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1 Executive Summary

The project is concerned with the development of vehicle navigation systems to serve as the vehicle
location input for driver assistance systems for highway maintenance vehicles. These systems would
have value, for example, for safety or law enforcement vehicles traveling in extreme fog or snow removal
equipment operating in heavy snowfall. The objective of the navigation system is to reliably maintain
cm level accuracy for the vehicle location estimate.

Based on past successful demonstrations at Crows Landing of differential carrier phase global po-
sitioning system (DCPGPS) aided inertial navigation systems (INS) maintaining cm level accuracy for
vehicle control applications, Caltrans suggested that the approach be further developed and tested to
work reliably in more challenging environments, such as that at Donner Pass. A major objective of the
first phase of this project was a site survey to assess the feasibility and challenges of working at the
Donner Pass location. That analysis is contained herein.

The main conclusions are

1. The GPS signal availability is sufficient for the DCPGPS aided INS to maintain cm level accuracy,
except on certain short sections of the tested roadway. These roadway sections are repeatable
between runs. This repeatability was a desired outcome. The fact that the roadway sections
are repeatable between runs means that at least one of the augmentation methods suggested in the
original proposal (e.g., pseudolites, roadway altitude, or magnetometer along isolated road sections)
or advances in GPS receiver and satellite technology should yield a reliable working system along
the entire roadway from Sierraville to Grass Valley.

2. The Caltrans base station in Donners Pass is sufficient to allow testing of the approach along limited
sections of I80; however, certain sections of the roadway do not reliably receive the base station
signal. This should be fixable by installing repeaters.

These conclusions are based on analysis of eleven datasets acquired at different times and on different
days between August 26–August 28, 2003 on the I80 between the Sierraville and Grass Valley exits.

Based on these conclusions, future project goals are:

1. to investigate and develop the augmentation methods for use with the DCPGPS aided INS;

2. to investigate the use of advanced GPS and INS technologies;

3. to modify the UCR DCPGPS aided INS so that it is able to receive the differential correction data
from and operate with the Caltrans base station at Donners Pass; and

4. to investigate alternative sources of differential corrections.

The objective is to begin successful demonstrations of the DCPGPS aided INS on limited sections of the
I-80 through Donner Pass in the Phase II of the project. We expect to be able to demonstrate on longer
sections of the I80 through Donners and to improve performance and reliability as the augmentation
methods are further improved and incorporated over the duration of this project.
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2 Introduction

Snowplows typically operate in extreme environments in terms of temperature, humidity, vibration,
and visibility. In extreme whiteout or fog conditions, it would be useful to provide the driver information
about his roadway relative position. A magnetometer based roadway relative positioning system devel-
oped by PATH and AHMCT has previously been demonstrated in the snowplow guidance application
with Caltrans sponsorship. The existing approach has two main components. The first component is a
magnetometer based roadway-relative vehicle position sensor. The second component is a display of the
roadway relative position to the driver.

The utility of a snowplow/snowblower driver guidance system is clear. Such a system can provide the
driver with roadway relative position and velocity information when the driver’s visual perception of these
quantities is impaired by weather conditions. Such a driver guidance system has two major components:
a roadway relative position determination system (RRPDS) and a human machine interface (HMI). The
RRPDS must maintain an estimate of the vehicle state (i.e., position, velocity, heading, and heading rate)
relative to the roadway with position accurate to a few centimeters. The HMI presents the data from
the RRPDS to the driver in a visually appealing and easily perceived format. Previous CALTRANS-
supported projects have demonstrated a magnetometer based snow-plow/snowblower RRPDS and a HMI.
Previous CALTRANS research under the PATH program has developed and demonstrated a CPDGPS
aided INS RRPDS that has been successfully demonstrated in lateral vehicle control applications [2, 4].
CALTRANS research under the PATH program has also developed and demonstrated a magnetometer
and CPDGPS aided INS RRPDS that has been successfully demonstrated in lateral vehicle control
applications [5, 7]. The motivation for this project is to apply the CPDGPS aided INS RRPDS in the
snowplow/snowblower application. The benefit of this approach is that the CPDGPS aided INS RRPDS
would require significantly less changes to the roadway infrastructure relative to the magnetometer only
approach, thereby decreasing the installation and maintenance costs.

Therefore, the objective of the project discussed in this report is to evaluate, develop, and demonstrate
an alternative roadway-relative vehicle position sensor. The project will utilize the same driver display
as the existing system. The new roadway-relative vehicle position sensor utilizes differential carrier phase
Global Positioning System (DCPGPS) and inertial measurements.

