STATE OF CALIFORNIA
DEPARTMENT OF TRANSPORTATION

NOTICE TO BIDDERS

AND

SPECIAL PROVISIONS

FOR CONSTRUCTION ON STATE HIGHWAY IN RIVERSIDE AND SAN BERNARDINO COUNTIES ON ROUTE 91 FROM SPRUCE STREET TO 60/91/215 SEPARATION AND ON ROUTE 215 FROM 60/91/215 SEPARATION TO ORANGE SHOW ROAD AND AT TRANSPORTATION MANAGEMENT CENTER

In District 08 On Routes 91, 215

Under

Bid book dated

Project Plans approved

Standard Specifications dated 2006

Standard Plans dated 2006

Identified by

Contract No. 08-0M94U4

08-Riv,Sbd-91,215-21.5/21.7, 43.2/45.2, 0.0/5.1

Project ID 0800000506

Federal-Aid Project

ACNH-000C(355)E

CMSTPLN-6208(018)11

Electronic Advertising Contract

Bids open October 11, 2012
Dated August 27, 2012
SPECIAL NOTICES

For federal-aid projects, the Department is modifying its DBE program.

Refer to Section 8-1.07, "Liquidated Damages," of the Amendments to the Standard Specifications for your project-specific liquidated damages based on your total bid.

See Section 2, "Bidding," of these special provisions regarding SSPC QP certification.

The Department is providing an electronic Information Handout for this project. Refer to Section 2-1.03B, "Supplemental Project Information," in the Amendments to the Standard Specifications for the location of this information.

The Department is allowing contractors to submit electronic payroll records to the District Labor Compliance Office. Refer to section titled "Electronic Submission of Payroll Records" under Section 5, "General," of these special provisions.
CONTRACT NO. 08-0M94U4

The special provisions contained herein have been prepared by or under the direction of the following Registered Persons.

HIGHWAYS

Alejandro Wong
REGISTERED CIVIL ENGINEER

TRAFFIC

Tran Hoang
REGISTERED CIVIL ENGINEER

ELECTRICAL

Mohammed Elewa
REGISTERED ELECTRICAL ENGINEER
CONTRACT NO. 08-0M9404

The special provisions contained herein have been prepared by or under the direction of the following Registered Persons.

STRUCTURES

James Corrado 4-4-12
REGISTERED CIVIL ENGINEER DATE

LANDSCAPE

[Signature]
LICENSED LANDSCAPE ARCHITECT

James R Corrado
No C36497
Exp. 05-30-13
CIVIL
STATE OF CALIFORNIA

[Signature]
LICENSED LANDSCAPE ARCHITECT

STATE OF CALIFORNIA
TABLE OF CONTENTS

NOTICE TO BIDDERS ... 1
COPY OF BID ITEM LIST .. 3
SPECIAL PROVISIONS ... 20
SECTION 1. (BLANK) .. 20
SECTION 2. BIDDING ... 20
 2-1.01 TIE BID RESOLUTION .. 20
 2-1.02 DISADVANTAGED BUSINESS ENTERPRISES .. 20
 2-1.03 SSPC QUARTER PREAWARD QUALIFICATION ... 21
 2-1.04 OPT OUT OF PAYMENT ADJUSTMENTS FOR PRICE INDEX FLUCTUATIONS 21
SECTION 3. CONTRACT AWARD AND EXECUTION ... 22
 3-1.01 SMALL BUSINESS PARTICIPATION REPORT .. 22
 3-1.02 CALTRANS BIDDER - DBE INFORMATION FORM .. 22
SECTION 4. BEGINNING OF WORK, TIME OF COMPLETION, AND LIQUIDATED DAMAGES 22
SECTION 5. GENERAL .. 22
 5-1.01 EMISSIONS REDUCTION .. 22
 5-1.02 SUBCONTRACTOR AND DISADVANTAGED BUSINESS ENTERPRISE RECORDS 23
 5-1.03 PERFORMANCE OF DISADVANTAGED BUSINESS ENTERPRISES .. 23
 5-1.04 PARTNERING DISPUTE RESOLUTION ... 24
 5-1.05 PAYMENT ADJUSTMENTS FOR PRICE INDEX FLUCTUATIONS ... 24
 5-1.06 SURFACE MINING AND RECLAMATION ACT ... 27
 5-1.07 ELECTRONIC SUBMISSION OF PAYROLL RECORDS .. 27
 5-1.08 TRAINING ... 28
 5-1.09 FORCE ACCOUNT PAYMENT ... 28
 5-1.10 RESPONSIBILITY TO OTHER ENTITIES ... 29
 5-1.11 AREAS FOR CONTRACTOR’S USE .. 29
 5-1.12 PAYMENTS .. 29
 5-1.13 SUPPLEMENTAL PROJECT INFORMATION .. 31
 5-1.14 NOISE CONTROL ... 32
 5-1.15 PALEONTOLOGICAL RESOURCES ... 33
 5-1.16 SPECIES PROTECTION ... 33
 5-1.17 RELATIONS WITH CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD 35
 5-1.18 AERIALLY DEPOSITED LEAD ... 36
 5-1.19 ENVIRONMENTALLY SENSITIVE AREA .. 36
 5-1.20 NONHIGHWAY FACILITIES (INCLUDING UTILITIES) .. 37
 5-1.21 DAMAGE REPAIR .. 53
 5-1.22 RELIEF FROM MAINTENANCE AND RESPONSIBILITY .. 54
SECTION 6. (BLANK) .. 54
SECTION 7. (BLANK) .. 54
SECTION 8. MATERIALS .. 54
SECTION 8-1. MISCELLANEOUS ... 54
 8-1.01 PREQUALIFIED AND TESTED SIGNING AND DELINEATION MATERIALS 54
 8-1.02 STATE-FURNISHED MATERIALS .. 60
 8-1.03 SLAG AGGREGATE .. 60
SECTION 8-2. CONCRETE ... 62
 8-2.01 PORTLAND CEMENT CONCRETE ... 62
 8-2.02 RAPID STRENGTH CONCRETE FOR STRUCTURES .. 63
 8-2.03 PRECAST CONCRETE QUALITY CONTROL .. 67
 8-2.04 CONTRACTOR QUALITY CONTROL (CONCRETE PAVEMENT) .. 69
 8-2.05 SELF-CONSOLIDATING CONCRETE FOR PRECAST ELEMENTS .. 71
SECTION 8-3. WELDING ... 72
 8-3.01 WELDING ... 72
 WELDING QUALITY CONTROL .. 74
 WELDING FOR OVERHEAD SIGN AND POLE STRUCTURES .. 77
SECTION 9. DESCRIPTION OF BRIDGE WORK .. 78
SECTION 10. CONSTRUCTION DETAILS ... 80
SECTION 10-1. GENERAL

10-1.00 CONSTRUCTION PROJECT INFORMATION SIGNS ... 80
10-1.01 ORDER OF WORK .. 81
10-1.02 CONTRACTOR SUPPLIED BIOLOGIST ... 82
10-1.03 BIOLOGICAL RESOURCE INFORMATION PROGRAM ... 84
10-1.04 WATER POLLUTION CONTROL .. 85
10-1.05 CONSTRUCTION SITE MANAGEMENT .. 99
10-1.06 STREET SWEEPING ... 109
10-1.07 TEMPORARY SOIL BINDER .. 110
10-1.08 TEMPORARY CONCRETE WASHOUT BIN .. 112
10-1.09 TEMPORARY CHECK DAM ... 114
10-1.10 TEMPORARY FIBER ROLL ... 117
10-1.11 TEMPORARY FENCE AND GATES ... 120
10-1.12 TEMPORARY FENCE (TYPE ESA) .. 120
10-1.13 TEMPORARY CONSTRUCTION ENTRANCE .. 122
10-1.14 MOVE-IN/MOVE-OUT (TEMPORARY EROSION CONTROL) .. 125
10-1.15 TEMPORARY DRAINAGE INLET PROTECTION ... 125
10-1.16 SCAFFOLDING ... 134
10-1.17 COOPERATION ... 134
10-1.18 PROGRESS SCHEDULE (CRITICAL PATH METHOD) .. 134
10-1.19 TIME-RELATED OVERHEAD .. 139
10-1.20 CONSTRUCTION AREA TRAFFIC CONTROL DEVICES .. 142
10-1.21 CONSTRUCTION AREA SIGNS .. 143
10-1.22 MAINTAINING TRAFFIC .. 143
10-1.23 CLOSURE REQUIREMENTS AND CONDITIONS ... 155
10-1.24 IMPACT ATTENUATOR VEHICLE ... 156
10-1.25 TRAFFIC CONTROL SYSTEM FOR LANE CLOSURE .. 157
 STATIONARY LANE CLOSURE ... 158
 MOVING LANE CLOSURE .. 158
 PAYMENT .. 159
10-1.26 TEMPORARY PAVEMENT DELINEATION .. 159
10-1.27 BARRICADE ... 161
10-1.28 PORTABLE CHANGEABLE MESSAGE SIGNS ... 162
10-1.29 CHANNELIZER .. 163
10-1.30 TEMPORARY TRAFFIC SCREEN ... 163
10-1.31 TEMPORARY CRASH CUSHION MODULE .. 163
10-1.32 TREATED WOOD WASTE .. 165
10-1.33 EXISTING HIGHWAY FACILITIES ... 166
 EXISTING PAINT SYSTEMS .. 167
 REMOVE METAL BEAM GUARD RAILING .. 169
 REMOVE SIGN STRUCTURE .. 169
 REMOVE PAVEMENT MARKER .. 169
 REMOVE TRAFFIC STRIPE AND PAVEMENT MARKING .. 169
 RESIDUE CONTAINING LEAD FROM PAINT AND THERMOPLASTIC ... 170
 REMOVE DRAINAGE FACILITY ... 170
 REMOVE ASPHALT CONCRETE DIKE ... 170
 REMOVE ROADSIDE SIGN .. 170
 RESET ROADSIDE SIGN .. 170
 RELOCATE ROADSIDE SIGN .. 170
 ADJUST RISER ... 170
 ADJUST MANHOLE TO GRADE .. 171
 OBLITERATE SURFACING .. 171
 REMOVE BALLAST, SUB-BALLAST AND RAILROAD SHOOFLY .. 171
 COLD PLANE ASPHALT CONCRETE PAVEMENT ... 171
 CAP INLET .. 173
 BRIDGE REMOVAL .. 173
 PREPARE CONCRETE BRIDGE DECK SURFACE ... 175
 REMOVE CONCRETE ... 176
10-1.34 REMOVAL OF ASBESTOS CONTAINING MATERIALS .. 176
10-1.78 JOINT SEAL ASSEMBLIES (MAXIMUM MOVEMENT RATING, 4 INCHES) .. 273
10-1.79 ARCHITECTURAL SURFACE (TEXTURED CONCRETE) ... 275
10-1.80 REINFORCEMENT .. 277
10-1.81 HEADED BAR REINFORCEMENT .. 277
10-1.82 SHOTCRETE .. 280
10-1.83 WATERPROOFING ... 282
10-1.84 WATERPROOFING AND COVER ... 283
10-1.85 BRIDGE DECK METHACRYLATE RESIN TREATMENT ... 285
10-1.86 COMPOSITE COLUMN CASING AND FRP STRIPS ... 287
10-1.87 STEEL STRUCTURES ... 291
 GENERAL .. 292
 MATERIALS ... 292
 CHECK TESTING ... 292
 ROTATIONAL CAPACITY TESTING PRIOR TO SHIPMENT TO JOB SITE .. 293
 INSTALLATION TENSION TESTING AND ROTATIONAL CAPACITY TESTING AFTER ARRIVAL ON THE JOB SITE ... 297
 SURFACE PREPARATION .. 297
 SEALING ... 297
 WELDING ... 297
 MEASUREMENT AND PAYMENT ... 298
10-1.88 COLUMN CASINGS .. 298
 CLEAN AND PAINT COLUMN CASING ... 298
 GROUTING .. 302
 MEASUREMENT AND PAYMENT ... 303
10-1.89 COMPOSITE GIRDER STRENGTHENING .. 303
 WORKING DRAWINGS ... 303
 MATERIAL ... 304
 CONSTRUCTION .. 304
 MEASUREMENT AND PAYMENT ... 307
10-1.90 SIGN STRUCTURES .. 307
10-1.91 ROADSIDE SIGNS .. 309
10-1.92 INSTALL SIGN PANEL ON EXISTING FRAME .. 309
10-1.93 FURNISH SIGN ... 309
 SHEET ALUMINUM ... 311
 RETROREFLECTIVE SHEETING ... 311
 PROCESS COLOR AND FILM .. 311
 FIBERGLASS REINFORCED PLASTIC PANEL SIGN .. 312
 LAMINATED PANEL SIGN .. 312
 MEASUREMENT AND PAYMENT ... 313
10-1.94 CLEAN AND PAINT STRUCTURAL STEEL .. 313
10-1.95 CLEAN AND PAINT JOINT SEAL ASSEMBLIES, BEARINGS AND RESTRAINER UNITS 319
10-1.96 PREPARE AND STAIN CONCRETE .. 322
10-1.97 BALLAST ... 322
10-1.98 REINFORCED CONCRETE PIPE .. 324
10-1.99 CORRUGATED METAL PIPE .. 325
10-1.100 SLOTTED CORRUGATED STEEL PIPE ... 325
10-1.101 OVERSIDE DRAIN ... 325
10-1.102 MISCELLANEOUS FACILITIES .. 326
10-1.103 DRAINAGE INLET MARKER .. 326
10-1.104 GRATED LINE DRAIN .. 327
10-1.105 WELDED STEEL PIPE CASING (BRIDGE) .. 328
10-1.106 SLOPE PROTECTION ... 329
10-1.107 SLOPE PAVING .. 329
10-1.108 MISCELLANEOUS CONCRETE CONSTRUCTION .. 330
10-1.109 MISCELLANEOUS METAL (BRIDGE) .. 330
10-1.110 BRIDGE DECK DRAINAGE SYSTEM .. 330
10-1.111 MISCELLANEOUS METAL (RESTRAINER-CABLE TYPE) .. 331
10-1.112 MISCELLANEOUS METAL (RESTRAINER-BAR TYPE) .. 331
10-1.113 CHAIN LINK FENCE .. 331
10-1.114 MONUMENTS ... 332
10-1.115 METAL BEAM GUARD RAILING .. 332
ALTERNATIVE IN-LINE TERMINAL SYSTEM .. 332
ALTERNATIVE FLARED TERMINAL SYSTEM .. 333
10-1.116 VEGETATION CONTROL (MINOR CONCRETE) ... 334
10-1.117 PIPE HANDRAILING ... 335
10-1.118 CONCRETE BARRIER ... 336
10-1.119 TRANSITION RAILING (TYPE WB) ... 336
10-1.120 CRASH CUSHION (TYPE CAT) ... 336
10-1.121 ALTERNATIVE CRASH CUSHION SYSTEM ... 337
10-1.122 THERMOPLASTIC PAVEMENT MARKING .. 338
10-1.123 THERMOPLASTIC TRAFFIC STRIPE (SPRAYABLE) .. 338
10-1.124 PAINT TRAFFIC STRIPE AND PAVEMENT MARKING .. 339
10-1.125 PAVEMENT MARKERS .. 339

SECTION 10-2 HIGHWAY PLANTING AND IRRIGATION SYSTEMS .. 339
10-2.01 GENERAL .. 339
PROGRESS INSPECTIONS .. 340
COST BREAK-DOWN ... 340
10-2.02 EXISTING HIGHWAY PLANTING .. 343
MAINTAIN EXISTING PLANTED AREAS .. 343
PRUNE EXISTING PLANTS .. 343
10-2.03 EXISTING HIGHWAY IRRIGATION FACILITIES ... 343
CHECK AND TEST EXISTING IRRIGATION FACILITIES .. 343
REMOVE EXISTING IRRIGATION FACILITIES .. 344
10-2.04 HIGHWAY PLANTING .. 344
HIGHWAY PLANTING MATERIALS .. 344
PESTICIDES .. 345
PLANTING .. 346
PLANT ESTABLISHMENT WORK .. 346
10-2.05 IRRIGATION SYSTEMS .. 346
PIPE .. 346
THRUST BLOCK ... 351
WATER METER (in Cities of Riverside, Grand Terrace and San Bernadino) 351
WATER METER (in City of Colton) ... 352
BACKFLOW PREVENTER ASSEMBLIES .. 352
BACKFLOW PREVENTER ASSEMBLY ENCLOSURE .. 353
TESTING NEW BACKFLOW PREVENTERS .. 353
SPRINKLERS .. 353
FINAL IRRIGATION SYSTEM CHECK .. 353

SECTION 10-3 ELECTRICAL SYSTEMS .. 354
10-3.01 DESCRIPTION ... 354
10-3.02 COST BREAK-DOWN .. 354
10-3.03 MAINTAINING EXISTING AND TEMPORARY ELECTRICAL SYSTEMS 354
10-3.04 MAINTAINING EXISTING TRAFFIC MANAGEMENT SYSTEM ELEMENTS DURING CONSTRUCTION .. 354
10-3.05 CAST-IN-DRILLED-HOLE CONCRETE PILE FOUNDATIONS .. 356
STANDARD PLANS LIST

The Standard Plan sheets applicable to this contract include, but are not limited to those indicated below. Applicable Revised Standard Plans (RSPs) and New Standard Plans (NSPs) indicated below are included in the project plans as Standard Plan sheets.

<table>
<thead>
<tr>
<th>Standard Plan Sheet</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A10A</td>
<td>Acronyms and Abbreviations (Sheet 1 of 2)</td>
</tr>
<tr>
<td>A10B</td>
<td>Acronyms and Abbreviations (Sheet 2 of 2)</td>
</tr>
<tr>
<td>A10C</td>
<td>Symbols (Sheet 1 of 2)</td>
</tr>
<tr>
<td>A10D</td>
<td>Symbols (Sheet 2 of 2)</td>
</tr>
<tr>
<td>A20A</td>
<td>Pavement Markers and Traffic Lines, Typical Details</td>
</tr>
<tr>
<td>A20B</td>
<td>Pavement Markers and Traffic Lines, Typical Details</td>
</tr>
<tr>
<td>A62A</td>
<td>Excavation and Backfill – Miscellaneous Details</td>
</tr>
<tr>
<td>A62B</td>
<td>Limits of Payment for Excavation and Backfill – Bridge Surcharge and Wall</td>
</tr>
<tr>
<td>A62C</td>
<td>Limits of Payment for Excavation and Backfill – Bridge</td>
</tr>
<tr>
<td>A62D</td>
<td>Excavation and Backfill – Concrete Pipe Culverts</td>
</tr>
<tr>
<td>RSP A62DA</td>
<td>Excavation and Backfill – Concrete Pipe Culverts</td>
</tr>
<tr>
<td>A62F</td>
<td>Excavation and Backfill – Metal and Plastic Culverts</td>
</tr>
<tr>
<td>A73C</td>
<td>Delineators, Channelizers and Barricades</td>
</tr>
<tr>
<td>RSP A74</td>
<td>Survey Monuments</td>
</tr>
<tr>
<td>RSP A76A</td>
<td>Concrete Barrier Type 60</td>
</tr>
<tr>
<td>A76B</td>
<td>Concrete Barrier Type 60</td>
</tr>
<tr>
<td>RSP A77A1</td>
<td>Metal Beam Guard Railing – Standard Railing Section (Wood Post with Wood Block)</td>
</tr>
<tr>
<td>A77B1</td>
<td>Metal Beam Guard Railing – Standard Hardware</td>
</tr>
<tr>
<td>A77C1</td>
<td>Metal Beam Guard Railing – Wood Post and Wood Block Details</td>
</tr>
<tr>
<td>RSP A77C4</td>
<td>Metal Beam Guard Railing – Typical Railing Delineation and Dike Positioning Details</td>
</tr>
<tr>
<td>NSP A77C5</td>
<td>Metal Beam Guard Railing – Typical Vegetation Control Standard Railing Section</td>
</tr>
<tr>
<td>NSP A77C6</td>
<td>Metal Beam Guard Railing – Typical Vegetation Control for Terminal System End Treatments</td>
</tr>
<tr>
<td>NSP A77C7</td>
<td>Metal Beam Guard Railing – Typical Vegetation Control at Structure Approach and Departure</td>
</tr>
<tr>
<td>NSP A77C8</td>
<td>Metal Beam Guard Railing – Typical Vegetation Control at Fixed Object</td>
</tr>
<tr>
<td>NSP A77C9</td>
<td>Metal Beam Guard Railing – Typical Vegetation Control at Fixed Object</td>
</tr>
<tr>
<td>NSP A77C10</td>
<td>Metal Beam Guard Railing – Typical Vegetation Control at Fixed Object</td>
</tr>
<tr>
<td>RSP A77E1</td>
<td>Metal Beam Guard Railing – Typical Layouts for Embankments</td>
</tr>
<tr>
<td>RSP A77E2</td>
<td>Metal Beam Guard Railing – Typical Layouts for Embankments</td>
</tr>
<tr>
<td>RSP A77E4</td>
<td>Metal Beam Guard Railing – Typical Layouts for Embankments</td>
</tr>
<tr>
<td>RSP A77E5</td>
<td>Metal Beam Guard Railing – Typical Layouts for Embankments</td>
</tr>
<tr>
<td>RSP A77E6</td>
<td>Metal Beam Guard Railing – Typical Layouts for Embankments</td>
</tr>
<tr>
<td>RSP A77F1</td>
<td>Metal Beam Guard Railing – Typical Layouts for Structure Approach</td>
</tr>
<tr>
<td>RSP A77F3</td>
<td>Metal Beam Guard Railing – Typical Layouts for Structure Approach</td>
</tr>
<tr>
<td>RSP A77G3</td>
<td>Metal Beam Guard Railing – Typical Layouts for Roadside Fixed Objects</td>
</tr>
<tr>
<td>RSP A77G4</td>
<td>Metal Beam Guard Railing – Typical Layouts for Roadside Fixed Objects</td>
</tr>
<tr>
<td>RSP A77G6</td>
<td>Metal Beam Guard Railing – Typical Layouts for Roadside Fixed Objects</td>
</tr>
<tr>
<td>RSP A77G7</td>
<td>Metal Beam Guard Railing – Typical Layouts for Roadside Fixed Objects</td>
</tr>
<tr>
<td>RSP A77H1</td>
<td>Metal Railing – End Anchor Assembly (Type SFT)</td>
</tr>
<tr>
<td>RSP A77H2</td>
<td>Metal Railing – Rail Tensioning Assembly</td>
</tr>
<tr>
<td>A77H3</td>
<td>Metal Railing – Anchor Cable and Anchor Plate Details</td>
</tr>
<tr>
<td>A77I1</td>
<td>Metal Railing – End Anchor Assembly (Type CA)</td>
</tr>
<tr>
<td>A77I2</td>
<td>Metal Beam Guard Railing – Buried Post End Anchor</td>
</tr>
<tr>
<td>RSP A77J1</td>
<td>Metal Beam Guard Railing – Connections to Bridge Railings without Sidewalks Details No. 1</td>
</tr>
<tr>
<td>RSP A77J2</td>
<td>Metal Beam Guard Railing – Connections to Bridge Railings without Sidewalks Details No. 2</td>
</tr>
<tr>
<td>RSP A77J3</td>
<td>Metal Beam Guard Railing – Connections to Abutments and Walls</td>
</tr>
</tbody>
</table>
RSP A77J4 Metal Beam Guard Railing – Transition Railing (Type WB)
RSP A77K1 Metal Beam Guard Railing – Connections to Bridge Railings with Sidewalks Details No. 1
A77K2 Metal Beam Guard Railing – Connections to Bridge Railings with Sidewalks Details No. 2
A77L1 Metal Beam Railing – Terminal System (Type SRT)
A77L2 Metal Beam Railing – Terminal System (Type SKT)
A77L3 Metal Beam Railing – Terminal System (Type ET)
A77L4 Metal Beam Railing – Terminal System (Type CAT)
A77L5 Metal Beam Railing – Terminal System (Type FLEAT)
NSP A78C3 Single Thrie Beam Barrier – Typical Vegetation Control Standard Barrier Railing Section
NSP A78C4 Double Thrie Beam Barrier – Typical Vegetation Control Standard Barrier Railing Section
NSP A78C5 Thrie Beam Barrier – Typical Vegetation Control at Fixed Objects in Median
NSP A78C6 Thrie Beam Barrier – Typical Vegetation Control at Structure Approach
A82A1 Crash Cushion (Type CAT)
A82B1 Crash Cushion (Type ADIEM)
A82D4 Crash Cushion (Type React 62B060)
RSP A85 Chain Link Fence
NSP A85A Chain Link Fence Details
NSP A85B Chain Link Fence Details
RSP A87A Curbs and Driveways
A87B Asphalt Concrete Dikes
RSP A88A Curb Ramp Details
A88B Curb Ramp and Island Passageway Details
RSP P1 Jointed Plain Concrete Pavement
RSP P2 Jointed Plain Concrete Pavement – Widened Slab Details
RSP P3 Jointed Plain Concrete Pavement – Nondoweled Shoulder Addition/Reconstruction
RSP P30 Jointed Plain Concrete Pavement – End Panel Pavement Transitions
P33 Concrete Pavement – Lane Drop Paving Details
NSP P34 Concrete Pavement – Lane Drop Paving Details No. 2
RSP P35 Concrete Pavement – Ramp Transition Paving Details
RSP P45 Concrete Pavement – Drainage Inlet Details No. 1
RSP P46 Concrete Pavement – Drainage Inlet Details No. 2
P70 Asphalt Concrete Paving (Longitudinal Tapered Notched Wedge Joint)
NSP D71 Drainage Inlet Markers
D72 Drainage Inlets
D73 Drainage Inlets
RSP D74B Drainage Inlets
D74C Drainage Inlets Details
D75A Steel Pipe Inlets
D75C Pipe Inlets – Ladder and Trash Rack Details
RSP D77A Grate Details
D77B Bicycle Proof Grate Details
D77C Alternative Hinged Cover for Type OL and OS Inlets and Trash Rack for Type OCP Inlet
D78C Inlet Depressions – Asphalt Concrete Shoulders
D80 Cast-In-Place Reinforced Concrete – Single Box Culvert
D81 Cast-In-Place Reinforced Concrete – Double Box Culvert
D82 Cast-In-Place Reinforced Concrete Box Culvert – Miscellaneous Details
D86A Box Culvert Warped Wingwalls
D87A Corrugated Metal Pipe Downdrain Details
D87B Plastic Pipe Downdrain Details
D87D Overside Drains
D89 Pipe Culvert Headwalls – Straight and "L"
D93B Drainage Inlet Riser Connections
D94A Metal and Plastic Flared End Sections
D97A Corrugated Metal Pipe Coupling Details No. 1 – Annular Coupling Band Bar and Strap and Angle Connections
D97C Corrugated Metal Pipe Coupling Details No. 3 – Helical and Universal Couplers
RSP D97D Corrugated Metal Pipe Coupling Details No. 4 – Hugger Coupling Bands
RSP D97E Corrugated Metal Pipe Coupling Details No. 5 – Standard Joint
D98A Slotted Corrugated Steel Pipe Drain Details
D98B Slotted Corrugated Steel Pipe Drain Details
D98C Grated Line Drain Details
RSP H1 Planting and Irrigation – Abbreviations
RSP H2 Planting and Irrigation – Symbols
H3 Planting and Irrigation Details
RSP H5 Planting and Irrigation Details
RSP H7 Planting and Irrigation Details
RSP H8 Planting and Irrigation Details
H9 Planting and Irrigation Details
H10 Irrigation Controller Enclosure Cabinet
RSP T1A Temporary Crash Cushion, Sand Filled (Unidirectional)
RSP T1B Temporary Crash Cushion, Sand Filled (Bidirectional)
RSP T2 Temporary Crash Cushion, Sand Filled (Shoulder Installations)
T3 Temporary Railing (Type K)
NSP T3A Temporary Railing (Type K)
RSP T7 Construction Project Funding Identification Signs
T10 Traffic Control System for Lane Closure On Freeways and Expressways
T11 Traffic Control System for Lane Closure on Multilane Conventional Highways
T13 Traffic Control System for Lane Closure on Two Lane Conventional Highways
T14 Traffic Control System for Ramp Closure
RSP T56 Temporary Water Pollution Control Details (Temporary Fiber Roll)
T57 Temporary Water Pollution Control Details (Temporary Check Dam)
T58 Temporary Water Pollution Control Details (Temporary Construction Entrance)
NSP T61 Temporary Water Pollution Control Details (Temporary Drainage Inlet Protection)
NSP T62 Temporary Water Pollution Control Details (Temporary Drainage Inlet Protection)
NSP T63 Temporary Water Pollution Control Details (Temporary Drainage Inlet Protection)
NSP T64 Temporary Water Pollution Control Details (Temporary Drainage Inlet Protection)
NSP T65 Temporary Water Pollution Control Details [Temporary Fence (Type ESA)]
B0-3 Bridge Details
B3-1 Retaining Wall Type 1 – H = 4’ through 30’
B3-7 Retaining Wall Type 5
B3-8 Retaining Wall Details No. 1
B3-9 Retaining Wall Details No. 2
B7-11 Utility Details
RSP B11-47 Cable Railing
B15-3 Sound Wall Masonry Block on Pile Cap Detail (1)
RSP B15-4 Sound Wall Masonry Block on Pile Cap Detail (2)
RSP B15-5 Sound Wall Masonry Block on Pile Cap Detail (3)
RSP B15-6 Sound Wall Masonry Block on Type 736S/SV Barrier Details (1)
RSP B15-7 Sound Wall Masonry Block on Type 736S/SV Barrier Details (2)
RSP B15-8 Sound Wall Masonry Block on Type 736S/SV Barrier Details (3)
B15-9 Sound Wall Masonry Block Miscellaneous Details
B15-10 Sound Wall Masonry Block on Footing or Pile Cap 5’-0" Access Gate Detail (1)
B15-11 Sound Wall Masonry Block on Footing or Pile Cap 5’-0" Access Gate Details (2)
B15-14 Sound Wall Masonry Block Access Gate Locking Details
RSP B15-15 Sound Wall Masonry Block on Type 736S/SV Barrier on Pile Footing for Spanning Utilities
RS1 Roadside Signs, Typical Installation Details No. 1
RS2 Roadside Signs – Wood Post, Typical Installation Details No. 2
RS3 Roadside Signs – Laminated Wood Box Post Typical Installation Details No. 3
RS4 Roadside Signs, Typical Installation Details No. 4
S1 Overhead Signs – Truss, Instructions and Examples
S2 Overhead Signs – Truss, Single Post Type – Post Type II thru IX
S3 Overhead Signs – Truss, Single Post Type – Base Plate and Anchorage Details
S4 Overhead Signs – Truss, Single Post Type – Structural Frame Members Details No. 1

Contract No. 08-0M94U4
ix
ES-6G Electrical Systems (Lighting Standard, Type 32)
ES-6K Electrical Systems (Lighting Standard, Types 5 and 10 Overhead Sign Mounted)
ES-7A Electrical Systems (Signal and Lighting Standards, Push Button Posts and Type 15TS Standard)
RSP ES-7B Electrical Systems (Signal and Lighting Standard – Type 1 Standards and Equipment Numbering)
RSP ES-7C Electrical Systems (Signal and Lighting Standard – Case 1 Arm Loading, Wind Velocity = 100 mph, Arm Lengths 15’ to 30’)
RSP ES-7D Electrical Systems (Signal and Lighting Standard – Case 2 Arm Loading, Wind Velocity = 100 mph, Arm Lengths 15’ to 30’)
RSP ES-7E Electrical Systems (Signal and Lighting Standard – Case 3 Arm Loading, Wind Velocity = 100 mph, Arm Lengths 15’ to 45’)
RSP ES-7F Electrical Systems (Signal and Lighting Standard – Case 4 Arm Loading, Wind Velocity = 100 mph, Arm Lengths 25’ to 45’)
RSP ES-7G Electrical Systems (Signal And Lighting Standard – Case 5 Arm Loading, Wind Velocity = 100 mph, Arm Lengths 50’ to 55’)
ES-7M Electrical Systems (Signal and Lighting Standards – Details No. 1)
ES-7N Electrical Systems (Signal and Lighting Standards – Details No. 2)
ES-8 CANCELED ON JANUARY 20, 2012 (CANCELED)
NSP ES-8A Electrical Systems (Pull Box)
NSP ES-8B Electrical Systems (Traffic Rated Pull Box)
RSP ES-9A Electrical Systems (Electrical Details, Structure Installations)
ES-9B Electrical Systems (Electrical Details, Structure Installations)
RSP ES-9C Electrical Systems (Electrical Details, Structure Installations)
ES-9D Electrical Systems (Electrical Details, Structure Installations)
ES-10 Electrical Systems (Isofootcandle Diagrams)
ES-11 Electrical Systems (Foundation Installations)
ES-13A Electrical Systems (Splicing Details)
ES-13B Electrical Systems (Wiring Details and Fuse Ratings)
ES-15A Electrical Systems (Sign Illumination Equipment)
ES-15C Electrical Systems (Sign Illumination Equipment)
RSP ES-15D Electrical Systems (Lighting and Sign Illumination Control)
ES-16A Electrical Systems (Closed Circuit Television, Pole Details)
ES-16B Electrical Systems (Close Circuit Television, Pole Details – Overhead Sign Mounted)

CANCELED STANDARD PLANS LIST
The Standard Plan sheets listed below are canceled and not applicable to this contract.

