suitable spawning for adult Chinook salmon occur mainly in upper areas of these streams (Hanson Environmental 2002), well above the project area. The migration timing of both adult and juvenile Chinook salmon occurs largely outside the construction period, reducing the chance that Chinook salmon of any life stage would be present at the project site during construction. Adult fall-run Chinook salmon would most likely migrate through the project area during fall and early winter, while juvenile Chinook salmon would emigrate from the system from January to June. Fall-run Chinook salmon are ocean-type salmon, where juveniles typically leave natal streams before summer water temperatures render streams uninhabitable (Moyle 2002). Additionally, little potential rearing habitat for juvenile Chinook salmon is available in the lower portion of Suisun Creek because of the high summer water temperatures found there (Hanson Environmental 2002).

Environmental Consequences

The proposed action is expected to have minimal impacts on habitat structure and habitat conditions for Chinook salmon and EFH. Because no work will be conducted in the channel, all direct impacts on aquatic habitat will be avoided. All possible impacts will be avoided, minimized, or mitigated as outlined in “Central California Coast Steelhead” (below in Section 2.3.6).

Effects on Habitat Structure

The impacts on habitat structure would be the same as those listed for steelhead in “Central California Coast Steelhead” (below in Section 2.3.6).

Water Temperature Effects

The water temperature impacts would be the same as those listed for steelhead in “Central California Coast Steelhead” (below in Section 2.3.6).

Effects on Water Quality

The impacts on water quality would be the same as those listed for steelhead in “Central California Coast Steelhead” (below in Section 2.3.6).

Avoidance, Minimization, and/or Mitigation Measures

The avoidance and minimization measures discussed in “Central California Coast Steelhead” (Section 2.3.6) would protect habitat for Chinook salmon, including EFH.

River Lamprey

River lamprey is listed as a State species of special concern. Although it is widely believed to be in decline, the exact status of this species is uncertain. Currently, very little information describing the abundance and distribution of river lamprey is available, perhaps largely because the species is often overlooked and seldom studied. River lamprey is thought to occur throughout Pacific coast streams, but its occurrence in California includes tributaries to San Francisco Bay, such as the Napa River, Sonoma Creek, and Alameda Creek, as well as the Sacramento, San Joaquin, and Russian Rivers (Moyle et al. 1995; Moyle 2002).
Limited information is available regarding the life history of this species in California. Current accounts are based largely on information from Canadian populations (Moyle 2002). River lamprey is a semelparous (spawn once, then die) anadromous fish with long freshwater rearing periods. Adults return to fresh water to spawn in fall and winter, but spawning usually occurs from February through March in gravely riffles in small tributary streams (Moyle 2002). Juvenile river lamprey (ammocoetes) remain in silty backwater habitats, where they filter feed on various microorganisms for approximately three to five years before migrating to the ocean during late spring periods (Moyle et al. 1995; Moyle 2002). Adult lamprey feed on other fish and may reach a total length of around 17 centimeters (Moyle et al. 1995).

Affected Environment

River lamprey could occur in the study area in Suisun Creek, although this is not documented. The species distribution and habitat requirements could fall within the study area. The study area would provide a migration corridor to upstream spawning areas if river lamprey use Suisun Creek for spawning.

Environmental Consequences

The project is not expected to impact river lamprey, because of the lack of spawning and rearing habitat in the study area. Construction is expected to occur from June 15 to October 15, when lampreys would not be migrating upstream to spawn. Juvenile lampreys (ammocoetes) rear in backwater areas in the silt and sand. Suisun Creek has high-velocity water and gravel in the construction area. This is unsuitable rearing habitat for ammocoetes. No in-water work will occur, so no disturbance to lamprey is expected to occur from project activities.

Avoidance, Minimization, and/or Mitigation Measures

Avoidance and minimization measures described in the section “Central California Coast Steelhead” (Section 2.3.6) would benefit river lamprey.

2.3.6 Threatened and Endangered Species

This section addresses species listed or eligible for listing as threatened or endangered. Tables 2.3-2 and 2.3-3 list the threatened and endangered plant and animal species with potential to occur in the study area. Four threatened or endangered animal species have the potential to occur in the study area: Swainson’s hawk, valley elderberry longhorn beetle (VELB), California red-legged frog (CRLF), and central California coast steelhead. As mentioned earlier, no threatened or endangered plant species occur in the study area.

Regulatory Setting

The primary federal law protecting threatened and endangered species is the ESA: 16 USC, Section 1531, et seq. See also 50 CFR Part 402. This act and subsequent amendments provide for the conservation of endangered and threatened species and the ecosystems on which they depend. Under Section 7 of this act, federal agencies, such as the FHWA, are required to consult with the USFWS and the National Marine Fisheries Service (NMFS) to ensure that they are not undertaking, funding, permitting, or authorizing actions likely to jeopardize the continued existence of listed species or destroy or adversely modify designated critical habitat. *Critical habitat* is defined as geographic locations critical to the existence of a threatened or endangered
species. The outcome of consultation under Section 7 is a biological opinion (BO) or an incidental take permit. Section 3 of the ESA defines take as “harass, harm, pursue, hunt, shoot, wound, kill, trap, capture or collect or any attempt at such conduct.”

California has enacted a similar law at the state level, the CESA, CFGC, Section 2050, et seq. The CESA emphasizes early consultation to avoid potential impacts on rare, endangered, and threatened species and to develop appropriate planning to offset project caused losses of listed species populations and their essential habitats. The CDFG is the agency responsible for implementing the CESA. Section 2081 of the CFGC prohibits “take” of any species determined to be an endangered species or a threatened species. Take is defined in Section 86 of the Fish and Game Code as “hunt, pursue, catch, capture, or kill, or attempt to hunt, pursue, catch, capture, or kill.” The CESA allows for take incidental to otherwise lawful development projects; for these actions, an incidental take permit is issued by the DFG. For projects requiring a BO under Section 7 of the ESA, the DFG may also authorize impacts on CESA species by issuing a Consistency Determination under Section 2080.1 of the CFGC.

Swainson’s Hawk

Swainson’s hawk is state listed as threatened by the DFG and is protected under the MBTA and CFGC 3503.5. The MBTA and CFGC 3503.5 prohibit take of migratory birds, nests, and young. In the Central Valley, this species typically nests in oak or cottonwood trees in or near riparian habitats, in oak groves, in roadside trees, and in lone trees. Swainson’s hawk prefers nesting sites that provide sweeping views of nearby foraging grounds, which consist of grasslands, irrigated pasture, alfalfa, hay, and row and grain crops. Swainson’s hawk is migratory, wintering from Mexico to Argentina and breeding in California and elsewhere in the western United States. The raptor generally arrives in the Central Valley in mid-March and begins courtship and nest construction immediately after arrival at the breeding sites. The young fledge in early July, and most Swainson’s hawks leave their breeding territories by late August or early September.

Affected Environment

There is one Swainson’s hawk nest site approximately 1.5 miles southwest of the study area for the proposed project (California Natural Diversity Database 2009). Agricultural habitat, suitable for foraging, is located along I-80, and large trees, suitable for nesting Swainson’s hawk, are present along Suisun Creek. However, it is unlikely that Swainson’s hawk would nest in the study area, because of the area’s proximity to I-80. No nesting Swainson’s hawks were found during the focused nest surveys in spring 2008.

Environmental Consequences

Impact TES-1: Potential Disturbance to Nesting Swainson’s Hawk

Although there is a low likelihood that Swainson’s hawks would nest adjacent to I-80, tree removal or noise associated with construction activities could result in the disturbance of nesting Swainson’s hawks if active nests are present within or near the construction area. These disturbances could cause nest abandonment and death of young or loss of reproductive potential at active nests located in or near the study area. The proposed project could result in a substantial effect, through loss of eggs or young, on a species listed as threatened under the CESA. Implementation of the measures described in the “Riparian Woodland” section above, and
Measure AS-2, would ensure no take of Swainson’s hawk eggs or young, and would reduce the effect on Swainson’s hawk habitat.

Impact TES-2: Permanent and Temporary Impacts on Potential Swainson’s Hawk Foraging Habitat

The proposed project would result in a permanent loss of approximately 25 acres of higher-quality foraging habitat (open agricultural fields). Loss of a substantial amount of foraging habitat within 5 miles of a known Swainson’s hawk nest is considered to be a potentially adverse effect. But through the acquisition of conservation lands that will preserve significant amounts of suitable foraging habitat for the species and the management of these lands for Swainson’s hawk habitat values, this effect is reduced.

Avoidance, Minimization, and/or Mitigation Measures

Implementation of avoidance and minimization measures described in the “Riparian Woodland” section above, Measure AS-2, and Measure TES-2 would ensure no take of Swainson’s hawk eggs or young, and would avoid and minimize effects on nesting Swainson’s hawk and its foraging habitat.

Measure TES-2: Compensate for Loss of Swainson’s Hawk Foraging Habitat

The DFG requires that loss of foraging habitat for the species be replaced at a ratio of 0.75:1 for projects where nesting Swainson’s hawks are known to occur within a 1 to 5-mile radius (Melissa Escaron, Environmental Scientist, California Department of Fish and Game email message on 12/8/08: mescaron@dfg.ca.gov). Credits at an approved mitigation bank will be purchased.

Valley Elderberry Longhorn Beetle

VELB is federally listed as a threatened species (45 FR 52803). This species first was described in 1921 from specimens collected in Sacramento (U.S. Fish and Wildlife Service 1984). The species’ range extends throughout the associated foothills of the Central Valley in California, from Kern County in the south to Shasta County in the north (Jones and Stokes Associates 1985, 1986, 1987).

VELB is closely associated with elderberry shrubs, an obligate host for beetle larvae. Blue elderberry is considered a typical riparian shrub (Roberts et al. 1977, Katibah et al. 1984, Warner 1984) in California. Blue elderberry is a hardy shrub that successfully grows in a variety of riparian habitat types. A study of Sacramento Valley riparian vegetation found that blue elderberry grows mainly at an intermediate elevation level in the floodplain, in association with box elder (*Acer negundo*) and buttonbush (*Cephalanthus occidentalis*) (Conard et al. 1977). Where a source of water exists, elderberry shrubs grow in nonriparian habitats, although most VELB occurrences are known from elderberry shrubs in or adjacent to riparian communities.

Affected Environment

In the project area, eight blue elderberry shrubs (i.e., host plants for VELB) were identified in riparian woodland on Suisun Creek south of I-80 (Figure 2.3-1, Map Sheet 2). Shrubs 1–5 were located during field surveys in 2007 and shrubs 6-8 during field surveys in 2009. Project effects...
on Shrubs 1-4 were covered and fully mitigated for the I-80 HOV project (BO# 1-1-07-F-0146). No exit holes that would indicate the presence of VELB were observed in shrub 5. The biologists were not able to look for exit holes or count stems in shrubs 6–8 because the multiple-stemmed shrubs were encased in poison oak.

Shrub 5 would be directly affected by construction activities while shrubs 6-8 would be indirectly affected by construction activities. The number and size of stems present on shrub 5 and its riparian habitat association is listed in Table 2.3-4.

Revised Table 2.3-4. Summary of Stem Counts for Elderberry Shrubs Directly Affected in the Study Area

<table>
<thead>
<tr>
<th>Shrub</th>
<th>Presence of Exit Holes</th>
<th>Riparian Habitat</th>
<th>Number of Stems (by Diameter)</th>
<th>Effect on Shrub (None, Direct, or Indirect)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>No</td>
<td>Yes</td>
<td>0 1 1</td>
<td>Direct</td>
<td>Located on the east bank of Suisun Creek within the project footprint</td>
</tr>
<tr>
<td>Direct total</td>
<td></td>
<td></td>
<td>0 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall total</td>
<td></td>
<td></td>
<td>0 1 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Environmental Consequences

Impact TES-3: Impact on Valley Elderberry Longhorn Beetle Habitat
Direct Impacts: Construction activities would directly impact (by removal or transplanting) one elderberry shrub. Measure TES-3a would compensate for this adverse effect.

Indirect Impacts: Shrubs 6, 7, and 8 are located from 17 to 34 feet of proposed construction activities (grading, road, and bridge construction, and staging) and could be indirectly affected by construction activities. Possible indirect effects on VELB habitat occurring within 100 feet of the construction work area include increases in dust accumulation on shrubs from ground-disturbing activities and removal of associated woodland species. Tree and shrub removal activities within the study area would be minimized and would involve only the removal of trees and shrubs necessary to construct the proposed project; however, ground-disturbing activities occurring within 100 feet of an elderberry shrub could cause an accumulation of dust on elderberry shrubs, altering VELB habitat. Although construction and staging would not change the hydrology of the existing habitat, excavation and grading in the vicinity of an elderberry shrub could damage the root system, resulting in death of the shrub. Implementation of standard Department procedures outlined in Measure TES-3b and TES-3c would minimize indirect impacts.

Avoidance, Minimization, and/or Mitigation Measures
Implementation of avoidance and minimization measures described in the “Riparian Woodland” section above and the following measures would minimize potential indirect effects on VELB and VELB habitat in the project vicinity and compensate for direct effects on VELB habitat.
Measure TES-3a: Compensate for Direct Effects on Valley Elderberry Longhorn Beetle Habitat

As noted above STA previously compensated for direct effects on shrubs 1-4 for the I-80 HOV lanes project and no additional compensation is required (BO# 1-1-07-F-0146). The compensation did not cover the direct effects on shrub 5.

Before construction begins, Shrub #5 will be transplanted, if feasible, to the mitigation area described in the I-80 HOV Lanes/Eastbound Cordelia Truck Scales Relocation Project Mitigation and Monitoring Plan (H.T. Harvey and Associates 2009). It may not be feasible to remove the shrub due to bank stability concerns, and the shrub may be too large to transplant. Compensation will occur with implementation of the I-80 HOV Lanes/Eastbound Cordelia Truck Scales Relocation Project Mitigation and Monitoring Plan (H.T. Harvey and Associates 2009) since it was previously covered in the Biological Opinion for the I-80 HOV lanes project.

Measure TES-3b: Establish a Minimum 20-Foot-Wide Buffer around All Elderberry Shrubs where Feasible

Before any ground-disturbing activity, the Department will ensure that a minimum 4-foot-tall temporary, plastic mesh-type construction fence (Tensor Polygrid or equivalent) is installed at least 20 feet from the driplines of elderberry shrubs that will be retained in the study area (shrubs 6, 7, and 8). This fencing is intended to prevent encroachment by construction vehicles and personnel, and to prevent inadvertent trimming of elderberry shrubs and associated riparian vegetation. The exact location of the fencing will be determined by a qualified biologist, with the goal of protecting habitat for VELB.

The fencing will be strung tightly on posts set at a maximum interval of 10 feet. The fencing will be installed in a way that prevents equipment from enlarging the work area beyond the delineated work area. The fencing will be checked and maintained weekly until all construction is completed. This buffer zone will be marked by a sign stating, “This is habitat of the valley elderberry longhorn beetle, a threatened species, and must not be disturbed. This species is protected by the Endangered Species Act of 1973, as amended. Violators are subject to prosecution, fines, and imprisonment.”

No construction activity, including grading, will be allowed until this condition is satisfied. No grading, clearing, storage of equipment or machinery, or other disturbance or activity may occur until a representative of the County has inspected and approved all temporary construction fencing. The fencing and a note reflecting this condition will be shown on the construction plans.

Measure TES-3c: Implement Dust Control Measures

The Department will ensure that dust control measures are implemented for all ground-disturbing activities in the project area. These measures may include application of water to graded and disturbed areas that are unvegetated. To avoid attracting Argentine ants, at no time will water be sprayed within the driplines of elderberry shrubs.
California Red-Legged Frog

The CRLF is listed as threatened under the ESA and is a California species of special concern. Historically, CRLF was common from Redding to Baja California, including the Sierra Nevada and Coast Ranges. Its current range is much reduced, and most remaining populations are found in central California along the coast, from Marin County to Ventura County. USFWS published a proposed rule to revise critical habitat for California red-legged frogs on September 9, 2008 (73 FR 53491–53680). The designation of critical habitat requires federal agencies to consult with USFWS regarding any action that could destroy or adversely modify critical habitat.

CRLF breeds in lowland and foothill streams and wetlands, including livestock ponds (Jennings and Hayes 1994). CRLF also may be found in upland habitats near breeding areas and along intermittent drainages connecting wetlands. Adults may take refuge during dry periods in rodent holes or leaf litter in riparian habitats. Although CRLF typically remains near streams or ponds, recent studies in Santa Cruz suggest that they are capable of moving 1 mile or more in upland habitat or through ephemeral drainages (Bulger 1999).

Affected Environment

There are 15 California Natural Diversity Database records for CRLF within a 5-mile radius of the project site (California Natural Diversity Database 2009). The nearest records are approximately 3 miles southwest of the project site, where adults and tadpoles were observed in a pond and intermittent drainage. The remaining 13 records are from 1 to 5 miles south and west of the project area (Figure 2.3-3).

Jones & Stokes conducted a CRLF site assessment in 2007 at Suisun Creek and found suitable aquatic habitat in a plunge pool in Suisun Creek on the north side of I-80 adjacent to the study area (ICF Jones & Stokes in prep.). No CRLFs were observed within or adjacent to the study area during either the 2006 or the July and August 2007 site assessment surveys. Monk & Associates (2003a, 2003b, 2004) conducted a site assessment and protocol-level survey in Suisun Creek. No CRLFs were identified in this area during their protocol-level surveys, however these surveys are several years old and are no longer valid.

Potential dispersal and foraging habitat for CRLF occurs in Suisun Creek and in adjacent upland habitat. If CRLF occurs within Suisun Creek, there is potential for CRLF to move through the study area. Based on the known occurrence of CRLF near the study area and the presence of suitable habitat in the study area, Caltrans prepared a biological assessment (BA) and submitted it to the USFWS in October 2008 for their review and approval. USFWS prepared a draft Biological Opinion (BO) and submitted it to Caltrans for its review and comments on July 2, 2009. Applicable information from the draft BO is included in this document.

There is proposed critical habitat approximately 2.5 miles west of Suisun Creek and the project area (Figure 2.3-3). Suisun Creek is in a separate watershed and the proposed critical habitat is not located in the project’s action area. Therefore, no destruction or adverse modification of proposed critical habitat for California red-legged frog is anticipated.
Environmental Consequences

Impact TES-4: Potential Indirect Impacts on California Red-Legged Frog Habitat during Construction

Construction activities associated with bridge construction within potential CRLF habitat in the project area could result in indirect impacts on water quality downstream from the construction work area. Increased sedimentation could reduce the suitability of CRLF habitat downstream of the construction area by filling in pools and smothering eggs. Accidental spills of toxic fluids also could result in the subsequent mortality of CRLF should these substances flow downstream from the construction area and CRLFs are present. Implementation of the measures identified for CRLF, construction BMPs, and the measures identified below would reduce indirect effects on CRLF and potential habitat that could occur downstream from the construction area.

Impact TES-5: Potential Direct Impact on California Red-Legged Frog during Construction

CRLF could be directly affected by construction activities occurring adjacent to Suisun Creek. If CRLFs are present within the construction work area, they could be inadvertently killed or wounded by construction vehicles, construction personnel, and accidental spill of toxic fluids (i.e., gasoline and other petroleum-based products). If CRLFs must be captured and relocated outside the construction work area, they could be exposed to increased risks of disease, predation, and competition that could result in increased mortality. Implementation of Measures NC-1b and TES-5 ensure that this is not an adverse effect.

Impact TES-6: Temporary and Permanent Loss of California Red-Legged Frog Upland Habitat

Construction of the proposed project would result in both temporary disturbance and permanent loss of 3.30 acres of upland habitat for CRLF in riparian woodland and ruderal vegetation along Suisun Creek within the project footprint (see Figure 2.3-1, Map Sheet 2). Construction would result in the temporary disturbance of 2.28 acres of upland habitat (1.28 acres of ruderal and 1.0 acre of riparian woodland). Construction would also result in a permanent loss of 1.02 acres of upland habitat (0.31 acre of ruderal and 0.71 acre of riparian woodland) along the creek banks, which provides potential foraging and refuge sites for CRLF. There would be no temporary or permanent impacts in Suisun Creek, which provides aquatic habitat for CRLF. Implementation of Measure TES-6 would reduce the severity of impact to CRLF upland habitat. Therefore this effect is not adverse.

Avoidance, Minimization, and/or Mitigation Measures

Implementation of avoidance, minimization, and mitigation measures described in the “Riparian Woodland” and “Perennial Wetland Drainage” sections above and the following USFWS standardized measures would ensure avoidance and minimization of adverse effects on CRLFs during construction activities associated with bridge construction at Suisun Creek.
Revised Figure 2.3-3

California Red-legged Frog CNDDDB Occurrences within a 5-Mile Radius of the Project Area
Measure TES-4: Construct During the Dry Season

Construction in and adjacent to Suisun Creek will occur during the dry season between May 1 and October 31.

Measure TES-5: Conduct Preconstruction Surveys and Construction Monitoring for California Red-Legged Frog

A preconstruction survey will be conducted immediately preceding any construction activity that occurs in CRLF habitat or any activity that may result in take of the species. A USFWS-approved biologist will carefully search all obvious potential hiding spots for CRLF, such as large downed woody debris, the perimeter of pond or wetland habitats, and the riparian corridors associated with streams and drainages. The biologist will investigate all potential CRLF cover sites including mammal burrows. The entrances will be collapsed following investigation. Any CRLF found will be captured and held for the minimum amount of time necessary to release them in suitable habitat outside the study area. Suitable release sites will be identified by a qualified biologist approved by the USFWS before the start of construction activities.

A USFWS-approved biologist will monitor all ground-disturbing construction activity near potential CRLF habitat. After ground-disturbing activities are complete, the USFWS-approved biologist will train an individual to act as the on-site construction monitor. The on-site monitor will have attended the training described above. Both the USFWS-approved biologist and construction monitor will have the authority to stop or redirect project activities to ensure protection of resources and compliance with all environmental permits and conditions of the project.

If the USFWS-approved biologist or construction monitor has requested that work stop because of take of any of the listed species, the USFWS and the DFG will be notified within one working day via email or telephone. The USFWS-approved biologist and construction monitor will complete a daily log summarizing activities and environmental compliance.

- If a CRLF is encountered during construction work, activities will cease until the frog is removed and relocated by a USFWS-approved biologist.
- Any person capturing or handling CRLF will be a qualified biologist approved by the USFWS. A qualified biologist means any person who has completed at least four years of university training in wildlife biology or a related science, or has demonstrated field experience in the identification and life history of the CRLF. Resumes of all biologists proposed to capture or handle CRLF will be submitted to the USFWS for approval no later than 30 days before the start of construction.
- If necessary, nets or bare hands may be used to capture CRLFs. The USFWS-approved biologist will not use soaps, oils, creams, lotions, repellents, or solvents of any sort on their hands within two hours before and during periods in which they are capturing and relocating CRLF. To avoid transferring disease or pathogens between aquatic habitats during the course of surveys or handling of CRLF, the USFWS-approved biologist will follow the Declining Amphibian Populations Task Force’s Code of Practice. The USFWS-approved biologist will limit the duration of handling and captivity of CRLF. While in captivity, CRLF will be kept...
in a cool, moist, aerated environment, such as a bucket containing a damp sponge. Containers used for holding or transporting adults of this species will not contain any standing water.

- All construction areas will be flagged, and all activity will be confined to these areas.
- Because dusk and dawn are often the times when CRLF are most actively foraging and dispersing, all construction activities should cease 30 minutes before sunset and should not begin before 30 minutes prior to sunrise.
- A representative will be appointed, who will be the contact source for any employee or contractor who might inadvertently kill or injure a CRLF, or who finds a dead, injured, or entrapped individual. The representative will be identified during the employee education program. The representative’s name and telephone number will be provided to the USFWS before the initiation of ground-disturbing activities.
- Tightly woven fiber netting or similar material will be used for erosion control or other purposes at the project site to ensure that CRLF are not trapped. This limitation will be communicated to the contractor through use of special provisions included in the bid solicitation package. Coconut coir matting is an acceptable erosion control material. No plastic monofilament matting will be used for erosion control.
- A litter control program will be instituted at the entire project site. All workers will ensure that food scraps, paper wrappers, food containers, cans, bottles, and other trash from the study area are deposited in covered or closed trash containers. The trash containers will be removed from the study area at the end of each working day.
- After construction is complete, temporarily disturbed areas within the study area will be restored to pre-project conditions or enhanced to compensate for the removal of riparian vegetation.
- Special provisions will be included in bid information, when applicable, that include the avoidance and minimization measures. In addition, contractors involved in the project will be educated and informed about the requirements of applicable permits obtained for the project, including a BO.

Measure TES-6: Compensate for Loss and Disturbance of California Red-Legged Frog Habitat

Caltrans and ICF Jones & Stokes biologists met with USFWS biologist, John Cleckler, on December 15, 2008 to conduct a site visit to discuss project impacts on CRLF. Mr. Cleckler said that the USFWS considers temporary disturbance and permanent losses to have the same effects on CRLF, unless the area of temporary effect will be covered by an easement and would still provide habitat for CRLF. Since there will be no easements covering the area of temporary effect the following discussion combines both temporary and permanent impact.

Caltrans has proposed restoration of 3.0 acres to compensate for the permanent loss of 3.30 acres of upland habitat for CRLF at the Solano Community College approximately 500 feet upstream of the I-80 crossing of the creek to offset the project’s adverse effects to CRLF and provide replacement plantings for lost riparian vegetation (H.T. Harvey & Associates 2009).
Approximately 2.28 acres of the 3.30 acres will be subject to restoration following construction. This includes 1 acre of riparian woodland and 1.28 acres of ruderal habitat. Restoration for temporary effects on riparian woodland is described above in Measure NC-1e: Compensate for Temporary and Permanent Loss of Riparian Vegetation. Restoration of ruderal vegetation is expected to result in baseline function with one year following construction.

Central California Coast Steelhead
Central California coast steelhead was listed as threatened by the NMFS on August 18, 1997 (62 FR 43938). There is no state status. Central California coast steelhead includes populations from the Russian River to Aptos Creek and the drainages of San Francisco and San Pablo Bays eastward to the Napa River.

Central California coast steelhead generally enter fresh water between November and April. The preferred migration temperatures for steelhead range from 7.7ºC to 11ºC (46ºF–52ºF) (National Marine Fisheries Service 2000). Spawning generally begins in December.

During spawning, the female digs a redd (a gravel nest), into which the eggs are deposited and then fertilized by the male. Steelhead prefer substrate no larger than 10 centimeters (Bjornn and Reiser 1991). Steelhead spawn in cool, well-oxygenated water (Hampton 1988). Optimal water temperatures for spawning and incubation range from 3.8ºC to 11ºC (39ºF–52ºF) (Myrick and Cech 2001). Incubation lasts from 1.5 to four months, depending on water temperature (Moyle 2002).

Instream and overhead cover, in the form of undercut banks, downed trees, and overhanging tree branches, is important for juvenile rearing. The addition of cover increases spatial complexity and may increase productivity. Fine-textured instream woody material provides the hydraulic diversity necessary for the selection of suitable velocities, access to drifting food, and escape refugia from predatory fish (Raleigh et al. 1986). Juvenile rearing success is assumed to decline at water temperatures ranging from 17ºC to 25ºC (62.6ºF–77ºF) (Raleigh et al. 1984).

Juvenile steelhead feed on a variety of aquatic and terrestrial insects and other small invertebrates. Steelhead smolts emigrate from March to May. Ocean rearing lasts two to three years.

Affected Environment
The following information on steelhead occurrence in streams in the project vicinity is summarized from Leidy et al. (2005). Historical evidence dating back as far as 1940 indicates steelhead were present throughout the Suisun Creek watershed. Following the construction of Gordon Valley Dam (Lake Curry) in 1926 and subsequent water developments, steelhead populations in the watershed declined. Although the distribution and abundance of steelhead throughout Suisun Creek and its tributaries may have fluctuated over the years, recent surveys found that both adult and juvenile steelhead are still present in this system. An adult steelhead (673 millimeters FL [26.5 inches]) was found approximately 0.25 mile downstream of the Wooden Valley Creek confluence in March 2001, while two other adult steelhead (approximately 530–640 millimeters [20.9–25.2 inches]) were observed in June and early July 2001 approximately 6 and 11 miles downstream of Lake Curry (Hanson Environmental 2001 in
Leidy et al. 2005). This same survey also noted the occurrence of juvenile *O. mykiss* 160–170 millimeters (6.3–6.7 inches) downstream from the dam.

Historical evidence from the CDFG (1965 cited in Leidy et al. 2005) suggested that Wooden Valley Creek, a tributary of Suisun Creek, contained the highest concentration of steelhead in the watershed (Leidy et al. 2005). Surveys of Wooden Valley Creek conducted in 2002 indicated that juvenile *O. mykiss* were present at both headwater and various other survey locations along the creek (Leidy et al. 2005), suggesting the possibility of an existing steelhead population. Additionally, NMFS believes that Suisun and Wooden Valley Creeks currently support a steelhead population and that sufficient migration, spawning, and rearing habitat exists (50 FR 52504, September 2, 2005).

Hanson Environmental (2002) conducted a more detailed analysis of steelhead habitat quality in Suisun Creek. The study surveyed approximately 95% of the stream from Cordelia Road to Lake Curry during the summer low-flow period. Results from this study indicate that significant habitat constraints exist; these include migration barriers, limited spawning gravel availability, high summer water temperatures, and low habitat diversity. The study concluded that Suisun Creek was unlikely to consistently support self-sustaining steelhead populations. Instead, habitat would most likely be available during wet years when winter flows were high enough to allow upstream passage for adults and summer stream temperatures remained cool enough to support juvenile rearing. During dry years, summer rearing habitat would be constrained to upstream areas immediately below the reservoir, where temperatures would most likely remain within a range suitable to support salmonids.

In Suisun Creek, a potential spawning gravel patch is present about 20 feet downstream of the existing bridge that spans Suisun Creek at I-80.

The NMFS finalized critical habitat designations for central California coast steelhead in September 2005 (70 FR 52488, September 2, 2005). Although Suisun Creek is mentioned as having a steelhead population, it is excluded from the critical habitat designation for central California coast steelhead.

Environmental Consequences

Impact TES-7: Impacts on Fish Habitat Structure

Construction activities associated with the proposed action that would impact fish habitat structure include placement of bridge abutments above the OHWM and vegetation removal. Bridge construction and bank stabilization activities would require removal of vegetation, resulting in short- and long-term loss of vegetative cover and reducing fish habitat complexity and shade. Streamside vegetation, including shaded riverine aquatic (SRA) cover, is an essential component of salmonid habitat. Undercut banks and overhead SRA cover, such as canopy cover and overhanging vegetation, provide fish with protection from predators, maintain shade necessary to reduce thermal input, and provide nutrients to the stream in the form of fallen leaves and insects. Riparian vegetation is also important in controlling streambank erosion, contributing to instream structural diversity, and maintaining undercut banks. Elements of the proposed action would remove vegetation and SRA cover.
Construction of the bridge over Suisun Creek south of I-80 would result in a permanent loss of approximately 0.71 acre of riparian woodland, which includes up to 160 feet of overhanging vegetation (i.e., SRA cover) (assuming continuous riparian coverage) along Suisun Creek within the project footprint (Figure 2.3-4). The permanent impact area primarily comprises shrub understory, such as coyote brush and poison oak. Approximately 1.0 acre of riparian woodland vegetation, including up to 160 feet of SRA (assuming continuous riparian coverage), would be temporarily disturbed during construction. Understory coyote brush and poison-oak would be removed from the project footprint. Riparian vegetation outside the construction area would be protected from construction-related activities using ESA fencing. Implementation of the measures for Riparian Woodland (Measures NC-1a through NC-1d) would reduce riparian effects and offset temporary riparian habitat losses.

Impact TES-8: Water Temperature Impacts

Under existing conditions, habitat in the project area for juvenile steelhead rearing is likely marginal due to unsuitable water temperatures during summer (Hanson Environmental 2002). Water temperature is an important variable that determines the suitability of fish habitat for fish growth, reproduction, survival, and migration. This is especially true for steelhead, which have relatively narrow temperature requirements for carrying out their life history. Any increase in water temperatures could further reduce the suitability of habitat for steelhead in the project area.

Water temperature is controlled primarily by flow, weather, stream width and depth, and shading of the stream surface. The proposed action would impact shade provided by riparian vegetation. The amount of shade that would be affected by vegetation removal would be small, however, compared to total shade on the creek; lost shading would be compensated for by additional shading provided by the new bridge. Consequently, there would be no adverse effects on water temperatures resulting from the project.

Impact TES-9: Impacts on Water Quality

Assessment of water quality addresses the impacts of contaminants on steelhead and their habitat. Contaminants include toxic substances, such as metals, petroleum products, pesticides, fertilizers, sewage, uncharacteristically high sediment loading, and bentonite. Activities associated with bridge construction and vegetation removal could increase erosion processes, thereby increasing sedimentation and turbidity in downstream waterways. Excessive sediment deposited in or near stream channels can degrade aquatic habitats. Bore-and-jack tunneling could result in “frac-out,” which could release bentonite into Suisun Creek. Increased turbidity can increase fish mortality; reduce feeding opportunities for fish, including rearing steelhead; and cause fish to avoid important habitat.

Additionally, construction materials, such as concrete, sealants, oil, and paint, could adversely affect water quality if accidental spills occurred during project construction. Increased pollutant concentrations could limit fish production, abundance, and distribution by direct mortality of fish or their prey. Steelhead inhabiting the project area require relatively clean, cold, well oxygenated water for successful growth, reproduction, and survival, and are not well adapted for survival in degraded aquatic habitats.
The potential for sediment and pollutant impacts would be considered an adverse effect. Adverse effects on water quality would be avoided by implementing Measure TES-9 and TES-10 below. Impact WQ-4 and Measure WQ-4 in Section 2.2.2, “Water Quality and Stormwater Runoff,” provide more detail regarding preparation of a frac-out contingency plan.

Impact TES-10: Impacts on Fish from Noise and Other Disturbances

Noise, vibrations, artificial light, and other physical disturbances adjacent to streams can harass fish, disrupt or delay normal activities, or cause injury or mortality. The potential magnitude of these impacts depends on a number of factors, including the type and intensity of the disturbance, proximity of the action to the water body, timing of actions relative to the occurrence of sensitive life stages, and frequency and duration of activities. For most activities, the impacts on fish will be limited to avoidance behavior in response to movements, noises, and shadows caused by construction personnel and equipment operating in or adjacent to the water body. However, survival may be altered if disturbance causes fish to leave protective habitat (e.g., increasing exposure to predators) or is of sufficient duration and magnitude to affect growth and spawning success. Injury or mortality may result from direct contact with humans and machinery, and sound pressure (pile driving), or indirectly from physiological stress associated with disturbance.

Project actions that may temporarily disturb fish include movement of construction equipment and personnel, lighting, removal and disturbance of riparian vegetation, and grading and construction of access roads and staging areas adjacent to the stream. Pile driving above the OHWM could also disturb fish as sound waves travel through the soil to the adjacent channel. There have been no studies that have tested the impacts of pile driving on land in close proximity to the channel. Factors that influence the intensity of pressure waves include proximity to the source, maximum force generated and rate at which it is generated, and characteristics of the medium (e.g., water and substrate) through which the waves travel. Soil is a relatively poor conductor of sound waves and a common avoidance measure is to conduct pile driving in a dry streambed or on land. These potential effects can be minimized by constructing during the dry season as described in Measure TES-10, below.

Impact TES-11: Impacts on Fish Movement and Potential Spawning Habitat

Construction activities associated with the proposed project would not require any work in the channel or redirection of the flow of water through the use of cofferdams or pipelines. Therefore, construction is not likely to adversely affect fish migration. A potential spawning gravel bed was observed on Suisun Creek, approximately 20 feet downstream of the existing bridge. It is anticipated that the gravel bed would not be removed or disturbed by the construction of the new bridge. No construction activity would take place within the creek and all construction equipment would access the construction site from the existing bridge and road.

Avoidance, Minimization, and/or Mitigation Measures

Implementation of the avoidance and minimization measures for Riparian Woodland (Measures NC-1a through NC-1d) will reduce adverse riparian effects and offset temporary riparian habitat losses. Implementation of the following measures would ensure that adverse effects on steelhead and their habitat potentially occurring in Suisun Creek are minimized.
Figure 2.3-4
Special-Status Salmonid Habitat in the Project Area
Measure TES-7: Retain and Improve Habitat Structure

Trees and shrubs immediately adjacent to Suisun Creek that must be removed for bridge construction will be cut above ground level to leave roots intact. By leaving roots of affected riparian vegetation intact, bank stability will not be compromised as would normally be expected following vegetation removal.

Under the new bridge, instream geomorphic features will be installed to compensate for affected SRA cover vegetation. Geomorphic features will include rock weirs and vanes, root wads, and deflector logs. By maintaining and improving bank stability and instream cover, habitat for migrating and seasonal rearing of juvenile steelhead and Chinook salmon would be preserved.

Measure TES-9: Implement Water Quality Impact Avoidance Measures

Increased sediment input to the creek will be avoided or minimized. Soil disturbance will be minimized by removing above-ground vegetation and leaving the root system intact. Additionally, contractors would be required to implement a SWPPP as part of the NPDES General Construction Activity Storm Water Permit. Measures in the plan will include:

- Conducting all construction work according to site-specific construction plans that minimize the potential for sediment input to the aquatic system.
- Minimizing the areas to be cleared, graded, and recontoured.
- Avoiding riparian and wetland vegetation outside the construction zone by installing Environmentally Sensitive Area fencing (ESA fencing).
- Grading and shaping of disturbed areas to restore natural topography.
- Covering bare areas with mulch and revegetating all cleared areas using native species.
- Preventing raw cement, concrete or concrete washings, asphalt, paint or other coating material, oil or other petroleum products, or any other substances that could be hazardous to aquatic life from contaminating the soil or entering watercourses.
- Establishing a spill prevention and countermeasure plan before project construction that includes strict on-site handling rules to keep construction and maintenance materials out of drainages and waterways.
- Cleaning up all spills immediately according to the spill prevention and countermeasure plan and notifying the CDFG and NMFS immediately of any spills and cleanup activities.
- Providing areas located outside the OHWM for staging and storing equipment, materials, fuels, lubricants, solvents, and other possible contaminants.

Implementation of measures to avoid or minimize the adverse effects of increased sediment input would also avoid and minimize increased input of pollutants associated with sediments and the potential for subsequent impacts on steelhead.
Measure TES-10: Implement Construction Restrictions

Construction activities will be limited to areas located above the OHWM. In addition, construction adjacent to Suisun Creek will be limited to the summer low-precipitation period (June 15 to October 15) to reduce the likelihood of adverse impacts on rearing juvenile steelhead and on adult fish spawning and migration. By limiting construction to June 15 to October 15, two goals would be achieved.

- Construction will not be concurrent with the expected migration (juvenile and adult) and spawning periods of steelhead.
- A 4-month construction period will ensure that construction activities in the vicinity of the creek are completed within one season, thereby avoiding multiple seasons of disturbance.

2.3.7 Invasive Plant Species

Regulatory Setting
On February 3, 1999, President Clinton signed Executive Order 13112 requiring federal agencies to combat the introduction or spread of invasive species in the United States. The order defines invasive species as “any species, including its seeds, eggs, spores, or other biological material capable of propagating that species, that is not native to that ecosystem whose introduction does or is likely to cause economic or environmental harm or harm to human health.” Federal Highway Administration guidance issued August 10, 1999 directs the use of the state’s noxious weed list to define the invasive plants that must be considered as part of the NEPA analysis for a proposed project.

Survey Results
Table 2.3-5 identifies the invasive plant species located in the study area. The infestation of the study area by these species is limited, occurring primarily on isolated patches of vegetation on the edges of roadways.

Environmental Consequences

Impact IPS-1: Potential Introduction and Spread of Invasive Plants

Invasive plant species in the study area are present along roadsides, which are routinely disturbed by shoulder maintenance and vegetation management activities. The proposed project would create additional disturbed area for a temporary period, but it would not substantially increase the area subject to repeated disturbance because the new road shoulders would replace existing road shoulders. The proposed project is not anticipated to increase or decrease the area currently occupied by invasive plants or the potential for spreading invasive plant species. However, procedures have been identified to further ensure the avoidance of potential adverse effects from invasive plants (Measure IPS-1).

Avoidance, Minimization, and/or Mitigation Measures
Implementation of Measure NC-1b and the following measure would avoid and minimize the adverse effect of introduction and spread of invasive plants during construction.
Measure IPS-1: Avoid the Introduction and Spread of Invasive Plants

The introduction of new invasive plants and the spread of invasive plants previously documented in the study area will be avoided. Accordingly, the following measures will be implemented during construction.

- Surface disturbance within the construction work area will be minimized to the greatest extent possible.
- All disturbed areas will be seeded with certified weed-free native mixes and mulched with certified weed-free mulch (rice straw may be used in upland areas).
- Native, noninvasive species will be used in erosion control plantings to stabilize site conditions and prevent invasive species from colonizing.

<table>
<thead>
<tr>
<th>Species</th>
<th>CDFA</th>
<th>Cal-IPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slender wild oat (Avena barbata)</td>
<td>–</td>
<td>Moderate</td>
</tr>
<tr>
<td>Wild oat (Avena fatua)</td>
<td>–</td>
<td>Moderate</td>
</tr>
<tr>
<td>Black mustard (Brassica nigra)</td>
<td>–</td>
<td>Moderate</td>
</tr>
<tr>
<td>Common mustard (Brassica rapa)</td>
<td>–</td>
<td>Limited</td>
</tr>
<tr>
<td>Ripgut brome (Bromus diandrus)</td>
<td>–</td>
<td>Moderate</td>
</tr>
<tr>
<td>Soft chess (Bromus hordeaceus)</td>
<td>–</td>
<td>Limited</td>
</tr>
<tr>
<td>Red brome (Bromus madritensis ssp. rubens)</td>
<td>–</td>
<td>High</td>
</tr>
<tr>
<td>Italian thistle (Carduus pycnocephalus)</td>
<td>C</td>
<td>Moderate</td>
</tr>
<tr>
<td>Yellow star-thistle (Centaurea solstitialis)</td>
<td>C</td>
<td>High</td>
</tr>
<tr>
<td>Bull thistle (Cirsium vulgare)</td>
<td>C</td>
<td>Moderate</td>
</tr>
<tr>
<td>Bindweed (Convolvulus arvensis)</td>
<td>C</td>
<td>–</td>
</tr>
<tr>
<td>Bermuda grass (Cynodon dactylon)</td>
<td>C</td>
<td>Moderate</td>
</tr>
<tr>
<td>Orchard grass (Dactylis glomerata)</td>
<td>–</td>
<td>Limited</td>
</tr>
<tr>
<td>Red-stemmed filaree (Erodium cicutarium)</td>
<td>–</td>
<td>Limited</td>
</tr>
<tr>
<td>Fig (Ficus carica)</td>
<td>–</td>
<td>Moderate</td>
</tr>
<tr>
<td>Fennel (Foeniculum vulgare)</td>
<td>–</td>
<td>High</td>
</tr>
<tr>
<td>Mediterranean barley (Hordeum marinum var. gussoneanum)</td>
<td>–</td>
<td>Moderate</td>
</tr>
<tr>
<td>Hare barley (Hordeum murinum ssp. leporinum)</td>
<td>–</td>
<td>Moderate</td>
</tr>
<tr>
<td>Klamathweed (Hypericum perforatum)</td>
<td>C</td>
<td>Moderate</td>
</tr>
<tr>
<td>Smooth cat’s ear (Hypocharis glabra)</td>
<td>–</td>
<td>Limited</td>
</tr>
<tr>
<td>Broad-leaved pepper-grass (Lepidium latifolium)</td>
<td>B</td>
<td>High</td>
</tr>
<tr>
<td>Italian ryegrass (Lolium multiflorum)</td>
<td>–</td>
<td>High</td>
</tr>
<tr>
<td>White horehound (Marrubium vulgare)</td>
<td>–</td>
<td>Limited</td>
</tr>
<tr>
<td>Bur-clover (Medicago polymorpha)</td>
<td>–</td>
<td>Limited</td>
</tr>
<tr>
<td>Olive (Olea europaea)</td>
<td>–</td>
<td>Limited</td>
</tr>
<tr>
<td>Harding grass (Phalaris aquatica)</td>
<td>–</td>
<td>Moderate</td>
</tr>
<tr>
<td>Bristly ox-tongue (Picris echioides)</td>
<td>–</td>
<td>Limited</td>
</tr>
<tr>
<td>Smilo grass (Piptatherum millaceum)</td>
<td>–</td>
<td>Limited</td>
</tr>
<tr>
<td>Narrow-leaved plantain (Plantago lanceolata)</td>
<td>–</td>
<td>Limited</td>
</tr>
<tr>
<td>Wild radish (Raphanus sativus)</td>
<td>–</td>
<td>Limited</td>
</tr>
<tr>
<td>Himalayan blackberry (Rubus discolor)</td>
<td>–</td>
<td>High</td>
</tr>
<tr>
<td>Sheep sorrel (Rumex acetosella)</td>
<td>–</td>
<td>Moderate</td>
</tr>
<tr>
<td>Curly dock (Rumex crispus)</td>
<td>–</td>
<td>Limited</td>
</tr>
</tbody>
</table>
Chapter 2. Affected Environment; Environmental Consequences; and Avoidance, Minimization, and/or Mitigation Measures—Biological Environment

<table>
<thead>
<tr>
<th>Species</th>
<th>CDFA</th>
<th>Cal-IPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russian thistle (Salsola tragus)</td>
<td>C</td>
<td>Limited</td>
</tr>
<tr>
<td>Milk thistle (Silybum marinum)</td>
<td>–</td>
<td>Limited</td>
</tr>
<tr>
<td>Charlock (Sinapis arvensis)</td>
<td>–</td>
<td>Limited</td>
</tr>
<tr>
<td>Medusahead (Taeniatherum caput-medusae)</td>
<td>C</td>
<td>High</td>
</tr>
<tr>
<td>Hedgeparsley (Torilis arvensis)</td>
<td>–</td>
<td>Moderate</td>
</tr>
<tr>
<td>Puncture vine (Tribulus terrestris)</td>
<td>C</td>
<td>–</td>
</tr>
<tr>
<td>Rose clover (Trifolium hirtum)</td>
<td>–</td>
<td>Moderate</td>
</tr>
<tr>
<td>Bigleaf periwinkle (Vinca major)</td>
<td>–</td>
<td>Moderate</td>
</tr>
<tr>
<td>Foxtail fescue (Vulpia myuros)</td>
<td>–</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

Notes: The CDFA and Cal-IPC lists assign ratings that reflect the CDFA and Cal-IPC views of the statewide importance of the pest, the likelihood that eradication or control efforts would be successful, and the present distribution of the pest in the state. These ratings are guidelines that indicate the most appropriate action to take against a pest under general circumstances. The Cal-IPC species list is more inclusive than the CDFA list; however, the FHWA requires adherence to Executive Order 13112, which requires the use of only the CDFA list.

The CDFA categories indicated in the table are defined as follows:

- **B**: Eradication, containment, control, or other holding action at the discretion of the county agricultural commissioner.
- **C**: State-endorsed holding action and eradication only when found in a nursery; action to retard spread outside nurseries at the discretion of the county agricultural commissioner.

The Cal-IPC categories indicated in the table are defined as follows:

- **High**: Species with severe ecological impacts, high rates of dispersal and establishment, and usually widely distributed.
- **Moderate**: Species with substantial and apparent ecological impacts, moderate to high rates of dispersal, and establishment dependent on disturbance, and that are limited to widespread distribution.
- **Limited**: Species with minor ecological impacts, low to moderate rates of invasion, and limited distribution, and that are locally persistent and problematic.

2.3.8 No-Project Alternative

Under the No-Project alternative, no construction activities would occur; therefore, no effects on the biological environment would result.
2.4 Cumulative Impacts

2.4.1 Regulatory Setting

Cumulative impacts are those that result from past, present, and reasonably foreseeable future actions, combined with the potential impacts of this project. A cumulative impact assessment looks at the collective impacts posed by individual land use plans and projects. Cumulative impacts can result from individually minor but collectively substantial impacts taking place over a period of time.

Cumulative impacts on resources in the project area may result from residential, commercial, industrial, and highway development, as well as from agricultural development and the conversion to more intensive types of agricultural cultivation. These land use activities can degrade habitat and species diversity through consequences such as displacement and fragmentation of habitats and populations, alteration of hydrology, contamination, erosion, sedimentation, disruption of migration corridors, changes in water quality, and the introduction or promotion of predators. They also can contribute to potential community impacts identified for the project, such as changes in community character, traffic patterns, housing availability, and employment.

State CEQA Guidelines Section 15130 describes when a cumulative impact analysis is warranted and what elements are necessary for an adequate discussion of cumulative impacts. The definition of cumulative impacts under CEQA can be found in Section 15355 of the State CEQA Guidelines. A definition of cumulative impacts under NEPA can be found in 40 CFR Section 1508.7 of the CEQ regulations.

2.4.2 Approach to Cumulative Impact Analysis

The cumulative analysis for the proposed project takes into consideration the other ongoing projects in the same geographic area as the proposed project, as well as planned land uses and transportation and circulation projections identified in city and county general plan and policy documents.

The existing and proposed projects listed below have been included in this analysis because they either are close to the project area or could affect regional resources. This information represents the most up-to-date information available as of the date of publication of this document.

- **North Connector Project**: The North Connector Project would construct a parallel route to the north of I-80 between Abernathy Road at I-80 on the east and SR 12 at Red Top Road on the west. This project would provide increased east/west capacity and provide an alternative to I-80 for local traffic. Construction of the first phase of the North Connector Project is expected to begin in summer 2009, with completion anticipated in December 2010.
Chapter 2. Affected Environment; Environmental Consequences; and Avoidance, Minimization, and/or Mitigation Measures—Cumulative Impacts

Interstate 80 High-Occupancy Vehicle Lanes Project: Eastbound and westbound high-occupancy vehicle (HOV) lanes will be constructed along an approximately 8.5-mile-long segment of I-80 from the Red Top Road interchange in Solano County to approximately 0.5 mile east of the Air Base Parkway interchange in Fairfield. This project (EA-04-0A5304) will increase the overall carrying capacity of I-80 in the project area and will facilitate the already high demand for ridesharing on I-80. Construction of this project began in June 2008, and completion is anticipated in late 2009.

Transit Improvements: To support increased transit ridership and expanded bus routes in the county, the **I-80/I-680/I-780 Transit Corridor Study** identifies numerous potential locations for park-and-ride lots in these major corridors, three of which could be located in the project area: Red Top Road at I-80, a surface lot at Abernathy Road between I-80 and SR 12 or an expanded parking structure at the Fairfield Multimodal Transportation Center, and Gold Hill Road at I-680. These potential lots are expected to be constructed between 2010 and 2015.

Interstate 80/Interstate 680/State Route 12 Interchange Project: The Interstate 80/Interstate 680/State Route 12 Interchange Project (EA-04-0A5300) would include numerous improvements to the I-80/I-680/SR 12 interchange to address existing and future traffic operations and congestion, including the relocation of the westbound Cordelia Truck Scales. The improvements are intended to add freeway capacity, reduce cut-through traffic on local roads, improve local access to and from the freeway, accommodate current and future truck volumes, improve safety and increase the use of HOV lanes and ridesharing. The environmental document for the project is currently underway and is expected to be completed in early 2010.

Jameson Canyon (SR 12) Widening from I-80 to SR 29: This project would provide a continuous 4 lane expressway between I-80 and SR 29. The project currently in the final design phase and construction is planned to begin in 2011, with completion in 2013.

Jepson Parkway: This project is intended to address safety concerns, accommodate traffic associated with planned growth, and enhance multi-modal transportation options for local trips in central Solano County. The project will upgrade and link a series of existing local 2- and 4-lane roadways to provide a 4-lane north-south travel route between SR 12E and I-80, passing Travis Air Force Base. The project has been approved by the STA Board and construction is expected to begin in the next 4 years.

I-80 Improvements through Fairfield: Several projects are programmed between SR 12 East and Air Base Parkway. They include construction of an eastbound auxiliary lane between Abernathy Road and Auto Mall Parkway, removal of existing hook ramps at Auto Mall Parkway, construction of an eastbound auxiliary lane between Beck Avenue and Travis Boulevard, construction of an eastbound auxiliary lane from Travis Boulevard to Air Base Parkway, construction of a westbound auxiliary lane from Waterman Boulevard/Air Base Parkway to Travis Boulevard, and construction of a westbound auxiliary lane from West Texas Street to Abernathy Road. These improvements are in the early planning phases. No construction date has been determined.

Fairfield Corporate Commons: Fairfield Corporate Commons consists of a mixed residential and office development located north of I-80 and east of Dan Wilson Creek. This
project will provide approximately 864,000 square feet of office and hotel use, 269 multi-family housing units, and 167 single-family housing units. The project is currently under construction.

2.4.3 Assessment of Cumulative Impacts

Human Environment

Land Use
The study area for cumulative land use effects includes the geographic area of the ongoing projects listed above which generally coincides with the areas immediately surrounding I-80 and State Route 12 in Solano County and the City of Fairfield. Land uses in the study area have changed dramatically in some areas and remained relatively stable in others. Portions of the study area within Solano County have remained relatively stable over the years and focused on agricultural uses with intermittent industrial and commercial uses. Areas within the City of Fairfield have changed rapidly over the years particularly north of I-80 in the Green Valley area of Fairfield with large amounts of commercial, office and residential land uses being developed. As discussed in section 2.1.1, the proposed project would affect agricultural and residential environments confined to within the project area. The project in combination with other ongoing and reasonably foreseeable projects in the study area would contribute to additional conversion of agricultural lands to non-agricultural uses as well as additional residential and business displacement. These changes could cause a cumulatively adverse effect. However as with the proposed project, each ongoing and reasonably foreseeable project would be required to mitigate the individual land use impacts resulting from each project. These projects have been included in local and county planning documents. In addition, the cumulative changes in land use that would occur as a result of this project in combination with other ongoing and reasonably foreseeable projects are generally consistent with the long range community and transportation plans of the County, City of Fairfield and transportation planning agencies (MTC, STA, Caltrans, and FHWA).

Growth
The study area for cumulative growth effects is the same as described above for land use. As discussed in section 2.1.2, the proposed project would not contribute to growth-inducement and as such would not contribute to a cumulative effect.

Farmlands
The study area for cumulative farmland effects is the same as described above for land use. As discussed in section 2.1.3, and above under land use, the proposed project would result in the conversion of farmlands to non-farm uses. The project in combination with other ongoing and reasonably foreseeable projects in the study area would contribute to additional conversion of farmland to non-farm uses. The amount of farmland conversion could cause a cumulatively adverse effect. However as with the proposed project, each ongoing and reasonably foreseeable project would be required to mitigate the individual farmland impacts resulting from each project. If mitigation similar to that specified for the proposed project is required of other ongoing and reasonably foreseeable projects, cumulative impacts to farmlands should be
substantially reduced and result in more farmland within the County being permanently protected from future conversion.

Community Impacts
The study area for cumulative community impacts is the same as described above for land use. As discussed in section 2.1.4, the proposed project would not result in an adverse community impact nor affect an environmental justice community. As such the proposed project would not contribute to a cumulative effect.

Utilities/Emergency Services
The study area for cumulative utilities/emergency services impacts is the same as described above for land use. As discussed in section 2.1.4, the proposed project would not result in an adverse effect on utilities or emergency services. As such the proposed project would not contribute to a cumulative effect.

Traffic and Transportation
As discussed in section 2.1.6, the only adverse effect on traffic and transportation would be a temporary effect associated with construction. Implementation of measures listed in Section 2.1.6 would reduce this effect. Because the only adverse effect is temporary, there would be no cumulative impact on traffic and transportation.

Visual Resources
The visual quality of the land along I-80 near Fairfield, has decreased as a result of recent development which has altered the general visual character from agricultural to suburban. Development continues along the I-80 corridor and as a result, visual quality continues to decrease. Although the project would be developing one of the remaining somewhat vivid agricultural/undeveloped areas along this portion of the freeway, its contribution to this cumulative impact would not be considerable because of the removal of the existing truck scales along with landscape and architectural treatments that mitigate any visual impacts from the project.

Cultural Resources
As discussed in section 2.1.8, there would be no adverse impacts on cultural resources. Therefore, the project would not contribute to any cumulative impacts.

Physical Environment

Hydrology and Floodplain
Related projects in the area of the study area that would impact the floodplain include: A) the HOV project that is currently under construction, B) the North Connector project that is currently under design and located parallel to and a short distance north of the freeway, C) and the large I-80/I-680/SR12 interchange freeway reconstruction project that is in the planning stages.

The potential impacts of the HOV project and the North Connector project are minimal. The HOV project resulted in no changes to the culverts under the freeway, and where the floodplain overtops the freeway, a metal beam guard rail has been constructed instead of a concrete barrier.
to minimize impacts to the floodplain. The North Connector project is constructed at or slightly below existing grade, so there is no new impediment to overland flows.

The future interchange and freeway widening project has the potential to have an adverse effect on the floodplain, however, all waterway crossings will be reconstructed with new bridges or new culverts, creating the same or increased conveyance of flood flows. At Raines Drain, the future freeway widening project that is part of the large interchange project will negatively impact the floodplain elevations unless specific flood control improvements are made. Presently the total runoff in Raines Drain is the combination of runoff from the immediate Raines Drain watershed and excess flood flows that escape from the adjacent Suisun Creek. These combined flood flows reach the undersized culverts at the highway. In the future, when the mainline is raised and the westbound truck scales relocated, a combination of additional storm drain capacity and/or detention facilities will need to be constructed. The eastbound truck scales project will not affect the floodplain flows because the existing freeway centerline is the control to the floodplain elevation; all flows that overtop the freeway will likewise pass, at a lower elevation across the eastbound scales improvements. These projects taken together are not expected to have a cumulative effect on hydrology and the floodplain in the project vicinity.

Impacts to the hydrology and floodplain as a result of the proposed project would be minimal and would be mitigated. Therefore, the project will not contribute to a cumulative impact on the hydrology and floodplain in the project vicinity.

Water Quality and Stormwater Runoff

Related projects in the vicinity of the study area that would affect water quality and stormwater runoff include: A) the HOV project that is currently under construction, B) the North Connector project that is currently under design and located parallel to and a short distance north of the freeway, C) and the large I-80/I-680/SR12 interchange freeway reconstruction project that is in the planning stages.

All State or local transportation projects, including the three mentioned here, are subject to incorporating construction storm water treatment measures, the design of erosion control measures, and incorporating new stormwater runoff treatment control measures. Each project will be required to meet the water quality regulations of the Regional Water Quality Control Board. With each project meeting the requirements of the Regional Board there should be no net cumulative effect, and therefore the project will not contribute to a cumulative impact.

Geology/Soils/Seismic/Topography

As discussed in section 2.2.3, construction in the project area could lead to an increased sediment load to receiving waters and an increase in the potential for seismic- or expansive soil–related hazards. There are measures in place to conduct a site-specific geotechnical investigation and to design and construct the project to avoid or minimize the potential for such hazards to result in damage to project facilities. Therefore, the project is not anticipated to have a cumulatively considerable contribution to these impacts.
Paleontology
As discussed in section 2.2.4, potential adverse impacts on paleontological resources would be mitigated through a monitoring plan in sensitive areas. Therefore, the proposed project would not contribute to any cumulative impacts.

Hazardous Waste/Materials
As discussed in section 2.2.5, there are measures in place to conduct site-specific hazardous materials investigations, prepare and implement a safety plan, and design and construct the project to avoid or minimize the potential exposure of humans and the environment to hazardous conditions. With these measures in place, the project is not anticipated to contribute to cumulative impacts related to hazardous materials.

Air Quality
Air quality impacts are inherently cumulative since the traffic forecasts are consistent with buildout assumptions that are consistent with adopted demographic forecasts. Consequently, air quality conditions incorporate regional growth. The only exception to this is for construction related impacts. The proposed project would improve movement, increase capacity, and improve overall traffic operation in the general vicinity, thereby lowering the concentration of pollutants emitted by the motor vehicles. Consequently, with the relocation of the trucks scales, transportation improvements for the corridors I-80/I-680/SR-12 proposed and the secondary improvement in vehicular movement, such as the HOV lanes and longer truck on-/off-ramps, no cumulative adverse regional or local air quality impacts are anticipated.

Construction Activities
Construction of the proposed project would not result in adverse impacts on air quality, with the implementation of the standard construction control measures. Additionally, short-term effects are minimized through compliance with BAAQMD rules and regulations and the Department specifications during construction. Therefore, impacts of the proposed project as a result of construction activity are not expected to contribute to cumulative impacts on air quality.

Operational Impacts
Proposed project operations were shown to have a minor decrease in criteria pollutants and MSAT emissions near residences. Therefore, project-related emissions would decrease with the implementation of the project for each criteria and MSAT pollutant in the region. The combined impacts from the proposed project with other nearby projects would result in cumulatively considerable effects from the proposed project and other nearby projects would not result in cumulatively considerable effects for criteria pollutants and MSAT emissions. All of the projects listed in Section 2.4.2 are listed in 2007 TIP, including the I-80 EB Cordelia Truck Scales Relocation Project, and therefore conforms to the SIP. Therefore, emissions would not result in an adverse cumulative effect.