3 Prior status

UCR has previously demonstrated a DCPGPS aided INS that maintains cm accuracy position esti-
mates at 150 Hz sample rate [4]. This system was used to control the lateral position of automobiles at
low speeds at UCR and at high speeds during testing at the Crow’s Landing test facility. Note that the
DCPGPS aided INS does not require any alterations to the roadway.

UCR has also provided several demonstrations of a magnetometer and CPDGPS aided INS [1, 2,
5]. This system also maintained cm accuracy position estimates at 150 Hz. The navigation system is
able to work with magnetometer measurements only, with DCPGPS measurements only, or with both
measurements simultaneously. An advantage of this magnetometer and DCPGPS aided INS approach is
that sensor redundancy makes it significantly more reliable to sensor failures than a single sensor approach
could be. Also, in comparison to a magnetometer only approach, the combined system does not require
magnets embedded in the roadway at a fixed 1.2 m spacing. Instead, magnets could be widely spaced
on sections of roadway with an open view of the sky and more closely spaced only along those regions of
the roadway where the sky is significantly obscured (e.g., tunnels).
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4 Objectives of the Phase 1

The objectives stated for phase 1 of this project were:

Initial site analysis testing. The objective of the initial site test was to determine several specific char-
acteristics of the test site and analyze whether any of these characteristics present unsurmountable
barriers to the project’s success. This initial test was performed using a standard automobile with
the navigation system attached to the luggage rack. The characteristics to be tested include: (a)
GPS signal availability, (b) differential correction availability, and (c) highway trajectory charac-
teristics. The results of this task affect the results, order, and importance of the remaining Tasks.
UCR borrowed a Trimble radio modem from AHMCT that was capable of receiving the Caltrans
DGPS base station messages to evaluate characteristic (b).

Infrastructure development: Purchase equipment. This project required development of additional
sets of GPS/INS hardware to be installed on test vehicles. Under this task we defined and purchased
the necessary pieces of equipment. We have constructed additional DCPGPS prototypes that have
been used for on-vehicle testing.

Infrastructure development: Vibration isolation and environment protection enclosure. The
enclosure and vibration isolation system were purchased modified and tested.

Infrastructure development: Snowplow GPS/INS mounting development. This task will de-
fine, implement, and test the cabling, mounting, and power required to test the navigation hardware
on a snow plow.

Infrastructure development: CPDGPS/INS software modifications and system test. The ex-
isting software was modified to accommodate the hardware changes that resulted during Task 2.

Infrastructure development: Software modifications for the HMI. The existing HMI software
will be modified to accommodate the CPDGPS aided INS state information.

Test: Snow plow on-vehicle system test of CPDGPS aided INS. This task will test the naviga-
tion system basic operation on the snowplow. In addition, to checking the hardware, cabling, and
power operation, an objective is to validate the navigation system performance with the mounting,
vibration, and power stability characteristics of the snowplow. This will be performed at Crows
Landing to facilitate any changes that might be required to the mounting design.

Trajectory Curve Fitting. The guidance information to be given to the driver will be determined
based on the vehicle position determined by the navigation system and stored trajectory informa-
tion. This task used the data from testing in the Donner Pass to develop an appropriate curve fit
to the data describing the lane trajectory.

5 Experimental Results: I80 Donners Pass

On-site testing was performed on the I80 in Donners Pass during the week of August 25-29, 2003.
The intent of this set of experiments was to acquire GPS data along the I80 so that we could perform
an off-line analysis of the expected accuracy of estimated position using either DCPGPS or DCPGPS-
aided-INS. Data was acquired in both the East-bound and West-bound lanes. In each lane, data was
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Name Direction Date Time
248959 WB 8/26/2003 14:10
251353 EB 8/26/2003 14:50
252370 EB 8/26/2003 15:10
254903 WB 8/26/2003 15:40
255417 EB 8/26/2003 15:58
256065 WB 8/26/2003 16:10
256666 WB 8/26/2003 16:19
257470 EB 8/26/2003 16:33
318969 WB 8/27/2003
321932 EB 8/27/2003
324509 WB 8/27/2003

Table 1: Summary of data runs.

acquired at different times of the day on various days. This allows accuracy analysis for various satellite
configurations. The time, date, direction, and filename for each dataset is shown in Table 1

This section contains analytic predictions of the position error expected to be achieved along the I80
in the vicinity of Donner Pass. The analytic predictions are made using covariance propagation methods
as described in [1, 6]. The predictions are calculated off-line using only the satellites observable to the
receiver during each run. Therefore, the predictions do not use satellites if there is not a direct and
unblocked line of sight between the receiver and the satellite. The I80 through Donner Pass results in
significant blockage of satellite signals due to the mountainous terrain and trees near the highway.

