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ABSTRACT 

 
 
The paper describes a methodology and its application to measure total, recurrent, and non-
recurrent (incident related) delay on urban freeways.  The methodology uses data from loop 
detectors and calculates the average and the probability distribution of delays. Application of 
the methodology to two real-life freeway corridors—one in Los Angeles and the other in the 
Bay Area—indicates that reliable measurement of congestion should also provide measures 
of uncertainty in congestion.  In the two applications, incident-related delay is found to be 
between 13 to 30 percent of the total congestion delay during peak periods.  The 
methodology also quantifies the congestion impacts on travel time and travel time variability.   
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1.  INTRODUCTION  
 
Freeway congestion delay consists of recurrent delay plus the additional (non-recurrent) 
delay caused by accidents, breakdowns, and other random events, such as inclement weather 
and debris.   Recurrent delay arises from fluctuations in demand, the manner in which the 
freeway is operated, as well as the physical layout of the freeway. Non-recurrent delay 
depends on the nature of the incident: an accident is likely to cause more delay than a vehicle 
stopped on the shoulder of the highway.   
 
Currently, there are several approaches for defining and measuring congestion delay.  For 
example, the California DoT (Caltrans) defines the total delay in a freeway section as the 
additional vehicle-hours traveled driving below a reference speed (e.g., 35 mph).  Recurrent 
delay is measured using probe vehicles to record travel times during incident-free periods.  
Non-recurrent congestion is usually assumed to be equal to the recurrent congestion.  Other 
congestion-related performance measures include travel rate, percent facility segments with 
demand higher than capacity, or threshold speeds.  In general, however, there is a lack of 
consistent definition and measurement of the congestion and its components using real-world 
data.  
 
The objective of the research described in this paper is to develop a methodology to identify 
and measure recurrent and non-recurrent congestion on freeways.  
 
The proposed approach is applicable to urban freeways that are instrumented with loop 
detectors or other surveillance systems.  A methodology for rural freeway facilities is 
presented elsewhere (1). 
 
Section 2 presents the methodology.  Its application to two real-life corridors is described in 
Section 3.  The final section summarizes the study findings and outlines ongoing and future 
research. 
 
2. PROPOSED CONGESTION MEASUREMENT METHODOLOGY  
 
This section presents the statistical model and empirical procedures used to estimate 
recurrent and non-recurrent congestion on freeways, based on readily available loop detector 
data, such as the California’s freeway performance measurement system (PeMS) (2,3). 
 
PeMS stores and processes 2 GB/day of 30-second loop detector data in real time from most 
urban freeways in California.  Also, incident information from the California Highway Patrol 
(CHP/CAD) system is stored in the PeMS database.  
 
The basic quantity of interest is the random delay due to congestion in a highway section s 
over a time period t.  Denote this random delay over a section-duration pair (s, t) by D(s, t). 
D(s, t) is measured in the PeMS system as the excess vehicle-hours traveled below a 
reference speed.  More precisely: 
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Here σ  indexes a PeMS segment (i.e. a section of highway half-way between two 
consecutive detector stations), τ indexes a 5-minute PeMS average quantity, },{ ts ∈∈ τσ  is 
the set of 5-minute segment-intervals belonging to the (s, t) pair, ),( τσVMT is the vehicle-
miles traveled and ),( τσVHT is the vehicle-hours traveled over the segment-interval ),( τσ , 
and rV is the reference speed—either 35 mph or 60 mph.1 
 
Formula (1) says that D(s, t) is the excess vehicle-hours spent by vehicles over the section-
duration pair (s, t) traveling at a speed below rV  mph.  Observe the effect of temporal and 
spatial granularity in the PeMS data: aggregating over larger segments or averaging over 
longer time intervals (say, 15-minute) will lead to lower measured delays. 
 
By accepting that the delay is a random quantity, we are also accepting that a single sample 
measurement of the delay—as is commonly done by measuring the delay experienced by a 
single probe vehicle run—does not provide a meaningful estimate of this delay. For one 
example segment (considered below) over the 33 days during February-April, 2002, for 
which there were no incidents during the morning peak period 06:00-10:00 am, the delay 
ranged from a minimum of 0 veh-hrs (VH) to a maximum of 1,098 VH, with a mean of 322 
VH and a standard deviation of 255 VH. 
 
Because this delay is random, our objective is to obtain a statistical characterization of this 
delay. Such a characterization may include statistical mean, variance, quartiles, and 
probability distributions. 
 
