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Executive Summary 
 
In this first year of a two-year project, we lay the groundwork for the development of a 
performance tool that gauges the level of safety of any type of traffic flow on a California 
freeway.  The inputs to this tool are data from single loop detectors, so the tool can be 
implemented wherever such data are monitored or simulated.  Our analyses are based 
on loop detector data for each of the freeway lanes for a short period of time preceding 
teach of over 1,700 accidents in our case study.  This case study covers the six major 
freeways in Orange County for a six-month period in 2001.  In this first year of the 
project we have uncovered an extensive set of statistical parameters that capture those 
aspects of traffic flow that are strongly related to accident potential.    
 
In this work we recognize that loop detector data at a specific time and place cannot be 
converted to speed, because it is not possible to know effective vehicle length at such a 
detailed level (that is, the mix of long and short vehicles is unknown at a specific place 
for a short period of time).  Consequently, we avoid using any direct speed or density 
measures among the parameters.  These parameters include not only central 
tendencies (means and medians), but variations, and measures of systematic and 
synchronized traits that capture patterns in short period of loop detector data.  Such 
patterns include breakdown from free flow to congested operations or recovery back to 
free flow, and differences in traffic conditions across lanes.  We demonstrate that the 
parameters can account for speed and density, even though these are not used directly.  
Moreover, the parameters account for important differences among the types of 
accidents that occur under different type of traffic flow.  
 
The second year of the project will be devoted to estimating exposure to traffic 
conditions to establish accident rates, followed by the coding of the tool that will allow 
engineers and planners to evaluate the safety consequences of traffic flow, either as a 
real-time heads-up of potentially unsafe conditions, or for use in evaluating projects.     
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1 PROJECT OBJECTIVES 
The objective of this project is to implement a real-time tool for safety analysis.  The 
overall project goal is to calibrate and verify a tool that translates traffic flow, as 
measured by ubiquitous single loop detectors, into safety performance in terms of 
expected numbers of crashes by type of crash per exposed vehicle mile of travel.  This 
tool can be used in monitoring the safety performance of freeway operations and to 
evaluate and document improvements to safety arising from such ITS deployment as 
system-wide ramp metering (SWARM), freeway service patrol (FSP) and other incident 
response measures, and driver information.  By quantifying the safety benefits accrued 
from smooth and efficient traffic operations, Caltrans should be able to incorporate 
safety measures in assessment of performance gains resulting from ITS deployment.  
Another application will be to forecast the safety implications of proposed projects by 
evaluating the levels of safety implied by traffic simulation model outputs.  The safety 
aspects of costs and benefits can be assessed by comparing the levels of safety 
estimated by the tool for traffic flows before and after implementation of a treatment, 
such as a component of an intelligent transportation system (ITS) or infrastructure 
project.  It can also be used to forecast the safety consequences of doing nothing.  It is 
meant to complement performance measurement systems that focus on travel times 
and delay (PeMS, 2005).   
 
In the first year of the project, reported here, our objective has been to capture the 
relationships between traffic flow, as measured by an extensive set of statistical 
parameters, and the types of accidents that occur under different types of traffic flow 
conditions.  This represents a search for evidence of how traffic flow can be affected in 
order to reduce freeway crashes.  
 
In the second year of the project, the goal will be to test the model’s ability to distinguish 
locations and conditions with high accident rates from those with low accident rates.    
Because the methodology does not depend directly on specific geometric 
characteristics, but rather is based on the traffic conditions arising from both roadway 
layout and demand, the goal is to demonstrate that the tool can be readily transferred to 
any urban freeway that is fully instrumented with loop detectors without the need for 
extensive calibration.  Once validated, code will be developed to deploy the model, first 
as a stand-alone on the Testbed website using data from the Caltrans District 12 FEP 
as input.  Eventually the tool could provide the safety element of a performance 
measurement system such as PeMS.  
 
 
 



 

 3

2 BACKGROUND 
The present project builds upon a previous PATH project, which involved the 
development of FITS (Flow Impacts on Traffic Safety) (Golob, Recker, and Alvarez, 
2002).  In Golob, Recker and Alvarez (2004), we stated that a common aim of 
transportation management and control projects on urban freeways is to increase 
productivity by reducing congestion.  Reducing congestion ostensibly leads to 
reductions in travel time, vehicle emissions and fuel usage, and improved travel time 
reliability.  PeMS has been implemented to measure the real-time performance of any 
instrumented segment of freeway in terms of throughput: travel time per vehicle, 
average speed or total delay (Chen, et al., 2001; Choe, Skabardonis, Varaiya, 2002; 
Varaiya, 2001).  The inputs to these tools are typically total flows and mean speeds 
computed from volume and occupancy data from single inductive loop detectors, 
typically for intervals of 30-seconds or more.  Increasingly, such single loop detectors 
are distributed throughout the freeway system.  Data from more accurate but less 
ubiquitous sensors, such as double loops and video cameras, is often used to adjust or 
calibrate single loop measurements, but the primary source of real-time surveillance 
data for traffic management is likely to remain the single loop detector for the 
foreseeable future. 
 
Reduced congestion and smoothed traffic flow are also likely to improve safety, as well 
as reduce psychological stress on drivers.  Concentrating on the safety issue, our 
objective in this paper is to demonstrate that researchers are beginning to understand 
the relationship between safety and improved traffic flow.  Recent developments 
indicate that the time is right to refine and implement analytical tools that can be used in 
real-time monitoring of the safety level of the traffic flow on any instrumented segment 
of freeway.  As opposed to tools that measure freeway performance in terms of 
throughput or travel time, we found that the key elements of traffic flow affecting safety 
are not only mean volume and speed, but also variations in volume and speed.  We 
further determined that it is important to capture variations in speed and flows 
separately across freeway lanes, and that such information is useful in differentiating 
types of crashes. 
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3 DATA 
Two datasets are used in this project: (1) accident data from the Traffic Accident 
Surveillance and Analysis System (TASAS) database (Caltrans, 1993), which covers all 
police-reported, on the California State Highway System, and (2) traffic flow data from 
the Vehicle Detection system (VDS).  The VDS traffic flow data we need have been 
received directly from front-end processors (FEP) using the UCI ATMIS Testbed Intertie 
with Caltrans District 12.  These data have been used in two other PATH projects: 
“Development of a Path Flow Estimator for Deriving Steady-State and Time-Dependent 
Origin-Destination Table Trips,” and “A Tool for the Incorporation of Non-Recurrent 
Congestion Costs of Freeway Accidents in Performance Management.”  The data are 
also being used in the project “Modeling Matched Traffic and Accident Datasets to 
Significantly Improve Safety and Efficiency of Urban Freeway Operations,” funded by 
the National Science Foundation.  In this first phase of the analysis, accident data from 
TASAS are linked with these traffic flow data.  In analyses that will be conducted during 
the second year of the project, the traffic flow data associated with accidents will be 
compared to traffic flow data corresponding to times and places at which no accident 
was reported.  This will allow us to develop models to assess the hazards of different 
types of traffic flow. 
 

3.1 Accident Data 
The TASAS database (Caltrans, 1993; FHWA, 2000) covers police-reported crashes 
that occur on the California State Highway System.  Most of the crashes included in the 
TASAS database were investigated in the field, but some were reported after the fact.  
The database does not cover crashes for which there are no police reports.  We are 
concerned only with highway (mainline) crashes on well-defined urban freeways. 
 
The TASAS data available to us contain the following types of crash characteristics: (1) 
the type of collision (rear-end, sideswipe, broadside, head-on, overturn), (2) the collision 
factor (e.g., speeding, following too close, illegal turn, alcohol), (3) number of vehicles 
and other parties involved, (4) the movements of each vehicle prior to collision (e.g., 
proceeding straight ahead, slowing, stopping, turning), (5) the location of the collision 
involving each vehicle (e.g., left lane, interior lanes, right lane, right shoulder area, off-
road beyond right shoulder area), (6) the object struck by each vehicle (e.g., another 
vehicle, guardrail, bridge abutment), (7) number of injured and fatally injured persons 
per vehicle, and (8) environmental conditions, such as lighting, weather, and pavement 
conditions.  No information was available concerning drivers and extent of injuries.   
 
The time of each crash is not known with precision.  An inspection of the crash times, 
presumably obtained from eyewitness accounts documented in police reports, reveals 
that almost 88 percent of the accidents in our study have reported times in minutes that 
fall precisely on the twelve five-minute intervals that comprise an hour.  Thus, reported 
crash times must be treated as likely being rounded to the nearest five-minute interval, 
with a lesser secondary rounding to the nearest quarter hour.  Since it is important that 
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the traffic data in this study represent pre-crash conditions (rather than conditions 
arising from the crash itself), the period of the traffic-flow data used in the analysis 
needs to be cut off 2.5 minutes before the nominal crash time.   
 