This analysis does not account for base station correction availability. The essential assumption is
that base corrections are available for any satellite the rover needs to use. If base signals are not reliably
available, then the performance of both the GPS-only and the CPDGPS-aided-INS would be worse than
indicated. Availability of base correction information is discussed in a subsequent section.

Figures 1–6 show data for westbound runs. Figures 7–11 show data for eastbound runs. The top
row of graphs in each figure predicts the size of the position error for calculations using only GPS
carrier phase measurements. The size of the position error depends on the constellation of satellites for
which the receiver can measure data. This constellation changes with time and location. If the satellite
constellation is insufficient, then no solution is possible. In the figures, σT indicates the standard deviation
of the position error tangent to the centerline and σN indicates the standard deviation of the position
error perpendicular to the centerline. The bottom row of graphs in each figure predicts the size of the
position error that would be obtained using a DCPGPS aided INS approach.

Several comments apply generally to the results.

1. The effect of the overpasses and agriculture inspection station is clearly evident in the DCPGPS
error plots, but almost completely removed in the DCPGPS aided INS results.

2. The great majority of the time, the DCPGPS aided INS errors are predicted to be substantially less
than 10 cm. The DCPGPS aided INS errors in a given direction only approach and then exceed 10
cm if the DCPGPS aiding signals from that direction are lost for a significant period of time.

3. The predicted error components are dependent on both the GPS satellite configuration (number of
satellites in view and their locations in the sky) and the vehicle location along the roadway. The
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areas where this is most obvious are near the agriculture inspection station and on the westbound
lanes between Donner Summit and Kingvale. Such localized areas can be addressed through the
augmentation methods suggested in the original proposal (i.e., altitude aiding, magnetometer aiding,
or pseudolites). The next phase of this research project is to analyze the performance and feasibility
of each type of aiding signal for this application.
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Figure 1: Predicted position error standard deviation for a westbound run. Error using only DCPGPS
is shown on the top row. Error using DCPGPS aided INS is shown on the bottom row. The left column
indicates the error normal to the lane centerline. The right column indicates the error parallel to the
lane centerline. Note that the error axis is limited to a maximum of 0.5 m. Errors exceeding 0.5 m. are
not shown.

The top row of graphs shows that for the satellite configuration available during this run, using
GPS only, there are several sections of roadway where obstacles blocking satellite signals cause significant
positioning errors. The bottom row of graphs shows that for the same satellite configuration, the
DCPGPS aided INS would maintain less than 10 cm error for the entire run. This run starts at the
Sierraville on-ramp and continues to the vicinity of Big Bend.
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Figure 2: Predicted position error standard deviation for a westbound run. Error using only DCPGPS
is shown on the top row. Error using DCPGPS aided INS is shown on the bottom row. The left column
indicates the error normal to the lane centerline. The right column indicates the error parallel to the
lane centerline. Note that the error axis is limited to a maximum of 0.5 m. Errors exceeding 0.5 m. are
not shown.

Figure 2 contains four subfigures that indicate performance for a short run near Truckee. The
top row of figures shows that for the satellite configuration available during this run, for the GPS
only solution, there are several sections of roadway where obstacles blocking the satellite signals cause
significant positioning errors. Locations where the signals are blocked by the overpasses and agriculture
inspection station are clearly visible. The bottom row of graphs shows that for the same satellite
configuration, the DCPGPS aided INS would maintain substantially less than 10 cm error for the entire
run, except for the portion going through the agricultural inspection station where the accuracy parallel
to the road centerline grows to more than 50 cm.
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Figure 3: Predicted position error standard deviation for a westbound run. Error using only DCPGPS
is shown on the top row. Error using DCPGPS aided INS is shown on the bottom row. The left column
indicates the error normal to the lane centerline. The right column indicates the error parallel to the
lane centerline. Note that the error axis is limited to a maximum of 0.5 m. Errors exceeding 0.5 m. are
not shown.

Figure 3 contains four subfigures that indicate performance for a short run near Truckee. The
top row of figures shows that for the satellite configuration available during this run, for the GPS
only solution there are several sections of roadway where obstacles blocking satellites cause significant
positioning errors. The effect of signals being blocked by the overpasses and agriculture inspection
station are clearly visible. The bottom row of figures shows that for the same satellite configuration, the
DCPGPS aided INS would maintain substantially less than 10 cm error for the entire run.

10



0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

G
P

S
−

on
ly

 σ
N

, m

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

G
P

S
−

on
ly

 σ
T
, m

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

G
P

S
 a

id
ed

 IN
S

 σ
N

, m

 ←
 O

ve
rp

as
s

 ←
 A

g.
 In

sp
.

