Overview

- Smart Mobility Framework Overview
- Implementation Study Overview
- Focus on active transportation and land use aspects
- Recommendations and Next Steps
Smart Mobility 2010

- Smart Mobility 2010: A Call to Action for the New Decade
 - Integrate the new principles, practices, and tools into Caltrans policies and practice
Definition of Smart Mobility

- Smart Mobility moves **people and freight** while **enhancing** California’s **economic**, **environmental** and **human resources** by emphasizing:
 - convenient and safe multi-modal travel
 - speed suitability
 - accessibility
 - management of the circulation network
 - efficient use of land
Smart Mobility Framework

- **6 Principles**
 - Express the priorities and values of Smart Mobility

- **7 Place Types**
 - Designed as tools for integrating land use context

- **17 Performance Measures**
 - Evaluate sustainability principles
Principles of Smart Mobility

- Location Efficiency
- Reliable Mobility
- Health and Safety
- Environmental Stewardship
- Social Equity
- Robust Economy
Smart Mobility Place Types

- Urban Centers
- Close-in Compact Communities
- Compact Communities
- Suburban Communities
- Rural and Agricultural Lands
- Protected Lands
- Special Use Areas
Place Types and Location Efficiency

- 1. Urban Centers
- 2. Close-in Compact Communities
- 3. Compact Communities
- 4. Suburbs
- 5. Rural Towns
- 5, 6. Agricultural & Protected Lands

Community Design

Regional Accessibility

Strong Presence

Location-Efficient Elements

Weak Presence

Location-Efficient Elements
Smart Mobility Performance Measures

<table>
<thead>
<tr>
<th>Principle</th>
<th>Performance Measure*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location Efficiency</td>
<td>1. Support for Sustainable Growth</td>
</tr>
<tr>
<td></td>
<td>2. Transit Mode Share</td>
</tr>
<tr>
<td></td>
<td>3. Accessibility and Connectivity</td>
</tr>
<tr>
<td>Reliable Mobility</td>
<td>4. Multi-Modal Travel Mobility</td>
</tr>
<tr>
<td></td>
<td>5. Multi-Modal Travel Reliability</td>
</tr>
<tr>
<td></td>
<td>6. Multi-Modal Service Quality</td>
</tr>
<tr>
<td>Health and Safety</td>
<td>7. Multi-Modal Safety</td>
</tr>
<tr>
<td></td>
<td>8. Design and Speed Suitability</td>
</tr>
<tr>
<td></td>
<td>9. Pedestrian and Bicycle Mode Share</td>
</tr>
<tr>
<td>Environmental Stewardship</td>
<td>10. Climate and Energy Conservation</td>
</tr>
<tr>
<td></td>
<td>11. Emissions Reduction</td>
</tr>
<tr>
<td>Social Equity</td>
<td>12. Equitable Distribution of Impacts</td>
</tr>
<tr>
<td></td>
<td>13. Equitable Distribution of Access and Mobility</td>
</tr>
<tr>
<td>Robust Economy</td>
<td>14. Congestion Effects on Productivity</td>
</tr>
<tr>
<td></td>
<td>15. Efficient Use of System Resources</td>
</tr>
<tr>
<td></td>
<td>16. Network Performance Optimization</td>
</tr>
<tr>
<td></td>
<td>17. Return on Investment</td>
</tr>
</tbody>
</table>
SMF Implementation Pilot Study

- Strategies, tools, and methodologies to integrate Smart Mobility principles, concepts, and performance measures into planning practice.

- Three components to pilot study:
 - Literature & Practice in Progress Review
 - I-680 Second Generation Corridor System Management Plan (CSMP) in Contra Costa County (District 4/MTC/CCTA)
 - South Bay Cities Subregional Long Range Transportation Plan in Los Angeles County (District 7/SCAG/Metro/South Bay Cities COG)
Pilot Area 1: Contra Costa I-680 CSMP
Pilot Area 1: I-680 CSMP

Integrating SMF Principles and Performance Measures Into Existing Caltrans’ Processes

- Identifies SMF place types along I-680
- Incorporates SMF performance measures as the basis for evaluating corridor performance.
 - Travel Time Reliability
 - HCM 2010 MMLOS Analysis
 - Complete Streets Assessment
- Scenario 5 bicycle and pedestrian improvements
SMF Place Types Analysis
Complete Streets Evaluation

Roadway
- Bicycles allowed on roadway: No
- Alternative parallel road: Present
- Alternate parallel trail: Present
- Pedestrian crossing: 2
- Non-pedestrian crossings: 2
- Sides of street with complete sidewalks: Both
- Predominant pedestrian type: Narrow Curb Side
- Continuity of bicycle facility: Both
- Roadway width: 2.2
- Shoulder: None
- Parking: None
- Lanes: 2
- Predominant station type: Sign Post

Side Hill Avenue Drive
- Length (m): 2.5
- Shoulders: None
- Parking: None
- Sides of street with complete sidewalks: Both
- Predominant pedestrian type: Narrow Curb Side
- Continuity of bicycle facility: Both
- Roadway width: 2.5
- Predominant station type: Sign Post

Elevation:
- Length (m): 2.5
- Shoulders: None
- Parking: None
- Sides of street with complete sidewalks: Both
- Predominant pedestrian type: Narrow Curb Side
- Continuity of bicycle facility: Both
- Roadway width: 2.5
- Predominant station type: Sign Post

Smart Mobility Framework

Overview of Improvement Opportunities
This segment features long distances between crosswalks that are greater than the median length for the corridor. Approximately half of the bicycle and pedestrian facilities are categorized at B-level or worse. At the Alcosta Blvd ramp interchange, restriping and/or signal adjustment should be considered.
Multimodal LOS Analysis