We also want to separate this delay into the recurrent delay—the delay that occurs in the 
absence of incidents; and non-recurrent delay—the additional delay caused by incidents.  
Moreover, we may wish to allocate the non-recurrent delay to individual factors.  Because of 
the limitations imposed by the CHP incident data in our empirical study, we only consider 
two factors: accidents and non-accident incidents.2 
 
We disentangle recurrent from non-recurrent delay and estimate the impact of different kinds 
of incidents with the help of a statistical model: 
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In this equation, P[D(s, t) = d] is the probability that the random delay D(s, t) equals d; I 
denotes the type of incident; P[D(s, t) = d | I] is the probability that D(s, t) = d, conditioned 

                                                           
1 The basic PeMS relational database tables store records of flow, occupancy, speed, VHT, and VMT.  These 
records are indexed by detector station ID and 5-minute time interval.  Another PeMS table stores incident 
records of location, start time, end time, and description.  The congestion methodology described here can be 
readily applied to data available in this form. 
2 When reference is made to CHP data, ‘accident’ refers to any incident that involves vehicle collision. 
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on the occurrence of an incident of type I; and P(I) is the probability of occurrence of such an 
incident. 
 
In the empirical study, we distinguish between I = 0, I = acc or accident, and I = non or a 
‘non-accident’ incident.    
 
The empirical study has two limitations.  First, in studying the delay over a particular (s, t) 
pair, we include only those incidents that occur within the (s, t) pair.  This can cause two 
kinds of errors.  The first limitation might be called the ‘boundary effect’. Suppose an 
incident occurs within a section-period pair (s, t).  In our study, we estimate the impact of this 
incident in terms of D(s, t).  But the incident’s impact could extend to a section s’ 
downstream of s or to a period t’ after t. (In both cases, the impact would be counted as 
‘recurrent’ congestion.)  However, our empirical study does not attribute this delay to the 
incident that occurred in (s, t).  Thus we must be careful in choosing the size of the sections 
and the durations to be large enough so that this boundary effect is relatively small.  In our 
empirical study this ‘boundary effect’ is minimized because s is taken to be long sections 
(several miles) of freeway and t is a long duration—the peak travel time. 
 
The second limitation is due to coverage.  We limit ourselves to incidents reported in the 
CHP/CAD database.  We know that this does not include all incidents.  However, the 
accidents in the CAD appear to match well the accidents reported by the freeway service 
patrols (FSP).    Table 1 shows a comparison between the two data sources for the I-210 test 
section in Los Angeles.  The most underreported incident is in the ‘breakdowns’ category.  
Also, from the analysis of incident data on I-10 and I-880, for which we have detailed 
incident data from observers in probe vehicles, we find that CHP/CAD data includes only 15-
20 percent of all incidents, but it does include virtually all accidents and all the delay-causing 
incidents (4).   Other causes of non-recurrent congestion include lane closures, events, and 
inclement weather. In principle, these could be included in (2), simply by considering them 
as new kinds of incident.  In the application of the methodology, we ignore these causes 
because of lack of data. 
 
We can use (2) to decompose the expected value of the total delay, E[D(s, t)], into recurrent 
and non-recurrent delay: 
 

congestionntNonrecurrecongestionRecurrent
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In the second-last equation we have used the assumption that  
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For our empirical analysis, this means that if there is no CHP website report of an incident 
during the segment-duration pair (s,t), then there is in fact no incident. 
 
Thus, the basic relations that we will estimate are: 
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In addition to these statistical averages, we also wish to estimate the distributions 
 

]|),([ IdtsDP =           (5) 

As mentioned, in our empirical study, we only distinguish between non-incidents (I=0), non-
accident incidents (I=non) and accidents (I=acc) and so the relation for non-recurrent 
congestion simplifies to 
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Note in both (4) and (6), to evaluate non-recurrent congestion we have to deduct 

]0|),([ =ItsDE  because, by definition, non-recurrent congestion is the excess over 
recurrent congestion caused by incidents.   Equations (4), (5), and (6) form the basis of our 
empirical study. 
 
 
3.  APPLICATION OF THE METHODOLOGY  
 
This section presents the application of the methodology to two real-life freeway corridors. 
We explain the procedures we use in the empirical estimates of the quantities in (4)-(6), and 
the additional assumption underlying these procedures. 
 