 ←
 O

ve
rp

as
s

 ←
 D

on
ne

r 
La

ke

 ←
 D

on
ne

r 
S

um
m

it

 ←
 K

in
gv

al
e

 ←
 C

is
co

 G
ro

ve
 ←

 O
ve

rp
as

s

 ←
 G

ra
ss

 V
el

le
y

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

G
P

S
 a

id
ed

 IN
S

 σ
T
, m

arclength (km)

 ←
 O

ve
rp

as
s

 ←
 A

g.
 In

sp
.

 ←
 O

ve
rp

as
s

 ←
 D

on
ne

r 
La

ke

 ←
 D

on
ne

r 
S

um
m

it

 ←
 K

in
gv

al
e

 ←
 C

is
co

 G
ro

ve
 ←

 O
ve

rp
as

s

 ←
 G

ra
ss

 V
el

le
y

Figure 4: Predicted position error standard deviation for a westbound run. Error using only DCPGPS
is shown on the top row. Error using DCPGPS aided INS is shown on the bottom row. The left column
indicates the error normal to the lane centerline. The right column indicates the error parallel to the
lane centerline. Note that the error axis is limited to a maximum of 0.5 m. Errors exceeding 0.5 m. are
not shown.

Figure 4 contains four subfigures that indicate performance for a run between Donner Lake and
Kingvale. The top row of figures shows that for the satellite configuration available during this run,
there are a few sections of roadway where obstacles blocking satellite signals cause significant positioning
errors for the GPS only solution. The bottom row of Figures shows that for the same section of road
and same satellite configuration, the DCPGPS aided INS would maintain substantially less than 10 cm
error for the entire run.
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Figure 5: Predicted position error standard deviation for a westbound run. Error using only DCPGPS
is shown on the top row. Error using DCPGPS aided INS is shown on the bottom row. The left column
indicates the error normal to the lane centerline. The right column indicates the error parallel to the
lane centerline. Note that the error axis is limited to a maximum of 0.5 m. Errors exceeding 0.5 m. are
not shown.

Figure 5 contains four subfigures that indicate performance for a run between Seirraville and
Grass Valley. The top row of graphs shows that for the satellite configuration available during this run,
there are many sections of roadway where obstacles blocking satellite signals cause significant positioning
errors for the GPS only solution. The bottom row of graphs shows that for the same section of road and
same satellite configuration, the DCPGPS aided INS would maintain substantially less than 10 cm error
for almost the entire run. The only location where the DCPGPS aided INS solution exceeds 10 cm error
is between the agriculture inspection station and the subsequent overpass.
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Figure 6: Predicted position error standard deviation for a westbound run. Error using only DCPGPS
is shown on the top row. Error using DCPGPS aided INS is shown on the bottom row. The left column
indicates the error normal to the lane centerline. The right column indicates the error parallel to the
lane centerline. Note that the error axis is limited to a maximum of 0.5 m. Errors exceeding 0.5 m. are
not shown.

Figure 6 contains four subfigures that indicate performance for a run between Seirraville and
Grass Valley. The top row of graphs shows that for the satellite configuration available during this run,
there are many sections of roadway where obstacles blocking satellite signals cause significant positioning
errors for the GPS only solution. The bottom row of graphs shows that for the same section of road and
same satellite configuration, the DCPGPS aided INS would maintain substantially less than 10 cm error
for almost the entire run. The only locations where the DCPGPS aided INS solution exceeds 10 cm of
error is near the agriculture inspection station and near the Cisco Grove overpass.
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Figure 7: Predicted position error standard deviation for an eastbound run. Error using only DCPGPS
is shown on the top row. Error using DCPGPS aided INS is shown on the bottom row. The left column
indicates the error normal to the lane centerline. The right column indicates the error parallel to the
lane centerline. Note that the error axis is limited to a maximum of 0.5 m. Errors exceeding 0.5 m. are
not shown.

Figure 7 contains four subfigures that indicate performance for a run from Grass Valley to Cisco
Grove. The top row of graphs shows that for the satellite configuration available during this run, the
position errors predicted for the GPS only position solution are always less than 20 cm. The bottom
row of graphs shows that for the same section of road and same satellite configuration, the DCPGPS
aided INS would maintain substantially less than 10 cm error for the entire run.
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Figure 8: Predicted position error standard deviation for an eastbound run. Error using only DCPGPS
is shown on the top row. Error using DCPGPS aided INS is shown on the bottom row. The left column
indicates the error normal to the lane centerline. The right column indicates the error parallel to the
lane centerline. Note that the error axis is limited to a maximum of 0.5 m. Errors exceeding 0.5 m. are
not shown.