- Highway Capacity Manual 2010 Urban Street methodology
- Captures the interaction among all modes (auto, transit, bicycle, and pedestrians) on parallel arterials

Table 7: LOS results for Diamond Boulevard – from Willows Shopping Center to Willow Pass Road

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Link</th>
<th>Segment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score</td>
<td>LOS</td>
<td>Score</td>
</tr>
<tr>
<td>Transit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bike</td>
<td>4.15</td>
<td>D</td>
</tr>
<tr>
<td>Ped</td>
<td>3.18</td>
<td>C</td>
</tr>
</tbody>
</table>
I 680 CSMP Scenario 5

- Trip-making reduced by 1.5% per day due to bicycle/pedestrian improvements
- Reduction in Average Daily Emissions
- Reflected in B/C ratio change from prior scenario
Pilot Area 2: Sub-regional Plan

Integrating SMF into sub-regional transportation and land use planning processes

- To apply sustainability principles and performance measures to assess future land use strategies and transportation projects
- To develop a tool to test performance measures that are sensitive to sustainability benefits land use and transportation decisions
Performance Measures

- Proximity to Jobs (30 min by transit, 20 min by drive)
- Mode share (NEV, bike, ped, transit)
- Safety (number of crashes, number of vulnerable users)
Dashboard Tool

Traditional Transportation
- **Traditional LU**
 - MOV: 42%
 - Work: 8%
 - Other: 16%
 - Bicycle: 4%
 - Transit: 11%
- **Innovative LU**
 - MOV: 42%
 - Work: 8%
 - Other: 16%
 - Bicycle: 4%
 - Transit: 11%

Transportation Carbon Emissions (CO2)
- Existing: 8,237.68
- Trad LU Trad Trans: 6,168.42
- Innov LU Trad Trans: 6,229.56
- Trad LU Innov Trans: 6,975.47
- Innov LU Innov Trans: 5,918.15

Daily VMT per Capita
- Existing: 13.86
- Trad LU Trad Trans: 12.88
- Innov LU Trad Trans: 13.46
- Trad LU Innov Trans: 12.19
- Innov LU Innov Trans: 11.84
Report Card

<table>
<thead>
<tr>
<th>Measure</th>
<th>Metric</th>
<th>Existing</th>
<th>Traditional LU</th>
<th>Innovative LU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Landuse: B</td>
<td>Qualitative Assessment</td>
<td>Directional Change</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transportation: C</td>
<td>Traditional</td>
<td>Innovative</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Transportation</td>
<td>Transportation</td>
</tr>
<tr>
<td>Average Proximity to Employment</td>
<td>percent of regional jobs available in 30 min drive</td>
<td>24.1%</td>
<td>↑</td>
<td>C</td>
</tr>
<tr>
<td>(within 30 min drive)</td>
<td></td>
<td></td>
<td></td>
<td>↑</td>
</tr>
<tr>
<td>Average Proximity to Employment</td>
<td>percent of regional jobs available in 30 min transit</td>
<td>2.0%</td>
<td>↓</td>
<td>C</td>
</tr>
<tr>
<td>(within 30 min transit)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEV, Bicycle, Walking Facilities</td>
<td>Qualitative</td>
<td>Low</td>
<td>Low</td>
<td>D</td>
</tr>
<tr>
<td>Percentage of Trips by Transit</td>
<td></td>
<td>3.3%</td>
<td>↑</td>
<td>C</td>
</tr>
<tr>
<td>Percentage of Trips by NEV</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>F</td>
</tr>
<tr>
<td>Percentage of Trips by Bicycling</td>
<td></td>
<td>1.0%</td>
<td>=</td>
<td>D</td>
</tr>
<tr>
<td>Percentage of Trips by Walking</td>
<td></td>
<td>9.1%</td>
<td>↑</td>
<td>C</td>
</tr>
<tr>
<td>Vehicle Hours of Delay per Day</td>
<td>Daily VHD</td>
<td>1,062.00</td>
<td>↑↑</td>
<td>C</td>
</tr>
<tr>
<td>Vehicle Miles Traveled (VMT) per Day</td>
<td>Daily VMT</td>
<td>570,873</td>
<td>↑</td>
<td>C</td>
</tr>
<tr>
<td>Vehicle Hours Traveled per Day</td>
<td>Daily VHT</td>
<td>15,740</td>
<td>↑↑</td>
<td>C</td>
</tr>
<tr>
<td>Daily VMT per Capita by Speed Range</td>
<td>Daily VMT per capita by Speed Range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65+ mph</td>
<td>8.2</td>
<td>↑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45-65 mph</td>
<td>0.3</td>
<td>↑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35-45 mph</td>
<td>1.8</td>
<td>↑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-35 mph</td>
<td>1.7</td>
<td>↑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Under 25 mph</td>
<td>0.6</td>
<td>↓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Crashes (per/1000)</td>
<td>reduction in crashes</td>
<td>23</td>
<td>-66%</td>
<td>C</td>
</tr>
</tbody>
</table>
Recommendations \ Next Steps

- Conduct additional pilot studies
- Apply SMF Place Types
 - To identify and prioritize projects and programs.
- Apply SMF Performance Measures
 - Select subset of the 17 SMF performance measures
- Expand Caltrans District 4 Complete Streets Guidelines
- Identify data needs for calculating Multimodal LOS.
- Develop better tools that are sensitive to active transportation and innovative transportation
Questions

- Ann Mahaney, Office of Sustainable Community Planning, DOTP, Caltrans
 - Ann.Mahaney@dot.ca.gov

- Emily Mraovich, Office of Sustainable Community Planning, DOTP, Caltrans
 - Emily.Mraovich@dot.ca.gov

- Alice Chen, Kittelson Associates, Inc.
 - achen@kittelson.com