I-210: an 11-mile section of freeway 210 in Los Angeles. The study area is between 
postmiles 32 and 43.  Congestion delays were calculated for the AM peak period 6:00 to 
10:00 AM for the period February to April 2002 (60 weekdays).  Data on traffic conditions 
and incidents are provided by the PeMS system.  The study section experiences heavy 
recurrent congestion in the WB direction in the AM peak. 
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I-880:  This is a 6-mile freeway section located in the city of Hayward, Alameda County.   
Data on traffic volumes and incidents were provided by the I-880 FSP database (5).  Two 
datasets were used.  The ‘before’ data set includes information for 20 weekdays for the AM 
and pm peak periods.  The ‘after’ data set includes data for 24 weekdays for the AM and pm 
peak periods.   ‘Before’ and ‘after’ refer to periods before and after initiation of Freeway 
Service Patrol service. 
 
The statistical assumption is that of stationarity and independence.  More precisely, we fix a 
section-duration pair (s, t) in which s denotes a particular section (e.g. I-210W between 
postmiles 32 and 43 in LA) and t stands for a fixed weekday period such as the AM peak, 
06:00-10:00.  Suppose we have measurements of congestion delay and incidents for N 
weekdays, t1, · · ·, tN.   We assume that these N samples are independent and identically 
distributed.  With this assumption, we can use empirical averages and frequency counts to 
estimate the statistical averages and probability distributions in (4)-(6). 
 
We partition the N samples into three classes: N0 is the set of samples n for which CHP 
reports no incidents; Nacc is the set of samples for which CHP reports at least one accident; 
and Nnon is the set of samples for which CHP reports at least one incident but no accident. We 
ignore the distinction between the occurrence of one incident and two or more incidents, 
because there are very few cases of the latter in the CHP website during a single AM peak 
duration.   The distributions (5) are estimated by the frequencies: 
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 in samples ofNumber 
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Here Bin(d) stands for a delay ‘bin’. 
 
The conditional means are estimated by  
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K

are our estimates and equations (7) and (8) summarize how these estimates 
are calculated from the data samples ),( ntsD , n = 1, …, N. 
Figure 1 shows the three distributions, P[D(s,t)|I=0], P[D(s,t)|I=non], P[D(s,t)|I=acc] for the 
11 mile study section of I-210W (from pm 32 to 43), during the 06:00-10:00 AM peak 
period. 
 
Table 2 provides some descriptive statistics on congestion delay for the I-210 site.  In the 
table, the first column is the type of I, the second column is P(I), the third column is the 
estimate of the mean congestion delay conditioned on the incident type, σ is the standard 
deviation of the samples, Error is the standard error of the estimated mean, MaxD is the 
maximum value of the delay, and Count is the number of samples.   
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Several things are worth noticing.  First, the estimate of (5) for 60 mph reference speed is 
 

Total congestion = Recurrent congestion + Nonrecurrent congestion 
 

368.75 = 322 + 46.75, 
 
hence nonrecurrent congestion accounts for 46.75/368.75 or 13 percent of total congestion 
along the study corridor. 
 
The nonrecurrent congestion breakdown in (9) is 
 

Nonrecurrent congestion = Congestion from I = acc + Congestion from I = non 
 

46.75 = 13.25 + 33.50, 
 
hence accidents account for 33.5/46.75 or 72 percent of nonrecurrent congestion. 
 
Second, as is clear from Figure 1, as well as from the large standard deviation, the probability 
distribution of congestion delay has a large ‘tail’. Consequently, measures of congestion must 
account for this variation.  Giving a single number to summarize congestion is very 
misleading. 
 
Table 2 also shows the delay descriptive statistics for a reference speed of 35 mph, instead of 
60 mph.  This alters the quantitative conclusions above in two ways.  The estimate of delay 
in each row of the table obviously goes down.  Furthermore, the recurrent delay estimate (I = 
0) will decline by a greater percentage, so that the percentage contribution of nonrecurrent 
congestion to total congestion will increase.  From Table 2B we can see that the reference 
speed of 35 mph, non-recurrent congestion accounts for 36.58/214.41 or 17 percent of total 
congestion (vs. 12 percent for the 60 mph reference). 
 
Table 3 shows the results from the application on the I-880 test site for both the before and 
after data sets.   The results show that the percent of non-recurring congestion is about 28 to 
30% of the total congestion.   The same results were obtained when minor incidents 
(shoulder breakdowns lasting less than 10 minutes on the average) are excluded from the 
database.  This indicates that the incident normally reported in the CHP/CAD account for 
most of the congestion delay.  
 