Noise
Noise effects related to operation and construction of the proposed project are discussed in Section 2.2.7. The analysis of operational noise was based on forecast cumulative 2035 traffic.
Impact NOI-3: Contribution to Cumulative Traffic Noise

The resource study area for the cumulative noise analysis is the same as the project study area, and includes the I-80 corridor, on- and off-ramps to SR 12E, and sensitive land uses within approximately 700 feet of the proposed project. Traffic data used to predict noise levels in the project area included past, present, and reasonably foreseeable future projects in the general project vicinity. Related transportation projects that are included in the cumulative impact analysis include those described above under Section 2.4.2. Additional non-transportation projects in the vicinity are also included in noise model and the cumulative analysis, such as the Fairfield Corporate Commons on the north side of I-80 near Suisun Valley Road (a mixed-use office, commercial, and residential development covering approximately 72 acres and including 269 multi-family and 167 single-family housing units). All of these projects are anticipated to increase traffic noise at adjacent land uses in the area by either generating traffic or by locating roadways closer to sensitive uses.

Cumulative traffic noise levels are predicted to approach or exceed the noise abatement criteria (NAC) under 23CFR772 as a result of all projects anticipated to occur in the area. As a result of this, the traffic noise analysis for the proposed project evaluated noise barriers at residences in the project area under the requirements of 23CFR772. Noise barriers studied for these locations were found to be acoustically feasible, but not reasonable from a cost perspective. The noise study for I-80 HOV Lanes Project (California Department of Transportation 2007) similarly evaluated noise barriers and concluded that noise barriers were acoustically feasible but not reasonable from a cost perspective. The I-80/I-680/SR 12 Interchange Project will similarly be evaluated under the requirements of 23CFR772. Noise impacts will be disclosed and noise abatement will be evaluated as required.

Energy and Non-renewable Natural Resources

For the purposes of this draft EIR/EA, cumulative impacts on energy would occur if the selected alternative, in conjunction with other related projects, collectively resulted in excessive or inefficient energy use.

Construction

The proposed project would require the use of energy resources during construction. Energy impacts involve one-time, non-recoverable energy use associated with construction activities and the use of materials. Energy use for construction would be a short-term impact and would represent a small percentage of the total energy consumed in the region during the period of project construction. As a result, the proposed project is not anticipated to result in an adverse impact on the overall supply of or demand for energy during project construction and, therefore, would not contribute to adverse cumulative impacts on energy resources.

Operations Impacts

Development of related projects in the project area would have a tendency to result in increased energy consumption, whereas the proposed project and other transportation-related projects are expected to result in improved or reduced energy consumption associated with more efficient traffic flow. In either case, because of the relatively high cost of energy, cumulative energy consumption related to proposed project operations is not expected to be excessive or inefficient.
The proposed project would not result in an adverse effect on fuel consumption. Therefore, proposed project operations would not contribute to cumulative direct impacts on energy resources. Indirect energy resources include the consumption of energy for construction of materials and supplies and manufacture of parts associated with the maintenance of the truck scales. This would occur, and therefore the project would result in a slight adverse effect on indirect energy in the long term and would contribute to a cumulative adverse impact on energy.

The proposed project would contribute to the cumulative short-term impacts since it would require the expenditure of energy resources to construct the proposed project. This expenditure would be offset by the energy savings associated with reduced congestion as result of the relocation of the Cordelia truck scales, improvements to the I-80/I-60/SR-12 freeways and local intersections.

Impact EN-3: Contribution to Cumulative Effect on Non-renewable Natural Resources

Implementation of the projects in the study area would result in a cumulative effect on the consumption of non-renewable natural resources (i.e., lumber for construction, fossil fuels [gasoline and diesel] used for equipment operation and vehicle trips to and from construction sites). Considering a number of projects in the study area are redevelopment projects, it is anticipated that modern energy-conserving fixtures, appliances, etc. would replace inefficient equipment, lessening the use of non-renewable energy sources on-site. The projects are also anticipated to stimulate the local economy and may result in a net increase in vehicular trips over existing conditions, particularly the shopping areas. Therefore, implementation of the projects in the study area has the potential for increasing demand on energy sources.

This is an adverse effect, but its severity is reduced through various laws, policies, and programs by both Federal and State agencies. The most significant mitigation for direct energy expenditures would be adoption and implementation of more rigorous CAFE standards for motor vehicles, as stated in the Energy Independence and Security Act of 2007. In addition, the EPA’s Energy Star Program, Governor’s Executive Order S-20-04 and Green Building Action Plan incorporate programs and techniques that create appliances with Energy Star efficiency compliance, buildings with a LEED Silver or higher rating, and other energy-saving projects to conserve energy that help provide for a sustainable environment.

Biological Environment

Natural Communities

Impact NC-2: Cumulative Loss of Riparian Woodland

Implementation of the proposed project, in combination with other local and regional projects, would contribute to the cumulative loss of riparian woodland in the project vicinity. Historic loss of riparian vegetation in Solano County has occurred from conversion of riparian habitat for agriculture and development. Although riparian vegetation remains along some of the major streams in the County, including Suisun Creek, the riparian corridor is substantially narrower than it was historically because of this development. The project would contribute incrementally to Solano County cumulative impacts on riparian woodland caused by similar bridge
modification projects, new bridge construction, and road widening projects, and from the loss of riparian habitat attributed to urban development. Additional projects proposed within the county, such as Fairfield Corporate Commons, Green Valley Corporate Park, and other business and residential projects in the area, have the potential to contribute to the cumulative loss of riparian habitat.

Indirect impacts can be caused adjacent disturbances to riparian woodland and have the potential to add to the cumulative loss of these natural communities.

However, Measures NC-1a through NC-1e would reduce these cumulative impacts on riparian woodland to a less than cumulatively considerable level.

Wetlands and Other Waters

Impact WOW-4: Cumulative Loss of Perennial Wetland Drainage, Perennial Drainage, and Seasonal Drainage

Implementation of the proposed project, in combination with other local and regional projects, would contribute to the cumulative loss of wetlands and drainages that are waters of the United States within the Suisun Bay hydrologic unit (HUC 18050001). Most wetland drainages that historically occurred in the rivers in the Solano County have been modified or drained over the last century or more to improve water transport, flood protection, and agricultural development (SCWA 2007). These wetlands and drainages include features that are waters of the United States. Direct loss of 0.08 acre of waters of the United States in a seasonal drainage would be caused by the project, and indirect effects on waters of the United States due to sedimentation could also occur. Additional projects proposed within the hydrologic unit, such as Fairfield Corporate Commons, Green Valley Corporate Park, and other business and residential projects in the area, have the potential to cause cumulative direct and indirect impacts on wetlands and drainages. Direct impacts can result from the placement of fill within a wetland or drainage. Indirect impacts can be caused by the accumulation of sediment in wetlands and drainages resulting from adjacent disturbances. Both direct and indirect impacts have the potential to add to the cumulative loss of wetland and drainage habitat.

The proposed project’s contribution to these direct and indirect impacts would be considered an adverse effect. However, with the implementation of Measures NC-1a, NC-1b, WOW-1, WOW-3, and WQ-2 the impact would be not be cumulatively considerable.

Plant Species

No special-status plant species are present within the project area, so there would be no impacts on plant species. As such, the project would not contribute to cumulative impacts on plant species.
Animal Species

Impact AS-8: Cumulative Loss and Disturbance of Nesting Migratory and Special-status Birds

The study area for cumulative effects on nesting migratory and special-status bird habitat includes the geographic area of the ongoing projects listed above which generally coincides with the areas immediately surrounding I-80 and State Route 12 in Solano County and the City of Fairfield. Wildlife species and their habitats have changed dramatically in some areas and remained relatively stable in others. Portions of the study area within Solano County have remained relatively stable over the years and focused on agricultural uses which provide wildlife foraging and nesting opportunities. Areas within the City of Fairfield have changed rapidly over the years particularly north of I-80 in the Green Valley area of Fairfield with large amounts of commercial, office and residential land uses being developed.

As discussed in section 2.3.4, the proposed project would affect foraging and nesting habitat confined to within the project area along I-80, an already heavily disturbed area. The project in combination with other ongoing and reasonably foreseeable projects in the study area would contribute to additional conversion of nesting and foraging habitat for birds. These changes could cause a cumulatively adverse effect. However, as with the proposed project, each ongoing and reasonably foreseeable project would be required to mitigate the individual nesting migratory and special-status bird species impacts resulting from each project. In addition, the cumulative changes in species habitat that would occur as a result of this project, in combination with other ongoing and reasonably foreseeable projects, are generally consistent with the long range community and transportation plans of the County, City of Fairfield and transportation planning agencies (MTC, STA, Caltrans, and FHWA). However, with the implementation of Measure AS-2 the effect would not be cumulatively considerable.

Impact TES-12: Cumulative Loss of Swainson’s Hawk Nesting and Foraging Habitat

The study area for cumulative effects on Swainson’s hawks is the same as described above for nesting migratory and special-status birds. The proposed project would result in the permanent loss and temporary disturbance of some foraging habitat and of riparian woodland that provides potential nesting habitat for Swainson’s hawks.

Although the project would result in the permanent loss and temporary disturbance of some foraging habitat and of riparian woodland that provides potential nesting habitat for Swainson’s hawks because this habitat occurs along I-80 and is unlikely to be used by nesting Swainson’s hawks, the loss of habitat located along I-80 would not be cumulatively considerable, and cumulative impacts on Swainson’s hawk from the proposed project are not anticipated.

Additionally, the project would permanently increase the amount of noise and visual interference as well as increase the human presence in the project area. The proposed project’s contribution to these impacts would be considered an adverse effect. However, with the implementation of Measures NC-1a through NC-1e, AS-2 and TES-2, the effect would not be cumulatively considerable.
Impact TES-13: Cumulative Impact on Valley Elderberry Longhorn Beetle

In addition to the direct impacts on VELB habitat in the project vicinity, the project would contribute incrementally to cumulative impacts on VELB in Solano County as a result of similar bridge modification projects, new bridge construction, and road widening projects, and from the loss of riparian habitat attributed to urban development. Additional projects proposed within the county have the potential to have cumulative indirect impacts on VELB habitat through dust accumulation and the accumulation of sediment around shrubs resulting from upstream disturbances. The proposed project’s contribution to these impacts would be considered an adverse effect. However, with implementation of Measures NC-1a through NC-1e and TES-3, the effect would not be cumulatively considerable.

Impact TES-14: Cumulative Impact on California Red-Legged Frog

The study area for cumulative effects on CRLF is a 5-mile radius around the project site. There are 15 records for CRLF within a 5-mile radius of the project site (California Natural Diversity Database 2008). The proposed project would contribute incrementally to impacts on CRLF in Solano County within a 5 mile radius of the project site caused by similar bridge modification, new bridge construction, and road widening projects and from the loss of riparian habitat attributed to urban development. Other projects proposed in the county have the potential to cumulatively affect CRLF and its habitat through the loss of aquatic and riparian habitat. The proposed project’s contribution to these impacts would be considered an adverse effect. However, with implementation of Measures TES-4, TES-5, and TES-6, the impact would not be cumulatively considerable.

Central California Coast Steelhead

Between 1990 and 2000, the population of Solano County increased by 16.2% (U. S. Census Bureau 2008). It is assumed that future private and state projects will continue within the project area, increasing as population density increases. As the human population in the project area continues to grow, demand for commercial or residential development is also likely to grow. The impacts of new development caused by that demand are likely to further reduce the conservation value of habitat for steelhead within the project area. Nonfederal projects in the project area include the Fairfield Corporate Commons, Green Valley Corporate Park, and other business and residential projects in the area. However, it is reasonable to conclude that the proposed project would not result in cumulative impacts on the survival and recovery of Central Valley steelhead in the context of these larger nonfederal projects because the proposed project would result in minimal, short-term impacts that are spatially and temporally separated from impacts of these other projects in the area. Implementation of the avoidance and minimization measures described for the proposed project would not result in adverse impacts on steelhead and its habitat; consequently, this project would not contribute incrementally to cumulative impacts on steelhead and its habitat.

Central Valley Fall/Late Fall-Run Chinook Salmon

The Magnuson-Stevens Fishery Conservation and Management Act requires all federal agencies to consult with the NMFS on all cumulative and synergistic projects or proposed projects that may adversely affect EFH. The assessment of cumulative impacts on EFH is the same as the assessment of cumulative impacts presented for steelhead above. In addition, because the
impacts on EFH would be temporary, the proposed project in conjunction with the other nonfederal projects would not contribute incrementally to cumulative impacts on EFH for Chinook salmon.

Invasive Species

Impact IPS-2: Cumulative Spread of Invasive Plant Species

Implementation of the proposed project, in combination with other local and regional projects, could contribute to the cumulative spread of invasive plant species in the Solano County. The project could contribute incrementally to the cumulative spread of invasive plant species in Solano caused by similar bridge modification projects, new bridge construction, road widening projects, and urban development adjacent to open space areas.

The proposed project’s contribution to invasive plant species impacts would be considered a potentially adverse effect. However, with implementation of Measure IPS, the impact would not be cumulatively considerable.
Chapter 3 California Environmental Quality Act (CEQA) Evaluation

3.1 Determining Significance under CEQA

The proposed project is a joint project by the California Department of Transportation (Department) and the Federal Highway Administration (FHWA) and is subject to state and federal environmental review requirements. Project documentation, therefore, has been prepared in compliance with both the California Environmental Quality Act (CEQA) and the National Environmental policy Act (NEPA). The FHWA’s responsibility for environmental review, consultation, and any other action required in accordance with NEPA and other applicable federal laws for this project is being, or has been, carried out by Caltrans under its assumption of responsibility pursuant to 23 USC 327. The Department is the lead agency under CEQA and NEPA.

One of the primary differences between NEPA and CEQA is the way significance is determined. Under NEPA, significance is used to determine whether an environmental impact study (EIS) or some lower level of environmental documentation will be required. NEPA requires that an EIS be prepared when the proposed federal action (project) as a whole has the potential to “significantly affect the quality of the human environment.” The determination of significance is based on context and intensity. Some impacts determined to be significant under CEQA may not be of sufficient magnitude to be determined significant under NEPA. Under NEPA, once a decision is made regarding the need for an EIS, it is the magnitude of the impact that is evaluated, and no judgment of its individual significance is deemed important for the text. NEPA does not require that a determination of significant impacts be stated in the environmental documents.

CEQA, on the other hand, requires a lead agency to identify each “significant effect on the environment” resulting from the project and ways to mitigate each significant effect. If the project may have a significant effect on any environmental resource, then an EIR must be prepared. Each significant effect on the environment must be disclosed in the EIR and mitigated if feasible. In addition, the State CEQA Guidelines require that the lead agency make several mandatory findings of significance, which also could trigger the preparation of an EIR. There are no types of actions under NEPA that parallel the mandatory findings of significance under CEQA. This chapter discusses the effects of this project and the CEQA significance determination.

3.1.1 Thresholds of Significance

Different agencies may use different thresholds for determining the need for mitigation. For the purpose of the impact discussions in this chapter, significance conclusions are provided in the context of CEQA and State CEQA Guidelines requirements only. The following significance conclusions are made in this chapter.
- **No impact:** This level of significance is used for impacts where there is clearly no impact.
- **Less than significant:** This level of significance is used for impacts where there would be an impact, but the degree of the impact would not meet or exceed the identified thresholds.
- **Less than significant with mitigation incorporated:** This level of significance is used for impacts that would meet or exceed the identified thresholds but would be reduced to a less-than-significant level through the implementation of mitigation measures.
- **Unavoidable Significant:** This level of significance describes significant impacts for which mitigation to reduce the significant impact to a less-than-significant level is not available or feasible.

The thresholds for determining significance of impacts for the various resource areas derived from the State CEQA Guidelines and professional practice and the CEQA checklist provided in Appendix G of this document.

3.2 Discussion of Significance of Impacts

Those project effects that are considered impacts under CEQA only are fully discussed here. Impacts that are also considered effects under NEPA are listed here, and are fully discussed in Chapter 2 under the appropriate resource heading. Significance conclusions are based upon implementation of the environmental commitments listed in Section 3.4 below.

3.2.1 Less-than-Significant Impacts of the Proposed Project

Less-than-significant impacts resulting from the proposed project occur in the following resource areas: aesthetics (visual), air quality (including energy and non-renewable natural resources), biological resources, community, cultural resources, farmland, geology and soils, hydrology and water quality, noise, paleontology, population and housing, traffic and transportation, and utilities.

Impact VIS-1: Degradation of Visual Quality with Adverse Affects to a Scenic Vista

Impact VIS-3: Alteration of Existing Visual Character from Project Sound Walls

Impact VIS-4: Temporary Decrease of Visual Quality during Construction

Impact VIS-5: Creation of a Source of Light and Glare

The new eastbound truck scales would require lighting in an area that is currently an unlit agricultural field. Although this impact would be partially offset by the removal of lighting at the existing truck scales, the total change is expected to be an increase in light and glare.
As directed by the Department, appropriate light and glare screening measures, including the use of downward cast lighting and motion sensored lighting, shall be incorporated into project design. This standard procedure ensures that this impact would be less than significant.

Impact AQ-1: Temporary Increase in Ozone Precursor (ROG and NOₓ) and PM10 Emissions during Grading and Construction Activities

Impact AQ-2: Potential Violations of Carbon Monoxide National Ambient Air Quality Standards

Impact AQ-3: Conformity with the Regional Transportation Plan

Impact AQ-4: Potential Generation of Significant Levels of Air Toxics Emissions

Impact AQ-5: Decrease in Regional Ozone Precursors (ROG and NOₓ) CO, and PM10 and PM 2.5 emissions Associated with Project Operations

Impact EN-1: Direct Energy Usage

Impact EN-2: Indirect Energy Usage

Impact EN-3: Contribution to Cumulative Effects on Non-renewable Natural Resources

Impact NC-1: Adverse Impact on Riparian Woodland

Impact NC-2: Cumulative Loss of Riparian Woodland

Impact NC-3: Disturbance of Valley Oak Woodland during Construction

Construction of the truck scales would not result in any permanent loss of valley oak woodland (see Figure 2.3-1). There is 0.03 acre of valley oak woodland adjacent to the project area. This small area of trees would be avoided during construction, and no direct impacts on valley oak woodland will occur.

Indirect impacts on oak woodland vegetation could occur outside the temporary impact zone as a result of adjacent construction activity and damage from equipment. Construction could cause indirect impacts on trees in the oak woodland due to long-term damage through excessive pruning before construction begins. Measures that would be implemented as part of the proposed project (Measures NC-1a through NC-1d) would protect adjacent vegetation during construction, and therefore, this impact would be less than significant.

Impact NC-4: Cumulative Loss of Valley Oak Woodland

No direct loss of valley oak woodland would be caused by the project. Indirect impacts can be caused adjacent disturbances to valley oak woodland and have the potential to add to the cumulative loss of these natural communities. The historic extent of oak woodlands has declined in California generally, as well as Solano County specifically, due to conversion for agriculture
and development. Avoidance and minimization measures that would be implemented as part of the proposed project would protect adjacent vegetation, (Measures NC-1a through NC-1e) and therefore, the project’s contribution to cumulative impacts on oak woodland would be less than significant.

Impact WOW-1: Effect on Perennial Wetland Drainage

Impact WOW-2: Disturbance of Perennial Drainage during Construction

Impact WOW-3: Disturbance of Jurisdictional Seasonal Drainages during Construction

Impact WOW-4: Cumulative Loss of Perennial Wetland Drainage, Perennial Drainage, and Seasonal Drainage

Impact WOW-5: Impacts on Nonjurisdictional Seasonal Wetlands

Construction would involve the placement of fill, resulting in direct permanent effects on nonjurisdictional seasonal wetland habitat within the construction area. Construction would result in a permanent loss of approximately 0.13 acre of nonjurisdictional seasonal wetland for the improvements to the I-80/SR 12E connector (W-111 and W-112) (see Figure 2.3-1). This acreage is based on the USACE field verification of the delineation. Seasonal wetlands that are isolated from jurisdictional drainages are not under USACE jurisdiction, but would be considered waters of the state that would be regulated by the RWQCB through waste discharge requirements (WDRs).

Additional temporary impacts during project construction and indirect impacts caused by sedimentation or modification of hydrology could occur in seasonal wetlands that lie outside the project footprint. However, implementation of the Measures NC-1a, NC-1b, WOW-1, and WOW-3 would avoid temporary and indirect impacts on seasonal wetlands. Therefore this impact is considered less than significant.

Impact WOW-6: Disturbance of Nonjurisdictional Seasonal Drainages during Construction

Construction of the project would involve the installation of culverts and placement of fill for road widening, resulting in direct disturbance of nonjurisdictional seasonal drainages. A total of 0.10 acre of nonjurisdictional roadside and irrigation ditches would be removed for construction, and 0.08 acre would be temporarily affected. Roadside ditches that function as a storm drain system would be replaced with a new system, where necessary, to convey drainage along roadways. These features have negligible beneficial uses, as defined by the RWQCB (California Regional Water Quality Control Board 2007). No additional compensatory measures would be implemented for nonjurisdictional roadside or irrigation ditches. Implementation of Measures NC-1a, NC-1b, WOW-1, and WOW-3 would avoid and minimize temporary and indirect impacts on nonjurisdictional seasonal drainages. Therefore this impact is considered less than significant.
Impact WOW-7: Cumulative Loss of Seasonal Wetland and Seasonal Drainage

Implementation of the proposed project, in combination with other local and regional projects, would contribute to the cumulative loss of wetlands and drainages that are regulated as waters of the State. Seasonal wetlands may occur in historic vernal pool habitats, but have lost many of their natural characteristics because of disturbance and development. Historically, vernal pool complexes were widespread in Solano County, but have been degraded or lost due to development for agriculture and commercial and residential construction. Seasonal drainages in the project area are constructed in uplands and do not represent an altered natural feature. The project would contribute incrementally to cumulative impacts on wetlands and drainages within Solano County and the Suisun Bay hydrologic unit (HUC 18050001) caused by similar bridge modification projects, new bridge construction, road widening projects, and urban development.

Indirect impacts can be caused by the accumulation of sediment in wetlands and drainages resulting from adjacent disturbances and have the potential to add to the cumulative loss of wetland and drainage habitat.

Measures that would be implemented as part of the proposed project (Measures WOW-1, WOW-3 and WQ-2) would reduce this impact and therefore the project's contribution would be less than cumulatively considerable.

Impact NT-1: Loss of Native Trees

Construction would remove native trees in the riparian habitat adjacent to Suisun Creek. Impacts on native trees that occur within riparian woodlands are addressed under Section 2.3.1. Native trees provide important habitat for wildlife and provide other ecological functions and values. The loss or disturbance of native trees is of concern to local and state agencies. Measure NC-1e would be implemented as part of the proposed project and therefore, this impact would be less than significant.

Impact NT-2: Cumulative Loss of Native Trees

Implementation of the proposed project, in combination with other local and regional projects, would contribute to the cumulative loss of native trees, including oak trees, in Solano County. The project would contribute incrementally to Solano County cumulative impacts on native trees caused by similar bridge modification projects, new bridge construction, road widening projects, and urban development. Indirect impacts can be caused adjacent disturbances that damage native trees and have the potential to add to the cumulative loss of these trees.

Measure NC-1e, which would be implemented as part of the proposed project, would address these cumulative impacts on native trees and therefore the project would not contribute to a cumulative impact.

Impact AS-1: Loss of White-tailed Kite Habitat

Impact AS-2: Loss of White-tailed Kite Nesting Habitat and Potential Disturbance to Nesting White-tailed Kites
Impact AS-3: Potential Loss of Burrowing Owl Habitat

Impact AS-4: Potential Disturbance to Nesting Loggerhead Shrikes

Impact AS-5: Potential Disturbance to Nesting Birds and Raptors

Impact AS-6: Potential Disturbance of Swallow Nests

Impact AS-7: Potential Disturbance of Roosting Bats

Impact AS-8: Cumulative Loss and Disturbance of Nesting Migratory and Special-status Birds

Impact TES-1: Potential Disturbance to Nesting Swainson’s Hawk

Impact TES-2: Permanent and Temporary Impacts on Potential Swainson’s Hawk Foraging Habitat

Impact TES-3: Impact on Valley Elderberry Longhorn Beetle Habitat

Impact TES-4: Potential Indirect Impacts on California Red-Legged Frog Habitat during Construction

Impact TES-5: Potential Direct Impact on California Red-Legged Frog during Construction

Impact TES-6: Temporary and Permanent Loss of California Red-Legged Frog Upland Habitat

Impact TES-7: Impacts on Fish Habitat Structure

Impact TES-8: Water Temperature Impacts

Impact TES-9: Impacts on Water Quality

Impact TES-10: Impacts on Fish from Noise and Other Disturbances

Impact TES-11: Impacts on Fish Movement and Potential Spawning Habitat

Impact TES-12: Cumulative Loss of Swainson’s Hawk Nesting and Foraging Habitat

Impact TES-13: Cumulative Impact on Valley Elderberry Longhorn Beetle

Impact TES-14: Cumulative Impact on California Red-legged Frog

Impact IPS-1: Potential Introduction and Spread of Invasive Plant Species during Construction
Impact IPS-2: Cumulative Spread of Invasive Plant Species

Impact CR-1: Inadvertent Disturbance or Destruction of Buried Archaeological Resources

Though no known archaeological resources are present within the project area and none were discovered during excavations conducted in association with the Extended Phase I study, it is possible that buried resources are present within the project area. It is possible that ground disturbing activities associated with construction could disturb or destroy archaeological deposits. If these resources were eligible for listing in the National Register of Historic Places (NRHP) or the California Register of Historical Resources (CRHR), their destruction or disturbance would be considered a significant impact. However, implementation of Measure CR-1 would ensure that this impact would be less than significant.

Impact CR-2: Inadvertent Disturbance or Destruction of Human Remains

According to the California Health and Safety Code, six or more human burials at one location constitute a cemetery (Section 8100), and disturbance of Native American cemeteries is a felony (Section 7052). Section 7050.5 requires that construction or excavation be stopped in the vicinity of discovered human remains until the coroner can determine whether the remains are those of a Native American. If the remains are determined to be Native American, the coroner must contact the NAHC.

No human remains are known to be located in the project area. However, there is always the possibility that unmarked burials may be unearthed during construction. Measures that would be implemented as part of the proposed project (Measure CR-2) would ensure this impact is less than significant.

Impact GEO-1: Exposure of People to Injury or Structures to Damage from Strong Groundshaking, Seismic-Related Ground Failure, or Liquefaction

Impact GEO-2: Potential Construction-Related Soil Erosion and Sedimentation

Impact GEO-3: Potential Damage to Facilities and Injury to the Public from the Presence of Expansive Soils

Impact HYD-1: Impacts on Hydraulic Capacity at Suisun Creek Bridge

Impact HYD-2: Impacts on the Hydraulic Capacity of Raines Drain

Impact HYD-3: Impact on Floodplain

Impact HAZ-1: Potential for Exposure of Construction Workers or Nearby Land Uses to Previously Unknown Hazardous Materials

Impact HAZ-2: Potential for Exposure of Known Hazardous Materials to Humans or the Environment

Impact PALEO-1: Potential Disturbance or Destruction of Paleontological Resources in a Sensitive Area

Impact PALEO-2: Potential Destruction of Buried Paleontological Resources or Unique Geologic Features

Impact PALEO-3: Damage to Buried Paleontological Resources as a Result of Pile Driving

Impact WQ-1: Increased Runoff and Paved Area

Impact WQ-3: Potential to Require Dewatering during Construction

Impact WQ-4: Potential Decreased Surface Water Quality Resulting from Bore-and-Jack Construction

Impact NOI-1: Exposure of Noise-sensitive Land Uses to increased traffic noise

As indicated in Table 2.2-17 Design Year with-project traffic noise levels are predicted to be 2 to 4 dB greater than existing conditions. Because this increase is less than 12 dB the project is not predicted to result in a significant impact under CEQA.

Impact NOI-2: Exposure of Noise-sensitive Land Uses to construction noise

Construction would be conducted in accordance with the Department’s specifications under Section 14, “Sound Control Requirements,” which states that noise levels generated during construction will comply with applicable local, state, and federal regulations and that all equipment will be fitted with adequate mufflers according to the manufacturers’ specifications. Construction noise would be short-term, intermittent, and masked by local traffic noise. This impact is therefore considered to be less than significant.

Impact NOI-3: Contribution to Cumulative Traffic Noise

Traffic noise levels exceed the NAC under existing conditions and will continue to do so in the future, as I-80 traffic demands increase, further increasing noise levels. As indicated in Table 2.2-17, implementation of the proposed project is predicted to increase traffic noise levels by at least 1 to 2 dB over design-year no-project conditions at noise-sensitive receptor locations. Since traffic noise levels are expected to increase by at least 1 dB, design-year with-project noise levels are predicted to contribute to a cumulative traffic noise impact. However, the project’s contribution to traffic noise levels is not perceptible. Therefore, the project’s contribution to the cumulative traffic noise impact is less than considerable.
Impact REL-1: Displacement of Two Residences

Impact UT-1: Impacts on Police, Fire, and Emergency Service Providers during Construction

Impact TRA-2: Improved Conditions or No Change at Most Freeway System Analysis Locations in 2015

Impact TRA-3: Ramp Intersections Operating at LOS F in the A.M. and P.M. Peak Hours in 2015

Impact TRA-4: Temporary Disruption of Traffic patterns and Emergency Services during Construction Impact

Impact TRA-6: Improved Conditions or No Changes at Most Freeway System Analysis Locations in 2035

Impact TRA-7: Intersections Operating at LOS F in the A.M. and P.M. Peak Hours in 2035

Impact LU-1: Minor Land Acquisition of Five Parcels and Full Acquisition of Eight

3.2.2 Significant Environmental Effects of the Proposed Project

Significant impacts resulting from the proposed project occur in the following resource areas: land use and planning. Implementation of the mitigation measures listed in Section 3.3 will reduce these impacts to less than significant levels.

Impact FA-1: Direct Conversion of Important Farmlands

Measure FA-1 has been identified to reduce this impact to a less than significant level.

3.2.3 Unavoidable Significant Environmental Effects

No unavoidable significant impacts are expected to result from the proposed project.

3.2.4 Growth Inducing Impacts

As discussed in section 2.1.2, the proposed project would not be growth inducing. The project would accommodate existing and future truck traffic. It would not attract residential or commercial development, increase infrastructure capacity, or encourage rezoning. While the project would improve traffic flow on I-80, it would not do so to the extent necessary to induce additional travel demand. Therefore, there would be no growth-inducing impacts.
3.2.5 Climate Change

Regulatory Setting
Although climate change has been a concern since at least 1988, as evidenced by the establishment of the United Nations and World Meteorological Organization’s Intergovernmental Panel on Climate Change (IPCC), the efforts devoted to GHG emissions reduction and climate change research and policy have increased dramatically in recent years. (GHGs related to human activity, as identified in AB 32, include: CO₂, methane, nitrous oxide, tetrafluoromethane, hexafluoroethane, sulfur hexafluoride, HFC-23, HFC-134a*, and HFC-152a*.) In 2002, with the passage of AB 1493, California launched an innovative and proactive approach to dealing with GHG emissions and climate change at the state level. AB 1493 requires the ARB to develop and implement regulations to reduce automobile and light truck GHG emissions; these regulations will apply to automobiles and light trucks beginning with the 2009 model year.

On June 1, 2005, California Governor Arnold Schwarzenegger signed EO S-3-05. The goal of this EO is to reduce California’s GHG emissions to: 2000 levels by 2010, 1990 levels by 2020, and 80% below the 1990 levels by the year 2050. In 2006, this goal was further reinforced with the passage of AB 32, the Global Warming Solutions Act of 2006. AB 32 sets the same overall GHG emissions reduction goals while further mandating that the ARB create a plan, which includes market mechanisms, and implement rules to achieve “real, quantifiable, cost-effective reductions of greenhouse gases.” EO S-20-06 further directs state agencies to begin implementing AB 32, including the recommendations made by the state’s Climate Action Team (CAT).

With EO S-01-07, Schwarzenegger set forth the low carbon fuel standard for California. Under this EO, the carbon intensity of California’s transportation fuels is to be reduced by at least 10% by 2020.

Climate change and GHG reduction is also a concern at the federal level; at this time, no legislation or regulations have been enacted specifically addressing GHG emissions reductions and climate change. However, California, in conjunction with several environmental organizations and several other states, sued to force the EPA to regulate GHGs as a pollutant under the CAA (Massachusetts vs. Environmental Protection Agency et al., U.S. Supreme Court No. 05–1120. 549 U.S. 497 [argued November 29, 2006 and decided April 2, 2007]). The court ruled that GHGs do fit within the CAA’s definition of a pollutant and that the EPA does have the authority to regulate GHGs. Despite the Supreme Court ruling, there are no promulgated federal regulations to date limiting GHG emissions.

Affected Environment
According to a recent white paper by the Association of Environmental Professionals (Hendrix and Wilson 2007), “an individual project does not generate enough GHG emissions to significantly influence global climate change. Global climate change is a cumulative impact; a project participates in this potential impact through its incremental contribution combined with the cumulative increase of all other sources of GHGs (Hendrix and Wilson 2007).
The Department and its parent agency, the Business, Transportation, and Housing Agency, have taken an active role in addressing GHG emission reduction and climate change. Recognizing that 98% of California’s GHG emissions are from the burning of fossil fuels and that 40% of all human-made GHG emissions are from transportation, the Department has created and is implementing its Climate Action Program (California Department of Transportation and Business, Transportation, and Housing Agency 2006). Transportation’s contribution to GHG emissions is dependent on three factors: the types of vehicles on the road, the type of fuel the vehicles use, and the time/distance the vehicles travel.

One of the main strategies in The Department’s Climate Action Program to reduce GHG emissions is to make California’s transportation system more efficient. The highest levels of CO₂ from mobile sources, such as automobiles, occur at stop-and-go speeds (0–25 mph) and at speeds over 55 mph; the most severe emissions occur from 0-25 mph (see Figure 3-1 below). Relieving congestion by enhancing operations and improving travel times in high congestion travel corridors will lead to an overall reduction in GHG emissions.

Estimates of CO₂ emissions are a byproduct of the air quality modeling that is done for CO hot spot analysis. The estimated CO₂ emissions for the proposed project in 2015 are 494,000,000 tons/year, and the estimated emissions for the no-project scenario for the same year are 492,000,000 tons/year. For the year 2035, the estimated CO₂ emissions for the project are 547,000,000 tons/year, and the estimated emissions for the no-project scenario for the same year are 539,000,000 tons/year. The changes in CO₂ levels associated with the project represent increases of 0.4% and 1.4% in 2015 and 2035 from existing conditions, respectively. The proposed project is expected to reduce congestion and vehicle time delays. The traffic study (Fehr & Peers 2008b) states that the project would improve traffic flow by reducing the queue of the backup onto I-80. As stated in section 2.2.8, “Energy,” improved traffic flow on the arterial motorway would actually slightly increase CO₂ emissions by increasing the speed of traffic. Although improved traffic flow is a goal of the Department, increases in traffic speed will lead to
an increase in CO\textsubscript{2} emissions because CO\textsubscript{2} emissions directly correlate with increased fuel use. It should be noted that CO\textsubscript{2} emissions numbers are only useful for a comparison between alternatives. The numbers are not necessarily an accurate reflection of what the true CO\textsubscript{2} emissions will be because CO\textsubscript{2} emissions are dependent on other factors that are not part of the model, such as the fuel mix, rate of acceleration, and the aerodynamics and efficiency of the vehicles. (EMFAC model emission rates are only for direct engine-out CO\textsubscript{2} emissions, not full fuel cycle; fuel cycle emission rates can vary dramatically depending on the amount of additives like ethanol and the source of the fuel components.) In addition, it is difficult to track how much of the emissions would be “new” emissions, as opposed to existing emissions that would just transfer to another route.

Conclusion

The Department recognizes the concern that CO\textsubscript{2} emissions pose for climate change, but accurate modeling of GHG emission levels, including CO\textsubscript{2} at the project level, is not currently possible. Although some organizations have offered a range of recommendations, no federal, state, or regional regulatory agency has adopted specific methodology or criteria for GHG emission and climate change impact analysis. Therefore, the Department is unable to provide a scientific or regulatory based conclusion regarding whether the project’s contribution to climate change is cumulatively considerable.

The Department continues to be actively involved in the Governor’s Climate Action Team (CAT) as the ARB works to implement AB 1493 and help achieve the targets set forth in AB 32. Many of the strategies the Department is using to help meet the targets in AB 32 come from the California Strategic Growth Plan, which is updated each year. Schwarzenegger’s Strategic Growth Plan (SGP) calls for a $222 billion infrastructure improvement program to fortify the state’s transportation system, education, housing, and waterways, including $107 billion in transportation funding during the next decade. As shown on the figure below, the SGP targets a significant decrease in traffic congestion below today’s level and a corresponding reduction in GHG emissions. The SGP proposes to do this while accommodating growth in population and the economy. A suite of investment options has been created that combined together yield the promised reduction in congestion. The SGP relies on a complete systems approach of a variety of strategies: system monitoring and evaluation, maintenance and preservation, smart land use and demand management, and operational improvements. In addition to the SGP, purchasing carbon credits is another option to reduce the CO\textsubscript{2} emissions substantially or to “no increase.”

3.3 Mitigation Measures for Significant Impacts under CEQA

The measure to reduce the significant impact to a less than significant level is listed below.

Measure FA-1: Compensate for Conversion of Important Farmland, Including Prime Farmland

To compensate for the conversion of important farmland, permanent agricultural easements shall be acquired or funds provided to an agricultural land trust. To mitigate for agricultural lands directly affected by the project, long-term land use restrictions such as agricultural conservation easements shall be obtained over Prime Farmland within Solano County at a 1:1 ratio (1 acre
protected for every 1 acre directly affected). Lands under an agricultural conservation easement are considered to have higher agricultural value than other agricultural land in the project area. As such, the mitigation for the loss of lands under easement will be implemented at a higher ratio of 1:1.25.1

3.4 Environmental Commitments

Measures that will be implemented as part of the proposed project are listed below. The full text of most of these measures are provided in Chapter 2. Measures described in full here apply only to impacts under CEQA.

Measure NC-1a: Install Construction Barrier Fencing around the Construction Area to Protect Sensitive Biological Resources Outside of the Construction Area

Measure NC-1b: Conduct Environmental Awareness Training for Construction Employees

Measure NC-1c: Retain a Biological Monitor to Conduct Daily Visits during Construction around Suisun Creek

Measure NC-1d: Avoid and Minimize Potential Indirect Disturbance of Riparian Communities

Measure NC-1e: Compensate for Temporary and Permanent Loss of Riparian Vegetation

Measure WOW-1: Protect Water Quality and Prevent Erosion in Drainages and Wetlands

Measure WOW-3: Obtain Required Permits, Authorizations, Certifications, and Agreements

Measure AS-2: Conduct Preconstruction Nesting Bird and Raptor Surveys and Establish a No-Disturbance Buffer, if Necessary

Measure AS-3a: Conduct Preconstruction Surveys for Active Burrowing owl Burrows and Implement the California Department of Fish and Game Guidelines for Burrowing Owl Mitigation, if Necessary

Measure AS-3b: Compensate for Loss of Burrowing Owl Nesting Habitat if Owls are Present

1 The mitigation ratios cited in this measure are based on mitigation ratios contained in the Final EIR for the North Connector Project, certified by the Solano Transportation Authority on May 18, 2008. These measures were deemed by the Department as appropriate for the I-80 Eastbound Truck Scales project because the North Connector project occurs in the same general area (Suisun Valley) and represents the most recent and relevant precedent for mitigation of agricultural impacts associated with transportation projects in Solano County. http://www.sta.dst.ca.us/pdfs/Projects/NC/FEIR/North%20Connector%20Final%20EIR.pdf
Measure AS-6: Install Exclusion Netting on the Undersides of Bridges to Prevent Swallows from nesting Adjacent to New Bridge Construction

Measure TES-2: Compensate for Loss of Swainson’s Hawk Foraging Habitat

Measure TES-3a: Compensate for Direct Effects on Valley Elderberry Longhorn Beetle Habitat

Measure TES 3b: Establish a Minimum 20-Foot-Wide Buffer around All Elderberry Shrubs where Feasible

Measure TES 3c: Implement Dust Control Measures

Measure TES-4: Construct During the Dry Season

Measure TES-5: Conduct Preconstruction Surveys and Construction Monitoring for California Red-legged Frogs

Measure TES-6: Compensate for Loss and Disturbance of California Red-legged Frog Habitat

Measure TES-7: Retain and Improve Habitat Structure

Measure TES-9: Implement Water Quality Impact Avoidance Measures

Measure TES-10: Implement Construction Restrictions

Measure IPS-1: Avoid the Introduction and Spread of Invasive Plants

Measure CR-1: Stop Work if Buried Resources Are Discovered Inadvertently

If buried cultural resources, such as chipped or ground stone, historic debris, building foundations, or bone, are discovered during ground-disturbing activities, work will stop in that area and within 100 feet of the find until an archaeologist who meets the Secretary of the Interior’s qualification standards can assess the significance of the find and, if necessary, develop appropriate treatment measures in consultation with the STA, Caltrans, the State Historic Preservation Officer, and other appropriate agencies. Appropriate treatment measures may include development of avoidance or protection methods, archaeological excavations to recover important information about the resource, research, or other actions determined during consultation.

Measure CR-2: Comply with State Laws Relating to Native American Remains

If human remains of Native American Origin are discovered during project construction, it will be necessary to comply with state laws relating to the disposition of Native American burials, which fall under the jurisdiction of the NAHC (PRC Section 5097). If any human remains are discovered or recognized in any location other than a dedicated cemetery, the City of West...
Sacramento will be contacted and there will be no further excavation or disturbance of the site, or any nearby area reasonably suspected to overlie adjacent human remains, until:

- the Yolo County coroner has been informed and has determined no investigation of the cause of death is required; or

- if the remains are of Native American origin, the descendents of the deceased Native Americans have made a recommendation to the landowner or the person responsible for the excavation work for means of treating or disposing of, with appropriate dignity, the human remains and any associated grave goods as provided in PRC Section 5097.98 or the NAHC is unable to identify a descendant or the descendant fails to make a recommendation within 24 hours after being notified by the NAHC.

Measure GEO-3: Conduct a Site-Specific Geotechnical Investigation for Expansive Soils and Design Project Facilities to Avoid or Minimize Damage

Measure PALEO-1: Prepare and Implement Mitigation and Monitoring Plan for Paleontological Resources in Sensitive Area

Measure WQ-2: Prepare and Implement Stormwater Pollution Plan and Best Management Practices

Measure WQ-4: Develop and Implement a Frac-Out Contingency Plan for Bore-and-Jack Activities
Chapter 4 Comments and Coordination

Early and continuing coordination with the general public and appropriate public agencies is an essential part of the environmental process to determine the scope of environmental documentation, the level of analysis, potential impacts and mitigation measures, and related environmental requirements. Agency consultation and public participation for this project have been accomplished through a variety of formal and informal methods, including: project development team meetings, interagency coordination meetings, and a public scoping meeting. This chapter summarizes the results of Caltrans’ efforts to fully identify, address, and resolve project-related issues through early and continuing coordination.

4.1 Scoping Process

CEQA specifically requires that when one or more state agencies will be a responsible or trustee agency, a notice of preparation (NOP) must be filed with the State Clearinghouse (State CEQA Guidelines Section 15082 [d]). The NOP is provided to appropriate state agencies and invites them to offer comments during the scoping period, which lasts a minimum of 30 days following the filing of the NOP.

4.1.1 Notice of Preparation

The NOP for the proposed project was published on May 16, 2008. It was filed with the State Clearinghouse and sent to the appropriate elected officials, agencies, and interested parties.

4.1.2 Scoping Meeting

A scoping meeting was held on June 5, 2008, from 6:30 to 8:30 p.m. at the Solano County Administration Building, at 675 Texas Street in Fairfield.

A number of means were used to inform the public of the scoping process and the public open house scoping meeting. A public notice was distributed to the project mailing list, which included property owners, elected officials, city staff, special interest organizations, and neighborhood groups. Caltrans and the STA mailed a letter to agency representatives and elected officials.

Information pertaining to the scoping process and the public open house scoping meeting also appeared on the STA website, at http://www.solanolinks.com.

A display advertisement announcing the scoping period and the public open house scoping meeting was placed in the Daily Republic on Friday, May 16, 2008.

The scoping meeting was organized as an open house with information stations on the following subjects: participating agencies and roles; the project background, description, and location; the
Chapter 4. Comments and Coordination

The purpose of scoping; environmental issues; an overview of the environmental review process; the anticipated project schedule and funding; and how to provide comments. At the stations, attendees could ask questions and discuss the project with technical staff from Caltrans and the STA project team. Although no formal presentation and question-and-answer period were conducted, participants were encouraged to fill out and submit comment sheets at the meeting or by mail until the close of business on Monday, June 16, 2008.

4.1.3 Summary of Concerns

There were three written comments submitted at the June 5 meeting. Two comments addressed property acquisition, and one addressed safety and emergency response issues.

Property acquisition issues were raised by two members of the public. They noted that a property adjacent to the project site is landlocked, without formal access rights due to a previous land acquisition by the state of California and that the proposed project would make this situation worse. They suggested that the state should purchase the land surrounding the landlocked parcel to improve this situation prior to the relocation of the truck scales.

A representative of the Cordelia Fire Protection District raised issues pertaining to safety and emergency response. He suggested that the project design should incorporate an area for hazmat mitigation that allows for a 500-foot separation from human-occupied buildings and that the buildings should include sprinklers and the facility should be supplied with a hydrant capable of 1,250 gallons per minute (gpm) at a minimum of 20 pounds per square inch (psi) residual for 120 minutes.

Five letters with written comments responding to the NOP were received. These letters came from FEMA, the NMFS, the DOC, the California Transportation Commission (CTC) and the California RWQCB, San Francisco Bay Region. Comments, for the most part, outline agency responsibilities and procedures and subjects that should be addressed in this EIR/EA. A report summarizing the scoping meeting was prepared and is available at the Department District 4 office in Oakland and at STA in Suisun City (CirclePoint 2008c).
Chapter 5 Responses to Comments

The draft EIR/EA was available for public review for 45 days and a public hearing was held during that time frame. Written and oral comments received on the draft EIR/EA and the Department’s responses to those comments are presented in this chapter.

5.1 Responses to Written Comments

Comment letters were solicited during the 45-day review period between January 30 and March 18, 2009. Table 5-1 is a list of agencies, individuals and organizations that submitted written comments on the draft EIR/EA.

Table 5-1. List of Agencies, Individuals, and Organizations Commenting on the draft EIR/EA

<table>
<thead>
<tr>
<th>Comment Letter</th>
<th>Date</th>
<th>Agency/Individual/Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3/2/09</td>
<td>Elizabeth Patterson, Mayor, City of Benicia</td>
</tr>
<tr>
<td>2</td>
<td>2/10/09</td>
<td>Thomas L. Pate, Engineering Operation and Maintenance Manager, Solano County Water Agency</td>
</tr>
<tr>
<td>3</td>
<td>3/6/09</td>
<td>William C. Robbins, Knox Ricksen LLP, on behalf of Michelle Valine</td>
</tr>
<tr>
<td>4</td>
<td>3/6/09</td>
<td>William C. Robbins, Knox Ricksen, LLP, on behalf of Bill and Lorie Hale</td>
</tr>
<tr>
<td>5</td>
<td>3/10/09</td>
<td>Paul Wiese, Engineering Manager, Solano County Department of Resources Management</td>
</tr>
<tr>
<td>6</td>
<td>3/5/09</td>
<td>Don Kowall</td>
</tr>
<tr>
<td>7</td>
<td>3/17/09</td>
<td>Marilyn Farley, Executive Director, Solano Land Trust</td>
</tr>
<tr>
<td>8</td>
<td>3/18/09</td>
<td>Sean P. Quinn, City Manager, City of Fairfield</td>
</tr>
<tr>
<td>9</td>
<td>3/18/09</td>
<td>Christina Wong, East Bay-Solano Field Representative, Greenbelt Alliance</td>
</tr>
<tr>
<td>10</td>
<td>3/18/09</td>
<td>Roberto Valdez</td>
</tr>
<tr>
<td>11</td>
<td>3/10/09</td>
<td>Uriel Romero, Junior Engineer, Solano Irrigation District</td>
</tr>
<tr>
<td>12</td>
<td>4/9/09</td>
<td>Jane M. Hicks, Chief, Regulatory Division, U. S. Army Corps of Engineers</td>
</tr>
<tr>
<td>13</td>
<td>5/14/09</td>
<td>Bimla G. Rhinehart, Executive Director, California Transportation Commission</td>
</tr>
</tbody>
</table>
Chapter 5. Responses to Comments

The following are my comments on the draft EIR for the I-80 Cordelia Truck Scales Relocation Project:

1. There should be a discussion about the future use and treatment of the vacated site. An abandoned pad could be a blighted distraction and attractive nuisance as has been demonstrated with other such sites associated with CalTrans. A potential mitigation measure would be tree planting and landscaping maintained as part of the overall project.

2. There is no discussion of the consistency of this project and the Federal Highway Administration (FHWA) life cycle costing manual pursuant to executive order. This discussion should be added.

3. Energy: the discussion at page 3-12 should include the overall challenge of the reduction of greenhouse gases in order to achieve the AB 32 2020 and 2050 goals. Although individual projects (as noted in the DEIR) will not have a measurable difference, every effort must be made to reduce energy from fossil fuels. In fact, most believe the only way to achieve the 2020 and 2050 goals will be project by project. The proposed project reduction by 20% of the increase energy use is inadequate when assessed in context of the tremendous challenge facing California in achieving these goals. Additional measures could include alternative energy sources including solar panels over the bays, open parking areas or approaches which would also reduce heat reflection from black top. Other alternative sources of energy could be considered such as wind turbines for buildings or stand alone wind mill.

4. Air Quality: the discussion of air quality and AB 32 and carbon dioxide and the potential benefits (mitigation) of the the 2002 AB 1493 (Pavley) is noted. Other air pollution mitigation measures should include prohibition of truck idling more than five minutes, provision of plug-in sockets and perhaps a dedicated bay for trucks with advanced particulate reduction to expedite processing. This would act as an incentive for other trucks that do not have advanced particulate reduction equipment.

5. Sea Level Rise: there should be a discussion of the effect of SLR and rate of drainage. The elevated sea level may affect the overall retention of storm flow in local drainage and creeks and thus potentially resulting in local flooding.

Elizabeth

Elizabeth Patterson
Mayor
City of Benicia
707.746.5568
epatterson@ci.benicia.ca.us
5.1.1 Responses to Comment Letter #1 (Mayor of the City of Benicia)

Response to Comment 1-1

The commenter requests a discussion of the future use of the site and expresses concern about blight and attractive nuisance.

As part of the project, the Department will remove the structures associated with the facility after the new facility becomes operational, as stated on page 1-8 of the draft EIR/EA. The pavement will remain in place and the off-ramp to the new truck scale facility will pass through the old site. With regard to attractive nuisance, the site is within the Department’s right-of-way and is currently fenced, so there is no access from the south. Access from I-80 would be difficult for trespassers because of high traffic volumes and speeds, and regular monitoring of the area by the CHP. As such, the likelihood for blight or attractive nuisances to occur on the existing site is minimal. Also, since there will be no structures remaining onsite, no tree planting or landscaping is proposed.

No change to the draft EIR/EA is required.

Response to Comment 1-2

The commenter requests a discussion of consistency of this project with FHWA life-cycle funding be added.

The U.S. Department of Transportation has a Life-Cycle Cost Analysis (LCCA) process that considers construction, operating and maintenance costs, user costs during construction, and rehabilitation costs. An LCCA was conducted as a part of the Cordelia Truck Scale Relocation Study, in 2005. The Relocation Study reviewed several alternative locations, including the one included in the EIR/EA. All other alternative sites studied along I-80 required that weigh/inspection facilities be constructed along I-505 or SR-12E (in addition to those on I-80) in order to inspect and weigh all truck traffic. The Relocation Study analyzed construction, operating, and maintenance costs. Because the construction of the facility can be done without significant impact on either the motoring public or on the truck traffic using the facility, “user cost” was not specifically studied. It was assumed that the rehabilitation costs would be higher for those alternatives requiring additional weigh/inspection facilities. The Cordelia Truck Scale Relocation Study identified the alternative analyzed in detail in the draft EIR/EA to be the most reasonable alternative. This is also the only alternative that the California Highway Patrol (CHP) supported.

The location and the configuration of the truck scales facilities were subsequently studied as a part of an independent Value Analysis team led by the Department to review ways to reconfigure the facility footprint and I-80 access geometry to minimize costs, impacts, and disruption to the motoring public. Recommendations from this effort were incorporated into the alternative considered in the draft EIR/EA.

No change to the draft EIR/EA is required.
Response to Comment 1-3

The commenter states that the discussion of climate change in Chapter 3 of the draft EIR/EA should include the overall challenge of the reduction of greenhouse gasses in order to achieve the AB 32 2020 and 2050 goals and suggests measures.

The Department will enforce mitigation measures that the agency considers feasible to avoid or reduce significant environmental effects of the proposed project, as required by CEQA and other legislation. Mitigation measures for the proposed project were derived from the Department's Climate Action Plan. These measures were developed through an applicability and feasibility review of possible measures identified by the Climate Action Team, a group of representatives from various state agencies lead by the secretary of the California Environmental Protection Agency.

With regard to the project design, numerous energy conservation and efficiency elements have been included in the new truck scales facility design, which is seeking the Silver-designation level of Leadership in Environmental and Environmental Design (LEED) certification. These elements include the following:

- Efficient energy and water use
- Solar-voltaic system to generate over 12% of energy needs
- Use of day-lighting in 75% of rooms
- Use of recycled and locally available materials

The following text has been added to the final EIR/EA in Section 1.5.2 Build Alternative on page 1-9:

The facility also will incorporate several energy efficient and environmentally conscious (green) facilities. The project seeks to achieve a USGBC Silver LEED certification. The building will be designed to use approximately 28% less energy and 30% less water than a typically designed building the same size as the truck scales facility. The building will incorporate a solar-voltaic system on the roof which is expected to generate more than 12% of the building’s energy needs; day-lighting will be used in 75% of the rooms to reduce the amount of electric lighting needed. The project will use recycled materials, locally available materials, and numerous other energy efficient and environmentally conscious materials and systems.

Response to Comment 1-4

The commenter suggests other mitigation measures to reduce emissions, such as time limits for trucking idling, plug-in sockets, and preferential treatment for advanced particulate reduction.

The California Air Resources Board has adopted a regulation for Heavy Duty Diesel Trucks which requires idling limits of 5 minutes and particulate filters equipment, among other provisions. In addition, the U.S. EPA has promulgated the 2007 On-Road Heavy-Duty Diesel Trucks Emission Standards for PM10 and NOX. Because regulations are enforced by law, they...
would be required and will be enforced. Generally, compliance with a law is not considered a mitigation measure in CEQA projects, and therefore, it is not listed in the avoidance, minimization, and mitigation measures in the draft EIR/EA.

As designed, the new truck scales facility will weigh trucks at slow speeds of 3 to 5 mph. The trucks will be limited to idling time of up to 5 minutes as required by regulations, otherwise the ignition will be turned off and emissions will not occur during the parking periods.

No change to the draft EIR/EA is required.

Response to Comment 1-5

The commenter states that the draft EIR/EA should include a discussion of the effect of sea level rise on rate of drainage and local flooding.

One of the expected results of global climate change is a rise in existing sea levels. Although predicting future sea levels is not a precise science, the latest estimate for the San Francisco Bay Area is that the level of the San Francisco Bay could increase by as much as 139 centimeters (55.6 inches) by the year 2100 (Knowles 2009). This estimate is based on the CCSM3 global climate model’s projection of a global average surface air temperature increase of approximately 8.1 degrees Fahrenheit. As stated in the draft Potential Inundation due to Rising Sea Levels in the San Francisco Bay Region report prepared for the California Climate Change Center (Knowles 2009), this estimate is “relatively high,” so the resultant estimate of Bay level rise can be considered a potential high-end estimate. This is the most current estimate available at the time of this writing.

The draft Potential Inundation due to Rising Sea Levels in the San Francisco Bay Region report includes a large-scale map of those areas projected to be vulnerable to inundation by average yearly high water levels under the modeled 2100 conditions. In general terms, mapping was based on the hydrodynamic modeling of the height of the lands adjoining the San Francisco Bay in conjunction with predicted bay level rise. The report does not take into account the protection provided by or the adequacy of existing levees. The mapped vulnerable areas include lands that are currently behind levees.

The large scale of the map in the draft report makes it impossible to state with certainty to what extent the project site may be directly affected by a rise in the average level of the San Francisco Bay. When the draft report, which reflects more recent thinking, is compared to a similar map prepared by the Metropolitan Transportation Commission (2009) reflecting areas vulnerable to inundation by mid-century, the extent of coverage appears to be the same. On that basis, the clearer Metropolitan Transportation Commission map was used to estimate the project’s vulnerability to a change in the level of the San Francisco Bay by 2100. The project site appears to be just east of the vulnerable area, which reaches I-80 at its intersection with Suisun Valley Road. Therefore, the project site is likely outside the area vulnerable to inundation, as currently modeled. This does not, by itself, necessarily mean that the project would not be affected by sea level rise later this century.
Average sea level rise and its effect on the level of San Francisco Bay will be exacerbated by North Pacific storms, which elevate sea levels due to wind and barometric effects, as well as high tides and El Nino events (Climate Action Team 2009). The combination of storms and high tides during storms often result in streams and creeks backing up, causing localized flooding. Sea level rise can be expected to move these areas of flooding upstream from their current locations. Current climate models, however, predict fewer major storms in the future (Climate Action Team 2009). How that would affect the frequency of flooding at any given location has not been established.

The project is outside the area currently considered vulnerable to inundation due to climate change. However, if San Francisco Bay level rise estimates prove to be correct, it is possible that the proposed project will be affected by flooding during storm events that coincide with high tides. However, there is currently insufficient information about future water levels to confidently design a bridge structure or truck scales facility that will avoid that impact while remaining cost-effective during its operational lifetime. The following limitations make such design infeasible:

- Modeling is imprecise and is subject to re-evaluation on a regular basis. For example, sea level rise estimates have worsened over recent years as more information has become available (Climate Action Team 2009).
- The San Francisco Bay vulnerability maps do not account for existing or future levees that may be built or improved before the year 2100.
- Existing FEMA floodplain mapping for this area does not account for changes in the floodplains due to sea level rise. As a result, the extent of the future 100-year floodplain is unknown.
- The operational lifetime of the truck scale facilities is such that they can be expected to be replaced well before 2100. Given a 25-year lifespan, they would be ready for replacement in the year 2035. At that time, there should be sufficient information about changes to the bay level and floodplains to allow the replacement facilities to be adapted to the effects of global climate change.

The state has recently placed a new emphasis on adapting to climate change. Governor Schwarzenegger’s November 2008 Executive Order S-13-08 calls for the preparation of a Sea Level Rise Assessment Report by December 1, 2010 (in cooperation with state agencies and the National Academy of Sciences), and the development of a Climate Change Adaptation Strategy to identify where California is most vulnerable to the effects of climate change and to recommend adaptation approaches. Under this Executive Order, the Governor has directed that:

prior to release of the final Sea Level Rise Assessment Report from the NAS, all state agencies within my administration that are planning construction projects in areas vulnerable to future sea level rise shall, for the purposes of planning, consider a range of sea level rise scenarios for the years 2050 and 2100 in order to assess project vulnerability and, to the extent feasible, reduce expected risks and increase resiliency to sea level rise. However, all projects that have filed a Notice of Preparation, and/or are programmed for construction funding the next five years, or are routine maintenance projects as of the date of this Order may, but are not required to, account for these planning guidelines. Sea level rise estimates should also be used in conjunction with
appropriate local information regarding local uplift and subsidence, coastal erosion rates, predicted higher high water levels, storm surge and storm wave data.

The Notice of Preparation for this project was issued in May 2008 and predates the Governor’s Executive Order, so no sea level rise scenario is required.

No change to the draft EIR/EA is required.
Chapter 5. Responses to Comments

SOLANO COUNTY WATER AGENCY

February 10, 2009

James B. Richards
Deputy District Director
Environmental Planning and Engineering
111 Grand Avenue,
Oakland CA 94623

RE: CT Mitigation

Mr. Richards:

Upon review of the I-80 Eastbound Truck Scales Relocation Project, Draft EIR/EA document the following excerpt was noted: “Permanent loss of riparian vegetation will be compensated. Potential mitigation areas are available at Solano Community College;…”

The portion of Dan Wilson Creek through the Solano Community College property is part of the Green Valley Flood Control Project (GVFCP), a local federal flood control project under jurisdiction of the Army Corp of Engineers (ACOE). The Solano County Water Agency (SCWA) is the local sponsor responsible for operation and maintenance of the Project to the satisfaction of the District Engineer. Our agreement with the ACOE mandates that we perform these duties in accordance with prescribed rules and regulations. The ACOE Operations-Technical Section performs annual inspections to ensure satisfactory compliance.

As you may be aware, SCWA apprehensively agreed to allow Caltrans to perform a similar mitigation project in that vicinity several years ago as a one-time exception that was not endorsed by ACOE Operations-Technical Section. Subsequent inspections have led to deficiency notices jeopardizing federal PL84-99 assistance to the GVFCP. As the mitigation project has matured, the vegetation has encroached on the flood conveyance capacity of the channel reducing the factor of safety and has also limited visibility and access in a manner unsatisfactory to ACOE. The SCWA had to take corrective actions and has incurred an increased perpetual maintenance burden and liability that is directly attributable to the existence of the mitigation project.

Based on this experience the Water Agency will not allow any additional mitigation projects within the boundaries of the GVFCP.

P.O. Box 349, Elmo, California 95625
(707) 451-6090, FAX (707) 451-6099
If you have any questions, comments, or need additional information, please contact me at (707) 455-1104.