3.2 Traffic Flow Data from Single Loop Detectors 
Our traffic flow data are drawn from the Vehicle Detection System (VDS) thirty-second 
single loop detector data.  There are approximately 8,000 VDS locations on California 
freeways, typically spaced one-third to one-half mile apart (Varaiya, 2005).  These loop 
detectors record volume (flow) and occupancy (the percent of time a vehicle is within 
the detection field of a loop) for each freeway lane at thirty second (30-s) intervals.  
From volume and occupancy, traffic density and point speed can be derived, but only 
under very restrictive assumptions of uniform speed and average vehicle length, and 
taking into account the physical installation of each loop.  Such assumptions are 
relevant for aggregated data over extended periods of time.  Thus, combined with 
calibration studies of average vehicle length, volume and occupancy can be converted 
to average speed and corresponding travel time, which then forms the basis of 
performance monitoring tools, such as PeMS (2005).  However, for our disaggregated 
purposes, there is no accurate information on average vehicle lengths for each 30-
second interval, or for any aggregation of data over the periods of time (e.g., twenty 
minutes) needed to relate accident hazards to traffic flow conditions.  Consequently, we 
assume that absolute density and speed are not determinable.  These are declared to 
be prohibited variables due to the absence of accurate effective average vehicle length 
for each 30-s observation.  Consequently, we make different use of VDS data than is 
done in PeMS and similar aggregate studies.   
 
A scatter plot of raw 30-s loop detector data for one lane for an extended period of time 
is shown in Figure 1.  Over this period the lane was operating in each of the two basic 
traffic flow regimes: (1) free flow, and (2) congested flow.  Free flow operation 
corresponds to the cone in which the slope of the rays from the origin are steep, and 
this slope varies very little from observation to observation.  In statistical terms, volume 
can vary substantially, but occupancy will vary within a small range of the domain from 
zero to one.  Two 30-s points might have a slightly different ratio of volume to 
occupancy (different slopes), but it is unknown as to whether this difference is due to 
different mean speeds or different average vehicle lengths.  In the congested flow 
regime the vector slope is small compared to the free flow regime, and the varies 
substantially from observation to observation; occupancy typically varies at least as 
much as volume.  Of course, there is a gray area between free and congested flow.           
 

 



 

 6

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

30

Raw loop detector data

Congested flow
Region

Free flow region

 
Figure 1 A Typical Pattern of Raw Loop Detector Data Showing Both Observations of 

Free Flow and Congested Flow Operation    
 
 

A twenty-minute time trace of 30-s data is shown In Figure 2.  For the first fifteen 
minutes or so, the lane is operating in free flow.  Volumes vary from 5 to 15 vehicles per 
30-s (equivalent to 600 to 1,800 vehicles per hour), and occupancies are roughly in a 
constant proportion to volume.  However, after fifteen minutes there is a transition to 
congested flow.  Volumes initially fall, while occupancies increase substantially.  The 
last six 30-s observations exhibit a similar ratio of volume to occupancy, but this ratio is 
approximately 25% of the ratio of volume to occupancy observed during free flow 
operation.  It is impossible to know if speeds vary in this same factor of 4:1, since it is 
not known whether average vehicle lengths were the same at all times.   
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Figure 2 Trace of Twenty Minutes of 30-Second Loop Detector Data 

Showing Transition from Free Flow to Congested Flow 
Operation    

 

 
Note that these distinctions between free, transitional, and congested flows do not 
require assuming effective average vehicle lengths in order to calculate speeds.  
Rather, it is based on the pattern of the raw data itself.  We intend to demonstrate that, 
with a sufficient number of 30-s observations (approximately 30 to 40) across multiple 
lanes of a freeway, we can capture important traffic flow characteristics without making 
tenuous assumptions about clearly unattainable data about average vehicle lengths.  
While some types of traffic flow detectors are able to identify the proportions of large 
trucks (long vehicles) for a given duration of traffic flow on different lanes, such data are 
not available at the time and location of accidents.  The use of hourly …    
 

3.3 Data Limitations and Scope of the Case Study 
The network used in the project is comprised of the six major Orange County (non-toll) 
freeways (I-5, SR-22, SR-55, SR-57, SR-91, I-405).  The period of study is March 
through August, 2001 (six full months).  This is the period for which we have both traffic 
flow and accident data for the case study network.  The six routes are divided into 
segments, each with an adequate number of accidents to allow identification of route 
segments in subsequent analyses.     
 
The TASAS database records 4,412 accidents on the mainlines of these freeways 
recorded in TASAS.  Of these, we have some loop detector data for 2,924, or 66% of 
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the accidents.  We have sufficient data for analysis for 769, or 40% of the TASAS 
accidents.  For reasons unknown to the authors, 2001 loop detector data are lacking for 
four segments of the six Orange County Freeways, comprising 31.6 centerline miles.  
These segments, which must be excluded from the analyses due to poor data 
coverage, are: (1) I-5 from the SR-22 and SR-57 junction to the Los Angeles County 
line, (2) SR-55 from its junction with SR-22 to its end at SR-91, (3) SR-91 from the Los 
Angeles County line to SR-55, (4) I-405 from SR-22 eastbound to the L.A. County line.  
As these problematic segments are all at the ends of the routes, the resulting case 
study network, comprising 97.0 centerline miles, is contiguous.  For the final case study 
network, we have sufficient loop detector data on 51.4% of all accidents recorded during 
the six month study period.    
 
 
 
Table 1 The Case Study Orange County Freeway Network, also Showing Segments 

That Must be Excluded from Future Analyses (Listed in Red Bold Font).  

Route Route segement number percent number percent

5 San Diego Co. to SR-74 eastbound yes 9.6 71 39.7% 108 60.3% 179
5 SR-74 to I-405 yes 11.7 147 45.8% 174 54.2% 321
5 I-405 to SR-55 yes 9.0 92 45.1% 112 54.9% 204
5 SR-55 to SR-22/SR-57 yes 3.8 66 31.1% 146 68.9% 212
5 SR-22/SR-57 to Los Angeles Co. no 10.4 265 97.4% 7 2.6% 272
22 GoldenWest to about Tustin Ave yes 10.2 193 50.4% 190 49.6% 383
55 Victoria/22 St. to SR-22 yes 11.0 202 49.6% 205 50.4% 407
55 SR-22 to SR-91 no 4.9 122 89.1% 15 10.9% 137
57 Chapman to SR-91 yes 4.4 100 51.0% 96 49.0% 196
57 SR-91 to Los Angeles Co. yes 7.0 138 50.2% 137 49.8% 275
91 L.A. County to SR-55 no 12.9 487 94.0% 31 6.0% 518
91 SR-55 southbound to Riverside Co. yes 9.7 112 30.8% 252 69.2% 364
405 I-5 to SR-73 yes 10.1 203 63.8% 115 36.2% 318
405 SR-73 to SR-22 eastbound yes 10.5 297 62.7% 177 37.3% 474
405 SR-22 to L.A. County no 3.4 148 97.4% 4 2.6% 152

included in analysis 97.0 1,621 48.6% 1,712 51.4% 3,333
exclusing some segments 31.6 1,022 94.7% 57 5.3% 1,079

Total 128.6 2,643 59.9% 1,769 40.1% 4,412

can 
segment be 
included?

Accidents March-August 2001
insufficient loop data sufficient loop datacenterline 

miles total

 
 
 
Chi-square tests performed on contingency tables revealed that the subset of accidents 
with sufficient traffic flow data is A random selection with respect to: (1) type of collision 
(e.g., rear end, sideswipe, hit object), (2) the number of vehicles involved, (3) the types 
of vehicles involved (e.g., automobile, panel or pickup truck, large truck), (4) location 
(which lane or side of road where the primary collision was located), (5) timing (time of 
day, day of week), and accident severity (injury or fatality versus property damage only 
(PDO)).  The fortunate conclusion is that our accidents with traffic flow data are a 
random sample of all reported accidents.  Our analyses are representative of all 
accidents that were reported in case study area over six months of 2001.  
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3.4 Creation of Thirty-Six Traffic Flow Parameters 
While there are only two raw data measurements – volume (flow) and occupancy – for 
each of the freeway lanes at the site of an accident, repeated measurements over time 
at 30-second intervals allows the opportunity of capturing temporal variations.  The 
available of the same data for multiple lanes allows comparisons across lanes.  
Sensitivity analyses revealed that we need twenty minutes of data (40 30-s 
observations) in order to estimate our traffic flow parameters.  Furthermore, in 
calculating these parameters, we an accept five minutes of missing data over the twenty 
minute period.  That is, we need a minimum of 30 observations over 20 minutes.  Also, 
due to strong correlations of data across all interior lanes, we only need data for three 
lanes: (1) the leftmost, number one, or median lane (excluding any HOV lanes, 
designated “1”): (2) one interior lane (whichever has least missing data, designated 
“M”), and the rightmost or curb lane (designated “R”).  The use of only three lanes 
allows consistent definitions for all locations within our case study network, as all of our 
freeway sections have at least three directional lanes.  
 