Impacts  on Travel Times 
 
Freeway congestion increases the average and variability of travel times.  Figure 2 shows the 
variability of travel times along the I-210 study corridor.   Figure 3 shows the travel time 
distributions by departure time. The average travel time under free-flow conditions is 13 
minutes and increases to 23 minutes under congested conditions.  More importantly, the 90th 
percentile travel time increases by 15 minutes from 18 to 33 minutes (Figure 3).    
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Figure 4 shows the travel time distributions for incident and non-incident conditions for the 
entire peak period.  The average travel time under incident conditions increases by 3.5 
minutes, and the 90th percentile travel time increases by about 8 minutes.    
 
DISCUSSION  
 
A methodology for measuring freeway congestion and its components (recurrent vs. non-
recurrent) has been developed for urban freeways that have surveillance systems.  The major 
findings to date can be summarized as follows: 
 
a) Freeway congestion delay is highly variable.  Congestion estimates relying on a single 
typical day of data collection using instrumented vehicles produce misleading results.  
 
b) Non-recurrent congestion delay is found to be between 13 to 30 percent of the total delay, 
which is lower than commonly quoted values of 40 to 60 % of total delay.  The portion of 
non-recurrent congestion delay depends on the study section characteristics, frequency and 
type of incidents, and the presence of recurrent congestion.  Most importantly, the percentage 
of non-recurrent delay depends on the extent of recurrent delay.   Clearly, if there is no 
recurrent delay, non-recurrent delay will account for 100 % of total delay.  The applications 
considered here deal with peak periods in freeways with significant recurrent congestion.   
 
c) The methodology can be used to derive estimates of average travel times and travel time 
variability and propose travel time reliability measures.  
 
Ongoing and future work on the subject include application of the methodology on other test 
sections using the extensive PeMS database, validation of the methodology with sites with 
available detailed data (e.g., I-10 in Los Angeles (6)), development and application of a 
methodology for estimating congestion on other state highways (rural freeways and multilane 
highways).  It is also envisioned that the methodology once tested and validated will be 
incorporated into the PeMS system for routine use by researchers and practitioners. 
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Table 1.  Comparison of Incident Data Sources 
 
A.  Number of Peak period Incidents/Month  I-210—source FSP records  
Incident Type   In-Lane  Shoulder Total 
Accident  16  42  58 
Breakdown  67  532  599 
Debris   27  17  44   
Total   110  591  701 
 
 
B.  Number of Incidents I-210 Peak Periods--April 2002 source CHP/CAD  
Incident Type   In-Lane  Shoulder Total 
Accident  NR  NR  54 
Breakdown  NR  NR    6 
Debris   NR  NR  67   
Total       127 

NR: not reported/incomplete information 
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  TABLE 2.  SUMMARY STATISTICS—CONGESTION DELAY I-210 
 
A.  Reference Speed = 60 mph

I P(I) E{D/I} σ Error Max D Count
Total 1.00 368.75 290.67 18.53 1457.75 246
I =0 0.66 322.00 255.00 19.97 1098.50 163
I = inc 0.34 460.56 384.50 42.20 1457.75 83
I = non 0.15 410.58 304.67 50.09 1271.00 37
I = acc 0.19 500.75 352.75 52.01 1457.75 46

B. Reference Speed = 35 mph.

I P(I) E{D/I} σ Error Max D Count
Total 1.00 214.42 196.50 12.53 1104.25 246
I =0 0.66 177.83 166.42 13.03 806.17 163
I = inc 0.34 286.19 234.20 25.71 1104.25 83
I = non 0.15 251.92 205.17 33.73 842.83 37
I = acc 0.19 313.75 246.58 36.36 1104.25 46
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  TABLE 3.  SUMMARY STATISTICS—CONGESTION DELAY I-880 
(Reference Speed = 60 mph)
A.  Before

I P(I) E{D/I} σ Error Max D Count
Total 1.00 40.45 46.04 2.71 286.30 288
I =0 0.22 28.30 28.07 3.54 167.30 63
I = inc 0.78 43.85 49.44 3.30 286.30 225
I = non 0.63 35.91 45.17 3.35 286.30 182
I = acc 0.15 77.47 53.05 8.09 207.61 43

B. After

I P(I) E{D/I} σ Error Max D Count
Total 1.00 47.94 49.86 2.91 244.31 293
I =0 0.29 30.86 31.77 3.43 123.91 86
I = inc 0.71 49.91 49.14 3.42 244.31 207
I = non 0.57 43.82 47.49 3.69 240.10 166
I = acc 0.14 74.51 48.57 7.59 244.31 41
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Figure 1.   Delay Distribution I-210 
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  Figure 2.  Travel Time Variability I-210 WB
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 Figure 3.  Travel Time Distributions  I-210 WB
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Figure 4.  Travel Time Distribution  I-210 WB--Incidents vs. Non-Incidents  
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