Cordially,

Thomas L. Pate, PE
Engineering, Operations, and Maintenance Mgr

Cc: Bob Marukami-ACOE

G-351:80TruckScale-CT.txt
5.1.2 Responses to Comment Letter #2 (Solano County Water Agency)

Response to Comment 2-1

The commenter states that the water agency will not allow mitigation projects within the boundaries of the GVFCP.

The proposed mitigation site at Solano Community College is one of several riparian mitigation sites identified in the draft EIR/EA, including Lynch Canyon Open Space and the King Ranch Open Space (see page 2.3-5 of the draft EIR/EA). Additionally, the proposed mitigation site on the Solano Community College property is not located within the GVFCP, but is located adjacent to Suisun Creek, on the eastern side of the college property.

No changes to the draft EIR/EA are necessary.
March 6, 2009

Melanie Brent
Environmental Analysis Office Chief
California Department of Transportation, District 04
P.O. Box 23660, MS-88
Oakland, CA 94623-06605

Re: Draft Environmental Impact Report/Environmental Assessment for the
I-80 Eastbound Cordelia Truck Scales Relocation Project
Michelle Valine

Dear Ms. Brent:

We represent Michelle Valine, the owner of the Valine Ranch, which consists of
approximately 94.05 acres (APNs 027-251-33, 34, 40, 42 and 44, 027-271-06 and APN 027-272-14),
of which 11.7 acres are located south of Interstate 80. The remaining 82.35 acres are
located north of Interstate 80 easterly of the westbound truck scales and Suisun Creek. The
Valine acreage located south of I-80 is undeveloped and will be acquired along with other
properties in order to relocate the eastbound truck scales.

However, Ms. Valine’s residence and horse operation are located immediately north of
the proposed eastbound scales. For your assistance we have enclosed two color aerial
photographs of “Future Project and Analysis of Noise Barriers and STA’s North Connector
Project. Ms. Valine’s residence is marked with an “X” on each aerial.

With respect to the Valine residence and horse operation, the DEIR/EA has for some
reason totally disregarded and failed to analyze the following impacts on Ms. Valine:

1. **Air Quality.** While air quality is discussed at pages 2.2-26 through 50 and while
 impacts on 5 single family residences within 1000 feet of the project footprint, and 2 of these
 within 500 feet of the proposed truck scale on ramps to the freeways were analyzed (each
 residence being properly described as “sensitive receptors”, the Valine residence immediately to
 the north of and within 600 feet of the scales themselves was disregarded. (See Figure 2.2-5,
 Locations of Sensitive Receptors).
A localized analysis of the impacts on the Valine residence and surrounding horse operation should be conducted and addressed.

In its analysis of impact AQ-1, the DEIR states that “Pollutant emission would vary daily, depending on the level of activity, specific operations and prevailing weather, and would be substantial”. (Emphasis added) And it then goes on to conclude that “the implementation of Department Standard Specifications will ensure that this effect is not adverse.” (p 44) We disagree. The three years of construction activities to prepare and construct the facility, as well as truck off ramp and on ramp improvements will significantly increase ozone precursors and particulate emissions during grading and construction activities as it relates to the Valine residence and horse operations. The prime construction season is during late spring and summer when climatic conditions and prevailing winds will carry particulate matter onto the Valine Ranch. Local air pollution control district requirements and requirements for dust control are rarely enforced and for the most part totally ineffective for nearby residences. In fact, as Ms. Valine testified at your hearing on February 26, the recent construction of the extension of the North Connector on Garaventa’s Corporate Commons property daily impacted her residence located easterly of Suisun Creek.

2. **Noise.** Noise was analyzed at pages 2.2-51 – 58. The DEIR states “Noise-sensitive receptors affected by this project are located on the south side of I-80 and consists of scattered single family residences...” Inexplicably the Valine residence was not addressed. The color aerial photograph entitled, Future Project and Analysis of Noise Barriers locates the five-noise monitoring locations, yet no noise monitoring was done north of I-80. While we agree with the report that the noise levels for the three residential structures located south of I-80 near Hale Ranch Road would exceed NAC levels and that noise abatement must be evaluated, no analysis was conducted or made for the Valine property and no short-term monitoring was conducted near the Valine residence.

3. **Cumulative Impacts.** Because there was no analysis of the air quality or noise impacts of the project on the Valine residence or horse operation, there was also no analysis of the cumulative impacts on this area. The DEIR must consider the impacts of (1) the operation of the westbound scales (ingress, egress, idling and public address system); (2) the City of Fairfield’s approved Fairfield Corporate Commons project located immediately westerly of Suisun Creek from the Valine residence; and (3) the soon to be constructed and operated North Connector project.

As to the Valine residence and horse operation, this DEIR has simply ignored an analysis of impacts of noise and air quality and the cumulative impacts of existing and probable future...
projects. We believe the effects of these impacts will be significant.

Very truly yours,

KNOX RICKSEN LLP

William C. Robbins III

WCR:ed

cc: Michelle Valine
 Janet Adams
 Stacey Sheston, Esq.
 Harry Pollack, Esq.
 Supervisor Jim Spering
5.1.3 Responses to Comment Letter #3 (on behalf of Michelle Valine)

Response to Comment 3-1

The commenter notes that air quality impacts on the Valine property, located across I-80 from the proposed new truck scale facility, were not addressed in the draft EIR/EA and requests that a localized analysis of the impacts on the property be conducted.

The property is in the study area and effects were evaluated, but were inadvertently excluded in the draft EIR/EA. The property has been added to the list of sensitive receptors in the final EIR/EA and Figure 2.2-5 has been amended to show its inclusion.

The second paragraph on page 2.2-45 of the final EIR/EA has been amended to read:

There are six single-family residences within 1,000 feet of the project footprint, and two of these are within 500 feet of the proposed truck scale on-ramps to the freeways.

The method for analyzing air quality impacts is determined by state and federal regulations. Initially a regional analysis is conducted based on data collected at monitoring stations maintained by the local air quality management district. If that analysis does not indicate any significant impacts or adverse effects according to state or federal standards, then no localized analysis is necessary.

The regional analysis indicates that no significant impacts or adverse effects occur as a result of the proposed project. The required Mobile Air Source Toxics (MSAT) evaluations were completed and are summarized in Table 2.2-12 of the draft EIR/EA on page 2.2-47 (or page 2.2-49 of the final EIR/EA). This table shows an overall decrease in all of the 6 MSATs in 2015 and in 4 of the 6 MSATs in 2035. The two substances that show an increase in 2035 with the project are Acetaldehyde (82 grams—less than 0.2 pound—per day or 14%) and Formaldehyde (151 grams—less than 0.3 pound—per day or 12%). As discussed in the draft EIR/EA, the field of air toxics is new and emerging and no established significance thresholds exist. However, the increased levels of both MSATs with the project are still less than half the amounts of the 2015 No-Build conditions. Per EPA guidelines, the trend in MSAT emissions is decreasing. Because of improvements in engine emission control technology, MSAT emissions are anticipated to decrease further. Because the 2035 with-project levels of these substances are substantially less than the 2015 levels (approximately 50%), this is not considered a significant health risk. Inclusion of the Valine property in the analysis does not affect the conclusions stated in the draft EIR/EA.

Particulate matter hot spot analysis is not required for this project because the project is located in an area that is in attainment/unclassified for PM10/PM2.5. In 2006, the U.S EPA changed the 24-hour PM2.5 standard of 65 µg/m³ to a more stringent standard of 35 µg/m³. Last year, EPA issued attainment status designations for the 35 µg/m³ standard on December 22, 2008. EPA has designated the Bay Area as being in nonattainment for the 35 µg/m³ PM2.5 standard. The EPA designation will be effective 90 days after publication of the regulation in the Federal Register. However, the Obama Administration has ordered a freeze on all pending federal rules; therefore, whether the designation will move forward is unknown at this time. As it stands now, particulate
matter hotspot analysis is not required for this project unless the current Administration proceeds with the designation and EPA publishes the regulation in the Federal Register.

Carbon monoxide (CO) modeling was conducted for the Valine property and the results have been added to Table 2.2-11 (Residence 6) on page 2.2-47 in the final EIR/EA. The modeling indicates that the predicted CO concentrations do not exceed NAAQS or CAAQS standards and therefore no new significant or worsened impacts would result.

Revised Table 2.2-11. CO Modeling Concentrations (ppm)

<table>
<thead>
<tr>
<th>Truck Scales Facility Sensitive Receptors</th>
<th>2015</th>
<th>2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residence 1</td>
<td>8.0</td>
<td>7.9</td>
</tr>
<tr>
<td>Residence 2</td>
<td>8.0</td>
<td>7.9</td>
</tr>
<tr>
<td>Residence 3</td>
<td>8.3</td>
<td>8.0</td>
</tr>
<tr>
<td>Residence 4</td>
<td>8.3</td>
<td>8.0</td>
</tr>
<tr>
<td>Residence 5</td>
<td>8.2</td>
<td>8.0</td>
</tr>
<tr>
<td>Residence 6</td>
<td>8.3</td>
<td>8.0</td>
</tr>
<tr>
<td>NAAQS Standard</td>
<td>35.0</td>
<td>35.0</td>
</tr>
<tr>
<td>CAAQS Standard</td>
<td>20.0</td>
<td>20.0</td>
</tr>
<tr>
<td>Significant?</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Note: Background CO concentrations of 3.9 ppm and 3.1 ppm were added to the modeling.

Response to Comment 3-2

The commenter is concerned about the impacts of particulate matter generated during construction and is skeptical that the Department’s standard specifications will reduce the impact.

The Department’s standard practices require implementation of control measures for dust during construction. Mitigation measures identified in the draft EIR/EA, particularly those focused on construction, would be implemented, maintained, and monitored by Department, as the lead agency with continuing program control and responsibility, pursuant to the Mitigation Monitoring and Reporting Program (MMRP). Table 2.2-7 on page 2.2-33 in the draft EIR/EA (or page 2.2-35 of the final EIR/EA) describes BAAQMD control measures that would be implemented during construction of the project.

Construction equipment emits CO, PM10, PM2.5, and ozone precursors. Fugitive PM10 emitted during construction activities varies greatly depending on the level of activity, the specific operations taking place, the equipment being operated, local soils, and weather conditions. Wet suppression and wind-speed reduction (which are included in the Department’s standard specifications and the BAAQMD control measures) are the two most common methods used to control open dust sources at construction sites because a source of water and material for wind barriers tend to be readily available on a construction site.

One of the most dust-generating construction operations is cutting and filling using scrapers, with the highest emissions occurring during scraper transit. In a 1999 Midwest Research Institute
(MRI) field study, it was found that watering can provide a high level of PM10 control efficiency for scraper transit emissions. Average control efficiency remained above 75% approximately 2 hours after watering. Field studies were conducted between 1999 and 2006 that indicate the efficiencies of various control measures (see table below).

Experience has shown there are several feasible control measures that can be reasonably implemented to reduce PM10 emissions during construction. The table below summarizes tested control measures and reported control efficiencies for dust control measures applied to construction and demolition operation. These control measures are part of the Department’s standard specifications and/or the BAAQMD control measures.

Control Efficiencies for Control Measures for Construction/Demolition

<table>
<thead>
<tr>
<th>Control measure</th>
<th>Source component</th>
<th>PM10 control efficiency</th>
<th>References/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apply water every 4 hrs within 100 feet of a structure being demolished</td>
<td>Active demolition and debris removal</td>
<td>36%</td>
<td>Muleski, April 2001, test series 701. 4-hour watering interval (Scenario: lot remains vacant 6 mo after demolition)</td>
</tr>
<tr>
<td>Gravel apron, 25” long by road width</td>
<td>Trackout</td>
<td>46%</td>
<td>Muleski, April 2001</td>
</tr>
<tr>
<td>Apply dust suppressants (e.g., polymer emulsion)</td>
<td>Post-demolition stabilization</td>
<td>84%</td>
<td>CARB April 2002; for actively disturbed areas</td>
</tr>
<tr>
<td>Apply water to disturbed soils after demolition is completed or at the end of each day of cleanup</td>
<td>Demolition Activities</td>
<td>10%</td>
<td>Muleski, April 2001, test series 701. 14-hour watering interval.</td>
</tr>
<tr>
<td>Prohibit demolition activities when wind speeds exceed 25 mph</td>
<td>Demolition Activities</td>
<td>98%</td>
<td>Estimated for high wind days in absence of soil disturbance activities</td>
</tr>
<tr>
<td>Apply water at various intervals to disturbed areas within construction site</td>
<td>Construction Activities</td>
<td>61%</td>
<td>Muleski, April 2001, test series 701. 3.2-hour watering interval</td>
</tr>
<tr>
<td></td>
<td></td>
<td>74%</td>
<td>Muleski, April 2001, test series 701. 2.1-hour watering interval</td>
</tr>
<tr>
<td>Require minimum soil moisture of 12% for earthmoving</td>
<td>Scraper loading and unloading</td>
<td>69%</td>
<td>AP-42 emission factor equation for materials handling due to increasing soil moisture from 1.4% to 12%</td>
</tr>
<tr>
<td>Limit on-site vehicle speeds to 15 mph (Scenario: radar enforcement)</td>
<td>Construction traffic</td>
<td>57%</td>
<td>Assume linear relationship between PM10 emissions and uncontrolled vehicle speed of 35 mph</td>
</tr>
</tbody>
</table>

No change to the draft EIR/EA is required.

Response to Comment 3-3

The commenter states that the Valine property was not considered in the noise analysis and no short-term monitoring was conducted on the property.

Noise monitoring was conducted near the Valine residence, at the end of Russell Road, but was inadvertently excluded in the draft EIR/EA. The noise monitoring location (site I-80-ST-14) has been added to Figure 2.2-6 of the final EIR/EA, the analysis (N-1 and Noise Barrier SB1) has been added to Tables 2.2-17, 2.2-18a, and 2.2-19 of the final EIR/EA, and the discussion of the resulting impacts in the final EIR/EA has been modified to include the Valine property. The additional information does not result in significant new or worsened impacts.
The feasibility of a soundwall, or noise barrier, was studied at the Valine property as part of the I-80 HOV lanes project and was determined by the Department not to be cost-effective and not feasible. The results of the evaluation have been added to Tables 2.2-18a, and 2.2-19, and the barrier shown is Barrier SB1 in Revised Figure 2.2-6 of the final EIR/EA, for informational purposes.

A detailed noise analysis of noise-sensitive land uses on the Valine property was included in the I-80 HOV lanes project. The noise barrier evaluated for the Valine property was found not to be cost-reasonable in the I-80 HOV lanes analysis. The noise model for I-80 assumes worst-hour conditions. The analysis was reassessed for the Truck Scale project. The Valine residence is located on the westbound side of I-80. Under such conditions, noise from accelerating trucks on the truck scale facility on the eastbound side of I-80 would be masked by loudest-hour traffic noise on the I-80 through-lanes. Under with-project conditions, noise levels for the Valine residence under the Truck Scales project were found to be the same (within 1 dB) as noise levels from the I-80 HOV report.

Therefore, the same conclusions in the I-80 HOV report and noise abatement decision report (NADR) apply to the I-80 Truck Scales project regarding noise impacts for the Valine residence, and Noise Barrier SB1. The cost reasonableness calculations for constructing a new noise barrier at location SB1 are as follows (taken from the I-80 HOV NADR document):

<table>
<thead>
<tr>
<th>Height (ft)</th>
<th>Length (ft)</th>
<th>Area (sq ft)</th>
<th>Caltrans cost ($) allowance per residence</th>
<th>Residences benefited</th>
<th>Estimated Construction Cost ($)</th>
<th>Cost Reasonable? (Yes/No)</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Evaluated Walls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB1</td>
<td>10</td>
<td>1,217</td>
<td>12,175</td>
<td>48,000</td>
<td>1</td>
<td>1,081,900</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1,217</td>
<td>14,610</td>
<td>50,000</td>
<td>1</td>
<td>1,223,500</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1,217</td>
<td>17,045</td>
<td>50,000</td>
<td>1</td>
<td>1,334,100</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1,217</td>
<td>19,480</td>
<td>50,000</td>
<td>1</td>
<td>1,444,700</td>
</tr>
</tbody>
</table>

Response to Comment 3-4

The commenter states that due to the lack of analysis of air quality and noise issues at the Valine Ranch, cumulative impacts were not addressed, and provides a list of projects that must be considered.

The cumulative impacts analysis for air quality and noise impacts includes all past, present, and reasonably foreseeable future projects including the projects briefly described in Section 2.4.2 of the draft EIR/EA, which include the projects listed by the commenter. Cumulative impacts are analyzed based upon the project and other projects in the area. The Valine residence is included in the impact analyses for both air quality and noise, and therefore is included in the cumulative impact analysis.
March 6, 2009

Melanie Brent
Environmental Analysis Office Chief
California Department of Transportation, District 04
P.O. Box 23660, MS-88
Oakland, CA 94623-06605

Re: Draft Environmental Impact Report/Environmental Assessment for the
I-80 Eastbound Cordelia Truck Scales Relocation Project
Bill and Lorie Hale

Dear Ms. Brent:

We represent Bill and Lorie Hale who reside on and operate, 50 acres of agricultural land commonly known as 4011 Hale Ranch Road. The acreage is located just westerly of the Anheuser-Busch Brewery and is in the unincorporated area of Solano County. The Hale family has owned, resided on, and operated their farming operations from the Ranch since the late 1860's. The property is improved with a residence, equipment shop and other outbuildings and is the headquarters of their farming operations. In addition to this property the Hales own and/or lease other property in Solano County.

The following will address the air quality and noise sections of the DEIR/EA. The Hales are concerned with the local impacts of this project on their health and quality of life. Lorie Hale was unable to attend the February 26 public hearing due to a family emergency.

The project will result in the construction of 4 sets of scales, 7 inspection bays, parking for semi-trailer combinations and automobiles, roadway along the outer edge of an oval truck scale facility, as well as truck off-ramp and on-ramp improvements. In addition, the project will result in the reconfiguration of the ramps at the truck scales. Temporary construction emissions will result from grubbing/land clearing, grading/excavation, drainage/utilities/subgrade, and paving activities, and from construction worker commuting patterns and from the demolition of the existing truck scale facilities.

Attached is a color aerial photograph entitled, “Future Project and Analysis of Noise Barriers SB4A and SB4B”, which locates the truck scale facility and the reconfigured ramps.
entering and departing the scales. The departing ramps will access I-80 and Highway 12. The Hale residence and Ranch Headquarters appear to be identified as I-80-7b.

1. **Air Quality**

Air quality is discussed at pages 2.2-26 – 50. The DEIR goes to great lengths to discuss the impact on air quality that will result from the project. It acknowledges that most standards have been set to “protect public health” (p 26). It goes on to describe and discuss the 6 criteria pollutants that have been linked to health concerns and analyzes the impacts on a regional level. However, it notes that “pollutants such as CO and lead are considered to be local pollutants (p 27) and concludes that “although the proposed project is a conforming project for regional emissions, it requires both a CO and PM10/PM2.5 “hot spot” analysis to determine any localized emission effects” (p 28). The DEIR notes that the project lies within the Carquinez Strait region of the SFBAAP, but goes on to state that, “the existing air quality conditions in the project area can be characterized by monitoring data collected in the region. The closest air quality monitoring station is located in Fairfield at Chadbourne Road. This station monitors only for ozone. The closest monitoring station that monitors for CO and particulate matter is located in Vallejo at Tuolumne Street,” (p 40) miles from the Hales’ residence.

The analysis of the air quality conditions for the project on a regional basis is not acceptable in analyzing the site specific or localized conditions for the Hales and the other “sensitive receptors”.

The DEIR states, “One of the thresholds of significance includes potential impacts on sensitive receptors. The BAAQMD defines a sensitive receptor as a location where human populations, especially children, seniors and sick persons are present and where there is a reasonable expectation of continuous human exposure to pollutants. “Sensitive receptors” normally refer to land uses with heightened sensitivity to localized rather than regional pollutants. Residences are sensitive receptors (p 42) and the Hales are seniors.

With respect to localized analysis of impacts on the Hale residence and headquarters operation, the use of the Tuolumne Street data is irrelevant. It is miles from the Hales’ residence and the climatological conditions are significantly different even though it is within the SFBAAP. The Hales will be impacted not only by the construction and operation of the on ramps, but also by the construction and operation of the scales themselves being within 2,200 lineal feet and generally downwind.

In its analysis of impact AQ-1, the DEIR states that “Pollutant emission would vary daily, depending on the level of activity, specific operations and prevailing weather, and would be substantial” (Emphasis added) And it then goes on to conclude that “the implementation of Department Standard Specifications will ensure that this effect is not adverse.” (p 44) We disagree. The three years of construction activities to prepare and construct the facility, as well as truck off ramp and on ramp improvements will significantly increase ozone precursors and particulate emissions during grading and construction activities as it relates to the Hale residence and headquarters. The prime construction season is during late spring and summer when
climatic conditions and prevailing winds will carry particulate matter onto the Hale Ranch. Local air pollution control district requirements and requirements for dust control are rarely enforced and for the most part totally ineffective for nearby residences. In fact the recent construction of the extension of the North Connector on Garaventa’s Corporate Commons property daily impacted the Valine residence located easterly of Suisun Creek.

The net effect of the Project by moving the truck scales easterly closer to the Hale residence and headquarters and locating the on ramps to I-80 and Highway 12 very close to the residence and headquarters when compared to the current location of the nearest I-80 travel lane will certainly increase the daily level of particulate matter and in all probability other pollutants linked to potential health concerns. A quantitative and qualitative analysis is speculative at best and acknowledged in the statement, “the area of air toxics analysis is a new and emerging field and is an area of continuing research.” (p 46) The increase of particulate matter and other pollutants is a potentially significant health concern to the Hales and their farm employees at the shop and headquarters.

2. Noise

Noise was analyzed on pages 2.2-51 – 58. The DEIR states, “Noise-sensitive receptors affected by this project are located on the south side of I-80 and consist of scattered single family residences (activity Category B) and commercial buildings with no area of outdoor frequent human use (activity Category C) near Hale Ranch Road (Figure 2.2.6) (p 54). The DEIR goes on to state that there are no existing sound barriers in this area. The Hale Ranch headquarters and shop, which are located in close proximity to their residence, does have areas of outdoor frequent human use as ranch equipment is stored in and worked on outside in this area. Much of the ongoing farm operation in the immediate area takes place outside.

While the noise analysis concludes that the noise level at the Hale residence (and headquarters) will exceed the governing Noise Abatement Criteria (NAC) (p 55), and because of the configuration and location of the Project, noise barriers were the only form of noise abatement evaluated, but the document concluded that “. . . the barrier design is not considered to be reasonable from a cost perspective”. (p 57) (Emphasis added)

The substantial increase in the noise level both inside and outside the residence and in the surrounding Ranch headquarters area will not be tolerable and cannot, and should not, simply be reduced to an analysis of a “Department Reasonableness Allowance”. Instead, CalTrans should require that the noise barriers be constructed or that the residence and all headquarters buildings be relocated (without cost to the Hales) to the southeast corner of the Ranch.

Both the Hales and I were confused by the paragraph entitled, “Noise Monitoring” on p 54 that stated that “noise monitoring was conducted in this study area with “short term monitoring” conducted on Thursday, January 19, 2006, with the measurements taken over a 15 minute interval at a distance of approximately 400 feet from the edge of the pavement of I-80. Yet Table 2.2-16 references as a “Measurement Location” I-80 – ST-1, which is also located on the aerial map, yet the Table uses as a Description “Cordelia Road”. Any site along Cordelia
Road is well removed from the edge of the I-80 pavement. In addition, the start time of the monitoring of 1 p.m. has no relation to either a.m. or p.m. peak-hour traffic volumes.

Under the discussion of Predicted Traffic Noise Levels (p 55) the report states that, “a noise impact analysis was conducted for the proposed project.” What is the difference between the “study area” and the “proposed project”? The proposed project noise impact analysis seems to include the five noise monitoring locations on the aerial photograph and then “existing noise conditions were determined through short and long-term monitoring and a three-dimensional traffic noise model was built and calibrated. It was a project related noise impact analysis (the results of which seem to be summarized in Table 2.2-17) that lead to the conclusion that “Traffic Noise is predicted to exceed the NAC at three residences in this area. Therefore...noise abatement must be evaluated.” (p 55) Kindly confirm.

3. Conclusion

There is no doubt that the Hales’ residence and headquarters operation will be significantly and adversely impacted both by deterioration of their air quality and an intolerable increase in noise. For the health of the current and future occupants, CalTrans should be required to relocate the residence and all headquarters buildings to the southeast corner of the Ranch without cost to the Hales.

Very truly yours,

KNOX RICKSEN LLP

William C. Robbins III

WCR:cd

cc: Bill and Lorie Hale
 Supervisor Jim Spering
5.1.4 Responses to Comment Letter #4 (on behalf of Bill and Lorie Hale)

Response to Comment 4-1

The commenter notes the discussion of the air quality regulatory setting and notes perceived contradictions regarding the regional and localized emission analysis in the draft EIR/EA. The discussion of regional and localized emission analysis requirements and what was completed for the project has been clarified in the EIR/EA. The following paragraph has been added on page 2.2-30 of the final EIR/EA:

Under the 1990 Clean Air Act Amendments, the U.S. Department of Transportation cannot fund, authorize, or approve Federal actions to support programs or projects that are not first found to conform to State Implementation Plan (SIP) for achieving the goals of the Clean Air Act requirements. Conformity with the Clean Air Act takes place on two levels—first, at the regional level and second, at the project level. The proposed project must conform at both levels to be approved.

And the text on pages 2.2-30 and 2.2-45 of the final EIR/EA have been changed to read:

Typically, evaluating whether a project is included in a conforming RTP or TIP is done to determine transportation conformity for ozone precursors. Because PM10/PM2.5 and CO are localized pollutants, the determination of transportation conformity for these pollutants is assessed by identifying whether the proposed project would generate elevated hot-spot concentrations for these two pollutants. For PM10 and PM2.5, the determination of conformity is qualitative; for CO, the determination is quantitative.

For regional conformity, we conclude that the project’s operational emissions (which include the ozone precursors ROG and NOx) meet the transportation conformity requirements imposed by the EPA and the BAAQMD. Although the proposed project is a conforming project for regional emissions, it requires a CO “hot spot” analysis to determine any localized emissions effects. A CO hot spot analysis is required because the region is classified as a maintenance area for the federal CO standard. The PM hot spot analysis is not required for project level conformity because the area is in attainment or unclassified for the national PM10 and PM2.5 standards.

The draft EIR/EA discloses the environmental impacts, including CO hot spot impact analysis, of the proposed project, and therefore the draft EIR/EA is in conformance with the Clean Air Act requirements.

Response to Comment 4-2

The commenter states that the analysis of air quality conditions on a regional basis is not acceptable in analyzing conditions at the Hale property and notes that the air monitoring stations are miles from the Hale residence.

It should be noted that the terms, “regional pollutants” refers to pollutants such as ozone, hydrocarbons, secondary particles, and other chemically reactive compounds that affects the air.
quality conditions in the region, and “localized pollutants” refers to the air quality effects of a pollutant within the scope of the proposed project. Background monitoring data is not defined as regional and/or local pollutants; instead it is defined as the historical air quality conditions of the region.

The air quality monitoring data in Table 2.2-10 of the draft EIR/EA referred to by the commenter were collected from the Bay Area air quality monitoring network operated by the Bay Area Air Quality Management District (BAAQMD). These monitoring stations sample the ambient air at various locations in the Bay Area. At each station, BAAQMD takes readings of the concentration of the major air pollutants for which health-based exposure limits have been set by the EPA and the State of California (see Table 2.2-8, Ambient Air Quality Standards in the draft EIR/EA). Each station contains special monitoring equipment that samples a particular pollutant. As referred by the commentator, the Fairfield monitoring station monitors only for ozone, and the Tuolumne Street station in Vallejo monitors for CO and PM. Table 2.2-10 of the draft EIR/EA listed the highest readings for each pollutant from these two closest stations to the project area, which are the recorded air quality conditions for the project area. Using air quality data collected by the Bay Area air quality monitoring network is a widely used approach to establish the regional air quality context in CEQA and NEPA environmental analyses and the standard approach used by the Department to assess air quality impacts.

Local analysis for CO levels was conducted and included on pages 2.2-44 through 2.2-46 of the draft EIR/EA. The impact on local CO levels was assessed with the CARB-approved California Line Source Dispersion Model (CALINE4) air quality model, which allows micro-scale CO concentrations to be estimated along roadway corridors or near intersections. This model is designed to identify localized concentrations of CO, often termed “hot spots.” A brief discussion of input to the CALINE4 model follows. In the CALINE4 model, roadway geometry is set up to depict the roadway configurations of the proposed truck scales, on and off-ramps and freeways, and model receptors were placed at the locations of sensitive receptors (e.g., residences within 1,000 feet). The CALINE4 model then uses future traffic volumes to predict CO concentration levels at the receptor locations. The graphic layout of the proposed truck scales and freeways, and the locations of sensitive receptors are shown in Figure 2.2-5 of the draft EIR/EA. As suggested by BAAQMD, the highest level monitored CO concentrations, 3.9 ppm for the one-hour CO and 3.1 ppm for the eight-hour CO at the Vallejo station (the nearest station with CO concentrations) for the past three years is considered the “regional background” concentration and used as the baseline CO level the model uses to predicted CO concentration results. The analysis was performed for the worst-case wind angle and wind speed conditions. Data input into the CALINE4 model is obtained from the closest, most representative existing monitoring stations, as required by the Transportation Project-Level Carbon Monoxide Protocol. In this case, the Tuolumne Street station in Vallejo and the Chadbourne Road station in Fairfield, are the closest, most representative stations. No project specific air quality monitoring was required for this project.

No local analysis of PM10/PM2.5 is required because the area is classified as a maintenance area. However, construction dust issues were evaluated qualitatively and Department standard specifications to reduce dust emissions during construction will be implemented and were included in the draft EIR/EA. No change to the draft EIR/EA is required.
Chapter 5. Responses to Comments

The commenter also states that the Hale residence is a “sensitive receptor” and notes that the draft EIR/EA states that sensitive receptors “normally refer to land uses with heightened sensitivity to local rather than regional pollutants.”

The draft EIR/EA analysis does consider the Hale residence as a sensitive receptor and illustrates it as such in Figure 2.2-5 of the draft EIR/EA. As stated on page 2.2-43 of the draft EIR/EA, under the heading Localized CO and PM10/PM2.5 Hot Spot Analysis Approach, a CO hot spot analysis is not required because the project is located in an area that is in attainment/unclassified for PM10/PM2.5. The CO hot spot analysis was conducted and no violations of either state or federal standards were found (page 2.2-46 of the draft EIR/EA).

No change to the EIR/EA is required.

The commenter states that the Hale residence would be impacted by the construction and operation of the on-ramp and the scales, as they are located approximately 2,200 feet away and generally downwind.

The potential for impacts related to dust during construction were evaluated in Impact AQ-1 on page 2.2-44 of the draft EIR/EA. With the implementation of the Department’s standard specifications, and because of the distance of the Hale residence from the truck scales, the impact from construction emissions is reduced over distance. Additionally, the draft EIR/EA found that there would be no adverse effects from an increase in air toxics or CO and that there would be a decrease in ozone precursors.

The commenter also notes that the Hale Ranch is located approximately 2,200 feet generally downwind from the location of the new truck scales. With the Hales’ residence 2,200 feet from the project area, pollutants generated by trucks at the new Truck Scales facility, while not anticipated to exceed any state or Federal standard, would disperse rapidly with distance from the project site resulting in even lower concentrations at the Hale residence as they mix into the atmosphere, with the prevailing weather and wind conditions. Generally the Department uses 500 feet as a threshold for sensitive receptors for particulate matter. The Hale residence is located more than four times that distance from the location of the new truck scales. As discussed on page 2.2-49 of the draft EIR/EA, potential health effects associated with diesel particulate matter are not considered adverse for receptors located more than 500 feet away, according to the California Air Resources Board. With the implementation of the Department’s Standard Specifications, the concentration levels of the pollutants from construction would not result in significant health effects.

Response to Comment 4-3

The commenter states that three years of construction activity will significantly increase ozone precursors and particulate emissions during grading and construction activities and is skeptical that standard specifications employed by the Department will reduce particulate matter during construction.

The draft EIR/EA notes on page 2.2-44 that there will be a temporary increase in ozone precursors and PM10 emissions during grading and construction. However, the implementation
of the Department’s standard specifications will reduce this effect significantly. Please see Response to Comment 3-2 above for a discussion of the proposed minimization measures.

Additionally, the commenter expresses concern that the prevailing winds will carry particulate matter onto the Hale Ranch. The draft EIR/EA summarizes feasible construction emission control measures in Table 2.2-7. These measures would minimize the impact of particulate matter falling onto the Hale Ranch. Please see the detailed Response to Comment 3-2 for additional conditions to be implemented under the Mitigation Monitoring and Reporting Program.

No change to the EIR/EA is required.

Response to Comment 4-4

The commenter expresses concern about long-term emissions and particulate matter as related to the health of the Hales and their farm employees.

Analysis indicates that the implementation of the project will result in a reduction of particulate matter emission and a reduction of 4 of 6 MSATs. Please see Response to Comment 3-1.

No change to the draft EIR/EA is required.

Response to Comment 4-5

The commenter states that the Hale Ranch headquarters does have areas of frequent outdoor activities.

The draft EIR/EA refers to the Hale Ranch as a sensitive receptor on page 2.2-54 based on its status as a residence (Activity Category B). All single-family residences, including those on the Hale property, and commercial areas are considered to include outdoor areas of frequent human use. The text of the final EIR/EA on pages 2.2-56 and 2.2-57 in the Affected Environment section has been revised to speak specifically to the mix of residential and commercial use of the Hale Ranch property:

Noise-sensitive receptors affected by this project consist of single-family residences (Activity Category B) and commercial buildings (Activity Category C). One residence with outdoor use areas is located north of I-80 at the end of Russell Road, opposite the site of the proposed eastbound truck scales. Three residences with outdoor use are located near Hale Ranch Road on the south side of I-80 (Figure 2.2-7). Outdoor commercial use is also associated with the Hale Ranch properties, but since residential use exists on those properties the more stringent Activity Category B criterion is applicable, rather than Activity Category C (refer to Table 2.2-15). A total of four noise-sensitive receptors are counted as Activity Category B, and one as Activity Category C for the noise analysis.

For the noise analysis, the more stringent of the criteria between B and C (approach or exceed 67 dBA) was used, which applies to outdoor land use associated with the mix of residential and commercial structures on the Hale Ranch property. Under Category B, a noise impact would
occurs under future conditions at the Hale Ranch property. The analysis accounts for all elements of the Hale Ranch property. Since the Hale Ranch property is considered as Activity Category B, this does not change the status of the Hale Ranch in the analysis.

Response to Comments 4-6

The commenter states that the noise level will be “intolerable” both inside and outside the residence and that this impact should not be reduced to analysis of a “Department Reasonableness Allowance.”

The draft EIR/EA concludes on page 2.2-55 that traffic noise is predicted to exceed the NAC at the Hale property and Table 2.2-17 on the same page indicates that the noise levels will increase 2 to 4 decibels as compared to existing conditions. Therefore, per the Department’s standards, noise abatement must be considered since the noise level will exceed the NAC for activity Category B. However, there is no adverse effect under NEPA because the project is expected to increase noise by only 1 or 2 decibels in the design year (a less-than-perceptible change).

The commenter further states that noise barriers should be constructed or the residence and all headquarters buildings should be relocated without cost to the Hales.

Feasibility and reasonableness (based on cost allowances) analyses were completed in accordance with the Department’s and FHWA's noise modeling and abatement protocol, and 23 CFR 772. The noise barrier adjacent to the Hale Ranch was determined to exceed reasonableness allowances. This comment has been considered in the determination that the noise barrier is not reasonable from a cost perspective.

Table 2.2-18b in the final EIR/EA (page 2.2-61) has been revised and indicates that a wall up to 16 feet in height would assume a reasonable cost allowance of up to $52,000 per residence. However, the cost-reasonableness determination is specific to absolute noise levels and achievable noise reduction that a noise barrier could provide. The noise abatement analysis assumes that a noise barrier is the only reasonable and feasible method of noise reduction available.

Physical relocation of buildings is not a fundable noise abatement measure as defined in the FHWA's noise modeling and abatement protocol and 23 CFR 772. Were the relocation of structures analyzed in a similar fashion to soundwalls, it would be unlikely to be found cost-reasonable.

FHWA's noise modeling and abatement protocol does include unusual and extraordinary abatement, such as noise insulation, which is considered when residential units are exposed to severe traffic noise and normal abatement measures are not feasible or economically reasonable. Traffic noise impacts are considered severe if the with-project exterior noise levels reach 75 dBA or more, or if the increase in the noise level with the project is 30 dBA or more over the no-project conditions. In order to be considered feasible, the abatement must reduce noise by at least 5 dBA. Predicted noise levels at the Hale property do not reach 75 dBA.
Response to Comment 4-7

The commenter requests clarification regarding noise monitoring stations and the choice of times of monitoring.

The reference to the monitoring location as “Cordelia Road” was a generalization. The monitoring location is accurately reflected in Figure 2.2-6. The reference in the Table 2.2-16 on page 2.2-57 of the final EIR/EA has been changed to “North of 2543 Cordelia Road” in response to this comment.

The primary purpose of the short-term noise monitoring is to calibrate the noise model and to test the quality of modeling input. Vehicle counts and speeds are recorded simultaneously with the short-term noise monitoring. In order to record environmental conditions that could be accurately calibrated, the monitoring was conducted during an off-peak time of day (1:00 pm) because traffic is flowing freely at roadway design speeds during that time. Noise generated by individual vehicles are louder when traffic is moving in free-flow at high speeds than during peak hour periods when vehicles are moving slowly.

Response to Comment 4-8

The commenter requests confirmation of the difference between the study area and the proposed project. The commenter also asks for confirmation of the finding that traffic noise is predicted to exceed the NAC at three residences in the area.

The proposed project refers to the construction and operation of the truck scales. The study area encompasses the project footprint and a radius of 500 feet around the project footprint.

Under 23 CFR 772, traffic noise is expected to exceed NAC at the Hale property. Impact NOI-1 in the Environmental Consequences section indicates that noise levels under design-year without-project conditions would result in a noise level increase of 1 to 2 dB relative to design-year noise levels without the project. This increase is less than the threshold of perceptible change (a 3dB increase). In addition, the project would not result in a substantial increase in noise as defined in the Protocol (a 12 dB increase between existing and design-year conditions within the project). Therefore with-project noise levels are predicted to be less than significant under CEQA, and would not result in an adverse effect under NEPA.

No change to the draft EIR/EA is required.

Response to Comment 4-9

The commenter states that there is no doubt that the Hale residence and ranch will be affected by deterioration of air quality and an intolerable increase in noise and therefore the Department should be required to relocate the residence and headquarters structures to the southeast corner of the ranch without cost to the Hales.

Impact NOI-1 in the Environmental Consequences section indicates that noise levels under design-year without-project conditions would result in a noise level increase of 1 to 2 dB relative to
design-year noise levels without the project. This increase is less than the threshold of perceptible changes (a 3 dB increase). In addition, the project not result in a substantial increase in noise as defined in the Protocol (a 12 dB increase between existing and design-year conditions with the project). Therefore, with-project noise levels are predicted to be less than significant under CEQA, and would not result in an adverse effect under NEPA.

The analysis has indicated that air quality impacts will be less than significant. The noise technical study indicates that traffic noise impacts would occur at residential receivers under 23 CFR 772. However, according to the Department’s procedures which comply with state and federal regulations, the construction of noise walls adjacent to the Hale property exceeds reasonableness allowances. The relocation of the structures on the Hale property is outside the purview of the Department as a noise abatement measure.

No changes to the draft EIR/EA are required.
Caltrans District 4
Attn: Melanie Brent
Environmental Analysis Office Chief
P.O. Box 23660, MS-8B
Oakland, CA 94623-0660

Dear Ms. Brent,

Caltrans is currently working on a project to relocate the eastbound I-80 truck scales from their existing location near Fairfield to about half a mile further east, and expanding them to better address future inspection needs on the freeway. As part of that effort, Caltrans has released a Draft EIR/EA for the proposed project.

Solano County has no comments on the proposed environmental document. We believe the project will reduce traffic congestion on I-80 while improving safety and the efficiency of truck inspections. We support this project.

As the owner of much of the property on which the proposed project is located, we look forward to working with Caltrans to reach an amicable agreement on the sale of the property as the right-of-way acquisition proceeds.

Please feel free to call me at (707) 784-6072 if you have any questions.

Paul Wiese
Engineering Manager
Solano County Dept. of Resource Mgmt.
5.1.5 Responses to Comment Letter #5 (Solano County Department of Resource Management)

Response to Comment 5-1

The commenter states that Solano County has no comments on the environmental document, and notes that the County supports the project.

The Solano County Department of Resource Management’s support of the project is noted.
I spoke today with Don Kowall, a Sacramento resident, who says he uses I-80/I-680 through Solano County regularly and is not happy with what he claims are inadequacies on these roads.

Mr. Kowall wanted to know what Caltrans is doing to address these inadequacies. He was especially concerned about the Cordelia Truck Scales and I-80/I-680 interchange. He said he is vehemently disturbed and unhappy with engineering that is lousy and which I myself would have definitely done better. He seemed to dislike everything Caltrans does, including the HOV Lanes project in Solano. He told me that Caltrans and its partners had projects planned for that area through 2014 that would help alleviate the congestion and improve traveling conditions. I listed the HOV lanes project, the EB Cordelia Truck Scales Relocation and the I-80/I-680/Sr-12 Interchange projects.

After he vented, I then told him that we just had an Open House on the Relocation of the Cordelia Truck Scales last week that was widely publicized. He said he didn’t know about it and we should have had road signs advertising the Open House. I told him we utilize road signs to inform the public of ongoing road projects and that if we used this method to inform the public of everything we do it will then become more of a distraction to the traveling public.

I then informed him of an upcoming Informational Open House on the I-80/I-680/Sr-12 Interchange. I told him there would be Caltrans/STA and other experts at this event and he could get a lot of his questions answered in one fell swoop at this forum.

He then replied that he would be out of the country and can not attend. I then offered to give him the name and number of Howell Chan our Sr. Environmental Planner, who he could send his written questions to on these projects.

His response was “Oh so you now have tree huggers at Caltrans, too!” I told him that comment was somewhat offensive and that for an agency that maintains and operates a transportation system of over 15,000 miles of road and over 12,000 bridges and other structures we need experts in many fields to perform our jobs.

He said he would prefer to speak to someone with authority and that he had tried several times to contact Director Will Kempton. I told him that our Senior Environmental Planner should be able to adequately answer his questions.

He then hung up the phone.

I called him back and left a message that I was in the process of providing Howell’s number when he hung up and further advised him that if he was still interested in such information he can call me back.

Seems Mr. Kowall is in a quest to talk to somebody in a “position of authority” and the fact I told him I was the PIO for Solano County was not satisfactory. He also called Alyn Amst yesterday with his grievances, so he might be making some more calls.

Mr. Kowall’s number is 916 996 9298.

Benjamin Edokpayi
Public Information Officer
Solano and Santa Clara Counties
District 4, Oakland office
(S10) 622 0120, Cell (S10) 501-0446
www.Pave80.com
5.1.6 Responses to Comment Letter #6 (Don Kowall, private citizen)

Response to Comment 6-1

The commenter contacted the Department and suggested that road signs should be used to publicize open houses for various projects, including the I-80 Eastbound Cordelia Truck Scales Relocation project.

Road signs are not a feasible or safe option to alert people to public meetings. Public meetings and hearings for this project were advertised in local papers and posted on the Solano Transportation Authority website. Additionally, notification of the public meetings were sent to affected property owners, as well as elected officials, city staff, special interest organizations, and neighborhood groups.

Mr. Kowall was directed to various Department representatives to discuss other concerns, unrelated to the project.

No changes to the draft EIR/EA are required.
March 17, 2009

Melanie Brent
Environmental Analysis Office Chief
California Department of Transportation, District 04
111 Grand Avenue
P. O. Box 23600
Oakland, CA 94623-0660

Dear Melanie,

Subject: Comments on Draft Environmental Impact Report/Environmental Assessment, State Clearinghouse # 2008052067 for I-80 Eastbound Cordelia Truck Scales Relocation Project

Solano Land Trust, with assistance from Edgcomb Law Group, is submitting comments on your Draft EIR/EA for the I-80 Eastbound Cordelia Truck Scales Relocation Project.

Your project will cause the extinguishment of a segment of a conservation easement on high quality farmland in the Suisun Valley. Another segment of this conservation easement is already in the process of condemnation for the North Connector project on the opposite side of I-80.

As you proceed with mitigation, we would request that you work with Solano Land Trust to find a suitable replacement mitigation project of sufficient size to warrant a conservation easement in the Suisun Valley. We have offered to and are working with STA and Solano County already and would like to work with you also.

Our full comments are attached.

Sincerely yours,

Marilyn Farley
Executive Director

1001 Texas St., Suite C, Fairfield, CA 94533 • Phone 707-432-0150 • Fax 707-432-0151 • solanolandtrust.org
Original art by Don Berell
Chapter 5. Responses to Comments

Comments on
January 2009 Draft Environmental Impact Report/
Environmental Assessment
I-80 Eastbound Cordelia Truck Scales Relocation Project
SCH# 2008052067

Submitted by
Solano Land Trust
With assistance from
Edgcomb Law Group
115 Sansome Street, Suite 700
San Francisco, CA 94104

March 17, 2009

These comments are submitted by Solano Land Trust ("SLT"), a registered 501(c)(3) non-profit organization whose mission is the preservation of agricultural lands, open space, and resources through the acquisition of land and conservation easements, education, and land management. It is submitted with assistance from Edgcomb Law Group.

SLT believes that the Project proposed in the Draft Environmental Impact Report/Environmental Assessment ("DEIR") will have significant, irreversible impacts on the environment, including the loss of permanently protected prime agricultural land which must be mitigated. These negative impacts and the deficiencies of the DEIR are discussed further herein.

1. The Project Will Result In the Permanent Loss of Protected Prime Farmland that is Protected in Perpetuity In Suisun Valley.

 a. The Project Will Result In Adverse Impacts That Are Inconsistent With The December 2008 Solano County General Plan.

Under the California Environmental Quality Act ("CEQA"), a project should be consistent with all relevant plans and policies; such consistency is an important means of identifying significant environmental impacts. (14 Cal. Code Regs. § 15125(d)). The DEIR states that the Project will "result in the direct conversion of agricultural lands to nonagricultural uses. The direct impact of the project on agricultural lands would be the
Chapter 5. Responses to Comments

conversion of approximately 39.9 acres to nonagricultural uses (Table 2.1-1).” (DEIR at 2.1-7). The Project components include construction of the new truck scales though areas of prime farmland and grazing land through an existing agricultural conservation easement (discussed in further detail below). Please correct errors on page 2.1-7, as follows: Paragraph 2 states that 43 acres with a Solano Land Trust conservation easement are within the project area. The full easement consists of approximately 94 acres, but only 11.278 are in the Project Area. Paragraph 4 states that these 10.1 acres are held by the County. The easement south of I-80 is actually 11.278 acres and is held by Solano Land Trust, not the County.

The December 2008 Solano County General Plan (“General Plan”), approved by voters in November 2008, contains the following goals and policies regarding agricultural land use which contradict the goals of the Project:

AR.G-1: Recognize, value, and support the critical roles of all agricultural lands in the stability and economic well-being of the county.

AR.G-2: Preserve and protect the county’s agricultural lands as irreplaceable resources for present and future generations.

AR.G-5: Reduce conflict between agricultural and nonagricultural uses in Agriculture-designated areas.

AR.G-7: Preserve and enhance the landscape and economy of the Vaca, Pleasantis, Lagoon, and Suisun Valleys as rural agricultural communities.

AG.P-3: Encourage consolidation of the fragmented pattern of agricultural preserves and contracts established under the Land Conservation Act (Williamson Act) and the retention of agricultural preserves and contracts in agricultural, watershed, and marshland areas.

AG.P-18: Support long-term viability of commercial agriculture and discourage inappropriate development of agricultural lands within the Delta.
Chapter 5. Responses to Comments

The DEIR is deficient in its evaluation of consistency with State, Regional, and Local Plans and Programs. The DEIR states that the Project is “generally consistent with the goals and objectives included in the [General Plan].” (DEIR at 2.1-2). However, the Project will result in the permanent conversion of approximately 39.9 acres of agricultural lands into nonagricultural use. (DEIR at 2.1-7). Thus, the stated agricultural land preservation goals of the General Plan will not be achieved. The DEIR’s conclusion that the Project is generally consistent with the goals and objectives of the Solano County General Plan is unsupported by the information included in the DEIR. The DEIR must include a consistency evaluation with all relevant goals and policies of the Solano County General Plan, some of which are discussed above. In addition, goals and policies of other State and regional plans must be fully discussed. As discussed further below, SLT urges the project proponents to consider implementation of mitigation measures that will maintain the integrity of the County’s farmland policy.

b. SLT Holds A Conservation Easement On Prime Farmland Contained Within The Project Area.

In 1979, the California Legislature provided for the enforceability of conservation easements by adding a chapter to the Civil Code. (Civ. Code §§ 815-816). In doing so, the Legislature found and declared that “the preservation of land in its natural, scenic, agricultural, historical, forested, or open-space condition is among the most important environmental assets of California.” (Civ. Code § 815).

The Legislature enacted the Agricultural Land Stewardship Program Act of 1995 in order to establish a state program to promote the establishment of agricultural easements. (Cal. Pub. Resources Code § 10200 et seq.). In doing so, the Legislature found: “[t]he growing population and expanding economy of the state have had a profound impact on the ability of the public and private sectors to conserve land for the production of food and fiber, especially agricultural land around urban areas... Agricultural lands near urban areas that are maintained in productive agricultural use are a significant part of California’s agricultural heritage. These lands contribute to the economic betterment of local areas and the entire state and are an important source of food, fiber, and other agricultural products. Conserving these lands is necessary due to increasing development pressures and the effects of urbanization on farmlands close to cities... The long-term conservation of agricultural land is necessary to safeguard an adequate supply of agricultural land and to balance the increasing development pressures around urban areas...” (Cal. Pub. Resources Code § 10201).
Chapter 5. Responses to Comments

The Legislature also declared the intent to "[e]ncourage long-term conservation of productive agricultural lands in order to protect the agricultural economy of rural communities, as well as that of the state, for future generations of Californians... Encourage local land use planning for orderly and efficient urban growth and conservation of agricultural land... Encourage local land use planning decisions that are consistent with the state's policies with regard to agricultural land conservation..." (Cal. Pub. Resources Code § 10202).

Further, the Legislature added provisions to CEQA requiring that the lead agency, in consultation with other state and federal agencies, takes steps to ensure that the environmental effects of agricultural land conversions are quantitatively and consistently considered in the environmental review process. (Cal. Pub. Resources Code §§ 21061.1, 21061.2, 21095). In doing so, the Legislature declared an intent that CEQA should play an important role in the preservation of agricultural lands.

These legislative acts reflect that conversion of agricultural land to other uses is a matter of significant concern. Indeed, the Legislature regards the preservation of farmland to be one of the most important environmental assets of the state recognizing that conversion of farmland to other uses, particularly urban use, inevitably creates development pressures that have a profound impact on the ability of the public and private sectors to conserve other land for agricultural use (Cal. Pub. Resources Code § 10201, subsd. (b)-(d)).

Conservation easements are the means by which land trusts across the nation protect our important farmlands in perpetuity. According to SLT’s Agricultural Conservation Easement Plan, adopted in August 2002, “The Ag Easement Advisory Group identified four specific areas as having high agricultural preservation priority.” Suisun Valley is one of the four areas. The Plan continues “[t]hese areas all have highly productive Class I soils capable of growing almost any crop. Soils of this quality comprise less than 2% of the Earth’s surface and face a significant degree of threat. The SLT will focus its efforts on acquiring conservation easements in these areas over the next 20 years.”

SLT holds a conservation easement in perpetuity on property contained within the Project area, known as the Valine easement. (DEIR at 2.1-7). APN 0027-272-140 contains 11.278 acres located with the Project footprint. This easement consists of land...
designated as prime farmland\(^1\). In the case of the Valine easement, recorded on July 6, 2000, SLT has committed to “undertaking to honor the intentions of Grantor stated herein and to preserve and protect in perpetuity the Conservation Values of the Property for the benefit of this and future generations.” The easement was funded by the Department of Conservation as “a substantial investment by the people of the State of California in the long-term conservation of valuable agricultural land, and the retention of agricultural land in perpetuity.”

Implementation of the proposed Project will result in the permanent loss of 11,278 acres of land (APN 0027-272-140) held under the agricultural conservation easement. (DEIR at 2.1-7). As such, the Project will violate the easement and extinguish the protections afforded to the prime farmland. Solano County, and in particular Suisun Valley, cannot afford the permanent loss of such a vital resource. According to the General Plan, Solano County lost 8.3% of its prime farmland between 1984 and 2006. (General Plan at p. AG-12). During that same time period, 18,672 acres of important farmland had become urban and built-up land or other land. (Id. at p. AG-12). We cannot continue to allow the loss of such precious resources. The DEIR’s discussion of the importance of the existing conservation easement and the project’s inconsistency with the conservation easement is inadequate. Impact FA-1 needs to further discuss the inconsistency of the proposed project with the conservation easement. Furthermore, the mitigation proposed (Mitigation Measure FA-1) is also inadequate. SLT urges the project proponents to adopt mitigation measures (discussed further below) to adequately compensate for this loss.

c. **Loss Of Prime Farmland Is Contrary To State Law.**

In addition to the Project’s incompatibility with the General Plan and the Valine Easement, the Project is also contrary to state law. Specifically, California Public Resources Code Section 30241 provides:

> The maximum amount of prime agricultural land shall be maintained in agricultural production to assure the protection of the areas’ agricultural economy, and conflicts shall be minimized between agricultural and urban

\(^1\) In a program begun by the United States Department of Agriculture and continued by the state Department of Conservation, state lands have been mapped to reflect their importance to agriculture. The categories to which lands are assigned, in descending order of importance, are prime farmland, farmland of statewide importance, unique farmland, farmland of local importance, grazing land, urban and built-up land, and other land. “Important farmland” identified in Solano County consists of land that has been designated as either prime farmland, farmland of statewide importance, or unique farmland. (General Plan at p. AG-4).
Chapter 5. Responses to Comments

land uses through all of the following:

(a) By establishing stable boundaries separating urban and rural areas, including, where necessary, clearly defined buffer areas to minimize conflicts between agricultural and urban land uses.

(b) By limiting conversions of agricultural lands around the periphery of urban areas to the lands where the viability of existing agricultural use is already severely limited by conflicts with urban uses or where the conversion of the lands would complete a logical and viable neighborhood and contribute to the establishment of a stable limit to urban development.

(c) By permitting the conversion of agricultural land surrounded by urban uses where the conversion of the land would be consistent with Section 30250.

(d) By developing available lands not suited for agriculture prior to the conversion of agricultural lands.

(e) By assuring that public service and facility expansions and nonagricultural development do not impair agricultural viability, either through increased assessment costs or degraded air and water quality.

(f) By assuring that all divisions of prime agricultural lands, except those conversions approved pursuant to subdivision (b), and all development adjacent to prime agricultural lands shall not diminish the productivity of prime agricultural lands.

Here, inconsistent with California Public Resources Code Sections 30241(a), (b), and (f), the proposed Project will result in the conversion of nearly 40-acres of prime farmland thus permanently diminishing the productivity of prime agricultural lands within Solano County. (DEIR at 2.1-7). Mitigation proposed for the loss of prime farmland (Mitigation Measure FA-1) is inadequate. As discussed in further detail below, the DEIR must be revised to include adequate measures to mitigate this permanent loss.

d. Mitigation For The Loss Of Prime Farmland Should Include The Establishment Of A Conservation Easement Within Suisun Valley at a Ratio of 1:1.5 for Loss of Prime Farmland and 1:2 for Loss of Permanent Conservation Easement.
As described in the DEIR, the Project will result in the conversion of prime farmland to non-agricultural use. Loss of these agricultural resources is considered an adverse impact under CEQA and requires mitigation. The DEIR describes this conversion of important farmland as an impact (Impact FA-1) (DEIR at 2.1-7).

Under CEQA, mitigation is not limited to measures that would entirely avoid the environmental impacts of a project; rather, mitigation includes measures that would substantially lessen the significant environmental effects of the project. (Cal. Pub. Resources Code § 21002). When farmland is converted to urban use, a requirement that conservation easements be obtained on other land will not replace the converted land. However, conservation easements can diminish the development pressures created by the conversion of farmland and can provide important assistance in preserving other farmland against the danger of the domino effect created by the Project. In this respect, conservation easements fall well within the concept of mitigation under CEQA.

Similarly, the General Plan requires conversion mitigation for “an application for a development permit that changes the use of the land from production agriculture to a non-agricultural use, regardless of the General Plan designation.” (General Plan at p. AG-29). The General Plan further instructs the County to “[c]reate and adopt a farmland conversion mitigation program and ordinance. Require compensation for loss of agricultural land. Establish appropriate mitigation ratios for the program or utilize a graduated mitigation mechanism. The mitigation ratio shall be a minimum of 1.5:1 (1.5 acres of farmland protected through mitigation for each acre of farmland converted)... The program shall also establish mitigation within the same agricultural region as the proposed development project, or within the Agricultural Reserve Overlay district, as a preferred strategy... Mitigation lands shall be of similar agricultural quality to the lands being converted.” (General Plan at pp. AG-33-34)(emphasis added).

The DEIR describes mitigation Measure FA-1 to address the significant adverse impacts to existing prime agricultural land. (DEIR at 3-12). Measure FA-1 states that “it is recommended that long-term land use restrictions such as agricultural conservation easements be obtained over Prime Farmland within Solano County at a 1:1 ratio (1 acre for every 1 acre directly affected). Lands under an agricultural conservation easement are considered to have higher agricultural value than other agricultural land in the project area. As such, the mitigation for the loss of lands under easement[sic] recommended to be implemented at a higher ratio of 1:1.25.” (DEIR at 3-12). The DEIR concludes that the loss of the agricultural resources after mitigation is “less than significant.” (Id.) This conclusion is unsupported.
Chapter 5. Responses to Comments

Page 8 of 9
March 5, 2009
Solano Land Trust
Comments on I-80 Eastbound Cordelia Truck Scales Relocation Project DEIR

Mitigation Measure FA-1 is inadequate and its finding that those impacts would be mitigated to less than significant is improper for several reasons.

First, Measure FA-1 is insufficiently described to support a finding that the adverse impact is “less than significant” because it does not identify the location of the Prime Farmland parcels to be acquired. It does not state whether the parcels obtained will be located within Suisun Valley. Measure FA-1 also does not describe whether the parcels will be adjoining or scattered throughout various locations. Such information is vital in determining the extent of the adverse impacts of the Project and the adequacy of the proposed mitigation measure.

SLT urges the project proponents to mitigate this impact by acquiring a single contiguous easement within Suisun Valley to uphold the integrity of this fragile resource.

Second, Measure FA-1 states that a 1:1.25 ratio of protected land to acre affected is recommended. (DEIR at 3-12). SLT believes this ratio is inadequate.

Given that conservation easements do not replace the converted land, simply placing such an easement on slightly more equivalent land (i.e., the proposed ratio of 1:1.25) does not seem adequate.

In addition, Solano Land Trust’s specific interest is to defend our conservation easement. This easement was placed on the 11.278 acres with the full intent that it remain in perpetuity. State grant monies were used to protect these valuable lands and State policy supports their protection as cited above. As such, we believe that mitigation requirements rise to a higher standard when converted lands also involve a conservation easement. We believe the replacement ratio to be applied to the loss of agricultural lands when a conservation easement is involved should be 1:3 or one acre replaced with three acres (1.5 acres for loss of agricultural lands and an additional 2 acres for loss of the conservation easement). This would signal that the State should only allow the extinction of conservation easements under very rare and compelling circumstances.

As best we can tell, there is very little precedent in California for condemnation of conservation easements. While we understand that CalTrans has an interest in limiting its mitigation costs, the upholding of other State policy should be an important consideration and not unduly colored by economic concerns.
Chapter 5. Responses to Comments

Third, the DEIR does not adequately describe how Measure FA-1 will be implemented. The DEIR should avoid vague, incomplete, or untested mitigation measures. Mitigation measures must not be remote and speculative. *Federation of Hillside & Canyon Assns v. City of Los Angeles* (2000) 83 Cal.4th 1252, 126. The mitigation measures must be described sufficiently so that their effectiveness may be evaluated. *See Kings County Farm Bureau v. City of Hanford* (1990) 221 Cal.3d. 692, 727 (mitigation agreement that called for purchases of replacement groundwater supplies without specifying whether water was available was inadequate measure for mitigating project’s effect on groundwater supplies). SLT requests that a revised DEIR include a timeline for the study, purchase, and protection of the prime farmland to be purchased as a mitigation measure. SLT further requests that the parcel be specifically identified before the Project begins and purchased and protected before the Project is complete.

The 11.278 acres taken is part of a larger conservation easement. It will almost certainly be necessary to acquire a Conservation Easement on a larger parcel given that farm land in the vicinity is zoned A-20. The requirement should be to replace the CE with a comparable CE on a parcel that is reasonably likely to support viable agriculture.

Finally, the DEIR at Measure FA-1 states that “consultation with the Solano Land Trust is ongoing (Appendix A).” We have not been consulted with by CalTrans in relation to this matter. Also, Appendix A contains nothing related to this matter.