NSP P31 Canceled on June 5, 2009
D97B Canceled on June 6, 2008
NSP H54 Canceled on July 31, 2009
ES-8 Canceled on January 20, 2012
ES-10 Canceled on July 20, 2012

Contract No. 08-0M94U4
NOTICE TO BIDDERS

Bids open October 11, 2012

Dated August 27, 2012

General work description: Const retaining walls, bridges and widen roadway with HMA

The Department will receive sealed bids for CONSTRUCTION ON STATE HIGHWAY IN RIVERSIDE AND SAN BERNARDINO COUNTIES ON ROUTE 91 FROM SPRUCE STREET TO 60/91/215 SEPARATION AND ON ROUTE 215 FROM 60/91/215 SEPARATION TO ORANGE SHOW ROAD AND AT TRANSPORTATION MANAGEMENT CENTER.

District-County-Route-Post Mile: 08-Riv,SBd-91,215-21.5/21.7, 43.2/45.2, 0.0/5.1

Contract No. 08-0M94U4

The Contractor must have either a Class A license or a combination of Class C licenses which constitutes a majority of the work.

The DBE Contract goal is 6 percent.

Federal-aid project no.:
ACNH-000C(355)E
CMSTPLN-6208(018)11

For the Federal training program, the number of trainees or apprentices is 64.

Bids must be on a Cost + time basis.

Complete the work within the number of days bid.

Do not bid more than 620 working days.

Do not include Plant Establishment working days in your bid.

The estimated cost of the project is $160,000,000.

No prebid meeting is scheduled for this project.

The Department will receive bids until 2:00 p.m. on the bid open date at 3347 Michelson Drive, Suite 100, Irvine, CA 92612-1692. Bids received after this time will not be accepted.

The Department will open and publicly read the bids at the above location immediately after the specified closing time.

District office addresses are provided in the Standard Specifications.

Present bidders' inquiries to the Department and view the Department's responses at:

http://www.dot.ca.gov/hq/esc/oe/project_status/bid_inq.html

Questions about alleged patent ambiguity of the plans, specifications, or estimate must be asked before bid opening. After bid opening, such questions will not be treated as bid protests.

Submit your bid with bidder's security equal to at least 10 percent of the bid.
Prevailing wages are required on this Contract. The Director of the California Department of Industrial Relations determines the general prevailing wage rates. Obtain the wage rates at the DIR Web site, http://www.dir.ca.gov, or from the Department's Labor Compliance Office of the district in which the work is located.

The federal minimum wage rates for this Contract as determined by the United States Secretary of Labor are available at http://www.dot.ca.gov/hq/esc/oe/federal-wages.

If the minimum wage rates as determined by the United States Secretary of Labor differs from the general prevailing wage rates determined by the Director of the California Department of Industrial Relations for similar classifications of labor, the Contractor and subcontractors must not pay less than the higher wage rate. The Department does not accept lower State wage rates not specifically included in the Federal minimum wage determinations. This includes helper, or other classifications based on hours of experience, or any other classification not appearing in the Federal wage determinations. Where Federal wage determinations do not contain the State wage rate determination otherwise available for use by the Contractor and subcontractors, the Contractor and subcontractors must not pay less than the Federal minimum wage rate that most closely approximates the duties of the employees in question.