Figure 8 contains four subfigures that indicate performance for a run from Grass Valley to Sier-
raville. The top row of graphs shows that for the satellite configuration available during this run, there
are several sections of roadway where obstacles blocking satellite signals cause significant positioning
errors for the GPS only solution. The bottom row of graphs shows that for the same section of road and
same satellite configuration, the DCPGPS aided INS would maintain substantially less than 10 cm error
for the entire run.
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Figure 9: Predicted position error standard deviation for an eastbound run. Error using only DCPGPS
is shown on the top row. Error using DCPGPS aided INS is shown on the bottom row. The left column
indicates the error normal to the lane centerline. The right column indicates the error parallel to the
lane centerline. Note that the error axis is limited to a maximum of 0.5 m. Errors exceeding 0.5 m. are
not shown.

Figure 9 contains four subfigures that indicate performance for a run from Vista Point to Sier-
raville (i.e., near Truckee). The top row of graphs shows that for the satellite configuration available
during this run, there are two sections of roadway where obstacles blocking satellite signals cause
significant positioning errors for the GPS only solution. The bottom row of graphs that for the same
section of road and same satellite configuration, the DCPGPS aided INS would maintain substantially
less than 10 cm error for the entire run.
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Figure 10: Predicted position error standard deviation for an eastbound run. Error using only DCPGPS
is shown on the top row. Error using DCPGPS aided INS is shown on the bottom row. The left column
indicates the error normal to the lane centerline. The right column indicates the error parallel to the
lane centerline. Note that the error axis is limited to a maximum of 0.5 m. Errors exceeding 0.5 m. are
not shown.

Figure 10 contains four subfigures that indicate performance for an eastbound run from Kingvale
to Sierraville (i.e., near Truckee). The top row of graphs show that for the satellite configuration
available during this run, there are several sections of roadway where obstacles blocking satellite signals
cause significant positioning errors for the GPS only solution. The bottom row of graphs shows that
for the same section of road and same satellite configuration, the DCPGPS aided INS would maintain
substantially less than 10 cm error for the entire run.
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Figure 11: Predicted position error standard deviation for an eastbound run. Error using only DCPGPS
is shown on the top row. Error using DCPGPS aided INS is shown on the bottom row. The left column
indicates the error normal to the lane centerline. The right column indicates the error parallel to the
lane centerline. Note that the error axis is limited to a maximum of 0.5 m. Errors exceeding 0.5 m. are
not shown.

Figure 11 contains four subfigures that indicate performance for an eastbound run from Kingvale
to Sierraville (i.e., near Truckee). The top row of graphs shows that for the satellite configuration
available during this run, there are many sections of roadway where obstacles blocking satellite signals
cause significant positioning errors for the GPS only solution. The bottom row of graphs shows that for
the same section of road and same satellite configuration, the DCPGPS aided INS would maintain less
than 10 cm error for almost the entire run.
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6 Base Station

6.1 Caltrans Base

Differential Carrier Phase GPS requires a base station. There is a Caltrans GPS base station in the
vicinity of the I80 in Donners Pass. It is a Trimble 4700 WinCORS receiver located at

39 : 19 : 18.7s North Latitude and 120 : 20 : 11.7 West Longitude.

The receiver broadcasts CMR format differential corrections via a Trimble Trimtalk 450s radio with a
center frequency of 453.8875 MHz and a 12.5 kHz channel spacing. The baud rate is 1200-9600 bps. This
base has an expected range of 10 km line-of-site at 0.5 W. It is repeater capable.

Figures 12–22 show data indicative of differential correction reception versus arclength. Each figure
contains three graphs of data indicating the time delay between reception of consecutive base corrections.
Ideally, one correction should be received per second. Delays of 2 or 3 seconds can be accommodated
easily. Delays of more than 7 seconds are problematic. In each figure, the top two plots are the same data,
just plotted with different scales. The top graph has a scale that includes all data points. The second
graph has a vertical range between 0 and 6, to more clearly indicate the distribution of data in this range.
The third plot is a histogram of the data. This data shows that each run contained at several instances of
base corrections not being received for at least 10 s. Fortunately, the bad base station reception appears
to occur at nearly the same arclength for the various runs. Therefore, this issue may be addressable by
adding base station repeaters (off the highway) along the roadway.

19



5 10 15 20 25 30
0

50

100
Number of seconds from last measurement

T
im

e,
 s

 ←
 O

ve
rp

as
s

 ←
 A

g.
 In

sp
.