The Solano Land Trust is available to work with CalTrans to complete this purchase and find suitable mitigation lands in the Suisun Valley. We have other easements in the Suisun Valley and have goals related to new easements. We are already working with the Solano Transportation Authority to find replacement easement lands in the Suisun Valley. This work with STA is related to loss of another segment of the conservation easement CalTrans plans to extinguish. This segment is under condemnation by STA for the North Connector project immediately across I-80.

Thank you for consideration of our comments. The Executive Committee of the Board of Directors has reviewed these comments in draft form and has authorized me, as the Executive Director, to submit them.

Submitted by:

Marilyn Farley
Executive Director
5.1.7 Responses to Comment Letter #7 (Solano Land Trust)

Response to Comment 7-1

The commenter provides corrections of the acreage that is under a conservation easement held by the Solano Land Trust.

The text on page 2.1-7, second paragraph, of the final EIR/EA has been changed in response to this comment:

The Solano Land Trust holds a conversion easement over approximately 94 acres of agricultural land in the area. The agricultural conservation easement held by the Solano Land Trust covers APNs 0027-272-070, 0027-272-080, 0027-272-120, 0027-272-130, and 0027-272-140. Of these, 11.7 acres (APN 0027-27-2401) are located south of I-80 within the project footprint. Figure 2.1-2 depicts the lands in the project area under agricultural conservation easement.

The text on page 2.1-7, fourth paragraph, of the final EIR/EA has been changed in response to this comment:

The project would result in the direct conversion of agricultural lands to nonagricultural uses. The direct impact of the project on agricultural lands would be the conversion of approximately 39.9 acres to nonagricultural uses (Table 2.1-1). Of this total, approximately 11.7 acres (APN 0027-272-140) are under agricultural conservation easement held by the Solano Land Trust. This conversion of agricultural lands to nonagricultural uses would be an adverse effect.

All acreages cited above were obtained from the Solano County Assessor’s office.

Response to Comment 7-2

The commenter suggests that the draft EIR/EA is deficient in its evaluation of consistency with State, Regional and Local Plans and Programs because the project will result in the permanent conversion of agricultural lands into nonagricultural use and thus the stated agricultural land preservation goals of the County General Plan will not be achieved.

The draft EIR/EA does not ignore the conversion of agricultural land to non-agricultural uses as part of the project and states the following on page 2.1-2 under the discussion of Consistency with State, Regional and Local Plans and Programs:

Although the project would affect and remove agricultural land and remove two existing residences, it would not otherwise affect the continued agricultural use of the surrounding area, and the project itself would not divide or otherwise have a significant impact on communities or neighborhoods in Solano County.

The commenter goes on to further imply that any conversion of agricultural lands to non-agricultural uses would be in direct conflict with six Solano County General Plan Agricultural
Element goals and policies. However, the commenter omitted the following policy from the Agricultural Element.

AG.P-4: Require farmland conversion mitigation for either of the following actions:

a. a General Plan amendment that changes the designation of any land from an agricultural to a nonagricultural use or

b. an application for a development permit that changes the use of land from production agriculture to a nonagricultural use, regardless of the General Plan designation.

This policy specifically indicates that the County, while encouraging the preservation of farmlands, foresees that some conversion will occur within the County and that in these cases mitigation should be required. The draft EIR/EA includes mitigation for this impact in the form of permanent agricultural easements being acquired over prime farmland within Solano County (see Measure FA-1, page 3-12 of the draft EIR/EA).

Because the County General Plan includes policies recognizing that some conversion of agricultural land to non-agricultural uses will occur within the County and that in such cases mitigation should be required, and mitigation has been included in the draft EIR/EA, the conclusion that the proposed project would be “generally consistent” with the goals and objectives of the County General Plan is appropriate.

No change to the draft EIR/EA is required.

Response to Comment 7-3

The commenter cites CEQA and the California Public Resources Code to make the point that the conversion of agricultural land to other uses is a matter of significant concern.

The draft EIR/EA analysis is not in conflict with this point and clearly indicates that the conversion of agricultural lands to nonagricultural uses would be an adverse effect (see page 2.1-7) and considered significant under CEQA.

The commenter goes on to discuss the conservation easement the SLT holds over lands in the project area and the project’s potential impact on these lands, which the draft EIR/EA already discloses. The commenter concludes that the draft EIR/EA’s discussion of the importance of the existing conservation easement and the project’s inconsistency with the easement is inadequate, and that Impact FA-1 needs to further discuss the inconsistency with the easement.

The draft EIR/EA clearly identifies under Impact FA-1, page 2.1-7 that the project would result in the direct conversion of land under agricultural conservation easement and that this conversion of agricultural lands to nonagricultural uses would be an adverse effect. It is unclear how additional discussion of the inconsistency of the project with the easement would aid in the analysis of this impact. The draft EIR/EA already determined that this impact is adverse and significant under CEQA.

The comment concludes suggesting the mitigation proposed in the draft EIR/EA is inadequate.
Chapter 5. Responses to Comments

This comment is addressed in Response to Comment 7-5 below.

No change to the draft EIR/EA is required.

Response to Comment 7-4

The commenter asserts that the project is contrary to state law and cites California Public Resources Code Section 30241. The commenter notes that the project would result in the conversion of nearly 40 acres of prime farmland, as disclosed in the draft EIR/EA on page 2.1-7, and concludes that the mitigation proposed (Mitigation Measure FA-1) is inadequate.

Regarding this last point, the adequacy of Mitigation Measure FA-1 is discussed further in Response to Comment 7-5.

No change to the draft EIR/EA is required.

Response to Comment 7-5

In the first part of this comment, the commenter explains the concept of mitigation under CEQA and cites the recently adopted Solano County General Plan policy regarding mitigation ratios for farmland conversion within the County. The commenter goes on to state that they believe mitigation measure FA-1 (page 3-12 of the draft EIR/EA) is inadequate because the measure does not identify the location of the prime farmland to be acquired nor whether the parcels will be adjoining or scattered through various locations.

Mitigation Measure FA-1 states that the conservation easements be obtained over Prime Farmland within **Solano County** (emphasis added). Retention of farmlands is a county-wide issue and as such the location of the easements obtained over Prime Farmland should appropriately be within the County. Likewise the issue of adjoining or scattered parcels is irrelevant in that protection of farmland is a countywide issue.

The commenter goes on to request that the mitigation ratio in Measure FA-1 be increased from 1:1.25 to 1:2 for lands impacted within a conservation easement. The Department does not have a specific policy or regulation regarding mitigation for agricultural conversion, nor is the Department bound by local government policies or regulations regarding mitigation for agricultural conversion. However, the Department does consider local government policies and regulations in evaluating impact and determining what constitutes appropriate mitigation. In that context, the Department considered mitigation ratios used by STA as part of the North Connector Project, as well as the recently adopted Solano County General Plan. In both those examples, the mitigation centers on protecting farmland within the county through purchase of conservation easements based on the acreage of farmland impacted.

However the Department based its mitigation ratios on those used by the Solano Transportation Authority for the North Connector Project. (Final EIR certified May 18, 2008) The Department did so because the North Connector project occurs in the same general area as the I-80 EB Truck Scales Project (Suisun Valley) and represents the most recent and relevant precedent for
mitigation of agricultural impacts associated with transportation projects in Solano County. No change to the draft EIR/EA is required.

Response to Comment 7-6

The commenter states that Mitigation Measure FA-1 is too vague and requests that a revised DEIR include a timeline and specific identification of a mitigation parcel.

See Response to Comment 7-5 above. Measure FA-1 specifies that the prime farmland parcels to be protected shall be obtained over land in Solano County. The mitigation measure will be implemented prior to or concurrent with the impact (conversion of agricultural land to non-agricultural uses).

No change to the draft EIR/EA is required.

Response to Comment 7-7

The commenter suggests that Mitigation Measure FA-1 require replacing the conservation easement impacted with a comparable conservation easement on a parcel that is reasonably likely to support viable agriculture.

The Department believes that Measure FA-1 is consistent with this comment. The intent of the measure is to protect existing agricultural land, presumably in agricultural production.

No change to the draft EIR/EA is required.

Response to Comment 7-8

The commenter states that the draft EIR/EA incorrectly refers to having consulted with SLT as Mitigation Measure FA-1 was developed.

The statement in the draft EIR/EA was incorrect and has been corrected. The text of Mitigation Measure FA-1 on pages 3-12 and 3-13 of the final EIR/EA has been revised:

Measure FA-1: Compensate for Conversion of Important Farmland, Including Prime Farmland

To compensate for the conversion of important farmland, permanent agricultural easements are recommended to be acquired or funds provided to an agricultural land trust. To mitigate for agricultural lands directly affected by the project, it is recommended long-term land use restrictions such as agricultural conservation easements shall be obtained over Prime Farmland within Solano County at a 1:1 ratio (1 acre protected for every 1 acre directly affected). Lands under an agricultural conservation easement are considered to have higher agricultural value than other agricultural land in the project area. As such, the mitigation for their loss is recommended to be at a higher ratio of 1:1.25.
March 18, 2009

Melanie Brent
Environmental Analysis Office Chief
California Department of Transportation, District 04
P.O. Box 23660, MS-8B
Oakland, CA 94623-0660

Re: Draft Environmental Impact Report/Environmental Assessment (EIR/EA) for the I-80 Eastbound Cordelia Truck Scales Relocation Project

Dear Ms. Brent:

Thank you for the opportunity to review the Draft Environmental Impact Report/Environmental Assessment (EIR/EA) for the I-80 Eastbound Cordelia Truck Scales Relocation Project. After reviewing the document, the City of Fairfield does not have any comments. We would, however, like to note for the record that the City of Fairfield strongly supports the proposed project.

The project as described in the Draft EIR/EA clearly demonstrates the need to upgrade the existing truck scale to improve enforcement of truck weight and safety requirements, reduce truck related congestion through the 80/680/12 Interchange, decrease non-recurring congestion in the region due to truck breakdowns, and most importantly improve safety by separating and providing more space for merges around the truck scales.

Sincerely,

SEAN P. QUINN
City Manager

c: Janet Adams, Solano Transportation Authority
5.1.8 Responses to Comment Letter #8 (City of Fairfield)

Response to Comment 8-1

The commenter states that the City of Fairfield does not have any comments on the environmental document and strongly supports the project.

The City of Fairfield’s support for the project is noted.
March 18, 2009

Melanie Brent, Environmental Analysis Office Chief
California Department of Transportation, District 04,
P.O. Box 23660, MS-8B
Oakland, CA 94623-0660

Re: January 2009 Draft Environmental Impact Report/Environmental Assessment
I-80 Eastbound Cordelia Truck Scales Relocation Project SCH# 2008052067
Dear Ms. Brent,

Greenbelt Alliance, the Bay Area’s land conservation and urban planning non-profit, writes with grave concern about the proposed Draft Environmental Impact Report (DEIR) for the I-80 Eastbound Cordelia Truck Scales Relocation Project. Listed below are a number of concerns and suggestions that would strengthen the project as well as analysis of the DEIR.

The DEIR’s Traffic and Transportation Analysis Is Flawed.

The DEIR is of two minds regarding freeway traffic impacts. Section 2.1.6 of the DEIR contains an analysis of the effects the Project may have on existing traffic conditions in the Project area and concludes that improved network-wide freeway operations would have a beneficial effect. However, Section 2.2.6 acknowledges that the relocation of the truck scales would increase the number of vehicles on the I-80 freeway. (Id. at 2.2-47-48). This is a logical disconnect between a finding of a beneficial effect and a conclusion that vehicle traffic will increase. While traffic conditions may improve as a result of the Project implementation, because vehicle traffic will actually increase, the DEIR should contain an analysis of this induced demand that will result. Research on induced demand on transportation facilities has linked an increase in road miles constructed with an increase in vehicle miles traveled. Research reported by the United States Environmental Protection Agency (“USEPA”) shows that induced demand can negate any short-term benefits to congestion in a matter of a few years.¹

To comply with relevant CEQA guidelines, STL requests that a revised DEIR include an analysis of how induced demand related to reductions in traffic conditions on I-80, I-680 and State Route 12 could change vehicle volume in the long run.

The DEIR’s Air Quality Analysis Is Flawed.

The DEIR correctly states that transportation conformity requires that “no federal dollars be used to fund a transportation project unless it can be clearly demonstrated that the project

¹ Our Built and Natural Environments: A technical review of the interactions between land use, transportation, and environmental quality. USEPA Washington DC 2001. This publication can be found at http://www.epa.gov/smartgrowth/built.htm. (last visited 03/02/2009).
would not cause or contribute to violations of the NAAQS [National Ambient Air Quality Standards].” (DEIR at 2.2-27). The DEIR goes on to state that the EPA has classified the portion of Solano County within the San Francisco Bay Area Air Basin as being a marginal nonattainment area for the 8-hour ozone NAAQS. At the state level, the Air Resources Board has classified Solano County as being a serious nonattainment area for the ozone California Ambient Air Quality Standard (“CAAQS”). (DEIR at 2.2-42).

The DEIR concludes that emissions will decrease with implementation of the Project and will thus not result in an adverse effect. (DEIR at 2.2-50). However, the DEIR also states that the Project would increase the number of vehicles on the I-80 freeway. (Id. at 2.2-47-48). This is a non-sequitur. The DEIR does not explain how an increase in the number of vehicles will result in a decrease in total emissions of criteria pollutants. This failure to reach conclusions that logically follow from the required analysis undermines the very purpose of CEQA. “The EIR must contain facts and analysis, not just the bare conclusions of a public agency...[T]he public and decision-makers, for whom the EIR is prepared, should also have before them the basis for that opinion so as to enable them to make an independent, reasoned judgment.” Santiago County Water Dist. v. County of Orange, 118 Cal.App.3d 818 (1981); see also Citizens of Goleta Valley v. Board of Supervisors, 52 Cal.3d 553, 568 (1990). CEQA requires that an EIR demonstrate the “analytic route” that the agency takes in arriving at its conclusion. See Sierra Club v. California Coastal Comm’n., 19 Cal.App.4th 547, 556-557 (1993).

Thus, the DEIR insufficiently concludes that emissions will not result in an adverse effect. A revised DEIR should include an analysis of any adverse impacts of this increase in vehicle traffic, including how these increases will adversely impact local air emissions, human health\(^2\), energy use, and greenhouse gases.

The Biological Environment section of the DEIR is flawed

The Project’s Adverse Impacts On The Biological Environment Are Not Adequately Discussed.

The DEIR identified numerous potential significant impacts on biological resources from the Project but contends that such impacts are either less than significant or can be mitigated. Close scrutiny of the DEIR, however, reveals that the adverse impacts of the Project were either ignored or underestimated.

First, the DEIR claims that the effects of the Development are less-than-significant to the area’s biological resources. (DEIR at 3-2). The data offered in support of this claim, however, actually states that special-status species habitat is documented to be in the study area (DEIR at Table 2.302 and Table 2.3-3). Thus, the DEIR’s generalized finding of less-than-significant impact is contrary to the supporting evidence.

Second, the DEIR contains little detail regarding the methods used to identify sensitive plant and wildlife communities. The protocols used for such analysis should be described in detail so that the decision-makers and concerned community can evaluate whether it was conducted in an adequate manner. SLT requests that the DEIR be revised accordingly.

\(^2\) A court has found an EIR deficient because it failed to correlate adverse air pollution effects with indirect health effects. *Bakersfield Citizens for Local Control v. City of Bakersfield* (2004) 124 Cal.App.4th 1184, 1219 (health impacts associated with increased air pollution should have been identified and analyzed to satisfy EIR’s informational requirement).

Page 2 of 5
Mitigation Measures For Impacts To The Biological Environment Are Inadequately Described.

The DEIR should avoid vague, incomplete, or untested mitigation measures. Mitigation measures must not be remote and speculative. \textit{Federation of Hillsides & Canyon Ass'ns v. City of Los Angeles} (2000) 83 Cal.4th 1252, 126.

Here, the DEIR makes unsupported conclusions concerning the efficacy of certain mitigation and avoidance measures for impacts to biological resources. For example, the DEIR vaguely concludes that the loss of riparian vegetation “will be compensated” and lists potential mitigation areas. \textit{(DEIR at 2.3-5).} Similarly, the DEIR concludes that the impact on potential Swanson’s Hawk foraging habitat will be mitigated through “the acquisition of conservation land.” \textit{(Id. at 2.3-25).} However, the specifics of such an “acquisition” are not specified. Mitigation measure for the loss and disturbance of California Red-Legged Frog habitat are vaguely state that the Project proponent “will enhance an area of suitable acreage amounts or contribute to a mitigation bank for riparian restoration habitat.” \textit{(Id. at 2.3-31).} Potential mitigation areas are listed, including areas of existing open space.

These mitigation measures are inadequate as they are so undefined that it is impossible to gauge their effectiveness. \textit{See Kings County Farm Bureau v. City of Hanford} (1990) 221 Cal.3d 692, 727 (mitigation agreement that called for purchases of replacement groundwater supplies without specifying whether water was available was inadequate measure for mitigating project’s effect on groundwater supplies). SLT requests that the DEIR be revised to more concretely describe the proposed mitigation measures and include a discussion of how these mitigation measures are adequate.

The DEIR Fails To Properly Discuss Alternatives To The Project.

An alternatives analysis is at the heart of the purpose of an EIR. \textit{(See. Pub. Res. Code § 21102).} An EIR must analyze a range of reasonable alternatives to a project that would feasibly attain most basic objectives while avoiding or substantially lessening a project’s significant impacts. \textit{(See 14 Cal. Code Regs. § 15126.6(a)).} An EIR “must consider a reasonable range of potentially feasible alternatives that will foster informed decision making and public participation… The lead agency is responsible for selecting a range of project alternatives for examination and must publicly disclose its reasoning for selecting those alternatives.” \textit{(14 Cal. Code Regs. § 15126.6(a)).} Information sufficient to allow an informed comparison of the impacts of the project with those of the alternatives should be provided. \textit{See Kings County Farm Bureau v. City of Hanford} (1990) 221 Cal.3d 692, 733 (absence of comparative data precluded meaningful consideration of alternatives). The analysis must be specific enough to allow informed decision making and public participation. \textit{Laurel Heights Improvement Assn v. Regents of Univ. of Cal.} (1988) 47 Cal. 3d 376, 406.

Here, the alternatives analysis does not meet this most basic CEQA requirement because it does not contain discussion of a reasonable range of feasible alternatives to the Project. \textit{(See 14 Cal. Code Regs. § 15126.6(c)).} Section 1.4 briefly discusses alternatives considered but eliminated from further discussion and states that only one building alternative is being considered. The DEIR provides only minimal information regarding the alternatives considered in the \textit{Cordelia Truck Scales Relocation Study: Summary Report and Recommendations} (Solano Transportation Authority 2005a). However, the DEIR must contain, at a minimum, sufficient information about each alternative to allow meaningful evaluation, analysis, and comparison with the proposed Project. The limited alternatives analysis is of particular concern because alternatives will most certainly be a major focus of upcoming public discussions and decisions. Yet, the DEIR fails to provide sufficient information and analysis necessary for informed discussion of key significant environmental impacts and their potential solutions. SLT requests
that a revised EIR contain a more meaningful discussion of the alternatives proposed and an analysis of why those alternatives were dismissed.

Growth-Inducing Impacts Are Improperly Dismissed.

An EIR must describe any growth-inducing impacts of the proposed project. (Pub. Res. C §21100(b)(5); 14 Cal. Code Regs. §15126(d)). An EIR’s discussion of growth-inducing effects should not assume that growth is necessarily beneficial, detrimental, or of little significance to the environment. (14 Cal. Code Regs. §15126.2(d)). Growth-inducing impacts usually arise when a project will provide new infrastructure that can be used to serve other projects (e.g. construction of new roads).

The DEIR contains a Growth-Inducement Checklist which purportedly supports a finding of no potential for growth inducement impacts due to the Project. (DEIR at 2.1-4-5). However, several of the answers contained in the Checklist are directly contradicted elsewhere in the DEIR thus calling into question the conclusion that the Project is not growth-inducing.

For example, Question Three asks whether the Project will lead to the increase of roadway, intersection, sewer, water supply, or drainage capacity. The DEIR states the answer as “No. The project would replace an existing truck scale facility.” (DEIR at 2.1-5). This answer is directly contradicted elsewhere in the DEIR with discussion of the new roadways, paved surfaces and drainage facilities that will result from implementation of the Project. Therefore, Question Three is improperly dismissed.

Question Four of the Growth-Inducement Checklist asks whether the Project will encourage the rezoning or reclassification of lands in the community general plan from agriculture, open space or low density residential to a more intensive land use. The DEIR erroneously answers the question in the negative and states that the Project “would result in direct conversion of agricultural lands to nonagricultural uses for the truck scales facility but would not result either directly or indirectly in the rezoning of surrounding lands.” (DEIR at 2.1-5). The question does not ask whether the Project will result in rezoning but rather whether the Project will encourage rezoning or reclassification of lands from agricultural to a more intensive land use. This is exactly what will result from implementation of the Project. Nearly 40 acres of agricultural land will be permanently taken out of use for an industrial transportation use. Such a change will invariably lead to the reclassification of this area. Thus, Question Four should have been answered in the affirmative.

As these questions were improperly dismissed, the DEIR erroneously concludes that no growth-inducing impacts will result. (DEIR at 3-9). Because the Project necessarily facilitates growth by increasing roadways and encouraging the reclassification of agricultural land to a more intensive land use, the surrounding areas are subjected to development pressure. As such, the DEIR must fully analyze and mitigate for the Project’s growth-inducing impacts. The Orderly Growth Initiative ("Measure A"), which precludes development of this area, is set to expire in 2010, thus opening up the areas surrounding the Project to possible development. Dismissing the indirect growth-inducing impacts of the Project is short sighted in light of the growth-inducing impacts of the Project and the limited protection afforded to the surrounding areas. SLT requests that the DEIR be revised to include an analysis of the growth-inducing impacts of the Project and a discussion of possible mitigation measures.

Stormwater Runoff Impacts Require Further Clarification.

The DEIR does not provide enough information to assess whether any applicable water hydrology or quality standards will likely be violated by the increased demands on the storm water system that will result from the Project. For example, the DEIR states that the Project will widen the eastbound I-80 mainline and add several thousand feet of separate roadway leading into and out of the new truck scale facility. (DEIR at 2.2-5). The DEIR explains that an adverse
effect will not result because stormwater runoff facilities will be “reconfigured” and thus the associated watersheds would be only minimally affected. (Id. at 2.2-6).

However, this increased runoff analysis lacks transparency. While the DEIR admits that the Project will increase runoff and paved areas, the impact is mitigated away by vaguely describing a reconfiguring of the stormwater drainage facilities. Several aspects of this contention warrant further clarification, including: (1) a description of how on-site drainage facilities will be reconfigured; (2) what inputs and assumptions were made regarding the impact of impermeable surfaces and comparison of such to the actual Project plans; (3) what impact the loss of nearly 40 acres of agricultural land as called for in the Project will have on runoff coefficients; and (4) how the flow rate/volumes of the impermeable and vegetated surfaces were determined. The rainfall intensity data should also consider the increasing frequency and intensity of rainfall caused by climate change. SLT requests that the Water Quality and Stormwater Runoff section of the DEIR be revised to clarify and address these issues.

The Aesthetics And Visual Setting Of The Area Will Be Significantly Impaired.

The DEIR states that the Project’s new paved surfaces and buildings will eliminate views of agricultural fields, reducing vividness from moderately high to moderately low. (DEIR at 2.1-32). The Project will affect a scenic vista by “decreasing the visual quality of views of open farmland from I-80.” (Id. at 2.1-33). The DEIR proposes measures to mitigate the loss of aesthetics and visual setting by implementing certain landscaping and architectural features. (Id. at 2.1-35). However, such mitigation measures will not reverse the permanent losses to the environmental aesthetics that will result as trees and vegetation will be removed and agricultural land will be paved over. This shift in character of the vicinity is a significant impact and should not be so swiftly dismissed in the DEIR.

Conclusion

Greenbelt Alliance appreciates the agency’s time in reviewing these comments. Greenbelt Alliance looks forward to the agency’s response and hopes that all of our concerns will be addressed. If there are any questions please contact Christina Wong by email at cwong@greenbelt.org or by telephone at 925-932-7776.

Sincerely,

Christina Wong
East Bay-Solano Field Representative
5.1.9 Responses to Comment Letter #9 (Greenbelt Alliance)

Response to Comment 9-1

The commenter notes that statements in the draft EIR/EA that the project will improve network-wide traffic conditions (Section 2.1.6) conflict with statements that the project will increase the number of vehicles on the freeway (Section 2.2.6).

Section 2.1.6 addresses traffic congestion and safety, and identifies the beneficial impacts that lower congestion will have on traffic flow and safety. These benefits are directly associated with the project allowing the freeway corridor to serve more of the projected travel demand. Section 2.2.6 addresses air quality, and acknowledges the greater traffic volume that will be served in the peak hours, relative to the No Project case.

Emissions are a function of two variables—volumes and emission factor. Traffic volumes are expected to increase over time with or without the project. Emission factors are based on speed. Typically as speeds increase, emissions will decrease. Therefore, if the project results in improvements to the roadway network which result in less congestion, vehicle speeds will increase and emissions will be reduced.

No change to the draft EIR/EA is required.

Response to Comment 9-2

The commenter cites research that links construction of new road miles with an increase in vehicle miles traveled (VMT). The commenter further requests that the draft EIR/EA include an analysis of how induced demand related to reductions in traffic conditions on I-80, I-680 and State Route 12 could change vehicle volume in the long run.

The project does not construct new road miles with respect to increased capacity, but rather provides a replacement truck scales facility, including on/off ramps, that meets the current design standard for the truck volume currently served and projected to be served in the future. While induced travel demand can occur when capacity increases and congestion decreases, the improved traffic flows with implementation of the proposed Truck Scales project is not expected to induce travel demand that would result in higher volumes in the corridor, because (1) the full 2035 travel demand generated by both the Bay Area (MTC) and Sacramento (SACOG) regions was included in the travel demand forecasts, and (2) the travel times in the eastbound direction change incrementally in the AM peak hour, and remain well above free-flow levels in the PM peak hour. The other bottlenecks within the study area would remain with the addition of this project, thus effectively limiting the effective travel capacity that is added.

No change to the draft EIR/EA is required.
Response to Comment 9-3

The commenter notes that the project area is classified as marginal non-attainment for 8-hour ozone by the EPA and serious non-attainment on the state level. The commenter notes that the draft EIR/EA states that federal funds cannot be used for projects that would violate NAAQS.

As noted in the draft EIR/EA, federal law under 40 CFR 51 and 40 CFR 93 transportation conformity requires that no federal dollars be used to fund a transportation project unless it can be clearly demonstrated that the project would not cause or contribute to violations of the NAAQS. Because the proposed project is included in the adopted Regional Transportation Plan (Transportation 2035 Plan), and adopted Transportation Improvement Program (2009 Transportation Improvement Program), the proposed project is in compliance with the law.

No change to the draft EIR/EA is required.

Response to Comment 9-4

The commenter notes that the draft EIR/EA states that emissions will decrease with the proposed project, but also says that the number of vehicles on I-80 will increase. The commenter perceives these two statements as contradictory.

The draft EIR/EA states that traffic would increase slightly with the implementation of the project for the years 2015 and 2035. Regional vehicular traffic will increase with or without the project. Despite an increase in traffic, emissions will decrease because of improvements in technology, new regulations aimed at reducing emissions, and improvements in traffic flow as a result of the project.

Mobile sources are the largest source of air pollution and greenhouse gases in the Bay Area. Reducing emissions from mobile sources, even as population and motor vehicle use continue to increase, is a key challenge for the Bay Area region. To help offset the additional emissions due to increased vehicle use, BAAQMD has adopted the 2005 Clean Air Plan and Particulate Matter Implementation Schedule, which includes transportation and mobile control measures to reduce motor vehicle travel and promote the use of clean vehicles and fuels.

The California Air Resources Board’s Emission Factors Model (EMFAC) was developed as a tool to estimate mobile on-road vehicle emissions. The model incorporates air district-specific fleet information and emissions data for vehicles of varying model years. This EMFAC model is also used in the vehicle emission inventory forecast developed for the BAAQMD Clean Air Plan for ozone and PM emission forecasting models. Recently, the BAAQMD has released the draft 2009 Clean Air Plan, which includes the EPA’s 2007 Heavy-Duty Highway Diesel Rule emission standards for on-road heavy-duty diesel engines. As a result, the draft 2009 Clean Air Plan emission inventory shows that the truck fleets from 2007 forward will have reduced NOX emissions. In addition, the new CARB Statewide Truck and Bus Rule, which takes effect January 1, 2011, will require the phased-in installation of diesel exhaust filters on all heavy duty trucks. As a result, truck fleets from 2011 forward will have reduced PM emissions.
Emissions are a function of two variables—volumes and emission factor. Traffic volumes are expected to increase over time with or without the project. Emission factors are based on speed. Typically as speeds increase, emissions will decrease. Therefore, because the project results in improvements to the roadway network, which results in less congestion, vehicle speeds will increase and emissions will be reduced, as discussed in the second paragraph on page 2.2-48 of the draft EIR/EA.

No change to the draft EIR/EA is required.

Response to Comment 9-5

The commenter states that adverse impacts to biological resources were either ignored or understated.

The impact discussions in Chapter 3 assume that all avoidance and minimization efforts and all compensatory mitigation described in Chapter 2 for each biological resource are part of the project. With implementation of all of these measures as part of the project, the impacts are less than significant under CEQA and not adverse under NEPA.

The commenter further notes that special status species habitat is present in the project area and therefore the draft EIR/EA’s finding of less-than-significant impacts is contrary to supporting evidence.

Effects to habitat for special status species are avoided, minimized, or mitigated by the implementation of measures provided in Chapter 2. For instance, 5 elderberry shrubs, which can provide habitat for valley elderberry longhorn beetles (a federally listed threatened species), will be removed as part of the project. The draft EIR/EA states (page 2.3-27) that four of these shrubs have been previously compensated for and that all 5 shrubs will be transplanted as part of the project, if size of the shrubs and bank stability allow. Because the removal of the shrubs has been mitigated and because the shrubs will be transplanted, the impact is less-than-significant.

No change to the draft EIR/EA is required.

Response to Comment 9-6

The commenter notes that the draft EIR/EA contains little detail regarding research methods for biological resources.

In-depth discussion of methods and survey techniques are provided in the Natural Environment Study and the Wetland Delineation, which are listed in the list of technical documents in Appendix D and are available to the public through the Department. Specific dates are noted for botanical and tree surveys (page 2.3-12 of the draft EIR/EA). In order to further clarify this, a paragraph has been added to the introduction of Section 2.3 outlining the studies undertaken for this project and referring the reader to the technical reports for specific discussions of methods.
Response to Comment 9-7

The commenter requests that the draft EIR/EA be revised to elaborate more on mitigation measures, identifying banks and including discussion of how mitigation measures are accurate.

The mitigation measures provide the approaches to be used, and are not required to provide comprehensive plans. Under CEQA, identification of the significant impact and a description of the mitigation measures for that impact are adequate, the commitment to a specific mitigation site is not required. Several potential locations for riparian habitat mitigation are provided in the draft EIR/EA (including Lynch Canyon, Kings Ranch), because it cannot be determined in advance where opportunities for mitigation will still exist at the time of construction, and legal agreements with landowners will have to be prepared. However, mitigation measure NC-1e on pages 2.3-5 and 2.3-6 of the final EIR/EA has been revised to repeat the success criteria from the temporary impact mitigation in the discussion for the permanent impact mitigation. As described in Measure TES-2 on page 2.3-25 of the draft EIR/EA, Swainson's hawk foraging habitat mitigation credits will be purchased, but the specific bank cannot be identified until the project proponent needs to purchase the credits, because availability of credits at any one location changes over time. As with riparian and Swainson's hawk mitigation, the location of mitigation for loss of red-legged frog upland habitat does not need to be finalized at this point. Formal consultation with the USFWS will result in a Biological Opinion that indicates the specific requirements of the mitigation acreage, as mentioned in the mitigation measure.

Response to Comment 9-8

The commenter states that the draft EIR/EA fails to properly discuss alternatives to the project.

CEQA requires that a reasonable range of alternatives be examined to reduce or avoid impacts of the project (CEQA Guidelines 15126.6). The draft EIR/EA discusses alternatives considered but eliminated from further discussion on pages 1-9 and 1-10. STA in coordination with the Department and the CHP conducted a four-tiered study to evaluate locations for the new truck scales. A total of 24 locations were evaluated incorporating considerations such as public safety, environmental impacts, traffic operations efficiency, flexibility in implementation, construction and operating costs, and national security. The Tier 4 analysis, which addressed the three options found most feasible in the Tier 3 analysis, was completed in 2005 and released for public review and comment. The Tier 4 document concluded that the location of the truck scales analyzed in this draft EIR/EA was the most feasible. Other locations were not feasible and design alternatives would not reduce the agricultural/farmland impact. The draft EIR/EA includes a summary of this study and is consistent with CEQA.

Response to Comment 9-9

The commenter questions the analysis and conclusions related to question 3 and 4 from the Growth Inducement Checklist (Table 2.1-2) contained in the draft EIR/EA.

Question 3 asks “Will the project lead to the increase of roadway, intersection, sewer, water supply, or drainage capacity?” The draft EIR/EA concluded that the project would not result in an increase, while the commenter believes that the answer “No” to this question is directly
contradicted elsewhere in the draft EIR/EA with discussion of new roadway, paved surfaces and drainage facilities that will result from implementation of the Project. The commenter misinterprets question 3.

Question 3 does not simply ask if new roadways, intersection, sewer, water or drainage systems would be constructed, but rather if the project would increase the capacity of these facilities such that it would cause growth inducement. The answer to that question is no. While the project would construct new roadways to provide access into and out of the new truck scales facility, the project would not increase the capacity of I-80 because it would not involve constructing additional through-lanes on the freeway. Additional drainage and paved surfaces would be constructed, but their sole purpose would be for the new truck scales facility and would not provide access to or capacity for any other uses.

Question 4 asks “Will the project encourage the rezoning or reclassification of lands in the community general plan from agriculture, open space or low density residential to a more intensive land use?” The commenter believes the project will encourage rezoning or reclassification of lands from agricultural to a more intensive land use, and concludes that taking nearly 40 acres of agricultural land out of use will invariably lead to the reclassification of this area.

There is no evidence to support a conclusion that the project would invariably lead to reclassification of areas surrounding the proposed truck scales. For example, the existing eastbound truck scales are located approximately 2,500 feet west of the proposed site. The lands surrounding the existing scales are zoned and used for agriculture. These lands have not been reclassified by the County nor have they changed over the last several decades. The proposed truck scales would be similarly located in an area where the surrounding lands are zoned and used for agriculture. The County in its most recent General Plan Update (August 2008), reconfirmed the land use designations in this area to remain agricultural. The project would not provide access to these lands, nor would it extend infrastructure or other services to these lands that would have the potential to encourage rezoning or reclassification.

To reiterate, the project would not increase the capacity of I-80 nor would it provide drainage improvements and paved surfaces that would benefit any other use or lands other than the proposed project. In addition, based on the operation of the eastbound truck scales over the past several decades, there is no reason to assume that land uses surrounding the new truck scales would automatically be rezoned or reclassified as a result of the project. The commenter also references the Orderly Growth Initiative (“Measure A”) which is set to expire in 2010 and which the commenter believes will open up this area for development. The proposed project is not related in any way to the expiration of the Orderly Growth Initiative and as discussed above, would not in and of itself result in any land use changes beyond those directly related to the truck scales facility. No modification of the draft EIR/EA is required.

Response to Comment 9-10

The commenter notes that the draft EIR/EA says that stormwater facilities will be “reconfigured” so that the associated watersheds will be only minimally affected. The commenter requests further clarification regarding issues:
Chapter 5. Responses to Comments

- How on-site drainage will be reconfigured
- What inputs and assumptions were made regarding the impact of impermeable surfaces and comparison of such to the project plans
- How flow rates/volumes of impermeable and vegetated surfaces were determined
- Impact of the loss of nearly 40 acres of agricultural land on runoff coefficients
- Also what about the increasing frequency and intensity of rainfall caused by climate change

As stated on page 2.2-6 of the draft EIR/EA, the project will add approximately 26 acres of impervious area due to the construction of ramps, connector roadways, and the truck scale facilities. All paved areas will have a potential impact to the quality and quantity of the stormwater runoff. The potential impact will be mitigated with Department approved stormwater treatment BMPs which are discussed on pages 2.2-6 through 2.2-11 of the draft EIR/EA. The selection of the best appropriate treatment BMP is dependent on several factors such as: depth to the maximum groundwater elevation, the targeted potential pollutants, the slope of the existing or post project land, the soil type the climate and the geometry of the highway. Some BMPs, such as infiltrating or basin BMPs, have been eliminated due to high groundwater and the relatively impervious soil types. Biofiltration strips and swales were determined to be the ideal BMPs for both stormwater and water quality.

Preliminary locations for BMP facilities have been identified in project maps contained in the Storm Water Data Report (SWDR) produced in support of the draft EIR/EA, but final selection and design will be performed during the final design phase of the project. The draft EIR/EA states that BMPs will be implemented within the project right-of-way. Project maps in the SWDR show a 30-foot wide setback area between the toe of new fill slopes and the adjacent project right-of-way, as opposed to the standard 15-foot setback, where stormwater treatment facilities can be located. The project maps also identify additional areas at the corners of the scales grading footprint.

The commenter asks how specifically drainage will be reconfigured. All new transportation drainage facilities will be designed to protect the roadway from dangerous flooding. For this project runoff from the paved roadways and ramps will typically shed off to roadside or toe of embankment ditches, which will then convey the runoff to the nearest downstream waterway or drainage facility. This is the same condition and pattern as the existing freeway. The existing roadside ditches will be reconstructed to the edge of the new grading, discharging to the same existing downstream waterway or drainage facility.

The commenter expresses concern about the loss of agricultural land and the effects on run-off coefficients. Agricultural land that is currently outside the existing right of way and that will be within the project right-of-way includes area that will be paved and areas that will be graded and remain unpaved. Currently that land has sheet flow runoff to the south, eventually discharging to a ditch that discharges to a larger drain such as Raines Drain. With the project that land will drain to a pavement inlet or roadside ditch that will flow along the project right of way and discharge to the same larger drain. There will be no watershed diversion of storm runoff. All runoff calculations for existing and proposed conditions were prepared in accordance with the
Department’s hydrology guidance that account for the soil types, the land cover, the slope of the land, and the local rainfall patterns and frequencies.

Paved areas will have increased runoff. The adjacent unlined ditches will provide some infiltration potential off-setting the increased runoff. Increased runoff will affect some drainage facilities, primarily Raines Drain. However, the project will minimize the impact of the rate and volume increases by constructing drainage features to contain, regulate, or modify the runoff. The Department and STA will consult with owners/operators to satisfy their requirements. (Please see response to comment 11-5.)

For the BMP measures, the rates and volumes of storm runoff were not quantified. However, the entire paved area of the proposed project was quantified in the SWDR and sufficient area for bioswale/biostrip treatment was allotted as a continuous linear strip along the proposed right-of-way.

The commenter raises concerns about impacts related to the increasing intensity and frequency of rainfall due to climate change. The potential impact of climate change on rainfall intensities is not defined sufficiently to be incorporated in the analysis of potential impacts. Though many sources can be used to justify an analysis of warming or sea level rise, there is no guidance or literature to indicate that rainfall intensities will reduce (or increase) or total rainfall will reduce (or increase).

No changes were made to the EIR/EA in response to this comment.

Response to Comment 9-11

The commenter reiterates the key findings of the visual/aesthetics analysis contained in Section 2.7 of the draft EIR/EA and does not appear to disagree with the finding but rather takes objection that the visual impact should “not be so swiftly dismissed in the DEIR.”

The visual/aesthetic study in the draft EIR/EA was conducted in accordance with FHWA protocol. The draft EIR/EA on page 2.1-29 states that the analysis is summarized from the VIA (Visual Impact Assessment) prepared for the proposed project (CirclePoint 2008b). The VIA contains a methodical analysis of visual impacts in accordance with FHWA protocol. The visual impact of the project is discussed in four impact discussions, and three minimization measures are included to address the visual impact of the project. The visual impact was not swiftly dismissed, but analyzed according to standard procedures.

No change to the draft EIR/EA is required.
March 18, 2009

Melanie Brent
Environmental Analysis Office Chief
P.O. Box 23660
MS-88
Oakland, CA 94623-0660

Subject: Additional Public Comments to the Draft Environmental Impact Report/Environmental Assessment (State Clearing House #2008052067) re: I-80 Eastbound Cordelia Truck Scale Relocation.

Dear Ms. Brent:

I am both a long-time commuter and Vacaville resident who is concerned about protecting our wildlife species and their habitats in Solano County, associated with the proposed Multi-Species Habitat Conservation Plan of Solano County during past 10 years.

Responding to the Biological Environment (Chapter 2), I am very concerned that this project is narrowly focused on a few targeted species such as Valley Elderberry Beetle, Western Pond Turtle, California Red-legged Frog, and Swainson’s Hawks which occur throughout Solano County. Rather, it needs to expand its scientific investigation on the possible adverse impacts to the following endangered/threatened/species; they are: Trees: Valley Oak, California Live Oak, Blue Oak; Plants: Contra Costa Goldfields, Papoose Tarplant, Mason’s Lilaeopsis; Amphibians: California Tiger Salamanders; Birds: White-tail Kite, California Clapper/Black Rail, Logger Shrike; Crustaceans: Conservancy Fairy Shrimp, Vernal Pool Fairy Shrimp, Vernal Pool Tarpoil Shrimp, Coastal Fairy Shrimp; Insects: Callispe Silver Butterfly; Mammals: Salt Marsh Harvest Mouse; Fish: Native Chinook Salmon.

Responding to CEQA (Chapter 3), although I appreciate the overlapping setback from the bridge modifications, I am still concerned about the possible adverse impacts on the adjacent riparian woodland, Swainson’s Hawk nests, and both crustaceans and amphibians as well as other wildlife species which will be migrating narrowly through the Suisun creek.

In addition, although I understand that new I-80 Eastbound Truck Scale Station will need to move to alleviate the traffic congestion from the I-680 and I-80 junctures, I still do not understand why the new EBTS can not be constructed further eastbound from Suisun Creek toward the present urban development area along I-80.

Additionally, since I already submitted previously written comments during your public hearing (February 26, 2009) related to this important project, I am requesting that you attached my additional comments to my Thursday comments.

If you have any questions/concerns about my individual comments, please contact me at my email: robertovaldez5@hotmail.com or home telephone number: (707) 446-4905.

Yours Truly,

Roberto Valdez Jr., 248 Plantation Way, Vacaville, CA 95687.
5.1.10 Responses to Comment Letter #10 (Roberto Valdez, private citizen)

Response to Comment 10-1

The commenter expresses concern that the draft EIR/EA is narrowly focused on a few targeted threatened/endangered species.

The draft EIR/EA evaluated all threatened and endangered species with potential to occur in the project area that is with suitable habitat in the area. These species were determined by first consulting the California Natural Diversity Database and consulting with agency personnel. Secondly, the specific project area was assessed for the presence of habitat. The discussion of the species evaluated for this project is on pages 2.3-11 through 2.3-13, 2.3-23, and 2.3-24 of the draft EIR/EA, and is summarized in Tables 2.3-2 and 2.3-3. The discussion and tables include an explanation for each species that is not discussed further, stating why it would not be affected by the project. Surveys for all special-status plants known to occur in the region were performed in the project area, and no special-status plants were found.

No change to the draft EIR/EA is required.

Response to Comment 10-2

The commenter is concerned about possible adverse impacts to the adjacent riparian woodland, Swainson’s hawk nests, and crustaceans, amphibians and other species that migrate through Suisun Creek.

Effects on riparian woodland are addressed on page 2.3-2 of the draft EIR/EA and measures to reduce this impact are discussed on pages 2.3-3 through 2.3-5. Potential impacts to Swainson’s hawk nests and foraging habitat and measures that would reduce these impacts are addressed on page 2.3-25 of the draft EIR/EA. Potential impacts to California red-legged frogs and their habitat and measures to reduce these impacts are addressed on pages 2.3-28 through 2.3-31 of the draft EIR/EA. No suitable habitat for listed crustaceans was located within the project area.

The impact discussions in Chapter 3 assume that all avoidance and minimization efforts and all compensatory mitigation described in Chapter 2 for each biological resource are part of the project. With the implementation of all of these measures as part of the project, the impacts are less than significant under CEQA.

No change to the draft EIR/EA is required.

Response to Comment 10-3

The commenter questions why the site for the new truck scales could not be constructed further east from Suisun Creek.

The length of the truck scale project is approximately 2 miles between the beginning of the off ramp to the end of the I-80 on ramp. The necessary length is due to a combination of factors including the projected truck and general traffic volumes, the length of the approach and
departure ramps, the size of the proposed facility and the minimum weave lengths necessary between the Truck Scales ramps and adjacent interchange ramp movements to allow vehicles to safely enter and exit from the highway. The proposed project is located as far east of Suisun Creek as possible while still being located west of the I-80/SR 12 separation. As noted in the response to comment 9-8, alternative locations for the Truck Scale facility east of the proposed location were analyzed as a part of the Cordelia Truck Scale Relocation Study in 2005. All other alternative sites studied along I-80 required additional weigh/inspection facilities be constructed along I-505 or SR-12E (in addition to the ones on I-80) in order to inspect and weigh all truck traffic.

The Cordelia Truck Scale Relocation Study identified the present alternative to be the most reasonable alternative. This is also the only alternative that the CHP supported.

The location and the configuration were subsequently studied as a part of an independent Value Analysis team led by the Department to review ways to reconfigure the facility footprint and I-80 access geometry to minimize costs, impacts, and disruption to the motoring public. Appropriate recommendations from this effort were incorporated into the alternative considered in the environmental document.

No change to the draft EIR/EA is required.
March 10, 2009

Melanie Brent, Environmental Analysis Office Chief
California Department of Transportation, District 04,
P.O. Box 23660, MS-81B
Oakland, CA 94623-0660

Subject: I-80 Eastbound Cordelia Truck Scales Relocation Project Impacts

Dear Ms. Brent:

Our staff has done a preliminary review of the California Department of Transportation’s (Department) proposed I-80 Eastbound Cordelia Truck Scales Relocation Project which is located south of I-80 between the I-80/Suisun Valley Road interchange and the I-80/SR 12E interchange. The Solano Irrigation District (District) has several facilities that will be impacted by the proposed project.

The proposed project includes major impacts to District Facilities. Generally, District facilities in the area may include canals, pipelines, and associated appurtenances, some or all of which may not be sufficient to handle urban or roadway loads. Any construction that impacts District facilities (relocation, replacement, etc.) must be performed outside of the District’s irrigation season as to not impact deliveries to District customers. The typical irrigation season is March 1 through October 15, and is weather dependent. Any modifications to District facilities are subject to the District’s approval and will be at the project’s expense.

The following is a list of facilities impacted by the proposed project including additional comments relating to the preliminary alignment and design. Additional requirements may be necessary upon review of the improvement plans for the proposed project.

1. The District’s Young Lateral, an 18” precast concrete agricultural irrigation pipeline, crosses under Interstate 80 (I-80) on the east side of Carson’s parcel (APN 027-260-12) west of Suisun Creek, from north to south, and extends approximately 150’ before connecting into a concrete control structure. From the structure the pipeline then continues east across Suisun Creek parallel to I-80 for
Chapter 5. Responses to Comments

approximately 100' to a second concrete control structure. The pipeline continues to the south from this control structure on the east side of Suisun Creek to serve the other lands to the south. These pipelines and structures appear to be in conflict with the proposed project and would need to be relocated with the proposed project.

2. The District’s Young Lateral 4, an 18" precast concrete agricultural irrigation pipeline, is fed from the Young Lateral junction structure located 150' south of the I-80 crossing and continues south serving the lands on the west side of Suisun Creek. This pipeline and structures appear to be in conflict with the proposed project and would need to be relocated with the proposed project.

3. The District’s Valine Lateral, an 18" reinforced concrete agricultural irrigation pipeline, travels parallel to the southern side of I-80 on Valine’s parcel (APN 027-272-14). It is fed from the Young Lateral on the west and spills into the Raines Drain which is located on the east side of the parcel. This pipeline serves the Valine’s parcel (APN 027-272-14) and may need to be relocated, or abandoned if a waiver of water service is obtained from the landowner.

4. The District’s Raines Drain, an agricultural irrigation drainage facility, is located on the east side of the Valine parcel (APN 027-272-14) south of the I-80. This facility was designed to handle agricultural irrigation flows not storm flows; therefore, no increase of drainage flows are allowed into this facility. Existing access to this facility must be maintained. All modifications to the drain must be reviewed and approved by the District. Portions of this drain will need to be undergrounded with the proposed project.

5. The District’s Chadbourne Lateral 5, a 24" rubber gasket reinforced concrete agricultural irrigation pipeline, travels parallel to the northern side of Busch Drive from Chadbourne Road to Hale Ranch Road. This pipeline may need to be relocated and/or protected with the proposed project.

6. The District’s Chadbourne Lateral 5-2, an 18" precast concrete agricultural irrigation pipeline, runs west from Hale Ranch Road on the south side of Busch’s parcel (APN 027-272-14). This pipeline reduces down to 12” FCP before terminating at an irrigation service located on the Thompson Property (APN 027-272-180) near I-80. The west end of this pipeline appears to be in conflict with the proposed project and may need to be relocated with the proposed project.

7. The District’s Chadbourne Lateral 5-2-1, a 12" precast concrete agricultural irrigation pipeline, extends north of the Chadbourne Lateral 5-2 along the east side of the Busch property (APN 027-272-14) before terminating at an irrigation service near I-80. A portion of this pipeline appears to be in conflict with this project and may need to be relocated with the proposed project.
The Districts Approval Certificate must be added to the Improvement Plans of this Project and the District must review, approve and sign said plans.

Prior to any relocation of the District’s facilities the District will require Caltrans/Solano Transportation Authority (STA) to enter into a District Standard Relocation, Reconstruction, and Protection of Facilities Agreement.

The District will also require Caltrans/STA to sign a Work Order to cover all costs (staff, legal, inspection, etc.) associated with the review and mitigation of the impact(s) the proposed project has on District facilities. Any facility relocations, right of way exchanges or quitclaims will be at Caltrans/STA expense.

Thank you for the opportunity to review and comment on this project. If you have any questions, please contact me.

Sincerely,

[Signature]

Uriel Romero
Junior Engineer
(707) 455-4045
5.1.11 Responses to Comment Letter #11 (Solano Irrigation District)

Response to Comment 11-1

The commenter states that any construction that may impact Solano Irrigation District (SID) Facilities must be performed outside the District's irrigation season (March 1 through October 15) and that any modifications to District Facilities will be at the project's expense.

The Department and STA will coordinate with SID for work on the District's facilities to schedule necessary temporary shutdown services.

No change to the draft EIR/EA is required.

Response to Comment 11-2

The commenter notes that SID’s Young Lateral irrigation pipe appears to be in conflict with the proposed project and would need to be relocated.

The Young Lateral irrigation pipe has been identified as in conflict with the project and would be relocated as a part of the project.

The following text has been inserted into the Utilities, Relocation section of the final EIR/EA on page 1-10:

As part of the proposed project, drainage and irrigation facilities that conflict with the project would be relocated to maintain their existing function, with the exception of the Valine Lateral, which will be abandoned and removed.

Response to Comment 11-3

The commenter remarks that SID’s Young Lateral 4 irrigation pipeline and related structures appear to be in conflict with the proposed project and would need to be relocated.

The Young Lateral 4 irrigation pipe has been identified as in conflict with the project and would be relocated as a part of the project. Relocation of drainage and irrigation facilities has been included in the project description (see response to comment 11-2 above).

Response to Comment 11-4

The commenter writes that SID’s Valine Lateral irrigation pipeline serves the Valine’s parcel (APN 027-272-14) and may need to be relocated, or abandoned if a waiver of water services is obtained from the landowner.

The proposed project would result in the acquisition of the Valine parcel. Consequently the Valine Lateral irrigation pipeline would be abandoned and removed. The text of the draft EIR/EA has been amended as indicated in response to comment 11-2 above to reflect this proposed action.
Response to Comment 11-5

The commenter notes that SID’s Raines Drain, an agricultural irrigation drainage facility, was designed to handle agricultural irrigation flows not storm flows; therefore no increase of drainage flows is allowed into this facility. Existing access to this facility must be maintained. All modifications to the drain must be reviewed and approved by SID. Portions of this drain will need to be undergrounded with the proposed project.

During those times of managed flows, the operational requirements of SID will not be impacted. The boundaries of the tributary watershed to the ditch will not be changed by the project. The change of land cover due to the project (perivious to impervious) will increase the rate and volume of runoff immediately downstream from those areas. The project will minimize the impact of the rate and volume increases by constructing drainage features to contain, regulate, or modify the runoff. The existing access will be maintained, or revised access provided during and after project construction. The portion of the existing drain that will be within the revised State right-of-way will be changed to an underground culvert through the limits of the project grading. The revised drain will be constructed to not adversely impact operations. Portions of the existing drain outside of the revised State right-of-way will not be undergrounded.

Response to Comment 11-6

The commenter remarks that SID’s Chadbourne Lateral 5 agricultural irrigation pipeline may need to be relocated and/or protected.

The Chadbourne Lateral 5 pipeline has been identified as in conflict with the proposed project. The portion of the lateral in conflict will be relocated as a part of the project. Relocation of drainage and irrigation facilities has been included in the project description (see response to comment 11-2 above).

Response to Comment 11-7

The commenter writes that SID’s Chadbourne Lateral 5-2 is an irrigation pipeline that terminates on the Thompson Property (APN 027-272-180) near I-80. The west end of this pipeline appears to be in conflict and may need to be relocated.

The Chadbourne Lateral 5-2 has been identified as in conflict with the proposed project. The portion of the lateral in conflict will be relocated as a part of the project. Relocation of drainage and irrigation facilities has been included in the project description (see response to comment 11-2 above).

Response to Comment 11-8

The commenter writes that SID’s Chadbourne Lateral 5-2-1 is an irrigation pipeline that extends along the east side of the Busch property (APN 027-272-14) before terminating at an irrigation service near I-80. A portion of this pipeline appears to be in conflict with this project and may need to be relocated.
Chapter 5. Responses to Comments

The Chadbourne Lateral 5-2-1 has been identified as in conflict with the proposed project. The portion of the lateral in conflict will be relocated as a part of the project. Relocation of drainage and irrigation facilities has been included in the project description (see response to comment 11-2 above).

Response to Comment 11-9

The commenter notes that SID’s Approval Certificate must be added to the Improvement Plans of this project and the District must review, approve, and sign said plans.

Design of improvement plans to relocate SID facilities in conflict with the project will either be prepared by SID design staff or by the STA’s design consultant and approved by SID prior to construction.

No change to the draft EIR/EA is required.

Response to Comment 11-10

The commenter states that prior to any relocation of SID’s facilities the District will require a District Standard Relocation, Reconstruction, and Protection of Facilities Agreement be executed.

Required agreements will be executed prior to relocation of SID’s facilities.

No change to the draft EIR/EA is required.

Response to Comment 11-11

The commenter remarks that the District will also require a Work Order be executed to cover all costs (staff, legal, inspection, etc.) associated with the review and mitigation of the impact(s) the proposed project has on District facilities. Any facility relocations, right of way exchanges or quitclaims will be at the project’s expense.

Required approvals and agreements with SID will be executed during the design phase.

No change to the draft EIR/EA is required.
Chapter 5. Responses to Comments

Final Environmental Impact Report/Environmental Assessment

I-80 Eastbound Cordelia Truck Scales Relocation Project

DEPARTMENT OF THE ARMY
SAN FRANCISCO DISTRICT, U.S. ARMY CORPS OF ENGINEERS
1465 MARKET STREET
SAN FRANCISCO, CALIFORNIA 94103-1398

APR 9 2009

12

REPLY TO ATTENTION OF

Regulatory Division

SUBJECT: File Number SPN-2009-00358 N

Ms. Melanie Brent
California Department of Transportation
PO Box 23660, MS-8B
Oakland, California 94623-0660

Dear Ms. Brent:

This letter is written in response to your request for comments on the “I-80 Eastbound Cordelia Truck Scales Relocation Project, Draft Environmental Impact Report/Environmental Assessment”, dated January 2009.

In respect to cumulative impacts, we consider Interstate 80 between Red Top Road and Air Base Parkway (and its feeder highways and roads) as a system. Of the many large transportation projects that we are aware of in the Cordelia, Fairfield, and Suisun City areas, all appear to be focused on solving a single issue: reducing traffic congestion in the system. These include the I-80 HOV Lanes Project, the Jameson Caynon (North Connector Project), Jepson Parkway, and the I-80/I-680/SR-12 Interchange Project. As such, impacts from these projects and others providing traffic congestion relief to the system should be considered cumulatively.

We believe that there has not been an adequate review of cumulative impacts in the DEIR/EA from highway infrastructure improvements, including the proposed I-80 Eastbound Cordelia Truck Scales Relocation Project and other reasonably foreseeable projects in the corridor. In particular, we believe that the DEIR/EA does not adequately address the cumulative impacts to waters of the U.S.

Based on the information we have available, we are unable to determine whether the I-80 Eastbound Cordelia Truck Scales Relocation Project would have more than minimal cumulative adverse environmental effects. Authorizing the project under a Nationwide 39 for Commercial and Institutional Developments, as has been suggested by Caltrans, would not be appropriate. At a minimum, we would evaluate the I-80 Eastbound Cordelia Truck Scales Relocation Project using the standard permit process. Also, since the proposed I-80 Eastbound Cordelia Truck Scales Relocation Project shares similar truck traffic safety objectives with the I-80/I-680/SR-12 Interchange Project, we believe the projects are interrelated. We strongly recommend that the project be re-inserted into the larger I-80/I-680/SR-12 Interchange Project so that the cumulative system impacts could be evaluated in an environmental impact statement (EIS).
Should you have any questions regarding this matter, please call Andrea Meier of our Regulatory Division at 415-503-6798. Please address all correspondence to the Regulatory Division and refer to the File Number at the head of this letter.

Sincerely,

Jane M. Hicks
Chief, Regulatory Division

Copy Furnished:
US EPA, San Francisco, CA
CA RWQCB, Santa Rosa, CA
5.1.12 Responses to Comment Letter #12 (U.S. Army Corps of Engineers)

Response to Comment 12-1

The commenter states that the U.S. Army Corps of Engineers (Corps) considers the I-80 HOV Lanes project, the Jameson Canyon (North Connector project), Jepson Parkway project, and the I-80/I-680/SR 12 Interchange project part of a larger program focused on solving the single issue of reducing traffic congestion in the system, and that impacts from these projects need to be considered cumulatively.

The draft EIR/EA cumulative impact analysis does, in fact, include these projects as past, present, and reasonably foreseeable future projects. As stated in Section 2.4.2 of the draft EIR/EA, “The cumulative analysis for the proposed [Truck Scales] project takes into consideration the other ongoing projects in the same geographic area as the proposed project, as well as planned land uses and transportation and circulation projections identified in city and county general plan and policy documents,” and then specifically references the projects identified above, plus other projects.

With regard to the commenter’s statement that all transportation projects in the I-80 corridor appear to be focused on solving a single issue (i.e., reducing traffic congestion) and that the Truck Scales project is part of the I-80/I-680/SR 12 Interchange project, reducing congestion is not the primary purpose of the Truck Scales project. Page 1-2 of the Truck Scales draft EIR/EA specifically states that “the purpose of the project is to accommodate anticipated growth in truck traffic in the corridor by 2040” and that the project “will improve the reliability of the truck weight and safety inspection and enforcement system and thereby protect the structural integrity of California roads. The project will also improve mainline safety by reducing truck/auto weaving and queuing and will provide traffic congestion relief along this segment of I-80.” The other projects identified by the Corps above each also have their own specific purpose and needs (some of which do include a purpose of reducing traffic congestion) and, most importantly, their own independent utility (i.e., to be useable and be a reasonable expenditure even if no additional transportation improvements are made in the area) and their own logical termini (i.e., rational end points or logical project limits) as defined by 23 CFR 771.111 (f). In the case of the Truck Scales project, improvement of safety has been a stated purpose for the project for several years and the benefits of the truck scales project in solving the basic safety issue of weaving trucks in a highly congested segment of I-80 is documented in the Cordelia Truck Scales Relocation Study referenced in Chapter 1 of the draft EIR/EA and is stated in Section 1.2.2 “Need for Project” of the draft EIR/EA. Given the underlying need for the Truck Scales project and FHWA’s NEPA regulations on independent utility and logical termini, the commenter’s suggestion that the Truck Scales project should be “re-inserted” in the I-80/I-680/SR 12 Interchange project because the two projects share similar truck safety objectives does not seem warranted.

The commenter also states that there has not been an adequate review of the cumulative impacts in the draft EIR/EA, specifically for impacts on waters of the U.S. However, the commenter does not provide any specific comments on the cumulative impact discussion on biological resources, including wetlands and other waters of the U.S., beginning on page 2.4-8 of the draft EIR/EA. Specifically, on page 2.4-8 of the draft EIR/EA, Impact WOW-4: Cumulative Loss of Perennial Wetland Drainage, Perennial Drainage, and Seasonal Drainage states, “Implementation of the
proposed project, in combination with other local and regional projects, would contribute to the cumulative loss of wetlands and drainages that are waters of the United States within the Suisun Bay hydrologic unit (HUC 18050001).” The discussion in the draft EIR/EA goes on to state, “Both direct and indirect impacts have the potential to add to the cumulative loss of wetland and drainage habitat. The proposed project’s contribution to these direct and indirect impacts would be considered an adverse effect. However, with the implementation of Measures NC-1a, NC-1b, WOW-1, WOW-3, and WQ-2, the impact would not be cumulatively considerable.” The commenter does not state why she believes this discussion is inadequate or does not meet the requirements of a cumulative impact analysis.