DEPARTMENT OF TRANSPORTATION

FDD
8/27/12
COPY OF BID ITEM LIST

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Item Code</th>
<th>Item Description</th>
<th>Unit of Measure</th>
<th>Estimated Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>070012</td>
<td>PROGRESS SCHEDULE (CRITICAL PATH METHOD)</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>2</td>
<td>071321</td>
<td>TEMPORARY FENCE (TYPE CL-6)</td>
<td>LF</td>
<td>7,880</td>
</tr>
<tr>
<td>3</td>
<td>023488</td>
<td>TEMPORARY FENCE (TYPE CL-8) EXTENSION ARM</td>
<td>LF</td>
<td>810</td>
</tr>
<tr>
<td>4</td>
<td>071325</td>
<td>TEMPORARY FENCE (TYPE ESA)</td>
<td>LF</td>
<td>2,780</td>
</tr>
<tr>
<td>5</td>
<td>074016</td>
<td>CONSTRUCTION SITE MANAGEMENT</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>6</td>
<td>074019</td>
<td>PREPARE STORM WATER POLLUTION PREVENTION PLAN</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>7</td>
<td>074028</td>
<td>TEMPORARY FIBER ROLL</td>
<td>LF</td>
<td>90,000</td>
</tr>
<tr>
<td>8</td>
<td>074033</td>
<td>TEMPORARY CONSTRUCTION ENTRANCE</td>
<td>EA</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>074035</td>
<td>TEMPORARY CHECK DAM</td>
<td>LF</td>
<td>5,500</td>
</tr>
<tr>
<td>10</td>
<td>074037</td>
<td>MOVE-IN/MOVE-OUT (TEMPORARY EROSION CONTROL)</td>
<td>EA</td>
<td>12</td>
</tr>
<tr>
<td>11</td>
<td>074038</td>
<td>TEMPORARY DRAINAGE INLET PROTECTION</td>
<td>EA</td>
<td>190</td>
</tr>
<tr>
<td>12</td>
<td>074041</td>
<td>STREET SWEEPING</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>13</td>
<td>074043</td>
<td>TEMPORARY CONCRETE WASHOUT BIN</td>
<td>EA</td>
<td>15</td>
</tr>
<tr>
<td>14</td>
<td>074055</td>
<td>TEMPORARY SOIL BINDER</td>
<td>SQYD</td>
<td>1,040,000</td>
</tr>
<tr>
<td>15</td>
<td>074056</td>
<td>RAIN EVENT ACTION PLAN</td>
<td>EA</td>
<td>40</td>
</tr>
<tr>
<td>16</td>
<td>074057</td>
<td>STORM WATER ANNUAL REPORT</td>
<td>EA</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>074058</td>
<td>STORM WATER SAMPLING AND ANALYSIS DAY</td>
<td>EA</td>
<td>33</td>
</tr>
<tr>
<td>18</td>
<td>090105</td>
<td>TIME-RELATED OVERHEAD (LS)</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>19</td>
<td>120090</td>
<td>CONSTRUCTION AREA SIGNS</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>20</td>
<td>120100</td>
<td>TRAFFIC CONTROL SYSTEM</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>Item No.</td>
<td>Item Code</td>
<td>Item Description</td>
<td>Unit of Measure</td>
<td>Estimated Quantity</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>---</td>
<td>-----------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>21</td>
<td>120116</td>
<td>TYPE II BARRICADE</td>
<td>EA</td>
<td>4</td>
</tr>
<tr>
<td>22</td>
<td>120120</td>
<td>TYPE III BARRICADE</td>
<td>EA</td>
<td>32</td>
</tr>
<tr>
<td>23</td>
<td>120165</td>
<td>CHANNELIZER (SURFACE MOUNTED)</td>
<td>EA</td>
<td>400</td>
</tr>
<tr>
<td>24</td>
<td>120300</td>
<td>TEMPORARY PAVEMENT MARKER</td>
<td>EA</td>
<td>18,000</td>
</tr>
<tr>
<td>25</td>
<td>128650</td>
<td>PORTABLE CHANGEABLE MESSAGE SIGN</td>
<td>EA</td>
<td>30</td>
</tr>
<tr>
<td>26</td>
<td>129000</td>
<td>TEMPORARY RAILING (TYPE K)</td>
<td>LF</td>
<td>225,000</td>
</tr>
<tr>
<td>27</td>
<td>129100</td>
<td>TEMPORARY CRASH CUSHION MODULE</td>
<td>EA</td>
<td>780</td>
</tr>
<tr>
<td>28</td>
<td>129150</td>
<td>TEMPORARY TRAFFIC SCREEN</td>
<td>LF</td>
<td>225,000</td>
</tr>
<tr>
<td>29</td>
<td>146002</td>
<td>CONTRACTOR SUPPLIED BIOLOGIST (LS)</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>30</td>
<td>148005</td>
<td>NOISE MONITORING</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>31</td>
<td>150227</td>
<td>ABANDON PIPELINE</td>
<td>EA</td>
<td>2</td>
</tr>
<tr>
<td>32</td>
<td>150305</td>
<td>OBLITERATE SURFACING</td>
<td>SQYD</td>
<td>6,070</td>
</tr>
<tr>
<td>33</td>
<td>150605</td>
<td>REMOVE FENCE</td>
<td>LF</td>
<td>18,600</td>
</tr>
<tr>
<td>34</td>
<td>150662</td>
<td>REMOVE METAL BEAM GUARD RAILING</td>
<td>LF</td>
<td>9,550</td>
</tr>
<tr>
<td>35</td>
<td>023489</td>
<td>REMOVE TRAFFIC STRIPE</td>
<td>LF</td>
<td>282,000</td>
</tr>
<tr>
<td>36</td>
<td>150711</td>
<td>REMOVE PAINTED TRAFFIC STRIPE</td>
<td>LF</td>
<td>764,000</td>
</tr>
<tr>
<td>37</td>
<td>150715</td>
<td>REMOVE THERMOPLASTIC PAVEMENT MARKING</td>
<td>SQFT</td>
<td>4,070</td>
</tr>
<tr>
<td>38</td>
<td>150722</td>
<td>REMOVE PAVEMENT MARKER</td>
<td>EA</td>
<td>40,600</td>
</tr>
<tr>
<td>39</td>
<td>150742</td>
<td>REMOVE ROADSIDE SIGN</td>
<td>EA</td>
<td>19</td>
</tr>
<tr>
<td>40</td>
<td>150757</td>
<td>REMOVE SIGN STRUCTURE (EA)</td>
<td>EA</td>
<td>12</td>
</tr>
<tr>
<td>Item No.</td>
<td>Item Code</td>
<td>Item Description</td>
<td>Unit of Measure</td>
<td>Estimated Quantity</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>---</td>
<td>-----------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>41</td>
<td>150767</td>
<td>REMOVE BRIDGE MOUNTED SIGN</td>
<td>EA</td>
<td>4</td>
</tr>
<tr>
<td>42</td>
<td>150771</td>
<td>REMOVE ASPHALT CONCRETE DIKE</td>
<td>LF</td>
<td>1,200</td>
</tr>
<tr>
<td>43</td>
<td>150812</td>
<td>REMOVE PIPE (LF)</td>
<td>LF</td>
<td>3,890</td>
</tr>
<tr>
<td>44</td>
<td>150820</td>
<td>REMOVE INLET</td>
<td>EA</td>
<td>76</td>
</tr>
<tr>
<td>45</td>
<td>150833</td>
<td>REMOVE RETAINING WALL (LF)</td>
<td>LF</td>
<td>720</td>
</tr>
<tr>
<td>46</td>
<td>023490</td>
<td>REMOVE SUB-BALLAST</td>
<td>CY</td>
<td>7,220</td>
</tr>
<tr>
<td>47</td>
<td>023491</td>
<td>REMOVE BALLAST</td>
<td>CY</td>
<td>5,010</td>
</tr>
<tr>
<td>48</td>
<td>023492</td>
<td>REMOVE RAILROAD SHOOFLY</td>
<td>CY</td>
<td>6,650</td>
</tr>
<tr>
<td>49</td>
<td>152320</td>
<td>RESET ROADSIDE SIGN</td>
<td>EA</td>
<td>69</td>
</tr>
<tr>
<td>50</td>
<td>152390</td>
<td>RELOCATE ROADSIDE SIGN</td>
<td>EA</td>
<td>38</td>
</tr>
<tr>
<td>51</td>
<td>152434</td>
<td>ADJUST RISER</td>
<td>EA</td>
<td>2</td>
</tr>
<tr>
<td>52</td>
<td>152440</td>
<td>ADJUST MANHOLE TO GRADE</td>
<td>EA</td>
<td>4</td>
</tr>
<tr>
<td>53</td>
<td>153103</td>
<td>COLD PLANE ASPHALT CONCRETE PAVEMENT</td>
<td>SQYD</td>
<td>223,000</td>
</tr>
<tr>
<td>54</td>
<td>153121</td>
<td>REMOVE CONCRETE (CY)</td>
<td>CY</td>
<td>460</td>
</tr>
<tr>
<td>55</td>
<td>153130</td>
<td>REMOVE CONCRETE CURB (LF)</td>
<td>LF</td>
<td>17,900</td>
</tr>
<tr>
<td>56</td>
<td>153211</td>
<td>REMOVE CONCRETE SIDEWALK AND DRIVEWAY</td>
<td>CY</td>
<td>28</td>
</tr>
<tr>
<td>57</td>
<td>153221</td>
<td>REMOVE CONCRETE BARRIER</td>
<td>LF</td>
<td>25,400</td>
</tr>
<tr>
<td>58</td>
<td>153225</td>
<td>PREPARE CONCRETE BRIDGE DECK SURFACE</td>
<td>SQFT</td>
<td>34,799</td>
</tr>
<tr>
<td>59</td>
<td>153251</td>
<td>REMOVE SOUND WALL (LF)</td>
<td>LF</td>
<td>60</td>
</tr>
<tr>
<td>60</td>
<td>155003</td>
<td>CAP INLET</td>
<td>EA</td>
<td>7</td>
</tr>
<tr>
<td>Item No.</td>
<td>Item Code</td>
<td>Item Description</td>
<td>Unit of Measure</td>
<td>Estimated Quantity</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>---</td>
<td>-----------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>61</td>
<td>156585</td>
<td>REMOVE CRASH CUSHION</td>
<td>EA</td>
<td>2</td>
</tr>
<tr>
<td>62</td>
<td>157551</td>
<td>BRIDGE REMOVAL, LOCATION A</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>63</td>
<td>157552</td>
<td>BRIDGE REMOVAL, LOCATION B</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>64</td>
<td>157553</td>
<td>BRIDGE REMOVAL, LOCATION C</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>65</td>
<td>157554</td>
<td>BRIDGE REMOVAL, LOCATION D</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>66</td>
<td>157561</td>
<td>BRIDGE REMOVAL (PORTION), LOCATION A</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>67</td>
<td>157562</td>
<td>BRIDGE REMOVAL (PORTION), LOCATION B</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>68</td>
<td>157563</td>
<td>BRIDGE REMOVAL (PORTION), LOCATION C</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>69</td>
<td>157564</td>
<td>BRIDGE REMOVAL (PORTION), LOCATION D</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>70</td>
<td>157565</td>
<td>BRIDGE REMOVAL (PORTION), LOCATION E</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>71</td>
<td>160102</td>
<td>CLEARING AND GRUBBING (LS)</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>72</td>
<td>190101</td>
<td>ROADWAY EXCAVATION</td>
<td>CY</td>
<td>325,000</td>
</tr>
<tr>
<td>73</td>
<td>190107</td>
<td>ROADWAY EXCAVATION (TYPE Y-1) (AERIALLY DEPOSITED LEAD)</td>
<td>CY</td>
<td>1,280</td>
</tr>
<tr>
<td>74</td>
<td>190110</td>
<td>LEAD COMPLIANCE PLAN</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>75</td>
<td>190111</td>
<td>ADL BURIAL LOCATION REPORT</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>76 (F)</td>
<td>192003</td>
<td>STRUCTURE EXCAVATION (BRIDGE)</td>
<td>CY</td>
<td>7,104</td>
</tr>
<tr>
<td>77 (F)</td>
<td>192037</td>
<td>STRUCTURE EXCAVATION (RETAINING WALL)</td>
<td>CY</td>
<td>65,723</td>
</tr>
<tr>
<td>78 (F)</td>
<td>192055</td>
<td>STRUCTURE EXCAVATION (SOIL NAIL WALL)</td>
<td>CY</td>
<td>4,541</td>
</tr>
<tr>
<td>79 (F)</td>
<td>192060</td>
<td>STRUCTURE EXCAVATION (GROUND ANCHOR WALL)</td>
<td>CY</td>
<td>194</td>
</tr>
<tr>
<td>80 (F)</td>
<td>193003</td>
<td>STRUCTURE BACKFILL (BRIDGE)</td>
<td>CY</td>
<td>3,507</td>
</tr>
<tr>
<td>Item No.</td>
<td>Item Code</td>
<td>Item Description</td>
<td>Unit of Measure</td>
<td>Estimated Quantity</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>---</td>
<td>-----------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>81</td>
<td>193013</td>
<td>STRUCTURE BACKFILL (RETAINING WALL)</td>
<td>CY</td>
<td>44,544</td>
</tr>
<tr>
<td>82</td>
<td>193027</td>
<td>STRUCTURE BACKFILL (GROUND ANCHOR WALL)</td>
<td>CY</td>
<td>14</td>
</tr>
<tr>
<td>83</td>
<td>193028</td>
<td>STRUCTURE BACKFILL (SOIL NAIL WALL)</td>
<td>CY</td>
<td>388</td>
</tr>
<tr>
<td>84</td>
<td>193030</td>
<td>PERVIOUS BACKFILL MATERIAL</td>
<td>CY</td>
<td>1,012</td>
</tr>
<tr>
<td>85</td>
<td>193031</td>
<td>PERVIOUS BACKFILL MATERIAL (RETAINING WALL)</td>
<td>CY</td>
<td>2,310</td>
</tr>
<tr>
<td>86</td>
<td>023493</td>
<td>RAILROAD SUB-BALLAST</td>
<td>CY</td>
<td>13,800</td>
</tr>
<tr>
<td>87</td>
<td>193114</td>
<td>SAND BACKFILL</td>
<td>CY</td>
<td>94</td>
</tr>
<tr>
<td>88</td>
<td>194001</td>
<td>DITCH EXCAVATION</td>
<td>CY</td>
<td>3,760</td>
</tr>
<tr>
<td>89</td>
<td>200001</td>
<td>HIGHWAY PLANTING</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>90</td>
<td>200052</td>
<td>PRUNE EXISTING PLANTS</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>91</td>
<td>023494</td>
<td>3/4" GRAVEL (MISCELLANEOUS AREAS)</td>
<td>SQYD</td>
<td>68,500</td>
</tr>
<tr>
<td>92</td>
<td>023495</td>
<td>2 1/2" GRAVEL (MISCELLANEOUS AREAS)</td>
<td>SQYD</td>
<td>2,750</td>
</tr>
<tr>
<td>93</td>
<td>200114</td>
<td>ROCK BLANKET</td>
<td>SQYD</td>
<td>30,200</td>
</tr>
<tr>
<td>94</td>
<td>200118</td>
<td>DECOMPOSED GRANITE (MISCELLANEOUS AREAS)(SQYD)</td>
<td>SQYD</td>
<td>8,900</td>
</tr>
<tr>
<td>95</td>
<td>202011</td>
<td>MULCH</td>
<td>CY</td>
<td>20,200</td>
</tr>
<tr>
<td>96</td>
<td>023496</td>
<td>EROSION CONTROL (HYDROSEED TYPE 2)</td>
<td>SQFT</td>
<td>515,000</td>
</tr>
<tr>
<td>97</td>
<td>023497</td>
<td>EROSION CONTROL (HYDROSEED TYPE 1)</td>
<td>SQFT</td>
<td>1,290,000</td>
</tr>
<tr>
<td>98</td>
<td>204031</td>
<td>TRANSPLANT PALM TREE</td>
<td>EA</td>
<td>8</td>
</tr>
<tr>
<td>99</td>
<td>204099</td>
<td>PLANT ESTABLISHMENT WORK</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>100</td>
<td>208000</td>
<td>IRRIGATION SYSTEM</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>Item No.</td>
<td>Item Code</td>
<td>Item Description</td>
<td>Unit of Measure</td>
<td>Estimated Quantity</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>---</td>
<td>-----------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>101</td>
<td>023498</td>
<td>WATER METER (TYPE 1A)</td>
<td>EA</td>
<td>4</td>
</tr>
<tr>
<td>102</td>
<td>023499</td>
<td>WATER METER (TYPE 1B)</td>
<td>EA</td>
<td>2</td>
</tr>
<tr>
<td>103</td>
<td>023500</td>
<td>WATER METER (TYPE 1C)</td>
<td>EA</td>
<td>1</td>
</tr>
<tr>
<td>104</td>
<td>023501</td>
<td>WATER METER (TYPE 2A)</td>
<td>EA</td>
<td>1,860</td>
</tr>
<tr>
<td>105</td>
<td>208762</td>
<td>12" CORRUGATED STEEL PIPE CONDUIT (.064" THICK)</td>
<td>LF</td>
<td>1,870</td>
</tr>
<tr>
<td>106</td>
<td>260203</td>
<td>CLASS 2 AGGREGATE BASE (CY)</td>
<td>CY</td>
<td>150,000</td>
</tr>
<tr>
<td>107</td>
<td>260210</td>
<td>AGGREGATE BASE (APPROACH SLAB)</td>
<td>CY</td>
<td>89</td>
</tr>
<tr>
<td>108</td>
<td>280000</td>
<td>LEAN CONCRETE BASE</td>
<td>CY</td>
<td>2,170</td>
</tr>
<tr>
<td>109</td>
<td>390131</td>
<td>HOT MIX ASPHALT</td>
<td>TON</td>
<td>141,000</td>
</tr>
<tr>
<td>110</td>
<td>390140</td>
<td>RUBBERIZED HOT MIX ASPHALT (GAP GRADED)</td>
<td>TON</td>
<td>69,300</td>
</tr>
<tr>
<td>111</td>
<td>023502</td>
<td>HOT MIX ASPHALT (TYPE A BOND BREAKER)</td>
<td>TON</td>
<td>1,340</td>
</tr>
<tr>
<td>112</td>
<td>394060</td>
<td>DATA CORE</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>113</td>
<td>394074</td>
<td>PLACE HOT MIX ASPHALT DIKE (TYPE C)</td>
<td>LF</td>
<td>1,140</td>
</tr>
<tr>
<td>114</td>
<td>394076</td>
<td>PLACE HOT MIX ASPHALT DIKE (TYPE E)</td>
<td>LF</td>
<td>19,200</td>
</tr>
<tr>
<td>115</td>
<td>394077</td>
<td>PLACE HOT MIX ASPHALT DIKE (TYPE F)</td>
<td>LF</td>
<td>2,630</td>
</tr>
<tr>
<td>116</td>
<td>394090</td>
<td>PLACE HOT MIX ASPHALT (MISCELLANEOUS AREA)</td>
<td>SQYD</td>
<td>1,900</td>
</tr>
<tr>
<td>117</td>
<td>395000</td>
<td>LIQUID ASPHALT (PRIME COAT)</td>
<td>TON</td>
<td>370</td>
</tr>
<tr>
<td>118</td>
<td>397005</td>
<td>TACK COAT</td>
<td>TON</td>
<td>200</td>
</tr>
<tr>
<td>119</td>
<td>023503</td>
<td>JOINTED PLAIN CONCRETE PAVEMENT (RAPID STRENGTH CONCRETE)</td>
<td>CY</td>
<td>200</td>
</tr>
<tr>
<td>120</td>
<td>401050</td>
<td>JOINTED PLAIN CONCRETE PAVEMENT</td>
<td>CY</td>
<td>4,340</td>
</tr>
<tr>
<td>Item No.</td>
<td>Item Code</td>
<td>Item Description</td>
<td>Unit of Measure</td>
<td>Estimated Quantity</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>---</td>
<td>-----------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>121</td>
<td>404092</td>
<td>SEAL PAVEMENT JOINT</td>
<td>LF</td>
<td>22,500</td>
</tr>
<tr>
<td>122</td>
<td>404093</td>
<td>SEAL ISOLATION JOINT</td>
<td>LF</td>
<td>9,030</td>
</tr>
<tr>
<td>123</td>
<td>420201</td>
<td>GRIND EXISTING CONCRETE PAVEMENT</td>
<td>SQYD</td>
<td>3,500</td>
</tr>
<tr>
<td>124</td>
<td>460200</td>
<td>GROUND ANCHOR (VERTICAL)</td>
<td>EA</td>
<td>48</td>
</tr>
<tr>
<td>125</td>
<td>460300</td>
<td>SOIL NAIL</td>
<td>LF</td>
<td>75,922</td>
</tr>
<tr>
<td>126</td>
<td>490503</td>
<td>FURNISH STEEL PILING (HP 10 X 42)</td>
<td>LF</td>
<td>2,744</td>
</tr>
<tr>
<td>127</td>
<td>490504</td>
<td>DRIVE STEEL PILE (HP 10 X 42)</td>
<td>EA</td>
<td>58</td>
</tr>
<tr>
<td>128</td>
<td>490508</td>
<td>FURNISH STEEL PILING (HP 10 X 57)</td>
<td>LF</td>
<td>3,305</td>
</tr>
<tr>
<td>129</td>
<td>490509</td>
<td>DRIVE STEEL PILE (HP 10 X 57)</td>
<td>EA</td>
<td>62</td>
</tr>
<tr>
<td>130</td>
<td>490528</td>
<td>FURNISH STEEL PILING (HP 14 X 89)</td>
<td>LF</td>
<td>16,032</td>
</tr>
<tr>
<td>131</td>
<td>490529</td>
<td>DRIVE STEEL PILE (HP 14 X 89)</td>
<td>EA</td>
<td>340</td>
</tr>
<tr>
<td>132</td>
<td>490603</td>
<td>24" CAST-IN-DRILLED-HOLE CONCRETE PILING</td>
<td>LF</td>
<td>6,853</td>
</tr>
<tr>
<td>133</td>
<td>490606</td>
<td>42" CAST-IN-DRILLED-HOLE CONCRETE PILING</td>
<td>LF</td>
<td>62</td>
</tr>
<tr>
<td>134</td>
<td>490618</td>
<td>96" CAST-IN-DRILLED-HOLE CONCRETE PILING</td>
<td>LF</td>
<td>1,161</td>
</tr>
<tr>
<td>135</td>
<td>023504</td>
<td>FURNISH PILING (CLASS 90) ALTERNATIVE X</td>
<td>LF</td>
<td>200</td>
</tr>
<tr>
<td>136</td>
<td>023505</td>
<td>DRIVE PILE (CLASS 90) ALTERNATIVE X</td>
<td>EA</td>
<td>8</td>
</tr>
<tr>
<td>137</td>
<td>498016</td>
<td>16" CAST-IN-DRILLED-HOLE CONCRETE PILING</td>
<td>LF</td>
<td>6,220</td>
</tr>
<tr>
<td>138</td>
<td>498022</td>
<td>24" CAST-IN-DRILLED-HOLE CONCRETE PILING</td>
<td>LF</td>
<td>130</td>
</tr>
<tr>
<td>139</td>
<td>500001</td>
<td>PRESTRESSING CAST-IN-PLACE CONCRETE</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>140 (F)</td>
<td>510051</td>
<td>STRUCTURAL CONCRETE, BRIDGE FOOTING</td>
<td>CY</td>
<td>1,509</td>
</tr>
<tr>
<td>Item No.</td>
<td>Item Code</td>
<td>Item Description</td>
<td>Unit of Measure</td>
<td>Estimated Quantity</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>---</td>
<td>-----------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>141</td>
<td>510053</td>
<td>STRUCTURAL CONCRETE, BRIDGE</td>
<td>CY</td>
<td>7,626</td>
</tr>
<tr>
<td>142</td>
<td>510060</td>
<td>STRUCTURAL CONCRETE, RETAINING WALL</td>
<td>CY</td>
<td>19,517</td>
</tr>
<tr>
<td>143</td>
<td>510072</td>
<td>STRUCTURAL CONCRETE, BARRIER SLAB</td>
<td>CY</td>
<td>17</td>
</tr>
<tr>
<td>144</td>
<td>043807</td>
<td>STRUCTURAL CONCRETE, APRON SLAB</td>
<td>CY</td>
<td>33</td>
</tr>
<tr>
<td>145</td>
<td>510086</td>
<td>STRUCTURAL CONCRETE, APPROACH SLAB (TYPE N)</td>
<td>CY</td>
<td>227</td>
</tr>
<tr>
<td>146</td>
<td>510087</td>
<td>STRUCTURAL CONCRETE, APPROACH SLAB (TYPE R)</td>
<td>CY</td>
<td>880</td>
</tr>
<tr>
<td>147</td>
<td>510090</td>
<td>STRUCTURAL CONCRETE, BOX CULVERT</td>
<td>CY</td>
<td>3,707</td>
</tr>
<tr>
<td>148</td>
<td>510502</td>
<td>MINOR CONCRETE (MINOR STRUCTURE)</td>
<td>CY</td>
<td>271</td>
</tr>
<tr>
<td>149</td>
<td>510526</td>
<td>MINOR CONCRETE (BACKFILL)</td>
<td>CY</td>
<td>350</td>
</tr>
<tr>
<td>150</td>
<td>023506</td>
<td>MINOR CONCRETE (SOUND WALL)</td>
<td>CY</td>
<td>220</td>
</tr>
<tr>
<td>151</td>
<td>510800</td>
<td>PAVING NOTCH EXTENSION</td>
<td>CF</td>
<td>59</td>
</tr>
<tr>
<td>152</td>
<td>043808</td>
<td>ARCHITECTURAL SURFACE (TEXTURED CONCRETE) BICOUNTY MURAL</td>
<td>SQFT</td>
<td>119,390</td>
</tr>
<tr>
<td>153</td>
<td>511064</td>
<td>FRACTURED RIB TEXTURE</td>
<td>SQFT</td>
<td>48,385</td>
</tr>
<tr>
<td>154</td>
<td>511106</td>
<td>DRILL AND BOND DOWEL</td>
<td>LF</td>
<td>2,163</td>
</tr>
<tr>
<td>155</td>
<td>511110</td>
<td>DRILL AND BOND DOWEL (CHEMICAL ADHESIVE)</td>
<td>EA</td>
<td>40</td>
</tr>
<tr>
<td>156</td>
<td>511118</td>
<td>CLEAN EXPANSION JOINT</td>
<td>LF</td>
<td>631</td>
</tr>
<tr>
<td>157</td>
<td>512281</td>
<td>FURNISH PRECAST PRESTRESSED CONCRETE BULB-TEE GIRDER (120'-130')</td>
<td>EA</td>
<td>8</td>
</tr>
<tr>
<td>158</td>
<td>512500</td>
<td>ERECT PRECAST PRESTRESSED CONCRETE GIRDER</td>
<td>EA</td>
<td>8</td>
</tr>
<tr>
<td>159</td>
<td>515161</td>
<td>CORE CONCRETE (1 3/4")</td>
<td>LF</td>
<td>142</td>
</tr>
<tr>
<td>160</td>
<td>023507</td>
<td>SOUND WALL (BARRIER) (MASONRY BLOCK)</td>
<td>SQFT</td>
<td>11,900</td>
</tr>
<tr>
<td>Item No.</td>
<td>Item Code</td>
<td>Item Description</td>
<td>Unit of Measure</td>
<td>Estimated Quantity</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>---</td>
<td>-----------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>161 (F)</td>
<td>518002</td>
<td>SOUND WALL (MASONRY BLOCK)</td>
<td>SQFT</td>
<td>42,392</td>
</tr>
<tr>
<td>162</td>
<td>043809</td>
<td>BEARING</td>
<td>EA</td>
<td>40</td>
</tr>
<tr>
<td>163</td>
<td>519081</td>
<td>JOINT SEAL (MR 1/2")</td>
<td>LF</td>
<td>164</td>
</tr>
<tr>
<td>164</td>
<td>519088</td>
<td>JOINT SEAL (MR 1")</td>
<td>LF</td>
<td>810</td>
</tr>
<tr>
<td>165</td>
<td>519091</td>
<td>JOINT SEAL (MR 1 1/2")</td>
<td>LF</td>
<td>651</td>
</tr>
<tr>
<td>166</td>
<td>519095</td>
<td>JOINT SEAL ASSEMBLY (MR 4")</td>
<td>LF</td>
<td>138</td>
</tr>
<tr>
<td>167</td>
<td>519100</td>
<td>JOINT SEAL (MR 2")</td>
<td>LF</td>
<td>289</td>
</tr>
<tr>
<td>168 (F)</td>
<td>520102</td>
<td>BAR REINFORCING STEEL (BRIDGE)</td>
<td>LB</td>
<td>3,371,466</td>
</tr>
<tr>
<td>169 (F)</td>
<td>520103</td>
<td>BAR REINFORCING STEEL (RETAINING WALL)</td>
<td>LB</td>
<td>2,157,585</td>
</tr>
<tr>
<td>170 (F)</td>
<td>043810</td>
<td>BAR REINFORCING STEEL (BARRIER SLAB)</td>
<td>LB</td>
<td>2,779</td>
</tr>
<tr>
<td>171 (F)</td>
<td>520107</td>
<td>BAR REINFORCING STEEL (BOX CULVERT)</td>
<td>LB</td>
<td>1,436,927</td>
</tr>
<tr>
<td>172 (F)</td>
<td>043811</td>
<td>BAR REINFORCING STEEL (APRON SLAB)</td>
<td>LB</td>
<td>7,776</td>
</tr>
<tr>
<td>173 (F)</td>
<td>520120</td>
<td>HEADED BAR REINFORCEMENT</td>
<td>EA</td>
<td>136</td>
</tr>
<tr>
<td>174 (F)</td>
<td>530100</td>
<td>SHOTCRETE</td>
<td>CY</td>
<td>972</td>
</tr>
<tr>
<td>175 (F)</td>
<td>540101</td>
<td>ASPHALT MEMBRANE WATERPROOFING</td>
<td>SQFT</td>
<td>457</td>
</tr>
<tr>
<td>176 (F)</td>
<td>540102</td>
<td>TREAT BRIDGE DECK</td>
<td>SQFT</td>
<td>34,799</td>
</tr>
<tr>
<td>177</td>
<td>540104</td>
<td>WATERPROOFING AND COVER</td>
<td>SQFT</td>
<td>33,314</td>
</tr>
<tr>
<td>178</td>
<td>540108</td>
<td>FURNISH BRIDGE DECK TREATMENT MATERIAL</td>
<td>GAL</td>
<td>348</td>
</tr>
<tr>
<td>179 (F)</td>
<td>550110</td>
<td>COLUMN CASING</td>
<td>LB</td>
<td>17,601</td>
</tr>
<tr>
<td>180</td>
<td>043812</td>
<td>COMPOSITE COLUMN CASING</td>
<td>SQFT</td>
<td>1,217</td>
</tr>
<tr>
<td>Item No.</td>
<td>Item Code</td>
<td>Item Description</td>
<td>Unit of Measure</td>
<td>Estimated Quantity</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>------------------</td>
<td>----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>181</td>
<td>043813</td>
<td>FIBER REINFORCED POLYMER STRIP</td>
<td>SQFT</td>
<td>2,946</td>
</tr>
<tr>
<td>182</td>
<td>550203</td>
<td>FURNISH STRUCTURAL STEEL (BRIDGE)</td>
<td>LB</td>
<td>9,931,162</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(F) ERECT STRUCTURAL STEEL (BRIDGE)</td>
<td>LB</td>
<td>9,931,162</td>
</tr>
<tr>
<td>184</td>
<td>560203</td>
<td>FURNISH SIGN STRUCTURE (BRIDGE MOUNTED WITH WALKWAY)</td>
<td>LB</td>
<td>14,311</td>
</tr>
<tr>
<td>185</td>
<td>560204</td>
<td>INSTALL SIGN STRUCTURE (BRIDGE MOUNTED WITH WALKWAY)</td>
<td>LB</td>
<td>14,311</td>
</tr>
<tr>
<td>186</td>
<td>560218</td>
<td>FURNISH SIGN STRUCTURE (TRUSS)</td>
<td>LB</td>
<td>323,010</td>
</tr>
<tr>
<td>187</td>
<td>560219</td>
<td>INSTALL SIGN STRUCTURE (TRUSS)</td>
<td>LB</td>
<td>323,010</td>
</tr>
<tr>
<td>188</td>
<td>560244</td>
<td>FURNISH LAMINATED PANEL SIGN (1”-TYPE A)</td>
<td>SQFT</td>
<td>5,240</td>
</tr>
<tr>
<td>189</td>
<td>560245</td>
<td>FURNISH LAMINATED PANEL SIGN (1”-TYPE B)</td>
<td>SQFT</td>
<td>280</td>
</tr>
<tr>
<td>190</td>
<td>560248</td>
<td>FURNISH SINGLE SHEET ALUMINUM SIGN (0.063”-UNFRAMED)</td>
<td>SQFT</td>
<td>780</td>
</tr>
<tr>
<td>191</td>
<td>560249</td>
<td>FURNISH SINGLE SHEET ALUMINUM SIGN (0.080”-UNFRAMED)</td>
<td>SQFT</td>
<td>180</td>
</tr>
<tr>
<td>192</td>
<td>560251</td>
<td>FURNISH SINGLE SHEET ALUMINUM SIGN (0.063”-FRAMED)</td>
<td>SQFT</td>
<td>22</td>
</tr>
<tr>
<td>193</td>
<td>561016</td>
<td>60” CAST-IN-DRILLED-HOLE CONCRETE PILE (SIGN FOUNDATION)</td>
<td>LF</td>
<td>440</td>
</tr>
<tr>
<td>194</td>
<td>562002</td>
<td>METAL (BARRIER MOUNTED SIGN)</td>
<td>LB</td>
<td>3,900</td>
</tr>
<tr>
<td>195</td>
<td>566011</td>
<td>ROADSIDE SIGN - ONE POST</td>
<td>EA</td>
<td>15</td>
</tr>
<tr>
<td>196</td>
<td>566012</td>
<td>ROADSIDE SIGN - TWO POST</td>
<td>EA</td>
<td>5</td>
</tr>
<tr>
<td>197</td>
<td>568001</td>
<td>INSTALL SIGN (STRAP AND SADDLE BRACKET METHOD)</td>
<td>EA</td>
<td>32</td>
</tr>
<tr>
<td>198</td>
<td>568015</td>
<td>INSTALL SIGN (MAST-ARM HANGER METHOD)</td>
<td>EA</td>
<td>3</td>
</tr>
<tr>
<td>199</td>
<td>568016</td>
<td>INSTALL SIGN PANEL ON EXISTING FRAME</td>
<td>SQFT</td>
<td>170</td>
</tr>
<tr>
<td>200</td>
<td>568023</td>
<td>INSTALL ROADSIDE SIGN (LAMINATED WOOD BOX POST)</td>
<td>EA</td>
<td>1</td>
</tr>
<tr>
<td>Item No.</td>
<td>Item Code</td>
<td>Item Description</td>
<td>Unit of Measure</td>
<td>Estimated Quantity</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>---</td>
<td>-----------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>201</td>
<td>590115</td>
<td>CLEAN AND PAINT STRUCTURAL STEEL</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>202</td>
<td>590135</td>
<td>SPOT BLAST CLEAN AND PAINT UNDERCOAT</td>
<td>SQFT</td>
<td>499</td>
</tr>
<tr>
<td>203</td>
<td>597601</td>
<td>PREPARE AND STAIN CONCRETE</td>
<td>SQFT</td>
<td>207,132</td>
</tr>
<tr>
<td>204</td>
<td>600101</td>
<td>RAILROAD BALLAST</td>
<td>CY</td>
<td>9,520</td>
</tr>
<tr>
<td>205</td>
<td>620060</td>
<td>12" ALTERNATIVE PIPE CULVERT</td>
<td>LF</td>
<td>290</td>
</tr>
<tr>
<td>206</td>
<td>620100</td>
<td>18" ALTERNATIVE PIPE CULVERT</td>
<td>LF</td>
<td>13,900</td>
</tr>
<tr>
<td>207</td>
<td>620140</td>
<td>24" ALTERNATIVE PIPE CULVERT</td>
<td>LF</td>
<td>590</td>
</tr>
<tr>
<td>208</td>
<td>650018</td>
<td>24" REINFORCED CONCRETE PIPE</td>
<td>LF</td>
<td>770</td>
</tr>
<tr>
<td>209</td>
<td>650026</td>
<td>36" REINFORCED CONCRETE PIPE</td>
<td>LF</td>
<td>10</td>
</tr>
<tr>
<td>210</td>
<td>650034</td>
<td>48" REINFORCED CONCRETE PIPE</td>
<td>LF</td>
<td>69</td>
</tr>
<tr>
<td>211</td>
<td>650038</td>
<td>54" REINFORCED CONCRETE PIPE</td>
<td>LF</td>
<td>15</td>
</tr>
<tr>
<td>212</td>
<td>665011</td>
<td>12" CORRUGATED STEEL PIPE (.064" THICK)</td>
<td>LF</td>
<td>180</td>
</tr>
<tr>
<td>213</td>
<td>665031</td>
<td>30" CORRUGATED STEEL PIPE (.079" THICK)</td>
<td>LF</td>
<td>370</td>
</tr>
<tr>
<td>214</td>
<td>665036</td>
<td>36" CORRUGATED STEEL PIPE (.079" THICK)</td>
<td>LF</td>
<td>570</td>
</tr>
<tr>
<td>215</td>
<td>665046</td>
<td>48" CORRUGATED STEEL PIPE (.079" THICK)</td>
<td>LF</td>
<td>22</td>
</tr>
<tr>
<td>216</td>
<td>665711</td>
<td>12" SLOTTED CORRUGATED STEEL PIPE (.064" THICK)</td>
<td>LF</td>
<td>200</td>
</tr>
<tr>
<td>217</td>
<td>665716</td>
<td>18" SLOTTED CORRUGATED STEEL PIPE (.064" THICK)</td>
<td>LF</td>
<td>4,770</td>
</tr>
<tr>
<td>218</td>
<td>023508</td>
<td>21" SLOTTED CORRUGATED STEEL PIPE (.064" THICK)</td>
<td>LF</td>
<td>810</td>
</tr>
<tr>
<td>219</td>
<td>665722</td>
<td>24" SLOTTED CORRUGATED STEEL PIPE (.064" THICK)</td>
<td>LF</td>
<td>700</td>
</tr>
<tr>
<td>220</td>
<td>691900</td>
<td>FLUME DOWNDRAIN</td>
<td>LF</td>
<td>20</td>
</tr>
<tr>
<td>Item No.</td>
<td>Item Code</td>
<td>Item Description</td>
<td>Unit of Measure</td>
<td>Estimated Quantity</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>-----------------</td>
<td>----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>221</td>
<td>692005</td>
<td>12" ENTRANCE TAPER</td>
<td>EA</td>
<td>1</td>
</tr>
<tr>
<td>222</td>
<td>700617</td>
<td>DRAINAGE INLET MARKER</td>
<td>EA</td>
<td>3</td>
</tr>
<tr>
<td>223</td>
<td>703210</td>
<td>12" CORRUGATED STEEL PIPE RISER (.064" THICK)</td>
<td>LF</td>
<td>51</td>
</tr>
<tr>
<td>224</td>
<td>703233</td>
<td>GRATED LINE DRAIN</td>
<td>LF</td>
<td>290</td>
</tr>
<tr>
<td>225</td>
<td>703450</td>
<td>WELDED STEEL PIPE CASING (BRIDGE)</td>
<td>LF</td>
<td>160</td>
</tr>
<tr>
<td>226</td>
<td>705307</td>
<td>12" ALTERNATIVE FLARED END SECTION</td>
<td>EA</td>
<td>11</td>
</tr>
<tr>
<td>227</td>
<td>023509</td>
<td>MANHOLE SHAFT PIPE REDUCER</td>
<td>EA</td>
<td>1</td>
</tr>
<tr>
<td>228</td>
<td>707217</td>
<td>36" PRECAST CONCRETE PIPE MANHOLE</td>
<td>LF</td>
<td>2.5</td>
</tr>
<tr>
<td>229</td>
<td>721013</td>
<td>ROCK SLOPE PROTECTION (1/4 T, METHOD B) (CY)</td>
<td>CY</td>
<td>83</td>
</tr>
<tr>
<td>230</td>
<td>721017</td>
<td>ROCK SLOPE PROTECTION (FACING, METHOD B) (CY)</td>
<td>CY</td>
<td>45</td>
</tr>
<tr>
<td>231</td>
<td>721430</td>
<td>CONCRETE (CHANNEL LINING)</td>
<td>CY</td>
<td>500</td>
</tr>
<tr>
<td>232</td>
<td>721810</td>
<td>SLOPE PAVING (CONCRETE)</td>
<td>CY</td>
<td>36</td>
</tr>
<tr>
<td>233</td>
<td>023510</td>
<td>ROCK SLOPE PROTECTION FABRIC</td>
<td>SQYD</td>
<td>110</td>
</tr>
<tr>
<td>234</td>
<td>730040</td>
<td>MINOR CONCRETE (GUTTER) (LF)</td>
<td>LF</td>
<td>9,786</td>
</tr>
<tr>
<td>235</td>
<td>731502</td>
<td>MINOR CONCRETE (MISCELLANEOUS CONSTRUCTION)</td>
<td>CY</td>
<td>910</td>
</tr>
<tr>
<td>236</td>
<td>023514</td>
<td>MINOR CONCRETE (CHANNEL LINING)</td>
<td>CY</td>
<td>149</td>
</tr>
<tr>
<td>237</td>
<td>750001</td>
<td>MISCELLANEOUS IRON AND STEEL</td>
<td>LB</td>
<td>61,867</td>
</tr>
<tr>
<td>238</td>
<td>750501</td>
<td>MISCELLANEOUS METAL (BRIDGE)</td>
<td>LB</td>
<td>83,865</td>
</tr>
<tr>
<td>239</td>
<td>750503</td>
<td>MISCELLANEOUS METAL (RESTRAINER)</td>
<td>LB</td>
<td>57,356</td>
</tr>
<tr>
<td>240</td>
<td>750505</td>
<td>BRIDGE DECK DRAINAGE SYSTEM</td>
<td>LB</td>
<td>28,433</td>
</tr>
<tr>
<td>Item No.</td>
<td>Item Code</td>
<td>Item Description</td>
<td>Unit of Measure</td>
<td>Estimated Quantity</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>--</td>
<td>-----------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>241</td>
<td>800360</td>
<td>CHAIN LINK FENCE (TYPE CL-6)</td>
<td>LF</td>
<td>34,700</td>
</tr>
<tr>
<td>242</td>
<td>802501</td>
<td>4' CHAIN LINK GATE (TYPE CL-6)</td>
<td>EA</td>
<td>6</td>
</tr>
<tr>
<td>243</td>
<td>802540</td>
<td>8' CHAIN LINK GATE (TYPE CL-6)</td>
<td>EA</td>
<td>7</td>
</tr>
<tr>
<td>244</td>
<td>802580</td>
<td>12' CHAIN LINK GATE (TYPE CL-6)</td>
<td>EA</td>
<td>5</td>
</tr>
<tr>
<td>245</td>
<td>802900</td>
<td>CHAIN LINK FENCE (TYPE CL-8, EXTENSION ARM)</td>
<td>LF</td>
<td>1,080</td>
</tr>
<tr>
<td>246</td>
<td>810116</td>
<td>SURVEY MONUMENT (TYPE D)</td>
<td>EA</td>
<td>50</td>
</tr>
<tr>
<td>247</td>
<td>832001</td>
<td>METAL BEAM GUARD RAILING</td>
<td>LF</td>
<td>5,950</td>
</tr>
<tr>
<td>248</td>
<td>832070</td>
<td>VEGETATION CONTROL (MINOR CONCRETE)</td>
<td>SQYD</td>
<td>5,030</td>
</tr>
<tr>
<td>249</td>
<td>833032</td>
<td>CHAIN LINK RAILING (TYPE 7)</td>
<td>LF</td>
<td>3,276</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(F) CHAIN LINK RAILING (TYPE 7 MODIFIED)</td>
<td>LF</td>
<td>365</td>
</tr>
<tr>
<td>250</td>
<td>833085</td>
<td>PIPE HANDRAILING</td>
<td>LF</td>
<td>2,436</td>
</tr>
<tr>
<td>251</td>
<td>833142</td>
<td>CONCRETE BARRIER (TYPE 26 MODIFIED)</td>
<td>LF</td>
<td>492</td>
</tr>
<tr>
<td>252</td>
<td>839220</td>
<td>DOUBLE METAL BEAM GUARD RAILING (WOOD POST)</td>
<td>LF</td>
<td>1,580</td>
</tr>
<tr>
<td>253</td>
<td>839521</td>
<td>CABLE RAILING</td>
<td>LF</td>
<td>9,484</td>
</tr>
<tr>
<td>254</td>
<td>839541</td>
<td>TRANSITION RAILING (TYPE WB)</td>
<td>EA</td>
<td>25</td>
</tr>
<tr>
<td>255</td>
<td>839561</td>
<td>RAIL TENSIONING ASSEMBLY</td>
<td>EA</td>
<td>5</td>
</tr>
<tr>
<td>256</td>
<td>839576</td>
<td>END CAP (TYPE A)</td>
<td>EA</td>
<td>4</td>
</tr>
<tr>
<td>257</td>
<td>839581</td>
<td>END ANCHOR ASSEMBLY (TYPE SFT)</td>
<td>EA</td>
<td>27</td>
</tr>
<tr>
<td>258</td>
<td>839584</td>
<td>ALTERNATIVE IN-LINE TERMINAL SYSTEM</td>
<td>EA</td>
<td>8</td>
</tr>
<tr>
<td>259</td>
<td>839585</td>
<td>ALTERNATIVE FLARED TERMINAL SYSTEM</td>
<td>EA</td>
<td>37</td>
</tr>
<tr>
<td>Item No.</td>
<td>Item Code</td>
<td>Item Description</td>
<td>Unit of Measure</td>
<td>Estimated Quantity</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>---</td>
<td>-----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>261</td>
<td>839601</td>
<td>CRASH CUSHION (TYPE CAT)</td>
<td>EA</td>
<td>5</td>
</tr>
<tr>
<td>262</td>
<td>839602</td>
<td>CRASH CUSHION (TYPE CAT) BACKUP</td>
<td>EA</td>
<td>5</td>
</tr>
<tr>
<td>263</td>
<td>023511</td>
<td>ALTERNATIVE CRASH CUSHION SYSTEM</td>
<td>EA</td>
<td>6</td>
</tr>
<tr>
<td>264</td>
<td>023512</td>
<td>CONCRETE BARRIER (TYPE 60C MODIFIED)</td>
<td>LF</td>
<td>13,800</td>
</tr>
<tr>
<td>265</td>
<td>839699</td>
<td>CONCRETE BARRIER (TYPE 60P)</td>
<td>LF</td>
<td>380</td>
</tr>
<tr>
<td>266</td>
<td>044058</td>
<td>CONCRETE BARRIER (TYPE 60A MOD)</td>
<td>LF</td>
<td>204</td>
</tr>
<tr>
<td>(F)</td>
<td>839700</td>
<td>CONCRETE BARRIER (TYPE 60F)</td>
<td>LF</td>
<td>1,370</td>
</tr>
<tr>
<td>267</td>
<td>023514</td>
<td>CONCRETE BARRIER (TYPE 60R MODIFIED)</td>
<td>LF</td>
<td>730</td>
</tr>
<tr>
<td>269</td>
<td>839701</td>
<td>CONCRETE BARRIER (TYPE 60)</td>
<td>LF</td>
<td>9,160</td>
</tr>
<tr>
<td>270</td>
<td>839703</td>
<td>CONCRETE BARRIER (TYPE 60C)</td>
<td>LF</td>
<td>13,000</td>
</tr>
<tr>
<td>271</td>
<td>839704</td>
<td>CONCRETE BARRIER (TYPE 60D)</td>
<td>LF</td>
<td>2,190</td>
</tr>
<tr>
<td>272</td>
<td>043815</td>
<td>CONCRETE BARRIER (TYPE 60D MOD)</td>
<td>LF</td>
<td>10,665</td>
</tr>
<tr>
<td>273</td>
<td>839708</td>
<td>CONCRETE BARRIER (TYPE 60GC)</td>
<td>LF</td>
<td>530</td>
</tr>
<tr>
<td>274</td>
<td>839712</td>
<td>CONCRETE BARRIER (TYPE 60SC)</td>
<td>LF</td>
<td>1,420</td>
</tr>
<tr>
<td>275</td>
<td>043816</td>
<td>CONCRETE BARRIER (TRANSITION)</td>
<td>LF</td>
<td>110</td>
</tr>
<tr>
<td>(F)</td>
<td>839717</td>
<td>CONCRETE BARRIER (TYPE 732 MODIFIED)</td>
<td>LF</td>
<td>3,535</td>
</tr>
<tr>
<td>276</td>
<td>839720</td>
<td>CONCRETE BARRIER (TYPE 732)</td>
<td>LF</td>
<td>3,146</td>
</tr>
<tr>
<td>(F)</td>
<td>839726</td>
<td>CONCRETE BARRIER (TYPE 736A)</td>
<td>LF</td>
<td>9,040</td>
</tr>
<tr>
<td>(F)</td>
<td>839727</td>
<td>CONCRETE BARRIER (TYPE 736 MODIFIED)</td>
<td>LF</td>
<td>317</td>
</tr>
<tr>
<td>280</td>
<td>839731</td>
<td>CONCRETE BARRIER (TYPE 736B)</td>
<td>LF</td>
<td>3,180</td>
</tr>
<tr>
<td>Item No.</td>
<td>Item Code</td>
<td>Item Description</td>
<td>Unit of Measure</td>
<td>Estimated Quantity</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>--</td>
<td>-----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>281</td>
<td>023515</td>
<td>CONCRETE BARRIER (TYPE 736S MODIFIED)</td>
<td>LF</td>
<td>1,020</td>
</tr>
<tr>
<td>282</td>
<td>839734</td>
<td>CONCRETE BARRIER (TYPE 736SV)</td>
<td>LF</td>
<td>830</td>
</tr>
<tr>
<td>283</td>
<td>840515</td>
<td>THERMOPLASTIC PAVEMENT MARKING</td>
<td>SQFT</td>
<td>5,630</td>
</tr>
<tr>
<td>284</td>
<td>840560</td>
<td>THERMOPLASTIC TRAFFIC STRIPE (SPRAYABLE)</td>
<td>LF</td>
<td>493,000</td>
</tr>
<tr>
<td>285</td>
<td>840656</td>
<td>PAINT TRAFFIC STRIPE (2-COAT)</td>
<td>LF</td>
<td>972,000</td>
</tr>
<tr>
<td>286</td>
<td>850101</td>
<td>PAVEMENT MARKER (NON-REFLECTIVE)</td>
<td>EA</td>
<td>26,400</td>
</tr>
<tr>
<td>287</td>
<td>850111</td>
<td>PAVEMENT MARKER (RETROREFLECTIVE)</td>
<td>EA</td>
<td>12,200</td>
</tr>
<tr>
<td>288</td>
<td>860090</td>
<td>MAINTAINING EXISTING TRAFFIC MANAGEMENT SYSTEM ELEMENTS DURING CONSTRUCTION</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>289</td>
<td>860201</td>
<td>SIGNAL AND LIGHTING</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>290</td>
<td>023516</td>
<td>MODIFY CHANGEABLE MESSAGE SIGN SYSTEM (LOCATION 1)</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>291</td>
<td>023517</td>
<td>MODIFY CHANGEABLE MESSAGE SIGN SYSTEM (LOCATION 2)</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>292</td>
<td>023518</td>
<td>WIRELESS VEHICLE DETECTION SYSTEM (LOCATION 1)</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>293</td>
<td>023519</td>
<td>WIRELESS VEHICLE DETECTION SYSTEM (LOCATION 2)</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>294</td>
<td>023520</td>
<td>WIRELESS VEHICLE DETECTION SYSTEM (LOCATION 3)</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>295</td>
<td>023521</td>
<td>MODIFY WIRELESS VEHICLE DETECTION SYSTEM (LOCATION 1)</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>296</td>
<td>023522</td>
<td>MODIFY WIRELESS VEHICLE DETECTION SYSTEM (LOCATION 2)</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>297</td>
<td>024670</td>
<td>MODIFY WIRELESS VEHICLE DETECTION SYSTEM (LOCATION 3)</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>298</td>
<td>024671</td>
<td>REMOVE EXISTING WIRELESS VEHICLE DETECTION SYSTEM</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>299</td>
<td>023523</td>
<td>MODIFY TRAFFIC MONITORING STATION (LOCATION 1)</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>300</td>
<td>023524</td>
<td>MODIFY TRAFFIC MONITORING STATION (LOCATION 2)</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>Item No.</td>
<td>Item Code</td>
<td>Item Description</td>
<td>Unit of Measure</td>
<td>Estimated Quantity</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>--</td>
<td>-----------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>301</td>
<td>023525</td>
<td>MODIFY TRAFFIC MONITORING STATION (LOCATION 3)</td>
<td>LS</td>
<td>LUMPSUM</td>
</tr>
<tr>
<td>302</td>
<td>023526</td>
<td>MODIFY TRAFFIC MONITORING STATION (LOCATION 4)</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>303</td>
<td>023527</td>
<td>MODIFY TRAFFIC MONITORING STATION (LOCATION 5)</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>304</td>
<td>023528</td>
<td>MODIFY TRAFFIC MONITORING STATION (LOCATION 6)</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>305</td>
<td>860930</td>
<td>TRAFFIC MONITORING STATION</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>306</td>
<td>023529</td>
<td>CLOSED CIRCUIT TELEVISION SYSTEM (LOCATION 1)</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>307</td>
<td>023530</td>
<td>CLOSED CIRCUIT TELEVISION SYSTEM (LOCATION 2)</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>308</td>
<td>023532</td>
<td>MODIFY CLOSED CIRCUIT TELEVISION SYSTEM (LOCATION 1)</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>309</td>
<td>023533</td>
<td>MODIFY CLOSED CIRCUIT TELEVISION SYSTEM (LOCATION 2)</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>310</td>
<td>023534</td>
<td>MODIFY CLOSED CIRCUIT TELEVISION SYSTEM (LOCATION 3)</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>311</td>
<td>023535</td>
<td>MODIFY CLOSED CIRCUIT TELEVISION SYSTEM (LOCATION 4)</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>312</td>
<td>023536</td>
<td>MODIFY CLOSED CIRCUIT TELEVISION SYSTEM (LOCATION 5)</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>313</td>
<td>023537</td>
<td>MODIFY CLOSED CIRCUIT TELEVISION SYSTEM (LOCATION 6)</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>314</td>
<td>023538</td>
<td>MODIFY CLOSED CIRCUIT TELEVISION SYSTEM (LOCATION 7)</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>315</td>
<td>023539</td>
<td>MODIFY CLOSED CIRCUIT TELEVISION SYSTEM (LOCATION 8)</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>316</td>
<td>023540</td>
<td>MODIFY CLOSED CIRCUIT TELEVISION SYSTEM (LOCATION 9)</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>317</td>
<td>023541</td>
<td>MODIFY CLOSED CIRCUIT TELEVISION SYSTEM (LOCATION 10)</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>318</td>
<td>024672</td>
<td>MODIFY CLOSED CIRCUIT TELEVISION SYSTEM (LOCATION 11)</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>319</td>
<td>024673</td>
<td>REMOVE EXISTING RAMP METERING SYSTEM</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>320</td>
<td>023543</td>
<td>MODIFY RAMP METERING SYSTEM (LOCATION 1)</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>Item No.</td>
<td>Item Code</td>
<td>Item Description</td>
<td>Unit of Measure</td>
<td>Estimated Quantity</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>--</td>
<td>-----------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>321</td>
<td>023544</td>
<td>MODIFY RAMP METERING SYSTEM (LOCATION 2)</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>322</td>
<td>023545</td>
<td>MODIFY RAMP METERING SYSTEM (LOCATION 3)</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>323</td>
<td>023546</td>
<td>MODIFY RAMP METERING SYSTEM (LOCATION 4)</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>324</td>
<td>023547</td>
<td>MODIFY RAMP METERING SYSTEM (LOCATION 5)</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>325</td>
<td>023548</td>
<td>MODIFY RAMP METERING SYSTEM (LOCATION 6)</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>326</td>
<td>861101</td>
<td>RAMP METERING SYSTEM (LOCATION 1)</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>327</td>
<td>861102</td>
<td>RAMP METERING SYSTEM (LOCATION 2)</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>328</td>
<td>861103</td>
<td>RAMP METERING SYSTEM (LOCATION 3)</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>329</td>
<td>861104</td>
<td>RAMP METERING SYSTEM (LOCATION 4)</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>330</td>
<td>861105</td>
<td>RAMP METERING SYSTEM (LOCATION 5)</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>331</td>
<td>861497</td>
<td>MODIFY SIGNAL AND LIGHTING (LOCATION 1)</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>332</td>
<td>861498</td>
<td>MODIFY SIGNAL AND LIGHTING (LOCATION 2)</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>333</td>
<td>861504</td>
<td>MODIFY LIGHTING AND SIGN ILLUMINATION</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>334</td>
<td>023550</td>
<td>MODIFY COMMUNICATION SYSTEM</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
<tr>
<td>335</td>
<td>999990</td>
<td>MOBILIZATION</td>
<td>LS</td>
<td>LUMP SUM</td>
</tr>
</tbody>
</table>
SPECIAL PROVISIONS