Four types of parameters were found to be useful; these are summarized in Table 2: 

1. Coefficients of variation are dimensionless indices of variation in traffic flow 
conditions over time.  They are defined as the standard deviation of any variable 
measured in terms of its mean (i.e., the ratio of standard deviation and mean).   
The minimum sample size for these calculations is 30, the maximum is 40 (30-s 
observations).  Coefficients of variation were calculated for three variables: 
volume, occupancy, and the ratio of volume to occupancy.  Each of these 
measures was computed for each of the three lanes (Lane 1, Lane M, and Lane 
R), leading to nine coefficients of variation.  

2. Correlations of traffic conditions across the lanes are dimensionless indices of 
lane-to-lane coordination in traffic flow.  Three pair-wise comparisons are 
available: lane 1 vs. lane M, lane 1 vs. lane R, and lane M vs. lane R.  These 
were calculated for volume, occupancy, and volume/occupancy, leading again to 
nine parameters.  

3. Autocorrelations are dimensionless measures of the temporal consistency of 
traffic flow conditions.  They are defined as the correlation of a variable at one 
30-s interval with the value of the same variable in the previous 30-s interval, for 
all adjacent time intervals in the 20 minute period.  Autocorrelations were 
computed for volume and occupancy for each of the three lanes, leading to six 
parameters.  Autocorrelations were not computed for the ratio of volume to 
occupancy, because we detected instability and encountered a large number of 
missing observations due to zero values of occupancy.  

4. Means and standard deviations are the only parameters that are not 
dimensionless.  Effective average vehicle length is not known, so we cannot 
calculate these parameters for occupancy and the ratio of volume to occupancy, 
because we are unable to convert to, respectively, density and speed.  However 
we can calculate means and standard deviations for volume and for relative 
speed, where relative speed is defined as the ratio of volume to occupancy 
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divided by the maximum ratio of volume to occupancy over the entire 20-minute 
time period.  Relative speed only assumes similar effective average vehicle 
lengths all intervals in the 20-minute period.  Means and standard deviations 
were computed for volume and relative speed for each of the three lanes, leading 
to six parameters.      

 
The total number of traffic flow parameters listed in Table 2 thus comes to thirty-six.  All 
of these parameters are measured without recourse to highly inaccurate computations 
of the derived variables: density and speed.    
 
 
 
Table 2 The Thirty-six Traffic Flow Parameters.  

variable type measurement lanes variable
left (1) coef. of var. volume 1

middle (M) coef. of var. volume M
right (R) coef. of var. volume R

1 coef. of var.occupancy 1
M coef. of var.occupancy M
R coef. of var.occupancy R
1 coef. of var. vol./occ. 1
M coef. of var. vol./occ. M
R coef. of var. vol./occ. R

left (1) vs. middle (M) correlation volume 1 vs. M
left (1) vs. right(R) correlation volume 1 vs. R

middle (M) vs. right (R) correlation volume M vs. R
1 vs. M correlation occupancy 1 vs. M
1 vs. R correlation occupancy 1 vs. R
M vs. R correlation occupancy M vs. R
1 vs. M correlation vol./occ. 1 vs. M
1 vs. R correlation vol./occ. 1 vs. R
M vs. R correlation vol./occ. M vs. R

1 autocorrelation volume 1
M autocorrelation volume M
R autocorrelation volume R
1 autocorrelation occupancy 1
M autocorrelation occupancy M
R autocorrelation occupancy R
1 mean volume 1
M mean volume M
R mean volume R
1 standard deviation volume 1
M standard deviation volume M
R standard deviation volume R
1 mean relative speed 1
M mean relative speed M
R mean relative speed R
1 std. dev. relative speed 1
M std. dev. relative speed M
R std. dev. relative speed R

autocorrelation

central tendencies and 
variations

Realtive speed: 
(vol./occ.) / 

{MAX(vol./occ.)}

volume

volume

occupancy

coefficients of variation

correlations across lanes

volume/occupancy

occupancy

volume/occupancy

volume

occupancy

volume
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4 DATA REDUCTION 
There will be a great deal of redundancy in these thirty-six traffic flow parameters.  In 
statistical terms, this redundancy is expressed in terms of correlations with high 
absolute values.  Principal components analysis (a form of what is called factor 
analysis) is designed to eliminate such redundancy by finding a smaller number of linear 
combinations  (weighted averages) of the original variables such that the least amount 
of information is lost.  This is based on a singular decomposition (eigenvalue and 
eigenvector solution) of the correlation matrix of the original variables.  The linear 
combinations, called principal components, or Factors, are statistically independent 
(orthogonal).  The number of Factors needed to describe the unique information in the 
original variables is classically determined based purely on sufficiency of explanation of 
relationships among the original variables (i.e., the percentage of variance in the original 
variables accounted for by the set of Factors selected).  In this application, we added 
two more criteria for selecting the appropriate number of Factors: (1) interpretability, and 
(2) effectiveness of describing derived parameters (speed and density). 
 
 

4.1 Extraction of Traffic Flow Factors 
Principal components analysis of the thirty-six traffic flow parameters (Table 2) resulted 
in the selection of eight Factors.  These eight Factors account for approximately 79% of 
the variance in the original variables, as shown in Table 3.  Figure 3 shows a plot of the 
cumulative explained percentage of variance as a function of the number of extracted 
Factors.  The eight-factor solution is justified on the basis of interpretability and 
description of derived parameters.   
 
 
Table 3 Variance Explained as a Function of Number of Principal Components for the 

Factor Analysis of the Thirty-six Traffic Flow Parameters 
Component

Total 
variance

% of 
Variance

Cumulative 
%

Total 
variance

% of 
Variance

Cumulative 
%

1 11.55 32.08 32.08 6.67 18.53 18.53
2 6.98 19.40 51.47 5.91 16.43 34.95
3 2.98 8.27 59.74 5.43 15.09 50.04
4 1.92 5.34 65.08 2.43 6.74 56.78
5 1.51 4.20 69.28 2.28 6.34 63.12
6 1.38 3.84 73.12 2.13 5.91 69.04
7 1.28 3.55 76.67 1.86 5.18 74.21
8 0.90 2.49 79.16 1.78 4.94 79.16
9 0.72 1.99 81.15

10 0.69 1.93 83.08
11 0.63 1.74 84.82
12 0.54 1.50 86.32
13 0.48 1.34 87.66
14 0.45 1.25 88.90
15 0.39 1.07 89.98

Initial Eigenvalues Rotated 
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Figure 3 Variance Explained as a Function of Number of Principal Components 

for the Factor Analysis of the Thirty-six Traffic Flow Parameters     
 
 
The percent of variance of each of the original thirty-six variables that is accounted for 
by the eight Factors together (the R2 of the regression of each of the thirty-six 
parameters on all eight Factors) is known as the communality of that variable.  For the 
eight-factor solution, all communalities were in excess of 0.72, with the single exception 
of “standard deviation of volume in the right lane,” which was 0.67.  The conclusion is 
that all of the original variables are sufficiently described by the eight Factors.   
 
These Factors are expressed In terms of their correlations with the original variables; 
these correlations are called factor loadings.  Any orthogonal rotation can be applied to 
the Factors in the thirty-six dimensional space of the original variables, and such a 
rotation redistributes the percent of variance explained but does not change the overall 
level of explanation.  The most commonly used rotation, called varimax, maximizes the 
sum of the variances of the factor loadings.  This improves interpretability by driving 
ladings as far as possible towards the extreme values of unity (or minus unity) and zero.  
The redistributed percent of variance accounted for by the eight rotated Factors is listed 
in Table 3.  The factor loadings of the original variables on the rotated Factors (i.e., the 
correlations between the variables and Factors) form the basis for the interpretation of 
the Factors.  This is pursued in the next section. 
 