 ←
 O

ve
rp

as
s

 ←
 D

on
ne

r 
La

ke

 ←
 D

on
ne

r 
S

um
m

it

 ←
 K

in
gv

al
e

 ←
 C

is
co

 G
ro

ve

5 10 15 20 25 30
0

2

4

6

T
im

e,
 s

Arclength, km

1 2 3 4 5 6 7 8 9 10
0

200

400

600

Time between base corrections, s

co
un

ts

 >

Figure 12: Time delay between subsequent DGPS correction using the Caltrans base station. This is a
westbound run.
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Figure 13: Time delay between subsequent DGPS correction using the Caltrans base station. This is a
westbound run.
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Figure 14: Time delay between subsequent DGPS correction using the Caltrans base station. This is a
westbound run.

22



12 14 16 18 20 22 24 26
0

10

20

30
Number of seconds from last measurement

T
im

e,
 s

 ←
 D

on
ne

r 
La

ke

 ←
 D

on
ne

r 
S

um
m

it

 ←
 K

in
gv

al
e

12 14 16 18 20 22 24 26
0

2

4

6

T
im

e,
 s

Arclength, km

1 2 3 4 5 6 7 8 9 10
0

100

200

300

Time between base corrections, s

co
un

ts

 >

Figure 15: Time delay between subsequent DGPS correction using the Caltrans base station. This is a
westbound run.

23



5 10 15 20 25 30 35
0

20

40

60

80

Number of seconds from last measurement

T
im

e,
 s

 ←
 O

ve
rp

as
s

 ←
 A

g.
 In

sp
.

 ←
 O

ve
rp

as
s

 ←
 D

on
ne

r 
La

ke

 ←
 D

on
ne

r 
S

um
m

it

 ←
 K

in
gv

al
e

 ←
 C

is
co

 G
ro

ve
 ←

 O
ve

rp
as

s

 ←
 G

ra
ss

 V
el

le
y

5 10 15 20 25 30 35
0

2

4

6

T
im

e,
 s

Arclength, km

1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

Time between base corrections, s

co
un

ts

 >

Figure 16: Time delay between subsequent DGPS correction using the Caltrans base station. This is a
westbound run.
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Figure 17: Time delay between subsequent DGPS correction using the Caltrans base station. This is a
westbound run.
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Figure 18: Time delay between subsequent DGPS correction using the Caltrans base station. This is a
eastbound run.
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Figure 19: Time delay between subsequent DGPS correction using the Caltrans base station. This is a
eastbound run.
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Figure 20: Time delay between subsequent DGPS correction using the Caltrans base station. This is a
eastbound run.
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Figure 21: Time delay between subsequent DGPS correction using the Caltrans base station. This is a
eastbound run.
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Figure 22: Time delay between subsequent DGPS correction using the Caltrans base station. This is a
eastbound run.
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6.2 Base and Rover Satellite Reception Data

Figures 23–33 show the show analytic predictions of accuracy, previously shown in Figures 1–11 along
with graphs showing the number of satellites available to the rover and the number of satellite corrections
received from the base by the rover, each as a function of arclength.

Note that the analytic predictions of accuracy assume that base station corrections are continuously
available, even though they are not. However, the base signal availability issue should be fixable with
radio modem repeaters.