SECTION 2. BIDDING

2-1.01 TIE BID RESOLUTION
After bid verification, if there is a tie between 2 or more bidders, the Department breaks the tie by tossing a coin.

2-1.02 DISADVANTAGED BUSINESS ENTERPRISES
Under 49 CFR 26.13(b):

The contractor, sub recipient or subcontractor shall not discriminate on the basis of race, color, national origin, or sex in the performance of this contract. The contractor shall carry out applicable requirements of 49 CFR part 26 in the award and administration of DOT-assisted contracts. Failure by the contractor to carry out these requirements is a material breach of this contract, which may result in the termination of this contract or such other remedy as the recipient deems appropriate.

Take necessary and reasonable steps to ensure that DBEs have opportunity to participate in the contract (49 CFR 26).
To ensure equal participation of DBEs provided in 49 CFR 26.5, the Department shows a goal for DBEs.
Make work available to DBEs and select work parts consistent with available DBE subcontractors and suppliers.
Meet the DBE goal shown in the Notice to Bidders or demonstrate that you made adequate good faith efforts to meet this goal.
It is your responsibility to verify that the DBE firm is certified as DBE at date of bid opening. For a list of DBEs certified by the California Unified Certification Program, go to:

http://www.dot.ca.gov/hq/bep/find_certified.htm

All DBE participation will count toward the Department's federally mandated statewide overall DBE goal. Credit for materials or supplies you purchase from DBEs counts towards the goal in the following manner:

1. 100 percent counts if the materials or supplies are obtained from a DBE manufacturer.
2. 60 percent counts if the materials or supplies are obtained from a DBE regular dealer.
3. Only fees, commissions, and charges for assistance in the procurement and delivery of materials or supplies count if obtained from a DBE that is neither a manufacturer or regular dealer. 49 CFR 26.55 defines "manufacturer" and "regular dealer."

You receive credit towards the goal if you employ a DBE trucking company that performs a commercially useful function as defined in 49 CFR 26.55(d)(1) through (4) and (6).

DBE Commitment Submittal
Submit DBE information on the Caltrans Bidder - DBE - Commitment form included in the Bid book. If the form is not submitted with the bid, remove the form from the Bid book before submitting your bid.
If the DBE Commitment form is not submitted with the bid, the apparent low bidder, the 2nd low bidder, and the 3rd low bidder must complete and submit the DBE Commitment form to Office Engineer. DBE Commitment form must be received by the Department no later than 4:00 p.m. on the 4th business day after bid opening.
Other bidders do not need to submit the DBE Commitment form unless the Department requests it. If the Department requests you to submit a DBE Commitment form, submit the completed form within 4 business days of the request.
Submit written confirmation from each DBE stating that it is participating in the contract. Include confirmation with the DBE Commitment form. A copy of a DBE's quote will serve as written confirmation that the DBE is participating in the contract.
If you do not submit the DBE Commitment form within the specified time, the Department finds your bid nonresponsive.

Good Faith Efforts Submittal

If you have not met the DBE goal, complete and submit the Good Faith Efforts Documentation form with the bid showing that you made adequate good faith efforts to meet the goal. Only good faith efforts directed towards obtaining participation by DBEs will be considered. If good faith efforts documentation is not submitted with the bid, it must be received by the Department no later than 4:00 p.m. on the 4th business day after bid opening.

If your DBE Commitment form shows that you have met the DBE goal or if you are required to submit the DBE Commitment form, you must also submit good faith efforts documentation within the specified time to protect your eligibility for award of the contract in the event the Department finds that the DBE goal has not been met.

Good faith efforts documentation must include the following information and supporting documents, as necessary:

1. Items of work you have made available to DBE firms. Identify those items of work you might otherwise perform with its own forces and those items that have been broken down into economically feasible units to facilitate DBE participation. For each item listed, show the dollar value and percentage of the total contract. It is your responsibility to demonstrate that sufficient work to meet the goal was made available to DBE firms.
2. Names of certified DBEs and dates on which they were solicited to bid on the project. Include the items of work offered. Describe the methods used for following up initial solicitations to determine with certainty if the DBEs were interested, and the dates of the follow-up. Attach supporting documents such as copies of letters, memos, facsimiles sent, telephone logs, telephone billing statements, and other evidence of solicitation. You are reminded to solicit certified DBEs through all reasonable and available means and provide sufficient time to allow DBEs to respond.
3. Name of selected firm and its status as a DBE for each item of work made available. Include name, address, and telephone number of each DBE that provided a quote and their price quote. If the firm selected for the item is not a DBE, provide the reasons for the selection.
4. Name and date of each publication in which you requested DBE participation for the project. Attach copies of the published advertisements.
5. Names of agencies and dates on which they were contacted to provide assistance in contacting, recruiting, and using DBE firms. If the agencies were contacted in writing, provide copies of supporting documents.
6. List of efforts made to provide interested DBEs with adequate information about the plans, specifications, and requirements of the contract to assist them in responding to a solicitation. If you have provided information, identify the name of the DBE assisted, the nature of the information provided, and date of contact. Provide copies of supporting documents, as appropriate.
7. List of efforts made to assist interested DBEs in obtaining bonding, lines of credit, insurance, necessary equipment, supplies, and materials, excluding supplies and equipment that the DBE subcontractor purchases or leases from the prime contractor or its affiliate. If such assistance is provided by you, identify the name of the DBE assisted, nature of the assistance offered, and date assistance was provided. Provide copies of supporting documents, as appropriate.
8. Any additional data to support demonstration of good faith efforts.

The Department may consider DBE commitments of the 2nd and 3rd bidders when determining whether the low bidder made good faith efforts to meet the DBE goal.

2-1.03 SSPC QP CERTIFICATION PREAWARD QUALIFICATION

Submit proof of each required SSPC QP certification with your bid or fax it to (916) 227-6282 no later than 4:00 p.m. on the 2nd business day after bid opening. Failure to do so results in a nonresponsive bid.

2-1.04 OPT OUT OF PAYMENT ADJUSTMENTS FOR PRICE INDEX FLUCTUATIONS

You may opt out of the payment adjustments for price index fluctuations as specified in “Payment Adjustments for Price Index Fluctuations” of these special provisions. If you elect to opt out of the provisions of this specification, you must complete the "Opt Out of Payment Adjustments for Price Index Fluctuations" form. The completed form must be submitted with your bid.
SECTION 3. CONTRACT AWARD AND EXECUTION

3-1.01 SMALL BUSINESS PARTICIPATION REPORT

The Department has established an overall 25 percent small business participation goal. To determine if the goal is achieved, the Department is tracking small business participation on all contracts.

Complete and sign the Small Business (SB) Participation Report form included in the contract documents even if no small business participation is reported. Submit it with the executed contract.

3-1.02 CALTRANS BIDDER - DBE INFORMATION FORM

Complete and sign the Caltrans Bidder - DBE Information form included in the contract documents even if no DBE participation is reported. Submit it with the executed contract.

Provide written confirmation from each DBE that the DBE is participating in the contract. A copy of a DBE's quote serves as written confirmation. If a DBE is participating as a joint venture partner, the Department encourages you to submit a copy of the joint venture agreement.

SECTION 4. BEGINNING OF WORK, TIME OF COMPLETION, AND LIQUIDATED DAMAGES

The 1st working day is the earlier of (1) the 55th day after contract approval or (2) the day you start work other than the measurement of controlling field dimensions or the location of utilities.

Do not start work at the job site until the Engineer approves your submittal for:

1. Contractor Supplied Biologist
2. Biological Resource Information Program
3. Baseline Progress Schedule (Critical Path Method)
4. Storm Water Pollution Prevention Plan (SWPPP)
5. Notification of Dispute Resolution Advisor (DRA) or Dispute Review Board (DRB) nominee and disclosure statement as specified in Section 5-1.15, "Dispute Resolution," of the Standard Specifications

You may enter the job site only to measure controlling field dimensions and locating utilities. Do not start other work activities until all the submittals from the above list are approved and the following information is submitted:

1. Notice of Materials To Be Used.
2. Contingency plan for reopening closures to public traffic.

You may start work at the job site before the 55th day after contract approval if:

1. You obtain required approval for each submittal before the 55th day
2. The Engineer authorizes it in writing

The Department grants a time extension if a delay is beyond your control and prevents you from starting work at the job site on the 1st working day.

Complete the work, except plant establishment work, within the number of working days bid.

Additional damages to those specified in Section 8-1.07, "Liquidated damages," of the Standard Specifications are $6,806.00 per day starting on the 1st day after exceeding the number of working days bid until work requiring lane or shoulder closures on State Highway Route 215 is complete.

Complete the plant establishment work within 250 working days starting on the 1st working day after exceeding the number of working days bid.

SECTION 5. GENERAL

5-1.01 EMISSIONS REDUCTION

Contract execution constitutes submittal of the following certification:

I am aware of the emissions reduction regulations being mandated by the California Air Resources Board. I will comply with such regulations before commencing the performance of the work and maintain compliance throughout the duration of this contract.
5.1.02 SUBCONTRACTOR AND DISADVANTAGED BUSINESS ENTERPRISE RECORDS

Use each DBE subcontractor as listed on the Subcontractor List form and the Caltrans Bidder - DBE Information form unless you receive authorization for a substitution.

The Department requests the Contractor to:

1. Notify the Engineer of any changes to its anticipated DBE participation
2. Provide this notification before starting the affected work

Maintain records including:

1. Name and business address of each 1st-tier subcontractor
2. Name and business address of each DBE subcontractor, DBE vendor, and DBE trucking company, regardless of tier
3. Date of payment and total amount paid to each business

If you are a DBE contractor, include the date of work performed by your own forces and the corresponding value of the work.

Before the 15th of each month, submit a Monthly DBE Trucking Verification form.

If a DBE is decertified before completing its work, the DBE must notify you in writing of the decertification date. If a business becomes a certified DBE before completing its work, the business must notify you in writing of the certification date. Submit the notifications. On work completion, complete a Disadvantaged Business Enterprises (DBE) Certification Status Change form. Submit the form within 30 days of contract acceptance.

Upon work completion, complete a Final Report – Utilization of Disadvantaged Business Enterprises (DBE), First-Tier Subcontractors form. Submit it within 90 days of contract acceptance. The Department withholds $10,000 until the form is submitted. The Department releases the withhold upon submission of the completed form.

5.1.03 PERFORMANCE OF DISADVANTAGED BUSINESS ENTERPRISES

DBEs must perform work or supply materials as listed in the Caltrans Bidder - DBE - Commitment form specified in Section 2, “Bidding,” of these special provisions.

Do not terminate or substitute a listed DBE for convenience and perform the work with your own forces or obtain materials from other sources without authorization from the Department.

The Department authorizes a request to use other forces or sources of materials if it shows any of the following justifications:

1. Listed DBE fails or refuses to execute a written contract based on plans and specifications for the project.
2. You stipulated that a bond is a condition of executing the subcontract and the listed DBE fails to meet your bond requirements.
3. Work requires a contractor's license and listed DBE does not have a valid license under Contractors License Law.
4. Listed DBE fails or refuses to perform the work or furnish the listed materials.
5. Listed DBE's work is unsatisfactory and not in compliance with the contract.
6. Listed DBE is ineligible to work on the project because of suspension or debarment.
7. Listed DBE becomes bankrupt or insolvent.
8. Listed DBE voluntarily withdraws with written notice from the Contract
9. Listed DBE is ineligible to receive credit for the type of work required.
10. Listed DBE owner dies or becomes disabled resulting in the inability to perform the work on the Contract.
11. Department determines other documented good cause.

Notify the original DBE of your intent to use other forces or material sources and provide the reasons. Provide the DBE with 5 days to respond to your notice and advise you and the Department of the reasons why the use of other forces or sources of materials should not occur. Your request to use other forces or material sources must include:

1. 1 or more of the reasons listed in the preceding paragraph
2. Notices from you to the DBE regarding the request
3. Notices from the DBE to you regarding the request
If a listed DBE is terminated or substituted, make good faith efforts to find another DBE to substitute for the original DBE. The substitute DBE must perform at least the same amount of work as the original DBE under the contract to the extent needed to meet the DBE goal.

The substitute DBE must be certified as a DBE at the time of request for substitution.

Unless the Department authorizes (1) a request to use other forces or sources of materials or (2) a good faith effort for a substitution of a terminated DBE, the Department does not pay for work listed on the Caltrans Bidder - DBE - Commitment form unless it is performed or supplied by the listed DBE or an authorized substitute.

5-1.04 PARTNERING DISPUTE RESOLUTION

The Department encourages the project team to exhaust the use of partnering in dispute resolution before engagement of an objective third party. Comply with Section 5-1.012, "Partnersing," of the Standard Specifications.

For certain disputes, facilitated partnering session or facilitated dispute resolution session may be appropriate and effective in clarifying issues and resolving all or part of a dispute.

To afford the project team enough time to plan and hold the session, a maximum of 20 days may be added to the dispute resolution board (DRB) referral time following the Engineer's written response to a supplemental potential claim record as specified in Section 5-1.15, "Dispute Resolution," of the Standard Specifications.

To allow this additional referral time, the project team must document its agreement and intention in the dispute resolution plan of the partnering charter. The team may further document agreement of any associated criteria to be met for use of the additional referral time.

If the session is not held, the DRB referral time remains in effect as specified in Section 5-1.15, "Dispute Resolution," of the Standard Specifications.

5-1.05 PAYMENT ADJUSTMENTS FOR PRICE INDEX FLUCTUATIONS

GENERAL

Summary

This section applies to asphalt contained in materials for pavement structural sections and pavement surface treatments such as hot mix asphalt (HMA), tack coat, asphaltic emulsions, bituminous seals, asphalt binders, and modified asphalt binders placed in the work. This section does not apply if you opted out of payment adjustment for price index fluctuations at the time of bid.

The Engineer adjusts payment if the California Statewide Crude Oil Price Index for the month the material is placed is more than 5 percent higher or lower than the price index at the time of bid.

The California Statewide Crude Oil Price Index is determined each month on or about the 1st business day of the month by the Department using the average of the posted prices in effect for the previous month as posted by Chevron, ExxonMobil, and ConocoPhillips for the Buena Vista, Huntington Beach, and Midway Sunset fields.

If a company discontinues posting its prices for a field, the Department determines the index from the remaining posted prices. The Department may include additional fields to determine the index.

For the California Statewide Crude Oil Price Index, go to:

http://www.dot.ca.gov/hq/construc/crudeoilindex/

If the adjustment is a decrease in payment, the Department deducts the amount from the monthly progress payment.

The Department includes payment adjustments for price index fluctuations when making adjustments under Section 4-1.03B, "Increased or Decreased Quantities," of the Standard Specifications.

If you do not complete the work within the contract time, payment adjustments during the overrun period are determined using the California Statewide Crude Oil Price Index in effect for the month in which the overrun period began.

If the price index at the time of placement increases:

1. 50 percent or more over the price index at bid opening, notify the Engineer.
2. 100 percent or more over the price index at bid opening, do not furnish material containing asphalt until the Engineer authorizes you to proceed with that work. The Department may decrease Bid item quantities, eliminate Bid items, or terminate the contract.

Submittals

Before placing material containing asphalt, submit the current sales and use tax rate in effect in the tax jurisdiction where the material is to be placed.
Submit certified weight slips for HMA, tack coat, asphaltic emulsions, and modified asphalt binders, including those materials not paid for by weight, as specified in Section 9-1.01, "Measurement of Quantities," of the Standard Specifications. For slurry seals, submit certified weight slips separately for the asphaltic emulsion.

ASPHALT QUANTITIES

General
Interpret the term "ton" as "tonne" for projects using metric units.

Hot Mix Asphalt
The Engineer calculates the quantity of asphalt in HMA using the following formula:

\[Q_h = \text{HMATT} \times \frac{X_a}{(100 + X_a)} \]

where:
- \(Q_h \) = quantity in tons of asphalt used in HMA
- \(\text{HMATT} \) = HMA total tons placed
- \(X_a \) = theoretical asphalt content from job mix formula expressed as percentage of the weight of dry aggregate

Rubberized Hot Mix Asphalt
The Engineer calculates the quantity of asphalt in rubberized HMA (RHMA) using the following formula:

\[Q_{rh} = \text{RHMATT} \times 0.80 \times \frac{X_{arb}}{(100 + X_{arb})} \]

where:
- \(Q_{rh} \) = quantity in tons of asphalt in asphalt rubber binder used in RHMA
- \(\text{RHMATT} \) = RHMA total tons placed
- \(X_{arb} \) = theoretical asphalt rubber binder content from the job mix formula expressed as percentage of the weight of dry aggregate

Modified Asphalt Binder in Hot Mix Asphalt
The Engineer calculates the quantity of asphalt in modified asphalt binder using the following formula:

\[Q_{mh} = \text{MHMATT} \times \frac{(100 - X_{am})}{100} \times \frac{X_{mab}}{(100 + X_{mab})} \]

where:
- \(Q_{mh} \) = quantity in tons of asphalt in modified asphalt binder used in HMA
- \(\text{MHMATT} \) = modified asphalt binder HMA total tons placed
- \(X_{am} \) = specified percentage of asphalt modifier
- \(X_{mab} \) = theoretical modified asphalt binder content from the job mix formula expressed as percentage of the weight of dry aggregate

Hot Mix Asphalt Containing Reclaimed Asphalt Pavement (RAP)
The Engineer calculates the quantity of asphalt in HMA containing RAP using the following formulas:

\[Q_{rap} = \text{HMATT} \times \frac{X_{aa}}{(100 + X_{aa})} \]

where:
- \(X_{aa} = X_{ta} - \frac{(100 - X_{new}) \times (X_{ra} / 100)}{\}

and
Qrap = quantity in tons of asphalt used in HMA containing RAP
HMATT = HMA total tons placed
Xaa = asphalt content of HMA adjusted to account for the asphalt content in RAP expressed as percentage of the weight of dry aggregate
Xta = total asphalt content of HMA expressed as percentage of the weight of dry aggregate
Xnew = theoretical percentage of new aggregate in the HMA containing RAP determined from RAP percentage in the job mix formula
Xra = asphalt content of RAP expressed as percentage

Tack Coat
The Engineer calculates the quantity of asphalt in tack coat (Qtc) as either:

1. Asphalt binder using the asphalt binder total tons placed as tack coat
2. Asphaltic emulsion by applying the formula in "Asphaltic Emulsion" to the asphaltic emulsion total tons placed as tack coat

Asphaltic Emulsion
The Engineer calculates the quantity of asphalt in asphaltic emulsions, including fog seals and tack coat, using the following formula:

\[Qe = AETT \times \left(\frac{Xe}{100} \right) \]

where:
\[Qe = \text{quantity in tons of asphalt used in asphaltic emulsions} \]
\[AETT = \text{undiluted asphaltic emulsions total tons placed} \]
\[Xe = \text{minimum percent residue specified in Section 94, "Asphaltic Emulsions," of the Standard Specifications based on the type of emulsion used} \]

You may, as an option, determine "Xe" by submitting actual daily test results for asphalt residue for the asphaltic emulsion used. If you choose this option, you must:

1. Take 1 sample every 200 tons but not less than 1 sample per day in the presence of the Engineer from the delivery truck, at midload from a sampling tap or thief, and in the following order:
 1.1. Draw and discard the 1st gallon
 1.2. Take two separate 1/2-gallon samples
2. Submit 1st sample at the time of sampling
3. Provide 2nd sample within 3 business days of sampling to an independent testing laboratory that participates in the AASHTO Proficiency Sample Program
4. Submit test results from independent testing laboratory within 10 business days of sample date

Slurry Seal
The Engineer calculates the quantity of asphalt in slurry seals (Qss) by applying the formula in "Asphaltic Emulsion" to the actual quantity of asphaltic emulsion used in producing the slurry seal mix.

Modified Asphalt Binder
The Engineer calculates the quantity of asphalt in modified asphalt binder using the following formula:

\[Qmab = MABTT \times \left(\frac{100 - Xam}{100} \right) \]

where:
\[Qmab = \text{quantity in tons of asphalt used in modified asphalt binder} \]
\[MABTT = \text{modified asphalt binder total tons placed} \]
\[Xam = \text{specified percentage of asphalt modifier} \]

Other Materials
For other materials containing asphalt not covered above, the Engineer determines the quantity of asphalt (Qo).
PAYMENT ADJUSTMENTS

The Engineer includes payment adjustments for price index fluctuations in progress pay estimates. If material containing asphalt is placed within 2 months during 1 estimate period, the Engineer calculates 2 separate adjustments. Each adjustment is calculated using the price index for the month in which the quantity of material containing asphalt subject to adjustment is placed in the work. The sum of the 2 adjustments is used for increasing or decreasing payment in the progress pay estimate.

The Engineer calculates each payment adjustment as follows:

\[PA = Qt \times A \]

where:

\(PA \) = Payment adjustment in dollars for asphalt contained in materials placed in the work for a given month.

\(Qt \) = Sum of quantities of asphalt \((Q_h + Q_rh + Q_{mh} + Q_{rap} + Q_{tc} + Q_e + Q_{ss} + Q_{mab} + Q_o)\).

\(A \) = Adjustment in dollars per ton of asphalt used to produce materials placed in the work rounded to the nearest $0.01.

For US Customary projects, use:

\[A = \left[\left(\frac{I_u}{I_b} \right) - 1.05 \right] \times I_b \times \left[1 + \left(\frac{T}{100} \right) \right] \]

for an increase in the crude oil price index exceeding 5 percent

\[A = \left[\left(\frac{I_u}{I_b} \right) - 0.95 \right] \times I_b \times \left[1 + \left(\frac{T}{100} \right) \right] \]

for a decrease in the crude oil price index exceeding 5 percent

For metric projects, use:

\[A = 1.1023 \times \left[\left(\frac{I_u}{I_b} \right) - 1.05 \right] \times I_b \times \left[1 + \left(\frac{T}{100} \right) \right] \]

for an increase in the crude oil price index exceeding 5 percent

\[A = 1.1023 \times \left[\left(\frac{I_u}{I_b} \right) - 0.95 \right] \times I_b \times \left[1 + \left(\frac{T}{100} \right) \right] \]

for a decrease in the crude oil price index exceeding 5 percent

\(I_u \) = California Statewide Crude Oil Price Index for the month in which the quantity of asphalt subject to adjustment was placed in the work.

\(I_b \) = California Statewide Crude Oil Price Index for the month in which the bid opening for the project occurred.

\(T \) = Sales and use tax rate, expressed as a percent, currently in effect in the tax jurisdiction where the material is placed. If the tax rate information is not submitted timely, the statewide sales and use tax rate is used in the payment adjustment calculations until the tax rate information is submitted.

5-1.06 SURFACE MINING AND RECLAMATION ACT

Imported borrow or aggregate material must come from a surface mine permitted under the Surface Mining and Reclamation Act of 1975 (SMARA), Pub Res Code § 2710, et seq., or from an exempt site.

The Department of Conservation, Office of Mine Reclamation maintains a list of permitted mine sites. For the list of permitted sites, go to:

http://www.conservation.ca.gov/omr/ab_3098_list

If you import borrow or aggregate material from a surface mine not on this list, submit proof the mine is exempt from SMARA.

5-1.07 ELECTRONIC SUBMISSION OF PAYROLL RECORDS

In lieu of submitting weekly payroll records to the Engineer as specified in Section 7-1.01A(3), "Payroll Records," of the Standard Specifications, you may submit weekly payroll records electronically.

Before submitting payroll records electronically, you must complete and sign the Contractor's Acknowledgement and submit it to the District where your project is located. Submit your signed acknowledgement to the corresponding District electronic mailbox shown in the following table:
Electronic Mailboxes

<table>
<thead>
<tr>
<th>District</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>district1.payrolls@dot.ca.gov</td>
</tr>
<tr>
<td>2</td>
<td>district2.payrolls@dot.ca.gov</td>
</tr>
<tr>
<td>3</td>
<td>district3.payrolls@dot.ca.gov</td>
</tr>
<tr>
<td>4</td>
<td>district4.payrolls@dot.ca.gov</td>
</tr>
<tr>
<td>5</td>
<td>district5.payrolls@dot.ca.gov</td>
</tr>
<tr>
<td>6</td>
<td>district6.payrolls@dot.ca.gov</td>
</tr>
<tr>
<td>7</td>
<td>district7.payrolls@dot.ca.gov</td>
</tr>
<tr>
<td>8</td>
<td>district8.payrolls@dot.ca.gov</td>
</tr>
<tr>
<td>9</td>
<td>district9.payrolls@dot.ca.gov</td>
</tr>
<tr>
<td>10</td>
<td>district10.payrolls@dot.ca.gov</td>
</tr>
<tr>
<td>11</td>
<td>district11.payrolls@dot.ca.gov</td>
</tr>
<tr>
<td>12</td>
<td>district12.payrolls@dot.ca.gov</td>
</tr>
</tbody>
</table>

The Department responds with an e-mail containing a Caltrans Internet Certificate to be used for the electronic submission of payroll records. You must agree to accept this certificate and reply to the e-mail. After you accept the certificate and reply to the e-mail, the Department is ready to accept your electronic submissions.