Scores on each of the eight Factors were calculated for each accident based on the 
factor loadings, which express the factor in terms of a linear combination (weighted 
average) of the original thirty-six traffic flow variables.  The scores for each factor are 
standardized (they are centered at zero with unity standard deviation).   
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4.2 Interpretations of the Traffic Flow Factors 
The factor loadings are listed in Table 4.  To aid in interpretation, only factor loads with 
absolute value greater than 0.20 are shown.  The most indicative parameter for each 
factor is identified by a box around its loading.  These eight indicative parameters come 
from each of the four types of parameters, indicating that each type provides some 
unique information: two of the indicative parameters are coefficients of variation (volume 
in lane 1 and volume/occupancy in lane M); three indicative parameters are correlations 
across lanes (2 volumes and 1 occupancy, one for each pair of lanes (1 vs. M, 1 vs. R, 
M vs. R)); one indicative parameter is an autocorrelation (volume for lane M); and two 
are standard deviations (volume for lane M and relative speed for lane R). 
 
 
Table 4 Rotated Factor Loadings for the Eight-factor Solution for the Principal 

Components for the Factor Analysis of the Traffic Flow Parameters   
 

1 2 3 4 5 6 7 8
CV_vol1  -0.89       
CV_volM  -0.85       
CV_volR  -0.75 -0.22 0.39     
CV_occ1  -0.85       
CV_occM 0.26 -0.80 0.26      
CV_occR  -0.70  0.47 -0.21
cv_volocc1 0.79        
cv_voloccM 0.88  0.21      
cv_voloccR 0.53   0.73
corr_vol1M     0.22 0.28  0.81
corr_vol1R      0.80   
corr_volMR    0.82
corr_occ1M   0.57     0.64
corr_occ1R   0.76   0.40   
corr_occMR   0.74   0.38   
corr_volocc1M 0.43 -0.27 0.64     0.24
corr_volocc1R 0.43  0.74      
corr_voloccMR 0.45  0.69
autocorr_vol1 0.48  0.24    0.61 0.22
autocorr_volM 0.47  0.24    0.62  
autocorr_volR 0.31   0.33  0.30 0.55  
autocorr_occ1 0.43  0.64    0.37  
autocorr_occM 0.44  0.64    0.41  
autocorr_occR 0.40  0.61 0.21 0.37
mu_vol1  0.76 0.28  0.34    
mu_volM -0.21 0.78 0.28  0.29    
mu_volR  0.66 0.33 -0.36 0.25   -0.25
sd_vol1     0.73   0.41
sd_volM    0.82   0.21
sd_volR  0.29  0.68 -0.24
mu_rel_speed1 -0.82    0.21    
mu_rel_speedM -0.87        
mu_rel_speedR -0.52   -0.71    
sd_rel_speed1 0.74  0.43    0.23  
sd_rel_speedM 0.79  0.43      
sd_rel_speedR 0.42  0.32 0.70

Factor
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The strongest loadings for each factor are listed in Table 5.  As a further aid in 
interpretation, the means for each factor for all accidents occurring within five mutually 
exclusive time periods are graphed in Figure 3.  Interpretations of each factor follow.   
 
 
Table 5 Highest factor Loadings for the Eight Traffic Flow Factors   

coefficiant of variation: volume/occupancy lane 1
coefficiant of variation: volume/occupancy lane M
mean relative speed lane 1 (negative)
mean relative speed lane M (negative)
std. dev. realtive speed lane 1
std. dev. realtive speed lane M

coefficiant of variation: volume lane 1 (negative)
coefficiant of variation: volume lane M (negative)
coefficiant of variation: volume lane R (negative)
coefficiant of variation: occupancy lane 1 (negative)
coefficiant of variation: occupancy lane M (negative)
coefficiant of variation: occupancy lane R (negative)
mean: volume lane 1
mean: volume lane M
mean: volume lane R

correlation occupancy: 1 vs. R
correlation: occupancy M vs. R
correlation: volume/occupancy lane 1 vs. lane M
correlation: volume/occupancy lane 1 vs. lane R
correlation: volume/occupancy lane M vs. lane R
autocorrelation: occupancy lane 1
autocorrelation: occupancy lane M
autocorrelation: occupancy lane R

coeficiant. of variation: volume/occupancy lane R
mean: relative speed lane R (negative)
standard deviation: realtive speed lane R

standard deviation: volume lane 1
standard deviation: volume lane M
standard deviation: volume lane R

correlation: volume lane 1 vs. lane R
correlation: volume lane M vs. lane R

autocorrelation: volume lane 1
autocorrelation: volume lane M
autocorrelation: volume lane R

correlation: volume lane 1 vs. lane M
correlation: occupancy lane 1 vs. lane M

Highly Loaded Variables Factor Interpreation

3.  Synchronized lane 
conditions 

2.  Volume level

8.  Synchronized outer 
flow

1.  Outer lanes congestion

7.  Systematic volume 
changes

6.  Conforming curb 
volumes 

4.  Curb lane perturbation

5.  Volume variation
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Figure 4 Mean Values of the Eight Traffic Flow Factors for All Accidents Occurring 

Within Five Time Periods 
     
 
 
 
4.2.1 Factor 1:  Outer Lanes Congestion 
High scores on Factor 1 indicate that traffic conditions are varying widely within the 
region of loop detector data generally denoting congested operation (depicted in Figure 
1).  An example of a twenty-minute period of 20-s loop detector observations for with a 
high value of Factor 1 is plotted in Figure 5.  Low scores on Factor 1 indicate that 
conditions are exclusively free flow, as in the example of Figure 6. High scores on 
Factor 1 are most likely to occur during the evening peak period, as shown in Figure 4.  
Low scores are most likely to occur on weekends and at night.  
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Figure 5 Twenty Minutes of Loop Detector Data for One lane for an Observation (PM 

15.26 on WB SR-91 on 04/09/01 prior to 15:10) with a High Score on Factor 
1: Outer Lanes Congestion. 
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Figure 6 Twenty Minutes of Loop Detector Data for One lane for an Observation (PM 

27.68 on SB SR-55 on 07/09/01 prior to 17:45) with a Low Score on Factor 
1: Outer Lanes Congestion. 

 
 
 
4.2.2 Factor 2:  Volume Level 
High scores on Factor 2 indicate high-volume conditions.  Such conditions are more 
likely at night and on weekends (Figure 4).  The period plotted in Figure 7 is a good 
example.  Low scores on Factor 2 indicate high-volume free-flow conditions (Figure 8).   
Such conditions are more likely during the afternoon weekday peak period. 
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Figure 7 Twenty Minutes of Loop Detector Data for One lane for an Observation (PM 

30.06 on NB I-5 on 03/14/01 prior to 07:25) with a High Score on Factor 2: 
Volume Level. 
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Figure 8 Twenty Minutes of Loop Detector Data for One lane for an Observation (PM 

0.90 on NB I-5 on 06/17/01 prior to 02:40) with a Low Score on Factor 2: 
Volume Level. 
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4.2.3 Factor 3:  Synchronized Lane Conditions 
High scores on Factor 3 indicate traffic conditions that are changing in the same manner 
on all lanes.  As shown in Figure 4, this can happen during any period, but is more likely 
during the evening and morning peak periods.  Plots of loop detector data for at least 
two lanes is needed to demonstrate a high score on this Factor.  Detector data is plotted 
in Figure 9 for both the left and middle lanes for a situation with a high score on this 
Factor.  For most of this period (the first fifteen minutes), conditions were free-flow.  
However, during the last five minutes, congestion set in, and speeds diminished in all 
lanes (including the right lane, not shown here).  To visualize the breakdown period for 
this same observation, the traces of detector data for the crucial three minutes of 
transition are graphed in Figure 10 for all three lanes.  The traces for all three lanes 
follow a similar pattern of declining speeds.  
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Figure 9 Twenty Minutes of Loop Detector Data for Two lanes for an Observation (PM 

4.91 on WB SR-22 on 07/07/01 prior to 19:50) with a High Value on Factor 3: 
Synchronized Lane Conditions 

 
 
 
Conversely, low scores on Factor 3 indicate traffic conditions that are changing 
differently across the lanes.  Two lanes of detector data is plotted in Figure 11 for an 
observation with a low score on Factor 3.  Traces of detector data for three minutes  
during this heavily congested period are graphed in Figure 12 for each of the three 
lanes.  These traces are show that, in any 30-s interval, speeds and densities in a given 
lanes is not linked to speeds and densities in either of the other two lanes.  
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Figure 10 Three Minutes of Loop Detector Data for All Three Lanes for an Observation 

(PM 4.91 on WB SR-22 on 07/07/01 prior to 19:50) with a High Score on 
Factor 3: Synchronized Lane Conditions 
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Figure 11 Twenty Minutes of Loop Detector Data for Two lanes for an Observation (PM 