The commenter further states that authorizing the truck scales project under the Nationwide Permit 39 would not be appropriate, but does not offer any specific reason why the proposed Truck Scales project would not qualify. The draft EIR/EA does not specify that a Nationwide Permit would be sought, but only states that 404 permit will be necessary (Table 1-4). However, implementing the proposed truck scales project, which has both independent utility and logical termini as stated in the draft EIR/EA, would result in a total permanent loss of 0.02 acre of waters of the U.S. and a total temporary loss of 0.06 acre of waters of the U.S, which would fall well below many of the Nationwide Permit limits of 0.33 to 0.50 acre. Table 2.3-1 in the draft EIR/EA provides a detailed breakdown of both temporary and permanent impacts of waters of the U.S. and waters of the State, as well as proposes measures to ensure that the impact is not adverse. Based on the calculated acreage of permanent and temporary impacts on waters of the U.S. provided in the draft EIR/EA, the truck scales project appears to fall within the requirements of the Nationwide Permit program.

No changes to the draft EIR/EA are required.
May 14, 2009

Ms. Melanie Brent
Environmental Analysis Office Chief
Caltrans District 4
P.O. Box 23660, MS 8B
Oakland, CA 94623-0660

Re: Draft Environmental Impact Report for the I-80 Eastbound Cordelia Truck Scales Relocation Project

At its May 2009 meeting, the California Transportation Commission (Commission), as a Responsible Agency, reviewed the Draft Environmental Impact Report (DEIR) for the I-80 Eastbound Cordelia Truck Scales Relocation Project.

The Commission has no comments regarding the environmental issues to be addressed in the DEIR. However, since this project is included in the Proposition 1B Trade Corridors Improvement Fund (TCIF) program of projects, upon finalization of the environmental process, in addition to providing the final environmental document, the Commission expects the project sponsors to confirm in writing whether the scope of work of the project as identified through the environmental process is or is not consistent with the project programmed in the TCIF. In the event the project has been revised, the revised scope may require a request to the Commission for a program/project amendment.

In addition, if the revision to the project will result in an estimated cost above the current programmed amount, the project sponsors are responsible for securing necessary supplemental funds and identifying the source(s) where supplemental funds will be obtained to ensure the project continues to be fully funded and that the project can be successfully implemented. If the project sponsor recommends supplemental funding from sources that are within the purview of the Commission (Bond, STIP, TCRP, etc.), Commission approval for programming or allocation of these funds will be required. Conversely, if the project sponsors will utilize local (or local-federal) funds, a local board action or resolution committing the supplemental funding levels is required to be submitted to the Commission.
Further, in programming the TCIF, the Commission established its intention to monitor the outcomes of the environmental process with regard to air quality impacts due to emissions from diesel or other particulates and related mitigation strategies. The Commission will only allocate TCIF to projects that can demonstrate compliance with the TCIF and with all applicable environmental requirements, including non-air quality impacts and including the implementation of appropriate mitigation measures. The Commission expects the project sponsors to commit to the implementation of these mitigation measures as part of its submittal of the final environmental document for approval for future funding consideration and in its request for allocation of TCIF funding.

If you have any questions, please contact Susan Bransen at (916) 653-2082.

Sincerely,

[Signature]

BIMLA G. RHINEHART
Executive Director

c: Jay Norvell, Caltrans Division of Environmental Analysis
Janet Adams, Solano Transportation Authority
5.1.13 Responses to Comment Letter #13 (California Transportation Commission)

Response to Comment 13-1

The commenter notes that the California Transportation Commission has no comments concerning the environmental issues addressed in the DEIR/EA.

Comment noted. No change to the draft EIR/EA is required.

Response to Comment 13-2

The commenter states that this project is included in the Proposition 1B Trade Corridors Improvement Fund (TCIF) program and the Commission expects the project sponsors to confirm in writing where the scope of work of the project is or is not consistent with the project programmed in the TCIF. A request to the Commission for a program/project amendment may be required if the project scope has been revised.

Comment noted. No change to the draft EIR/EA is required.

Response to Comment 13-3

The commenter remarks that if any revision to the scope for the project will result in an additional cost, the project proponents are responsible for securing the additional funds needed so that the project will be successfully implemented. If this funding comes from sources within the purview of the Commission, approval from the Commission will be required. If the funding will come from local (or local-federal) funds, a local board action or resolution committing the supplemental funding levels is required to be submitted to the Commission.

Comment noted. No change to the draft EIR/EA is required.

Response to Comment 13-4

The commenter notes that the Commission will only allocate TCIF to projects that can demonstrate compliance with the TCIF and with all pertinent environmental requirements, including environmental impacts and related mitigation strategies. The Commission expects the project proponents to commit to the implementation of these mitigation measures as part of its submittal of the final environmental document for approval for future funding consideration and in its request for allocation of TCIF funding.

Comment noted. No change to the draft EIR/EA is required.

5.2 Responses to Written and Oral Comments from Public Hearing

One public hearing was held in the city of Fairfield by the Department, in conjunction with STA, on February 26, 2009 to receive public comments on the draft EIR/EA. Two verbal comments
that were received from Mr. Roberto Valdez and Ms. Michelle Valine, and one written comment that was received from Mr. Roberto Valdez, are summarized below. A transcript of the hearing is provided following this summary.

5.2.1 Comment 1

Mr. Roberto Valdez provided spoke briefly, stating he would provide written comments at a later date and confirming the date of the close of the comment period. In the verbal comment, Mr. Valdez expressed concern about potential impacts to threatened and endangered species and indicated that he would submit a letter to Caltrans detailing his comments. Mr. Valdez later sent an e-mail to Caltrans, on March 18, 2009. His comments are fully outlined in that e-mail, referred to as Letter #10.

Response to Comment 1

The draft EIR/EA addresses potential impacts to all threatened, endangered, and special status species with the potential to occur in the project area based on the presence of suitable habitat. Please see Response to Comment Letter #10 for a detailed discussion of this comment.

5.2.2 Comment 2

Ms. Michelle Valine spoke at the public hearing and stated that her residence was closest to the proposed scales and that no noise or particulate studies were conducted on the north side of the freeway, near her house. Ms. Valine stated that currently she could hear the loudspeakers and trucks and expressed concern that it would be louder when it was across from her.

Response to Comment 2

Localized particulate matter studies were not conducted for this project because they were not required for the draft EIR/EA. Regional analysis was deemed sufficient. Noise monitoring for calibration was conducted at a location on Russell Road, near Ms. Valine’s property. Figure 2.2-6 has been revised to show this noise monitoring location.

The significance of noise impacts are evaluated based on decibel levels. Though Ms. Valine may hear the speakers and trucks, it is not necessarily a significant impact under CEQA or an adverse effect under NEPA. The predicted noise levels with the project do not constitute a significant impact.

Similar comments were submitted on behalf of Ms. Valine by William Robbins, an attorney, in a letter dated March 6, 2009 and referred to here as Letter #3. Please see Responses to Comments for Letter #3 for a more detailed discussion.
5.2.3 Comment 3

Ms. Valine asked if the property owners were going to be compensated for the noise impacts of the project, or if they would have to suffer the fact that Caltrans thinks it is too expensive to construct a sound wall to protect them.

Response to Comment 3

A sound wall at this location has been analyzed for other actions in this area and has been found to not be cost reasonable (please see Response to Comment 3-3). This analysis has been included in the draft EIR/EA for informational purposes in response to this comment.

Similar comments were submitted by William Robbins, an attorney, on behalf of Ms. Valine in a letter dated March 6, 2009 and referred to here as Letter #3. Please see Response to Comment Letter #3 for a more detailed response to this comment.
Chapter 5. Responses to Comments

SOLANO TRANSPORTATION AUTHORITY

---oOo---

I-80 EASTBOUND CORDELIA TRUCK SCALES RELOCATION PROJECT

PUBLIC HEARING
Thursday, February 26, 2009
Solano County Administration Building
675 Texas Street, Fairfield, California
6:30 p.m.

Reported by:
CHRISTINE M. GOODIN
CSR No. 9683

(800) 547-4441 CALNORTH REPORTING SERVICE (707) 579-4500

Page 1
EB I80 Public Hearing_2_26_09_Transcript.txt

1 PANEL APPEARANCES
2 ---000---
3
4 JANET ADAMS, Hearing Officer
5 MIKE LOHMAN
6 SCOTT STEINWERT
7 DALE DENNIS
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

2

(800) 547-4441 CALNORTH REPORTING SERVICE (707) 579-4500

1 (PROCEEDINGS, 7:00 P.M.)
2 ---000---
Page 2
Chapter 5. Responses to Comments

EB I-80 Public Hearing_2_26_09_Transcript.txt

3 HEARING OFFICER ADAMS: Welcome, Everybody. It
4 is after 7:00. I know everyone has got lots of places
5 they would rather be -- home, where it is not windy and
6 cold. We are going to go ahead and get started.
7 Welcome. I appreciate everyone taking time to
8 come out tonight. We are here tonight for a hearing on
9 the I-80 Eastbound Cordelia Truck Scale Relocation
10 Project. I am Janet Adams. I am the Director of
11 Projects for the Solano Transportation Authority. I am
12 acting as hearing officer for tonight's hearing.
13 CalTrans is here this evening to present the
14 Draft Environmental Impact Report, environmental impact
15 assessment for the project, and to provide a forum for
16 taking public comments.
17 Comments can be submitted tonight in writing.
18 There are comment sheets available for you to do either,
19 you know, as we're speaking or right after the meeting we
20 are going to continue the open house forum. If you would
21 like to make a verbal comment tonight, there are these
22 yellow speaker cards. Please just go ahead and spell out
23 your name, and then at the appropriate time I'll go ahead
24 and take whatever cards I have and ask the people to come
25 up and make their verbal comment.

(800) 547-4441 CALNORTH REPORTING SERVICE (707) 579-4500

1 You can also submit comments after tonight's
2 hearing. They are available -- comments are welcome
3 until 5:00 o'clock p.m. on Wednesday, March 18th.
4 So CalTrans is holding the hearing before
Page 3
EB 180 Public Hearing_2_26_09_Transcript.txt

committing to any project alternative, and no final
decisions will be made until all comments have been
evaluated and responded to in the Final Environmental
Document.
Invitations to this hearing were published in
the Daily Republic. They were mailed to local residents,
property owners, elected officials, and other interested
parties.
Tonight we do have -- CalTrans, certainly, is
here. We also have a member from CHP, Lieutenant Ferrel
here. And that is -- so we welcome you.
So I'm going to go ahead and introduce the panel
tonight. We are going to do -- the panel is going to do
a Power Point, explain the project, explain the
environmental process. Then I will go ahead and allow
people to come up to make public comments.
So with that, there are three people up here.
There is Mr. Dale Denis. He is a project manager on the
project. Welcome.
Mike Lohman, he is the consultant that did most
of the design work on the project.

(800) 547-4441 CALNORTH REPORTING SERVICE (707) 579-4500

And Scott Steinwert. Welcome. He is our expert
in the environmental process.
So with that, Gentlemen, we will go ahead and
turn it over to you.
(whereupon, the Power Point presentation was
given)

Page 4
HEARING OFFICER ADAMS: So after I describe the post-hearing process, I will read the names of those wishing to make public comment.

So, again, I want to reiterate what I have already said: After tonight’s hearing, CalTrans will continue to accept comments until Wednesday, March 18th at 5:00 o’clock. So they can be submitted tonight in writing, can be made verbally tonight. If you would like to make a verbal comment, please complete the yellow speaker card on the sign-in table, and they can also be submitted after tonight’s meeting in writing or e-mail using the contact information provided in the materials on the table right out front.

Again, project decisions will not be finalized until all relevant information from the hearing process has been considered and after the hearing and before any approval by CalTrans and the Federal Highway Administration. All data gathered at the hearing or submitted for public record will be made available for inspection by the public. The data may be copied at the district office or other specified locations.

After CalTrans has made its decision, the proposal approval will be requested from the Federal Highway Administration.

So I have one card in front of me tonight.

Okay. So, Michelle Valine, if you would like to come up.

MS. MICHELLE VALINE: I can speak here. Good
EB I80 Public Hearing_2_26_09_Transcript.txt

evening, Everyone. If I have not had the privilege of
meeting you, I am Michelle Valine. I am the owner of the
Valine Ranch.
Can we go to any one of those lines that showed
both sides? I had comment and questions.
with regard to the noise and particulate studies
that were done, and the impact, the one -- do you have
the one that showed the sound walls?
with regard to those studies, my question to you
is: My house, while on the north side of the freeway, is
actually the closest to the proposed scales. Yet no
sound or particulate studies were done anywhere on the
north side near my house. I can tell you that as a
result of the Garaventa Project, which is on the west
side of the Suisun Creek, the noise, the dust, the
blasting was horrific. I had cracks in my plaster from
that. No -- that study, no noise or particulate studies
were done at my house either.
So being in the proximity, why was one not done
on my side of the freeway? Because I have concern.
Right now, where I am, I can hear the scales and the loud
speakers and the trucks. It is only going to get worse
when it is directly across from me.
Then, secondarily, with regards to the sound
barriers and you saying that it was determined they would
be -- they would significantly reduce the noise but were
not cost effective. Is the property owner going to be
EB I80 Public Hearing_2_26_09_Transcript.txt

11 compensated? Or are they just going to have to suffer
12 the fact you think it is too expensive to protect them?
13 HEARING OFFICER ADAMS: Do you have any other
14 comments you'd like to make, Michelle?
15 MS. MICHELLE VALINE: None of them for here.
16 HEARING OFFICER ADAMS: Thank you.
17 I have one more comment card from Roberto
18 Valdez.
19 MR. ROBERTO VALDEZ: Thank you. I don't think I
20 have to go there either. I think I speak loud enough.
21 Sorry I couldn't be here earlier, but I was with
22 your -- the other issue going on over there.
23 Thank you for giving me the opportunity to
24 respond to this panel, you know, in regards to this
25 Cordelia. I am glad that you are moving that, the

(800) 547-4441 CALNORTH REPORTING SERVICE (707) 579-4500

1 Cordelia truck scale, from the original site. I can tell
2 you I have driven that for years, and also even today
3 without that particular, what is it, particular station
4 active, you still get traffic problems, serious problems,
5 and there was one just a few minutes ago.
6 And but my concern today is really about what I
7 heard you say -- and I apologize for not getting the full
8 story, and I am trying to educate myself on the whole
9 issue, particularly the environmental impact that this
10 project may have. In terms that I heard I say in regards
11 to Suisun Creek and the endangered threatened federal and
12 species of concern in that area.

Page 7
EB I80 Public Hearing_2_26_09_Transcript.txt

13
Again, I don't purport to be a scientist; I am
14 just a concerned citizen. I don't even live around here,
15 and I have been involved with the conservation plan, have
16 been involved for ten years, and I am concerned about any
17 of the projects that you already have, that you want to
18 implement, you know, the CalTrans people. And I know I
19 have heard, and I know you can have a tremendous impact
20 in not only the traffic but also on the open spaces and
21 all that.
22 So I guess that's what I want to voice at this
23 moment. I don't have any specific detail, but I will
24 send them to you later, and I will take a look. I just
25 need to know exactly who and whom to refer them to, and I

(800) 547-4441 CALNORTH REPORTING SERVICE (707) 579-4500

1 more than likely will respond to you. You said -- what
2 was the deadline on this?
3 HEARING OFFICER ADAMS: March 18th at 5:00
4 o'clock.
5 MR. ROBERTO VALDEZ: March 18. Thank you,
6 ma'am.
7 HEARING OFFICER ADAMS: M-hm. I don't have any
8 more comment cards. Is there -- does anyone want to
9 submit a comment card? We can certainly wait if you want
10 to go ahead and fill out a comment card.
11 With that, I don't see anyone running to go get
12 a comment card. So I am going to go ahead and close the
13 comment portion of tonight's hearing, but we certainly
14 are going to resume the open house. So the engineers
Page 8
Chapter 5. Responses to Comments

EB I80 Public Hearing_2_26_09_Transcript.txt

that are here and people involved in the project are
going to be available to provide any additional
information. Or, if you have any specific questions, we
will be happy to answer them for you guys.

Thank you for coming out tonight.
(The public hearing adjourned at 7:21 p.m.)

---00o---

(800) 547-4441 CALNORTH REPORTING SERVICE (707) 579-4500

1

REPORTER’S CERTIFICATE

2 STATE OF CALIFORNIA

3 COUNTY OF SONOMA

4 I, CHRISTINE M. GOODIN, Certified Shorthand Reporter

5 No. 9683 for the State of California, certify:

6 That the witness in the foregoing deposition, was by me

7 first duly sworn to testify to the truth in said cause;

8 That said deposition was reported at the time and

9 place therein stated by me and was thereafter transcribed

10 by me on computer, after which the witness was afforded

11 the opportunity to read, correct, and sign the

12 deposition;

13 That if unsigned by the witness, the witness shall

14 not have availed himself/herself of the opportunity to

15 sign or signature has been waived.

16 I further certify that I am not interested in the

Page 9
EB I80 Public Hearing_2_26_09_Transcript.txt

outcome of said action, nor connected with nor related to any of the parties in said action, nor to their respective counsel.

IN WITNESS WHEREOF, I hereunto set my hand this __________ day of __________, 2009.

CHRISTINE M. GOODIN, CSR No. 9683

(800) 547-4441 CALNORTH REPORTING SERVICE (707) 579-4500
Chapter 6 List of Preparers

6.1 Solano Transportation Authority
- Janet Adams, Director of Projects
- Dale Dennis, Project Manager

6.2 Design
- Mike Lohman, Mark Thomas & Company, Inc.
- Andrea Glerum, Nolte Associates, Inc.

6.3 Environmental Document
- Maggie Townsley, ICF Jones & Stokes, Project Director
- Shahira Ashkar, ICF Jones & Stokes, Project Manager
- Amy Fransen, ICF Jones & Stokes, Project Coordinator
- Jody Job, ICF Jones & Stokes, Publications Specialist
- Sarah Sol, ICF Jones & Stokes, Technical Editor
- Alisa Reynolds, ICF Jones & Stokes, archaeology
- Madeline Bowen, ICF Jones & Stokes, architectural history
- Michael Slavick, ICF Jones & Stokes, air quality and energy
- Jason Volk, ICF Jones & Stokes, noise
- Stephanie Myers, ICF Jones & Stokes, wildlife biology
- Donna Maniscalco, ICF Jones & Stokes, fisheries biology
- Jeff Kozlowski, ICF Jones & Stokes, fisheries biology, peer review
- Lisa Webber, ICF Jones & Stokes, botany and wetland ecology
- Ellen Unsworth, ICF Jones & Stokes, paleontology
- John Mountin, Nolte Associates, Inc., floodplain, hydrology, stormwater
- Gary Parikh, P.E., G.E., Parikh Consultants, Inc., geology, peer review
- Alston Lam, P.E., Parikh Consultants, Inc., geology
- Scott Steinwert, CirclePoint, Project Manager, land use, farmland, relocations
- Heidi Rothrock, CirclePoint, visual/aesthetics
Chapter 6. List of Preparers

- Ellen Poling, Fehr & Peers, traffic and transportation
- Chris Giuntoli, Geocon Consultants, Inc., hazards and hazardous materials
Chapter 7 Distribution List

Bay Area Air Quality Management District Office
939 Ellis Street
San Francisco, CA 94109

Charles Armor
Regional Manager
California Department of Fish and Game
P.O. Box 47
Yountville, CA 94599

Brad Tom
Suisun Marsh Program
California Department of Water Resources
P.O. Box 942836
Sacramento, CA 94230

California Department of Fish and Game
1416 9th Street
Sacramento, CA 95814

Amanda Jorgenson
Executive Director
California Native Plant Society
2707 K Street, Suite 1
Sacramento, CA 95816-5113

Amalia Lorentz
Economic Development Manager
City of Benicia
250 East L Street
Benicia, CA 94510

Patrick Graham
California Department of Fish and Game
2544 Grizzly Island Road
Suisun, CA 94585

California Highway Patrol
444 N. 3rd, Suite 310
Sacramento, CA 95814
Chapter 7. Distribution List

Mike Ferrell
Commander
California Highway Patrol
3050 Travis Boulevard
Fairfield, CA 94533-3443

California Wildlife Federation
P.O. Box 1527
Sacramento, CA 95812-1527

Erin Beavers
Assistant Director
City of Fairfield
1000 Webster Street
Fairfield, CA 94533

Gene Cortwright
Director of Public Works
City of Fairfield
1000 Webster Street
Fairfield, CA 94533-4883

Kenton Rainey
Police Chief
City of Fairfield
1000 Webster Street
Fairfield, CA 94533-4884

Kevin Daughton
Transportation Manager
City of Fairfield
1000 Webster Street
Fairfield, CA 94553

Elizabeth Patterson
Mayor
City of Benicia
City Hall, 250 East L. Street
Benicia, CA 94510

Sean Quinn
City Manager
City of Fairfield
1000 Webster Street
Fairfield, CA 94533
Eve Somjen
Director of Planning and Development
City of Fairfield
1000 Webster Street
Fairfield, CA 94533

Harry Price
Mayor
City of Fairfield
1000 Webster Street
Fairfield, CA 94533

Joe Lucchio
Principal Planner, Community Development
City of Fairfield
1000 Webster Street
Fairfield, CA 94533

John Mraz
Vice Mayor
City of Fairfield
1000 Webster Street
Fairfield, CA 94533

Jane Day
Councilmember
City of Suisun
701 Civic Center Boulevard
Suisun City, CA 94585

Sam Derting
Councilmember
City of Suisun
701 Civic Center Boulevard
Suisun City, CA 94585

Pete Sanchez
Mayor
City of Suisun
701 Civic Center Boulevard
Suisun City, CA 94585

Chuck Timm
Councilmember
City of Fairfield
1000 Webster Street
Fairfield, CA 94533
Chapter 7. Distribution List

Ed Woodruff
Mayor
City of Rio Vista
1 Main Street
Rio Vista, CA 94571-1842

Mike Segala
Councilmember
City of Suisun
701 Civic Center Boulevard
Suisun City, CA 94585

Director of Public Works
City of Suisun
701 Civic Center Boulevard
Suisun City, CA 94586

Jane Day
Vice Mayor
City of Suisun
701 Civic Center Boulevard
Suisun City, CA 94585

Pauline Clancy
Councilmember
City of Vacaville
173 Mojave Court
Vacaville, CA 95688

Steve Wilkins
Councilmember
City of Vacaville
650 Merchant Street
Vacaville, CA 95688

Chuck Dimmick
Vice Mayor
City of Vacaville
650 Merchant Street
Vacaville, CA 95688

Jennifer Barton
Staff Representative
Congressperson Ellen Tauscher’s Office
North California Boulevard Suite 555
Walnut Creek, CA 94596
Paul Wiese
Engineer Department of Public Works
County of Solano
675 Texas Street, Suite 5500
Fairfield, CA 94533-6341

Curtis Hunt
Councilmember
City of Vacaville
650 Merchant Street
Vacaville, CA 95688

Len Augustine
Mayor
City of Vacaville
173 Mojave Court
Vacaville, CA 95688

Osby Davis
Mayor
City of Vallejo
555 Santa Clara Street
Vallejo, CA 94590-5922

Department of Resource Management
County of Solano
675 Texas Street
Fairfield, CA 94533

John Currey
Dixon RCD
1170 N. Lincoln Street #110
Dixon, CA 95620

Fairfield Civic Center Library
1150 Kentucky Street
Fairfield, CA 94533

George Curry
Chairperson
Fairfield Planning Commission
1000 Webster Street, Rm. 200
Fairfield, CA 94533
Chapter 7. Distribution List

Scott Tonnesen
Commissioner
Fairfield Planning Commission
1000 Webster Street, Rm. 200
Fairfield, CA 94533

Gian Aggarwal
Commissioner
Fairfield Planning Commission
1000 Webster Street, Rm. 200
Fairfield, CA 94533

Andre Gardner
Vice Chair
Fairfield Planning Commission
1000 Webster Street, Rm. 200
Fairfield, CA 94533

Vince Webster
Fire Chief
Fairfield Fire District
1200 Kentucky Avenue
Fairfield, CA 94533

Ray Reyff
Commissioner
Fairfield Planning Commission
1000 Webster Street, Rm. 200
Fairfield, CA 94533

Charles B. Wood, III
Commissioner
Fairfield Planning Commission
1000 Webster Street, Rm. 200
Fairfield, CA 94533

Gary Walker
Commissioner
Fairfield Planning Commission
1000 Webster Street, Rm. 200
Fairfield, CA 94533

Fairfield Public Works
1000 Webster Street
Fairfield, CA 94533
Chapter 7. Distribution List

Greg Baatrup
Director of Engineering
Fairfield-Suisun Sewer District
1010 Chadbourne Road
Fairfield, CA 94533

Woodrow Goins
Regional Director, Region IX
Federal Emergency Management Agency
1111 Broadway, Ste. 1200
Oakland, CA 94607-4052

Mortimore Triplett
Director
Maine Prairie Water District
P.O. Box 73
Dixon, CA 95620

Milton Rayn
Director
Maine Prairie Water District
P.O. Box 73
Dixon, CA 95620

Fiona Ma
Assemblymember
Member of the Assembly, District 12
455 Golden Gate Ave. Suite 14600
San Francisco, CA 94102

Fairfield-Suisun Unified School District
2490 Hilborn Road
Fairfield, CA 94534

Gene Fong
Division Administrator
Federal Highway Administration
650 Capitol Mall Suite 4-100
Sacramento, CA 95814

H.E. Robben
Director
Maine Prairie Water District
P.O. Box 73
Dixon, CA 95620
Chapter 7. Distribution List

Tom Torlakson
Assemblymember
Member of the Assembly, District 11
815 Estudillo Street
Martinez, CA 94553

Tom Ammiano
Assemblymember
Member of the Assembly, District 13
Capitol Building 6025
Sacramento, CA 95814

Nancy Skinner
Assemblymember
Member of the Assembly, District 14
Capitol Building # 4126
Sacramento, CA 95814

Mary Hayashi
Assemblymember
Member of the Assembly, District 18
22320 Foothill Boulevard, Suite 540
Hayward, CA 94514

Jared Huffman
Assemblymember
Member of the Assembly, District 6
3501 Civic Center Drive, Room 412
San Rafael, CA 94903

Mariko Yamada
Assemblymember
Member of the Assembly, District 8
555 Mason Street, Suite 275
Vacaville, CA 95688

Ellen Corbett
Senator
Member of the Senate, District 10
1057 MacArthur Blvd. Suite 206
San Leandro, CA 94577

Sandre Swanson
Assemblymember
Member of the Assembly, District 16
1515 Clay Street # 2204
Oakland, CA 94612
Chapter 7. Distribution List

Roger Niello
Assemblymember
Member of the Assembly, District 5
4811 Chippendale Drive, Ste. 501
Sacramento, CA 95841

Noreen Evans
Assemblymember
Member of the Assembly, District 7
50 D Street # 301
Santa Rosa, CA 95404

Dave Jones
Assemblymember
Member of the Assembly, District 9
915 L Street, Suite 110
Sacramento, CA 95814

Joe Simitian
Senator
Member of the Senate, District 11
160 Town and Country Village
Palo Alto, CA 94301

Jeff Denham
Senator
Member of the Senate, District 12
1231 8th Street, Ste. 175
Modesto, CA 95354

Mark Leno
Senator
Member of the Senate, District 3
State Capitol, #5114
Sacramento, CA 95814

Lois Wolk
Senator
Member of the Senate, District 5
State Capitol #5066
Sacramento, CA 95814

Mark DeSaulnier
Senator
Member of the Senate, District 7
State Capitol # 5050
Sacramento, CA 95814
Loni Hancock
Senator
Member of the Senate, District 9
State Capitol, # 4061
Sacramento, CA 95814

Pat Wiggins
Senator
Member of the Senate, District 2
444 Georgia Street
Vallejo, CA 94590

Samuel Aanestad
Senator
Member of the Senate, District 4,
200 Providence Mine, #108
Nevada City, CA 95959

Darrell Steinberg
Senator
Member of the Senate, District 6
1020 N Street, #576
Sacramento, CA 95814

Leland Yee
Senator
Member of the Senate, District 8
400 S. El Camino Real # 630
San Mateo, CA 94402

Steve Heminger
Executive Director
Metropolitan Transportation Commission
Joseph P. Bort Metro Center
101 Eighth Street
Oakland, CA 94617

Karrie Sanderlin
Administrative Manager
Napa County Transportation Planning Agency
707 Randolph Street, Suite 100
Napa, CA 94559-1347
Chapter 7. Distribution List

Diana Vargas
Transportation Program Manager
Napa County Transportation Planning Agency
707 Randolph Street, Suite 100
Napa, CA 94559-1347

Larry Myers
Executive Secretary
Native American Heritage Commission
915 Capitol Mall, Rm. 364
Sacramento, CA 95814

Russ Burns
Business Manager
Operating Engineers Local #3
1620 South Loop Road
Alameda, CA 94502

Mike Hardesty
General Manager
Reclamation District 2068
7178 Yolano Road
Dixon, CA 95620

Jim Leddy
Executive Director
Napa County Transportation Planning Agency
707 Randolph Street, Suite 100
Napa, CA 94559-1347

National Marine Fisheries Service,
Southwest Region Field Office—Santa Rosa
777 Sonoma Avenue, Rm. 325
Santa Rosa, CA 95404

Daniel Mountjoy
Area II Conservationist
Natural Resources Conservation Service
318 Cayuga Street
Salinas, CA 93901

Paul Clanon
Executive Director
Public Utilities Commission
505 Van Ness Avenue
San Francisco, CA 94102
Barbara Lee
Congressperson
Representative in Congress
1301 Clay Street # 1000-N
Oakland, CA 94612

Doris Matsui
Congressperson
Representative in Congress
Federal Courthouse, 501 I Street,12-600
Sacramento, CA 95814

George Miller
Congressperson
Representative in Congress
1333 Willow Pass Road # 203
Concord, CA 94520-7931

Mike Thompson
Congressperson
Representative in Congress
1040 Main Street # 101
Napa, CA 94559

Pete Stark
Congressperson
Representative in Congress
39300 Civic Center Drive # 220
Fremont, CA 94538

Sacramento Fish and Wildlife Office
2800 Cottage Way, Room W-2605
Sacramento, CA 95825-1846

Ellen Tauscher
Congressperson
Representative in Congress
2121 North California Boulevard suite 555
Walnut Creek, CA 94596

Lynn Woolsey
Congressperson
Representative in Congress
1050 Northgate Drive Suite 354
San Rafael, CA 94903
Chapter 7. Distribution List

Nancy Pelosi
Congressperson
Representative in Congress
450 Golden Gate Avenue
San Francisco, CA 94102

San Francisco Bay Regional Water Quality Control Board
1515 Clay St. Suite 1400
Oakland, CA 94612

Joseph LaClair
SF Bay Conservation and Development Commission
50 California Street, Ste.2600
San Francisco, CA 94111

Birgetta Corsello
Director of Resource Management
Solano County
675 Texas Street, Ste. 5500
Fairfield, CA 94533

John Silva
Chair
Solano County Board of Supervisors
675 Texas Street
Fairfield, CA 94533

Jim Spering
Supervisor
Solano County Board of Supervisors
675 Texas Street
Fairfield, CA 94533

John M. Vasquez
Vice Chair
Solano County Board of Supervisors
675 Texas Street
Fairfield, CA 94533

Norman LaForce
Chair
Sierra Club
2530 San Pablo Avenue
Berkeley, CA 94702
Chapter 7. Distribution List

Michael Yankovich
Planning Program Manager
Solano County
675 Texas Street, Ste. 5500
Fairfield, CA 94533

Barbara Kondylis
Supervisor
Solano County Board of Supervisors
675 Texas Street, Ste. 6500
Fairfield, CA 94533

Michael Reagan
Supervisor
Solano County Board of Supervisors
675 Texas Street, Ste. 6500
Fairfield, CA 94533-6342

Dr. Lisa J. Waits
Superintendent-President
Solano Community College
4000 Suisun Valley Road, Building 600
Fairfield, CA 94534

Alex Rabidoux
Flood Control Advisory Committee
Solano County Water Agency
PO Box 349
Elmira, CA 95625

Jim Daniels
Engineering and Planning Manager
Solano Irrigation District
508 Elmira Road
Vacaville, CA 95687

Terry Riddle
Associate Director
Solano RCD
1170 Lincoln Street, Ste.110
Dixon, CA 95620

Daryl K. Halls
Executive Director
Solano Transportation Authority
One Harbor Center, Ste. 130
Suisun City, CA 94585
Chapter 7. Distribution List

Mike O'Brien
Fire Chief
Suisun City Fire Department
701 Civic Center Boulevard
Suisun, CA 94585

David Okita
General Manager
Solano County Water Agency
PO Box 349
Elmira, CA 95625

Marilyn Farley
Executive Director
Solano Land Trust
1001 Texas Street, Ste C
Fairfield, CA 94533

Janet Adams
Director of Projects
Solano Transportation Authority
One Harbor Center, Ste. 130
Suisun City, CA 94585

Arnold Schwarzenegger
Governor
State of California
State Capitol Building
Sacramento, CA 95814

Orlando Rocha
Bio Scientist
Suisun Resource Conservation District
2544 Grizzly Island Road
Suisun, CA 94585

Steve Chappel
Executive Director
Suisun Resource Conservation District
2544 Grizzly Island Road
Suisun, CA 94585

Dianne Feinstein
Senator
United States Senator
1 Post Street # 2450
San Francisco, CA 94104
Chapter 7. Distribution List

U.S. Department of the Interior,
National Park Service
One Jackson Center
1111 Jackson Street, Ste. 700
Oakland, CA 94607

Rudolf Ohlemutz
Flood Control Advisory Committee
Vallejo Sanitation and Flood Control District
450 Ryder Street
Vallejo, CA 94590

Barbara Boxer
Senator
United States Senator
1700 Montgomery Street # 240
San Francisco, CA 94111

U.S. Army Corps of Engineers,
San Francisco District
Attn: CESPN-CO-R
333 Market Street, 8th Floor
San Francisco, CA 94105-2197

Andy Jannings
Flood Control Advisory Committee
Vallejo Sanitation and Flood Control District
450 Ryder Street
Vallejo, CA 94590
Chapter 8 References Cited

8.1 Printed References

California Department of Fish and Game. 1994. *Staff Report Regarding Mitigation for Impacts to Swainson’s Hawks (Buteo swainsoni) in the Central Valley of California.* Sacramento, CA.

Geocon Consultants, Inc. 2008a. Initial Site Assessment I-80 Eastbound Cordelia Truck Scale Relocation Project Solano County, CA. September. Prepared for Mark Thomas and Company, Walnut Creek, CA, and the California Department of Transportation.

Hanson Environmental, Inc. 2002. Suisun Creek Fishery Habitat Reconnaissance Surveys: Executive Summary. February 28. Walnut Creek, CA.

Hendrix, Micheal, and Wilson, Cori. Recommendations by the Association of Environmental Professionals (AEP) on How to Analyze Greenhouse Gas Emissions and Global Climate Change in CEQA Documents. (March 5, 2007). Page 2.

———. 2008e. I-80 Eastbound Cordelia Truck Scales Relocation Project Paleontological Sensitivity Analysis Solano County, California Interstate 80, between Suisun Creek and Chadbourne Road on State Route 12. August. Prepared for the California Department of Transportation, District 04.

———. 2008i. Interstate 80 Eastbound Cordelia Truck Scales Relocation Project Natural Environment Study Interstate 80 and State Route 12 East in the Vicinity of Fairfield Solano County, California. December. Prepared for the California Department of Transportation, District 04.

———. 2008k. I-80 Eastbound Cordelia Truck Scales Relocation Project Biological Assessment for California Red-Legged Frog and Valley Elderberry Longhorn Beetle Solano County, California Interstate 80, between Suisun Creek and Chadbourne Road on State Route 12. October. Prepared for the California Department of Transportation, District 04.

———. 2008l. I-80 Eastbound Cordelia Truck Scales Relocation Project Biological Assessment/Essential Fish Habitat Assessment for Central California Coast Steelhead and Central Valley Fall/Late Fall–Run Chinook Salmon Solano County, California
Chapter 8. References Cited

Interstate 80, between Suisun Creek and Chadbourne Road on State Route 12. September. Prepared for the California Department of Transportation, District 04.

Jennings, M. R., M. P. Hayes, and D. C. Holland. 1992. A Petition to the U.S. Fish and Wildlife Service to Place the California Red-Legged Frog (Rana aurora draytonii) and the Western Pond Turtle (Clemmys marmorata) on the List of Endangered and Threatened Wildlife and Plants.

Richesin, D. A. 1996. *Late Tertiary and Quaternary Geology of the Salado Creek Area, California.* (MS thesis.) Hayward, CA: California State University.

Solano County. 2001. *Solano County General Plan.* Available at Solano County Department of Resource Management.

8.2 Personal Communications

Cox, Bill. Unit fisheries biologist, California Department of Fish and Game, Central Coast Region (Region 3). January 10, 2006—telephone conversation with Martin Koenig regarding presence and absence information on fish species in the project area.
To: Walter K. Cheechov, District Conservationist
National Resources Conservation Service

Dear Mr. Cheechov,

Please find enclosed in this envelope two (2) Farmland Conversion Impact Rating (AD-1006) Forms for proposed projects within Solano County. Three (3) maps have been attached as well to help clarify the location and proposed construction of these projects. If you have any questions or comments regarding the information submitted on the forms, please feel free to contact me via phone or email.

Best Regards,

[Signature]

Elise Lieberman
Environmental Assistant Planner
CirclePoint
e.lieberman@circlepoint.com
Tel 415.227.1100 x177

As requested
Walter Cheech
WKC S
U.S. Department of Agriculture

FARMLAND CONVERSION IMPACT RATING

PART I (To be completed by Federal Agency) Date of Land Evaluation Request: 12/8/08

<table>
<thead>
<tr>
<th>Name Of Project</th>
<th>Federal Agency Involved</th>
<th>County And State</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-H 51-90, 60-80 Farmland Contrelia Truck Scales</td>
<td>Federal Highway Administration</td>
<td>Solano County, California</td>
</tr>
<tr>
<td>Proposed Land Use</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recreational, Transportation, Truck Scales</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PART II (To be completed by NRCS) Date Request Received By NRCS: 12/8/08

<table>
<thead>
<tr>
<th>Does the site contain prime, unique, statewide or local important farmland?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>(If no, the FPFA does not apply – do not complete additional parts of this form).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acres Irrigated</td>
<td>171,000</td>
<td></td>
</tr>
<tr>
<td>Average Farm Size</td>
<td>391</td>
<td></td>
</tr>
<tr>
<td>Farmland Land In Govt. Jurisdiction</td>
<td>239,000</td>
<td>% 40</td>
</tr>
<tr>
<td>Amount Of Farmland As Defined in FPFA Acres</td>
<td>NOT AVAILABLE</td>
<td>%</td>
</tr>
<tr>
<td>Name Of Land Evaluation System Used</td>
<td>CA STORE</td>
<td></td>
</tr>
<tr>
<td>Name Of Local Site Assessment System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date Land Evaluation Returned By NRCS</td>
<td>11/6/09</td>
<td></td>
</tr>
</tbody>
</table>

PART III (To be completed by Federal Agency) Alternative Site Rating

<table>
<thead>
<tr>
<th>Site A</th>
<th>Site B</th>
<th>Site C</th>
<th>Site D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Total Acres To Be Converted Directly</td>
<td>42.1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B. Total Acres To Be Converted Indirectly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Total Acres In Site</td>
<td>42.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

PART IV (To be completed by NRCS) Land Evaluation Information

A. Total Acres Prime And Unique Farmland	42.1
B. Total Acres Statewide And Local Important Farmland	0
C. Percentage Of Farmland In County Or Local Govt. Unit To Be Converted	0.00618
D. Percentage Of Farmland In Govt. Jurisdiction With Same Or Higher Relative Value	0

PART V (To be completed by NRCS) Land Evaluation Criterion

| Relative Value Of Farmland To Be Converted (Scale of 0 to 100 Points) | 73.3 |
| 0.0 | 0.0 | 0.0 | 0.0 |

PART VI (To be completed by Federal Agency) Site Assessment Criteria (These criteria are explained in 7 CFR 658.5(b))

<table>
<thead>
<tr>
<th>Site Assessment Criteria</th>
<th>Maximum Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Area In Nonurban Use</td>
<td>6</td>
</tr>
<tr>
<td>2. Perimeter In Nonurban Use</td>
<td>4</td>
</tr>
<tr>
<td>3. Percent Of Site Being Farmed</td>
<td>19</td>
</tr>
<tr>
<td>4. Protection Provided By State And Local Government</td>
<td>20</td>
</tr>
<tr>
<td>5. Distance From Urban Builtin Area</td>
<td>N/A</td>
</tr>
<tr>
<td>6. Distance To Urban Support Services</td>
<td>N/A</td>
</tr>
<tr>
<td>7. Size Of Present Farm Unit Compared To Average</td>
<td>0</td>
</tr>
<tr>
<td>8. Creation Of Nonfarmable Farmland</td>
<td>25</td>
</tr>
<tr>
<td>9. Availability Of Farm Support Services</td>
<td>5</td>
</tr>
<tr>
<td>10. On-Farm Investments</td>
<td>10</td>
</tr>
<tr>
<td>11. Effects Of Conversion On Farm Support Services</td>
<td>0</td>
</tr>
<tr>
<td>12. Compatibility With Existing Agricultural Use</td>
<td>5</td>
</tr>
<tr>
<td>TOTAL SITE ASSESSMENT POINTS</td>
<td>160</td>
</tr>
</tbody>
</table>

PART VII (To be completed by Federal Agency) Relative Value Of Farmland (From Part V)

| 100 | 0 | 73.3 | 0 | 0 | 0 |

| Total Site Assessment (From Part VI above or a local site assessment) | 160 | 0 | 97 | 0 | 0 | 0 |

| TOTAL POINTS (Total of above 2 lines) | 260 | 0 | 170.3 | 0 | 0 | 0 |

Site Selected: | Date Of Selection: | Was A Local Site Assessment Used? |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Yes</td>
</tr>
</tbody>
</table>

Reason For Selection:

(See Instructions on reverse side)
Appendix B Relocation Assistance Program Information
California Department of Transportation Relocation Assistance Program

RELOCATION ASSISTANCE ADVISORY SERVICES

The California Department of Transportation (the Department) will provide relocation advisory assistance to any person, business, farm or non-profit organization displaced as a result of the Department’s acquisition of real property for public use. The Department will assist residential displacees in obtaining comparable decent, safe and sanitary replacement housing by providing current and continuing information on sales price and rental rates of available housing. Non-residential displacees will receive information on comparable properties for lease or purchase.

Residential replacement dwellings will be in equal or better neighborhoods, at prices within the financial means of the individuals and families displaced, and reasonably accessible to their places of employment. Before any displacement occurs, displacees will be offered comparable replacement dwellings that are open to all persons regardless of race, color, religion, sex or national origin, and are consistent with the requirements of Title VIII of the Civil Rights Act of 1968. This assistance will also include supplying information concerning federal and state assisted housing programs, and any other known services being offered by public and private agencies in the area.

ADDITIONAL INFORMATION

No relocation payment received will be considered as income for the purpose of the Internal Revenue Code of 1954 or for the purposes of determining eligibility or the extent of eligibility of any person for assistance under the Social Security Act or any other federal law (except for any federal law providing low-income housing assistance).

Persons who are eligible for relocation payments and who are legally occupying the property required for the project will not be asked to move without being given at least 90 days advance notice, in writing. Occupants of any type of dwelling eligible for relocation payments will not be required to move unless at least one comparable “decent, safe and sanitary” replacement residence, open to all persons regardless of race, color, religion, sex or national origin, is available or has been made available to them by the state.

Any person, business, farm or non-profit organization, which has been refused a relocation payment by the Department, or believes that the payments are inadequate, may appeal for a hearing before a hearing officer or the Department’s Relocation Assistance Appeals Board. No legal assistance is required; however, the displacee may choose to obtain legal council at his/her expense. Information about the appeal procedure is available from the Department’s Relocation Advisors.

The information above is not intended to be a complete statement of all of the Department’s laws and regulations. At the time of the first written offer to purchase, owner-occupants are given a more detailed explanation of the state’s relocation services. Tenant occupants of properties to be acquired are contacted immediately after the first written offer to purchase, and also given a more detailed explanation of the Department’s relocation programs.
IMPORTANT NOTICE

To avoid loss of possible benefits, no individual, family, business, farm or non-profit organization should commit to purchase or rent a replacement property without first contacting a Department of Transportation relocation advisor at:

State of California
Department of Transportation, District 04
111 Grand Avenue
Oakland, CA 94623-0660
Your Rights and Benefits as a Displacee Under the Uniform Relocation Assistance Program (Residential)
2007

California Department of Transportation
Introduction

In building a modern transportation system, the displacement of a small percentage of the population is often necessary. However, it is the policy of Caltrans that displaced persons shall not suffer unnecessarily as a result of programs designed to benefit the public as a whole.

Displaced individuals, families, businesses, farms, and nonprofit organizations may be eligible for relocation advisory services and payments.

This brochure provides information about available relocation services and payments. If you are required to move as the result of a Caltrans transportation project, a Relocation Agent will contact you. The Relocation Agent will be able to answer your specific questions and provide additional information.

Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970 As Amended "The Uniform Act"

The purpose of this Act is to provide for uniform and equitable treatment of persons displaced from their homes, businesses, or farms by federal and federally assisted programs and to establish uniform and equitable land acquisition policies for federal and federally assisted programs.

49 Code of Federal Regulations Part 24 implements the "Uniform Act" in accordance with the following relocation assistance objective:

To ensure that persons displaced as a direct result of federal or federally-assisted projects are treated fairly, consistently and equitably so that such persons will not suffer disproportionate injuries as a result of projects designed for the benefit of the public as a whole.

While every effort has been made to assure the accuracy of this booklet, it should be understood that it does not have the force and effect of law, rule, or regulation governing the payment of benefits. Should any difference or error occur, the law will take precedence.
Some Important Definitions...

Your relocation benefits can be better understood if you become familiar with the following terms:

Comparable Replacement: means a dwelling which is:

1. Decent, safe, and sanitary. (See definition below)
2. Functionally equivalent to the displaced dwelling.
3. Adequate in size to accommodate the family being relocated.
4. In an area not subject to unreasonable adverse environmental conditions.
5. In a location generally not less desirable than the location of your displacement dwelling with respect to public utilities and commercial and public facilities, and reasonably accessible to the place of employment.
6. On land that is typical in size for residential development with typical improvements.

Decent, Safe and Sanitary (DS&S): Replacement housing must be decent, safe, and sanitary...which means it meets all of the minimum requirements established by federal regulations and conforms to applicable housing and occupancy codes. The dwelling shall:

1. Be structurally sound, weather tight, and in good repair.
2. Contain a safe electrical wiring system adequate for lighting and other devices.
(3) Contain a heating system capable of sustaining a healthful temperature (of approximately 70 degrees) for a displaced person, except in those areas where local climatic conditions do not require such a system.

(4) Be adequate in size with respect to the number of rooms and area of living space needed to accommodate the displaced person. The Caltrans policy is that there will be no more than 2 persons per room unless the room is of adequate size to accommodate the normal bedroom furnishings for the occupants.

(5) Have a separate, well-lighted and ventilated bathroom that provides privacy to the user and contains a sink, bathtub or shower stall, and a toilet, all in good working order and properly connected to appropriate sources of water and to a sewage drainage system.

Note: In the case of a housekeeping dwelling, there shall be a kitchen area that contains a fully usable sink, properly connected to potable hot and cold water and to a sewage drainage system, and adequate space and utility service connections for a stove and refrigerator.

(6) Contains unobstructed egress to safe, open space at ground level. If the replacement dwelling unit is on the second story or above, with access directly from or through a common corridor, the common corridor must have at least two means of egress.

(7) For a displaced person who is handicapped, be free of any barriers which would preclude reasonable ingress, egress, or use of the dwelling by such displaced person.

Displaced Person or Displacee: Any person who moves from real property or moves personal property from real property as a result of the acquisition of the real property, in whole or in part, or as the result of a written notice from the agency to vacate the real property needed for a transportation project. In the case of a partial acquisition, Caltrans shall determine if a person is displaced as a direct result of the acquisition.

Residents not lawfully present in the United States are not eligible to receive relocation payments and assistance

Relocation benefits will vary, depending upon the type and length of occupancy. As a residential displacee, you will be classified as either a:
- An owner occupant of a residential property (includes mobile homes)
- A tenant occupant of a residential property (includes mobile homes and sleeping rooms)

Dwelling: The place of permanent or customary and usual residence of a person, according to local custom or law, including a single family house; a single family unit in a two-family, multi-family, or multi-purpose property; a unit of a condominium or cooperative housing project; a non-housekeeping unit; a mobile home; or any other residential unit.

Owner: A person is considered to have met the requirement to own a dwelling if the person purchases or holds any of the following interests in real property:

1. Fee title, a life estate, a land contract, a 99-year lease, oral lease including any options for extension with at least 50 years to run from the date of acquisition; or

2. An interest in a cooperative housing project which includes the right to occupy a dwelling; or

3. A contract to purchase any interests or estates; or

4. Any other interests, including a partial interest, which in the judgment of the agency warrants consideration as ownership.

Tenant: A person who has the temporary use and occupancy of real property owned by another.
Moving Expenses

If you qualify as a displaced person, you are entitled to reimbursement of your moving costs and certain related expenses incurred in moving. The methods of moving and the various types of moving cost payments are explained below.

Displaced individuals and families may choose to be paid on the basis of actual, reasonable moving costs and related expenses, or according to a fixed moving cost schedule. However, to ensure your eligibility and prompt payment of moving expenses, you should contact your Relocation Agent before you move.

You Can Choose Either:

Actual Reasonable Moving Costs - You may be paid for your actual reasonable moving costs and related expenses when a commercial mover performs the move. Reimbursement will be limited to a move of 50 miles or less. Related expenses may include:

- Transportation
- Packing and unpacking personal property.
- Disconnecting and reconnecting household appliances.
- Temporary storage of personal property.
- Insurance while property is in storage or transit.

OR

Fixed Moving Cost Schedule - You may be paid on the basis of a fixed moving cost schedule. Under this option, you will not be eligible for reimbursement of related expenses listed above. The fixed schedule is designed to cover such expenses.
Examples (Year 2005 Rate):
 4 Rooms - $ 950
 7 Rooms - $1,550

If the furniture is moved with the mobile home, the amount of the fixed payment is based on Schedule B.

Examples (Year 200 Rate):
 4 Rooms - $1,175
 7 Rooms - $1,900

Under the Fixed Move Schedule for a furnished unit (e.g. you are a tenant of an apartment that is furnished by your landlord) is based on Schedule B.

Example (Year 2005 Rate):
 1 Room - $400

Under the Fixed Move Schedule, you will not receive any additional payments for temporary storage, lodging, transportation or utility hook-ups.

Replacement Housing Payments

The type of Replacement Housing Payment (RHP) depends on whether you are an owner or a tenant, and the length of occupancy in the property being acquired.

If you are a qualified **owner occupant** of more than 180 days prior to the initiation of negotiations for the acquisition of your property, you may be entitled to a RHP that consists of:

- **Price Differential, and**
- **Mortgage Differential, and**
- **Incidental Expenses;**
- **OR**
- **Rent Differential**
If you are a qualified owner occupant of more than 90 days but less than 180 days, OR you are a qualified tenant occupant of at least 90 days, you may be entitled to a RHP as follows:

Rent Differential

OR

Downpayment Option

Length of occupancy simply means counting the number of days that you actually occupied a dwelling before the date of initiation of negotiations by Caltrans for the purchase of the property. The term "initiation of negotiations" means the date Caltrans makes the first personal contact with the owner of real property, or his/ her representative, to give him/her a written offer for the property to be acquired.

Note: If you have been in occupancy less than 90 days before the initiation of negotiations and the property is subsequently acquired, or if you move onto the property after the initiation of negotiations and you are still in occupancy on the date of acquisition, you may or may not be eligible for a Replacement Housing Payment. Check with your Relocation Agent before you make any decision to vacate your property.

For Owner Occupants of 180 Days or More

If you qualify as a 180-day owner occupant, you may be eligible — in addition to the fair market value of your property — for a Replacement Housing Payment that consists of a Price Differential, Mortgage Differential and/or Incidental Expenses.

The Price Differential payment is the amount by which the cost of a replacement dwelling exceeds the acquisition cost of the displacement dwelling. This payment will assist you in purchasing a comparable decent, safe, and sanitary (DS&S) replacement dwelling. Caltrans will compute the maximum payment you may be eligible to receive.

In order to receive the full amount of the calculated price differential, you must spend at least the amount calculated by Caltrans on a replacement property
The **Mortgage Differential** payment will reimburse you for any increased mortgage interest costs you might incur because the interest rate on your new mortgage exceeds the interest rate on the property acquired by Caltrans. The payment computation is complex as it is based on prevailing rates, your existing loan and your new loan. Also, a part of this payment may be prorated such as reimbursement for a portion of your loan origination fees and mortgage points.

To be eligible to receive this payment, the acquired property must have been encumbered by a bona fide mortgage which was a valid lien for at least 180 days prior to the initiation of negotiations.

You may also be reimbursed for any actual and necessary **Incidental Expenses** that you incur in relation to the purchase of your replacement property. These expenses may be those costs for title search, recording fees, credit report, appraisal report, and certain other closing costs associated with the purchase of property. You will not be reimbursed for any recurring costs such as prepaid real estate taxes and property insurance.

If the total amount of your **Replacement Housing Payment** (Price Differential, Mortgage Differential and Incidental Expenses) exceeds $22,500, the payment must be deposited directly into an escrow account or paid directly to the mortgage company.
EXAMPLES OF PRICE DIFFERENTIAL PAYMENT COMPUTATION:

Assume that Caltrans purchases your property for $98,000. After a thorough study of available, decent, safe and sanitary dwellings on the open market, Caltrans determines that a comparable replacement property will cost you $100,000. If your purchase price is $100,000, you will receive $2,000 (see Example A).

If your actual purchase price is more than $100,000, you pay the difference (see Example B). If your purchase price is less than $100,000, the differential payment will be based on actual costs (see Example C).

How much of a differential payment you receive depends on how much you actually spend on a replacement dwelling as shown in these examples:

Caltrans' Computation

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparable Replacement Property and Mobile Home</td>
<td>$100,000</td>
</tr>
<tr>
<td>Acquisition Price of Your Property and Mobile Home</td>
<td>-$ 98,000</td>
</tr>
<tr>
<td>Maximum Price Differential</td>
<td>$ 2,000</td>
</tr>
</tbody>
</table>

Example A

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purchase Price of Replacement</td>
<td>$100,000</td>
</tr>
<tr>
<td>Comparable Replacement Property</td>
<td>$100,000</td>
</tr>
<tr>
<td>Acquisition Price of Your Property</td>
<td>-$ 98,000</td>
</tr>
<tr>
<td>Maximum Price Differential</td>
<td>$ 2,000</td>
</tr>
</tbody>
</table>

Example B

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purchase Price of Replacement</td>
<td>$105,000</td>
</tr>
<tr>
<td>Comparable Replacement Property</td>
<td>$100,000</td>
</tr>
<tr>
<td>Acquisition Price of Your Property</td>
<td>-$ 98,000</td>
</tr>
<tr>
<td>Maximum Price Differential</td>
<td>$ 2,000</td>
</tr>
<tr>
<td>You Must Pay the Additional</td>
<td>$ 5,000</td>
</tr>
</tbody>
</table>

Example C

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparable Replacement Property</td>
<td>$100,000</td>
</tr>
<tr>
<td>Purchase Price of Replacement</td>
<td>$ 99,000</td>
</tr>
<tr>
<td>Acquisition Price of Your Property</td>
<td>-$ 98,000</td>
</tr>
<tr>
<td>Price Differential</td>
<td>$ 1,000</td>
</tr>
</tbody>
</table>

In Example C you will only receive $1,000 - not the full amount of the Caltrans "Comparable Replacement Property" because of the "Spend to Get" requirements.
IN ORDER FOR A "180 DAY OWNER OCCUPANT" TO RECEIVE THE FULL AMOUNT OF THEIR REPLACEMENT HOUSING PAYMENT (Price Differential, Mortgage Differential and Incidental Expenses), you must:

A) Purchase and occupy a DS&S replacement dwelling within one year after the later of:

(1) The date you first receive a notification of an available replacement house, OR

(2) The date that Caltrans has paid the acquisition cost of your current dwelling (usually the closing of escrow on State's acquisition),

AND

B) Spend at least the amount of the Caltrans "Comparable Replacement Property" for a replacement property,

AND

C) File a claim for relocation payments within 18 months of the later:

(1) The date you vacate the property acquired by Caltrans, OR

(2) The date that Caltrans has paid the acquisition cost of your current dwelling (usually the close of escrow on State's acquisition)

You will not be eligible to receive any relocation payments until the State has actually made the first written offer to purchase the property. Also, you will also receive at least 90 days' written notice before you must move.
For Owner Occupants and Tenants of 90 Days or More

If you qualify as a 90-day occupant (either as an owner or tenant), you may be eligible for a Replacement Housing Payment in the form of a Rent Differential.

The **Rent Differential** payment is designed to assist you in renting a comparable decent, safe and sanitary replacement dwelling. The payment is based on the difference between the base monthly Rent for the property acquired by Caltrans (including average monthly cost for utilities) and the lesser of:

a) The monthly rent and estimated average monthly cost of utilities for a comparable replacement dwelling as determined by Caltrans, **OR**

b) The monthly rent and estimated average monthly cost of utilities for the decent, safe and sanitary dwelling that you actually rent as a replacement dwelling.

Utility costs are those expenses you incur for heat, lights, water and sewer - regardless of the source (e.g. electricity, propane, and septic system). It does not include garbage, cable, telephone, or security. The utilities at your property are the average costs over the last 12 months. The utilities at the comparable replacement property are the estimated costs for the last 12 months for the type of dwelling and area used in the calculation.

This difference is multiplied by 42 months and may be paid to you in a lump sum payment or in periodic installments in accordance with policy and regulations.

In order to receive the full amount of the calculated Rent Differential, you must spend at least the amount calculated by Caltrans on a replacement property.

This payment may - with certain limitations - be converted to a **Downpayment Option** to assist you in purchasing a replacement property.
Example of Rent Differential Payment Computation:

After a thorough study of comparable, decent, safe and sanitary dwellings that are available for rent, Caltrans determines that a comparable replacement property will rent for $325.00 per month.

Caltrans Computation (rates are per month)

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rental Rate for Comparable Replacement Property</td>
<td>$325</td>
</tr>
<tr>
<td>PLUS average estimated utilities costs</td>
<td>+ 100</td>
</tr>
<tr>
<td>TOTAL Cost to Rent Comparable Replacement Property</td>
<td>$425</td>
</tr>
<tr>
<td>Rental Rate for Your Current Property</td>
<td>$300</td>
</tr>
<tr>
<td>PLUS average utilities costs</td>
<td>+ 90</td>
</tr>
<tr>
<td>TOTAL Cost to Rent Current Property</td>
<td>$390</td>
</tr>
<tr>
<td>Comparable Replacement Property including utilities</td>
<td>$425</td>
</tr>
<tr>
<td>Cost you pay to rent your property including utilities</td>
<td>+ 390</td>
</tr>
<tr>
<td>Difference</td>
<td>$35</td>
</tr>
</tbody>
</table>

Multiplied by 42 months = $1,470 Rent Differential

Example A:

Rental Rate for a Replacement Property including Estimated average utilities costs $525

Comparable Replacement Property including utilities $425

Cost you pay to rent your property including utilities $390

Since $425 is less than $525, the Rent Differential is based on the difference between $390 and $425.

Rent Differential ($35 x 42 months = $1,470)

In this case you spent “at least” the amount of the Comparable Replacement Property on the replacement property and will receive the full amount.

Example B:

Rental Rate for a Replacement Property including Estimated average utilities costs $400

Comparable Replacement Property including utilities $425

Cost you pay to rent your property including utilities $390
Since $400 is less than $525, the Rent Differential is based on the difference between $400 and $390.

Rent Differential ($10 x 42 months = $420)

In this case you spent “less than” the amount of the Comparable Replacement Property on the replacement property and will not receive the full amount.

IN ORDER FOR A "90 DAY OWNER OCCUPANT" TO RECEIVE THE FULL AMOUNT OF THEIR REPLACEMENT HOUSING PAYMENT (Rent Differential), you must:

A) Rent and occupy a DS&S replacement dwelling within one year after the later of:

 (1) The date you first receive a notification of an available replacement house, OR

 (2) The day you vacate the property acquired by Caltrans.

AND

B) Spend at least the amount of the Caltrans "Comparable Replacement Property" to rent a replacement property,

AND

C) File a claim for relocation payments within 18 months of the later of:

 (1) The date you vacate the property acquired by Caltrans, OR

 (2) The date that Caltrans has paid the acquisition cost of your current dwelling (usually the close of escrow on State’s acquisition)

You will not be eligible to receive any relocation payments until the State has actually made the first written offer to purchase the property. And, you will also receive at least 90 days' written notice before you must move.

Note1: The time periods for a 90-day owner occupant are different than a 180-day owner occupant.
Note 2: If the Rent Differential is converted to a Downpayment Option, there is no "spend-to-get" requirement.

DOWN PAYMENT OPTION

The Rent Differential payment may - with certain limitations - be converted to a Down Payment Option to assist you in purchasing a replacement property. The down payment option is a direct conversion of the Rent Differential payment.