These figures indicate that the GPS signal drop outs occur at repeatable locations. Therefore, either
magnetometer or pseudolite aiding would only be required near those locations and would be expected
expected to fix the issues related GPS signal dropouts.
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Figure 23: Top – Number of satellite DGPS corrections received from the base as a function of arclength.
Second from top – Number of satellite measurements received at the rover versus arclength. Second
from bottom – Position inaccuracy expected in direction perpendicular to the lane center as a function
of arclength. Bottom – Position inaccuracy expected in direction parallel to the lane center as a function
of arclength. Note that the scale of the bottom two graphs is artificially limited to 0.5m. Curves that
exceed the axis limits may have position inaccuracy significantly greater that 0.5 m.
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Figure 24: Top – Number of satellite DGPS corrections received from the base as a function of arclength.
Second from top – Number of satellite measurements received at the rover versus arclength. Second
from bottom – Position inaccuracy expected in direction perpendicular to the lane center as a function
of arclength. Bottom – Position inaccuracy expected in direction parallel to the lane center as a function
of arclength. Note that the scale of the bottom two graphs is artificially limited to 0.5m. Curves that
exceed the axis limits may have position inaccuracy significantly greater that 0.5 m.
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Figure 25: Top – Number of satellite DGPS corrections received from the base as a function of arclength.
Second from top – Number of satellite measurements received at the rover versus arclength. Second
from bottom – Position inaccuracy expected in direction perpendicular to the lane center as a function
of arclength. Bottom – Position inaccuracy expected in direction parallel to the lane center as a function
of arclength. Note that the scale of the bottom two graphs is artificially limited to 0.5m. Curves that
exceed the axis limits may have position inaccuracy significantly greater that 0.5 m.
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Figure 26: Top – Number of satellite DGPS corrections received from the base as a function of arclength.
Second from top – Number of satellite measurements received at the rover versus arclength. Second
from bottom – Position inaccuracy expected in direction perpendicular to the lane center as a function
of arclength. Bottom – Position inaccuracy expected in direction parallel to the lane center as a function
of arclength. Note that the scale of the bottom two graphs is artificially limited to 0.5m. Curves that
exceed the axis limits may have position inaccuracy significantly greater that 0.5 m.
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Figure 27: Top – Number of satellite DGPS corrections received from the base as a function of arclength.
Second from top – Number of satellite measurements received at the rover versus arclength. Second
from bottom – Position inaccuracy expected in direction perpendicular to the lane center as a function
of arclength. Bottom – Position inaccuracy expected in direction parallel to the lane center as a function
of arclength. Note that the scale of the bottom two graphs is artificially limited to 0.5m. Curves that
exceed the axis limits may have position inaccuracy significantly greater that 0.5 m.
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Figure 28: Top – Number of satellite DGPS corrections received from the base as a function of arclength.
Second from top – Number of satellite measurements received at the rover versus arclength. Second
from bottom – Position inaccuracy expected in direction perpendicular to the lane center as a function
of arclength. Bottom – Position inaccuracy expected in direction parallel to the lane center as a function
of arclength. Note that the scale of the bottom two graphs is artificially limited to 0.5m. Curves that
exceed the axis limits may have position inaccuracy significantly greater that 0.5 m.
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Figure 29: Top – Number of satellite DGPS corrections received from the base as a function of arclength.
Second from top – Number of satellite measurements received at the rover versus arclength. Second
from bottom – Position inaccuracy expected in direction perpendicular to the lane center as a function
of arclength. Bottom – Position inaccuracy expected in direction parallel to the lane center as a function
of arclength. Note that the scale of the bottom two graphs is artificially limited to 0.5m. Curves that
exceed the axis limits may have position inaccuracy significantly greater that 0.5 m.
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Figure 30: Top – Number of satellite DGPS corrections received from the base as a function of arclength.
Second from top – Number of satellite measurements received at the rover versus arclength. Second
from bottom – Position inaccuracy expected in direction perpendicular to the lane center as a function
of arclength. Bottom – Position inaccuracy expected in direction parallel to the lane center as a function
of arclength. Note that the scale of the bottom two graphs is artificially limited to 0.5m. Curves that
exceed the axis limits may have position inaccuracy significantly greater that 0.5 m.
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Figure 31: Top – Number of satellite DGPS corrections received from the base as a function of arclength.
Second from top – Number of satellite measurements received at the rover versus arclength. Second
from bottom – Position inaccuracy expected in direction perpendicular to the lane center as a function
of arclength. Bottom – Position inaccuracy expected in direction parallel to the lane center as a function
of arclength. Note that the scale of the bottom two graphs is artificially limited to 0.5m. Curves that
exceed the axis limits may have position inaccuracy significantly greater that 0.5 m.
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Figure 32: Top – Number of satellite DGPS corrections received from the base as a function of arclength.
Second from top – Number of satellite measurements received at the rover versus arclength. Second
from bottom – Position inaccuracy expected in direction perpendicular to the lane center as a function
of arclength. Bottom – Position inaccuracy expected in direction parallel to the lane center as a function
of arclength. Note that the scale of the bottom two graphs is artificially limited to 0.5m. Curves that
exceed the axis limits may have position inaccuracy significantly greater that 0.5 m.
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Figure 33: Top – Number of satellite DGPS corrections received from the base as a function of arclength.
Second from top – Number of satellite measurements received at the rover versus arclength. Second
from bottom – Position inaccuracy expected in direction perpendicular to the lane center as a function
of arclength. Bottom – Position inaccuracy expected in direction parallel to the lane center as a function
of arclength. Note that the scale of the bottom two graphs is artificially limited to 0.5m. Curves that
exceed the axis limits may have position inaccuracy significantly greater that 0.5 m.