9.99 on EB SR-91 on 04/24/01 prior to 16:15) with a Low Score on Factor 3: 
Synchronized Lane Conditions 
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Figure 12 Three Minutes of Loop Detector Data for All Three Lanes for an Observation 

(PM 4.91 on WB SR-22 on 07/07/01 prior to 19:50) with a High Score on 
Factor 3: Synchronization of All Lanes 

 
 
 
 
4.2.4 Factor 4:  Curb Lane Perturbation 
High scores on Factor 4 – indicating curb (right) lane loop detector data in the 
congested region (Figure 1) – can occur during any time period, but are most likely 
during the mid-day period (Figure 4).  An extreme example is that of a right lane that 
exhibits the entire range of speed from free flow to virtually stopped traffic (Figure 13).  
Low values of Factor 4 will be found for free flowing traffic  
 
An example of a twenty-minute observation with a low score on Factor 4 is shown in 
Figure 14.  Here, at a time late in the morning peak period, right lane traffic volume is 
high but speeds are consistently fast.  The spread in the domain of occupancy is likely 
due in part to differences in average vehicle lengths over the 30-s observations, as 
there is likely to be a mix of trucks in this curb-lane flow.  
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Figure 13 Twenty Minutes of Loop Detector Data for One lane for an Observation (PM 

6.63 on SB I-5 on 05/07/01 prior to 09:35) with a High Score on Factor 4: 
Curb Lane Perturbation. 
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Figure 14 Twenty Minutes of Loop Detector Data for One lane for an Observation (PM 

30.82 on SB I-5 on 08/06/01 prior to 08:30) with a Low Score on Factor 4: 
Curb Lane Perturbation. 
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4.2.5 Factor 5: Volume Variation  
Factor 5 measures the extend to which volume is varying across the entire road, 
particularly in the non-curb lanes.  Shown in Figure 15 is a situation with a high score on 
Factor 5.  This interior lane exhibits 30-s volumes ranging from one to twenty (120 to 
2400 vehicles per lane per hour).  This example also has a high score on Factor 1: 
variations in non-curb speeds, but any two Factors, by definition, are uncorrelated, so 
the score for one factor does not predict the score on any other factor.  To demonstrate 
this independence, Figure 16 shows a situation with a high score on Factor 1, but a 
relatively low score on Factor 5.  Figure 17 shows a situation with a very low score on 
factor 5 and a relatively low score on Factor 1.  Traffic conditions measuring high on 
Factor 5 tend to occur during the morning peak hours and during the mid-day period.  
These are indicative of variable levels of congestion.  Conditions measuring high on 
Factor 1, on the other hand, is more likely during the afternoon peak hours, and these 
are manifestations of heavy congestion.   
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Figure 15 Twenty Minutes of Loop Detector Data for One lane for an Observation (PM 

13.33 on SB SR-57 on 05/13/01 prior to 16:00) with a High Score on Factor 
5: Volume Variation. 
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Figure 16 Twenty Minutes of Loop Detector Data for One lane for an Observation (PM 

9.99 on EB SR-91 on 04/24/01 at 16:15) with a High Score on Factor 1: 
Variation in Non-curb Conditions, but a Relatively Low Score on Factor 5: 
Volume Variation. 
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Figure 17 Twenty Minutes of Loop Detector Data for One lane for an Observation (PM 

33.31 on SB I-5 on 03/22/01 prior to 07:25) with a Low Score on Factor 5: 
Volume Variation. 
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4.2.6 Factor 6: Conforming Curb Volumes 
Factor 6 measures the degree to which volumes in the curb lane are related to volumes 
in the interior and left lanes.  Figure 18 is an example of a situation with a high score on 
Factor 6, and Figure 19 is an example of a situation with a low score.  Low scores, 
which indicate that either a curb or non-curb lane is experiencing congestion while the 
other lane is not, is more likely to occur during the mid-day period.   
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Figure 18 Twenty Minutes of Loop Detector Data for Two lanes for an Observation (PM 

15.96 on SB I-405 on 04/23/01 prior to 07:55) with a High Score on Factor 6: 
Conforming Curb Volumes. 
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Figure 19 Twenty Minutes of Loop Detector Data for Two lanes for an Observation (PM 

30.82 on SB I-5 on 08/06/01 prior to 08:30) with a Low Value on Factor 6: 
Conforming Curb Volumes. 

 



 

 25

4.2.7 Factor 7: Systematic Volume Change   
Factor 6 measures the degree to which volumes change systematically, as opposed to 
random fluctuation.  Highly systematic situations occur when the a road shifts from free 
flow to some congestion, and such a case is shown in Figure 20.  These situations tend 
to occur during the morning and evening peak periods, more so in the morning peak 
(Figure 4).  Conversely, randomly fluctuating volumes, such as the situation depicted in 
Figure 21, tend to occur on weekends, and during the weekday mid-day period. 
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Figure 20 Twenty Minutes of Loop Detector Data for One lane for an Observation (PM 

18.03 on SB I-405 on 03/08/01 prior to 06:45) with a High Value on Factor 7: 
Systematic Volume Change. 
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Figure 21 Twenty Minutes of Loop Detector Data for One lane for an Observation (PM 

24.89 on NB I-5 on 05/05/01 prior to 09:10) with a Low Value on Factor 6: 
Systematic Volume Change. 

 
 
 
 
4.2.8 Factor 8: Synchronized Outer Flow  
Factor 8 measures the degree to which volumes and densities in the interior and left 
lanes are synchronized.  There are very little differences among the mean values of this 
factor for accidents occurring during various time periods (Figure 4), which means high 
or low levels of synchronization are likely to occur anytime.  A high level of non-curb 
synchronization is shown in Figure 22.  In this situation, volumes and densities in the left 
and interior lanes move in unison.   
 
An example of a situation with a low score on Factor 8 is shown in Figure 23.  Here the 
left lane is operating consistently in free flow mode with only minor perturbations.  
However, the interior lane is operating in congested mode for a major part of the twenty-
minute period.    
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Figure 22 Three Minutes of Loop Detector Data for Two Lanes for an Observation (PM 

27.45 on NB I-5 on 03/20/01 prior to 10:05) with a High Value on Factor 8: 
Synchronized Outer Flow. 
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Figure 23 Twenty Minutes of Loop Detector Data for Two lanes for an Observation (PM 

11.70 on SB SR-55 on 07/09/01 prior to 17:45) with a Low Value on Factor 
8: Synchronized Outer Flow. 
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4.3 Traffic Flow Factors as Descriptors of Variables Proportional to 
Speed and Density  

A criterion in the determination of the necessary number of Factors was the ability of 
these Factors to account for the variables measured directly in terms of vehicular 
density and speed.  We are prohibited from using these variables, because effective 
vehicle lengths are not available for the time and place of each accident.  Without 
effective vehicle length for each observation, we are unable to convert occupancy to 
density, and consequently we are unable to compute speed as the ratio of volume and 
density.  The question is, how well are these prohibited variables explained by the 
Factors, including second degree factor interactions.  Second degree interactions 
account for potential nonlinear effects, allowing projection of a dependent variable onto 
a quadratic surface, rather than simply a hyperplane, in the space of the eight Factors.   
 
Each of prohibited scaled measures was regressed on a set of forty-four variables, 
made up of the eight Factors, plus eight factor quadratic terms (the products of two like 
Factors), plus twenty-eight factor interactions (the products of any two different Factors).  
The results for the means and standard deviations of occupancy for each of the three 
lanes are shown in Table 6.  The Factors do very well explaining all six of the prohibited 
variables that are potentially proportional to traffic flow density.   
 
Both the Factors and the second-degree interaction terms are important in explaining 
each of these potential density variables.  For example, in the regression for standard 
deviation of occupancy in the left lane, the least well described dependent variable 
(82% of variance), all eight of the factor linear terms were significant at the 95% 
confidence level, as were five of the eight quadratic terms, and thirteen of the twenty-
eight factor interactions.  The most important variables were: (1) Factor 1: Outer Lanes 
Congestion (positive), (2) Factor 3: Synchronized Lane Conditions (positive), (3) Factor 
7: Systematic Volume Change (positive), (4) The square of Factor 2 (Volume Level) 
(positive), and (5) the interaction of Factor 2 (Volume Level) and Factor 3 
(Synchronization of All lanes) (negative). 
 