Each electronic submission must:

1. Include payroll records in a nonmodifiable PDF image format. No spreadsheets, word documents, or password protected documents are accepted.
2. Include payroll records with all data elements required by the Labor Code § 1776.
3. Include a signed Statement of Compliance form with each weekly record.
4. Be received by the Department by close of business on the 15th day of the month for the prior month's work.
5. Be encrypted before submission.
6. Contain the following information in the subject line:
 6.1. Contract number
 6.2. Week ending date as W/E mm/dd/yy
7. Contain 1 contract number and week ending date per submission.

For additional information on electronic submission of payroll records, go to:

http://www.dot.ca.gov/hq/construc/LaborCompliance/index.htm

5-1.08 TRAINING
For the Federal training program, the number of trainees or apprentices is 64.

5-1.09 FORCE ACCOUNT PAYMENT
Payment for extra work at force account will be determined by either non-subcontracted or subcontracted force account payment unless otherwise specified.

Non-Subcontracted Force Account Payment
When extra work to be paid for on a force account basis is performed by the Contractor, compensation will be determined as specified in Section 9-1.03, "Force Account Payment," of the Standard Specifications except for the markups. The markups specified in Section 9-1.03B, "Labor," Section 9-1.03C, "Materials," and Section 9-1.03D, "Equipment Rental" are changed to the following markups:
<table>
<thead>
<tr>
<th>Cost</th>
<th>Percent Markup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor</td>
<td>30</td>
</tr>
<tr>
<td>Materials</td>
<td>10</td>
</tr>
<tr>
<td>Equipment Rental</td>
<td>10</td>
</tr>
</tbody>
</table>

The above markups shall be applied to work performed on a force account basis, regardless of whether the work revises the current contract completion date.

The above markups, together with payments made for time-related overhead under "Time-Related Overhead" of these special provisions, shall constitute full compensation for all overhead costs for work performed on a force account basis.

Full compensation for overhead costs for work performed on a force account basis, and for which no adjustment is made to the lump sum price bid for time-related overhead conforming to the provisions in "Time-Related Overhead" of these special provisions, shall be considered as included in the markups specified above, and no additional compensation will be allowed therefor.

Subcontracted Force Account Payment

When extra work to be paid for on a force account basis is performed by a subcontractor approved in conformance with the provisions in Section 5-1.055, "Subcontracting," of the Standard Specifications, compensation will be determined in accordance with the provisions in Section 9-1.03, "Force Account Payment," of the Standard Specifications.

5-1.10 RESPONSIBILITY TO OTHER ENTITIES

The Contractor shall be responsible for any liability imposed by law and for injuries to or death of any person including, but not limited to, workers and the public or damage to property, and shall indemnify and save harmless and name as additional Insureds under the general liability insurance policy, any county, city or district, the Riverside County Transportation Commission (RCTC), and San Bernardino Associated Governments (SANBAG), and their officers and employees connected with the work, within the limits of which county, city or district the work is being performed, all in the same manner and to the same extent conforming to the provisions in Section 7-1.12, "Indemnification and Insurance," of the Standard Specifications, for the protection of the State of California and all officers and employees thereof connected with the work.

5-1.11 AREAS FOR CONTRACTOR'S USE

Attention is directed to the provisions in Section 7-1.19, "Rights in Land and Improvements," of the Standard Specifications and these special provisions.

The highway right of way shall be used only for purposes that are necessary to perform the required work. The Contractor shall not occupy the right of way, or allow others to occupy the right of way, for purposes which are not necessary to perform the required work.

No State-owned parcels adjacent to the right of way are available for the exclusive use of the Contractor within the contract limits. The Contractor shall secure, at the Contractor's own expense, areas required for plant sites, storage of equipment or materials, or for other purposes.

No area is available within the contract limits for the exclusive use of the Contractor. However, temporary storage of equipment and materials on State property may be arranged with the Engineer, subject to the prior demands of State maintenance forces and to other contract requirements. Use of the Contractor's work areas and other State-owned property shall be at the Contractor's own risk, and the State shall not be held liable for damage to or loss of materials or equipment located within such areas.

5-1.12 PAYMENTS

In determining the partial payments to be made to the Contractor, only the following listed materials will be considered for inclusion in the payment as materials furnished but not incorporated in the work:

A. Field units
B. Plastic pipe (supply line)
C. Sprinklers
D. Valves and valve boxes
E. Blackflow preventer assemblies
F. Backflow preventer assembly enclosures
G. Irrigation controller enclosure cabinets
H. Control and neutral conductors
I. Bar reinforcing steel
J. Miscellaneous bridge metal, iron and steel
K. Fences
L. Railings
M. Rock slope protection fabric
N. Culvert pipes and welded steel pipe
O. Camera assemblies
P. Twisted pair cables
Q. Lighting fixtures
R. Luminaires
S. Signal lighting standards
T. Signal heads and mounting brackets
U. Splice Vaults
V. Bridge deck drainage system
W. Fiber optic cable
X. Innerducts
Y. Sound Wall (Masonry)
Z. Sound Wall (Barrier) (Masonry Block)
AA. Crash Cushion
BB. Metal Sign Structure
CC. Joint Seal Assemblies
DD. Ground Anchors
EE. Soil Nails
FF. Steel Piling
GG. Prestressing
HH. Bearings
II. Precast girders
JJ. Type B joint seals
KK. Headed bar reinforcement
LL. Column casing
MM. Structural steel
NN. Miscellaneous metal
OO. Chain link railing
PP. Pipe handrailing
QQ. Welded steel pipe casing
RR. Fiber reinforced polymer strips
SS. Composite column casing
TT. Joint seal assembly
UU. Bridge deck drainage system
5-1.13 SUPPLEMENTAL PROJECT INFORMATION

The Department makes the following supplemental project information available:

<table>
<thead>
<tr>
<th>Supplemental Project Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Means</td>
</tr>
<tr>
<td>Included in the Information Handout</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
5-1.14 NOISE CONTROL

General

This section applies to equipment on the project or associated with the project, including trucks, transit mixers, stationary equipment, and transient equipment.

Do not exceed 86 dBA at 50 feet from the project limits from 7 p.m. to 7 a.m. except you may perform the following activities during the hours and for the days shown in the following table:
Noise Restriction Exceptions

<table>
<thead>
<tr>
<th>Activity</th>
<th>From</th>
<th>To</th>
<th>Days From</th>
<th>Through</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removing concrete</td>
<td>7 PM</td>
<td>7 AM</td>
<td>Monday</td>
<td>Friday</td>
</tr>
<tr>
<td>Sawcutting PCC</td>
<td>7 PM</td>
<td>7 AM</td>
<td>Monday</td>
<td>Friday</td>
</tr>
<tr>
<td>Driving piles</td>
<td>7 PM</td>
<td>7 AM</td>
<td>Monday</td>
<td>Friday</td>
</tr>
<tr>
<td>Cold planing pavement</td>
<td>7 PM</td>
<td>7 AM</td>
<td>Monday</td>
<td>Friday</td>
</tr>
<tr>
<td>Removing Bridge Structures</td>
<td>7 PM</td>
<td>7 AM</td>
<td>Monday</td>
<td>Friday</td>
</tr>
<tr>
<td>Grooving and grinding concrete pavement</td>
<td>7 PM</td>
<td>7 AM</td>
<td>Monday</td>
<td>Friday</td>
</tr>
</tbody>
</table>

Noise Monitoring

Provide 1 Type 1 sound level meter and 1 acoustic calibrator to be used by the Department until contract acceptance. Provide training by a person trained in noise monitoring to 1 Department employee designated by the Engineer. The sound level meter must be calibrated and certified by the manufacturer or other independent acoustical laboratory before delivery to the Department. Provide annual recalibration by the manufacturer or other independent acoustical laboratory. The sound level meter must be capable of taking measurements using the A-weighting network and the slow response settings. The measurement microphone must be fitted with a windscreen. The Department returns the equipment to you at contract acceptance.

The contract lump sum price paid for noise monitoring includes full compensation for furnishing all labor, materials, tools, equipment and incidentals and for doing all work involved in noise monitoring.

5-1.15 PALEONTOLOGICAL RESOURCES

GENERAL

Attention is directed to the California Public Resources Code Section 5097.5, which protects vertebrate paleontological sites or other paleontological features situated on public lands. In compliance with the California Environmental quality Act (CEQA) requirements, a paleontologist provided by the Department will monitor excavation within the project limits to salvage fossil specimens as necessary during construction within the project limits.

Provide the Engineer with a schedule of excavation operations within the project limits in writing at least 15 working days before construction and update the schedule as needed. Notify the Engineer 15 days in advance of the start of excavation operations.

All employees, subcontractors, and Contractor’s representatives on the project site involved in excavation activities must receive a one-hour paleontological resources awareness training program provided by the paleontologist before performing on-site work. Submit a written request to the Engineer 10 days before the performance of any work requesting the paleontological resources awareness training.

If fossils are discovered, the Engineer may temporarily divert or suspend the excavation operations until the paleontologist completes the salvage and removal of the fossil specimens.

All fossils specimens salvaged from within the State Right of way shall remain the property of the Department.

A delay due to paleontological monitoring or the salvage and removal of fossil specimens, when ordered by the Engineer, will be considered a temporary suspension of work, in accordance with the provisions in Section 8-1.05, "Temporary Suspension of Work," of the Standard Specifications.

MEASUREMENT AND PAYMENT

Full compensation for conforming to these requirements shall be considered as included in the contract price paid for various contract items of work involved and no additional compensation will be allowed therefore.

Any additional excavation required due to the discovery of paleontological remains, when ordered by the Engineer will be paid for as extra work as provided in Section 4-1.03D, "Extra Work," of the Standard Specifications.

5-1.16 SPECIES PROTECTION

GENERAL

Summary

This work includes protecting regulated species or their habitat.

This project is within or near habitat for regulated species:
Least Bell’s vireo (*Vireo bellii pusillus*)

Southwestern Willow Flycatcher (*Empidonax traillii extimus*)

San Bernardino Kangaroo Rat (*Dipodomys merriami parvus*)

Santa Ana Sucker (*Catostomus santaanae*)

Burrowing owl (*Athene cunicularia*)

CONSTRUCTION

Protective Radius

Upon discovery of a regulated species, stop construction activities within a 100 feet radius of the discovery or as defined in the table below. Immediately notify the Engineer. Do not resume activities until receiving written notification from the Engineer.

Protocols

Use protocols required by PLACs or, when not specified, use:

<table>
<thead>
<tr>
<th>Regulated Species Name</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Least Bell’s vireo</td>
<td>Pre-construction survey (USFWS Least Bell’s vireo Guidelines, 2001).</td>
</tr>
<tr>
<td>Southwestern Willow Flycatcher</td>
<td>Pre-construction (USGS Protocol Survey for Southwestern Willow Flycatcher, 2010).</td>
</tr>
<tr>
<td>Burrowing owl</td>
<td>Burrowing owl Habitat Assessment & Burrowing Owl Focused Survey (California Burrowing Owl Consortium Guidelines, April 1993)</td>
</tr>
</tbody>
</table>

Protection Measures

Within Biological Monitoring Area 1, implement the following protection measures:

1. Prior to clearing or construction, highly visible barriers (such as orange construction fencing) will be installed around riparian/riverine vegetation adjacent to the project footprint to designate environmentally sensitive areas (ESAs) to be preserved.
2. Vegetation clearing and pile-driving activities shall occur outside the birds breeding season from February 15 and September 15. In the event that vegetation clearing and pile-driving are necessary during the breeding season (February 15–September 15), a biologist approved United States Fish and Wildlife Service and California Department of Fish and Game (CDFG), will conduct a preconstruction survey within 300 feet of construction areas, no more than 3 days prior to construction, to identify the locations of avian nests. If active bird nest is located, the nest shall be fenced a minimum of 200 feet (500 feet for Least Bell’s vireo and Southwestern willow flycatcher and/or raptors) in all directions and the area shall not be disturbed until after September 15 and until the nest becomes inactive.
3. Prior to initiation of any activities, Department of Fish and Game (CDFG) approved contractor-supplied biologist shall conduct a borrowing owl habitat assessment. A report summarizing the results of the habitat assessment shall be submitted to the CDFG within 30 days following the completion of the assessment. If suitable habitat is present, a qualified biologist shall conduct burrowing survey during the breeding season of March 1 and August 31 in accordance with the "Burrowing Owl Survey Protocol and Mitigation Guidelines (California Burrowing Owl Consortium, 1993)."
4. California Department Fish and Game approved contractor-supplied biologist shall direct implementation of exclusionary devices designed to prevent birds and bats from utilizing the bridges/culverts before construction activities begin.
5. California Department Fish and Game approved contractor-supplied biologist shall survey each structure and the surrounding areas that may be impacted by the project for bats. If bats are found using any bridges or culverts within the project area, the biologist shall identify the bats to the species level, and evaluate the colony to determine its size and significance. The bat survey shall include: the exact location of the roosting sites; the type of roost (night vs. day roost); the name of the species present as well as their number; and description of the amount, distribution and age of guano detected at the sites.
6. If any roosting bats are discovered during construction activities, all work shall stop on, under, around, or within 500-feet of the structure.

7. Bridge widening designs shall contain and be constructed with similar structural features to encourage continued roosting by bats.

8. All night work (dusk until dawn) in the vicinity of bridges and culverts (i.e. roadway widening, resurfacing, lighting, land-closure setup, etc) shall have a written approval from California Department Fish and Game prior to any work scheduling of any work between March 1 and September 1.

9. No lighting shall be allowed to impact Department of Fish and Game jurisdictional areas and fencing of infrastructures around those areas shall be installed to allow wildlife to move within the open space and conserved areas without hindrance.

Monitoring Schedule

Monitor according to the following schedule:

<table>
<thead>
<tr>
<th>Monitoring Type</th>
<th>Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Monitoring</td>
<td>Throughout the duration of the project</td>
</tr>
</tbody>
</table>

MEASUREMENT AND PAYMENT

Full compensation for Species Protection is included in the contract lump sum price paid for Contractor Supplied Biologist and no additional compensation will be allowed.

5-1.17 RELATIONS WITH CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD

This project lies within the boundaries of the Santa Ana Regional Water Quality Control Board (RWQCB).

The State Water Resources Control Board (SWRCB) has issued to the Department a permit that governs storm water and non-storm water discharges from the Department's properties, facilities, and activities. The Department's permit is entitled "Order No. 99-06-DWQ, NPDES No. CAS000003, National Pollutant Discharge Elimination System (NPDES) Permit, Statewide Storm Water Permit and Waste Discharge Requirements (WDRs) for the State of California, Department of Transportation (Caltrans)."

Copies of the Department's permit are available for review from the SWRCB, Division of Water Quality, 1001 "I" Street, P.O. Box 100, Sacramento, California 95812-0100, Telephone: (916) 341-5463 and may also be obtained at:

The Department's permit references and incorporates by reference the current statewide general permit issued by the SWRCB entitled "Order No. 2009-0009-DWQ, National Pollutant Discharge Elimination System (NPDES) General Permit No. CAS000002, Waste Discharge Requirements for Discharges of Storm Water Runoff Associated with Construction and Land Disturbance Activities" that regulates discharges of storm water and non-storm water from construction activities disturbing one acre or more of soil in a common plan of development. Copies of the statewide permit and modifications thereto are available for review from the SWRCB, Division of Water Quality, 1001 "I" Street, P.O. Box 100, Sacramento, California 95812-0100, Telephone: (916) 341-5463 and may also be obtained at:

The NPDES permits that regulate this project, as referenced above, are collectively referred to in this section as the "permits."

This project shall conform to the permits and modifications thereto. The Contractor shall maintain copies of the permits at the project site and shall make them available during construction.

The Contractor shall know and comply with provisions of Federal, State, and local regulations and requirements that govern the Contractor's operations and storm water and non-storm water discharges from the project site and areas of disturbance outside the project limits during construction. Attention is directed to Sections 7-1.01, "Laws to be Observed," 5-1.18, "Property and Facility Preservation," 7-1.12, "Indemnification and Insurance," and 9-1.07E(5), "Penalty Withholds," of the Standard Specifications.

The Contractor shall notify the Engineer immediately upon request from the regulatory agencies to enter, inspect, sample, monitor, or otherwise access the project site or the Contractor's records pertaining to water pollution control work. The Contractor and the Department shall provide copies of correspondence, notices of violation, enforcement actions, or proposed fines by regulatory agencies to the requesting regulatory agency.
5-1.18 AERIALLY DEPOSITED LEAD

Aerially deposited lead is present within the project limits. Aerially deposited lead is lead deposited within unpaved areas or formerly unpaved areas, primarily due to vehicle emissions. Attention is directed to "Material Containing Hazardous Waste Concentrations of Aerially Deposited Lead" and "Project Information" of these special provisions.

The Department has received from the California Department of Toxic Substances Control (DTSC) a Variance regarding the use of material containing aerially deposited lead. The variance applies if the project includes Type Y-1 material. The Variance is available for inspection at the Department of Transportation, District 8, Environmental Engineering, 464 W. 4th Street, San Bernardino, CA, 92401.

Once the Contractor has completed the placement of material containing aerially deposited lead in conformance with these special provisions and as directed by the Engineer, the Contractor shall have no responsibility for such materials. The Department will not consider the Contractor a generator of such contaminated materials. Excavation, reuse, and disposal of material with aerially deposited lead shall be in conformance with all rules and regulations including, but not limited to, those of the following agencies:

A. United States Department of Transportation,
B. United States Environmental Protection Agency,
C. California Environmental Protection Agency,
D. California Department of Health Services,
E. Department of Toxic Substances Control,
F. California Division of Occupational Safety and Health Administration,
G. Department of Resources Recycling and Recovery,
H. Regional Water Quality Control Board, Region 8, Santa Ana,
I. State Air Resources Control Board, and
J. South Coast Air Quality Management District.

Materials containing hazardous levels of lead shall be transported and disposed of in conformance with Federal and State laws and regulations, as amended, and county and municipal ordinances and regulations, as amended. Laws and regulations that govern this work include, but are not limited to:

A. Health and Safety Code, Division 20, Chapter 6.5 (California Hazardous Waste Control Act),
B. Title 22, California Code of Regulations, Division 4.5 (Environmental Health Standards for the Management of Hazardous Waste), and
C. Title 8, California Code of Regulations.

5-1.19 ENVIRONMENTALLY SENSITIVE AREA

An ESA exists on this project. Before start of work, protect the ESA by installing temporary highly visible barriers (orange construction fencing, Type ESA) around riparian/riverine and riparian scrub vegetations within the project footprint.
5-1.20 NONHIGHWAY FACILITIES (INCLUDING UTILITIES)

The utility owner will relocate a utility shown in the following table before the corresponding date shown:

<table>
<thead>
<tr>
<th>Utility Relocation and Date of the Relocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utility</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>SCG (Gas)</td>
</tr>
<tr>
<td>1. 2” GAS LINE HIGH PRESSURE</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SCE</td>
</tr>
<tr>
<td>2. 2” GAS LINE HIGH PRESSURE</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3. SCE-1 GUY WIRE POLE</td>
</tr>
<tr>
<td>(#416977E)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>4. SCE-2 POWER POLE</td>
</tr>
<tr>
<td>(#1981346E)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>5. SCE-3 POWER POLE</td>
</tr>
<tr>
<td>(#4168954E)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>6. SCE-4 POWER POLE</td>
</tr>
<tr>
<td>(#4259160E)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>7. SCE-5 POWER POLE</td>
</tr>
<tr>
<td>(#4286951E)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>8. SCE-6 POWER POLE</td>
</tr>
<tr>
<td>(#705412E)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>9. SCE-7 POWER POLE</td>
</tr>
<tr>
<td>(#1766610E)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>No.</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>10.</td>
</tr>
<tr>
<td>11.</td>
</tr>
<tr>
<td>12.</td>
</tr>
<tr>
<td>13.</td>
</tr>
<tr>
<td>14.</td>
</tr>
<tr>
<td>15.</td>
</tr>
<tr>
<td>16.</td>
</tr>
<tr>
<td>17.</td>
</tr>
<tr>
<td>18.</td>
</tr>
<tr>
<td>19.</td>
</tr>
<tr>
<td>21.</td>
</tr>
<tr>
<td>COC-E</td>
</tr>
<tr>
<td>22.</td>
</tr>
<tr>
<td>23.</td>
</tr>
<tr>
<td>Contract No. 08-0M94U4</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
</tbody>
</table>
| **24. COC-E-4 POWER POLE (PP#4699F)**
Relocate before construction | U-12
STATION 29+00 LT | 9/4/2012 |
| **25. COC-E-5 POWER POLE (PP#4696F)**
Relocate before construction | U-12
STATION 33+00 LT | 9/4/2012 |
| **26. COC-E-6 POWER POLE (PP#4566F)**
Relocate before construction | U-21
STATION 159+00 RT | 9/4/2012 |
| **City of Riverside (Electric)** | | |
| **27. COR-E-1 POWER POLE (PP#J35145)**
Relocate before construction | U-7
STATION 529+00 RT | 9/4/2012 |
| **28. COR-E-2 POWER POLE (PP#J37443)**
Relocate before construction | U-7
STATION 533+20 LT | 9/4/2012 |
| **29. COR-E-3 POWER POLE (PP#J37442)**
Relocate before construction | U-8
STATION 536+20 LT | 9/4/2012 |
| **30. COR-E-4 POWER POLE (PP#J36584)**
Remove and Replace | U-8
STATION 535+00 LT | 9/4/2012 |
| **31. 14” WATER LINE (SWC)**
Sierra Water Company | U-13
108.0’ Lt “ALN2” Station 52+20.9 to 118.4’ Rt “ALN2” Station 49+79.5 | Abandon During Construction By project contractor |
| **AT&T** | | |
| **32. Telephone line**
Protect in place | U-5
98.3’ Rt “ALN1” Station 494+45.4 to 110.5’ Rt “ALN1” Station 499+19.0 | |
| **33. UG Tele (AT&T)**
Relocate before construction | U-9
100.2’ Rt “ALN1” Station 549+55.2 to 100.6’ Rt “ALN1” Station 553+04.9 | 9/4/2012 |
| **34. UG Tele (AT&T)**
Proposed UG Telephone line | U-8 to U9
106’ Rt “ALN1” Station 544+50 to 122.7’ Rt “ALN1” Station 555+50 | 9/4/2012 |
| **35. Underground Line (Tele Veriz)**
Tele AT&T
Fiber Optic Line Sprint
Relocate before construction
And proposed new line | U-26
130.2’ Lt “A1CON2” Station 238+00.00 to 96’ Rt “A1CON1” Station 238+23. | 9/4/2012 |
<table>
<thead>
<tr>
<th>Utility</th>
<th>Location</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCG (GAS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37. 6" GAS Line High Pressure</td>
<td>Protect in place by Contractor</td>
<td>Protect in place</td>
</tr>
<tr>
<td></td>
<td>U-4 94.78’ Lt “ALN1” Station 488+28.1 to 69.26’ Rt “ALN1” Station 488+21.7</td>
<td></td>
</tr>
<tr>
<td>38. 6" GAS Line High Pressure</td>
<td>Protect in place by Contractor</td>
<td>Protect in place</td>
</tr>
<tr>
<td></td>
<td>U-5 150.2’ Lt “ALN1” Station 499+46.1 to 163.5’ Lt “ALN1” Station 500+38.1</td>
<td></td>
</tr>
<tr>
<td>39. 6" GAS Line High Pressure</td>
<td>Protect in place by Contractor</td>
<td>Protect in place</td>
</tr>
<tr>
<td></td>
<td>U-7 71.4’ Lt “ALN1” Station 532+60.1 to 72.0’ Rt “ALN1” Station 532+64.3</td>
<td></td>
</tr>
<tr>
<td>40. 12" GAS Line High Pressure</td>
<td>Protect in place by Contractor</td>
<td>Protect in place</td>
</tr>
<tr>
<td></td>
<td>U-11 99.9’ Lt “ALN2” Station 21+54.8 to 67.1’ Rt “ALN2” Station 20+87.0</td>
<td></td>
</tr>
<tr>
<td>41. 6" GAS LINE HIGH PRESSURE</td>
<td>Protect in place by Contractor</td>
<td>Protect in place</td>
</tr>
<tr>
<td></td>
<td>U-12 353.8’ Lt “ALN2” Station 26+78.1 to 459.3’ Rt “ALN2” Station 33+38.8</td>
<td></td>
</tr>
<tr>
<td>42. 12" GAS Line High Pressure</td>
<td>To be abandoned by other</td>
<td>During construction</td>
</tr>
<tr>
<td></td>
<td>U-11,U-12, U-13, U-31 196’ Lt “ALN2” Station 22+71.6 to 857’ Lt “ALN2” Station 52+22.2</td>
<td></td>
</tr>
<tr>
<td>43. 6" GAS LINE HIGH PRESSURE</td>
<td>Protect in place by Contractor</td>
<td>Protect in place</td>
</tr>
<tr>
<td></td>
<td>U-15 55.0’ Lt “ALN2” Station 78+16.3 to 55.0’ Rt “ALN2” Station 79+22.7</td>
<td></td>
</tr>
<tr>
<td>44. 8" GAS Line High Pressure</td>
<td>Protect in place by Contractor</td>
<td>Protect in place</td>
</tr>
<tr>
<td></td>
<td>U-20 153.7’ Lt “ALN2” Station 145+45.2 to 133.5’ Rt “ALN2” Station 145+37.9</td>
<td></td>
</tr>
<tr>
<td>45. Kinder Morgan Company 6" PETROLEUM HIGH PRESSURE in 12" Steel Casing</td>
<td>Protect in place by Contractor</td>
<td>Protect in place</td>
</tr>
<tr>
<td></td>
<td>U-9 70.8’ Lt “ALN1” Station 546+30.5 to 81.8’ Rt “ALN1” Station 546+41.5</td>
<td></td>
</tr>
</tbody>
</table>

During the progress of the work under this Contract, the utility owner will relocate a utility shown in the following table within the corresponding number of days shown. Notify the Engineer before you work within the approximate location of a utility shown. The days start on the notification date.
<table>
<thead>
<tr>
<th>Contract No. 08-0M94U4</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>U-</th>
<th>Station Details</th>
<th>Protection Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>46.</td>
<td>3” GAS LINE HIGH PRESSURE Protect in Place by Contractor</td>
<td>U-10</td>
<td>Lt “ALN1” Station 562+53.0 to 73.0’ Rt “ALN1”</td>
<td>Protect in place</td>
</tr>
<tr>
<td>47.</td>
<td>3” PLASTIC GAS Protect in Place by Contractor</td>
<td>U-11</td>
<td>Lt “ALN2” Station 11+85.3 to 241.6’ Lt “ALN1” Station 19+49.7</td>
<td>Protect in place</td>
</tr>
<tr>
<td>48.</td>
<td>2” MP GAS LINE IN 6” STEEL CASING Protect in Place by Contractor</td>
<td>U-16</td>
<td>Lt “ALN2” Station 89+92.78 to 110.0’ Rt “ALN2” Station 90+44.3</td>
<td>Protect in place</td>
</tr>
<tr>
<td>49.</td>
<td>ABANDON 2” GAS LINE IN 6” STEEL CASING Protect in Place by Contractor</td>
<td>U-22</td>
<td>Lt “ALN2” Station 181+80.63 to 119.34’ Rt “ALN2” Station 178+75.25</td>
<td>Abandon In Place</td>
</tr>
<tr>
<td>50.</td>
<td>4” MP GAS LINE Protect in Place by Contractor</td>
<td>U-24</td>
<td>Lt “A1CON2” Station 207+6.79 to 201.07’ Rt “A1CON2” Station 207+14.40</td>
<td>Protect in place</td>
</tr>
<tr>
<td>51.</td>
<td>2” STEEL GAS LINE Protect in Place by Contractor</td>
<td>U-24</td>
<td>Lt “A1CON2” Station 212+45.5 to 282.40’ Rt “ALN2” Station 212+47.8</td>
<td>Protect in place</td>
</tr>
<tr>
<td>52.</td>
<td>24” WATER LINE WITH 3 STEEL CASING Protect in Place by Contractor</td>
<td>U-5</td>
<td>Lt “ALN1” Station 494+76.3 to 112.44’ Rt “ALN1” Station 494+10.3</td>
<td>Protect in place</td>
</tr>
<tr>
<td>53.</td>
<td>12” WATER LINE WITH X STEEL CASING Protect in Place by Contractor</td>
<td>U-6</td>
<td>Lt “ALN1” Station 509+79.5 to 71.8’ Rt “ALN1” Station 510+50.7</td>
<td>Protect in place</td>
</tr>
<tr>
<td>54.</td>
<td>30”ML&C WATER LINE WITH 48” STEEL CASING Protect in Place by Contractor</td>
<td>U-6</td>
<td>Lt “ALN1” Station 518+44.9 to 71.9’ Rt “ALN1” Station 518+44.5</td>
<td>Protect in place</td>
</tr>
<tr>
<td>55.</td>
<td>12” WATER LINE IN 16” STEEL CASING Protect in Place by Contractor</td>
<td>U-9</td>
<td>Lt “ALN1” Station 546+01.6 to 79.6’ Rt “ALN1” Station 546+02.4</td>
<td>Protect in place</td>
</tr>
</tbody>
</table>