If the Caltrans calculated Rent Differential is between $0 and $5,250, your down payment option will be $5,250, which can be used towards the purchase of a replacement decent, safe and sanitary dwelling.

If the Rent Differential is over $5,250, you may be able to convert the entire amount of the Rent Differential to a downpayment option.

The down payment option must be used for the acquisition of the replacement dwelling, plus any eligible incidental expenses (see “180-day Owner occupants Incidental Expenses”) related to the purchase of the property. You must work closely with your Relocation Agent to ensure you can utilize the full amount of your down payment option towards the purchase.

If any portion of the Rent Differential was used prior to the decision to convert to a down payment option, those advance payments will be deducted from the entire benefit.

LAST RESORT HOUSING

On most projects, an adequate supply of housing will be available for sale and for rent, and the benefits provided will be sufficient to enable you to relocate to comparable housing. However, there may be projects in certain locations where the supply of available housing is insufficient to provide the necessary housing for those persons being displaced. In such cases, Caltrans will utilize a method called Last Resort Housing. Last Resort Housing allows Caltrans to construct, rehabilitate or modify housing in order to meet the needs of the people displaced from a project. Caltrans can also pay above the statutory limits of $5,250 and $22,500 in order to make available housing affordable.
Relocation Advisory Assistance

Any individual, family, business or farm displaced by Caltrans shall be offered relocation advisory assistance for the purpose of locating a replacement property. Relocation services are provided by qualified personnel employed by Caltrans. It is their goal and desire to be of service to you and assist in any way possible to help you successfully relocate.

A Relocation Agent from Caltrans will contact you personally. Relocation services and payments will be explained to you in accordance with your eligibility. During the initial interview with you, your housing needs and desires will be determined as well as your need for assistance. You cannot be required to move unless at least one comparable replacement dwelling is made available to you.

You can expect to receive the following services, advice and assistance from your Relocation Agent who will:

- Explain the relocation benefits and eligibility requirements.
- Provide the amount of the replacement housing payments in writing.
- Assure the availability of a comparable property before you move.
- Inspect possible replacement residential units for DS&S compliance.
- Provide information on counseling you can obtain to help minimize hardships in adjusting to your new location.
- Assist you in completing loan documents, rental applications or Relocation Claims Forms.
AND provide information on:

- Security deposits
- Interest rates and terms
- Typical down payments
- VA and FHA loan requirements
- Real property taxes.
- Consumer education literature on housing

If you desire, your Relocation Agent will give you current listings of other available replacement housing. Transportation will be provided to inspect available housing, especially if you are elderly or handicapped. Though you may use the services of a real estate broker, Caltrans cannot provide a referral.

Your Relocation Agent is familiar with the services provided by others in your community and will provide information on other federal, state, and local housing programs offering assistance to displaced persons. If you have special problems, your Relocation Agent will make every effort to secure the services of those agencies with trained personnel who have the expertise to help you.

If the highway project will require a considerable number of people to be relocated, Caltrans will establish a temporary Relocation Field Office on or near the project. Project relocation offices will be open during convenient hours and evening hours if necessary.

In addition to these services, Caltrans is required to coordinate its relocation activities with other agencies causing displacements to ensure that all persons displaced receive fair and consistent relocation benefits.
Remember - YOUR RELOCATION AGENT is there to offer advice and assistance. Do not hesitate to ask questions. And be sure you fully understand all of your rights and available benefits.

YOUR RIGHTS AS A DISPLACEE

All eligible displacees have a freedom of choice in the selection of replacement housing, and Caltrans will not require any displaced person to accept a replacement dwelling provided by Caltrans. If you decide not to accept the replacement housing offered by Caltrans, you may secure a replacement dwelling of your choice, providing it meets DS&S housing standards. Caltrans will not pay more than your calculated benefits on any replacement property.

The most important thing to remember is that the replacement dwelling you select must meet the basic "decent, safe, and sanitary" standards. Do not execute a purchase agreement or a rental agreement until a representative from Caltrans has inspected and certified in writing that the dwelling you propose to occupy meets the basic standards. DO NOT jeopardize your right to receive a replacement housing payment by moving into a substandard dwelling.

It is important to remember that your relocation benefits will not have an adverse affect on your:

- Social Security Eligibility
- Welfare Eligibility
- Income Taxes
In addition, the Title VIII of the Civil Rights Act of 1968 and later acts and amendments make discriminatory practices in the purchase and rental of most residential units illegal if based on race, color, religion, sex, or national origin.

Whenever possible, minority persons shall be given reasonable opportunities to relocate to decent, safe, and sanitary replacement dwellings, not located in an area of minority concentration, and that is within their financial means. This policy, however, does not require Caltrans to provide a person a larger payment than is necessary to enable a person to relocate to a comparable replacement dwelling.

Caltrans' Non-Discrimination Policy ensures that all services and/or benefits will be administered to the general public without regard to race, color, national origin, or sex in compliance with Title VI of the 1964 Civil Rights Act (42 USC 2000d. et seq.).

And you always have the Right to Appeal any decision by Caltrans regarding your relocation benefits and eligibility.

Your Right of Appeal is guaranteed in the "Uniform Act" which states that any person may file an appeal with the head of the responsible agency if that person believes that the agency has failed to properly determine the person's eligibility or the amount of a payment authorized by the Act.

If you indicate your dissatisfaction, either verbally or in writing, Caltrans will assist you in filing an appeal and explain the procedures to be followed. You will be given a prompt and full opportunity to be heard. You have the right to be represented by legal counsel or other representative in connection with the appeal (but solely at your own expense).

Caltrans will consider all pertinent justifications and materials submitted by you and other available information needed to ensure a fair review. Caltrans will provide you with a written determination resulting from the appeal with an explanation of the basis for the decision. If you are still dissatisfied with the relief granted, Caltrans will advise you that you may seek judicial review.
Introducción

En la construcción de un sistema moderno de transportación, el desplazamiento de un pequeño porcentaje de la población es a menudo necesario. Sin embargo, la política de Caltrans es que las personas desalojadas no tengan que sufrir innecesariamente como resultado de los programas diseñados para el beneficio del público en general.

Los individuos y familias desplazadas pueden ser elegibles para recibir servicios de asesoramiento y pagos de reubicación.

Este folleto provee información acerca de los servicios y pagos de reubicación disponibles. Si usted es requerido a mudarse como resultado de un proyecto de transportación, un Agente de Reubicación se comunicará con usted. El Agente de Reubicación le contestará preguntas específicas y le proveerá información adicional.

Ley de Procedimiento Uniforme de Asistencia para Rubicación y Adquisición de Bienes Raíces de 1970, Enmendada “La Ley Uniforme”

El propósito de esta Ley es proveer tratamiento igual y uniforme para las personas que son desplazadas de sus hogares, negocios, u operaciones agrícolas por programas federales o programas que son asistidos con fondos federales y para establecer uniformidad e igualdad en la política de adquisición de tierras por programas federales y programas asistidos con fondos federales.

La ley trata de asegurar que las personas desplazadas directamente como resultado de proyectos federales o proyectos asistidos con fondos federales sean tratados con igualdad, consistencia y equidad para que esas personas no sufran...
daños desproporcionados como resultado de proyectos designados para el beneficio del público en general.

Aunque se ha hecho un esfuerzo para asegurar la precisión de este folleto, debe de ser entendido que no tiene la fuerza o efectos de la ley, regla, o regulación que gobierna el pago de los beneficios. Si hay diferencias o error, la ley tomará precedencia.

Algunas Definiciones Importantes…

Sus beneficios de reubicación pueden ser entendidos mejor si usted entiende los siguientes términos:

Vivienda de Restitución comparable: significa una propiedad que es:

1. Decente, segura y sanitaria. (Vea la definición abajo.)
2. Equivalente funcionalmente a la propiedad desplazada.
3. Adecuada en tamaño para acomodar a la familia que está siendo reubicada.
4. En un área que no esté sujeta a condiciones irrazonablemente adversas.
5. En una localidad generalmente no menos deseable que la localidad de su propiedad desplazada con respecto a servicios públicos, y acceso razonable al lugar de empleo.
6. En una parcela de tamaño típico para el desarrollo de una residencia de tamaño normal.

Decente, Segura y Sanitaria (DS&S): La vivienda de restitución debe de ser decente, segura y sanitaria … que significa que llena todos los requisitos mínimos establecidos por las regulaciones federales y conforme a los códigos de ocupación de viviendas aplicables. La propiedad será:

1. Buena estructuralmente, cerrada a las condiciones climáticas y en buen estado de reparación.
2. Contiene un sistema eléctrico adecuado para iluminación y otros aparatos.
3. Contiene un sistema de calefacción capaz de mantener una temperatura saludable (de aproximadamente 70 grados) para la persona desplazada,
con excepción en aquellas áreas donde las condiciones climáticas no requieren dicho sistema.

(4) Debe de ser adecuada en tamaño con respecto al número de cuartos y áreas para vivir necesarias para acomodar a las personas desplazadas. Es política de Caltrans que más de dos personas no deben de estar en un solo cuarto, a menos que que el tamaño del cuarto sea suficientemente adecuado para acomodar los muebles de dormitorios necesarios de los ocupantes.

(5) Tener un baño separado, bien iluminado y ventilado que sea privado a los usuarios y que contenga un lavamanos, una tina o regadera, y un excusado, todos en buenas condiciones y apropiadamente conectados a los sistemas de aguas negras y aguas potables.

Nota: En el caso de una propiedad residencial, debe de haber una área de cocina que contenga un lavatrastos usable, propiamente conectado a agua caliente y agua fría, y al sistema de drenaje, y con espacio adecuado para utilizar los servicios y conexiones para una estufa y un refrigerador.

(6) Que contenga salidas sin obstrucción y seguros espacio abierto al nivel del suelo. Si la propiedad de restitución está en el segundo piso o más arriba, que tenga acceso directamente desde o a través de un corredor, y que éste corredor común debe de tener al menos dos salidas.

(7) Si la persona desplazada es incapacitada físicamente, debe de ser libre de cualquier barrera que le impidan la entrada o salida, o uso razonable de la propiedad por dicha persona incapacitada.

Persona Desplazada: Cualquier individuo o familia que se mueva de una propiedad o mueva sus bienes personales de una propiedad como resultado de la adquisición de bienes raíces, en todo o en parte, o como resultado de una notificación escrita de una agencia pidiéndole que desocupe la propiedad que se necesita para un proyecto de transportación. En el caso de una adquisición parcial, Caltrans debe de determinar si la persona es desplazada directamente como resultado de esta adquisición.

Los residentes **que no están legalmente** en los Estados Unidos no son elegibles para recibir pagos y asistencia de reubicación.
Los beneficios de reubicación van a variar dependiendo del tipo y tiempo de ocupación. Como una persona desplazada de una unidad residencial usted puede ser clasificado como:

- Un dueño ocupante de una propiedad residencial (incluyendo casas movibles)
- Un inquilino ocupante de una propiedad residencial (incluyendo casas movibles y cuartos para dormir)

Vivienda: El lugar de permanencia o residencia regular y usual de una persona, de acuerdo a las costumbres locales o la ley, incluyendo una unidad familiar, una unidad familiar en un complejo doble o multi-familiar, o una propiedad de uso múltiple, una unidad de condominio o proyecto de vivienda en cooperativa, una unidad libre de mantenimiento doméstico, una casa movible, o cualquier otra unidad residencial.

Dueño: Una persona es considerada que llena los requisitos de dueño de una casa, si esta persona compra, tiene título o tiene algunos de los siguientes intereses en una propiedad:

1. Una escritura de propiedad, un interés de por vida en una propiedad, un contrato de renta por 99 años, un contrato oral de renta incluyendo una opción para extensión con al menos 50 años que queden después de la fecha de adquisición; o
2. El interés en un proyecto de vivienda en cooperativa que incluya el derecho de ocupar una vivienda; o
3. Un contrato de compra de interés, o bienes raíces.
4. Algún otro interés, incluyendo intereses parciales, que a juicio de la agencia garanticen los pagos como dueño.

Inquilino: Una persona que tiene el uso y la ocupación temporal de una propiedad de la que otro es dueño.
Gastos de Mudanza

Si usted califica como persona desplazada, usted tiene derecho a reembolso de sus gastos de mudanza y a ciertos gastos relacionados incurridos durante el traslado. Los métodos de traslado y los distintos tipos de pagos para gastos de mudanza son explicados abajo.

Los individuos y familias desplazadas pueden escoger un pago basado en los gastos reales, razonables y los gastos relacionados, o de acuerdo a una lista de costos fijos de mudanza. Sin embargo, para asegurar su elegibilidad y el pago rápido de sus gastos de mudanza, usted debe de ponerse en contacto con su Agente de Rubricación antes de mudarse.

Usted Puede Elegir Entre:

Los Gastos Razonables de Mudanza – A usted se le puede pagar por los gastos razonables de mudanza y gastos relacionados cuando una compañía comercial de mudanza hace la mudanza. Los reembolsos deberán ser limitados a una mudanza de 50 millas o menos. Los gastos relacionados pueden incluir:

- Transportación.
- Empaque y desempaque de propiedades personales.
- Desconexión y reconexión de aparatos eléctricos.
- Almacenaje temporal de propiedades personales.
- Seguros cuando la propiedad está almacenada o en tránsito.

Ó

Lista de Costos Fijos de Mudanza – A usted se le puede pagar basado en una lista de costos fijos de mudanza. Bajo esta opción, usted no puede ser elegible para reembolsos de gastos relacionados incluídos en la lista de arriba. Esta lista de gastos fijos está designada a cubrir todos esos gastos.

Por ejemplo (Tarifa para el año 2001)

4 Cuartos - $ 950
7 Cuartos - $1,550
Los costos fijos de mudanza para una unidad amueblada (ejemplo, usted es inquilino en un apartamento donde los muebles pertenecen al dueño de la vivienda) están basados en la Tabla de Honorarios B.

Ejemplos (Taza en el año 2001):
 4 Cuartos - $475
 7 Cuartos - $625

Bajo la lista de Pago Fijos de Mudanza, usted no puede recibir ningún pago adicional por almacenamiento temporario, vivienda temporaria, transportación o conexiones de servicios públicos.
Pagos Para Vivienda de Restitución

El tipo de Pago Para Vivienda de Restitución (RHP) depende de si usted es dueño o un inquilino, y en el tiempo de ocupación que tiene de la propiedad que será adquirida.

Si usted es calificado como dueño ocupante de más de 180 días antes de la iniciación de negociaciones para la adquisición de su propiedad, usted puede tener derecho a recibir RHP que consiste en:

Diferencia de Precio, y

Diferencia para Hipoteca, y

Gastos Incidentales

O

Diferencia Para Rentar

Si usted es calificado como dueño ocupante de más de 90 días, pero menos de 180 días, O si usted es calificado como inquilino ocupante de al menos 90 días, usted puede tener derecho a recibir RHP así:

Diferencia Para Rentar

U

Opción para Enganche

Tiempo de ocupación simplemente significa contar el número de días que usted actualmente ocupó la vivienda antes de la fecha de iniciación de negociaciones por Caltrans para la compra de la propiedad. El término “iniciación de negociaciones” significa la fecha que Caltrans hizo el primer contacto personal con el dueño de bienes raíces, o su representante, para darle a el/ella una oferta escrita para la adquisición de la propiedad.

Nota: Si usted ocupó una vivienda por menos de 90 días antes de la iniciación de negociaciones y la propiedad es posteriormente adquirida, o si usted se mudó a la propiedad después de la iniciación de negociaciones y usted todavía
ocupaba la propiedad a la fecha de adquisición, usted puede ser elegible para un Pago para Restitución de Vivienda, basado en una guía de elegibilidad establecida. Consulte con su Agente de Reubicación antes de que haga cualquier decisión de mudarse de su propiedad.

Para Ocupantes de 180 Días o Más

Si usted califica como dueño ocupante de 180 días, puede ser elegible – además del valor equitativo en el mercado de su propiedad – para un Pago de Restitución de Vivienda que consiste en un pago de Diferencia de Precio y/o Gastos Incidentales.

El Pago de Diferencia de Precio es la cantidad por la que el costo de una vivienda de restitución excede el costo de adquisición de la vivienda desplazada. Este pago le asistirá en la compra de una vivienda decente, segura, y sanitaria (DS&S). Caltrans computará el pago máximo que usted puede ser elegible para recibir. (Vea un ejemplo en la página 15.)

Para recibir la cantidad total de la diferencia de precio calculadas, usted debe gastar al menos la cantidad calculada por Caltrans en la propiedad de restitución.

El pago de Diferencia de Hipoteca le será reembolsado por cualquier aumento del costo de interés en la hipoteca que usted haya incurrido porque la tasa de interés en su nueva hipoteca excede la taza de interés de la propiedad adquirida por Caltrans. La computación del pago es complicada ya que está basada en las tazas típicas entre su préstamo anterior y su préstamo nuevo. También, una parte de los pagos pueden ser prorrateado como reembolso por una porción de los honorarios de su préstamo y los puntos (intereses) de la hipoteca.

Para ser elegible para recibir este pago, la propiedad adquirida debe de ser hipotecada con una hipoteca de buena fé, la cual fue un crédito válido de por lo menos 180 días antes de la iniciación de negociaciones.

Usted también puede ser reembolsado por cualquier Gasto Incidental actual y necesario que usted incurra en relación con la compra de su propiedad de restitución. Estos gastos pueden ser los costos por búsqueda de título, honorarios de copia en el Registro, reporte de crédito, reporte de evaluación, y ciertos otros gastos de cierre de escritura. Usted no puede ser reembolsado por ningún gasto frecuente como pre-pagos de impuesto de bienes raíces y seguro de propiedad.
Si la cantidad total de su Pago de Vivienda de Restitución (Diferencia de Precio, Diferencia Para Hipoteca y Gastos Incidentales) excede $22,500, el pago debe de ser depositado directamente en una cuenta fiduciaria o ser pagado directamente a la compañía financiera.

EJEMPLO DE COMO SE CALCULA LA DIFERENCIA DE PAGO:

Suponga que Caltrans compra su propiedad por $98,000. Después de un estudio completo de viviendas disponibles en el mercado, que sean decentes, seguras y sanitarias, Caltrans determina que la propiedad de restitución comparable en el mercado abierto le costará $100,000. Si su precio de compra es $100,000 usted recibirá $2,000 (Vea el Ejemplo A)

Si su precio de compra es de más de $100,000, usted paga la diferencia (vea el Ejemplo B). Si su precio de compra es menos de $100,000, el pago se basará en los costos actuales (vea el Ejemplo C).

La cantidad que usted recibe en un pago diferencial dependerá de cuanto usted realmente gasta en una vivienda de restitución, como se muestra en estos ejemplos.

Computación de Caltrans

Precio Comparable de la Propiedad de Restitución	$100,000
Precio de Adquisición de su Propiedad	$ 98,000
Diferencia Máxima de Precio	$ 2,000

Ejemplo A

Precio de Compra de Restitución	$100,000
Propiedad Comparable de Restitución	$100,000
Precio de Adquisición de su Propiedad	$ 98,000
Diferencia Máxima de Precio	$ 2,000
Ejemplo B

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Importe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precio de Compra de Restitución</td>
<td>$105,000</td>
</tr>
<tr>
<td>Propiedad Comparable de Restitución</td>
<td>$100,000</td>
</tr>
<tr>
<td>Precio de Adquisición de su Propiedad</td>
<td>– $ 98,000</td>
</tr>
<tr>
<td>Diferencia Máxima de Precio</td>
<td>$ 2,000</td>
</tr>
<tr>
<td>Usted Debe de Pagar el Precio Adicional de</td>
<td>$ 5,000</td>
</tr>
</tbody>
</table>

Ejemplo C

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Importe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propiedad Comparable de Restitución</td>
<td>$100,000</td>
</tr>
<tr>
<td>Precio de Compra de Restitución</td>
<td>$ 99,000</td>
</tr>
<tr>
<td>Precio de Adquisición de su Propiedad</td>
<td>– $ 98,000</td>
</tr>
<tr>
<td>Diferencia de Precio</td>
<td>$ 1,000</td>
</tr>
</tbody>
</table>

En el ejemplo C usted solo recibirá $1,000 – no la cantidad completa de “La propiedad Comparable de Restitución” por los requisitos de “Gastar para Obtener” de Caltrans.

PARA QUE UN “DUENO OCUPANTE DE 180 DÍAS” RECIBA LA CANTIDAD TOTAL DE SUS BENEFICIOS DE PAGOS PARA VIVIENDA (Diferencia de Precio, Diferencia de Hipoteca y Gastos Incidentales), usted debe:

A) Comprar y ocupar una vivienda de restitución que sea DS&S dentro de al menos un año desde la fecha más tarde de:

1. La fecha en que recibió la primera notificación de una casa de restitución, O
2. La fecha que Caltrans pagó los costos de adquisición de su vivienda actual (usualmente los gastos de cierre de escritura en la adquisición del Estado.)

Y

B) Haber gastado al menos la cantidad que Caltrans estableció para “La Propiedad Comparable de Restitución” para la propiedad de restitución.

Y
C) Reportar un reclamo para pago para reubicación dentro de los 18 meses de la fecha más tarde de:

1) La fecha en que se mudó de la propiedad adquirida por Caltrans, O

2) La fecha en que Caltrans le pagó los costos de adquisición de su vivienda actual (usualmente al cierre de escritura en la adquisición del Estado.)

Usted no será elegible para recibir ningún pago de reubicación hasta que el Estado haya hecho la primera oferta por escrito de la compra de la propiedad. Usted también recibirá una notificación escrita por lo menos 90 días antes de tener que mudarse.

Para Dueños Ocupantes e Inquilinos de 90 Días o Más

Si usted califica como un ocupante (ya sea como dueño o inquilino) de 90 días, usted puede ser elegible para un Pago de Vivienda de Restitución en la forma de Diferencia para Rentar.

El pago de la Diferencia para Rentar es designado para asistirle en la renta de una vivienda comparable que sea decente, segura y sanitaria. El pago será basado en la diferencia entre la renta básica mensual por la propiedad adquirida por Caltrans (incluyendo el promedio del costo mensual de servicios públicos) y el menor de:

a) La renta mensual y el promedio del costo mensual estimado de los servicios públicos para una vivienda comparable de restitución determinada por Caltrans, O

b) La renta mensual y el promedio del costo mensual estimado de los servicios públicos para una vivienda decente, segura y sanitaria que usted rente como vivienda de restitución.

Gastos de servicios públicos son esos gastos que usted incurre por calefacción, luz, agua, aguas negras y basura – sin importar quien los provea (ejemplo, electricidad, gas propano, y sistema séptico.) No incluye cable de televisión, teléfono, o seguridad. Los servicios públicos en su propiedad de restitución será el estimado del promedio de costos por los 3 últimos meses para el tipo de vivienda y área usados en los cálculos.
Esta diferencia es multiplicada por 42 meses y le puede ser pagado en una sola suma o en pagos periódicos de acuerdo con la política y regulaciones. (Vea un ejemplo en la página 21.)

Para recibir la cantidad calculada total de la diferencia para rentar, usted debe gastar al menos la cantidad calculada por Caltrans en la propiedad de restitución.

Este pago puede – con ciertas limitaciones – ser convertido en una Opción para Enganche para asistirle en la compra de una propiedad de restitución (Vea la página 25 para una explicación completa.)

EJEMPLO DE LA COMPUTACIÓN DEL PAGO DE LA DIFERENCIA PARA RENTAR:

Después de hacer un estudio completo de viviendas comparables, decentes, seguras y sanitarias que estén disponibles para rentar, Caltrans determina que una propiedad comparable de restitución podría ser rentada por $325 al mes.

Computación de Caltrans

- Renta por una Propiedad Comparable de Restitución: $325 al mes
- MÁS: estimado de costos de servicios públicos: $100 al mes
- TOTAL Costo de renta por una Propiedad Comparable de Restitución: $425 al mes
- Renta por su Propiedad Actual: $300 al mes
- MÁS: costos de servicios públicos: $90 al mes
- TOTAL Costo para pagar la renta de su propiedad actual: $390 al mes
- Propiedad Comparable de Restitución incluyendo servicios públicos: $425 al mes
- Costo para pagar la renta de su propiedad incluyendo servicios públicos: $390 al mes
- Diferencia: $35 al mes

Multiplicado por 42 meses = $1,470 Diferencia para Rentar
Ejemplo A:
Renta para una Propiedad de Restitución, incluyendo los costos estimados de servicios públicos $525 al mes

Propiedad Comparable de Restitución incluyendo servicios públicos $425 al mes

Costos de pago de la renta de su propiedad incluyendo servicios públicos $390 al mes

Ya que $425 es menos que $525, la diferencia para rentar está basada en la diferencia entre $390 y $425.

Diferencia para Rentar ($35 x 42 meses = $1,470)

En este caso usted gasta “al menos” la cantidad de la Propiedad de Restitución Comparable en la propiedad de restitución y así recibirá la cantidad total.

Ejemplo B:
Renta por una Propiedad de Restitución, incluyendo los costos estimados de servicios públicos $400 al mes

Propiedad Comparable de Restitución incluyendo servicios públicos $425 al mes

Costos de pago de la renta de su propiedad incluyendo servicios públicos $390 al mes

Ya que $400 es menos que $525, la diferencia para rentar está basada en la diferencia entre $400 y $390.

Diferencia para Rentar ($10 x 42 meses = $420)

En este caso usted va a gastar “menos que” la cantidad de Propiedad de Restitución Comparable en la restitución de la vivienda y usted no recibirá la cantidad total.

PARA QUE UN “DUENO OCUPANTE DE 90 DÍAS” RECIBA LA CANTIDAD TOTAL DE PAGO PARA SU VIVIENDA DE RESTITUCION (Diferencia para Rentar), usted debe de:

A) Rentar y ocupar una vivienda de restitución DS&S dentro de un año después de la última fecha de:
(1) La fecha en que usted recibió la primera notificación de una casa de restitución disponible, O

(2) El día en que usted su mudó de la propiedad adquirida por Caltrans.

Y

B) Gastar al menos la cantidad de la “Propiedad Comparable de Restitución” de Caltrans para rentar una vivienda de restitución.

Y

C) Reportar un reclamo para pagos de reubicación dentro de los 18 meses de la fecha más tarde:

(1) La fecha en que usted se mudó de la propiedad adquirida por Caltrans, O

(2) La fecha en que Caltrans le pagó los costos de adquisición de su propiedad actual (usualmente al cierre de escritura de la adquisición del Estado.)

Usted no será elegible para recibir ningún pago de reubicación hasta que haya hecho la primera oferta escrita para comprar la propiedad. Además, usted recibirá al menos una noticia por escrito 90 días antes de tener que mudarse.
OPCIÓN PARA ENGANCHE

El pago de Diferencia para Rentar puede – con ciertas limitaciones – ser convertido en una Opción para Enganche para asistirle en la compra de una propiedad de restitución. La Opción para Enganche es una conversión directa del pago de la diferencia para rentar.

Si la diferencia para rentar es calculada entre $0 y $5,250, su Opción Para Enganche será de $5,250 la cual puede ser usada para la compra de una vivienda de restitución decente, segura y sanitaria.

Si la diferencia para rentar es más de $5,250 usted podrá convertir la cantidad completa de diferencia para rentar a una Opción Para Enganche.

La Opción Para Enganche debe de ser usada para el enganche requerido, la cual usualmente es un porcentaje del precio total de compra, más cualquier gasto incidental elegible (vea la página 14, “Gastos Incidentales para Dueños Ocupantes de 180 días”) relacionado con la compra de la propiedad. Usted debe trabajar junto con su Agente de Reubicación para asegurarse de que puede utilizar la cantidad total de su Opción Para Enganche en su compra.

Si alguna porción de la diferencia para rentar fue usada antes de su decisión de convertirla a una Opción Para Enganche, los pagos avanzados serán deducidos de los beneficios completos.
CASA DEL ÚLTIMO RECURSO

En la mayoría de los proyectos de Caltrans, existe una cantidad adecuada de viviendas de venta y alquiler, y los beneficios serán suficientes para que usted pueda reubicarse a una vivienda comparable. Sin embargo, en ciertas localidades pueden haber proyectos donde el número de viviendas disponibles no son suficientes para proveer viviendas a todas las personas desplazadas. En estos casos, Caltrans utiliza un método llamado Casa del Último Recurso. La Casa del Último Recurso permite a Caltrans construir, rehabilitar, o modificar viviendas para cumplir con las necesidades de las personas desplazadas por un proyecto. Caltrans puede también pagar arriba de los límites legales de $5,250 y $22,500 para hacer posible viviendas con precios razonables.

Asistencia de Consulta Para Reubicación

A cualquier individuo, familia, negocio u operación agrícola desplazada por Caltrans deberá ofrecérsele servicios de asistencia con el propósito de localizar una propiedad de restitución. Los servicios de reubicación son proveídos por empleados calificados de Caltrans. Es la meta de ellos y el deseo de estos empleados de servirle y asistirle de cualquier manera posible para ayudarle a reubicarse exitosamente.

Un Agente de Reubicación de Caltrans se pondrá en contacto con usted personalmente. Los servicios de reubicación y pagos se le explicarán de acuerdo con su elegibilidad. Durante la entrevista inicial, sus necesidades de vivienda y deseos se determinarán así como sus necesidades de asistencia. No se le puede pedir que se mude a menos que una vivienda comparable de restitución le sea disponible.

Usted puede esperar recibir los siguientes servicios, consejos y asistencia de su Agente de Reubicación quien le:

- Explicará los beneficios de reubicación y los requisitos de elegibilidad.
- Proveerá por escrito la cantidad de pago por su vivienda de restitución.
- Asegurará la disposición de una propiedad comparable antes de que se mude.
- Inspeccionará las posibles unidades residenciales de restitución para el cumplimiento de DS&S.
• Proveerá información y aconsejará como puede obtener ayuda para minimizar las adversidades en ajustarse a su nueva localidad.

• Ayudará en completar los documentos de préstamos, aplicaciones de rentas o las Formas de Reclamo para Reubicación.

Y proveerle información de:

• Seguro de Depósitos
• Tasa de intereses y términos
• Pagos típicos de enganches
• Requisitos de préstamos de la Administración de Veteranos (VA) y la Administración de Vivienda Federal (FHA)
• Impuestos sobre bienes raíces
• Literatura de educación en viviendas para el consumidor

Si usted lo desea, el Agente de Reubicación le dará una lista actual de otras viviendas de restitución disponibles.

Se proveerá transportación para inspeccionar viviendas disponibles, especialmente si usted es mayor de edad o con impedimento físico. Aunque usted puede utilizar los servicios de un agente de bienes raíces, Caltrans no lo podrá referir.

Su Agente de Reubicación está familiarizado con los servicios proveídos por otras agencias de su comunidad y le proveerá información de otros programas de viviendas federales, estatales y locales que ofrecen programas de asistencia para personas desplazadas. Si usted tiene algún problema especial, su Agente de Reubicación hará su mejor esfuerzo para asegurarle los servicios de esas agencias con personal capacitado y con experiencia que le ayudarán.

Si el proyecto de transportación requiere un número considerable de personas que sean reubicados, Caltrans establecerá una Oficina Temporal de Reubicación en, o cerca del proyecto. Las oficinas de proyectos de reubicación deberán de abrirse durante horas convenientes y en horas tempranas de la noche, si es necesario.
Además de estos servicios, Caltrans es requerido que coordine las actividades de otras agencias que causen desplazamientos para asegurar que todas esas personas desplazadas reciban beneficios de reubicación equitativos y consistentes.

Recuerde – SU AGENTE DE REUBICACIÓN está para aconsejarle y asistirle. No vacile en hacer preguntas, y asegúrese de que entiende completamente sus derechos y beneficios de reubicación disponibles.
SUS DERECHOS COMO UNA PERSONA DESPLAZADA

Todas las personas elegibles como personas desplazadas tienen la libertad de escoger dentro de la selección de viviendas de restitución, y Caltrans no requerirá a ninguna persona que sea desplazada que acepte una vivienda de restitución proveída por Caltrans. Si usted decide no aceptar la vivienda de restitución ofrecida por Caltrans, usted puede elegir una vivienda de restitución de su propia selección, mientras que cumple con los requisitos de DS&S. Caltrans no pagará más que los beneficios calculados por una vivienda de restitución.

Lo más importante que usted debe de recordar es que la vivienda de restitución que usted seleccione debe de llenar los requisitos básicos de “decente, segura y sanitaria”. No ejecute los documentos de compra o el contrato de renta hasta que un representante de Caltrans haya inspeccionado y certificado por escrito que la vivienda que usted se propone ocupar cumple con los requisitos básicos. NO ARRIESGUE su derecho de recibir los pagos de vivienda de restitución por mudarse a una vivienda que no sea “decente, segura y sanitaria.”

Es importante recordar que sus beneficios de reubicación no van a tener ningún efecto adverso en su:

- Elegibilidad para Seguro Social
- Elegibilidad para Asistencia Social
- Impuestos sobre ingresos

Además, el Título VIII de los Derechos Civiles, Ley de 1968 y luego otras leyes y enmiendas hacen descriminatoria la práctica de compra y renta de unidades de vivienda si es basada ilegalmente en la raza, color, religión, sexo u origen nacional.

Cuando sea posible, a personas de minorías se les debe de dar oportunidades razonables para reubicarse a viviendas de restitución que sean decentes, seguras y sanitarias, no localizadas en áreas de concentración de minorías, y que estén dentro de sus recursos económicos. Esta política, sin embargo, no requiere que Caltrans provea a una persona pagos más grandes de lo que sean necesarios para permitir que la persona sea reubicada a una vivienda de restitución comparable.
La política No-Discriminatoria de Caltrans asegura que todos los servicios y/o los beneficios deben de ser administrados al público en general sin importar la raza, color, origen nacional, o sexo en cumplimiento con el Título VI de la Ley de Derechos Civiles de 1964 (42 USC 2000 d. et seq.)

Usted siempre tendrá el Derecho de Apelar cualquier decisión hecha por Caltrans relacionada a los beneficios de reubicación y elegibilidad.

Su Derecho de Apelar está garantizado en la “Ley Uniforme” la cual establece que una persona puede apelar al jefe de la agencia responsable, si ella cree que la agencia ha fallado en determinar correctamente su elegibilidad, o la cifra del pago autorizado por la Ley.

Si usted indica su disatisfacción, ya sea verbalmente o por escrito, Caltrans le asistirá en hacer su demanda de apelación y le explicará el procedimiento que debe de seguir. Usted tiene derecho de ser representado por un asesor legal u otro representante en conexión con su apelación (pero solamente por su propia cuenta.)

Caltrans considerará toda justificación y materia pertinente que usted entregue u otra información disponible, necesaria para asegurar una audiencia equitativa. Caltrans le proveerá una determinación por escrito del resultado de su apelación, con una explicación sobre la base de la decisión. Si usted aún no está satisfecho con la decisión otorgada, Caltrans le aconsejará que usted puede pedir una audiencia judicial.

Noticiero de la Ley para Americanos con Incapacidades Físicas (ADA):

Para personas con incapacidades físicas, este documento es disponible en formatos alternativos. Para Información llame al número (916) 654-5413 Voz, CRS: 1-800-735-2929, o escriba a Derecho de Vía, MS 37, 1120 N Street, Sacramento, CA 95814.
August 25, 2009

TITLE VI
POLICY STATEMENT

The California State Department of Transportation under Title VI of the Civil Rights Act of 1964 and related statutes, ensures that no person in the State of California shall, on the grounds of race, color, national origin, sex, disability, or age, be excluded from participation in, be denied the benefits of, or be otherwise subjected to discrimination under any program or activity it administers.

RANDELL H. IWASAKI
Director

"Caltrans improves mobility across California"
Appendix D List of Technical Studies
Appendix D List of Technical Studies

- **I-80 Eastbound Cordelia Truck Scales Relocation Project Paleontological Sensitivity Analysis Solano County, California Interstate 80, between Suisun Creek and Chadbourne**
Appendix D. List of Technical Studies

- I-80 Eastbound Cordelia Truck Scales Relocation Project Biological Assessment/Essential Fish Habitat Assessment for Central California Coast Steelhead and Central Valley Fall/Late Fall–Run Chinook Salmon Solano County, California Interstate 80, between Suisun Road on State Route 12. August 2008. Submitted to the California Department of Transportation, District 04. Prepared by ICF Jones & Stokes.
Appendix D. List of Technical Studies

Creek and Chadbourne Road on State Route 12. September 2008. Submitted to the California Department of Transportation, District 04.
Appendix E Compliance with 40 CFR 1502.22 and System-Wide Emissions Spreadsheet
Summary of Project Level MSAT Emissions (grams/day)

<table>
<thead>
<tr>
<th></th>
<th>Diesel PM</th>
<th>Benzene</th>
<th>1,3-Butadiene</th>
<th>Acetaldehyde</th>
<th>Acrolein</th>
<th>Formaldehyde</th>
</tr>
</thead>
<tbody>
<tr>
<td>CY 2035 Off-Ramp NP</td>
<td>243</td>
<td>69</td>
<td>6</td>
<td>172</td>
<td>0</td>
<td>348</td>
</tr>
<tr>
<td>CY 2035 Off-Ramp WP</td>
<td>240</td>
<td>68</td>
<td>6</td>
<td>170</td>
<td>0</td>
<td>345</td>
</tr>
<tr>
<td>CY 2035 On-Ramp NP</td>
<td>259</td>
<td>73</td>
<td>7</td>
<td>183</td>
<td>1</td>
<td>371</td>
</tr>
<tr>
<td>CY 2035 On-Ramps WP</td>
<td>243</td>
<td>69</td>
<td>6</td>
<td>172</td>
<td>0</td>
<td>348</td>
</tr>
</tbody>
</table>

Diesel PM (grams/day)

<table>
<thead>
<tr>
<th></th>
<th>CY 2035 On-Ramps WP</th>
<th>CY 2035 Off-Ramp NP</th>
<th>CY 2035 On-Ramp NP</th>
<th>CY 2035 Off-Ramp WP</th>
<th>CY 2035 Off-Ramp NP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>243</td>
<td>240</td>
<td>243</td>
<td>243</td>
<td>259</td>
</tr>
</tbody>
</table>

Benzene (grams/day)

<table>
<thead>
<tr>
<th></th>
<th>CY 2035 On-Ramps WP</th>
<th>CY 2035 Off-Ramp NP</th>
<th>CY 2035 On-Ramp NP</th>
<th>CY 2035 Off-Ramp WP</th>
<th>CY 2035 Off-Ramp NP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>69</td>
<td>68</td>
<td>69</td>
<td>69</td>
<td>73</td>
</tr>
</tbody>
</table>

1,3-Butadiene (grams/day)

<table>
<thead>
<tr>
<th></th>
<th>CY 2035 On-Ramps WP</th>
<th>CY 2035 Off-Ramp NP</th>
<th>CY 2035 On-Ramp NP</th>
<th>CY 2035 Off-Ramp WP</th>
<th>CY 2035 Off-Ramp NP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

Acetaldehyde (grams/day)

<table>
<thead>
<tr>
<th></th>
<th>CY 2035 On-Ramps WP</th>
<th>CY 2035 Off-Ramp NP</th>
<th>CY 2035 On-Ramp NP</th>
<th>CY 2035 Off-Ramp WP</th>
<th>CY 2035 Off-Ramp NP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>172</td>
<td>170</td>
<td>172</td>
<td>172</td>
<td>183</td>
</tr>
</tbody>
</table>

Acrolein (grams/day)

<table>
<thead>
<tr>
<th></th>
<th>CY 2035 On-Ramps WP</th>
<th>CY 2035 Off-Ramp NP</th>
<th>CY 2035 On-Ramp NP</th>
<th>CY 2035 Off-Ramp WP</th>
<th>CY 2035 Off-Ramp NP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Formaldehyde (grams/day)

<table>
<thead>
<tr>
<th></th>
<th>CY 2035 On-Ramps WP</th>
<th>CY 2035 Off-Ramp NP</th>
<th>CY 2035 On-Ramp NP</th>
<th>CY 2035 Off-Ramp WP</th>
<th>CY 2035 Off-Ramp NP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>348</td>
<td>345</td>
<td>348</td>
<td>348</td>
<td>371</td>
</tr>
<tr>
<td></td>
<td>Diesel PM</td>
<td>Benzene</td>
<td>1,3-Butadiene</td>
<td>Acetaldehyde</td>
<td>Acrolein</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
<td>---------</td>
<td>---------------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>Percent increases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CY 2035 Off-Ramp NP</td>
<td>-1%</td>
<td>-1%</td>
<td>-1%</td>
<td>-1%</td>
<td>-1%</td>
</tr>
<tr>
<td>CY 2035 Off-Ramp WP</td>
<td>-0.06</td>
<td>-0.06</td>
<td>-0.06</td>
<td>-0.06</td>
<td>-0.06</td>
</tr>
<tr>
<td>CY 2035 On-Ramp NP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CY 2035 On-Ramps WP</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>-2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CY 2035 Off-Ramp NP</td>
<td>-16</td>
<td>-4</td>
<td>0</td>
<td>-11</td>
<td>0</td>
</tr>
<tr>
<td>CY 2035 Off-Ramp WP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CY 2035 On-Ramp NP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CY 2035 On-Ramps WP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
I. SITE VARIABLES

U= 0.5 M/S Z0= 100. CM ALT= 0. (M)
BRG= WORST CASE VD= 0. CM/S
CLAS= 7 (G) VS= 0. CM/S
MIXH= 1000. M AMB= 3.9 PPM
SIGTH= 5. DEGREES TEMP= 10.0 DEGREE (C)

II. LINK VARIABLES

<table>
<thead>
<tr>
<th>LINK</th>
<th>X1</th>
<th>Y1</th>
<th>X2</th>
<th>Y2</th>
<th>TYPE</th>
<th>VPH</th>
<th>(G/MI)</th>
<th>(M)</th>
<th>(M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Link A</td>
<td>0</td>
<td>0</td>
<td>1300</td>
<td>-100</td>
<td>AG</td>
<td>788</td>
<td>6.5</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>B. Link B</td>
<td>1300</td>
<td>-100</td>
<td>1800</td>
<td>-100</td>
<td>AG</td>
<td>198</td>
<td>6.5</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>C. Link C</td>
<td>1800</td>
<td>-100</td>
<td>2100</td>
<td>-100</td>
<td>AG</td>
<td>198</td>
<td>6.5</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>D. Link D</td>
<td>1800</td>
<td>-150</td>
<td>2100</td>
<td>-150</td>
<td>AG</td>
<td>590</td>
<td>6.5</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>E. Link E</td>
<td>2100</td>
<td>-100</td>
<td>3800</td>
<td>-100</td>
<td>AG</td>
<td>443</td>
<td>6.5</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>F. Link F</td>
<td>3800</td>
<td>-100</td>
<td>6000</td>
<td>0</td>
<td>AG</td>
<td>788</td>
<td>6.5</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>G. Link G</td>
<td>2300</td>
<td>-400</td>
<td>2000</td>
<td>-600</td>
<td>AG</td>
<td>147</td>
<td>6.5</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>H. Link H</td>
<td>2000</td>
<td>-600</td>
<td>1400</td>
<td>-600</td>
<td>AG</td>
<td>147</td>
<td>6.5</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>I. Link I</td>
<td>1400</td>
<td>-600</td>
<td>1300</td>
<td>-400</td>
<td>AG</td>
<td>7</td>
<td>6.5</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>J. Link J</td>
<td>1300</td>
<td>-400</td>
<td>1300</td>
<td>-100</td>
<td>AG</td>
<td>7</td>
<td>6.5</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>K. Link K</td>
<td>1400</td>
<td>-600</td>
<td>1550</td>
<td>-400</td>
<td>AG</td>
<td>140</td>
<td>6.5</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>L. Link L</td>
<td>1550</td>
<td>-400</td>
<td>1800</td>
<td>-320</td>
<td>AG</td>
<td>140</td>
<td>6.5</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>M. Link M</td>
<td>2100</td>
<td>-320</td>
<td>2100</td>
<td>-150</td>
<td>AG</td>
<td>140</td>
<td>6.5</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>N. Link N</td>
<td>1800</td>
<td>-320</td>
<td>2100</td>
<td>-150</td>
<td>AG</td>
<td>140</td>
<td>6.5</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>O. Link O</td>
<td>2300</td>
<td>-400</td>
<td>2000</td>
<td>-600</td>
<td>AG</td>
<td>147</td>
<td>6.5</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>P. Link P</td>
<td>2200</td>
<td>-1800</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

III. RECEPTOR LOCATIONS

<table>
<thead>
<tr>
<th>RECEPTOR</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Recpt 1</td>
<td>2200</td>
<td>-1800</td>
<td>1.8</td>
</tr>
<tr>
<td>2. Recpt 2</td>
<td>2500</td>
<td>-1500</td>
<td>1.8</td>
</tr>
<tr>
<td>3. Recpt 3</td>
<td>4300</td>
<td>-250</td>
<td>1.8</td>
</tr>
<tr>
<td>4. Recpt 4</td>
<td>4700</td>
<td>-300</td>
<td>1.8</td>
</tr>
<tr>
<td>5. Recpt 5</td>
<td>5300</td>
<td>-700</td>
<td>1.8</td>
</tr>
<tr>
<td>6. Recpt 6</td>
<td>1400</td>
<td>150</td>
<td>1.8</td>
</tr>
</tbody>
</table>
IV. MODEL RESULTS (WORST CASE WIND ANGLE)

<table>
<thead>
<tr>
<th>RECEPTOR</th>
<th>BRG (DEG)</th>
<th>CONC (PPM)</th>
<th>CONC/LINK (PPM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Recpt 1</td>
<td>360.0</td>
<td>4.0</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
</tr>
<tr>
<td>2. Recpt 2</td>
<td>321.0</td>
<td>4.0</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
</tr>
<tr>
<td>3. Recpt 3</td>
<td>275.0</td>
<td>4.1</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
</tr>
<tr>
<td>4. Recpt 4</td>
<td>276.0</td>
<td>4.1</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
</tr>
<tr>
<td>5. Recpt 5</td>
<td>281.0</td>
<td>4.0</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
</tr>
<tr>
<td>6. Recpt 6</td>
<td>102.0</td>
<td>4.1</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RECEPTOR</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Recpt 1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2. Recpt 2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3. Recpt 3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4. Recpt 4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5. Recpt 5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>6. Recpt 6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
I. SITE VARIABLES

- **U** = 0.5 M/S
- **Z0** = 100. CM
- **ALT** = 0. (M)
- **BRG** = WORST CASE
- **VD** = 0.0 CM/S
- **CLAS** = 7 (G)
- **VS** = 0.0 CM/S
- **MIXH** = 1000. M
- **AMB** = 3.9 PPM
- **SIGTH** = 5. DEGREES
- **TEMP** = 10.0 DEGREE (C)

II. LINK VARIABLES

<table>
<thead>
<tr>
<th>LINK</th>
<th>DESCRIPTION</th>
<th>X1</th>
<th>Y1</th>
<th>X2</th>
<th>Y2</th>
<th>TYPE</th>
<th>VPH</th>
<th>(G/MI)</th>
<th>(M)</th>
<th>(M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>Link A</td>
<td>0</td>
<td>0</td>
<td>1300</td>
<td>-100</td>
<td>AG</td>
<td>1104</td>
<td>1.6</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>B.</td>
<td>Link B</td>
<td>1300</td>
<td>-100</td>
<td>1800</td>
<td>-100</td>
<td>AG</td>
<td>276</td>
<td>2.6</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>C.</td>
<td>Link C</td>
<td>1300</td>
<td>-100</td>
<td>1800</td>
<td>-150</td>
<td>AG</td>
<td>828</td>
<td>2.6</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>D.</td>
<td>Link D</td>
<td>1800</td>
<td>-100</td>
<td>2100</td>
<td>-100</td>
<td>AG</td>
<td>276</td>
<td>2.6</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>E.</td>
<td>Link E</td>
<td>1800</td>
<td>-150</td>
<td>2100</td>
<td>-150</td>
<td>AG</td>
<td>828</td>
<td>2.6</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>F.</td>
<td>Link F</td>
<td>2100</td>
<td>-100</td>
<td>3800</td>
<td>-100</td>
<td>AG</td>
<td>621</td>
<td>2.6</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>G.</td>
<td>Link G</td>
<td>3800</td>
<td>-100</td>
<td>6000</td>
<td>0</td>
<td>AG</td>
<td>1104</td>
<td>0.9</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>H.</td>
<td>Link H</td>
<td>2100</td>
<td>-150</td>
<td>2300</td>
<td>-400</td>
<td>AG</td>
<td>207</td>
<td>1.2</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>I.</td>
<td>Link I</td>
<td>2300</td>
<td>-400</td>
<td>2000</td>
<td>-600</td>
<td>AG</td>
<td>207</td>
<td>1.2</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>J.</td>
<td>Link J</td>
<td>2000</td>
<td>-600</td>
<td>1400</td>
<td>-600</td>
<td>AG</td>
<td>207</td>
<td>1.2</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>K.</td>
<td>Link K</td>
<td>1400</td>
<td>-600</td>
<td>1300</td>
<td>-400</td>
<td>AG</td>
<td>10</td>
<td>1.2</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>L.</td>
<td>Link L</td>
<td>1300</td>
<td>-400</td>
<td>1300</td>
<td>-100</td>
<td>AG</td>
<td>10</td>
<td>1.2</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>M.</td>
<td>Link M</td>
<td>1400</td>
<td>-600</td>
<td>1570</td>
<td>-400</td>
<td>AG</td>
<td>197</td>
<td>2.6</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>N.</td>
<td>Link N</td>
<td>1550</td>
<td>-600</td>
<td>1800</td>
<td>-320</td>
<td>AG</td>
<td>197</td>
<td>2.6</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>O.</td>
<td>Link O</td>
<td>1800</td>
<td>-320</td>
<td>2100</td>
<td>-150</td>
<td>AG</td>
<td>197</td>
<td>1.2</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>P.</td>
<td>Link P</td>
<td>2100</td>
<td>-150</td>
<td>3000</td>
<td>-100</td>
<td>AG</td>
<td>828</td>
<td>1.2</td>
<td>10.0</td>
<td>20.0</td>
</tr>
</tbody>
</table>

III. RECEPTOR LOCATIONS

<table>
<thead>
<tr>
<th>RECEPTOR</th>
<th>COORDINATES (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Recpt 1</td>
<td>2200 -1800 1.8</td>
</tr>
<tr>
<td>2. Recpt 2</td>
<td>2500 -1500 1.8</td>
</tr>
<tr>
<td>3. Recpt 3</td>
<td>4300 -250 1.8</td>
</tr>
<tr>
<td>4. Recpt 4</td>
<td>4700 -300 1.8</td>
</tr>
<tr>
<td>5. Recpt 5</td>
<td>5300 -700 1.8</td>
</tr>
<tr>
<td>6. Recpt 6</td>
<td>1400 150 1.8</td>
</tr>
</tbody>
</table>
IV. MODEL RESULTS (WORST CASE WIND ANGLE)

<table>
<thead>
<tr>
<th>RECEPTOR</th>
<th>BRG (DEG)</th>
<th>CONC (PPM)</th>
<th>CONC/LINK (PPM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recpt 1</td>
<td>339.</td>
<td>3.9</td>
<td>.0 .0 .0 .0 .0 .0 .0 .0</td>
</tr>
<tr>
<td>Recpt 2</td>
<td>325.</td>
<td>3.9</td>
<td>.0 .0 .0 .0 .0 .0 .0 .0</td>
</tr>
<tr>
<td>Recpt 3</td>
<td>276.</td>
<td>4.0</td>
<td>.0 .0 .0 .0 .0 .0 .0 .0</td>
</tr>
<tr>
<td>Recpt 4</td>
<td>277.</td>
<td>4.0</td>
<td>.0 .0 .0 .0 .0 .0 .0 .0</td>
</tr>
<tr>
<td>Recpt 5</td>
<td>282.</td>
<td>3.9</td>
<td>.0 .0 .0 .0 .0 .0 .0 .0</td>
</tr>
<tr>
<td>Recpt 6</td>
<td>102.</td>
<td>4.0</td>
<td>.0 .0 .0 .0 .0 .0 .0 .0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RECEPTOR</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recpt 1</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>Recpt 2</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>Recpt 3</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>Recpt 4</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>Recpt 5</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>Recpt 6</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
</tbody>
</table>
Appendix G CEQA Checklist

<table>
<thead>
<tr>
<th>I. AESTHETICS. Would the project:</th>
<th>Potentially Significant Impact</th>
<th>Less than Significant Impact with Mitigation Incorporated</th>
<th>Less-than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Have a substantial adverse effect on a scenic vista?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>b. Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings along a scenic highway?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>c. Substantially degrade the existing visual character or quality of the site and its surroundings?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>d. Create a new source of substantial light or glare that would adversely affect daytime or nighttime views in the area?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

II. AGRICULTURAL RESOURCES. In determining whether impacts on agricultural resources are significant environmental effects, lead agencies may refer to the California Agricultural Land Evaluation and Site Assessment Model (1997) prepared by the California Department of Conservation. Would the project:

	Potentially Significant Impact	Less than Significant Impact with Mitigation Incorporated	Less-than-Significant Impact	No Impact
a. Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use?	☐	☒	☐	☐
b. Conflict with existing zoning for agricultural use or conflict with a Williamson Act contract?	☐	☐	☐	☒
c. Involve other changes in the existing environment that, due to their location or nature, could result in conversion of Farmland to non-agricultural use?	☐	☐	☒	☐

III. AIR QUALITY. When available, the significance criteria established by the applicable air quality management or air pollution control district may be relied upon to make the following determinations. Would the project:
<table>
<thead>
<tr>
<th>IV. BIOLOGICAL RESOURCES. Would the project:</th>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation Incorporated</th>
<th>Less-than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special-status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
</tr>
<tr>
<td>b. Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
</tr>
<tr>
<td>c. Have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marshes, vernal pools, coastal wetlands, etc.) through direct removal, filling, hydrological interruption, or other means?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>d. Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
</tr>
</tbody>
</table>
V. CULTURAL RESOURCES. Would the project:

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation Incorporated</th>
<th>Less-than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>e. Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?</td>
<td>□</td>
<td>□</td>
<td>☒</td>
<td>□</td>
</tr>
<tr>
<td>f. Conflict with the provisions of an adopted habitat conservation plan, natural community conservation plan, or other approved local, regional, or state habitat conservation plan?</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>☒</td>
</tr>
</tbody>
</table>

VI. GEOLOGY AND SOILS. Would the project:

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation Incorporated</th>
<th>Less-than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving:</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>☒</td>
</tr>
<tr>
<td>1. Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault? Refer to Division of Mines and Geology Special Publication 42.</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>☒</td>
</tr>
<tr>
<td>2. Strong seismic groundshaking?</td>
<td>□</td>
<td>□</td>
<td>☒</td>
<td>□</td>
</tr>
<tr>
<td>3. Seismic-related ground failure, including liquefaction?</td>
<td>□</td>
<td>□</td>
<td>☒</td>
<td>□</td>
</tr>
<tr>
<td>4. Landslides?</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>☒</td>
</tr>
<tr>
<td>b. Result in substantial soil erosion or the loss of topsoil?</td>
<td>□</td>
<td>□</td>
<td>☒</td>
<td>□</td>
</tr>
</tbody>
</table>
Potentially Significant Impact
Less than Significant with Mitigation Incorporated
Less-than-Significant Impact
No Impact

c. Be located on a geologic unit or soil that is unstable or that would become unstable as a result of the project and potentially result in an onsite or offsite landslide, lateral spreading, subsidence, liquefaction, or collapse? ☐ ☐ ☑ ☒
d. Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial risks to life or property? ☐ ☐ ☒ ☐
e. Have soils incapable of adequately supporting the use of septic tanks or alternative wastewater disposal systems in areas where sewers are not available for the disposal of wastewater? ☐ ☐ ☐ ☑

VII. HAZARDS AND HAZARDOUS MATERIALS.
Would the project:

a. Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials? ☐ ☐ ☑ ☐
b. Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment? ☐ ☐ ☑ ☐
c. Emit hazardous emissions or involve handling hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school? ☐ ☐ ☐ ☑
d. Be located on a site that is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment? ☐ ☐ ☐ ☑
e. Be located within an airport land use plan area or, where such a plan has not been adopted, be within two miles of a public airport or public use airport, and result in a safety hazard for people residing or working in the project area? ☐ ☐ ☐ ☑
f. Be located within the vicinity of a private airstrip and result in a safety hazard for people residing or working in the project area? ☐ ☐ ☐ ☑
<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation Incorporated</th>
<th>Less-than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.</td>
<td>Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>h.</td>
<td>Expose people or structures to a significant risk of loss, injury, or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

VIII. HYDROLOGY AND WATER QUALITY.
Would the project:

a. Violate any water quality standards or waste discharge requirements? ☐ ☐ ☒ ☒

b. Substantially deplete groundwater supplies or interfere substantially with groundwater recharge, resulting in a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level that would not support existing land uses or planned uses for which permits have been granted)? ☐ ☐ ☒ ☒

c. Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner that would result in substantial erosion or siltation onsite or offsite? ☐ ☐ ☒ ☒

d. Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner that would result in flooding onsite or offsite? ☐ ☐ ☒ ☒

e. Create or contribute runoff water that would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff? ☐ ☐ ☒ ☒

f. Otherwise substantially degrade water quality? ☐ ☐ ☒ ☒
g. Place housing within a 100-year flood hazard area, as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map? □ □ □ ▧

h. Place within a 100-year flood hazard area structures that would impede or redirect floodflows? □ □ ▧ □

i. Expose people or structures to a significant risk of loss, injury, or death involving flooding, including flooding as a result of the failure of a levee or dam? □ □ □ ▧

j. Contribute to inundation by seiche, tsunami, or mudflow? □ □ □ ▧

IX. LAND USE AND PLANNING. Would the project:

a. Physically divide an established community? □ □ □ ▧

b. Conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including, but not limited to, a general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect? □ □ ▧ □

c. Conflict with any applicable habitat conservation plan or natural community conservation plan? □ □ ▧ □

X. MINERAL RESOURCES. Would the project:

a. Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state? □ □ ▧ □

b. Result in the loss of availability of a locally important mineral resource recovery site delineated on a local general plan, specific plan, or other land use plan? □ □ ▧ □

XI. NOISE. Would the project:

a. Expose persons to or generate noise levels in excess of standards established in a local general plan or noise ordinance or applicable standards of other agencies? □ □ ▧ □
<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation Incorporated</th>
<th>Less-than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. Expose persons to or generate excessive groundborne vibration or groundborne noise levels?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>c. Result in a substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>d. Result in a substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>e. Be located within an airport land use plan area, or, where such a plan has not been adopted, within two miles of a public airport or public use airport and expose people residing or working in the project area to excessive noise levels?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>f. Be located in the vicinity of a private airstrip and expose people residing or working in the project area to excessive noise levels?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

XII. POPULATION AND HOUSING. Would the project:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Induce substantial population growth in an area, either directly (e.g., by proposing new homes and businesses) or indirectly (e.g., through extension of roads or other infrastructure)?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>b. Displace a substantial number of existing housing units, necessitating the construction of replacement housing elsewhere?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>c. Displace a substantial number of people, necessitating the construction of replacement housing elsewhere?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>IMPACT LEVEL</td>
<td>Potentially Significant Impact</td>
<td>Less than Significant Impact with Mitigation Incorporated</td>
<td>Less-than-Significant Impact</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------------</td>
<td>--</td>
<td>-----------------------------</td>
</tr>
</tbody>
</table>

XIII. PUBLIC SERVICES
Would the project:

a. Result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities or a need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times, or other performance objectives for any of the following public services:

- Fire protection?
- Police protection?
- Schools?
- Parks?
- Other public facilities?

XIV. RECREATION
Would the project:

a. Increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?

b. Include recreational facilities or require the construction or expansion of recreational facilities that might have an adverse physical effect on the environment?

XV. TRANSPORTATION/TRAFFIC
Would the project:

a. Cause an increase in traffic that is substantial in relation to the existing traffic load and capacity of the street system (i.e., result in a substantial increase in the number of vehicle trips, the volume-to-capacity ratio on roads, or congestion at intersections)?

b. Cause, either individually or cumulatively, exceedance of a level-of-service standard established by the county congestion management agency for designated roads or highways?
<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation Incorporated</th>
<th>Less-than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>c.</td>
<td>Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>d.</td>
<td>Substantially increase hazards because of a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>e.</td>
<td>Result in inadequate emergency access?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>f.</td>
<td>Result in inadequate parking capacity?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>g.</td>
<td>Conflict with adopted policies, plans, or programs supporting alternative transportation (e.g., bus turnouts, bicycle racks)?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

XVI. UTILITIES AND SERVICE SYSTEMS. Would the project:

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation Incorporated</th>
<th>Less-than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>Exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>b.</td>
<td>Require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>c.</td>
<td>Require or result in the construction of new stormwater drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>d.</td>
<td>Have sufficient water supplies available to serve the project from existing entitlements and resources, or would new or expanded entitlements be needed?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>e.</td>
<td>Result in a determination by the wastewater treatment provider that serves or may serve the project that it has adequate capacity to serve the project’s projected demand in addition to the provider’s existing commitments?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>f.</td>
<td>Be served by a landfill with sufficient permitted capacity to accommodate the project’s solid waste disposal needs?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>g.</td>
<td>Comply with federal, state, and local statutes and regulations related to solid waste?</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

XVII. MANDATORY FINDINGS OF SIGNIFICANCE.

| a. | Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, substantially reduce the number or restrict the range of a rare or endangered plant or animal, or eliminate important examples of the major periods of California history or prehistory? | ☐ | ☐ | ☒ | ☐ |

| b. | Does the project have impacts that are individually limited but cumulatively considerable? (“Cumulatively considerable” means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects.) | ☐ | ☐ | ☒ | ☐ |

| c. | Does the project have environmental effects that will cause substantial adverse effects on human beings, either directly or indirectly? | ☐ | ☐ | ☐ | ☒ |
James B. Richards
Deputy Director Environmental Planning and Engineering
Office of Natural Sciences and Permits
California Department of Transportation
111 Grand Avenue
Oakland, California 94623-0660

Dear Mr. Richards:

Thank you for your October 9, 2008, letter requesting initiation of consultation with NOAA’s National Marine Fisheries Service (NMFS) pursuant to section 7 of the Endangered Species Act (ESA) of 1973, as amended (16 U.S.C. 1531 et seq.), and the Essential Fish Habitat (EFH) provisions of the Magnuson Stevens Fishery Conservation and Management Act (MSFCMA). The California Department of Transportation’s (Caltrans) request for informal consultation was received on October 10, 2008. Additional information was requested for the project by NMFS on October 17, 2008; that information was received from Caltrans on October 21 and November 3, 2008. This response also serves as consultation under the authority of and in accordance with the provisions of the Fish and Wildlife Coordination Act of 1934 (FWCA), as amended. These consultations pertain to Caltrans’ proposed Interstate 80 (I-80) Eastbound Cordelia Truck Scales Project (EA 0A5350), located at the I-80/State Route (SR) 12 East interchange over Suisun Creek, in Cordelia, Solano County, California.