 
 
Table 6 Variance Explained in Regressions of Six Prohibited 

Density Variables on the Eight Factors   

Prohibited variable Adjusted R2 

Mean occupancy left lane 0.846 

Mean occupancy interior lane 0.863 

Mean occupancy right lane 0.827 

Standard deviation occupancy left lane 0.820 

Standard deviation occupancy interior lane 0.881 

Standard deviation occupancy right lane 0.870 
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Similar regression results are displayed for the ratio of volume to occupancy in Table 7.  
All ratios are well explained, with the exception of left-lane standard deviation of the 
ratio volume to occupancy.  As effective vehicle lengths are unlikely to change across 
the 30-s observations for the left lane, this variable is probably proportional to the 
standard deviation of left-lane speed.  While 58% is a decent percent explained 
variance, this reveals that variation in left-lane speed is the most difficult of traffic flow 
parameters to capture with parameters that avoid untenable assumptions regarding 
effective vehicle length.  The most important variable in explaining left-lane standard 
deviation of volume/occupancy is the interaction of Factor 1: Outer Lanes Congestion 
and Factor 8: Synchronized Outer Flow (with a positive coefficient).  
 
 
 
Table 7 Regressions of Six Prohibited Speed Variables on the Eight Factors   

Prohibited Variable Adjusted R2 

Mean volume/occupancy left lane 0.778 

Mean volume/occupancy interior lane 0.797 

Mean volume/occupancy right lane 0.714 

Standard deviation volume/occupancy left lane 0.581 

Standard deviation volume/occupancy interior lane 0.668 

Standard deviation volume/occupancy right lane 0.699 
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5 TRAFFIC FLOW FACTORS RELATED TO ACCIDENT PROPENSITY  
A major question is: how well do the Traffic Flow Factors describe accident potential?  
As an initial step in answering this question, in the first year of the project we 
investigated the extent to which the Factors describe differences among the types of 
accidents that occur under different types of traffic flow conditions.  Four accident 
variables were analyzed: (1) accident severity, (2) collision type, (3) collision location, 
and (4) number of involved vehicles.  Each of these is the subject of a subsection that 
follows.   
 
Logit (logistic regression) models are used to capture the relationships between the 
Traffic Flow Factors and their second-degree interactions, and the probabilities of 
occurrence of an event.  Binomial (or binary) logistic regression is used in the case of a 
dichotomy, in this case accident severity.  Multinomial logit is used in all other cases of 
dependent variables with more than two categories of outcome.  Logit models apply 
maximum likelihood estimation after transforming the dependent variables into natural 
logarithms of the odds of whether or not an outcome occurs.  The exponential function 
of each coefficient for each dependent category in a logit model gives the multiplicative 
effect of that variable on the odds of occurrence of the event in question.    
 
 

5.1 Accident Severity 
About one-quarter of all accidents (25.3%) in our case study lead to an injury, the rest 
are property damage only (PDO).  Results of a binomial logit regression model for 
severity are listed in Table 8.  The dependent variable is encoded 1 for injury and 0 for 
PDO, so that a positive coefficient indicates that injury accidents are more likely for 
higher levels of the independent variable.  Eight independent variables were significant 
at the 95% confidence level, being three Factors and five factor interactions.  The 
overall fit of the model, as measured by the Nagelkerke Pseudo-R2, an analogy to R2 in 
linear regression, is 0.044, indicating that severity is only modestly associated with 
traffic conditions.  These results are interpreted as follows. 
 
 
5.1.1 Accident Severity and Congestion  
Congestion in the outer lanes, on its own, leads to a lower likelihood of injury accidents, 
since speeds will be lower during congested conditions.  However, there are also two 
interaction terms involving this traffic flow Factor.  If right lane volumes are track those 
of the outer lanes, the effect of congestion on reducing severity is more than doubled.  
On the other hand, if there are systematic changes in volumes, for example if the road 
is transitioning from free flow to congested conditions, or conversely, this compensates 
for the negative effect of outer lanes congestion on severity, reducing the effect 
essentially to zero. 
 



 

 31

Congestion in the curb lane leads to a lower level of injury accidents if curb lane volume 
conforms to outer lane volumes.  That is, if the entire road is congested, accidents are 
more likely to be PDO, rather than injury.  Congestion in the curb lane only has little 
effect on accident severity. 
 
 
 
Table 8 Logit Model of Accident Severity as a Function of Statistically Significant 

Traffic Flow Factors  

Explanatory variable Coefficient t-statistic Probability

1. Outer lanes congestion -0.162 -2.532 0.011
2. Volume level -0.201 -3.676 0.000
3. Synchronized lane conditions -0.141 -2.401 0.016
1. Outer lanes perturbation x 6. Conforming curb volumes -0.181 3.337 0.001
1. Outer lanes perturbation x 7. Systematic volume changes 0.137 -2.262 0.024
2. Volume level x 4. Curb lane perturbation -0.124 2.624 0.009
4. Curb lane perturbation x 6. Conforming curb volumes 0.130 2.370 0.018
5. Volume variation x 6. Conforming curb volumes 0.113 2.063 0.039
Constant -1.124 -19.815 0.000

Dependent variable: 1 = injury of fatality, 0 = property damage only 

 
 
 
5.1.2 Accident Severity and Aspects of Traffic Volume  
Controlling for whether or not the road is operating under free flow or congested 
conditions, higher levels of traffic flow are related to a lower likelihood of injury 
accidents.  The interaction term involving Factor 5 and factor 6 indicates that higher 
levels of variation in volume lead to more severe accidents if volume in the right lane is 
similar to volume in the other lanes.  
 
 
5.1.3 Accident Severity and Lane Synchronization  
Controlling for both volume and whether or not the road is operating under free flow or 
congested conditions, if conditions are relatively the same in all lanes, accidents are 
more likely to be PDO.  Loss of synchronization leads to a higher likelihood of injury 
accidents.  
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5.2 Type of Collision 
There are four major types of primary collision, as listed in Table 9.  Rear end collision 
are most common, followed by sideswipes and hit-object collisions.  Results of a 
multinomial logit model for collision type are listed in Table 10.  The base category is 
“other.”  Variables are included in this model if their inclusion leads to a significant 
overall improvement in the explanatory power of the model.  The overall fit of the model 
is very good for models of this type, the Nagelkerke Pseudo-R2 being 0.283.  
Statistically significant coefficients are in bold in Table 10 and subsequent tables. 
 
 
Table 9 Breakdown of Collision Type  

 Collision type Frequency Percent

Sideswipe 369 20.9%
Rear end 1054 59.6%
Hit object 268 15.1%
Other 78 4.4%

 
 
 
5.2.1 Collision Type and Congestion  
Congestion in the outer lanes, on its own, is strongly associated with a greater likelihood 
of rear-end collisions, all else held constant.  To a lesser degree, the probability that an 
accident is the result of a sideswipe collision also increases with outer lane congestion.  
Right lane perturbation is associated with both rear-end and sideswipe accidents, 
especially if curb lane volume conforms to outer lane volumes.  Conforming curb lane 
volume combined with curb lane congestion also leads to a higher likelihood of hit-
object collisions.  
 
 
5.2.2 Collision Type and Aspects of Traffic Volume  
Controlling for whether or not the road is operating under free flow or congested, the 
likelihood that a accident is a rear-end collision increases with increasing levels of 
volume.  Variation in volume leads marginally to a greater likelihood of both rear-end 
and sideswipe collisions.  The effect of volume level on the odds of a rear-end collision 
is given by the exponential function of the sum of the linear and quadratic terms for 
volume level.  This is graphed in Figure 24.  The odds of a rear-end collision increase at 
an increasing rate for the volume level Factor. 
 