Water

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>U-</th>
<th>Station Details</th>
<th>Protection Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>52.</td>
<td>24” WATER LINE WITH 3 STEEL CASING</td>
<td>U-5</td>
<td>Lt “ALN1” Station 494+76.3 to 112.44’ Rt “ALN1” Station 494+10.3</td>
<td>Protect in place</td>
</tr>
<tr>
<td>53.</td>
<td>12” WATER LINE WITH X STEEL CASING</td>
<td>U-6</td>
<td>Lt “ALN1” Station 509+79.5 to 71.8’ Rt “ALN1” Station 510+50.7</td>
<td>Protect in place</td>
</tr>
<tr>
<td>54.</td>
<td>30”ML&C WATER LINE WITH 48” STEEL CASING</td>
<td>U-6</td>
<td>Lt “ALN1” Station 518+44.9 to 71.9’ Rt “ALN1” Station 518+44.5</td>
<td>Protect in place</td>
</tr>
<tr>
<td>55.</td>
<td>12” WATER LINE IN 16” STEEL CASING</td>
<td>U-9</td>
<td>Lt “ALN1” Station 546+01.6 to 79.6’ Rt “ALN1” Station 546+02.4</td>
<td>Protect in place</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| 56. | 24” WATER LINE IN 36” RCP | City of Riverside Water | Protect in Place by Contractor | U-9
88.40’ Lt “ALN1” Station 554+79.0 to 71.4’ Rt “ALN1” Station 555+77.9
Protect in Place |
| 57. | 2” MP WATER LINE IN 6” STEEL CASING | City of Riverside Water | Protect in Place by Contractor | U-11
66.90’ Lt “ALN1” Station 570+44.4 to 66.3’ Rt “ALN1” Station 571+22.0
Protect in Place |
| 58. | Proposed 8” Sewer line & Sewer Manhole by other. | City of Colton Sewer | Protect in Place by Contractor | U-11
131’ Lt “ALN2” Station 14+55.6
9/4/12 |
| 59. | 8” ACP WATER LINE IN 18” STEEL CASING | Riverside Highland Water Company | Protect in Place by Contractor | U-11
105.4’ Lt “ALN2” Station 21+91.8 to 67.3’ Rt “ALN2” Station 21+91.8
Protect in Place |
| 60. | ABANDON XX” STEEL CASING 6” CIP WATER LINE | City of Colton Water | Protect in Place by Contractor | U-14
84.4’ Lt “ALN2” Station 59+47.4 to 92.0’ Rt “ALN2” Station 61+66.7
Abandoned In Place |
| 61. | 48” in 60” steel casing | City of Riverside Water | Protect in Place by Contractor | U-15
100.4’ Lt “ALN2” Station 70+63.7 to 91.8’ Rt “ALN2” Station 69+45.5423
Protect in Place |
| 62. | 8” WATER LINE | Riverside Highland Water Comp | Protect in Place by Contractor | U-15
55.0’ Lt “ALN2” Station 77+76.7 to 55.0’ Rt “ALN2” Station 78+77.3
Protect in Place |
| 63. | 14” CML Water line | RHWC | Protect in Place by Contractor | U-20
102.6’ Lt “ALN2” Station 155+19.9 to 97.88’ Rt “ALN2” Station 157+58.70
Protect in Place |
| 64. | 12” ACP Water line | Colton Water | Protect in Place by Contractor | U-20
102.96 Lt “ALN2” Station 155+29.4 to 97.72’ Rt “ALN2” Station 157+69.50
Protect in Place |
| 65. | 12” HP WATER LINE | RHWC | Protect in Place by Contractor | U-21
111.7’ Lt “ALN2” Station 162+86.9 to 92.73’ Rt “ALN2” Station 161+17.50
Protect in Place |
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>66.</td>
<td>46” CONCRETE WATER LINE</td>
<td>Protect in Place by Contractor</td>
<td>Protect in Place</td>
</tr>
<tr>
<td></td>
<td>RHWC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RHWC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protect in Place</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>During Construction</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-21</td>
<td>121.06’ Lt “ALN2” Station</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>162+19.00 to 117.62’ Rt “ALN2”</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Station 168+19.01</td>
<td></td>
</tr>
<tr>
<td>67.</td>
<td>108” Concrete Pipe Water in 162” Steel Plate casing</td>
<td>Protect in Place</td>
<td>7 Days Notice</td>
</tr>
<tr>
<td></td>
<td>DWR</td>
<td></td>
<td>Prior to starting</td>
</tr>
<tr>
<td></td>
<td>Protect in Place During Construction</td>
<td></td>
<td>working Water</td>
</tr>
<tr>
<td></td>
<td>U-21, U-22</td>
<td></td>
<td>Resource Right of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>111.98’ Lt “ALN2” Station</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>171+75.17 to 121.63’ Rt “ALN2”</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Station 170+40.97</td>
<td></td>
</tr>
<tr>
<td>68.</td>
<td>ABANDON 6” IRRIGATION LINE</td>
<td>Protect in Place</td>
<td>Abandoned</td>
</tr>
<tr>
<td></td>
<td>RHWC</td>
<td></td>
<td>In Place</td>
</tr>
<tr>
<td>69.</td>
<td>42” CP WATER LINE City of Riverside Water</td>
<td>Protect in Place by Contractor</td>
<td>Protect in place</td>
</tr>
<tr>
<td></td>
<td>Protect in Place</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-23</td>
<td>110.78’ Lt “ALN2” Station</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>181+80.63 to 119.34’ Rt “ALN2”</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Station 178+56.98</td>
<td></td>
</tr>
<tr>
<td>70.</td>
<td>12” ACP WATER LINE Colton Water</td>
<td>Protect in Place by Contractor</td>
<td>Protect in place</td>
</tr>
<tr>
<td></td>
<td>Protect in Place</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-24</td>
<td>229.34’ Lt “A1CON2” Station</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>206+87.28 to 198.75’ Rt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>“A1CON1” Station 206+97</td>
<td></td>
</tr>
<tr>
<td>71.</td>
<td>36” CMP WATER LINE RHWC</td>
<td>Protect in Place by Contractor</td>
<td>Protect in place</td>
</tr>
<tr>
<td></td>
<td>Protect in Place</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-25</td>
<td>59.00’ Lt “A1CON2” Station</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>226+27.57 to 59.96’ Rt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>“A1CON1” Station 228+15.01</td>
<td></td>
</tr>
<tr>
<td>72.</td>
<td>6” CI WATER LINE W/ 30” STEEL CASING SBMWD</td>
<td>Protect in Place by Contractor</td>
<td>Protect in place</td>
</tr>
<tr>
<td></td>
<td>Protect in Place</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-28</td>
<td>136.74’ Lt “ALN3” Station</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>264+19.53 to 119.56’ Rt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>“ALN3” Station 264+17.36</td>
<td></td>
</tr>
<tr>
<td>73.</td>
<td>6” CIP WATER Colton Water</td>
<td>Protect in Place by Contractor</td>
<td>Protect in place</td>
</tr>
<tr>
<td></td>
<td>Protect in Place</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-12</td>
<td>380.8’ Lt “ALN2”</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Station 26+73.6 to 496.7’</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lt“ALN2” Station 33+33.7</td>
<td></td>
</tr>
<tr>
<td>74.</td>
<td>24” Water Line in 30” Steel Casing RHWC</td>
<td>Protect in Place by Contractor</td>
<td>Protect in place</td>
</tr>
<tr>
<td></td>
<td>Protect in Place</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-16</td>
<td>127.67’ Lt “ALN2” Station</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>89+66.63 to 110.4’ Rt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>“ALN2” Station 90+18.5</td>
<td></td>
</tr>
<tr>
<td>Contract No. 08-0M94U4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **75.** 12” CML&C Water Line in 30” Steel Casing
City of Colton Water
Protect in Place by Contractor | U-22
109.28’ Lt “ALN2” Station
176+23.59 to 121.27’ Rt
“ALN2” Station 176+23.20 | Protect in place |
| **Fiber Optic Line** | |
| **76.** Fiber Optic Line
AT&T
Protect in Place by Contractor | U-3
226.2’ Lt “ALN1” Station 475+63
to 70.0’ Rt
“ALN1” Station 475+61.3 | Protect in Place |
| **77.** Fiber Optic Line
AT&T
Protect in Place by Contractor | U-3
220.0’ Lt “ALN1” Station 475+67.9
to 70.0’ Rt
“ALN1” Station 475+74.9 | Protect in Place |
| **78.** Fiber Optic Line
Level 3
Protect in Place by Contractor | U-5
72.3’ Lt “ALN1” Station 494+95.3
to 120.57’ Rt
“ALN1” Station 495+47.9 | Protect in Place |
| **79.** Fiber Optic Line
Level 3
Protect in Place by Contractor | U-5
72.0’ Lt “ALN1” Station 495+52.2
to 117.7’ Rt
“ALN1” Station 496+07.2 | Protect in Place |
| **80.** Telephone line
AT&T
Protect in Place by Contractor | U-20
202.4’ Lt “ALN2” Station 146+34.2
to 111.6’ Rt
“ALN2” Station 143+72.1 | Protect in Place |
| **81.** Fiber Optic Line
Level 3
Protect in Place by Contractor | U-20
98.26’ Lt “ALN2” Station 154+31.2
to 99.15’ Rt
“ALN2” Station 156+69.70 | Protect in Place |
| **Telephone** | |
| **82.** UG Telephone Conduit P
AT&T
Protect in Place by Contractor | U-10
67.3’ Lt “ALN1” Station 566+11.3
to 70.0’ Rt
“ALN1” Station 566+12.1 | Protect in Place |
| **ATT** | |
| **83.** Telephone Line
AT&T
Protect in Place by Contractor | U-20
100.34’ Lt “ALN2” Station
154+71.8 to 98.57’ Rt
“ALN2” Station 157+10.20 | Protect in Place |
| **84.** Telephone Line
AT&T
Protect in Place by Contractor | U-23
120.21’ Lt “ALN2” Station
191+54.30 to 136.39’ Rt
“ALN2” Station 192+42.69 | Protect in Place |
| **Verizon** | |
| **85.** Fiber Optic Line
MCi (Verizon)
Protect in Place by Contractor | U-24
107.73’ Lt “A1CON2” Station
211+37.19 to 264.5’ Rt
“A1CON2” Station 211+40.54 | Protect in Place |
| **86.** 54” Brine Line in 72” Steel Casing (RIX)
Protect in Place by Contractor | U-26
178.07’ Lt “A1CON2” Station
239+1.86 to 271.11’ Rt
“A1CON1” Station 240+58.2 | Protect in Place |
<table>
<thead>
<tr>
<th>Utility</th>
<th>Utility Address</th>
<th>Location</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCG (Gas)</td>
<td>Steve Spencer 1981 W. Lugonia Ave Redlands, CA 92374-9796 Phone: (909)335-7879 sspencer@semprautilities.com</td>
<td>U-12-U-13. 366.8’ Rt “ALN2” Station 36+75.6 to 459.2’ Lt “ALN2” Station 47+68.3</td>
<td>Advance Notice Required: 40 business Days Working Days: 40 Days</td>
</tr>
<tr>
<td>89. 12” GAS LINE HP Relocation during construction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90. 6” MP Gas line in 10” steel casing To be abandoned Then, to be reinstated During construction</td>
<td>Steve Spencer 1981 W. Lugonia Ave Redlands, CA 92374-9796 Phone: (909)335-7879 sspencer@semprautilities.com</td>
<td>U-17 99.53’ Lt “ALN2” Station 102+80.95 to 69.00’ Rt “ALN2” Station 103+18.06</td>
<td>Advance Notice Required: 30 business Days Working Days: 30 Days</td>
</tr>
</tbody>
</table>
| Fiber Optic-AT&T Long Haul | Glenn Sels
Project Engineer
22311 Brookhurst St, Suite 203
Huntington Beach, CA 92646
Phone: (714)963-6793
glenns@forkertengineering.com | U-13
105.1’ Lt “ALN2”
Station 52+61 to 117.2’
Rt “ALN2” Station 50+25.4 | Advance Notice
Prior to existing track
Remove: 30 business Days
Working Days: 30 Days |
| --- | --- | --- | --- |
| Fiber Optic US Sprint | Lynn Durrett
Field Services Support
282 South Sycamore Ave
Rialto, CA 92376
Phone: (909)873-8022
lynn.durrett@ericsson.com | U-12 & U-13
444.9’ Lt “ALN2”
Station 46+08.9 to 376.88’ Rt “ALN1” Station 34+87.3 | Advance Notice
Required: 30 business Days
Working Days: 30 Days |
| Riverside Highland Water Company (RHWC) | Graig Gudgeon
12374 Michigan St
Grand Terrance, CA 92313
Phone: (909) 825-4128
Cgudgeon@rhwco.com | U-17 99.52’ Lt “ALN2”
Station 103+8.16 to 69.0’ Rt “ALN2”
Station 103+45.75 | Advance Notice prior to construct bridge:
30 business Days
Working Days: 15 Days |
| Utility Rearrangement for Pile Driving, Drilling Activities, or Subsurface Construction |
|--------------------------|---------------------------------|
| **Utility** | **Location** |
| 97. 2” PVC UG Colton Electric Protect in Place by Contractor | U-24 218.5’ Lt “A1CON2” Station 206+21.8 to Rt 190.26’ “A1CON1” Station 206+31.9 |
| 98. 12” CMLC WATER LINE Colton Water Protect in Place by Contractor | U-24 114.1’ Lt “A1CON2” Station 212+22.0 to Rt 69.7’ “A1CON1” Station 212+21.8 |
| 99. 4” PVC Conduit AT&T Protect in Place by Contractor | U-24 218.4’ Lt “A1CON2” Station 206+20.9 to Rt 190.1’ “A1CON1” Station 206+30.6 |
The Contractor shall protect in place the utilities shown in the table below with sand backfill and minor concrete prior to any work being done above these utilities. Work to be done follows:

A. Gas, Telephone, and Fiber Optics cable lines shall be backfilled by sand on top of pipe or pipe casing and minor concrete above the sand.
B. Water lines shall be covered with minor concrete on top of pipe or the pipe casing.
C. The minimum width of backfill shall be 2 feet unless otherwise noted on the plans.
D. Work will be paid for separately as shown on Summary of Quantity Sheet, Q-10.

<table>
<thead>
<tr>
<th>Station</th>
<th>Sheet No.</th>
<th>Utility Length</th>
<th>Sand Backfill</th>
<th>Minor concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ft</td>
<td>Thickness (ft)</td>
<td>Thickness (ft)</td>
</tr>
<tr>
<td>499+46.1</td>
<td>U-5</td>
<td>150.2' Lt "ALN1"</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>499+92.1</td>
<td>U-5</td>
<td>155.9' Lt "ALN1"</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>500+38.1</td>
<td>U-5</td>
<td>163.5' Lt "ALN1"</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>498+93.1</td>
<td>U-5</td>
<td>110.0' Rt "ALN1"</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>510+50.7</td>
<td>U-6</td>
<td>71.78' Rt "ALN1"</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>532+60.1</td>
<td>U-7</td>
<td>71.4' Lt "ALN1"</td>
<td>39</td>
<td>1</td>
</tr>
<tr>
<td>532+62.5</td>
<td>U-7</td>
<td>9.6' Rt "ALN1"</td>
<td>19.5</td>
<td>1</td>
</tr>
<tr>
<td>532+64.3</td>
<td>U-7</td>
<td>76.3' Rt "ALN1"</td>
<td>39</td>
<td>1</td>
</tr>
<tr>
<td>554+97.3</td>
<td>U-9</td>
<td>76.8' Lt "ALN1"</td>
<td>44</td>
<td>1</td>
</tr>
<tr>
<td>555+27.4</td>
<td>U-9</td>
<td>10' Lt "ALN1"</td>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td>555+48.4</td>
<td>U-9</td>
<td>37' Rt "ALN1"</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>546+01.6</td>
<td>U-9</td>
<td>70.8' Lt "ALN1"</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>546+03.8</td>
<td>U-9</td>
<td>67.5' Rt "ALN1"</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>562+80.3</td>
<td>U-10</td>
<td>73.1' Lt "ALN1"</td>
<td>31.5</td>
<td>1</td>
</tr>
<tr>
<td>563+10.2</td>
<td>U-10</td>
<td>10.6' Rt "ALN1"</td>
<td>22.6</td>
<td>1</td>
</tr>
<tr>
<td>563+28.7</td>
<td>U-10</td>
<td>40.4' Rt "ALN1"</td>
<td>31.5</td>
<td>1</td>
</tr>
<tr>
<td>11+84.7</td>
<td>U-11</td>
<td>117.9' Lt "ALN2" To</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16+34.1</td>
<td>U-11</td>
<td>187.0' Lt "ALN2"</td>
<td>455</td>
<td>1</td>
</tr>
<tr>
<td>29+90.5</td>
<td>U-12</td>
<td>406.3' Lt "ALN2" To</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31+40.8</td>
<td>U-12</td>
<td>429.4' Lt "ALN2"</td>
<td>155.5</td>
<td>1</td>
</tr>
</tbody>
</table>
Additional special instructions to the Contractor regarding utilities follow.

The Southern California Gas Company has requested the following design parameters are strictly adhered to during construction over their gas lines and should be protected in place:

- Consideration be given to the safety of our pipeline during the design and construction stages.
- No mechanical equipment will be permitted to operate within three horizontal feet or one vertical foot of the pipeline, and any closer work must be done by hand. No heavy equipment to cross pipeline without Gas Company Representative’s approval.
- A representative of The Gas Company must observe the excavation around or near our facilities to insure protection and to record pertinent data necessary for our operations.
- Vertical clearance of at least two (2) feet between High Pressure Gas Facilities and any substructure crossing, and all laterals must cross perpendicular to the gas facilities.
- All equipment crossing gas easement must be approved by the Gas Company Representative, and all crossings require a minimum of seven (7) feet of cover over gas facilities.
- Only rubber tire, light loading equipment will be allowed to work within the Gas Company Easement and no mechanical equipment will be permitted to operate within two (2) vertical feet of the pipeline. Any closer work must be performed by hand.
- A Construction Note to be placed on plans requiring Notification of Gas Company Representative prior to any work within the Gas Company Easement.
- A Caution Note to be placed on plans stating, "Caution, High Pressure Gas Line, Do Not Disturb," at each proposed crossing.
- No Change of Grade within Gas Company Easement without Gas Company’s approval. No permanent structures within easement without Gas Company approval.
- Horizontal clearance of at least ten (10) feet between High Pressure Gas Facilities and any parallel substructure.
- No vibratory compaction equipment permitted within ten feet of High Pressure Gas Line. Static compaction equipment is permitted.

Should a re-location of the gas lines be necessary, a minimum of 6 months will be required in order to review, design, procure materials, construct and complete the re-locations. Any re-location is also subject to being up to 100% collectible.

Upon request, at least two (2) working days prior to the start of construction, we will locate and mark our active underground facilities for the contractor at no cost. Please call Underground Service Alert (USA) at (800) 422-4133.

Arrangements for someone to stand-by and observe can be made by calling (951) 845-0712 two working days prior to the start of construction.

The following person are the point of contact for this project for the different utility companies:

<table>
<thead>
<tr>
<th>Company</th>
<th>Contact</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCE-D</td>
<td>Ryan Jasso</td>
<td>909.307.6749</td>
</tr>
<tr>
<td>SCE-T</td>
<td>Albert Ramirez</td>
<td>951.492.1313</td>
</tr>
<tr>
<td>SCE-C</td>
<td>Raul Martinez</td>
<td>909.873.3276</td>
</tr>
<tr>
<td>AT&T</td>
<td>Anthony Kwan</td>
<td>714.237.7126</td>
</tr>
<tr>
<td>AT&T Long Haul</td>
<td>Glen Sels.</td>
<td>714.963.6793 ex 231</td>
</tr>
<tr>
<td>City of Colton Electric</td>
<td>Mitch Grigg</td>
<td>909.370.6192</td>
</tr>
<tr>
<td>City of Colton Sewer and Water</td>
<td>Jess Soto</td>
<td>909.370.5003</td>
</tr>
<tr>
<td>RPU-Electric</td>
<td>Viset Ong</td>
<td>951.826.5731</td>
</tr>
</tbody>
</table>

Contract No. 08-0M94U4

49
RPU-Water Blake Yamamoto 951.826.5549
Verizon Bret Plaskey 951.929.9491
Time Warner Cable Bruce Dewees 909.721.8598
Time Warner Telecom Barton VanWey 909.456.3693
Charter Communication Micah Polk 951.343.5100
Fiber Optic-Level 3 (L3) James Dailey 858.292.2108 Cell 858.688.7007
City of San Bernardino Sewer John Van Havermat 909.384.5143
City of Riverside Sewer Lonny Young 951.826.5294
City of Grand Terrance Sewer Richard Shields 909.825.3825
SAWPA (SARI) Sewer Rich Haller 909.354.4240
SAWPA (RIX) Sewer Vince Bibbee 909.783.8937 Cell 909.379.2519
SBMWDM Water Michael Nevarez 909.384.5092
Sierra Water Company Aaron Hodgdon 909.783.3020
Kinder Morgan Company Tom Larkin 951.830.9511

The Kinder Morgan, Inc. (KM) has requested the following guidelines for design and construction near and within their hazardous liquid operated facilities are strictly adhered and should be protected in place:

- Contact Mr. Tom Larkin (951) 830-9511, at least two weeks prior to Commencement of work. Mr. Larkin will arrange for a pipeline representative to be present during work near the pipeline.

The list of design, construction and contractor requirements, including but not limited to the following, for the design and installation of foreign utilities or improvements on KM right of way (ROW) are not intended nor do they waive or modify any rights KM may have under existing easements or ROW agreements. Reference existing easements and amendments for additional requirements. This list of requirements is applicable for KM facilities on easements only. Encroachments on fee property should be referred to the ROW Department.

Design

- KM shall be provided sufficient prior notice of planned activities involving excavation, blasting or any type of construction on KM’s ROW to determine and resolve any location, grade or encroachment problems and provide protection of our facilities and the public **before** the actual work is to take place.

- Encroaching entity shall provide KM with a set of drawings for review and a set of final construction drawings showing all aspects of the proposed facilities in the vicinity of KM’s ROW. The encroaching entity shall also provide a set of "As-Built" drawings showing the proposed facilities in the vicinity of KM’s ROW.

- Only facilities shown on drawings reviewed by KM will be approved for installation on KM’s ROW. All drawing revisions that effect facilities proposed to be placed on KM’s ROW must be approved by KM in writing.

- KM shall approve the design of all permanent road crossings.

- Any repair to surface facilities following future pipeline maintenance or repair work by KM will be at the expense of the developer or landowner.

- The depth of cover over the KM pipelines shall not be reduced nor drainage altered without KM’s written approval.

- Construction of any permanent structure, building(s) or obstructions within KM pipeline easement is **not** permitted.

- Planting of shrubs and trees is not permitted on KM pipeline easement.

- Irrigation equipment i.e., backflow prevent devices, meters, valve boxes, etc. shall not be located on KM easement.

- Foreign line, gas, water, electric and sewer lines, etc., may cross perpendicular to KM’s pipeline within the ROW, provided that a minimum of two (2) feet of vertical clearance is maintained between KM pipeline(s) and the foreign pipeline. Constant line elevations must be maintained across KM’s entire ROW width, gravity
drain lines are the only exception. Foreign line crossings below the KM pipeline must be evaluated by KM to ensure that a significant length of the KM line is not exposed and unsupported during construction. When installing underground utilities, the last line should be placed beneath all existing lines unless it is impractical or unreasonable to do so. Foreign line crossings above the KM pipeline with less than 2 feet of clearance must be evaluated by KM to ensure that additional support is not necessary to prevent setting on top of the KM hazardous liquids pipeline.

- A foreign pipeline shall cross KM facilities at as near a ninety-degree angle as possible. A foreign pipeline shall not run parallel to KM pipeline within KM easement without permission of KM.

- The foreign utility should be advised that KM maintains cathodic protection on their pipelines. The foreign utility must coordinate their cathodic protection system with KM’s. At the request of KM, foreign utilities shall install (or allow to be installed) cathodic protection test leads at all crossings for the purposes of monitoring cathodic protection. The KM Cathodic Protection (CP) technician and the foreign utility CP technician shall perform post construction CP interference testing. Interference issues shall be resolved by mutual agreement between foreign utility and KM. All costs associated with the correction of cathodic protection problems on KM pipeline as a result of the foreign utility crossing shall be borne by the foreign utility for a period of one year from date the foreign utility is put in service.

- The metallic foreign line shall be coated with a suitable pipe coating for a distance of at least 10 feet on either side of the crossing unless otherwise requested by the KM CP Technician.

- AC Electrical lines must be installed in conduit and properly insulated.

- DOT approved pipeline markers shall be installed so as to indicate the route of the foreign pipeline across the KM ROW.

- No power poles, light standards, etc. shall be installed on KM easement.

- No pipeline may be located within 50 feet (15 meters) of any private dwelling, or any industrial building or place of public assembly in which persons work, congregate or assemble.

Construction

- Contractors shall be advised of KM’s requirements and be contractually obligated to comply.

- The continued integrity of KM’s pipelines and the safety of all individuals in the area of proposed work near KM’s facilities are of the utmost importance. Therefore, contractor must meet with KM representatives prior to construction to provide and receive notification listings for appropriate area operations and emergency personnel. KM’s on-site representative will require discontinuation of any work that, in his opinion, endangers the operations or safety of personnel, pipelines or facilities.

- The Contractor must expose all KM pipelines prior to crossing to determine the exact alignment and depth of the lines. A KM representative must be present. In the event of parallel lines, only one pipeline can be exposed at a time.

- KM will not allow pipelines to remain exposed overnight without consent of KM designated representative. Contractor may be required to backfill pipelines at the end of each day.

- A KM representative shall do all line locating. A KM representative shall be present for hydraulic excavation. The use of probing rods for pipeline locating shall be performed by KM representatives only, to prevent unnecessary damage to the pipeline coating.

- Notification shall be given to KM at least 72 hours before start of construction. A schedule of activities for the duration of the project must be made available at that time to facilitate the scheduling of Kinder Morgan, Inc.’s work site representative. Any Contractor schedule changes shall be provided to Kinder Morgan, Inc. immediately.
• Heavy equipment will not be allowed to operate directly over KM pipelines or in KM ROW unless written approval is obtained from KM. Heavy equipment shall only be allowed to cross KM pipelines at locations designated by Kinder Morgan, Inc. Contractor shall comply with all precautionary measures required by KM to protect its pipelines. When inclement weather exists, provisions must be made to compensate for soil displacement due to subsidence of tires. Equipment excavating within ten (10) feet of KM Pipelines will have a plate guard installed over the teeth to protect the pipelines.

• Excavating or grading which might result in erosion or which could render the KM ROW inaccessible shall not be permitted unless the contractor/developer/owner agrees to restore the area to its original condition and provide protection to KM’s facility.

• A KM representative shall be on-site to observe any construction activities within ten (10) feet of a KM pipeline or aboveground appurtenance. The Contractor shall not work within this distance without a KM representative being on site. Only hand excavation shall be permitted within two (2) feet of KM pipelines, valves and fittings unless State requirements are more stringent. However, proceed with extreme caution when within three (3) feet of the pipe.

• A KM representative will monitor construction activity within 25 feet of KM facilities during and after the activities to verify the integrity of the pipeline and to ensure the scope and conditions agreed to have not changed. Monitoring means to conduct site inspections on a pre-determined frequency based on items such as: scope of work, duration of expected excavator work, type of equipment, potential impact on pipeline, complexity of work and/or number of excavators involved.

• Ripping is only allowed when the position of the pipe is known and not within ten (10) feet of KM facility unless company representative is present.

• Temporary support of any exposed KM pipeline by Contractor may be necessary if required by KM’s on-site representative. Backfill below the exposed lines and 12” above the lines shall be replaced with sand or other selected material as approved by KM’s on-site representative and thoroughly compacted in 12” lifts to 95% of standard proctor dry density minimum or as approved by KM’s on-site representative. This is to adequately protect against stresses that may be caused by the settling of the pipeline.

• No blasting shall be allowed within 1000 feet of KM’s facilities unless blasting notification is given to KM including complete Blasting Plan Data. A pre-blast meeting shall be conducted by the organization responsible for blasting. KM shall be indemnified and held harmless from any loss, cost of liability for personal injuries received, death caused or property damage suffered or sustained by any person resulting from any blasting operations undertaken within 500 feet of its facilities. The organization responsible for blasting shall be liable for any and all damages caused to KM’s facilities as a result of their activities whether or not KM representatives are present. KM shall have a signed and executed Blasting Indemnification Agreement before authorized permission to blast can be given.

 No blasting shall be allowed within 300 feet of KM’s facilities unless blasting notification is given to KM a minimum of one week before blasting. KM shall review and analyze the blasting methods. A written blasting plan shall be provided by the organization responsible for blasting and agreed to in writing by KM in addition to meeting requirements for 500’ and 1000’ being met above. A written emergency plan shall be provided by the organization responsible for blasting

• Any contact with any KM facility, pipeline, valve set, etc. shall be reported immediately to KM. If repairs to the pipe are necessary, they will be made and inspected before the section is re-coated and the line is back-filled.

• KM personnel shall install all test leads on KM facilities.

• Burning of trash brush, etc. is not permitted within the KM ROW.
Insurance Requirements

- All contractors, and their subcontractors, working on Company easements shall maintain the following types of insurance policies and minimum limits of coverage. All insurance certificates carried by Contractor and Grantee shall include the following statement: "Kinder Morgan and its affiliated or subsidiary companies are named as additional insured on all above policies (except Worker’s Compensation) and waiver of subrogation in favor of Kinder Morgan and its affiliated or subsidiary companies, their respective directors, officers, agents and employees applies as required by written contract.” Contractor shall furnish Certificates of Insurance evidencing insurance coverage prior to commencement of work and shall provide thirty (30) days notice prior to the termination or cancellation of any policy.