Caltrans, in conjunction with the Federal Highway Administration, and the Solano County Transportation Authority (SCTA), proposes to construct a new truck scale facility on I-80 in the eastbound direction at Cordelia, Solano County. The project includes construction of a four-lane, single-span, precast bridge over Suisun Creek. The bridge will be lowered in place onto new abutments. The abutments will be constructed above the ordinary high water mark (OHWM), and supported on 12 piles each (24 piles total). The piles will either be 14” square precast concrete piles, or 24” cast-in-drill-hole (CIDH) piles. Installation of the piles will be done with an impact hammer, and depending on the type of pile used, pile driving will require from 6 (for precast) to 24 (for CIDH) days. Caltrans and the SCTA anticipate construction to begin in June 2012.

Endangered Species Act

Suisun Creek flows perpendicular to I-80. It is a tributary to Suisun Slough, and eventually drains
into the Suisun Bay. Although the creek has been highly disturbed and channelized, it does support a population of Federally-listed threatened Central California Coast (CCC) steelhead (*Oncorhynchus mykiss*), and provides a migratory corridor for the species. Suisun Creek does not contain designated critical habitat for the species. The creek also supports Central Valley fall/late fall-run Chinook salmon (*O. tshawytscha*), which is a species of concern and not Federally-listed under the ESA. However, they are managed under the MSFCMA, and will be discussed in the EFH section of this letter.

Caltrans has determined that the proposed action is not likely to adversely affect CCC steelhead or its habitat. During the installation of the bridge, disturbance of the creek bank may increase sedimentation rates and turbidity. However, due to the timing of construction (June 15th – October 15th) and location of the work area, turbidity and sedimentation will be minimal as no work will occur in flowing water and all work will be conducted from the creek bank, above the OHWM. The banks will be revegetated where necessary and stabilized prior to the rainy season.

Pile driving for the bridge abutments may result in temporary elevations of underwater sound, which may affect listed fish through exposure to high underwater sound levels. For this project, Caltrans proposes to use an impact hammer to install the piles. However, all piles will be installed along the dry creek bank, none will be driven in water. Thus, anticipated underwater sound pressure levels during pile driving by this project are not expected to rise to levels which would adversely affect anadromous salmonids.

NMFS considers the possibility of adverse effects to listed steelhead during project implementation to be insignificant because: (1) project activities will occur during low flow conditions between June 15th and October 15th; (2) no work will be conducted within the creek bed or in flowing water; (3) the installation of piles is expected to temporarily produce elevations of underwater sound levels, but not to reach levels that would cause injuries to fish; and (4) additional BMPs will be implemented to minimize disturbances and to preclude potential adverse effects to the aquatic environment and associated salmonid habitat (e.g., installation of erosion control devices).

Based on the best available scientific and commercial information, NMFS concurs with Caltrans' determination that the proposed project is not likely to adversely affect CCC steelhead. This concludes ESA consultation in accordance with 50 CFR 402.13(a) for the proposed Interstate 80 (I-80) Eastbound Cordelia Truck Scales Project (EA 0A5350), located at Suisun Creek, Solano County, California. However, further consultation may be required if: (1) new information becomes available indicating that listed species or habitat may be affected by the project in a manner or to an extent not previously considered; (2) current project plans change in a manner that causes an effect to listed species or critical habitat in a manner not previously considered; or (3) a new species is listed or critical habitat designated that may be affected by the action.

Magnuson-Stevens Fishery Conservation and Management Act

As discussed in the above ESA section, Suisun Creek is designated EFH for Central Valley fall/late fall-run Chinook salmon. Although no in-water construction will take place, there may be increased sedimentation and turbidity resulting from construction on the bank. In addition,
Caltrans may have to remove riparian vegetation for access to the construction area during construction. Caltrans has stated that they will implement BMPs to reduce erosion, and replant any areas where vegetation was removed with native vegetation. While these impacts are considered minor and temporary, NMFS has made the determination that the proposed action would adversely affect EFH for this species. However, the proposed action contains adequate measures to avoid, minimize, mitigate, or otherwise offset any adverse effects to EFH. Therefore, NMFS has no additional EFH Conservation Recommendations to provide.

Fish and Wildlife Coordination Act

The purpose of the FWCA is to ensure that wildlife conservation receives equal consideration, and is coordinated with other aspects of water resources development [16 U.S.C. 661]. The FWCA establishes a consultation requirement for Federal departments and agencies that undertake any action that proposes to modify any stream or other body of water for any purpose, including navigation and drainage [16 U.S.C 662(a)]. Consistent with this consultation requirement, NMFS provides recommendations and comments to Federal action agencies for the purpose of conserving fish and wildlife resources. The FWCA allows the opportunity to offer recommendations for the conservation of species and habitats beyond those currently managed under the ESA.

Pursuant to FWCA, NMFS has no comments to provide.

Please contact Ms. Jacqueline Meyer at (707) 575-6057, or via e-mail at jacqueline.pearson-meyer@noaa.gov should you have any questions concerning this consultation.

Sincerely,

Rodney R. McInnis
Regional Administrator

cc: Russ Strach, NMFS, Sacramento
Korie Schaeffer, NMFS, Santa Rosa
Jeffrey Jensen, Caltrans District 4 Oakland
Ahmad Hashemi, Caltrans District 4 Oakland
Melissa Escaron, California Department of Fish and Game
Copy to file: ARN: 151422-SWR-2008-SR00418
Mr. James Richards
California Department Transportation
111 Grand Avenue
P.O. Box 23660
Oakland, California 94623-0660

Subject: Biological Opinion for the Proposed Interstate 80 Eastbound Cordelia Truck Scales Relocation Project, Solano County, California (Caltrans EA 0A5350) on the Threatened Valley Elderberry Longhorn Beetle and the Threatened California Red-legged Frog

Dear Mr. Richards:

This is in response to your July 30, 2008, request for formal consultation with the U.S. Fish and Wildlife Service (Service) on the proposed Interstate 80 Eastbound Cordelia Truck Scales Relocation Project in Solano County, California. Your request was received in our Sacramento field office on July 31, 2008, and included the request for formal consultation on the threatened valley elderberry longhorn beetle (Desmocerus californicus dimorphus) and the threatened California red-legged frog (Rana aurora draytonii). A revised biological assessment for the project was received on October 27, 2008. Formal consultation on the valley elderberry longhorn beetle was removed on May 30, 2009, but reinitiated on July 15, 2009 (as detailed in the Consultation History section). This document represents the Service's biological opinion on the effects of the proposed action on these listed species. This document is issued under the authority of the Endangered Species Act of 1973, as amended (16 U.S.C. § 1531 et seq.)(Act).

This biological opinion is based on: (1) the October 2008 Biological Assessment; (2) additional project information provided by ICF Jones & Stokes on March 18, 2009; April 21, 2009, and June 1, 2009; (3) the March 30, 2009, mitigation and monitoring plan for the proposed 3.0-acre compensation site; (4) the July 15, 2009, California Department of Transportation's (Caltrans) response to the July 2, 2009, draft biological opinion and request for reinitiation of formal consultation for the valley elderberry longhorn beetle; (5) additional effects to the valley elderberry longhorn beetle provided by Caltrans on July 16, 2009; (6) miscellaneous correspondence and electronic mail concerning the proposed action between the Service and
Caltrans and their consultant between July 2008 and July 2009; and (7) other information available to the Service.

Consultation History

- **July 31, 2008**: The Service received a biological assessment and a letter from Caltrans requesting formal consultation on the valley elderberry longhorn beetle and the California red-legged frog. The Caltrans letter was dated July 30, 2008.

- **October 27, 2008**: The Service received a revised biological assessment from Caltrans' consultant, ICF Jones & Stokes.

- **December 5, 2008**: The Service issued a request for additional information required for the completion of consultation (Service File #: 81420-2008-F-1929-1).

- **December 12, 2008**: The Service visited the proposed project site with Caltrans and ICF Jones & Stokes.

- **February 9, 2009**: The Service received the Draft Environmental Impact Report/Environmental Assessment for the proposed project.

- **March 18, 2009**: The Service received a response to the December 2008 information request from ICF Jones & Stokes via an electronic mail (email) message. The response letter was dated March 18, 2009. The letter included the acceptance of a list of additional conservation measures recommended by the Service in our December 5, 2008, request for additional information.

- **April 20, 2009**: The Service received a copy of the *Interstate 80 HOV Lanes/Eastbound Cordelia Truck Scales Relocation Project Mitigation and Monitoring Plan* attached to an email message from a consultant to the Solano Transportation Authority (STA). The restoration project was intended to offset the project's effects on the California red-legged frog. The plan also includes the planting of 107 elderberry shrubs (*Sambucus* species). The document was prepared by H.T. Harvey & Associates and was dated March 30, 2009.
April 21, 2009

The Service received an electronic mail message from ICF Jones & Stokes which included further clarification of the area of effects to California red-legged frog habitat as shown in the following table.

<table>
<thead>
<tr>
<th></th>
<th>Permanent (acres)</th>
<th>To be restored (acres)</th>
<th>Total (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riparian previously covered by Interstate 80 biological opinion.</td>
<td>0.02</td>
<td>0.11</td>
<td>0.13</td>
</tr>
<tr>
<td>Riparian</td>
<td>0.71</td>
<td>1.00</td>
<td>1.71</td>
</tr>
<tr>
<td>Ruderal</td>
<td>0.31</td>
<td>1.28</td>
<td>1.59</td>
</tr>
<tr>
<td>Total</td>
<td>1.04</td>
<td>2.39</td>
<td>3.43</td>
</tr>
</tbody>
</table>

May 26, 2009

The Service was informed via an email message that a jack and bore operation to install a Solano Irrigation District water pipeline under Suisun Creek was being added to the project description.

May 30, 2009

The Service received confirmation from Caltrans’ consultant, ICF Jones & Stokes, that the valley elderberry longhorn beetle should be removed from the consultation because the beetles and the associated elderberry shrubs in the action area were covered under incidental take for the overlapping Interstate 80 HOV Lane Project (Service File 1-1-07-F-0146). ICF Jones & Stokes stated that they would pursue an amendment to the Interstate 580 HOV Project with Caltrans and STA. The amendment would incorporate the changes regarding the contingency plans should they be unable to transplant the five elderberry shrubs in the shared action areas.

June 1, 2009

The Service received a project description for the proposed jack and bore activity under Suisun Creek via an email from ICF Jones & Stokes. The message stated that reconnaissance surveys were performed for the additional action area. The closest elderberry shrub was approximately 70 feet away from the entry and exit work areas for the jack and bore and would be avoided by the activity. The entry and exit locations are also located within in an area actively managed for orchard and row crop agriculture and therefore activity in these locations is not likely to adversely affect the California red-legged frog.

June 4, 2009

The Service received an email from ICF Jones & Stokes stating that the entry and exit work area for the jack and bore would add 0.5 acres to the overall action area and the activity would occur between June 1 and October 1 in 2010 or 2011.

July 2, 2009

The Service issued a draft biological opinion (Service File 81420-2008-F-1929-2) for the California red-legged frog.
The Service received a letter head response from Caltrans regarding their review of the July 2, 2009, draft biological opinion. The letter included requested edits along with a request to reinitiate formal consultation for the valley elderberry longhorn beetle. The request to add the listed beetle resulted from the realization that a fifth elderberry shrub in the shared action area with the Interstate 80 HOV Lane Project had not been included in the consultation for the neighboring project (unlike the other four elderberry shrubs). This fifth shrub would be pruned or removed as a result of the actions associated with the Interstate 80 Eastbound Cordelia Truck Scales Relocation Project. If the shrub needs to be removed, it will be transplanted to the proposed 3.0-acre Suisun Creek restoration site on the Solano Community College Campus where the effects to the listed beetle have been offset by the proposed planting of 107 elderberry shrubs.

The Service received an email from Caltrans stating that they had identified three additional elderberry shrubs that may be indirectly affected by the proposed project. The three shrubs are within 17 to 34 feet of the proposed construction at the top of the bank on the east side of Suisun Creek and south of the truck scales construction area. Biologists were unable to assess the shrubs for valley elderberry beetle exit holes due to heavy poison oak (Toxicodendron diversilobum) growth. Caltrans identified dust accumulation, removal of associated woodland species, and root damage as potential indirect effects to the three shrubs and elderberry beetles that may be found on the shrubs. Caltrans proposed construction buffer and dust control measures to minimize the effects to the listed beetle.

BIOLOGICAL OPINION

Description of the Proposed Action

Caltrans proposes to relocate and reconstruct the Cordelia truck scales off of eastbound Interstate 80 in Solano County, California. The new facility would be located south of Interstate 80 between the existing truck scale facility and the Interstate 80/eastbound State Route 12 interchange. The approximately 2 mile long project includes removal of the existing truck scales along with construction of the new facility and the associated on and off ramps. The proposed project is intended to address the need for increased capacity to accommodate anticipated growth in truck traffic in the corridor by 2040, to provide traffic congestion relief along this segment of I-80, improve safety by reducing truck/auto weaving and queuing, and improve the reliability of the system to enforce truck weight and safety requirements. The project is also intended to address overall velocity, throughput, reliability, congestion, and safety in the eastbound Interstate 80 traffic corridor.
Construction Schedule and Funding

Construction is expected to begin May 31, 2011 and be completed by September 30, 2013.

Caltrans expects the construction to be phased generally as follows:

1. Utility relocations.

2. Construct new weigh station and inspection facility, ramp connection from existing facility to new facility (including bridge across Suisun Creek), and on ramps from the new facility to Interstate 80 and the new Interstate 80/eastbound State Route 12 connector. Any work in the Suisun Creek (vegetation cutting) would occur between June 1 and October 15 to avoid periods when Central Valley fall/late fall–run Chinook salmon (*Oncorhynchus tshawytscha*) and central California coast steelhead (*Oncorhynchus mykiss*) may be present.

3. Construct and open a new connector to eastbound State Route 12, then complete paving of a new on-ramp to eastbound Interstate 80 from the inspection facility.

4. Open new facility, using temporary off-ramp east of existing facility.

5. Complete final off-ramp configuration and remove temporary off-ramp east of existing truck scales.

6. Demolish existing facility.

Project Components

1. Truck Scales
 The eastbound Cordelia Truck Scales facility would be reconstructed approximately 2,500 feet east of its present location. The new facility would be a Class B (defined as an independent command facility of the California Highway Patrol located along a major highway route) Commercial Vehicle Enforcement Facility, which would have the capacity to inspect all eastbound Interstate 80 trucks passing the facility 24 hours a day, 7 days a week. The facility would contain up to four sets of scales to accommodate two lines of empty and loaded trucks. The new facility would contain four inspection bays, parking for up to 22 semi-truck trailer combinations, 49 automobile parking spaces, and a roadway along the outer edge of an oval to allow weighed trucks to be driven around into the inspection bay or to be reweighed. A single-story operations building would be constructed to facilitate the vehicle inspection and weighing process.
Construction would consist of grading to a maximum of 4 feet in depth, compacting, paving, and striping. Staging areas would be located within the acquired right-of-way and are included in the described action area.

2. Associated Ramps
Associated ramps would include an off-ramp providing access to the truck scale facility from eastbound Interstate 80 and on-ramps providing access to eastbound Interstate 80 and eastbound State Route 12.

The off-ramp to the new truck scale facility would use the existing off-ramp location and geometry, which consists of a dedicated off-ramp and a shared through-exit lane. The new off-ramp would continue as a two-lane facility through the existing truck scale site and would widen to four lanes immediately west of Suisun Creek. The new off-ramp would cross over Suisun Creek on a new bridge before entering the new truck scale facility. Truck traffic would be sorted along the approach roadway into the appropriate lane by means of weigh-in-motion scales and signal bridges.

Trucks leaving the facility would use a new two-lane eastbound roadway that splits approximately 1,300 feet east of the facility with one lane merging onto eastbound Interstate 80 and the other lane connecting to the eastbound Interstate 80-to-eastbound State Route 12 connector.

Construction would consist of grading to a maximum of 4 feet in depth, compacting, paving, and striping. Staging areas would be located within the acquired right-of-way.

3. Interstate 80/Eastbound State Route 12 Connector
The eastbound Interstate 80 connector to eastbound State Route 12 would be reconstructed as a two-lane ramp crossing over (braided with) the truck scale on-ramp to eastbound Interstate 80. The connector bridge and associated retaining wall would be constructed to an ultimate three-lane width to facilitate future planned improvements, although the exit from Interstate 80 proposed for this project would consist of a two-lane connection (one dedicated eastbound State Route 12 lane and a shared through-exit lane). The new dedicated lane on Interstate 80 would begin approximately 2,500 feet west of the exit point to the connector. The connector would cross Suisun Creek on a bridge that has been widened as part of a previous project (Interstate 80 HOV Lanes [Service File 1-1-07-F-0146]). The two-lane connector would continue east becoming eastbound State Route 12, with the truck scale on-ramp joining as an auxiliary lane that would end at the eastbound State Route 12/Chadbourne Road interchange off-ramp.

4. Bridge over Suisun Creek
A four-lane, precast, single-span bridge would be constructed to carry truck traffic on the off-ramp over Suisun Creek. The bridge would be approximately 100 feet long and 56 feet wide.
Concrete bridge abutments for the new bridge would be located above the ordinary high water mark. Excavations for the abutments would extend approximately 8 feet below the surface. The precast bridge would be positioned using a crane. No construction work would take place within the creek. Construction equipment would access the bridge site from Interstate 80 and would use the highway bridge to cross the creek.

5. Relocation of Utilities

Sewer, communication, and electrical services for the truck scales would be provided by underground utilities. The underground lines would connect to existing utilities to the west (in the vicinity of Scandia) and would follow the road shoulder, remaining entirely with the existing Caltrans right-of-way. It is expected that excavation for these utilities would be approximately 8 feet deep and would parallel existing underground utilities. The utilities would cross both Suisun and Dan Wilson Creeks attached to the Interstate 80 bridges.

Some adjustment to overhead power lines would be necessary. To facilitate the realignment of the overhead power line, it would be necessary to remove some utility poles and towers and relocate them. It is expected that five new utility poles would be located along the south and west sides of the proposed truck scales facility, and that two poles would need to be removed in that area. In the vicinity of the Interstate 80/eastbound State Route 12 interchange, one pole and two towers would be removed and relocated.

Bore-and-jack technology would be used to relocate an 18-inch diameter Solano Irrigation District (SID) pipeline beneath Suisun Creek. The bore and jack would be constructed approximately 50 feet south of the study area. The boring and receiving pits would be set in row crops approximately 30 feet east of riparian woodland on the east side of Suisun Creek and set in an orchard approximately 50 feet west of riparian woodland on the west side of the creek. Construction of the jack and bore would take approximately 4 weeks and would occur between June 1 and October 1 in 2010 or 2011. The micro-tunneling process may use a mixture of bentonite (inert clay) and petroleum as a lubricant for the drilling mechanism.

Drilling near the ground surface or close to the bed of a surface water body introduces the potential for an unplanned “frac-out,” in which the pressure of the bentonite or other drilling lubricant generates a surface rupture, causing a release of bentonite to the ground surface or in Suisun Creek. Although bentonite is not toxic, it can smother habitat and increase turbidity and suspended sediments in Suisun Creek.

For bore-and-jack tunneling activities that use drilling lubricants, Caltrans or its contractor will prepare and implement a frac-out contingency plan that is intended to minimize the potential for a frac-out associated with tunneling activities; provide for the timely detection of frac-outs; and ensure an organized, timely, and “minimum-impact”
response in the event of a frac-out and release of drilling lubricant (i.e., bentonite). The contingency plan will require, at a minimum, the following measures.

a. A full-time monitor will attend all drilling to look for observable frac-out conditions or lowered pressure readings on drilling equipment.

b. If a frac-out is identified, all work will stop, including the recycling of drilling lubricant.

c. In the event of a frac-out into water, the pressure of water above the tunnel will keep excess mud from escaping through the fracture. The location and extent of the frac-out will be determined, and the frac-out will be monitored for 4 hours to determine whether the drilling lubricant congeals (bentonite will usually harden, effectively sealing the frac-out location).

d. If the drilling lubricant congeals, no other actions will be taken that would potentially suspend sediments in the water column.

e. Surface releases of bentonite will be allowed to harden and then will be removed.

f. The contingency plan will identify additional measures to be taken to contain or remove the drilling lubricant if it does not congeal.

6. Removal of Existing Truck Scales
Once construction of the new truck scale facility is complete and the new facility is operational, the existing facility would be removed. However, the pavement associated with the existing facility will remain and be retained as a contingency for several possible uses, such as Caltrans maintenance operations or additional inspection holding areas.

Construction Access and Staging

All access to the construction area in the vicinity of Suisun Creek will be from Interstate 80 and within the described action area. Staging areas will be selected prior to construction start-up, located within the identified project footprint and in areas with no sensitive biological resources.

Off-Site Habitat Restoration

Caltrans has proposed restoration of 3.0 acres of Suisun Creek riparian habitat approximately 500 feet upstream of the Interstate 80 crossing of the creek to offset the project’s adverse effects on the valley elderberry longhorn beetle and California red-legged frog and to provide replacement plantings for lost riparian vegetation (H.T. Harvey & Associates 2009). The restoration site is immediately upstream of a proposed 1.0 acre restoration site for compensation associated with STA’s proposed North Connector Project (Service File 81420-2009-F-0308). The restoration
would occur in a ruderal, former agricultural field immediately adjacent to the Suisun Creek riparian corridor on Solano Community College property. The proposed restoration site is within the historical flood plain of Suisun Creek and is currently fallow yet routinely disked for fire and weed control.

The proposed restoration plan is a northward expansion of the 1.0-acre restoration plan proposed by STA for their North Connector Project. Caltrans will entrust and fund STA to implement and monitor the 3.0-acre restoration plan in conjunction with and as an extension of STA’s efforts on the contiguous 1.0-acre restoration site. STA’s consultant, H.T. Harvey & Associates drafted the plans for both sites and is the likely contractor to oversee the restoration and monitoring.

The restoration includes planting 767 trees and shrubs, including coast live oak (*Quercus agrifolia*), valley oak (*Q. lobata*), California buckeye (*Aesculus californica*), California bay (*Umbellularia californica*), blue elderberry (*Sambucus Mexicana*), coyote bush (*Baccharis pilularis*), coffeeberry (*Rhamnus californica*), California rose (*Rosa californica*), and California blackberry (*Rubus ursinus*). The plan includes the planting of 107 elderberries, not including possible transplantation of one shrub within in the action area.

STA has already collected plant material for the 1.0 acre site for its North Connector Project and plans to begin restoration of that area between October 2009 and February 2010. Collection and propagation of plant material for the 3.0-acre site would occur in Fall 2009 and planting would begin in Fall 2010 (which is prior to the scheduled start of the truck scales construction). According to the restoration plan, long-term establishment and reproduction of the planted vegetation would be expected within 10 years of planting and mature growth would be expected after 25 years (H.T. Harvey & Associates 2009).

The following is a summary of the proposed restoration plan. To prepare the site for planting the soil will be disked and amended if needed. Native vegetation within the adjacent riparian corridor and persisting in the restoration area will be identified for avoidance. Vegetation will be planted to provide a continuous, multi-layered, native riparian woodland community that includes species found in the Suisun Creek riparian corridor. The source material for the plantings will be collected along the Suisun Creek corridor and propagated at an experienced nursery (likely Cornflower Farms in Elk Grove, California). Additional plant material will be collected from other Solano County riparian corridors if needed. Other than the container plantings, areas disturbed during restoration will be hydroseeded with a native seed mix. The plantings will be supported with an irrigation system and mulch, and protected with caging. Woody debris from the truck scales action area will be scattered throughout the restoration area. Fencing and signage will be used to identify and protect the site.

The plan includes a ten-year monitoring plan with a more intense irrigation, management, and monitoring effort for the initial three years following planting. Monitoring during the first three years will include three site visits per month during the growing season (March-October) and one visit a month from November to February. All dead plantings will be replaced during the first
two years and replacement in the third year of monitoring will be based on achieving 80% survival. The monitoring period will be extended if 80% survival is not met by the third year following the initial planting. The success of the restoration site will be reassessed in years five, seven, and ten using the criteria outlined in the March 2009 restoration plan (H.T. Harvey & Associates 2009). Additional monitoring will occur if the success criteria have not been met after the tenth year. A monitoring report will be submitted by December 31st of each monitoring year.

A conservation easement/deed restriction will be established for the restoration site. Solano Community College will hold the easement/deed restriction and continue the management of the restoration site.

Proposed Avoidance and Minimization Measures

According to the October 2008 Biological Assessment, the March 18, 2009 letter from ICF Jones & Stokes, and the Caltrans’ June 16, 2009, email, Caltrans propose to avoid, minimize, and compensate for effects to listed species by implementing the following measures:

Valley Elderberry Longhorn Beetle

1. If feasible, Caltrans will transplant the one directly affected elderberry shrub to the proposed 3.0-acre Suisun Creek riparian corridor restoration site on Solano Community College property according to Service-approved procedures outlined in the Valley Elderberry Longhorn Beetle Guidelines (Service 1999) prior to the start of construction. Transplanting will be done during the dormant period for elderberry shrubs (November through the first 2 weeks of February). If Caltrans is unable to remove the shrub due to access and/or bank stability concerns the shrub will be left in place and pruned as needed prior to construction.

2. Caltrans will plant a minimum of 107 elderberry shrubs at the proposed 3.0-acre Suisun Creek restoration site on the Solano Community College Campus to offset the effects to the valley elderberry longhorn beetle due to direct effects associated with transplantation or pruning of an elderberry shrub within the action area and the indirect effects associated with the habitat fragmentation of Suisun Creek.

3. Establish a Buffer Area Around All Elderberry Shrubs. Before any ground-disturbing activity, Caltrans will ensure that a minimum 4-foot-tall temporary, plastic mesh-type construction fence (Tensor Polygrid or equivalent) will be installed 20 feet outside the driplines of elderberry shrubs where feasible. This fencing is intended to prevent encroachment by construction vehicles and personnel, and to prevent inadvertent trimming of elderberry shrubs and associated riparian vegetation. The exact location of the fencing will be determined by a Service-approved biologist, with the goal of protecting habitat for the valley elderberry longhorn beetle.
The fencing will be strung tightly on posts set at a maximum interval of 10 feet. The fencing will be installed in a way that prevents equipment from enlarging the work area beyond the delineated work area. The fencing will be checked and maintained until all construction is completed. This buffer zone will be marked by a sign stating, “This is habitat of the valley elderberry longhorn beetle, a threatened species, and must not be disturbed. This species is protected by the Endangered Species Act of 1973, as amended. Violators are subject to prosecution, fines, and imprisonment.” No construction activity, including grading, will be allowed until this condition is satisfied. No grading, clearing, storage of equipment or machinery, or other disturbance or activity may occur until the Service-approved biologist has inspected and approved all temporary construction fencing. The fencing and a note reflecting this condition will be shown on the construction drawings.

4. Dust Control. Caltrans will ensure that dust control measures are implemented for all ground-disturbing activities in the project area. These measures may include application of water to graded and disturbed areas that are unvegetated. To avoid attracting Argentine ants (*Linepithema humile*), at no time will water be sprayed within the driplines of elderberry shrubs.

California Red-Legged Frog

1. Caltrans proposes to offset the loss of approximately 3.43 acres of California red-legged frog habitat with the restoration of 3.0 acres of riparian habitat along the Suisun Creek on Solano Community College property. The proposed habitat restoration site is located approximately 500 feet upstream of the westbound Interstate 80 crossing of Suisun Creek. The proposed 3.0-acre site is currently occupied by a fallow field adjacent to the narrow riparian corridor associated with Suisun Creek. The restoration will be incorporated into another proposed restoration effort of 1.0 acres of riparian habitat for the North Connector Project proposed by STA. The combined restoration will be planned and managed by STA during development of their North Connector Project. The restoration will include a 10-year monitoring plan.

2. A Service-approved biologist(s) will be designated for the activities that will affect California red-legged frog. The qualified biologist(s) will be on-site during specific construction activities that may reasonably result in the take of the California red-legged frog. The qualifications of the biologist(s) will be presented to the Service for review and written approval prior to ground-breaking at the project site. The biologist(s) will coordinate through the Resident Engineer, to stop any work that may result in take of the California red-legged frog. If work is stopped, the biologist(s) will notify the Service by telephone and electronic mail within one (1) working day. The Service contact will be Chris Nagano, Division Chief, Endangered Species Program at the Sacramento Field Office at telephone (916) 414-6600.
3. The Service-approved biologist will monitor all ground-disturbing construction activity near potential California red-legged frog habitat. After ground-disturbing activities are complete, the Service-approved biologist will train an individual to act as the on-site construction monitor. The on-site monitor will have attended the environmental awareness training. Both the Service-approved biologist and construction monitor will have the authority to stop or redirect project activities to ensure protection of resources and compliance with all environmental permits and conditions of the project with communication through the Resident Engineer. If the Service-approved biologist or construction monitor has requested that work stop because of take of any of the listed species, the Service and the California Department of Fish and Game will be notified within one working day via email or telephone. The Service-approved biologist and construction monitor will complete a daily log summarizing activities and environmental compliance.

4. The Resident Engineer will halt work and immediately contact the Service-approved project biologist(s) and the Service in the event that a California red-legged frog gains access to a construction zone. The Resident Engineer will suspend construction activities in the immediate construction zone that could reasonably result in a take of a California red-legged frog until the animal leaves the site voluntarily or is removed by the biologist(s) to a release site using Service-approved handling techniques.

5. Any person capturing or handling a California red-legged frog will be a qualified biologist approved by the Service. Candidates will have completed at least four years of university training in wildlife biology or a related science, or have demonstrated field experience in the identification and life history of the California red-legged frogs. Resumes of all biologists proposed to capture or handle California red-legged frogs will be submitted to the Service for approval no later than 30 days before the start of construction.

6. If necessary, nets or bare hands will be used to capture California red-legged frogs. The Service-approved biologist will not use soaps, oils, creams, lotions, repellents, or solvents of any sort on their hands within two hours before and during periods in which they are capturing and relocating California red-legged frogs. To avoid transferring disease or pathogens between aquatic habitats during the course of surveys or handling of California red-legged frogs, the Service-approved biologist will follow the Declining Amphibian Populations Task Force’s Code of Practice. The Service-approved biologist will limit the duration of handling and captivity of California red-legged frog. While in captivity, California red-legged frogs will be kept in a cool, moist, aerated environment, such as a bucket containing a damp sponge. Containers used for holding or transporting adults of this species will not contain any standing water.
7. All construction areas will be flagged, and all activity will be confined to these areas. For seasonal avoidance of the California red-legged frog, construction will not occur in the 3.43 acres of identified habitat in the action area from November 1 through April 30 (California red-legged frog breeding season) to the extent practicable. If any work remains to be completed after November 1, exclusion fencing will be placed in those areas where construction needs to be completed. Exclusionary fencing will consist of taut silt fabric, 24 inches in height, stacked at 10-foot intervals, with the bottom buried 6 inches below grade. Exclusion fencing will be maintained so that it is intact during rain events and 24 hours after any rain event.

8. Because dusk and dawn are often the times when California red-legged frogs are most actively foraging and dispersing, all construction activities will cease 30 minutes before sunset and will not begin before 30 minutes prior to sunrise.

9. A representative will be appointed by Caltrans who will be the contact source for any employee or contractor who might inadvertently kill or injure a California red-legged frog, or who finds a dead, injured, or entrapped individual. The representative will be identified during the employee education program. The representative’s name and telephone number will be provided to the Service before the initiation of ground-disturbing activities.

10. Tightly woven fiber netting or similar material will be used for erosion control or other purposes at the project site to ensure that California red-legged frogs are not trapped. This limitation will be communicated to the contractor through use of special provisions included in the bid solicitation package. Coconut coir matting will be considered an acceptable erosion control material. No plastic monofilament matting will be used for erosion control.

11. A litter control program will be instituted at the entire project site. All workers will ensure that food scraps, paper wrappers, food containers, cans, bottles, and other trash from the project area are deposited in covered or closed trash containers. The trash containers will be removed from the project area at the end of each working day.

12. After construction is complete, temporarily disturbed areas within the project area will be restored to pre-project conditions or enhanced to compensate for the removal of riparian vegetation.

13. Caltrans will include special provisions that include the avoidance and minimization efforts described for bid information when applicable.

14. Environmental Awareness Training. Caltrans will retain a Service-approved biologist to develop and conduct environmental awareness training for construction employees on the importance of on-site biological resources, including sensitive natural communities;
native trees to be retained; special-status wildlife habitats, and the valley elderberry longhorn beetle and California red-legged frog. The environmental awareness program will be provided to all construction personnel to brief them on the life history of special-status species in or adjacent to the project area, the need to avoid adverse affects to sensitive biological resources, any terms and conditions required by state and federal agencies, and the penalties for not complying with biological constraints. If new construction personnel are added to the project, the contractor’s superintendent will ensure that the personnel receive the mandatory training before starting work. An environmental awareness handout will be provided to each person that describes and illustrates sensitive resources to avoid during project construction and identifies all relevant permit conditions.

15. Project employees will be provided with written guidance governing vehicle use, speed limits on unpaved roads, fire prevention, and other hazards.

16. To avoid injury or death of a California red-legged frog, no firearms will be allowed in the action area except for those carried by authorized security personnel, or local, State, or Federal law enforcement officials.

17. To prevent harassment, injury or mortality of a California red-legged frog or destruction of their refuge, project personnel will not be permitted to have dogs or cats in the action area.

18. For work that could reasonably result in a take of a California red-legged frog, a Service-approved biologist(s) will be on-site to monitor the initial ground disturbance activities. The biologist(s) will perform a clearance survey immediately prior to the initial ground disturbance. A Service-approved biologist will carefully search all obvious potential hiding spots for California red-legged frog, such as large downed woody debris, the perimeter of wetland habitats, and the Suisun Creek riparian. The biologist(s) will investigate all potential California red-legged frog cover sites. This includes thorough investigation of mammal burrows. The entrances will be collapsed following investigation. Any California red-legged frog found will be captured and held for the minimum amount of time necessary to release them in suitable habitat outside the study area. Suitable release sites will be identified by a qualified biologist approved by the Service before the start of construction activities. Safety permitting, the Service-approved biologist(s) will investigate areas of disturbed soil for signs of listed species within thirty (30) minutes following the initial disturbance of that given area.

19. When it is necessary to relocate California red-legged frog outside the action area, the listed amphibian will be moved the shortest distance possible by a Service-approved biologist within the Suisun Creek riparian corridor or to a small mammal burrow in adjacent and appropriate habitat.
20. Injured California red-legged frogs will be cared for by a licensed veterinarian or other qualified person such as the on-site biologist; dead individuals must be placed in a sealed plastic bag with the date, time, location of discovery, and the name of the person who found the animal; the carcass should be kept in a freezer; and held in a secure location. The Service and the California Department of Fish and Game will be notified within one (1) working day of the discovery of death or injury to a California red-legged frog that occurs due to project related activities or is observed at the project site. Notification will include the date, time, and location of the incident or of the finding of a dead or injured animal clearly indicated on a USGS 7.5 minute quadrangle and other maps at a finer scale, as requested by the Service, and any other pertinent information. Caltrans has identified the Service contacts as Chris Nagano, Division Chief, Endangered Species Program at the Sacramento Fish and Wildlife Office [(916) 414-6600], and Dan Crum, Resident Agent-in-Charge of the Service’s Law Enforcement Division at (916) 414-6660. Caltrans has identified the California Department of Fish and Game contact as Mr. Scott Wilson at telephone (707) 944-5563. Sightings of any listed or sensitive animal species will be reported to the California Natural Diversity Database of the California Department of Fish and Game.

21. Biologists will take precautions to prevent introduction of amphibian diseases to the action area by disinfecting equipment and clothing as directed in the October 2003, California tiger salamander survey protocol titled, *Interim Guidance on Site Assessment and Field Surveys for Determining Presence or a Negative Finding of the California Tiger Salamander* and the recommended equipment decontamination procedures within the Service’s *California Red-Legged Frog Survey Guidance*. Caltrans is aware that both items are available at the Service’s Sacramento office website (http://www.fws.gov/sacramento/es/protocol.htm). Disinfecting equipment and clothing is especially important when biologists are coming to the action area to handle amphibians after working in other aquatic habitats.

22. To minimize temporary disturbances in areas of California red-legged frog habitat, project related vehicle traffic will be restricted to established roads, construction areas, and other designated areas. These areas also should be included in pre-construction surveys and, to the maximum extent practicable, should be established in locations disturbed by previous activities to prevent further adverse effects. Project related vehicles will observe a 20-mile per hour speed limit, except on County roads, and State and Federal highways. Off-road traffic outside of designated action areas for construction phases with potential California red-legged frog habitat will be prohibited.

23. Caltrans describes temporary effects as those activities that are ancillary to permanent construction features and disturb an area for a specific limited period and which can be restored to pre-disturbance-type conditions prior to the beginning of the following year’s rainy season (e.g. October 15th). Areas temporarily affected by the project will typically be restored after a single construction season. Where temporary soil disturbance occurs,
Caltrans standard erosion control practices will restore cover prior to winter rains and within a single red-legged frog breeding season.

24. Dust control measures will consist of regular truck watering of construction access areas and disturbed soil areas with the use of organic soil stabilizers to minimize airborne dust and soil particles generated from graded areas. Regular truck watering will be a requirement of the construction contract. In addition, for disturbed soil areas, an organic tackifier to control dust emissions blowing off of the right-of-way or out of the construction area during construction will be included in the contract special provisions. Watering guidelines for dewatering will be established to avoid any excessive run-off that may flow into contiguous areas. Any material stockpiles will be watered, sprayed with tackifier or covered, to minimize dust production and wind erosion.

25. Use of rodenticides and herbicides in the action area will be used in such a manner to prevent primary or secondary poisoning of a California red-legged frog and the depletion of vegetation on which they depend. All uses of such compounds will observe label and other restrictions mandated by the U.S. Environmental Protection Agency, California Department of Food and Agriculture, and other appropriate State and Federal regulations, as well as additional project-related restrictions deemed necessary by the Service or the California Department of Fish and Game.

26. Dedicated fueling and refueling practices will be designated as part of the approved Stormwater Pollution Prevention Program (SWPPP). Dedicated fueling areas will be protected from storm water run-on and run-off and will be located at least 50 feet from downslope drainage facilities and water courses. Fueling will be performed on level-grade areas. On site fueling will only be used where it is impractical to send vehicles and equipment off-site for fueling. When fueling must occur on-site, the contractor will designate an area to be used subject to the approval of the Resident Engineer, representing Caltrans. Drip pans or absorbent pads will be used during on-site vehicle and equipment fueling.

27. The potential for adverse effects to water quality will be avoided by implementing temporary and permanent Best Management Practices (BMPs) outlined in section 7-7.01G of the Caltrans’ Standard Specifications. Additional water quality protection measures required by other permits such as the California Department of Fish and Game’s Lake and Streambed Alteration Agreement and the State Water Resources Control Board’s National Pollution Discharge Elimination System Statewide Storm Water Permit will be implemented. Caltrans SWPPP and erosion control BMPs will be used to minimize any wind or water-related erosion. A SWPPP will be developed for the project, as one is required for all projects that have at least 1.0 acre of soil disturbance. The SWPPP complies with the Caltrans Storm Water Management Plan (SWMP). The SWMP includes guidance for Design staff to include provisions in construction contracts
to include measures to protect sensitive areas and to prevent and minimize stormwater and non-stormwater discharges.

The SWPPP is referenced in the Caltrans Construction Site BMPs Manual. This manual is comprehensive and includes many other protective measures and guidance to prevent and minimize pollutant discharges and can be found at the following website location: http://www.dot.ca.gov/hq/construc/stormwater/manuals.htm. Protective measures will be included in the contract, including, at a minimum:

a. No discharge of pollutants from vehicle and equipment cleaning are allowed into the storm drain or water courses.

b. Vehicle and equipment fueling and maintenance operations must be at least 50 feet away from water courses.

c. Concrete wastes are collected in washouts and water from curing operations is collected and disposed of and not allowed into water courses.

d. Dust control will be implemented, including use of water trucks and tackifiers to control dust in excavation and fill areas, rocking temporary access road entrances and exits, and covering temporary stockpiles when weather conditions require.

e. Coir rolls will be installed along or at the base of slopes during construction to capture sediment and temporary organic hydromulching will be applied to all unfinished disturbed and graded areas.

f. Restoration of work areas where temporary disturbance has removed the pre-existing vegetation and re-seeding with a native seed mix.

h. A Revegetation Plan will be prepared for restoration of temporary work areas. Pavement and base will be removed; topography blended with the surrounding area; and topsoil will be salvaged from the new alignment area to be placed over the restored area, which will then be revegetated with native grassland species.

28. All grindings and asphaltic-concrete waste will be stored within previously disturbed areas absent of habitat and at a minimum of 150 feet from any aquatic habitat, culvert, or drainage feature.
29. Areas outside of the construction zones containing suitable habitat for the California red-legged frog will be delineated with high visibility temporary fencing at least 4 feet in height, flagging, or other barrier to prevent encroachment of construction personnel and equipment onto sensitive areas during construction activities. The fencing will be removed only when all construction equipment is removed from the site. Activities within the action area will be limited to vehicle and equipment operation on existing roads. No project activities will occur outside the delineated project construction area.

30. If requested, before, during, or upon completion of ground breaking and construction activities, Caltrans will allow access by Service personnel to the action area to inspect project effects to California red-legged frogs and their habitat.

31. To prevent inadvertent entrapment of the California red-legged frog during construction, steep-walled holes or trenches more than 2 feet deep will be covered at the close of each working day by plywood or similar materials. Alternatively, an additional 4-foot high vertical barrier, independent of exclusionary fences, may be used to further prevent the inadvertent entrapment of California red-legged frogs. If it is not feasible to cover an excavation or provide an additional 4-foot high vertical barrier, independent of exclusionary fences, one or more escape ramps constructed of earth fill or wooden planks will be installed. Before such holes or trenches are filled, they will be thoroughly inspected for trapped animals. If at any time a trapped listed animal is discovered, the on-site biologist will immediately place escape ramps or other appropriate structures to allow the animal to escape, or the Service will be contacted by telephone for guidance. The Service will be notified of the incident by telephone and electronic mail within one (1) working day.

32. The following shall be implemented for staging, storage sites, vehicle parking, and access associated with the project:

a. Caltrans will require as part of the construction contract that all contractors comply with the Act in the performance of the work as described in the project description of this biological opinion and conducted within the action area.

b. If a staging, storage, access, or vehicle parking area that is in compliance with the Act is not available, the agency with jurisdiction and the contractor would be responsible for compliance with the Act.

Analytical Framework for the Jeopardy Analysis

In accordance with policy and regulation, the jeopardy analysis in this biological opinion relies on four components: (1) the Status of the Species, which evaluates the species' range-wide condition, the factors responsible for that condition, and its survival and recovery needs; (2) the Environmental Baseline, which evaluates the condition of the species in the action area, the
factors responsible for that condition, and the relationship of the action area to the survival and recovery of the species; (3) the Effects of the Action, which determines the direct and indirect effects of the proposed Federal action and the effects of any interrelated or interdependent activities on the species; and (4) Cumulative Effects, which evaluates the effects of future, non-Federal Activities in the action area on the species. These four components are presented separately below for the valley elderberry longhorn beetle and California red-legged frog.

In accordance with policy and regulation, the jeopardy determination is made by evaluating the effects of the proposed Federal action in the context of the species' current status, taking into account any cumulative effects, to determine if implementation of the proposed action is likely to cause an appreciable reduction in the likelihood of both the survival and recovery of the species in the wild.

Action Area

The action area is defined in 50 CFR § 402.02, as “all areas to be affected directly or indirectly by the Federal action and not merely the immediate area involved in the action.” For the proposed action, the action area includes all lands associated with the approximately 56.92 acre project footprint and roads (except for County roads, and State and Federal highways) and other areas accessed by project vehicles.

Status of the Species and Environmental Baseline

Valley Elderberry Longhorn Beetle

The beetle was listed as a threatened species under the Act on August 8, 1980; critical habitat for the species was designated under the same Federal Register notice as the listing (45 FR 52803). The Valley Elderberry Longhorn Beetle Recovery Plan was completed on June 28, 1984 (Service 1984). Critical habitat is limited to two areas along the American River in the Sacramento metropolitan area. In addition, an area along Putah Creek, Solano County, and the area west of Nimbus Dam along the American River Parkway, Sacramento County, are considered essential habitat, according to the Valley Elderberry Longhorn Beetle Recovery Plan (Service 1984). These critical habitat and essential habitat areas within the American River parkway and Putah Creek support large numbers of mature elderberry shrubs with extensive evidence of use by the beetle.

The Five Year Status Review for the beetle was completed on September 2006 (Service 2006). The review stated that the number of sightings of the beetle has increased since the listing and that protection of habitat supporting the beetle has substantially reduced the primary threats to the species. On October 2, 2006, the Service announced its recommendation to remove the beetle from the endangered species list (http://www.fws.gov/sacramento/ea/newsroom.htm).
Valley elderberry longhorn beetle is a medium sized (0.8 inch long) beetle that is endemic to the Central Valley of California. The beetle is found only in association with its host plant, elderberry shrubs (*Sambucus* species). Adult beetles are sexually dimorphic with females having a dark metallic green to black elytra with a bright red border and males having predominantly red elytra with four dark oblong spots.

The beetle is dependent on its host plant, elderberry, which is a locally common component of the remaining riparian forests and savannah areas and, to a lesser extent, the mixed chaparral-foothill woodlands of the Central Valley.

Each stage of the beetle's life cycle requires a slightly different part of the elderberry plant to fulfill its life history needs. Adults feed on the foliage and perhaps flowers and are present from March through early June. During this period beetles mate and females lay eggs on living elderberry plants (Barr 1991). The first instar larvae bore to the center of elderberry stems where they develop for one to two years while feeding on pith. Prior to forming their pupae, the elderberry wood boring larvae chew through the bark (Halstead and Oldham 1990) and then plug the holes with wood shavings. The larvae crawl back to their pupal chamber which they pack with frass (digested remains) (Barr 1991). In the pupal chamber, the larvae metamorphose into their pupae and then into adults where upon they emerge between mid-March through June (Barr 1991).

Use of the elderberry shrubs by the beetle is rarely apparent. Frequently, the only exterior evidence of the shrub’s use by the beetle is an exit hole created by the larva just prior to the pupal stage. Emergence holes are usually observed in living stems more than one inch in diameter and less than nine feet from the ground (Talley and Holyoak 2001). Observations made of elderberry shrubs along the Cosumnes River, in the Folsom Lake area, and near Blue Ravine in Folsom indicate that the beetle may be present in elderberry shrubs with no evidence of exit holes; the larvae either succumb prior to constructing an exit hole or are not far enough along in the developmental process to construct an exit hole. Larvae appear to be distributed in stems which are one inch or greater in diameter at ground level.

Population densities of the beetle are probably naturally low (Service 1984). It has been suggested, based on the spatial distribution of occupied shrubs (Barr 1991), that the beetle is a poor disperser (Collinge et al. 2001). Low density and limited dispersal capability cause the beetle to be vulnerable to the negative effects of the isolation of small subpopulations due to habitat fragmentation.

At the time of its listing in 1980, the beetle was known from less than ten locations on the American River, Putah Creek and the Merced River in the Central Valley of California (Service 1980). The beetle currently inhabits the Central Valley from southern Shasta County south to Fresno County in the San Joaquin Valley (Barr 1991). As of November 2008, there were 196 records of the beetle (largely based on exit holes) in the Central Valley (CNDDB 2008). Although records exist for Kern County (CNDDB 2008), no specimens or observations
of living beetles exist that support the assertion that the species is found there (Talley et al. 2006).

Since the time of listing, the number of sites from which the beetle is known has increased from less than ten to approximately 196 (CNDDB 2008), primarily due to an increased effort to look for the beetle. It should be noted that the number of records does not indicate the number of known populations. In many cases, there are multiple records from within close proximity to one another within the same watershed or river. For example, at least 24 records are known from within two miles of the American River (CNDDB 2008).

There is little information regarding range-wide population trends for the beetle. Collinge et al. (2001) provides the only long-term data set for the species. The Collinge team surveyed for beetles at most of the sites that had previously been surveyed by Barr (1991). Both studies observed evidence of the beetle (i.e., recent exit holes) at approximately 20 percent of the sites examined, and 25 percent of the total number of elderberry groups examined at those sites (more than one elderberry group was examined at some sites). Collinge et al. (2001) found that while the proportions of occupancy were similar, the number of sites examined containing elderberry and the density of elderberry at sites had decreased since Barr’s study (1991), resulting in fewer occupied sites and groups.

Environmental Baseline

The distribution and abundance of the beetle within Solano County is believed to have been drastically reduced compared to historic conditions. Most of the Fairfield area was converted to agricultural use by the early 1900’s and water courses and their associated riparian corridors were extensively modified and channelized. Since the mid 1900’s, the towns of Fairfield and Vacaville have experienced an increase in population that has required conversion of lands from agriculture to urban sprawl. This has increased the pressure for flood control to protect property and infrastructure. As a consequence, the riparian vegetation along many stream courses within the county has been extensively reduced or altered. Alteration and loss of riparian habitat and, consequently, elderberry shrubs is still occurring and is expected to continue in the future. For instance, Solano and Napa Counties are projected to have a 53 percent growth in households by 2030 (Caltrans 2006). Much of this growth will occur in the Cities of Vacaville, Suisun, and Fairfield. To accommodate this growth, Caltrans and STA are planning for a considerable expansion of the road infrastructure within the Suisun Marsh Watershed. Many of these proposed road projects are or will cross streams at locations where the beetle or elderberry shrubs are present.

The California Natural Diversity Data Base (CNDDB) (CNDDB 2008) report from the search of the surrounding U.S. Geological Survey 7.5-minute quadrangles (Cordelia, Denver, Elmira, Fairfield North, Fairfield South, and Mt. George) contained six records (from 1991 to 2006) for sign of Valley elderberry longhorn beetle. The Service is aware of at least 12 recorded locations of the beetle within Solano County (CNDDB 2008; Service 2005a, b). However, no systematic
distribution surveys or abundance estimates for the beetle or its host plant has been conducted. Seven of those beetle locations are within the Suisun Creek Marsh watershed and one of these is within 680 feet of the action area adjacent to the proposed Solano Community College restoration site (CNDDB 2008; Service 2005a and b; Arnold 2005). The CNDDB (2008) also includes two additional beetle records within the Suisun Marsh Watershed but outside of the Solano County border. Six of the nine records within the Suisun Marsh watershed are located along Suisun Creek.

The Service is aware of nine locations along water courses within the Suisun Marsh Watershed, including the one location approximately 689 feet upstream of the action area, where the remaining riparian vegetation includes elderberry shrubs (exit holes have been found but presence of the beetle not necessarily confirmed) (Bronny 2006). The presence of elderberry within remaining riparian vegetation suggests that elderberry shrubs historically existed along streams where riparian vegetation now has been removed. Thus, even though the historic distribution of elderberry shrub is not known, it is reasonable to assume that it was common along streams within the Suisun Marsh Watershed. Since elderberry is the only host plant used by the listed beetle, it is further reasonable to assume that the beetle’s distribution has been reduced concurrently with the reduction in riparian vegetation.

Suisun Creek and its tributaries are the only drainage within the Suisun Marsh Watershed with an extensive riparian corridor that supports elderberry plants. Sign of the beetle have been found in at least six locations along the creek (CNDDB 2008; Service 2005a and b; Caltrans 2006). The creek’s continuous riparian vegetation and multiple elderberry locations have been and continue to be important for the conservation of the beetle in west Solano County and the Suisun Marsh Watershed. However, infrastructure and urbanization resulting in a demand for channel modifications and vegetation removal for flood-control and other projects have also affected the beetle’s distribution along Suisun Creek.

Formal consultation and issuance of incidental take for the valley elderberry longhorn beetle for this project is consistent with the Service’s biological opinions issued for other recently proposed projects occurring along Suisun Creek including:

1. The 1998 biological opinion for a Morrison Lane bridge replacement on Suisun Creek (Service File 1-1-97-F-0127);

2. The 2005 biological opinions on the replacement of the Cordelia Road Suisun Creek Bridge downstream of the action area (Service File 1-1-05-F-0027) and the Suisun Valley Road Bridge Replacement Project upstream of the action area (Service File 1-1-96-F-0156);

3. The Dan Wilson Creek Bridge and Fairfield Corporate Commons Projects located along the eastern bank of Suisun Creek and just north of Interstate 80 in 2006 (Service File 1-1-06-F-0284); and
4. The Interstate 80 High Occupancy Vehicle Lane Project (Service File 1-1-07-F-0146 and 81420-2009-F-0240-R001-2) in 2007 which overlaps the action area for the Interstate 80 Eastbound Cordelia Truck Scales Relocation Project.

To summarize, the Service believes that the beetle has experienced a long-term decline due to widespread alteration and fragmentation of its riparian habitat, and to a lesser extent, its upland habitat, by human activities. However, new observations show that the beetle has a wider distribution than what was known during the time of the listing. Further, creation and protection of conservation areas since the listing has provided long-term protection of the beetle and reduced the rate of habitat loss. However, within western Solano County, the beetle has not benefited from protection of conservation areas and the beetle continues to be threatened by a high rate of development that has resulted in alteration and fragmentation of riparian habitat. Known locations of the beetle within the Suisun Marsh Watershed is approximately 40 miles southwest from critical habitat and populations along the American River in Sacramento County and about nine miles south of known populations in Dry Creek on the Solano County border with Yolo County. Though the CNDDDB does not provide information of absence of listed species, the lack of known connective populations between the Suisun Marsh Watershed observations and other records of this species together with this species limited dispersal ability suggests that the Suisun Marsh Watershed population is isolated from other populations. The likelihood of natural colonization of Suisun Creek if the population was lost would therefore be low.

Because of the presence of host plants along Suisun Creek within the action area, the observations of exit holes in elderberries throughout the riparian corridor immediately north of the action area, and the known distribution, biology, and behavior of the beetle; the Service has determined that the valley elderberry longhorn beetle is reasonably certain to occur within the action area.

California Red-Legged Frog

The California red-legged frog was listed as a threatened species on May 23, 1996 (Service 1996). A recovery plan was published for the California red-legged frog on September 12, 2002 (Service 2002). Critical Habitat was designated for this species on April 13, 2006 (Service 2006) and a proposed revision was published on September 16, 2008 (Service 2008).

The California red-legged frog is the largest native frog in the western United States (Wright and Wright 1949), ranging from 1.5 to 5.1 inches in length (Stebbins 2003). The abdomen and hind legs of adults are largely red, while the back is characterized by small black flecks and larger irregular dark blotches with indistinct outlines on a brown, gray, olive, or reddish background color. Dorsal spots usually have light centers (Stebbins 2003), and dorsolateral folds are prominent on the back. Larvae (tadpoles) range from 0.6 to 3.1 inches in length, and the background color of the body is dark brown and yellow with darker spots (Storer 1925).
The historic range of the red-legged frog extended coastally from the vicinity of Elk Creek in Mendocino County, California, and inland from the vicinity of Redding, Shasta County, California, southward to northwestern Baja California, Mexico (Fellers 2005; Jennings and Hayes 1985; Hayes and Krempels 1986). The red-legged frog was historically documented in 46 counties but the taxa now remains in 238 streams or drainages within 23 counties, representing a loss of 70 percent of its former range (Service 2002). Red-legged frogs are still locally abundant within portions of the San Francisco Bay area and the central coast. Within the remaining distribution of the species, only isolated populations have been documented in the Sierra Nevada, northern Coast, and northern Transverse Ranges. The species is believed to be extirpated from the southern Transverse and Peninsular ranges, but is still present in Baja California, Mexico (CDFG 2009).

Because their habitats have been fragmented, many endangered and threatened species, such as the California red-legged frog, exist as metapopulations (Verboom and Apeldoorn 1990; Verboom et al. 1991). A metapopulation is a collection of spatially discrete subpopulations that are connected by the dispersal movements of the individuals (Levins 1970; Hanski 1991). For metapopulations of listed species, a prerequisite to recovery is determining if unoccupied habitat patches are vacant due to the attributes of the habitat patch (food, cover, and patch area) or due to patch context (distance of the patch to other patches and distance of the patch to other features). Subpopulations on patches with higher quality food and cover are more likely to persist because they can support more individuals. Large populations have less of a chance of extinction due to stochastic events (Gilpin and Soule 1986). Similarly, small patches will support fewer individuals, increasing the rate of extinction. Patches that are near occupied patches are more likely to be recolonized when local extinction occurs and may benefit from emigration of individuals via the “rescue” effect (Hanski 1982; Gotelli 1991; Holt 1993; Fahrig and Merriam 1985). For the metapopulation to persist, the rate of patches being colonized must exceed the rate of patches going extinct (Levins 1970). If some subpopulations go extinct regardless of patch context, recovery actions should be placed on patch attributes. Patches could be managed to increase the availability of food and/or cover. Movements and dispersal corridors likely are critical to California red-legged frog population dynamics, particularly because the animals likely currently persist as metapopulations with disjunct population centers. Movement and dispersal corridors are important for alleviating over-crowding and intraspecific competition, and also they are important for facilitating the recolonization of areas where the animal has been extirpated. Movement between population centers maintains gene flow and reduced genetic isolation.

California red-legged frogs predominately inhabit permanent water sources such as streams, lakes, marshes, natural and manmade ponds, and ephemeral drainages in valley bottoms and foothills up to 4,921 feet in elevation (Jennings and Hayes 1994; Bulger et al. 2003; Stebbins 2003). However, red-legged frogs also have been found in ephemeral creeks and drainages and in ponds that may or may not have riparian vegetation. California red-legged frogs also can be found in disturbed areas such as channelized creeks and drainage ditches in urban and agricultural areas. An adult California red-legged frog recently was observed in a shallow isolated pool on North Slough Creek in the American Canyon area of Napa County (Christine
Gaber/PG&E personal communication with Chris Nagano/Service on October 22, 2008). This frog location was surrounded by vineyard development. Another adult California red-legged frog was observed under debris in an unpaved parking lot in a heavily industrial area of Burlingame (Patrick Kobernus communication with Michelle Havens on October 16, 2008). This Burlingame frog was likely utilizing a nearby drainage ditch. Caltrans also has discovered California red-legged frog adults, tadpoles, and egg masses within a storm drainage system within a major cloverleaf intersection of Millbrae Avenue and State Route 101 in a heavily developed area of San Mateo County (Caltrans 2007). California red-legged frog has the potential to persist in disturbed areas as long as they provide at least one or more of their life history requirements.

California red-legged frogs typically breed between November and April with earlier breeding records occurring in southern localities (Hayes and Jennings 1988, Storer 1925). Breeding often occurs in still or slow-moving water at least 2.5 feet in depth with emergent vegetation, such as cattails (Typha spp.), tules (Scirpus spp.) or overhanging willows (Salix spp.) (Hayes and Jennings 1988). Red-legged frogs have paired vocal sacs and vocalize in air (Hayes and Krempels 1986). Female frogs deposit egg masses on emergent vegetation so that the egg mass floats on or near the surface of the water (Hayes and Miyamoto 1984). Individuals occurring in coastal drainages are active year-round (Jennings et al. 1992), whereas those found in interior sites are normally less active during the cold season.

During other parts of the year, habitat includes nearly any area within 1 to 2 miles of a breeding site that stays moist and cool through the summer (Fellers 2005). According to Fellers (2005), this can include vegetated areas with coyote brush, California blackberry thickets, and root masses associated with willow (Salix species) and California bay trees. Sometimes the non-breeding habitat used by red-legged frogs is extremely limited in size. For example, non-breeding red-legged frogs have been found in a 6-foot wide coyote brush thicket growing along a tiny intermittent creek surrounded by heavily grazed grassland (Fellers 2005). Sheltering habitat for red-legged frogs is potentially all aquatic, riparian, and upland areas within the range of the species and includes any landscape features that provide cover, such as existing animal burrows, boulders or rocks, organic debris such as downed trees or logs, and industrial debris. Agricultural features such as drains, watering troughs, spring boxes, abandoned sheds, or hay stacks may also be used. Incised stream channels with portions narrower and depths greater than 18 inches also may provide important summer sheltering habitat. Accessibility to sheltering habitat is essential for the survival of red-legged frogs within a watershed, and can be a factor limiting frog population numbers and survival.