Systematic changes in volume, such as a transition between free flow and congested 
conditions positively affects the odds of a rear-end collision.      
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Table 10 Logit Model of Collision Type as a Function of Traffic Flow Factors  
Explanatory variable Coefficient t-statistic Probability

Sideswipe collision  
1. Outer lanes congestion 0.601 2.75 0.006
2. Volume level 0.326 1.46 0.144
3. Synchronized lane conditions  0.141 0.86 0.391
4. Curb lane perturbation 0.272 2.01 0.044
7. Systematic volume changes 0.169 1.22 0.221
22. Volume level (squared) -0.026 -0.28 0.776
32. Synchronized lane conditions (squared) -0.281 -2.73 0.006
52. Volume variation (squared) 0.249 1.87 0.061
1. Outer lane congestion x 2. Volume level 0.053 0.32 0.746
4. Curb lane perturbation x 6. Conforming curb volumes 0.256 2.27 0.023
Constant 2.098 7.54 0.000
Rear end collision  
1. Outer lanes congestion 1.067 5.00 0.000
2. Volume level 0.942 4.36 0.000
3. Synchronized lane conditions  0.782 4.93 0.000
4. Curb lane perturbation 0.314 2.37 0.018
7. Systematic volume changes 0.385 2.87 0.004
22. Volume level (squared) 0.169 2.00 0.045
32. Synchronized lane conditions (squared) -0.342 -3.59 0.000
52. Volume variation (squared) 0.251 1.91 0.056
1. Outer lane congestion x 2. Volume level 0.243 1.55 0.120
4. Curb lane perturbation x 6. Conforming curb volumes 0.332 3.00 0.003
Constant 1.067 5.00 0.000
Hit object  
1. Outer lanes congestion 0.011 0.05 0.962
2. Volume level 0.026 0.11 0.910
3. Synchronized lane conditions  0.102 0.59 0.555
4. Curb lane perturbation 0.063 0.45 0.654
7. Systematic volume changes -0.044 -0.31 0.757
22. Volume level (squared) 0.073 0.84 0.399
32. Synchronized lane conditions (squared) -0.136 -1.32 0.188
52. Volume variation (squared) 0.132 0.95 0.340
1. Outer lane congestion x 2. Volume level 0.175 1.08 0.282
4. Curb lane perturbation x 6. Conforming curb volumes 0.369 3.06 0.002
Constant 1.327 4.54 0.000

Reference category: other type of collision (e.g., overturn, broadside) 
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Figure 24 Effects on the Odds of a Rear-end Collision of Factor 2: Volume Level  
 
 
 
 
5.2.3 Collision Type and Lane Synchronization  
Controlling for both volume and whether or not the road is operating under free flow or 
congested conditions, synchronization of traffic flow conditions across all freeway lanes 
is related to the odds of both rear-end and sideswipe collisions.  Both relationships are 
nonlinear.  The odds of a sideswipe collision increase at an decreasing rate for a little 
more than half the range of Factor 3, reach a maximum, then decrease, as graphed in 
Figure 25.  Sideswipe collisions are most likely at about an average level of 
synchronized conditions, all else held constant.  Such collisions are less likely if traffic 
conditions are either highly synchronized across lanes, or if conditions are highly 
chaotic across lanes. 
   
The nonlinear effects of synchronized lane conditions on the odds of a rear-end collision 
are graphed in Figure 26.  The odds increase with increasing score on Factor 3 for over 
the lower 85% of the range of this Factor.  For the highest 15% of scores on Factor 3 
(above the value of positive 1.2 standard deviation from the mean), the odds of a rear-
end collision fall with increasing synchronization. 
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Figure 25 Effects on the Odds of a Sideswipe Collision of Factor 3: Synchronized lane 

Conditions  
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 Figure 26 Effects on the Odds of a Rear-end Collision of Factor 3: Synchronized lane 

Conditions  
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5.3 Collision Location 
Location of the primary collision of an accident is broken down into the five categories 
listed in Table 11.  Collisions in the Interior lane(s) are most common, followed by left-
lane collisions.  A multinomial logit model was estimated to determine the relationships 
between the Traffic Flow Factors and collision location, and the results are listed in 
Table 12.  The base category is “Interior lane(s)”.  The overall fit of the model indicated 
by the Nagelkerke Pseudo-R2 of 0.140, is good, but not as good as that obtained in the 
previous collision type model.   
 
 
 
Table 11 Breakdown of Collision Location  

 Collision type Frequency Percent

Off road to drivers’ left 205 11.6%
Left lane 500 28.3%
Interior lane(s) 643 36.3%
Right lane 303 17.1%
Off road to drivers’ right 118 6.7%

 
 
 
5.3.1 Collision Location and Congestion  
Congestion has less effect on collision location than it does on accident severity and 
collision type.  Only congestion in the outer lanes is a statistically significant predictor of 
collision location.  A higher degree of congestion on the outer lanes is related to 
increased odds of an accident being in one of the lanes, as opposed to off-road.  Outer 
lanes congestion has no significant effect on whether or not an accident is located in the 
right lane.  
 
 
5.3.2 Collision Location and Aspects of Traffic Volume  
Controlling for whether or not the road is operating under free flow or congested 
conditions, volume level has a positive effect on the odds of an accident being located 
in the left lane, versus off-road, to either side.  If the road is undergoing systematic 
changes in volume, controlling for volume level, there is a greater likelihood that an 
accident will be located in the left lane, not in the right lane.  This effect is enhanced if 
right lane volumes are nonconforming, but diminished if right lane volume are 
conforming.    
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Table 12 Logit Model of Collision Location as a Function of Traffic Flow Factors  
Explanatory variable Coefficient t-statistic Probability

Off road to drivers’ left    
1. Outer lanes congestion -0.349 -3.85 0.000
2. Volume level -0.188 -2.51 0.012
3. Synchronized lane conditions  -0.027 -0.30 0.767
7. Systematic volume changes 0.027 0.34 0.731
8. Synchronized outer flow 0.236 2.74 0.006
82. Synchronized outer flow (squared) 0.107 2.36 0.018
6. Conforming curb volumes x 7. Systematic volume changes -0.066 -0.97 0.334
6. Conforming curb volumes x 8. Synchronized outer flow 0.045 0.58 0.564
Constant -1.321 -13.34 0.000

Left lane    
1. Outer lanes congestion 0.182 2.96 0.003
2. Volume level 0.226 3.10 0.002
3. Synchronized lane conditions  0.368 5.99 0.000
7. Systematic volume changes 0.249 3.92 0.000
8. Synchronized outer flow 0.279 4.07 0.000
82. Synchronized outer flow (squared) 0.097 2.41 0.016
6. Conforming curb volumes x 7. Systematic volume changes -0.193 -3.34 0.001
6. Conforming curb volumes x 8. Synchronized outer flow -0.145 -2.31 0.021
Constant -0.435 -5.78 0.000

Right lane    
1. Outer lanes congestion -0.045 -0.61 0.540
2. Volume level 0.053 0.73 0.466
3. Synchronized lane conditions  0.136 1.90 0.057
7. Systematic volume changes 0.044 0.60 0.552
8. Synchronized outer flow -0.016 -0.18 0.854
82. Synchronized outer flow (squared) -0.063 -1.15 0.248
6. Conforming curb volumes x 7. Systematic volume changes -0.045 -0.69 0.492
6. Conforming curb volumes x 8. Synchronized outer flow 0.131 1.70 0.089
Constant -0.702 -8.46 0.000

Off road to drivers’ right    
1. Outer lanes congestion -0.638 -4.70 0.000
2. Volume level -0.347 -4.05 0.000
3. Synchronized lane conditions  -0.164 -1.30 0.193
7. Systematic volume changes -0.267 -2.41 0.016
8. Synchronized outer flow 0.223 1.92 0.055
82. Synchronized outer flow (squared) -0.007 -0.09 0.928
6. Conforming curb volumes x 7. Systematic volume changes 0.045 0.47 0.636
6. Conforming curb volumes x 8. Synchronized outer flow 0.146 1.33 0.182
Constant -2.008 -13.91 0.000

Reference category: Interior lane(s) 
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5.3.3 Collision Location and Lane Synchronization  
Controlling for both volume and whether or not the road is operating under free flow or 
congested conditions, the degree to which traffic conditions are synchronized over the 
lanes has a substantial and complex effect on where an accident is likely to occur.  In 
this case, the statistically significant predictor of collision location is Factor 8: 
Synchronized Outer Flow.  In the case of case of collision type. It was Factor 3: 
Synchronized Lane Conditions.  The location categories affected are off-road left and 
left lane. 
 
The effects of synchronized outer flow on the probability of an off-road-left location are 
graphed in Figure 27.  The odds of an accident being located off-road left are reduced 
for below-average levels of synchronization.  For above-average levels, the odds 
multiplier increases with level of outer lanes synchronization at an increasing rate.    
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Figure 27 Effects on the Odds of a Off-road-left Location of Factor 3: Synchronized 

Outer Flow 
 
 
The effects of synchronized outer flow on the likelihood of a left-lane location are shown 
in Figure 27.  These effects are parameterized by the level of conforming curb volume 
because there is a significant interaction term involving Factor 8 and Factor 6.  Three 
curves are graphed: a below-average conforming curb volume score of minus one 
standard deviation, an average score, and above-average score of plus one standard 
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deviation.  Non-conforming curb volumes accentuate the effect of synchronous outer 
flow on the likelihood of a left-lane accident location.        
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Figure 28 Effects on the Odds of a Left-lane Location of Factor 8: Synchronized Outer 

Flow, and Factor 6: Conforming Curb Volumes 
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5.4 Number of Involved Vehicles 
Most case study accidents (59%) involved two vehicles, as shown in Table 13.  
However, there were sufficient number of accidents involved four or more vehicles to 
allow four categories in a multinomial logit model of vehicle involvement as a function of 
Traffic Flow Factors.  The base category for the model presented in Table 14 is “three 
vehicles”.  The overall fit of the model (Pseudo-R2 of 0.159) is good. 
 