1. Statutory Coverage Workers’ Compensation Insurance in accordance with the laws of the states where the work is to be performed. If Contractor performs work on the adjacent on navigable waterways, Contractor shall furnish a certificate of insurance showing compliance with the provisions of the Federal Longshoremen’s and Harbor Workers’ Compensation Law.

2. Employer’s Liability Insurance with limits of not less than $1,000,000 per occurrence and $1,000,000 disease each employee.

3. Commercial General Liability Insurance with a combined single limit of not less than $2,000,000 per occurrence and in the aggregate. All policies shall include coverage for blanket contractual liability assumed.

4. Comprehensive Automobile Liability Insurance with a combined single limit of not less than $1,000,000. If necessary, the policy shall be endorsed to provide contractual liability coverage.

5. If necessary, Comprehensive Aircraft Liability Insurance with combined bodily injury, including passengers and property damage liability single limits of not less than $5,000,000 each occurrence.

6. Contractor’s Pollution Liability Insurance this coverage shall be maintained in force for the full period of this agreement with available limits of not less than $2,000,000 per occurrence.

7. Pollution Legal Liability Insurance this coverage must be maintained in a minimum amount of $5,000,000 per occurrence.

Storage and placement of construction equipment and materials is not allowed within Department of Water Resources Right of Way.

A seven (7) day advance notification is required prior to starting work within Department of Water Resources Right of Way, contact the Department of Water Resources, Division of Engineering Encroachment Permit Section, Sacramento, California at (800) 600-4397. The Southern Field Division shall be simultaneously notified at (661) 944-8500.

Except as otherwise provided herein, measures shall be taken by the Contractor to protect in place all SWP facilities and appurtenances, including but not limit to communication and control cables and cathodic protection test stations. The permittee and the Contractor will be liable for all damages to SWP facilities and appurtenances as a result of the construction, and for many other damages or losses suffered by DWR or its water contractors, including power, irrigation, municipal and industrial water supply, and communication losses.

5-1.21 DAMAGE REPAIR

Attention is directed to Section 7-1.16, "Contractor's Responsibility for the Work and Materials," and Section 7-1.165, "Damage by Storm, Flood, Tsunami or Earthquake," of the Standard Specifications and these special provisions.

When as a result of freezing conditions (as defined herein) during the plant establishment period, plants have died or, in the opinion of the Engineer, have deteriorated to a point beyond which the plants will not mature as typical examples of their species, the Engineer may direct replacement of the affected plants. The total cost of ordered plant replacement work will be paid for as extra work as provided in Section 4-1.03D,"Extra Work," of the Standard Specifications. A freezing condition, for the purpose of this specification, occurs when the temperature at or near the affected area has been officially recorded below 32° F and plants have been killed or damaged to the degree described above.

When, as a result of drought conditions (as defined herein) during the plant establishment period, plants have died or, in the opinion of the Engineer, have deteriorated to a point beyond which the plants will not mature as typical examples of their species, the Engineer may direct replacement of the affected plants. The total cost of ordered plant replacements, after water has been restricted or stopped, will be paid for as extra work as provided in Section 4-1.03D,"Extra Work," of the Standard Specifications. Restriction or shutoff of available water shall not relieve the Contractor from performing other contract work. A drought condition occurs when the Department, or its supplier, restricts or stops delivery of water to the Contractor to the degree that plants have died or deteriorated as described above.
When the provisions in Section 7-1.165, "Damage by Storm, Flood, Tsunami or Earthquake," of the Standard Specifications are applicable, the provisions above for payment of costs for repair of damage due to rain, freezing conditions and drought shall not apply.

5-1.22 RELIEF FROM MAINTENANCE AND RESPONSIBILITY

The Contractor may be relieved of the duty of maintenance and protection for those items not directly connected with plant establishment work in conformance with the provisions in Section 7-1.15, "Relief From Maintenance and Responsibility," of the Standard Specifications. Water pollution control, maintain existing irrigation facilities, transplant trees and transplant palm trees shall not be relieved of maintenance.

SECTION 6. (BLANK)

SECTION 7. (BLANK)

SECTION 8. MATERIALS

SECTION 8-1. MISCELLANEOUS

8-1.01 PREQUALIFIED AND TESTED SIGNING AND DELINEATION MATERIALS

The Department maintains the following list of Prequalified and Tested Signing and Delineation Materials. The Engineer shall not be precluded from sampling and testing products on the list of Prequalified and Tested Signing and Delineation Materials.

The manufacturer of products on the list of Prequalified and Tested Signing and Delineation Materials shall furnish the Engineer a Certificate of Compliance in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications for each type of traffic product supplied.

For those categories of materials included on the list of Prequalified and Tested Signing and Delineation Materials, only those products shown within the listing may be used in the work. Other categories of products, not included on the list of Prequalified and Tested Signing and Delineation Materials, may be used in the work provided they conform to the requirements of the Standard Specifications.

Materials and products may be added to the list of Prequalified and Tested Signing and Delineation Materials if the manufacturer submits a New Product Information Form to the New Product Coordinator at the Transportation Laboratory. Upon a Departmental request for samples, sufficient samples shall be submitted to permit performance of required tests. Approval of materials or products will depend upon compliance with the specifications and tests the Department may elect to perform.

PAVEMENT MARKERS, PERMANENT TYPE

Retroreflective With Abrasion Resistant Surface (ARS)

("length along the direction of travel" x "marker width")

1. Apex, Model 921AR (4" x 4")
2. Ennis Paint, Models C88 (4" x 4"), 911 (4" x 4") and C80FH (3.1" x 4.5")
3. Ray-O-Lite, Models "AA" ARC II (4" x 4") and ARC Round Shoulder (4" x 4")
4. 3M Series 290 (3.5" x 4")
5. 3M Series 290 PSA
6. Glowlite, Inc Model 988AR (4" x 4")

Retroreflective With Abrasion Resistant Surface (ARS)

(for recessed applications only)

1. Ennis Paint, Model 948 (2.3" x 4.7")
2. Ennis Paint, Model 944SB (2" x 4")*
3. Ray-O-Lite, Model 2002 (2" x 4.6")
4. Ray-O-Lite, Model 2004 (2" x 4")*

*For use only in 4.5 inch wide (older) recessed slots
Non-Reflective, 4-inch Round
1. Apex Universal (Ceramic)
2. Apex Universal, Models 929 (ABS) and 929PP (Polypropylene)
3. Glowlite, Inc. (Ceramic) and PP (Polypropylene)
5. Interstate Sales, "Diamond Back" (Polypropylene)
6. Novabrite Models Cdot (White) Cdot-y (Yellow), Ceramic
7. Novabrite Models Pdot-w (White) Pdot-y (Yellow), Polypropylene
8. Three D Traffic Works TD10000 (ABS), TD10500 (Polypropylene)
9. Ray-O-Lite, Ray-O-Dot (Polypropylene)

PAVEMENT MARKERS, TEMPORARY TYPE
Temporary Markers For Long Term Day/Night Use (180 days or less)
1. Vega Molded Products "Temporary Road Marker" (3" x 4")
2. Pexco LLC, Halftrack model 25, 26 and 35

Temporary Markers For Short Term Day/Night Use (14 days or less)
(For seal coat or chip seal applications, clear protective covers are required)
1. Apex Universal, Model 932
2. Pexco LLC, Models T.O.M., T.R.P.M., and "HH" (High Heat)
3. Hi-Way Safety, Inc., Model 1280/1281
4. Glowlite, Inc., Model 932

STRIPING AND PAVEMENT MARKING MATERIAL
Permanent Traffic Striping and Pavement Marking Tape
1. Advanced Traffic Marking, Series 300 and 400
2. Brite-Line, Series 1000
3. Brite-Line, "DeltaLine XRP"
4. Swarco Industries, "Director 35" (For transverse application only)
5. Swarco Industries, "Director 60"
6. 3M, "Stamark" Series 380 and 270 ES
7. 3M, "Stamark" Series 420 (For transverse application only)

Temporary (Removable) Striping and Pavement Marking Tape (180 days or less)
1. Advanced Traffic Marking, Series 200
2. Brite-Line, "Series 100", "DeltaLine TWR"
4. P.B. Laminations, Aztec, Grade 102
5. Swarco Industries, "Director-2", "Director 2-Wet Reflective"
6. Trelleborg Industries, R140 Series
7. 3M Series 620 "CR", Series 780 and Series 710
8. 3M Series A145, Removable Black Line Mask
 (Black Tape: for use only on Hot mix asphalt surfaces)
 (Black Tape: for use only on Hot mix asphalt surfaces)
10. Brite-Line "BTR" Black Removable Tape
 (Black Tape: for use only on Hot mix asphalt surfaces)
11. Trelleborg Industries, RB-140
 (Black Tape: for use only on Hot mix asphalt surfaces)

Preformed Thermoplastic (Heated in place)
1. Flint Trading Inc., "Hot Tape"
2. Flint Trading Inc., "Premark Plus"
3. Flint Trading Inc., "Flametape"

Ceramic Surfacing Laminate, 6" x 6"
1. Highway Ceramics, Inc.
CLASS 1 DELINEATORS

One Piece Driveable Flexible Type, 66-inch
1. Pexco LLC, "Flexi-Guide Models 400 and 566"
2. Carsonite, Curve-Flex CFRM-400
3. Carsonite, Roadmarker CRM-375
4. FlexStake, Model 654 TM
5. GreenLine Model CGD1-66

Special Use Type, 66-inch
1. Pexco LLC, Model FG 560 (with 18-inch U-Channel base)
2. Carsonite, "Survivor" (with 18-inch U-Channel base)
3. Carsonite, Roadmarker CRM-375 (with 18-inch U-Channel base)
4. FlexStake, Model 604
5. GreenLine Model CGD (with 18-inch U-Channel base)
6. Impact Recovery Model D36, with #105 Driveable Base
7. Safe-Hit with 8-inch pavement anchor (SH248-GP1)
8. Safe-Hit with 15-inch soil anchor (SH248-GP2) and with 18-inch soil anchor (SH248-GP3)
9. Safe-Hit RT 360 Post with Soil Mount Anchor (GPS)
10. Shur-Tite Products, Shur-Flex Drivable

Surface Mount Type, 48-inch
1. Bent Manufacturing Company, Masterflex Model MFEX 180-48
2. Carsonite, "Channelizer"
3. FlexStake, Models 704, 754 TM, and EB4
4. Impact Recovery Model D48, with #101 Fixed (Surface-Mount) Base
5. Three D Traffic Works "Channelflex" ID No. 522248W
6. Flexible Marker Support, Flexistiff Model C-9484
7. Safe-Hit, SH 248 SMR

CHANNELIZERS

Surface Mount Type, 36-inch
1. Bent Manufacturing Company, Masterflex Models MF-360-36 (Round) MF-180-36 (Flat) and MFEX 180—36
2. Pexco LLC, Flexi-Guide Models FG300PE, FG300UR, and FG300EFX
3. Carsonite, "Super Duck" (Round SDR-336)
4. Carsonite, Model SDCF03601MB "Channelizer"
5. FlexStake, Models 703, 753 TM, and EB3
6. GreenLine, Model SMD-36
8. Impact Recovery Model D36, with #101 Fixed (Surface-Mount) Base
9. Safe-Hit, Guide Post, Model SH236SMA and Dura-Post, Model SHL36SMA
10. Three D Traffic Works "Boomerang" 5200 Series
11. Flexible Marker Support, Flexistiff Model C-9484-36
12. Shur-Tite Products, Shur-Flex

Lane Separation System
1. Pexco LLC, "Flexi-Guide (FG) 300 Curb System"
2. Qwick Kurb, "Klemmfix Guide System"
3. Dura-Curb System
4. Tuff Curb
5. FG 300 Turnpike Curb
6. Shur-Tite Products, SHUR-Curb, Model No. SF0200

CONICAL DELINEATORS, 42-inch
(For 28-inch Traffic Cones, see Standard Specifications)
1. Bent Manufacturing Company "T-Top", TDSC Series
2. Plastic Safety Systems "Navigator-42"
3. TrafFix Devices "Grabber"
4. Three D Traffic Works "Ringtop" TD7000, ID No. 742143
5. Three D Traffic Works, TD7500
6. Work Area Protection Corp. C-42
7. Custom-Pak 4600 (Part No. 93005-0001)
8. Plasticade, Navicade, 650 R1

OBJECT MARKERS

Type "K", 18-inch
1. Pexco LLC, Model FG318PE
2. Carsonite, Model SMD 615
3. FlexStake, Model 701 KM
4. Safe-Hit, Model SH718SMA

Type "Q" Object Markers, 24-inch
1. Bent Manufacturing "Masterflex" Model MF-360-24
2. Pexco LLC, Model FG324PE
3. Carsonite, "Channelizer"
4. FlexStake, Model 701KM
5. Safe-Hit, Models SH824SMA_WA and SH824GP3_WA
6. Three D Traffic Works ID No. 531702W and TD 5200
7. Three D Traffic Works ID No. 520896W
8. Safe-Hit, Dura-Post SHLQ-24"
9. Flexible Marker Support, IMC 9484-24

CONCRETE BARRIER MARKERS AND
TEMPORARY RAILING (TYPE K) REFLECTORS

Impactable Type
1. ARTUK, "FB"
2. Pexco LLC, Models PCBM-12 and PCBM-T12, PCBM 912
3. Duraflex Corp., "Flexx 2020" and "Electriflexx"
4. Hi-Way Safety, Inc., Model GMKRM100
5. Plastic Safety Systems "BAM" Models OM-BARR and OM-BWAR
6. Three D Traffic Works "Roadguide" Model TD 9300

Non-Impactable Type
1. ARTUK, JD Series
3. Vega Molded Products, Models GBM and JD
4. Plastic Vacuum Forming, "Cap-It C400"

METAL BEAM GUARD RAIL POST MARKERS
(For use to the left of traffic)
1. Pexco LLC, "Mini" (3” x 10"), I-Flex
2. Creative Building Products, "Dura-Bull, Model 11201"
3. Duraflex Corp., "Railrider"
4. Plastic Vacuum Forming, "Cap-It C300"

CONCRETE BARRIER DELINEATORS, 16-inch
(For use to the right of traffic)
1. Pexco LLC, Model PCBM T-16
2. Safe-Hit, Model SH216RBM
3. Three D Traffic Works "Roadguide" Model 9400
CONCRETE BARRIER-MOUNTED MINI-DRUM (10” x 14” x 22”)
1. Stinson Equipment Company “SaddleMarker”

GUARD RAILING DELINEATOR
(Place top of reflective element at 48 inches above plane of roadway)

Wood Post Type, 27-inch
1. Pexco LLC, FG 427 and FG 527
2. Carsonite, Model 427
3. FlexStake, Model 102 GR
4. GreenLine GRD 27
5. Safe-Hit, Model SH227GRD
6. Three D Traffic Works "Guardflex" TD9100
7. New Directions Mfg, NDM27
8. Shur-Tite Products, Shur-Tite Flat Mount
9. Glasforms, Hiway-Flex, GR-27-00

Barrier, Guardrail Visibility Enhancement

Steel Post Type
1. Carsonite, Model CFGR-327

RETROREFLECTIVE SHEETING

Channelizers, Barrier Markers, and Delineators
1. Avery Dennison T-6500 Series (For rigid substrate devices only)
2. Avery Dennison WR-7100 Series
3. Nippon Carbide Industries, Flexible Ultralite Grade (ULG) II
4. Reflexite, PC-1000 Metalized Polycarbonate
5. Reflexite, AC-1000 Acrylic
6. Reflexite, AP-1000 Metalized Polyester
7. Reflexite, Conformalight, AR-1000 Abrasion Resistant Coating
8. 3M, High Intensity

Traffic Cones, 4-inch and 6-inch Sleeves
1. Nippon Carbide Industries, Flexible Ultralite Grade (ULG) II
2. Reflexite, Vinyl, "TR" (Semi-transparent) or "Conformalight", C85
3. 3M Series 3840, Series 3340
4. Avery Dennison S-9000C

Drums
1. Avery Dennison WR-6100
2. Nippon Carbide Industries, Flexible Ultralite Grade (ULG) II
3. Reflexite, "Conformalight", "Super High Intensity" or "High Impact Drum Sheeting"
4. 3M Series 3810

Barricade Sheeting: Type I, Medium-Intensity (Typically Enclosed Lens, Glass-Bead Element)
1. Nippon Carbide Industries, CN8117
2. Avery Dennison, W 1100 series
3. 3M Series CW 44

Barricade Sheeting: Type II, Medium-High-Intensity (Typically Enclosed Lens, Glass-Bead Element)
1. Avery Dennison, W-2100 Series

Barricade Sheeting: Type IV, High Intensity (Typically Unmetalized Microprismatic Retroreflective Element)
1. 3M Series 3334/3336
Vertical Clearance Signs: Structure Mounted
1. 3M Model 4061, Diamond Grade DG3, Fluorescent Yellow

Signs: Type II, Medium-High-Intensity (Typically Enclosed Lens, Glass-Bead Element)
1. Avery Dennison, T-2500 Series
2. Nippon Carbide Industries, Nikkalite 18000

Signs: Type III, High-Intensity (Typically Encapsulated Glass-Bead Element)
1. Avery Dennison, T-5500A and T-6500 Series
2. Nippon Carbide Industries, Nikkalite Brand Ultralite Grade II
3. 3M 3870 and 3930 Series
4. Changzhou Hua R Sheng, Series TM 1200
5. Oracal, Oralite Series 5800

Signs: Type IV, High-Intensity (Typically Unmetallized Microprismatic Element)
1. Avery Dennison, T-6500 Series
2. Nippon Carbide Industries, Crystal Grade, 94000 Series
3. Nippon Carbide Industries, Model No. 94847 Fluorescent Orange
4. 3M Series 3930 and Series 3924S

Signs: Type VI, Elastomeric (Roll-Up) High-Intensity, without Adhesive
1. Avery Dennison, WU-6014
2. Novabrite LLC, "Econobrite"
3. Reflexite "Vinyl"
4. Reflexite "SuperBright"
5. Reflexite "Marathon"
6. 3M Series RS20

Signs: Type VIII, Super-High-Intensity (Typically Unmetallized Microprismatic Element)
1. Avery Dennison, T-7500 Series
2. Avery Dennison, T-7511 Fluorescent Yellow
3. Avery Dennison, T-7513 Fluorescent Yellow Green
4. Avery Dennison, W-7514 Fluorescent Orange
5. Nippon Carbide Industries, Nikkalite Crystal Grade Series 92800
6. Nippon Carbide Industries, Nikkalite Crystal Grade Model 92847 Fluorescent Orange

Signs: Type IX, Very-High-Intensity (Typically Unmetallized Microprismatic Element)
1. 3M VIP Series 3981 Diamond Grade Fluorescent Yellow
2. 3M VIP Series 3983 Diamond Grade Fluorescent Yellow/Green
3. 3M VIP Series 3990 Diamond Grade
4. Avery Dennison, T-9500 Series
5. Avery Dennison, T9513, Fluorescent Yellow Green
6. Avery Dennison, W9514, Fluorescent Orange
7. Avery Dennison, T-9511 Fluorescent Yellow

Signs: Type XI, Very High Intensity (Typically Unmetallized Microprismatic Element)
1. 3M Diamond Grade, DG3, Series 4000
2. 3M Diamond Grade, DG3, Series 4081, Fluorescent Yellow
3. 3M Diamond Grade, DG3, Series 4083, Fluorescent Yellow/Green
4. 3M Diamond Grade, DG3, Series 4084, Fluorescent Orange
5. Avery Dennison, OmniCube, T-11500 Series
6. Avery Dennison, OmniCube, T-11511, Fluorescent Yellow
7. Avery Dennison, OmniCube, T-11513, Fluorescent Yellow Green
8. Avery Dennison, OmniCube, W-11514 Fluorescent Orange
SPECIALTY SIGNS
1. Reflexite "Endurance" Work Zone Sign (with Semi-Rigid Plastic Substrate)

ALTERNATIVE SIGN SUBSTRATES
Fiberglass Reinforced Plastic (FRP) and Expanded Foam PVC
1. Fiber-Brite (FRP)
2. Sequentia, "Polyplate" (FRP)
3. Inteplast Group "InteCel" (0.5 inch for Post-Mounted CZ Signs, 48-inch or less)(PVC)

Aluminum Composite, Temporary Construction Signs and Permanent Signs up to 4 foot, 7 Inches
1. Alcan Composites "Dibond Material, 80 mils”
2. Mitsubishi Chemical America, Alpolic 350
3. Bone Safety Signs, Bone Light ACM (temporary construction signs only)
4. Kommerling, USA, KomAlu 3 mm

8-1.02 STATE-FURNISHED MATERIALS
The State furnishes you with:

- Disks for survey monuments
- Model 2070 controller assembly, including controller unit, completely wired controller cabinet, and detector sensor units
- Components of battery backup system as follows:
 Inverter/charger unit
 Power transfer relay
 Manually-operated bypass switch
 Battery harness
 Utility interconnect wires
 Battery temperature probe
 Relay contact wires

The State furnishes you with completely wired controller cabinets with auxiliary equipment but without controller unit at 175 Cluster Street, San Bernardino, CA 92408. At least 48 hours before you pick up the materials, inform the Engineer what you will pick up and when you will pick it up.

8-1.03 SLAG AGGREGATE
Air-cooled iron blast furnace slag shall not be used to produce aggregate for:

1. Structure backfill material.
2. Pervious backfill material.
3. Permeable material.
4. Reinforced or prestressed portland cement concrete component or structure.

Aggregate produced from slag resulting from a steel-making process shall not be used for a highway construction project except for the following items:

1. Imported Borrow.
2. Aggregate Subbase.
3. Class 2 Aggregate Base.
4. Hot Mix Asphalt.

Steel slag to be used to produce aggregate for aggregate subbase and Class 2 aggregate base shall be crushed so that 100 percent of the material will pass a 3/4-inch sieve and then shall be control aged for a period of at least 3 months under conditions that will maintain all portions of the stockpiled material at a moisture content in excess of 6 percent of the dry weight of the aggregate.

A supplier of steel slag aggregate shall provide separate stockpiles for controlled aging of the slag. An individual stockpile shall contain not less than 10,000 tons nor more than 50,000 tons of slag. The material in each individual stockpile shall be assigned a unique lot number and each stockpile shall be identified with a permanent
system of signs. The supplier shall maintain a permanent record of the dates on which stockpiles are completed and controlled aging begun, of the dates when controlled aging was completed, and of the dates tests were made and the results of these tests. Moisture tests shall be made at least once each week. No credit for aging will be given for the time period covered by tests which show a moisture content of 6 percent or less. The stockpiles and records shall be available to the Engineer during normal working hours for inspection, check testing and review.

The supplier shall notify the Transportation Laboratory when each stockpile is completed and controlled aging begun. No more aggregate shall be added to the stockpile unless a new aging period is initiated. A further notification shall be sent when controlled aging is completed.

The supplier shall provide a Certificate of Compliance in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications. Each stockpile or portion of a stockpile that is used in the work will be considered a lot. The Certificates of Compliance shall state that the steel slag aggregate has been aged in a stockpile for at least 3 months at a moisture content in excess of 6 percent of the dry weight of the aggregate.

Steel slag used for imported borrow shall be weathered for at least 3 months. Prior to the use of steel slag as imported borrow, the supplier shall furnish a Certificate of Compliance in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications. The Certificate of Compliance shall state that the steel slag has been weathered for at least 3 months.

Each delivery of aggregate containing steel slag for use as aggregate subbase or Class 2 aggregate base shall be accompanied by a delivery tag for each load which will identify the lot of material by stockpile number, where the slag was aged, and the date that the stockpile was completed and controlled aging begun.

Air-cooled iron blast furnace slag or natural aggregate may be blended in proper combinations with steel slag aggregate to produce the specified gradings, for those items for which steel slag aggregate is permitted, unless otherwise provided.

Aggregate containing slag shall meet the applicable quality requirements for the items in which the aggregate is used.

The combined slag aggregate shall conform to the specified grading for the item in which it is used. The grading will be determined by California Test 202, modified by California Test 105 when there is a difference in specific gravity of 0.2 or more between the coarse and fine portion of the aggregate or between blends of different aggregates.

No aggregate produced from slag shall be placed within one foot, measured in any direction, of a non-cathodically protected pipe or structure unless the aggregate is incorporated in portland cement concrete pavement, in hot mix asphalt, or in treated base.

When slag is used as aggregate in hot mix asphalt, the K_c factor requirements, as determined by California Test 303, will not apply.

Slag aggregate used for embankment construction shall not be placed within 18 inches of finished slope lines, measured normal to the plane of the slope.

If steel slag aggregates are used to make hot mix asphalt, there shall be no other aggregates used in the mixture, except that up to 50 percent of the material passing the No. 4 sieve may consist of iron blast furnace slag aggregates or natural aggregates, or a combination thereof. If iron blast furnace aggregates or natural aggregates or a combination thereof are used in the mix, each type of aggregate shall be fed to the drier at a uniform rate. The rate of feed of each type of aggregate shall be maintained within 10 percent of the amount set. Adequate means shall be provided for controlling and checking the accuracy of the feeder.

Steel slag aggregate shall be stored separately from iron blast furnace slag aggregate and each type of slag aggregate shall also be stored separately from natural aggregate.

Hot mix asphalt produced from more than one of the following shall not be placed in the same layer: steel slag aggregates, iron blast furnace slag aggregates, natural aggregates or any combination thereof. Once a type of aggregate or aggregates is selected, it shall not be changed without prior approval by the Engineer.

If steel slag aggregates are used to produce hot mix asphalt, and if the specific gravity of a compacted stabilometer test specimen is in excess of 2.40, the quantity of hot mix asphalt to be paid for will be reduced. The stabilometer test specimen will be fabricated in conformance with the procedures in California Test 304 and the specific gravity of the specimen will be determined in conformance with Method C of California Test 308. The pay quantity of hot mix asphalt will be determined by multiplying the quantity of hot mix asphalt placed in the work by 2.40 and dividing the result by the specific gravity of the compacted stabilometer test specimen. Such reduction in quantity will be determined and applied as often as is necessary to ensure accurate results as determined by the Engineer.
SECTION 8-2. CONCRETE

8-2.01 PORTLAND CEMENT CONCRETE

Portland cement concrete shall conform to the provisions in Section 90, "Portland Cement Concrete," of the Standard Specifications and these special provisions.

STRENGTH DEVELOPMENT TIME

The time allowed to obtain the minimum required compressive strength as specified in Section 90-1.01, "Description," of the Standard Specifications will be 56 days when the Contractor chooses cementitious material that satisfies the following equation:

\[
\frac{(41 \times UF) + (19 \times F) + (11 \times SL)}{TC} \geq 7.0
\]

Where:

- \(F \) = Fly ash or natural pozzolan conforming to the requirements in AASHTO Designation: M 295, Class F or N, including the amount in blended cement, pounds per cubic yard. \(F \) is equivalent to the sum of FA and FB as defined in Section 90-2.01C, "Required Use of Supplementary Cementitious Materials," of the Standard Specifications.
- \(SL \) = GGBFS, including the amount in blended cement, pounds per cubic yard.
- \(UF \) = Silica fume, metakaolin, or UFFA, including the amount in blended cement, pounds per cubic yard.
- \(TC \) = Total amount of cementitious material used, pounds per cubic yard.

For concrete satisfying the equation above, the Contractor shall test for the modulus of rupture or compressive strength specified for the concrete involved, at least once every 500 cubic yards, at 28, 42, and 56 days. The Contractor shall submit test results to the Engineer and the Transportation Laboratory, Attention: Office of Concrete Materials.

SUPPLEMENTARY CEMENTITIOUS MATERIALS

The Contractor may use rice hull ash as a supplementary cementitious material (SCM) to make minor concrete. Rice hull ash shall conform to the requirements in AASHTO Designation: M 321 and the following chemical and physical requirements:

<table>
<thead>
<tr>
<th>Chemical Requirements</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon Dioxide (SiO(_2)) (^a)</td>
<td>90 min.</td>
</tr>
<tr>
<td>Loss on ignition</td>
<td>5.0 max.</td>
</tr>
<tr>
<td>Total Alkalies (as Na(_2)O) equivalent</td>
<td>3.0 max.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physical Requirements</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle size distribution</td>
<td></td>
</tr>
<tr>
<td>Less than 45 microns</td>
<td>95</td>
</tr>
<tr>
<td>Less than 10 microns</td>
<td>50</td>
</tr>
<tr>
<td>Strength Activity Index with portland cement(^b)</td>
<td></td>
</tr>
<tr>
<td>7 days</td>
<td>95 (minimum % of control)</td>
</tr>
<tr>
<td>28 days</td>
<td>110 (minimum % of control)</td>
</tr>
<tr>
<td>Expansion at 16 days when testing job materials in conformance with ASTM C 1567(^c)</td>
<td>0.10 max.</td>
</tr>
<tr>
<td>Surface Area when testing by nitrogen adsorption in conformance with ASTM D 5604</td>
<td>40.0 m(^2)/g min.</td>
</tr>
</tbody>
</table>

Notes:
- \(^a\) A maximum of 1.0% of the SiO\(_2\) may exist in crystalline form.
- \(^b\) When tested in conformance with the requirements for strength activity testing of silica fume in AASHTO Designation: M 307.
- \(^c\) In the test mix, Type II or Type V portland cement shall be replaced with at least 12% RHA by weight.
For the purposes of calculating cementitious material requirements in Section 90-2.01C, "Required Use of Supplementary Cementitious Materials," of the Standard Specifications and these special provisions, rice hull ash is considered to be represented by the variable UF.