42



6.3 UCR Base

For setting up a temporary DGPS base station, if necessary in the future, there is National Geodetic
Survey marker located along the frontage road above Donner Lake. It is implanted in a large stone about
10 m south of the road along the curve below the overlook. It is well marked. There is space adjacent to
it to park a car, if required for power. The NAD83 coordinates and marker information are
Latitude 39:19:2.06651 N
Longitude 120:19:3.60282 W
Ellipse height 2046.24 m
Geod. height -23.19 m
PID KS0107
Destination V1201
ECEF X -2,495,029.505 m
ECEF Y -4,266,710.430 m
ECEF Z 4,020,922.809 m

The marker was located on the afternoon and evening of August 27, 2003. The UCR base station was
set up on the marker. It broadcast corrections using a Freewave spread spectrum modem. The DCPGPS
aided INS worked very well in the vicinity of the base station. Several runs of the DCPGPS aided
INS were attempted on the I80 in the vicinity of Truckee; however, the modem signal was too weak to
be reliably received. Future on-site test will attempt to use the Caltrans base station with the UCR
DCPGPS aided INS.

7 Phase 1 Results

The objectives stated for phase 1 of this project were:

Initial site analysis testing. Our assessment is that there are no insurmountable barriers to successful
demonstration of carrier phase GPS aided INS along the I80 in the vicinity of Donners Pass. The
data contained herein demonstrate that the number of available GPS satellites is sufficient to
maintain the INS accuracy assuming that certain technical challenges can be overcome:

• GPS signals may be blocked by terrain or man-made features. These locations can be addressed
by local augmentation or enhanced receiver technology.

• The base signal is not currently reliably received. This can be addressed either by use of
modem repeaters, cell phone modems, or correction prediction methods.

Infrastructure development: Purchase equipment. Leica GPS receivers, freewave modems, and
YH-Tek IMU’s were purchased and the integrated system was constructed to support the project.

Infrastructure development: Vibration isolation and environment protection enclosure. The
enclosure and vibration isolation system were purchased modified and tested.

Infrastructure development: Snowplow GPS/INS mounting development. PATH and UCR col-
laborated to mount the hardware on a Snowplow that was on loan to PATH.

Infrastructure development: CPDGPS/INS software modifications and system test. The ex-
isting software was modified to accommodate the hardware changes that resulted during Task 2.
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Infrastructure development: Software modifications for the HMI. PATH’s HMI software was
modified by PATH to accommodate the CPDGPS aided INS state information.

Test: Snow plow on-vehicle system test of CPDGPS aided INS. Due to PATH’s involvement in
various demonstrations in 2003, the work and funding for this task were delayed to 2004. In early
September 2004, testing was performed on a snowplow at the PATH facility. The test required sur-
veying of a base location at PATH on September 7, 2004. Testing was performed on September 8-9,
2004. Testing showed the need for power stabilization hardware within the GPS/INS system due to
poor power quality on the snowplow. Otherwise, the GPS/INS performed at the same performance
levels on the snowplow as it had in previous vehicle demonstrations.

Trajectory Curve Fitting. Matlab software was developed to perform the curve fitting task. The
software receives as input the latitude, longitude, and height data from a prior run when the
vehicle was driven along the desired trajectory. The software performs a curve fit which smooths
the data and outputs the parameters of the curve fit. These parameters are used by the GPS/INS
software on future runs to compute the state of the vehicle relative to the stored trajectory.

8 Conclusions

This report discusses results of Phase I of the project 65A0148 and includes detailed analysis of data
collected on the I80 in the vicinity of Donner Pass (i.e., between Sierraville and Grass Valley. The raw
data, as expected, shows that there are local stretches of the I80 where the Caltrans base station signal
is not reliably received at a near 1 Hz rate and that there are stretches of the I80 where a sufficient con-
stellation of GPS signals are not reliably received. These stretches appear to be localized and repeatable.
Therefore, the base station reception issue should be fixable using radio modem repeaters. The GPS
signal reception should be addressable by the augmentation methods originally proposed (e.g., magne-
tometer, roadway altitude, pseudolite, or ultratight aiding) or by advances in GPS receiver technology
that are currently either proposed or already in progress. Use of these methods will be investigated in
the Phase II of the project.

9 Contact Information

Name Organization Phone e-mail
Jay Farrell UCR 909-787-2159 farrell@ee.ucr.edu
Mike Jenkinson Caltrans 916-657-3867 Mike Jenkinson@dot.ca.gov
Ty Lasky AHMCT 530-752-6366 talasky@ucdavis.edu
Asfand Siddiqui Caltrans 916-654-6994 Asfand Siddiqui@dot.ca.gov
Kin Yen AHMCT 530-752-6957 ksyen@mercury.ahmct.ucdavis.edu
Dave Allen Instruments 480-510-4902
Matt Allen Instruments 480-994-1306
Dan McMann Allen Instruments 760-271-4681
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