California red-legged frogs do not have a distinct breeding migration (Fellers 2005). Adult frogs are often associated with permanent bodies of water. Some frogs remain at breeding sites all year while others disperse. Dispersal distances are typically less than 0.5 mile, with a few individuals moving up to 1 to 2 miles (Fellers 2005). Movements are typically along riparian corridors, but some individuals, especially on rainy nights, move directly from one site to another through
normally inhospitable habitats, such as heavily grazed pastures or oak-grassland savannas (Fellers 2005).

In a study of California red-legged frog terrestrial activity in a mesic area of the Santa Cruz Mountains, Bulger et al. (2003) categorized terrestrial use as migratory and non-migratory. The latter occurred from one to several days and was associated with precipitation events. Migratory movements were characterized as the movement between aquatic sites and were most often associated with breeding activities. Bulger reported that non-migrating frogs typically stayed within 200 feet of aquatic habitat 90% of the time and were most often associated with dense vegetative cover, i.e. California blackberry, poison oak and coyote brush. Dispersing frogs in northern Santa Cruz County traveled distances from 0.25 miles to more than 2 miles without apparent regard to topography, vegetation type, or riparian corridors (Bulger et al. 2003).

In a study of California red-legged frog terrestrial activity in a xeric environment, Tatarian (2008) noted that a 57% majority of frogs fitted with radio transmitters in the Round Valley study area in eastern Contra Costa County stayed at their breeding pools, whereas 43% moved into adjacent upland habitat or to other aquatic sites. This study reported a peak of seasonal terrestrial movement occurring in the fall months, with movement commencing with the first 0.2 inches of precipitation. Movements away from the source pools tapered off into spring. Upland movement activities ranged from 3 to 233 feet, averaging 80 feet, and were associated with a variety of refugia including grass thatch, crevices, cow hoof prints, ground squirrel burrows at the bases of trees or rocks, logs, and a downed barn door; others were associated with upland sites lacking refugia (Tatarian 2008). The majority of terrestrial movements lasted from 1 to 4 days; however, one adult female was reported to remain in upland habitat for 50 days (Tatarian 2008). Uplands closer to aquatic sites were used more often and frog refugia were more commonly associated with areas exhibiting higher object cover, e.g. woody debris, rocks, and vegetative cover. Subterranean cover was not significantly different between occupied upland habitat and non-occupied upland habitat.

California red-legged frogs are often prolific breeders, laying their eggs during or shortly after large rainfall events in late winter and early spring (Hayes and Miyamoto 1984). Egg masses containing 2,000 to 5,000 eggs are attached to vegetation below the surface and hatch after 6 to 14 days (Storer 1925, Jennings and Hayes 1994). In coastal lagoons, the most significant mortality factor in the pre-hatching stage is water salinity (Jennings et al. 1992). Eggs exposed to salinity levels greater than 4.5 parts per thousand results in 100 percent mortality (Jennings and Hayes 1990). Increased siltation during the breeding season can cause asphyxiation of eggs and small larvae. Larvae undergo metamorphosis 3.5 to 7 months following hatching and reach sexual maturity 2 to 3 years of age (Storer 1925; Wright and Wright 1949; Jennings and Hayes 1985, 1990, 1994). Of the various life stages, larvae probably experience the highest mortality rates, with less than one percent of eggs laid reaching metamorphosis (Jennings et al. 1992). Sexual maturity normally is reached at three to four years of age (Storer 1925; Jennings and Hayes 1985). Red-legged frogs may live eight to 10 years (Jennings et al. 1992). Populations of red-legged frogs fluctuate from year to year. When conditions are favorable red-legged frogs can
experience extremely high rates of reproduction and thus produce large numbers of dispersing
young and a concomitant increase in the number of occupied sites. In contrast, red-legged frogs
may temporarily disappear from an area when conditions are stressful (e.g., drought).

The diet of red-legged frogs is highly variable. Hayes and Tennant (1985) found invertebrates to
be the most common food items. According to their data, vertebrates, such as Pacific tree frogs
(Pseudacris regilla) and California mice (Peromyscus californicus); represent over half the prey
mass eaten by larger frogs (Hayes and Tennant 1985). Hayes and Tennant (1985) found juvenile
frogs to be active diurnally and nocturnally, whereas adult frogs were largely nocturnal. Feeding
activity probably occurs along the shoreline and on the surface of the water (Hayes and Tennant
1985). The diet of red-legged frog tadpoles is not well studied, but their diet probably is similar
to other ranid frog tadpoles that feed on algae, diatoms, and detritus by grazing on the surface of

Habitat loss, non-native species introduction, and urban encroachment are the primary factors
that have adversely affected the red-legged frog throughout its range. Several researchers in
central California have noted the decline and eventual local disappearance of California and
northern red-legged frogs in systems supporting bullfrogs (Jennings and Hayes 1990; Twedt
1993), red swamp crayfish (Procambarus clarkii), signal crayfish (Pacifastacus leniusculus), and
several species of warm water fish including sunfish (Lepomis spp.), goldfish (Carassius
auratus), common carp (Cyprinus carpio), and mosquitofish (Gambusia affinis) (Moyle 1976; S.
Barry 1992; L. Hunt 1993; Fisher and Schaffer 1996). This has been attributed to predation,
competition, and reproduction interference. Twedt (1993) documented bullfrog predation of
juvenile northern red-legged frogs (Rana aurora aurora), and suggested that bullfrogs could prey
on subadult northern red-legged frogs as well. Bullfrogs may also have a competitive advantage
over red-legged frogs. For instance, bullfrogs are larger and possess more generalized food
habits (Bury and Whelan 1984). In addition, bullfrogs have an extended breeding season (Storer
1933) during which an individual female can produce as many as 20,000 eggs (Emlen 1977).
Further more, bullfrog larvae are unpalatable to predatory fish (Kruse and Francis 1977).
Bullfrogs also interfere with red-legged frog reproduction. Both California and northern red-
legged frogs have been observed in amplexus (mounted on) with both male and female bullfrogs
(Jennings and Hayes 1990; Twedt 1993; M. Jennings 1993). Thus bullfrogs are able to prey
upon and out-compete red-legged frogs, especially in sub-optimal habitat.

The urbanization of land within and adjacent to red-legged frog habitat has also adversely
affected red-legged frogs. These declines are attributed to channelization of riparian areas,
enclosure of the channels by urban development that blocks red-legged frog dispersal, and the
introduction of predatory fishes and bullfrogs. This report further identifies the conversion and
isolation of perennial pool habitats resulting from urbanization as an ongoing impact to red-
legged frogs. Mao et al. (1999 cited in Fellers 2005) reported northern red-legged frogs infected
with an iridovirus, which was also presented in sympatric threespine sticklebacks (Gasterosteus
aculeatus) in northwestern California. Ingles (1932a, 1932b, and 1933 cited in Fellers 2005)
Mr. James Richards

reported four species of trematodes from red-legged frogs, but he later synonymized two of them (found them to be the same as the other two).

Environmental Baseline

The recovery plan for red-legged frogs identifies eight Recovery Units (Service 2002). The establishment of these Recovery Units is based on the Recovery Team’s determination that various regional areas of the species’ range are essential to its survival and recovery. The status of the red-legged frog will be considered within the smaller scale of Recovery Units as opposed to the overall range. These Recovery Units are delineated by major watershed boundaries as defined by U.S. Geological Survey hydrologic units and the limits of the range of the California red-legged frog. The goal of the draft recovery plan is to protect the long-term viability of all extant populations within each Recovery Unit. Within each Recovery Unit, core areas have been delineated and represent contiguous areas of moderate to high red-legged frog densities that are relatively free of exotic species such as bullfrogs. The goal of designating core areas is to protect metapopulations that, combined with suitable dispersal habitat, will allow for the long term viability within existing populations. This management strategy will allow for the recolonization of habitat within and adjacent to core areas that are naturally subjected to periodic localized extinctions, thus assuring the long-term survival and recovery of red-legged frogs.

The proposed Interstate 80 Eastbound Cordelia Truck Scales Relocation Project is within Recovery Unit 3 (North Coast and North San Francisco Bay) and is approximately 2.0 miles east of the Jameson Canyon-Lower Napa River Core Recovery Area (Service 2002). Most remaining known occurrences in southern Solano County are threatened by proposed developments and the habitat along Suisun Creek has been constricted by adjacent cultivated agriculture to a narrow riparian corridor. The strategy for recovery for the California red-legged frog includes promoting and protecting populations that are geographically distributed and connected in a manner that allows for the continued existence of viable metapopulations. Protection of habitat and especially watershed integrity is an integral component to achieve this. Land protection can be achieved through the purchase of land or conservation easements. The action area is also located approximately 1.9 to 2.8 miles east of the three proposed critical habitat units in Solano County (Service 2008).

A systematic, long-term study of red-legged frog distribution and abundance within the action area has not been conducted. Earlier developments within and upstream of the action area likely have had significant adverse effects on the red-legged frog and its habitat within the Suisun Creek riparian corridor. The high peak flows, channel down cutting which has resulted in concentrated winter flows, and the stream’s loss of connection with floodplains have reduced the hydrological diversity in the stream to create available red-legged frog breeding habitat. This is because high water flows during winter through late spring likely wash eggs or larvae in less protected areas downstream. Construction of bridges over the stream together with associated concrete lining of stream banks and channels also adversely affected the habitat for the listed frog in Suisun Creek. Because the creek within the construction area is a channelized with steep
incised banks, there are no side channels or pools that would be protected from high flows and would provide ideal breeding conditions for the red-legged frog. Channelization and clearing of riparian vegetation along Suisun Creek have removed natural geomorphic processes and therefore limited the creation of plunge pools, backwater, and side channels that provide habitat for the red-legged frog. As a result, potential breeding habitat within Suisun Creek is limited to smaller isolated locations within the stream whose potential may be dependent on variable yearly rainfall and hydrological conditions.

Formal consultation and issuance of incidental take for the California red-legged frog for this project is consistent with the Service’s biological opinions issued for other recently proposed projects occurring along Suisun Creek including:

1. The Dan Wilson Creek Bridge and Fairfield Corporate Commons Projects located along the eastern bank of Suisun Creek and just north of Interstate 80 in 2006 (Service File 1-1-06-F-0284); and

2. The Interstate 80 HOV Lane Project (Service File 1-1-07-F-0146 and 81420-2009-F-0240-R001-2) in 2007 which overlaps the action area for the Interstate 80 Eastbound Cordelia Truck Scales Relocation Project.

The CNDDDB (2008) report from the search of the surrounding U.S. Geological Survey 7.5-minute quadrangles (Cordelia, Denver, Elmira, Fairfield North, Fairfield South, and Mt. George) contained 15 records (from 1993 to 2007) for sightings of California red-legged frogs. The closest record is approximately 2.3 miles southwest of the action area (Monk 2005). No CNDDB (2008) records are known from the action area; however, the CNDDDB is limited to occurrence data from areas that have been previously surveyed and does not represent all occupied habitat. The comprehensive value of the CNDDDB is also limited by the degree to which people are willing to report data.

Potential aquatic and upland riparian habitat for the California red-legged frog was identified within the Suisun Creek portion of the action area. Aerial photography and the results of Caltrans’ habitat assessment (Caltrans 2008) suggest that potential red-legged frog habitat is found throughout much of the length Suisun Creek, including potential breeding habitat. The riparian corridor for Suisun Creek is constricted by intense agricultural cultivation throughout its length therefore placing high value on what habitat remains. Caltrans identified at least 28 non-native plants species in the action area but reported that their intrusion into the Suisun Creek riparian habitat portion of the action area is limited (Caltrans 2008). Red-legged frogs likely use the project area for forage, refugia, and dispersal. Due of the presence of habitat within the action area, connectivity with a long corridor of habitat, observations of the species in the general area, observations of the species in similar habitat conditions throughout its range, and knowledge of the biology and behavior of the red-legged frog, the Service has determined that it is reasonable to conclude that the red-legged frog could occur within Suisun Creek and riparian habitat in the action area.
Effects of the Proposed Action

Valley Elderberry Longhorn Beetle

Four elderberry shrubs have been identified in the action area. The construction of the Cordelia Truck Scales bridge across Suisun Creek will result in direct effects to one of the shrubs. Caltrans plans to transplant this shrub and avoid the other three; however transplantation may not be an option due to access and bank stability. If so, Caltrans may need to cut the shrub back to accommodate the footprint of the proposed overhead bridge.

Construction of the bridge will permanently remove approximately 56 linear feet of vegetated riparian corridor from opposing stream banks. This will add to the existing loss and fragmentation of the Suisun Creek riparian corridor created by the approximately 236 foot-wide existing Interstate 80 Bridge immediately north of the action area. The new bridge structure will further widen the gap between the existing riparian vegetation and elderberry shrubs up and downstream of the bridges. Fragmentation and isolation of elderberry shrubs could eventually result in local extirpations.

The planting of 107 elderberry shrubs within a 3.0-acre restoration site less than 800 feet upstream of the action area has the potential to enhance the local valley elderberry longhorn beetle habitat and compensate for project’s effects to the beetle. This restoration of riparian habitat that had been removed for agriculture may partially offset the local effects of fragmentation by increasing the size of the available habitat and the number of host plants. Exit holes have been observed in the elderberry shrubs in the adjacent existing riparian habitat (CNDDB 2008). If occupied by the valley elderberry longhorn beetle, these existing plants could be a source of recruitment for the Solano Community College restoration area.

Although the conservation measures involve creation or restoration of habitat, it generally takes five or more years for elderberry plants to become large enough to support beetles, and it may take 25 years or longer for riparian habitats to reach their full value. Temporal disturbance of habitat will temporarily reduce the amount of habitat available to beetles and may cause fragmentation of habitat and isolation of subpopulations.

Unsuccessful transplantation could result in the death or stunting of the plant’s growth affecting the viability of the shrubs to continue to host or become occupied by the listed beetle. The success criteria and long term monitoring and active management included in the restoration plan are intended to minimize plant loss. The conservation easement/deed restriction placed on the restoration area will also preserve the habitat for the beetle in perpetuity. Establishment of the restoration area is likely to provide a model and an opportunity to continue habitat improvements along Suisun Creek by way of compensation for other projects or conservation-based grants. David Redfield, the Dean of Math and Science at Solano Community College informed the Service that the College has continued interest in restoring additional riparian habitat on Suisun
and Dan Wilson Creek within the campus property (personal communication with D. Redfield on December 17, 2008).

The proposed conservation measures are likely to avoid and minimize the take of valley elderberry longhorn beetles that could result from the potential adverse effects described above. The majority of the proposed action area will be located within open and disked agricultural land which reduces the loss of elderberry and riparian habitat that could have been locally removed. Successful implementation of the proposed dust control and installation of construction buffers will likely avoid direct and indirect adverse effects to the other three elderberry plants in the action area as well as neighboring vegetation thereby safeguarding the integrity and function of the local riparian system for the listed beetle. Post-construction restoration of temporary work areas will likely limit fragmentation of the riparian corridor. Possible transplantation of one elderberry shrub to and the proposed planting of 107 elderberry shrubs within the approximately 3.0-acre riparian restoration site on the Solano Community College property have the potential to enhance the riparian habitat for the listed beetle on Suisun Creek. There is potential for future occupation of the restoration site from a nearby source where valley elderberry longhorn beetle sign has been observed.

California Red-Legged Frog

The proposed project could have adverse effects on the threatened California red-legged frog through mortality, injury, harassment, and harm of individual juveniles and adults. Due to existing development, the effects to California red-legged frog habitat will likely be limited to the activities associated with the construction of the new bridge across Suisun Creek or any utility relocations under Suisun Creek. The new bridge will be a clear span structure that will avoid the need for construction or structures within Suisun Creek. The proposed jack and bore method of installing a water pipeline under Suisun Creek is intended to avoid effects to the creek and riparian corridor but has the potential to affect frogs if drilling muds are inadvertently discharged within frog habitat.

According to an April 21, 2009, email message, the proposed project will adversely affect approximately 3.43 acres of California red-legged frog riparian and upland habitat. This includes 0.13 acres of riparian woodland that was previously accounted for in the Interstate 80 HOV Lanes (Service File 1-1-07-F-0146), 1.71 acres of riparian woodland not previously accounted for, and 1.59 acres of ruderal upland habitat. Given the intensity of the surrounding agricultural and transportation-related development, the localized California red-legged frog habitat for breeding, foraging, dispersal, and refuge is likely limited to Suisun Creek and its constrained riparian corridor. Approximately 2.39 acres of the affected habitat will be subject to restoration within the action area following construction. This includes 0.11 acres of habitat covered under the mentioned Interstate 80 consultation, 1.0 acres of the riparian habitat specific to the truck scales project, and 1.28 acres of the ruderal habitat. Replacement of mature riparian vegetation is likely to take several years but this area has the potential to provide foraging, dispersal, and refuge habitat for the California red-legged frog given successful restoration. Restoration of the
ruderal vegetation area is expected to result in baseline function within one year following construction. The proposed compensation through the restoration of 3.0 acres of riparian habitat approximately 736 feet upstream may offset the effects of new bridge construction by increasing the net California red-legged frog habitat in the general vicinity.

The proposed project likely will result in adverse effects to the feeding, resting, aestivation, movement, and other essential behaviors of the California red-legged frog. It will result in the loss and degradation of habitat. The clear span bridge structure will create shading and interrupt the vegetated riparian corridor but is unlikely to present any significant barriers to movement.

Construction activities associated with the proposed project would remove vegetation and other materials necessary for cover and aestivation, fill or crush burrows or crevices, and potentially reduce the prey base for the California red-legged frog. Because this listed amphibian uses small mammal burrows and soil crevices for shelter, individuals may be crushed, buried, or otherwise injured during construction activities. California red-legged frogs also may be run over by construction equipment or other vehicles accessing the construction areas. Siltation, fill, or spill of petroleum products or other chemicals could cause loss of prey items in or adjacent to the project area. Discharge of drilling muds and the associated cleanup could cause death or injury to individual frogs at the or downstream of the point of discharge. A “frac-out” could also result in the fill or removal of upland refugia. Construction activities are likely to result in the direct disturbance, displacement, injury, and/or mortality of California red-legged frogs. Individuals likely are to be killed or injured by construction equipment or other vehicles accessing the construction site. There is a likelihood of direct injury or mortality to the animal from injury or death due to pet cats or dogs owned by construction related personnel, poisoning by pesticides, injury or death due to predators attracted to food or trash at the site, and harassment from night-lighting, noise, and vibration. Implementation of certain types of erosion control materials, such as plastic netting, could result in the entanglement and death of California red-legged frogs within these materials due to exposure or predators (Bartin and Kinkead 2005, Stuart et al. 2001). Disturbance from construction activities may also cause individuals to move into or across areas of unsuitable habitat where they may be prone to higher rates of mortality from vehicles and predation.

Range-wide habitat loss, fragmentation, and degradation from multiple factors are the primary threats to the California red-legged frog (Service 1996, 2004). Loss of natural lands continues to further reduce the habitat available for this listed animal. However, the amount of historical and current habitat loss directly attributable to road loss has not been calculated, but the effect of habitat fragmentation on the California red-legged frog is significant. Fragmentation can reduce access to habitat as well as habitat suitability, increase mortality of animals that are moving between habitat patches due to increased risk of predation, and disrupt movements, dispersal, and gene flow. As barriers to movement for the California red-legged frog, roads, paved areas, and other habitat loss create smaller patches of habitat and increase patch isolation. Smaller populations of animals are at greater risk of extinction by chance from demographic, genetic, and environmental stochastic events (Wilcox and Murphy 1985, Schoener and Spiller 1992). Isolated
populations also have a higher chance of extinction without the demographic and genetic input of immigrants and a lower chance of colonization after extinction (Lande 1988, Sjogren-Gulve 1994).

A short term temporal effect will occur when suitable habitat is lost when riparian and other vegetation is removed for construction of the bridge, and also due to the improved ability of predators to hunt the listed amphibian. Hilty and Merender (2004) found that, in contrast to native species, non-native mammalian predators were more active in narrow and denuded riparian corridors and in large expanses of agricultural land (vineyards) far from core habitat.

The necessity of moving between multiple habitats and breeding ponds means that many amphibian species, such as the California red-legged frog are especially vulnerable to roads and well-used large paved areas in the landscape. Van Gelder (1973) and Cooke (1995) have examined the effect of roads on amphibians and found that because of their activity patterns, population structure, and preferred habitats, aquatic breeding amphibians are more vulnerable to traffic mortality than some other species.

Although traffic will not be at highway speeds, the proposed truck scales will include a large paved area subject to a great deal of large vehicle traffic. According to Caltrans, the existing truck scales had an average daily volume of 11,800 trucks a day (Caltrans 2008). Caltrans expects that volume to increase 70% by 2025 and 115% by 2040. The new facility is designed to receive up to 1,000 trucks an hour. All of this traffic will be directed to the truck scales via the new bridge over Suisun Creek. The effects associated with the truck scale construction and long-term operations are likely to be similar to those resulting from highway projects. Fahrig et al. (1995) found that high traffic two-lane paved roads had a much larger effect on frog abundance than low traffic two-lane roads. Mortality rates for anurans on high traffic roads are higher than on low traffic roads (Hels and Buchwald 2001). Vos and Chardon (1998) found a significant negative effect of road density on the occupation probability of ponds by the moor frog (Rana arvalis) in the Netherlands. In addition, incidences of very large numbers of road-killed frogs are well documented (e.g., Ashley and Robinson 1996), and studies have shown strong population level effects of traffic density (Carr and Fahrig 2001) and high traffic roads on these amphibians (Van Gelder 1973; Vos and Chardon 1998). Most studies regularly count road kills from slow moving vehicles (Hansen 1982; Rosen and Lowe 1994; Drews 1995; Mallick et al. 1998) or by foot (Munguira and Thomas 1992). These studies assume that every victim is observed, which may be true for large conspicuous mammals, but is certainly not true for small animals, such as the California red-legged frog. Amphibians appear especially vulnerable to traffic mortality because they readily attempt to cross roads, are slow-moving and small, and thus can not easily be avoided by drivers (Carr and Fahrig 2001).

The direction and type of habitat used by dispersing animals is especially important in fragmented environments (Forsys and Humphrey 1996). Models of habitat patch geometry predict that individual animals will exit patches at more "permeable" areas (Buechner 1987; Stamps et al. 1987). A landscape corridor may increase the patch-edge permeability by
extending patch habitat (La Polla and Barrett 1993), and allow individuals to move from one patch to another. The geometric and habitat features that constitute a “corridor” must be determined from the perspective of the animal (Forys and Humphrey 1996). Given the various modifications to Suisun Creek and the associated riparian vegetation from past and proposed projects, including the proposed truck scales project, the local red-legged frog habitat is more confined and “patchy”. This limits the dispersal opportunities in the action area as frogs that disperse in directions other than up or down the riparian corridor will be subject to an increased potential for harm as they encounter additional hardscape, human activity, and barriers to movement. A portion of the adjacent habitat once lost to agricultural development likely poses greater risk now that it has been replaced by more urban development.

Additional fragmentation of the Suisun Creek riparian corridor and the surrounding upland habitat could further genetically isolate metapopulations that are at greater risk of deleterious genetic effects such as inbreeding, genetic drift, and founder effects. The survival of wildlife species in fragmented habitats may ultimately depend on their ability to move among patches to access necessary resources, retain genetic diversity, and maintain reproductive capacity within populations (Hilty and Merenlender 2004; Petit et al. 1995; Buza et al. 2000).

Most metapopulation or meta-population-like models of patchy populations do not directly include the effects of dispersal mortality on population dynamics (Hanski 1994; With and Crist 1995; Lindenmayer and Possingham 1996). Based on these models, it has become a widely held notion that more vagile species have a higher tolerance to habitat loss and fragmentation than less vagile species. But models that include dispersal mortality predict exactly the opposite: more vagile species should be more vulnerable to habitat loss and fragmentation because they are more susceptible to dispersal mortality (Fahrig 1998; Casagrandi and Gatto 1999). This prediction is supported by Gibbs (1998), who examined the presence-absence of five amphibian species across a gradient of habitat loss. He found that species with low dispersal rates are better able than more vagile species to persist in landscapes with low habitat cover. Gibbs (1998) postulated that the land between habitats serves as a demographic “drain” for many amphibians. Furthermore, Bonnet et al. (1999) found that snake species that use frequent long-distance movements have higher mortality rates than do sedentary species.

The proposed construction activities could result in the introduction of chemical contaminants to the site. Substances used in road building materials could leach out or wash out of the soil into adjacent habitat. Vehicles may leak hazardous substances such as motor oil and antifreeze. A variety of substances could be introduced during accidental spills of materials. Such spills can result from leaks in vehicles, small containers falling off vehicles, or from accidents resulting in whole loads being spilled. Large spills may be partially or completely remediated by clean-up efforts, depending on the substance. California red-legged frogs using these areas could be exposed to any contaminants that are present at the site. The commercial vehicles visiting the truck scales during operation are more likely to be carrying a large quantity of potential contaminates than the average personal vehicle traveling on Interstate 80. Even small
contaminate spills and leaks from individual vehicles could be cumulatively significant given that the facility is designed to receive as many as 1000 trucks an hour.

Exposure pathways could include inhalation, dermal contact, direct ingestion, or ingestion of contaminated soil or plants. Exposure to contaminants could cause short- or long-term morbidity, possibly resulting in reduced productivity or mortality. Carcinogenic substances could cause genetic damage resulting in sterility, reduced productivity, or reduced fitness among progeny. Little information is available on the effects of contaminants on the California red-legged frog. The effects may be difficult to detect. Morbidity or mortality likely would occur after the animals had left the contaminated site, and more subtle effects such as genetic damage could only be detected through intensive study and monitoring.

Preconstruction surveys and the relocation of individual red-legged frogs may reduce injury or mortality. However, the capturing and handling of red-legged frogs to remove them from a work area may result in the harassment, mortality or injury of individuals. Stress, injury, and mortality may occur as a result of improper handling, containment, and transport of individuals. Death and injury of individual red-legged frogs could occur at the time of relocation or later in time subsequent to their release. Although survivorship for translocated red-legged frogs has not been estimated, survivorship of translocated wildlife, in general, is lower because of intraspecific competition, lack of familiarity with the location of potential breeding, feeding, and sheltering habitats, risk of contracting disease in foreign environment, and increased risk of predation. Improper handling, containment, or transport of individuals would be reduced or prevented by use of a Service-approved biologist, by limiting the duration of handling, limiting the distance of translocation a short distance down Suisun Creek to clear them from the action area, and requiring the proper transport.

Biologists, construction workers, and construction equipment working in different areas and with different species may transmit diseases by introducing contaminated equipment. The chance of a disease being introduced into a new area is greater today than in the past due to the increasing occurrences of disease throughout amphibian populations in California and the United States. It is possible that chytrid fungus may exacerbate the effects of other diseases on amphibians or increase the sensitivity of the amphibian to environmental changes (e.g., water pH) that reduce normal immune response capabilities (Bosch et al. 2001). Implementation of the “Declining Amphibian Populations Task Force Fieldwork Code of Practice” during any aquatic survey activity will likely prevent transfer of diseases through contaminated equipment or clothing.

Soil disturbing activities and vegetation removal can facilitate the invasion and establishment by species not native to the area (Gelbard and Belnap 2003) such as the bullfrog or are native and are better competitors than the California red-legged frog that could feed on or compete with, the listed amphibian or its food sources. Disturbance and alteration of habitat adjacent to roads and newly paved areas may create favorable conditions for non-native plants and animals. These exotic species can spread along roadsides and then into adjacent habitat. Non-native animals may use modified habitats adjacent to roads to disperse into California red-legged frog habitat.
These animals could compete with the listed ranid for resources such as food or cover, or directly injure or kill the amphibians. Non-native plants and animals may reduce habitat quality for the threatened frog, and reduce the productivity or the local carrying capacity for the animals. Introductions of non-native species could cause California red-legged frogs to alter behavioral patterns by avoiding or abandoning areas near roads or pavement. The addition of non-native plants or animals in the action area has the potential to spread throughout the Suisun Creek watershed.

Disturbed areas adjacent to roads and pavement provide favorable habitat conditions for a number of non-native plant species. Some of these taxa are aggressively invasive and they can alter natural communities and potentially affect habitat quality. A problematic species within the range of the California red-legged frog is yellow star thistle (Centaurea melitensis). Dense stands of this plant can form along roadsides and then spread into adjacent habitat. This plant displaces native vegetation, competes with native plants for resources, and it may be difficult for the animals to move through due the plant’s numerous sharp spines. Other species that may disperse along roads and invade adjacent riparian habitats include mustards (Brassica species) and Russian thistle (Salsola tragus) (Tellman 1997). Disturbed soils and reduced competition from native plants are some of the conditions that facilitate invasion along roads by non-native plant species. At least 28 non-native plant species were found in the action area, including yellow star thistle and mustard (Caltrans 2008). Given the local seed sources, there is great potential for these species to spread into areas of temporary disturbance, including frog habitat within the Suisun Creek riparian area.

Negative effects to wildlife populations from roads and pavement may extend some distance from the actual road, as the proposed project. The phenomenon can result from any of the effects already described in this biological opinion, such as vehicle-related mortality, habitat degradation, and invasive exotic species. Forman and Deblinger (1998) described the area affected as the “road effect” zone. Along a 4-lane road in Massachusetts, they determined that this zone extend for an average of approximately 980 feet to either side of the road for an average total zone width of approximately 1970 feet. However, in other places they detected an effect > 0.6 mile from the road. Rudolph et al (1999) detected reduced snake abundance up to 2790 feet from roads in Texas. They estimated snake abundance out to 2790 feet, so the effect may have been greater. Extrapolating to a landscape scale, they concluded the effect of roads on snake populations in Texas likely was significant, given that approximately 79% of the land area of the Lone Star State is within 1640 feet of a road. The “road-zone” effects can be subtle. Van der Zandt et al. (1980) reported that lapwings (Vanellus vanellus) and black-tailed godwits (Limosa limosa) feeding at 1575 feet-6560 feet from roads were disturbed by passing vehicles. The heart rate, metabolic rate and energy expenditure of female bighorn sheep (Ovis canadensis) increases near roads (MacArthur et al. 1979). Trombulak and Frossell (2000) described another type of “road-zone” effect. Heavy metal concentrations from vehicle exhaust were greatest within 66 feet of roads, by elevated levels of metals in both soil and plants were detected at 660 feet of roads. The “road-zone” apparently varies with habitat type and traffic volume. Based on responses by birds, Forman (2000) estimated the effect zone along primary roads of 1000 feet in
woodlands, 1197 feet in grasslands, and 2657 feet in natural lands near urban areas. Along secondary roads with lower traffic volumes, the effect zone was 656 feet. As previously stated in this section, the new truck scales facility is designed to receive up to 1,000 trucks an hour. All of this traffic will be directed to the truck scales via the new bridge over Suisun Creek and the truck scales area will be located approximately 600 feet east of the creek. The “road zone” and the California red-legged frog have not been adequately investigated but based on the effects discussed in this section and the anecdotal information regarding the road effects on other species it is reasonable to conclude that the listed frogs inhabiting the Suisun Creek riparian corridor are likely to experience greater risks with the construction and operation of the proposed project.

The proposed conservation measures are likely to avoid and minimize the take of California red-legged frogs that could result from the potential adverse effects described above. The majority of the proposed action area will be located within open and disked agricultural land which reduces the loss of red-legged frog habitat that could have been locally removed. Designing a clear span bridge structure limits the amount of disturbance needed and permanent structures placed within Suisun Creek. Biological monitoring, worker education, and proper limited localized relocation of red-legged frogs in immediate harm should reduce the death and injury to individual frogs. Post-construction restoration of temporary work areas will likely limit the invasion of non-native vegetation and provide some degree of habitat for the listed frog in the future. The approximately 3.0-acre riparian restoration site on Solano Community College property has the potential to enhance the riparian and upland habitat for frogs displaced by the proposed project as well as the local population that is likely strongly confined to the Suisun Creek riparian corridor.

Cumulative Effects within the Action Area

Cumulative effects include the effects of future State, Tribal, local or private actions that are reasonably certain to occur in the action area considered in this biological opinion. Future Federal actions that are unrelated to the proposed action are not considered in this section because they require separate consultation pursuant to section 7 of the Act.

Numerous non-Federal activities continue to negatively affect the valley elderberry longhorn beetle and the California red-legged frog in Solano County. Their habitat is lost or degraded as a result of road and utility construction and maintenance, commercial and residential development, overgrazing, agricultural expansion, and water irrigation and storage projects that may not be funded, permitted, or constructed by a Federal agency. Other threats include contamination, poisoning, increased predation, and competition from non-native species associated with human development. Small private actions that may adversely affect listed species, such as conversion of land, small mammal population control, mosquito control, and residential development, may occur without consultation with or authorization by the Service or the California Department of Fish and Game pursuant to their respectively Endangered Species Act.

As urban development continues along Suisun Creek, it will likely adversely affect the function of upland areas within the action area that are occupied by elderberry shrubs and serve as
dispersal and aestivation habitat for red-legged frogs. Continued development and maintenance of roadways to serve expanding urban areas may further fragment and isolate populations of beetles and red-legged frogs from other nearby populations. Increased predation associated with domesticated pets or feral animals generally accompanies urban expansion. As urban development encroaches on rural areas, the need increases for mosquito abatement programs that may introduce exotic fish into ponds used for breeding by red-legged frogs, thus negatively affecting the reproductive success of this species.

The cumulative local development will result in temporary and permanent habitat fragmentation. The results of fragmentation are inhibition of genetic exchange between populations and impediments to recolonization of habitats from which populations have been extirpated. Small, isolated populations are substantially more vulnerable to stochastic events (e.g., aberrant weather patterns, fluctuations in availability of food) and may exhibit reduced adaptability to environmental (natural or anthropogenic) changes.

Despite the recent economic decline, there will be a continued demand for new housing and commercial development in Solano County and other road and development projects have been recently completed or are planned along Interstate 80, State Route 12, and State Route 680. These developments and further infill could result in the eventual need for additional flood control measures and vegetation removal along Suisun Creek. This would diminish the habitat connectivity between listed species habitat remaining in the action area vicinity and the local region. Development of adjacent wildlife habitat will continue to result in the loss of not only breeding, resting, and foraging habitat, but the loss of dispersal corridors between breeding populations, thereby further isolating and fragmenting wildlife populations. Additionally, development of small reservoirs or water bodies, such as golf course hazards, and water diversions may occur which may pose further threats such as disruption of dispersal corridors for terrestrial species, and competition or predation from non-native species such as bullfrogs for aquatic species.

Cumulative effects to the valley elderberry longhorn beetle and the California red-legged frog include continuing and future conversion of suitable breeding, foraging, sheltering, and dispersal habitat resulting from urban development. Additional urbanization can result in road widening, an increased need for enhanced transportation services, and increased traffic on roads that bisect habitat, thereby increasing road-kill of frogs while reducing in size and further fragmenting remaining habitats.

Additional urbanization could also lead to increased burrowing rodent control efforts (T. Jones, in litt. 1993; Shaffer et al. 1993). Rodent control in rural areas in Solano County could contribute to the decline of red-legged frogs in the region, as well as other sensitive species that utilize burrows created by burrowing rodents.

California red-legged frogs likely are exposed to a variety of pesticides and other chemicals throughout their ranges. This amphibian species could also die from starvation due to the loss of
their insect and small mammal prey base. Hydrocarbon and other contamination from oil production and road runoff; the application of numerous chemicals for roadside and truck scales maintenance; urban/suburban landscape maintenance; and rodent and vector control programs may all have negative effects on red-legged frog populations. In addition, red-legged frogs may be harmed through increased road kill due to the construction and use of new roads and increased traffic in the overall region and collection by amphibian enthusiast and others.

Further habitat fragmentation; additional non-native species introduction; translocation of infected individuals, and increased access to aquatic habitat could facilitate or increase the spread of amphibious diseases within the range of the California red-legged frog. The global mass extinction of amphibians primarily due to chytrid fungus continues to be of significant concern (Norris 2007; Skerratt et al 2007).

The global average temperature has risen by approximately 0.6 degrees centigrade during the 20th Century (International Panel on Climate Change 2001, 2007; Adger et al 2007). There is an international scientific consensus that most of the warming observed has been caused by human activities (International Panel on Climate Change 2001, 2007; Adger et al. 2007), and that it is “very likely” that it is largely due to increasing concentrations of greenhouse gases (carbon dioxide, methane, nitrous oxide, and others) in the global atmosphere from burning fossil fuels and other human activities (Cayan et al. 2005; EPA Global Warming webpage http://yosemite.epa.gov; Adger et al. 2007). Eleven of the twelve years between 1995 and 2006 rank among the twelve warmest years since global temperatures began in 1850 (Adger et al. 2007). The warming trend over the last fifty years is nearly twice that for the last 100 years (Adger et al. 2007).

Looking forward, under a high emissions scenario, the International Panel on Climate Change estimates that global temperatures will rise another four degrees centigrade by the end of this Century; even under a low emissions growth scenario, the International Panel on Climate Change estimates that the global temperature will go up another 1.8 degrees centigrade (International Panel on Climate Change 2001).

The increase in global average temperatures affects certain areas more than others. The western United States, in general, is experiencing more warming than the rest of the Nation, with the 11 western states averaging 1.7 degrees Fahrenheit warmer temperatures than this region’s average over the 20th Century (Saunders et al. 2008). California, in particular, will suffer significant consequences as a result of global warming (California Climate Action Team 2006). In California, reduced snowpack will cause more winter flooding and summer drought, as well as higher temperatures in lakes and coastal areas. The incidence of wildfires in the Golden State also will increase and the amount of increase is highly dependent upon the extent of global warming. No less certain than the fact of global warming itself is the fact that global warming, unchecked, will harm biodiversity generally and cause the extinction of large numbers of species. If the global mean temperatures exceed a warming of two to three degrees centigrade above pre-industrial levels, twenty to thirty percent of plant and animal species will face an increasingly high risk of extinction (International Panel on Climate Change 2001, 2007).
The mechanisms by which global warming may push already imperiled species closer or over the edge of extinction are multiple. Global warming increases the frequency of extreme weather events, such as heat waves, droughts, and storms (International Panel on Climate Change 2001, 2007; California Climate Action Team 2006; Lenihan et al. 2003). Extreme events, in turn may cause mass mortality of individuals and significantly contribute to determining which species will remain or occur in natural habitats. As the global climate warms, terrestrial habitats are moving northward and upward, but in the future, range contractions are more likely than simple northward or upslope shifts. Ongoing global climate change (Anonymous 2007; Inkley et al. 2004; Adger et al. 2007; Kanter 2007) likely imperils the valley elderberry longhorn beetle and the California red-legged frog and the resources necessary for their survival. Since climate change threatens to disrupt annual weather patterns, it may result in a loss of their habitats and/or prey, and/or increased numbers of their predators, parasites, and diseases. Where populations are isolated, a changing climate may result in local extinction, with range shifts precluded by lack of habitat.

Conclusion

After reviewing the current status of the species, the environmental baselines for the action area, the effects of the proposed action and the cumulative effects, it is the Service’s biological opinion that the proposed project is not likely to jeopardize the continued existence of the valley elderberry longhorn beetle or the California red-legged frog.

INCIDENTAL TAKE STATEMENT

Section 9(a)(1) of the Act and Federal regulation pursuant to section 4(d) of the Act prohibit the take of endangered and threatened fish and wildlife species without special exemption. Take is defined as harass, harm, pursue, hunt, shoot, wound, kill, trap, capture or collect, or to attempt to engage in any such conduct. Harass is defined by the Service as an intentional or negligent act or omission which creates the likelihood of injury to a listed species by annoying it to such an extent as to significantly disrupt normal behavioral patterns which include, but are not limited to, breeding, feeding, or sheltering. Harm is defined by the Service to include significant habitat modification or degradation that results in death or injury to listed species by impairing behavioral patterns including breeding, feeding, or sheltering. Incidental take is defined as take that is incidental to, and not the purpose of, the carrying out of an otherwise lawful activity. Under the terms of section 7(b)(4) and section 7(o)(2), taking that is incidental to and not intended as part of the agency action is not considered to be prohibited taking under the Act provided that such taking is in compliance with this Incidental Take Statement.

The measures described below are non-discretionary, and must be implemented by Caltrans in order for the exemption in section 7(o)(2) to apply. Caltrans has a continuing duty to regulate the activity covered by this Incidental Take Statement. If Caltrans (1) fails to adhere to the terms and conditions of the incidental take statement through enforceable terms that are added to the permit
or grant document, and/or (2) fails to retain oversight to ensure compliance with these terms and conditions, the protective coverage of section 7(o)(2) may lapse.

Amount or Extent of Take

The Service anticipates incidental take of the valley elderberry longhorn beetle will be difficult to measure because it is difficult to determine the number of beetle larvae and pupae contained within each elderberry plant. Because it is not known how many larvae or pupae each stem 1.0 inch or greater in diameter at ground level can support, the Service quantifies the amount of incidental take of the valley elderberry longhorn beetle in terms of the number of plants or stems 1.0 inch or greater in diameter at ground level that would be lost. The Service anticipates that all valley elderberry longhorn beetles inhabiting the one elderberry plant that may be subject to transplantation or pruning, will be harmed, harassed, or killed, as a result of the proposed action. Due to the proposed implementation of avoidance measures, incidental take is not being issued for the listed beetles that may inhabit other elderberry plants within or adjacent to the action area.

The Service anticipates that incidental take of the California red-legged frog will be difficult to detect because when California red-legged frogs are not in their breeding ponds, they inhabit the burrows of ground squirrels or other rodents; they may be difficult to locate due to their cryptic appearance and behavior; the juvenile and adult animals may be located a distance from the breeding ponds; the migrations occur on a limited period during rainy nights in the fall, winter, or spring; and the finding of an injured or dead individual is unlikely because of their relatively small body size. Recent project monitoring suggests that California red-legged frogs are difficult to find during preconstruction clearance surveys that include excavation of potential upland frog refugia in close proximity to breeding ponds and other aquatic habitat. Losses of California red-legged frogs may also be difficult to quantify due to seasonal fluctuations in their numbers, random environmental events, changes in water regime at their breeding ponds, or additional environmental disturbances. Due to the difficulty in quantifying the number of California red-legged frogs that will be taken as a result of the proposed action, the Service is quantifying take incidental to the project as all of the California red-legged frogs inhabiting or utilizing the 3.43 acres of habitat identified in the action area. A portion of the frog habitat that will be affected by the proposed Interstate 80 Eastbound Cordelia Truck Scales Relocation Project has already been covered under incidental take issued for the Interstate 80 HOV Lanes Project (Service File 1-1-07-F-0146). Due to overlapping action areas the Interstate 80 project accounted for 0.13 acres of frog habitat that will be affected by the truck scales project. Therefore, the Service is issuing incidental take in this biological opinion for the remaining 3.30 acres of frog habitat in the action area. The incidental take is expected to be in the form of harm, harassment, injury, and mortality to adult California red-legged frogs from habitat loss/degradation, construction-related disturbance, capture and relocation, as well as roadkill and other activities associated with the operation and maintenance of the completed truck scales facility.

Upon implementation of the following reasonable and prudent measures incidental take associated with the proposed action described above for the valley elderberry longhorn beetle and
California red-legged frog will become exempt from the prohibitions described under section 9 of the Act.

Effect of the Take

The Service determined that this level of anticipated take is not likely to result in jeopardy to the valley elderberry longhorn beetle or California red-legged frog.

This biological opinion does not include incidental take for take that may occur to the valley elderberry longhorn beetle or the California red-legged frog due to a “frac-out” or implementation of a “frac-out” contingency plan.

Reasonable and Prudent Measures

The following reasonable and prudent measures are necessary and appropriate to minimize the effects of the proposed action on the valley elderberry longhorn beetle and California red-legged frog. Caltrans will be responsible for compliance with these measures:

1. Caltrans will ensure that all the conservation measures in the project description section of this biological opinion will be implemented.

2. Caltrans will ensure adverse effects to the valley elderberry longhorn beetle and California red-legged frog will be minimized.

3. Caltrans will ensure their compliance with this biological opinion.

Terms and Conditions

In order to be exempt from the prohibitions of section 9 of the Act, Caltrans shall ensure compliance with the following terms and conditions, which implement the reasonable and prudent measures described above. These terms and conditions are nondiscretionary.

1. The following Terms and Conditions implement Reasonable and Prudent Measure one (1):

 a. Caltrans shall minimize the potential for harm, harassment, or killing of federally listed wildlife species resulting from project related activities by implementation of the conservation measures as described in the October 2008, Biological Assessment, the March 18, 2009, letter to the Service, and appearing in the Project Description of this biological opinion, except as modified by these Terms and Conditions.

 b. Caltrans shall include Special Provisions that include the Conservation Measures and the Terms and Conditions of this biological opinion in the solicitation for bid
information. In addition, Caltrans shall educate and inform contractors involved in the project as to the requirements of the biological opinion.

c. Caltrans has proposed to provide compensation for the effects to 3.43 acres of California red-legged frog habitat by providing STA with sufficient resource to implement, monitor, and manage a 3.0-acre restoration project on Solano Community College property. Acceptable compensation shall require a Service-approved conservation easement/deed restriction on the 3.0-acre restoration site. Caltrans shall immediately reinitiate consultation with the Service if Solano Community College is unable to secure a conservation easement/deed restriction for the restoration site or if STA is unable to satisfy the success criteria outlined in the March 30, 2009, mitigation and monitoring plan for the restoration site. The conservation easement/deed restriction for the site shall be reviewed and approved by the Service.

An approved ecologically-based conservation easement/deed restriction shall include restricted public access, a long-term management plan, and an in-perpetuity endowment based on a Service-approved property analysis record (PAR). The Service-approved management plan shall be in perpetuity and shall include, but not be limited to, a description of the site, management needs (e.g. non-native vegetation and animal control, etc), when the management activities will be implemented, how often and to what level monitoring of the site shall occur, and a action/contingency plan to address potential management issues.

d. Caltrans shall prepare a relocation plan for moving California red-legged frogs that will be submitted to the Service for review and approval at least thirty (30) calendar days prior to the date of groundbreaking.

2. The following Terms and Conditions implement Reasonable and Prudent Measure two (2):

a. The Resident Engineer or their designee shall be responsible for implementing the conservation measures and Terms and Conditions of this biological opinion and shall be the point of contact for the project. The Resident Engineer or their designee shall maintain a copy of this biological opinion onsite whenever construction is taking place. Their name and telephone number shall be provided to the Service at least thirty (30) calendar days prior to groundbreaking at the project. At least thirty (30) calendar days prior to groundbreaking, the Resident Engineer must submit a letter to the Service verifying that they possess a copy of this biological opinion and have read and understand the Terms and Conditions.

b. A Service-approved biologist(s) shall be onsite during all activities that may result in the take of the valley elderberry longhorn beetle or California red-legged frog. The qualifications of the biologist(s) must be presented to the Service for review and
written approval at least thirty (30) calendar days prior to ground-breaking at the project site. The Service-approved biologist(s) will keep a copy of this biological opinion in their possession when onsite. The Service-approved biologist(s) shall be given the authority to communicate verbally or by telephone, electronic mail or hardcopy with Caltrans personnel, construction personnel or any other person(s) at the project site or otherwise associated with the project. The Service-approved biologist(s) shall have oversight over implementation of all the Terms and Conditions in this biological opinion, and shall have the authority to stop project activities if they determine any of the requirements associated with these Terms and Conditions are not being fulfilled. If the Service-approved biologist(s) exercises this authority, the Service shall be notified by telephone and email within 24 hours. The Service contact is Chris Nagano, Division Chief, Endangered Species Program at the Sacramento Fish and Wildlife Office at telephone (916) 414-6600.

c. An outline of the employee environmental awareness program shall be submitted to the Division Chief of the Endangered Species Program at the Sacramento Fish and Wildlife Office within thirty (30) calendar days prior to the start of construction. The program shall focus on the conservation measures that are relevant to employee’s personal responsibility. Documentation of the training, including individual signed affidavits, shall be submitted to the Service with the annual compliance report described in the Reporting Requirements on page 46 of this biological opinion.

d. Caltrans shall submit a “frac-out” contingency plan for Service review and approval within sixty (60) days prior to the onset of any ground breaking activities associated with the proposed project.

e. Caltrans shall contact the Service within twenty-four (24) hours if access, containment, or clean-up of a “frac-out”, or any other activities associated with implementing the “frac-out” contingency plan occurs within California red-legged frog aquatic or upland habitat or has the potential to affect an elderberry shrub. Caltrans shall quantify, report, and reinitiate consultation for the listed beetle and frog if activities occur outside the action area described in this biological opinion.

f. Caltrans shall contact the Service within twenty-four (24) hours if activities associated with implementing the “frac-out” contingency plan or any other project activities occur within 100 feet of an elderberry shrub or habitat for other listed species.

g. The Service will be notified that (1) the construction and revegetation contractors have been advised that all on-site personnel must receive valley elderberry longhorn beetle and California red-legged frog training prior to commencing work on the project and (2) if elderberry shrubs in the construction zone are disturbed, the details surrounding the incident and the corrective measures taken will be reported to the Service within five (5) working days of any such disturbance.
h. An experienced, licensed, revegetation contractor or landscape architect will carry out the elderberry transplanting and planting activities.

i. If the identified elderberry shrub is transplanted, a Service approved biologist will monitor the removal of the elderberry shrubs and subsequent transplanting to the restoration site and will ensure that proper transplanting procedures are used.

j. During transplanting, the biologist will inspect the stems and roots of the transplant to determine presence or absence of valley elderberry longhorn beetle exit holes, which will be recorded. Existing holes on stems will be marked with white paint (exterior, flat, latex) around each hole. Paint should not enter the hole. Marking holes in this manner will allow monitors in subsequent years to distinguish new exit holes from old ones.

k. If the elderberry shrubs cannot be successfully transplanted because it is in a state of decline, in obvious poor health, or for other reasons such that it would not likely survive transplanting, it will be transported to the Solano Community College Suisun Creek restoration site and left to decompose. Elderberry stems and cuttings will also be left in the restoration site. Cuttings will not be chipped or destroyed because they may contain developing larvae and/or pupae that could complete development and successfully emerge from dead wood.

l. During transplanting, Caltrans will ensure that existing elderberry shrubs adjacent to the construction area and the restoration area are not adversely affected.

m. The transplanted elderberry shrub will be tagged and identified as a transplant opposed to the container-grown elderberries that will be planted in the restoration area. The success of the transplanted elderberry shall be reported in the annual restoration site monitoring report. Monitoring and maintenance shall be done according to the Service’s September 19, 1996, Mitigation Guidelines for the Valley Elderberry Longhorn Beetle.

3. The following Terms and Conditions implement Reasonable and Prudent Measure three (3):

a. If requested, before, during, or upon completion of ground breaking and construction activities, Caltrans shall allow access by Service and California Department of Fish and Game personnel or their designated agent to the project site to inspect project effects to the valley elderberry longhorn beetle and California red-legged frog, and their habitat.

b. Caltrans shall comply with the reporting requirements outlined below.
Reporting Requirements

Proof of environmental training and fulfillment of compensation requirements shall be provided to the Division Chief of the Endangered Species Program, Sacramento Fish and Wildlife Office, 2800 Cottage Way, Room W-2605, Sacramento, California 95825-1846, phone (916) 414-6600.

Observations of valley elderberry longhorn beetles (including exit holes in dead or living stems), California red-legged frogs, or of any listed or sensitive animal species should be reported to the CNDDB within thirty (30) calendar days of the observation.

The Service's Sacramento Field Office is to be notified within three (3) working days of the finding of any dead, sick, or injured valley elderberry longhorn beetles or any harm to beetles or elderberry plants associated with the Interstate 80 Eastbound Cordelia Truck Scales Relocation Project. The Service contact person for this information is the Coast-Bay Branch Chief, Endangered Species Program at (916) 414-6600. Any salvaged valley elderberry longhorn beetle specimens taken shall be properly preserved in accordance with the Natural History Museum of Los Angeles County's policy of accessioning (10% formalin in a quart jar or freezing). Information concerning how the specimen was taken, length of the interval between death and preservation, the environmental conditions, the incidental take permit number (81420-2008-F-1929), and any other relevant information shall be written on 100% rag content paper, with indelible ink, and included in the container with the specimen. Preserved specimens shall be delivered to the Service's Division of Law Enforcement at 2800 Cottage Way, Room W-2928, Sacramento, California 95825 [telephone: (916) 414-6660].

Injured California red-legged frogs shall be cared for by a licensed veterinarian or other qualified person such as the on-site biologist; dead individuals must be placed in a sealed plastic bag with the date, time, location of discovery, and the name of the person who found the animal; the carcass should be kept in a freezer; and held in a secure location. The Service and the California Department of Fish and Game will be notified within one (1) working day of the discovery of death or injury to a California red-legged frog that occurs due to project related activities or is observed at the project site. Notification will include the date, time, and location of the incident or of the finding of a dead or injured animal clearly indicated on a USGS 7.5 minute quadrangle and other maps at a finer scale, as requested by the Service, and any other pertinent information. The Service contacts are Chris Nagano, Division Chief, Endangered Species Program at the Sacramento Fish and Wildlife Office [(916) 414-6600], and Dan Crum, Resident Agent-in-Charge of the Service's Law Enforcement Division at (916) 414-6660. The California Department of Fish and Game contact is Mr. Scott Wilson at telephone (707) 944-5563.

Caltrans shall submit a post-construction compliance report prepared by the on-site biologist to the Sacramento Fish and Wildlife Office within sixty (60) calendar days following each year of construction or within sixty (60) calendar days of any break in construction activity lasting more than sixty (60) calendar days. This report shall detail (i) dates that construction occurred; (ii) pertinent information concerning the success of the project in meeting compensation and other
conservation measures; (iii) an explanation of failure to meet such measures, if any; (iv) known project effects on the valley elderberry longhorn beetle and/or California red-legged frog, if any; (v) occurrences of incidental take of either of these species; (vi) documentation of employee environmental education; and (vii) other pertinent information. The reports shall be addressed to the Coast-Bay Branch Chief, Endangered Species Program, Sacramento Fish and Wildlife Office.

Caltrans shall report to the Service any information about take or suspected take of listed wildlife species not authorized by this biological opinion. Caltrans must notify the Service via electronic mail and telephone within twenty-four (24) hours of receiving such information. Notification must include the date, time, location of the incident or of the finding of a dead or injured animal, and photographs of the specific animal. The individual animal shall be preserved, as appropriate, and held in a secure location until instructions are received from the Service regarding the disposition of the specimen or the Service takes custody of the specimen. The Service contacts are Chris Nagano, Division Chief, Endangered Species Program, Sacramento Fish and Wildlife Office at Chris_Nagano@fws.gov and (916) 414-6600, and Resident Agent-in-Charge Dan Crum of the Service’s Law Enforcement Division at (916) 414-6660.

CONSERVATION RECOMMENDATIONS

Section 7(a)(1) of the Act directs Federal agencies to utilize their authorities to further the purposes of the Act by carrying out conservation programs for the benefit of endangered and threatened species. Conservation recommendations are discretionary agency activities that can be implemented to further the purposes of the Act, such as preservation of endangered species habitat, implementation of recovery actions, or development of information and data bases.

We propose the following conservation recommendations:

1. Caltrans should assist the Service in implementing recovery actions identified in the Valley Elderberry Longhorn Beetle Recovery Plan (Service 1984) and the Recovery Plan for the California Red-legged Frog (Service 2002).

2. Caltrans should consider participating in the planning for regional habitat conservation plans for the valley elderberry longhorn beetle and California red-legged frog, other listed species, and sensitive species.

3. Caltrans should consider establishing functioning preservation and creation conservation banking systems to further the conservation of the valley elderberry longhorn beetle, California red-legged frog, and other listed species. Such banking systems also could possibly be utilized for other required mitigation (i.e., seasonal wetlands, riparian habitats, etc.) where appropriate. Efforts should be made to preserve habitat along roadways in association with wildlife crossings.

4. Roadways can constitute a major barrier to critical wildlife movement. Therefore, Caltrans should incorporate culverts, tunnels, or bridges on highways and other roadways that allow
safe passage by California red-legged frogs, other listed animals, and wildlife. Photographs, plans, and other information should be included in biological assessments if “wildlife friendly” crossings are incorporated into projects. Efforts should be made to establish upland culverts designed specifically for wildlife movement rather than accommodations for hydrology. Transportation agencies should also acknowledge the value of enhancing human safety by providing safe passage for wildlife in their early project design.

5. Caltrans should continue to pursue multifaceted compensation packages such as the one developed for the proposed U.S. Interstate 580/Isabel Avenue Interchange Construction Project (Service File 1-1-07-F-0280) on future formal consultations with the Service.

6. Caltrans should continue to develop and implement their Early Statewide Biological Mitigation Planning Project that has been developed by the University of California at Davis, Road Ecology Center through Caltrans funding.

In order for the Service to be kept informed of actions minimizing or avoiding adverse effects or benefiting listed and/or proposed species or their habitats, the Service requests notification of the implementation of these recommendations.

REINITIATION--CLOSING STATEMENT

This concludes formal consultation on the proposed Interstate 80 Eastbound Cordelia Truck Scales Relocation Project in Solano County, California. As provided in 50 CFR §402.16 and in the terms and conditions of this biological opinion, reinitiation of formal consultation is required where discretionary Federal agency involvement or control over the action has been maintained (or is authorized by law) and if: (1) the final project design exceeds the described action area in the October 2008, Biological Assessment; (2) the amount or extent of incidental take is exceeded; (3) new information reveals effects of the agency action that may affect listed species or critical habitat in a manner or to an extent not considered in this opinion; (4) the agency action is subsequently modified in a manner that causes an effect to listed species or critical habitat that was not considered in this opinion; or (5) a new species is listed or critical habitat designated that may be affected by the action. In instances where the amount or extent of incidental take is exceeded, any operations causing such take must cease pending reinitiation.
Mr. James Richards

If you have questions concerning this opinion on the proposed Interstate 80 Eastbound Cordelia Truck Scales Relocation Project in Solano County, California, please contact John Cleckler (John_Cleckler@fws.gov) or Ryan Olah (Ryan_Olah@fws.gov) at the letterhead address or at (916) 414-6600.

Sincerely,

Susan K. Moore
Field Supervisor

cc:
Ahmad Hashemi, California Department of Transportation, Oakland, California
Scott Wilson, Melissa Escaron, Liam Davis, Marcia Grefsrud, California Department of Fish and Game, Yountville, California
Dale Dennis, Solano Transportation Authority, Suisun City, California
Stephanie Myers, ICF Jones & Stokes, Sacramento, California

Literature Cited

Mr. James Richards

Halstead, J.A., and J.A. Oldham. 1990. Revision of the nearctic Desmocerus Audinet-Serville with emphasis on the federally threatened valley elderberry longhorn beetle (Coleoptera: Cerambycidae). Environmental Section Staff Report, Kings River Conservation District, Fresno, California.

Jennings, M. R., M. P. Hayes, and D. C. Holland. 1992. A petition to the U.S. Fish and Wildlife Service to place the California red-legged frog (Rana aurora draytonii) and the western pond turtle (Clemmys marmorata) on the list of endangered and threatened wildlife and plants. 21 pages.

_____. 1933. Frogs and their commercial use. California Department of Fish and Game 19(3)203-213.

2005b. Review of the Suisun Valley Road Bridge (23C-077) Replacement, Solano County, California, for Inclusion with the Valley Elderberry Longhorn Beetle Programmatic Consultation (Service File Number 1-1-96-F-0156). Biological Opinion, reference number 1-1-05-F-0193. Sacramento, California. 8 pages.

Appendix J FHWA Project Level Conformity Determination for the I-80 EB Cordelia Truck Scales Relocation Project
Bijan Sartipi, District Director
California Department of Transportation
111 Grand Avenue
P.O. Box 23360
Oakland, CA 94612

Attention: Allen Baradar

Dear Mr. Baradar:

SUBJECT: FHWA Project Level Conformity Determination for I-80 EB Cordelia Truck Scales Relocation Project

On August 31, 2009, the California Department of Transportation (Caltrans) submitted to the Federal Highway Administration (FHWA) a request for a project level conformity determination for the I-80 EB Cordelia Truck Scales Relocation Project Solano County. The project is in an area that is designated Nonattainment for Ozone and Maintenance for Carbon Monoxide (CO).

The project level conformity analysis submitted by Caltrans indicates that the transportation conformity requirements of 40 C.F.R. Part 93 have been met. The project is included in the Metropolitan Transportation Commission’s (MTC) currently conforming Transportation 2055 Plan (RTP) and the 2009 Regional Transportation Improvement Program (RTIP). The current conformity determinations for the RTP and RTIP were approved by FHWA and the Federal Transit Administration (FTA) on May 29, 2009. The design concept and scope of the preferred alternative have not changed significantly from those assumed in the regional emissions analysis.

As required by 40 C.F.R. 93.116 and 93.123, the localized CO analyses are included in the documentation. The CO hotspot analysis was conducted using the Transportation Project-Level Carbon Monoxide Protocol. The analyses demonstrate that the project will not create any new violation of the standards or increase the severity or number of existing violations.

Based on the information provided, FHWA finds that the Conformity Determination for the I-80 EB Cordelia Truck Scales Relocation project conforms to the State Implementation Plan (SIP) in accordance with 40 C.F.R. Part 93.
If you have any questions pertaining to this conformity finding, please contact Stew Sonnenberg, FHWA Air Quality Specialist, at (916) 498-5889.

Sincerely,

[Signature]

For
Walter C. Waidelich, Jr.
Division Administrator
cc: (email)
Glenn Kinoshita, Caltrans D-4
Mike Brady, Caltrans HQ
Melanie Brent, Caltrans
Steve Luxenberg, FHWA

SSonnenberg/ac