 
Table 13 Breakdown of Number of Involved Vehicles 

 Collision type Frequency Percent

Single Vehicle 233 13.2%

Two vehicles 1043 59.0%

Three vehicles 355 20.1%

Four or more vehicles 138 7.8%
 
 
 
5.4.1 Involved Vehicles and Congestion  
As expected, congestion has a considerable influence on vehicle involvement.  
Congestion on the through lanes distinguishes single vehicle crashes from multi-vehicle 
crashes.  The logarithm of the odds of a single-vehicle accident is a simple linear 
function of Factor 1: Outer Lanes Congestion.  However, this Factor does not 
significantly distinguish between the likelihood of different numbers of vehicles in multi-
vehicle accidents. 
 
Curb lane perturbation is related to vehicle involvement in a more complex manner.  
There are statistically significant nonlinear effects for both single-vehicle and two-
vehicle involvement.  The multiplicative effect on the odds of a single vehicle being 
involved in any accident is graphed in Figure 29 as a function of the score on Factor 8: 
Curb Lane Perturbation.  For extreme low values of curb lane perturbation, scores less 
than -0.85 standard deviations, the odds of a single-vehicle accident are reduced in 
approximate proportion to the value of the difference between the Factor score and –the 
critical value of 0.85.  For Factor scores between -0.85 and the mean of zero, the odds 
of a single-vehicle accident are slightly increased, peaking at the score of -0.40.  Finally, 
for positive scores, these odds decrease in approximate proportion to the score. 
 
The effects of curb lane perturbation on the odds of two vehicles being involved are 
plotted in Figure 30.  For negative factor scores, these odds decrease in rough 
proportion to the absolute value of the score. Below-average curb lane perturbation 
leads to a lower probability of two-vehicle accidents.  For positive scores, the effect is to 
increase the likelihood of two-vehicle accidents slightly over the effective domain, with a 
maximum effect at a score of 0.90 standard deviations.  Above-average curb lane 
perturbation leads to a slightly higher probability of two-vehicle accidents. 
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Table 14 Logit Model of Number of Involved Vehicles as a Function of Traffic Flow 
Factors  

Explanatory variable Coefficient t-statistic Probability

Single vehicle  
1. Outer lanes congestion -0.754 -6.31 0.000
2. Volume level -0.728 -8.12 0.000
3. Synchronized lane conditions  -0.414 -3.97 0.000
4. Curb lane perturbation -0.136 -1.39 0.165
5. Volume variation 0.156 1.66 0.096
6. Conforming curb volumes  0.082 0.83 0.406
7. Systematic volume changes -0.414 -4.56 0.000
42. Curb lane perturbation (squared) -0.159 -2.88 0.004
5. Volume variation x 6. Conforming curb volumes -0.065 -0.71 0.479
Constant -0.685 -5.53 0.000
Two vehicles  
1. Outer lanes congestion 0.062 0.97 0.333
2. Volume level -0.131 -1.82 0.069
3. Synchronized lane conditions  -0.080 -1.32 0.188
4. Curb lane perturbation 0.033 0.52 0.605
5. Volume variation 0.007 0.11 0.912
6. Conforming curb volumes  0.182 2.91 0.004
7. Systematic volume changes -0.112 -1.76 0.079
42. Curb lane perturbation (squared) -0.105 -2.89 0.004
5. Volume variation x 6. Conforming curb volumes 0.094 1.47 0.141
Constant 0.062 0.97 0.333
Four or more vehicles  
1. Outer lanes congestion -0.030 -0.27 0.787
2. Volume level 0.228 1.61 0.107
3. Synchronized lane conditions  0.122 1.23 0.218
4. Curb lane perturbation 0.015 0.14 0.885
5. Volume variation 0.331 2.97 0.003
6. Conforming curb volumes  -0.138 -1.29 0.196
7. Systematic volume changes 0.189 1.83 0.067
42. Curb lane perturbation (squared) -0.031 -0.55 0.585
5. Volume variation x 6. Conforming curb volumes 0.249 2.45 0.014
Constant -1.066 -8.03 0.000

Reference category: Three vehicles 
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Figure 29 Effects on the Odds of Single-vehicle Involvement of Factor 4: Curb Lane 

Perturbation 
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Figure 30 Effects on the Odds of Two-vehicle Involvement of Factor 4: Curb Lane 

Perturbation 
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5.4.2 Involved Vehicles and Aspects of Traffic Volume  
Controlling for whether or not the road is operating under free flow or congested 
conditions, volume level distinguishes among all of the levels of vehicle involvement.  
As expected, higher volume levels lead to a diminished probability of single-vehicle 
accidents, but volume level itself does not substantially differentiate among the levels of 
multi-vehicle collisions.  Two-vehicle accidents are more likely under higher levels of 
conforming curb volumes; two-vehicle accidents are more likely when volumes are 
similar in all lanes.  Finally, large scale accidents (those involving four or more vehicles) 
are positively related to volume variation and the interaction of volume variation and 
conforming curb volumes.  Large scale accidents are more likely to occur when volumes 
are similar in all lanes and there are high levels of variation in these volumes.   
 
 
5.4.3 Involved Vehicles and Lane Synchronization  
Synchronized lane conditions, controlling for volume and whether or not the road is 
operating under free flow or congested conditions, affects only the likelihood of single-
vehicle versus multi-vehicle accidents.  The higher the level of synchronization, the 
higher the probability that an accident will involve more than one vehicle. 
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5.5 Summary of Traffic Flow Factors and Accident Characteristics 
A summary of the main results of the analysis of accident propensity as a function of 
traffic flow is presented in Table 15.  Each of the eight Traffic Flow factors is effectively 
related to at least two of the four sets of accident characteristics.  This sensitivity bodes 
well for continued research into the development of hazard functions in the eight-
dimensional space of the Factors and their second-level interactions.    
 
 
 
Table 15 Summary of Key Results from Logit Models of Accident Characteristics as a 

Function of Traffic Flow Factors  

Factor Severity Collision type Collision location Involved 
vehicles 

1. Outer lanes 
congestion 

PDO 
PDO x F6 
PDO x F7 

Rear ends 
Sideswipes 

Left lane 
Not off-road Multi-vehicle 

2. Volume level PDO 
PDO x F4 

Rear ends 
(increasing rate) 

Left lane 
Not off-road Multi-vehicle 

3. Synchronized 
lane conditions  PDO 

Sideswipes 
nonlinear; Mostly 
more rear ends 

Left lane Multi-vehicle 

4.  Curb lane 
perturbation Injury x F6 

Rear ends 
Sideswipes  

Rear ends x F6 
 

Mostly less 
single-vehicle and 

more 2-vehicle 

5. Volume variation Injury x F6   4+ vehicles 
4+ vehicles x F6  

6. Conforming curb 
volumes  

PDO x F1 
PDO x F4 
Injury x F5 

Hit object x F4 
Rear end x F4 

Less left lane x F7 
Less left lane x F8 Two-vehicle 

7. Systematic 
volume changes Injury x F1 Rear ends Less left lane x F6 Multi-vehicle 

8. Synchronized 
outer flow   

Off-road left; Left 
lane (increasing rate) 
Less Left lane x F6  
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6 CONCLUSIONS AND FORTHCOMING RESEARCH 
It has been demonstrated that an extensive set of statistical parameters – 36 in total – 
can be extracted from twenty minutes of loop detector data for three lanes at a specific 
location and time, without recourse to untenable assumptions that convert loop detector 
data to densities and speeds.  These statistical parameters can be reduced to a set of 
eight weighted averages (called Factors) with minimal loss of information.  These Traffic 
Flow Factors perform well in explaining different modes of traffic flow, as uncovered in a 
series of visualizations of loop detector data.  The Factors also perform well in terms of 
explaining differences among accident characteristics.     
 
The objectives in the second year of the project are to test the model’s ability to 
distinguish locations and conditions with high accident rates from those with low 
accident rates.  In accomplishing this, we have extracted a random sample of traffic flow 
conditions at times and places that do not correspond to accidents, for the same case 
study network and time period.  We intend to establish accident rates in terms of vehicle 
exposure to different traffic conditions.  Once exposure rates are established, code will 
be developed to deploy the model. The initial application will be as a stand-alone tool on 
the Testbed website using data from the Caltrans District 12 FEP as input.   
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