8-2.02 RAPID STRENGTH CONCRETE FOR STRUCTURES

GENERAL

Summary
This section includes specifications for rapid strength concrete (RSC) for structures. You may only use RSC when specified elsewhere in these special provisions.

Definitions
Opening age: The age at which the concrete will achieve the specified strength for opening to public or construction traffic.

Submittals
Mix Design
Submit the RSC mix design at least 10 days before use. If a trial slab is required, submit the RSC mix design at least 10 days before constructing the trial slab. Include the following in the submittal:

1. Compressive strength test results for prequalification of RSC at age of break, at 3 days, and at 28 days
2. Opening age
3. Proposed aggregate grading
4. Mix proportions of cementitious material, aggregate, and water
5. Types and amounts of chemical admixtures, if used
6. Range of ambient temperatures over which the mix design will achieve the required minimum compressive strength
7. Source of materials

Volumetric Proportioning
When using volumetric proportioning, submit the following:

1. Aggregate moisture test results
2. Log of production data

Certificate of Compliance
Submit a Certificate of Compliance under Section 6-1.07, "Certificates of Compliance," of the Standard Specifications with each delivery of aggregate, cementitious material, and admixtures used for calibration tests. Include certified copies of the weight of each delivery.

The Certificate of Compliance must state that the source of materials used for the calibration tests is from the same source as to be used for the planned work. The Certificate of Compliance must be signed by an authorized representative.

Quality Control and Assurance
Prequalification of RSC
Prequalification of a RSC mix design includes determining the opening age and achieving the minimum specified 28-day compressive strength.
Prequalify RSC under the specifications for prequalification of concrete specified by compressive strength in Section 90-9.01, "General," of the Standard Specifications. Determine the opening age as follows:

1. Fabricate at least 5 test cylinders to be used to determine the age of break.
2. Immediately after fabrication of the 5 test cylinders, store the cylinders in a temperature medium of $70 \pm 3^\circ F$ until the cylinders are tested.
3. Determine the age of break to achieve an average strength of the 5 test cylinders of not less than 1200 psi. Not more than 2 test cylinders may have a strength of less than 1150 psi.
4. The opening age is the age of break plus 1 hour.
Weighmaster Certifications

Weighmaster certificates for RSC, regardless of the proportioning method used, must include all information necessary to trace the manufacturer and manufacturer's lot number for the cement being used. When proportioned into fabric containers, the weighmaster certificates for the cement must contain the date of proportioning, location of proportioning, and actual net draft weight of the cement. When proportioned at the job site from a storage silo, the weighmaster certificates must contain the date of proportioning, location of proportioning, and the net draft weight of the cement used in the load.

MATERIALS

General

RSC must comply with one of the following:

1. Concrete made with portland cement. The concrete must comply with Section 90, "Portland Cement Concrete," of the Standard Specifications. Type III cement may be used.
2. Concrete made with any cement that complies with the definition of hydraulic cement or blended hydraulic cement in ASTM C 219. The concrete must comply with Section 90, "Portland Cement Concrete," of the Standard Specifications, except that:

 2.1. Cementitious material must comply with the following:

<table>
<thead>
<tr>
<th>Test Description</th>
<th>Test Method</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contraction in Air</td>
<td>California Test 527, w/c ratio = 0.39±0.010</td>
<td>0.053%, max.</td>
</tr>
<tr>
<td>Mortar Expansion in Water</td>
<td>ASTM C 1038</td>
<td>0.04%, max.</td>
</tr>
<tr>
<td>Soluble Chloride*</td>
<td>California Test 422</td>
<td>0.05%, max.</td>
</tr>
<tr>
<td>Soluble Sulfate*</td>
<td>California Test 417</td>
<td>0.30%, max.</td>
</tr>
<tr>
<td>Thermal Stability</td>
<td>California Test 553</td>
<td>90%, min.</td>
</tr>
<tr>
<td>Compressive Strength @ 3 days</td>
<td>ASTM C 109</td>
<td>2500 psi</td>
</tr>
</tbody>
</table>

 *Test is to be done on a cube specimen fabricated in conformance with the requirements in ASTM C 109, cured at least 14 days, and then pulverized so that 100% passes the No. 50 sieve.

 2.2. Citric acid or borax may be used if requested in writing by the cement manufacturer and a sample is submitted to the Engineer. Chemical admixtures, if used, must be included when testing for requirements listed in the table above.

RSC must have a minimum 28-day compressive strength of 3600 psi, except that RSC placed in bridge decks must have a minimum 28-day compressive strength of 4500 psi and must comply with the shrinkage limitations as specified for bridge deck concrete in Section 90-1.01, "Description," of the Standard Specifications.

Supplementary cementitious material is not required.

Penetration requirements of Section 90-6.06, "Amount of Water and Penetration," of the Standard Specifications do not apply.

CONSTRUCTION

General

RSC may be proportioned and placed by a volumetric mixer.

Volumetric Proportioning

RSC proportioned by a volumetric mixer must comply with the requirements specified herein.

Batch-mixer trucks must proportion cement, water, aggregate, and additives by volume. Aggregate feeders must be connected directly to the drive on the cement vane feeder. The cement feed rate must be tied directly to the feed rate for the aggregate and other ingredients. Only change the ratio of cement to aggregate by changing the gate opening for the aggregate feed. The drive shaft of the aggregate feeder must have a revolution counter reading to the nearest full or partial revolution of the aggregate delivery belt.

Proportion aggregate with a belt feeder operated with an adjustable cutoff gate delineated to the nearest quarter increment. The gate opening height must be readily determinable. Proportion cement by any method that complies
with the accuracy tolerance specifications. Proportion water with a meter under Section 9-1.01, "Measurement of Quantities," of the Standard Specifications.

Calibrate the cutoff gate for each batch-mixer truck used and for each aggregate source. Calibrate batch-mixer trucks at 3 different aggregate gate settings that are commensurate with production needs. Perform at least 2 calibration runs for each aggregate gate.

Individual aggregate delivery rate check-runs must not deviate more than 1.0 percent from the mathematical average of all runs for the same gate and aggregate type. Each test run must be at least 1,000 pounds.

At the time of batching, dry and drain aggregates to a stable moisture content. Do not proportion aggregates with visible separation of water from the aggregate during proportioning. At the time of batching, the free moisture content of fine aggregate must not exceed 8 percent of its saturated, surface-dry weight.

If the proportioning plant has separate supplies of the same size group of aggregate with different moisture content, specific gravity, or surface characteristics affecting workability, exhaust 1 supply before using another supply.

Cover rotating and reciprocating equipment on batch-mixer trucks with metal guards.

Individual cement delivery rate check-runs must not deviate more than 1.0 percent of the mathematical average of 3 runs of at least 1,000 pounds each.

When the water meter operates between 50 percent and 100 percent of production capacity, the indicated weight of water delivered must not differ from the actual weight delivered by more than 1.5 percent for each of 2 runs of 75 gallons. Calibrate the water meter under California Test 109. The water meter must be equipped with a resettable totalizer and display the operating rate.

Conduct calibration tests for aggregate, cement, and water proportioning devices with a platform scale located at the calibration site. Platform scales for weighing test-run calibration material must have a maximum capacity of 2.75 tons with maximum graduations of 1 pound. Error test the platform scale within 8 hours of calibrating the batch-mixer truck proportioning devices. Perform error-testing with test weights under California Test 109. Furnish a witness scale that is within 2 graduations of the test weight load. The witness scale must be available for use at the production site throughout the production period. Equipment needed for the calibration of proportioning systems must remain available at the production site throughout the production period.

The batch-mixer truck must be equipped so that accuracy checks can be made. Recalibrate proportioning devices every 90 days after production begins or when you change the source or type of any ingredient.

A spot calibration is calibration of the cement proportioning system only. Perform a 2-run spot calibration each time 55 tons of cement passes through the batch-mixer truck. If the spot calibration shows the cement proportioning system does not comply with the specifications, complete a full calibration of the cement proportioning system before you resume production.

Locate cement storage immediately before the cement feeder. Equip the system with a device that automatically shuts down power to the cement feeder and aggregate belt feeder when the cement storage level is less than 20 percent of the total volume.

Determine aggregate moisture under California Test 223 at least every 2 hours during proportioning and mixing operations. Record aggregate moisture determinations and submit them at the end of each production shift.

Equip each aggregate bin with a device that automatically shuts down the power to the cement feeder and the aggregate belt feeder when the aggregate discharge rate is less than 95 percent of the scheduled discharge rate.

Proportioning device indicators must be in working order before beginning proportioning and mixing operations and must be visible when standing near the batch-mixer truck.

Identifying numbers of batch-mixer trucks must be at least 3 inches in height, and be located on the front and rear of the vehicle.

Mix volumetric proportioned RSC in a mechanically operated mixer. You may use auger-type mixers. Operate mixers uniformly at the mixing speed recommended by the manufacturer. Do not use mixers that have an accumulation of hard concrete or mortar.

Do not mix more material than will permit complete mixing. Reduce the volume of material in the mixer if complete mixing is not achieved. Continue mixing until a homogeneous mixture is produced at discharge. Do not add water to the RSC after discharge.

Do not use equipment with components made of aluminum or magnesium alloys that may have contact with plastic concrete during mixing or transporting of RSC.

The Engineer determines uniformity of concrete mixtures by differences in penetration measurements made under California Test 533. Differences in penetration are determined by comparing penetration tests on 2 samples of mixed concrete from the same batch or truck mixer load. The differences must not exceed 5/8 inch. Submit samples of freshly mixed concrete. Sampling facilities must be safe, accessible, clean, and produce a sample that is representative of production. Sampling devices and sampling methods must comply with California Test 125.

Do not use ice to cool RSC directly. If ice is used to cool water used in the mix, it must be melted before entering the mixer.
Proportion and charge cement into a mixer such that there is no variance of the required quantity of cement due to wind, accumulation on equipment, or other conditions.

Each mixer must have metal plates that provide the following information:

1. Designed usage
2. Manufacturer’s guaranteed mixed concrete volumetric capacity
3. Rotation speed

The device controlling the proportioning of cement, aggregate, and water must produce production data. The production data must be captured at 15-minute intervals throughout daily production. Each capture of production data represents production activity at that time and is not a summation of data. The amount of material represented by each production capture is the amount produced in the period from 7.5 minutes before to 7.5 minutes after the capture time. Submit the daily production data in electronic or printed media at the end of each production shift. Report the data including data titles in the following order:

1. Weight of cement per revolution count
2. Weight of each aggregate size per revolution count
3. Gate openings for each used aggregate size
4. Weight of water added to the concrete per revolution count
5. Moisture content of each used aggregate size
6. Individual volume of other admixtures per revolution count
7. Time of day
8. Day of week
9. Production start and stop times
10. Batch-mixer truck identification
11. Name of supplier
12. Specific type of concrete being produced
13. Source of the individual aggregate sizes
14. Source, brand, and type of cement
15. Source, brand and type of individual admixtures
16. Name and signature of operator

You may input production data by hand into a pre-printed form or it may be captured and printed by the proportioning device. Present electronic media containing recorded production data in a tab delimited format on a CD or DVD. Each capture of production data must be followed by a line-feed carriage-return with sufficient fields for the specified data.

Curing Concrete

For RSC made with a proprietary cement, the curing method must be as recommended by the manufacturer of the cement and as approved by the Engineer.

For RSC made using portland cement concrete, you must:

1. Cure the concrete using the curing compound method under Section 90-7.03, "Curing Structures," of the Standard Specifications. Fogging of the surface with water after the curing compound has been applied will not be required.
2. Repair immediately any damage to the film of the curing compound with additional compound. Do not repair damage to the curing compound after the concrete is opened to public traffic.
3. Cover the surface with an insulating layer or blanket when the ambient temperature is below 65 °F during the curing period. The insulation layer or blanket must have an R-value rating given in the table below. A heating tent may be used in lieu of or in combination with the insulating layer or blanket:

<table>
<thead>
<tr>
<th>Temperature Range During Curing Period</th>
<th>R-value, minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>55 °F to 65 °F</td>
<td>1</td>
</tr>
<tr>
<td>45 °F to 55 °F</td>
<td>2</td>
</tr>
<tr>
<td>39 °F to 45 °F</td>
<td>3</td>
</tr>
</tbody>
</table>
If compressive strength tests are performed in the field showing that the concrete has achieved 1200 psi, you may open the lane to traffic at the age of break. Perform the compressive strength tests under the provisions for sampling and testing cylinders in Section 90-9.01, "General," of the Standard Specifications. The decision to use this option must be made in writing to the Engineer before beginning construction.

MEASUREMENT AND PAYMENT

If calibration of volumetric batch trucks is performed more than 100 miles from the project limits, payment for rapid strength concrete is reduced by $1,000.

8-2.03 PRECAST CONCRETE QUALITY CONTROL

GENERAL

Precast concrete quality control shall conform to these special provisions.

Unless otherwise specified, precast concrete quality control shall apply when any precast concrete members are fabricated in conformance with the provisions in Section 49, "Piling," or Section 51, "Concrete Structures," of the Standard Specifications.

Precast concrete quality control shall not apply to precast concrete members that are fabricated from minor concrete.

Quality Control (QC) shall be the responsibility of the Contractor. The Contractor's QC inspectors shall perform inspection and testing prior to precasting, during precasting, and after precasting, and as specified in this section and additionally as necessary to ensure that materials and workmanship conform to the details shown on the plans, and to the specifications.

Quality Assurance (QA) is the prerogative of the Engineer. Regardless of the acceptance for a given precast element by the Contractor, the Engineer will evaluate the precast element. The Engineer will reject any precast element that does not conform to the approved Precast Concrete Quality Control Plan (PCQCP), the details shown on the plans, or to these special provisions.

The Contractor shall designate in writing a precast Quality Control Manager (QCM) for each precasting facility. The QCM shall be responsible directly to the Contractor for the quality of precasting, including materials and workmanship, performed by the Contractor and all subcontractors. The QCM shall be the sole individual responsible to the Contractor for submitting, receiving, and approving all correspondence, required submittals, and reports to and from the Engineer. The QCM shall not be employed or compensated by any subcontractor, or other persons or entities hired by subcontractors, or suppliers, who will provide other services or materials for the project. The QCM may be an employee of the Contractor.

Prior to submitting the PCQCP required herein, a meeting between the Engineer, the Contractor's QCM, and a representative from each entity performing precast concrete operations for this project, shall be held to discuss the requirements for precast quality control.

QC Inspectors shall either be 1) licensed as Civil Engineers in the State of California, or 2) have a current Plant Quality Personnel Certification, Level II, from the Precast/Prestressed Concrete Institute. A QC Inspector shall witness all precast concrete operations.

PRECAST CONCRETE QUALIFICATION AUDIT

Unless otherwise specified, no Contractors or subcontractors performing precast concrete operations for the project shall commence work without having successfully completed the Department's Precast Fabrication Qualification Audit, hereinafter referred to as the audit. Copies of the audit form, along with procedures for requesting and completing the audit, are available at:

http://www.dot.ca.gov/hq/esc/Translab/OSM/smbresources.htm

An audit that was previously approved by the Department no more than 3 years before the award of this contract will be acceptable for the entire period of this contract, provided the Engineer determines the audit is for the same type of work that is to be performed on this contract.

A list of facilities who have successfully completed the audit and are authorized to provide material for this contract is available at:

Successful completion of an audit shall not relieve the Contractor of the responsibility for furnishing materials or producing finished work of the quality specified in these special provisions and as shown on the plans.
PRECAST CONCRETE QUALITY CONTROL PLAN

Prior to performing any precasting operations, the Contractor shall submit to the Engineer, in conformance with the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications, 3 copies of a separate PCQCP for each item of work to be precast. A separate PCQCP shall be submitted for each facility. As a minimum, each PCQCP shall include the following:

A. The name of the precasting firm, the concrete plants to be used, and any concrete testing firm to be used;
B. A manual prepared by the precasting firm that includes equipment, testing procedures, safety plan, and the names, qualifications, and documentation of certifications for all personnel to be used;
C. The name of the QCM and the names, qualifications, and documentation of certifications for all QC inspection personnel to be used;
D. An organizational chart showing all QC personnel and their assigned QC responsibilities;
E. The methods and frequencies for performing all required quality control procedures, including all inspections, material testing, and any required survey procedures for all components of the precast elements including prestressing systems, concrete, grout, reinforcement, steel components embedded or attached to the precast member, miscellaneous metal, and formwork;
F. A system for identification and tracking of required precast element repairs, and a procedure for the reinspection of any repaired precast element. The system shall have provisions for a method of reporting nonconforming precast elements to the Engineer; and
G. Forms to be used for Certificates of Compliance, daily production logs, and daily reports.

The Engineer shall have 4 weeks to review the PCQCP submittal after a complete plan has been received. No precasting shall be performed until the PCQCP is approved in writing by the Engineer.

A PCQCP that was previously approved by the Engineer no more than one year prior to the beginning of work on this contract will be acceptable for the entire period of this contract, provided the Engineer determines the PCQCP is for the same type of work that is to be performed on this contract.

An amended PCQCP or addendum shall be submitted to, and approved in writing by the Engineer, for any proposed revisions to the approved PCQCP. An amended PCQCP or addendum will be required for any revisions to the PCQCP, including but not limited to changes in concrete plants or source materials, changes in material testing procedures and testing labs, changes in procedures and equipment, changes in QC personnel, or updated systems for tracking and identifying precast elements. The Engineer shall have 2 weeks to complete the review of the amended PCQCP or addendum, once a complete submittal has been received. Work that is affected by any of the proposed revisions shall not be performed until the amended PCQCP or addendum has been approved.

After final approval of the PCQCP, amended PCQCP, or addendum, the Contractor shall submit 7 copies to the Engineer of each of these approved documents.

It is expressly understood that the Engineer's approval of the Contractor's PCQCP shall not relieve the Contractor of any responsibility under the contract for the successful completion of the work in conformance with the requirements of the plans and specifications. The Engineer's approval shall neither constitute a waiver of any of the requirements of the plans and specifications nor relieve the Contractor of any obligation thereunder; and defective work, materials, and equipment may be rejected notwithstanding approval of the PCQCP.

REPORTING

The QC Inspector shall provide reports to the QCM on a daily basis for each day that precasting operations are performed.

A daily production log for precasting shall be kept by the QCM for each day that precasting operations, including setting forms, placing reinforcement, setting prestressing steel, casting, curing, post tensioning, and form release, are performed. The log shall include the facility location, and shall include a specific description of casting or related operations, any problems or deficiencies discovered, any testing or repair work performed, and the names of all QC personnel and the specific QC inspections they performed that day. The daily report from each QC Inspector shall also be included in the log. This daily log shall be available for viewing by the Engineer, at the precasting facility.

All reports regarding material tests and any required survey checks shall be signed by the person who performed the test or check, and then submitted directly to the QCM for review and signature prior to submittal to the Engineer. Corresponding names shall be clearly printed or type-written next to all signatures.

The Engineer shall be notified immediately in writing when any precasting problems or deficiencies are discovered and of the proposed repair or process changes required to correct them. The Engineer shall have 4 weeks to review these procedures. No remedial work shall begin until the Engineer approves these procedures in writing.
The following items shall be included in a precast report that is to be submitted to the Engineer following the completion of any precast element:

A. Reports of all material tests and any required survey checks;
B. Documentation that the Contractor has evaluated all tests and corrected all rejected deficiencies, and all repairs have been re-examined with the required tests and found acceptable; and
C. A daily production log.

At the completion of any precast element, and if the QCM determines that element is in conformance with these special provisions, the QCM shall sign and furnish to the Engineer, a Certificate of Compliance in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications. This Certificate of Compliance shall be submitted with the precast report. The certificate shall state that all of the materials and workmanship incorporated in the work, and all required tests and inspections of this work, have been performed in conformance with the details shown on the plans and the provisions of the Standard Specifications and these special provisions.

PAYMENT
In the event the Engineer fails to complete the review of 1) a PCQCP, 2) an amended PCQCP or addendum, or 3) a proposed repair or process change, within the time allowed, and if, in the opinion of the Engineer, completion of the work is delayed or interfered with by reason of the Engineer's delay in completing the review, the Contractor will be compensated for any resulting loss, and an extension of time will be granted, in the same manner as provided for in Section 8-1.09, "Right of Way Delays," of the Standard Specifications.

All required repair work or process changes required to correct precasting operation deficiencies, whether discovered by the QCM, QC Inspector, or by the Engineer, and any associated delays or expenses to the Contractor caused by performing these repairs, shall be at the Contractor's expense.

Full compensation for conforming to the requirements of this section shall be considered as included in the contract prices paid for the various items of work involved and no additional compensation will be allowed therefor.

8-2.04 CONTRACTOR QUALITY CONTROL (CONCRETE PAVEMENT)

GENERAL

Summary
This work includes controlling concrete pavement quality.
Comply with Section 40-1.03, "Quality Control and Assurance," of the Standard Specifications.

Submittals
Before starting paving activities, submit:

1. Quality control plan (QCP). The Engineer has 15 days to review and accept.

QCP must include the following additional requirements:

1. Name and qualifications of a Quality Control Manager (QCM). The QCM administers the QCP. Give the QCM authority to make decisions concerning work and product quality. The QCM must be available at the job site during paving. The QCM may not delegate authority except in emergencies and with the Engineer's approval. The QCM must not be a foreman or a production or paving crew member.
2. Organization chart showing quality control lines of authority.
3. List of names and phone numbers of individuals and alternates responsible for quality control including:
 3.1. Administration
 3.2. Sampling
 3.3. Testing
 3.4. Inspection
4. List of inspection, sampling, and testing personnel with their:
 4.1. Names
 4.2. Duties
 4.3. Qualifications
4.4. Experience

5. For each laboratory used:

5.1. Laboratory name and location
5.2. Name and qualifications of a Laboratory Quality Control Manager
5.3. Names of testers

6. Approved:

6.1. Test result forms
6.2. Roadway and plant inspection forms
6.3. Daily Quality Control Summary form
6.4. Compliance charts

7. Random sampling methods
8. List of testing and sampling equipment to be used
9. Current calibration dates and charts

If there are changes to quality control procedures or personnel, modify the QCP with a supplement. Until the Engineer accepts the changes, do not produce or place concrete pavement.

Documentation forms include:

1. Data sheets for test results and calculations
2. Daily Quality Control Summary Sheet that facilitates the Engineer's computation of moving test averages and describes quality control actions to be taken, including adjustments to:

 2.1. Aggregate proportions
 2.2. Admixture proportions
 2.3. Moisture

Submit documents for testing and inspection. Documents must indicate:

1. Nature and number of observations
2. Number and type of deficiencies
3. Quantities accepted and rejected
4. Corrective action taken

Submit construction activity documents before contract acceptance.

Quality Control and Assurance

Provide quality control inspectors and testers for concrete pavement production and placement. Inspectors must inspect concrete pavement construction equipment for proper operation periodically as specified in the QCP.

Calibrate testing equipment under the equipment manufacturer's instructions.

Provide a testing facility at the plant site or job site.

Allow the Engineer use of the testing facility including the facility's:

1. Telephone
2. Copying machine
3. Facsimile machine

Provide a safe and secure area for the Engineer to cure beam specimens. The curing area must include access to potable water through a pressurized water line with a hose bib.

Develop and maintain a filing system for construction activity documents including:

1. Reports
2. Charts
3. Records
4. Diaries

For the early age concrete pavement stress/strength system, use the latest version of HiperPav computer program or an equal prediction model.

PAYMENT

The Department does not adjust payment or contract time for repair work required when the QCM or quality control inspectors identify a deficiency.

Full compensation for Contractor quality control is included in the contract price paid per cubic yard for concrete pavement as designated in the Engineer's Estimate and no separate payment will be made therefor.

8-2.05 SELF-CONSOLIDATING CONCRETE FOR PRECAST ELEMENTS

GENERAL

Summary

This section includes specifications for self-consolidating concrete (SCC).

You may use SCC for only the following cases:

1. For precast concrete
2. Where the specifications allow the use of SCC

Definitions

self-consolidating concrete: Flowing concrete capable of spreading to a level state without segregation and without the use of internal or external vibrators.

Submittals

Submit the following for approval before placing SCC:

1. SCC mix design and placement procedures
2. Trial batch test report

Quality Control and Assurance

General

Prepare SCC specimens for compressive strength testing under California Test 540 except fabricate test specimens as follows:

1. Place test molds on a firm, flat surface to prevent distortion of the bottom surface. When more than 1 specimen is to be made from the same batch, make all specimens simultaneously. Fill the mold in 1 lift, pouring the concrete from a larger container. Pat sides of the mold lightly by hand, or jig by rocking the mold from side to side.
2. Strike off the surface of the concrete even with the top edge of the mold. Wipe the sides of the mold free of excess concrete and press the lid on.

Prequalification of SCC Mix Design

Prequalify the SCC mix design with a trial batch using the same materials, mix proportions, mixing equipment, procedures, and size of batch to be used in the production of SCC. The trial batch test report for the SCC mix design must include the following tests and results:
SCC Mix Design Requirements

<table>
<thead>
<tr>
<th>Property</th>
<th>Requirement</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slump Flow</td>
<td>At least 20 inches</td>
<td>ASTM C 1611</td>
</tr>
<tr>
<td>Flow Rate - T_{50}</td>
<td>Between 2 and 7 seconds</td>
<td>ASTM C 1611</td>
</tr>
<tr>
<td>Visual Stability Index</td>
<td>1 or less</td>
<td>ASTM C 1611</td>
</tr>
<tr>
<td>J-Ring Flow</td>
<td>The difference between J-Ring flow and the slump flow must not exceed 2 inches</td>
<td>ASTM C 1621</td>
</tr>
<tr>
<td>Column Segregation</td>
<td>Static segregation must not exceed 15%</td>
<td>ASTM C 1610</td>
</tr>
<tr>
<td>Bleeding</td>
<td>Bleeding capacity must not exceed 2.5%</td>
<td>ASTM C 232</td>
</tr>
<tr>
<td>Compressive Strength</td>
<td>The average of 5 test cylinders must be at least 600 psi greater than the specified strength.</td>
<td>California Test 521</td>
</tr>
<tr>
<td>Minimum Compressive Strength</td>
<td>The minimum for an individual test cylinder must not be less than the specified strength.</td>
<td>California Test 521</td>
</tr>
</tbody>
</table>

Note:

a At the maximum age specified or allowed

Field Quality Control

Determine the fine aggregate moisture content for each batch of SCC.
Determine slump flow and visual stability index (VSI) under ASTM C 1611 at the beginning of SCC placement and whenever a set of concrete cylinders is prepared. The slump flow must not vary by more than 3 inches from the mix design slump flow, and the minimum allowable slump flow is 20 inches. VSI must be 1.0 or less. If the Engineer rejects SCC for slump flow and VSI, make corrective changes in the SCC mix design or placement procedures before placing additional SCC. Submit revised SCC mix design or placement procedures for approval.

MATERIALS

PAYMENT

The Department measures and pays for SCC under the specifications requiring or allowing its use.

SECTION 8-3. WELDING

8-3.01 WELDING

GENERAL

Unless otherwise specified, Section 8-3, "Welding," shall apply to any welding that is specified to conform to an AWS welding code.

Requirements of the AWS welding codes shall apply unless otherwise specified in the Standard Specifications, on the plans, or in these special provisions. Wherever the abbreviation AWS is used, it shall be equivalent to the abbreviations ANSI/AWS or AASHTO/AWS.
Wherever reference is made to the following AWS welding codes in the Standard Specifications, on the plans, or in these special provisions, the year of adoption for these codes shall be as listed:

<table>
<thead>
<tr>
<th>AWS Code</th>
<th>Year of Adoption</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1.1</td>
<td>2008</td>
</tr>
<tr>
<td>D1.3</td>
<td>2008</td>
</tr>
<tr>
<td>D1.4</td>
<td>2005</td>
</tr>
<tr>
<td>D1.5</td>
<td>2008</td>
</tr>
<tr>
<td>D1.6</td>
<td>2007</td>
</tr>
<tr>
<td>D1.8</td>
<td>2009</td>
</tr>
</tbody>
</table>

Flux cored welding electrodes conforming to the requirements of AWS A5.20 E6XT-4 or E7XT-4 shall not be used to perform welding for this project.

Unless otherwise specified, Clause 6.1.3 of AWS D1.1, paragraph 1 of Section 7.1.2 of AWS D1.4, and Clause 6.1.1.2 of AWS D1.5, are replaced with the following:

The QC Inspector shall be the duly designated person who acts for and on behalf of the Contractor for inspection, testing, and quality related matters for all welding.

Quality Assurance (QA) is the prerogative of the Engineer. The QA Inspector is the duly designated person who acts for and on behalf of the Engineer.

The QC Inspector shall be responsible for quality control acceptance or rejection of materials and workmanship.

When the term "Inspector" is used without further qualification, it shall refer to the QC Inspector.

Inspection and approval of all joint preparations, assembly practices, joint fit-ups, welding techniques, and the performance of each welder, welding operator, and tack welder shall be documented by the QC Inspector on a daily basis for each day welding is performed. For each inspection, including fit-up, Welding Procedure Specification (WPS) verification, and final weld inspection, the QC Inspector shall confirm and document compliance with the requirements of the AWS or other specified code criteria and the requirements of these special provisions on all welded joints before welding, during welding, and after the completion of each weld.

The Engineer shall have the authority to verify the qualifications or certifications of any welder, QC Inspector, or NDT personnel to specified levels by retests or other means approved by the Engineer.

When joint weld details that are not prequalified to the details of Clause 3 of AWS D1.1 or to the details of Figure 2.4 or 2.5 of AWS D1.5 are proposed for use in the work, the joint details, their intended locations, and the proposed welding parameters and essential variables, shall be approved by the Engineer. The Contractor shall allow the Engineer 15 days to complete the review of the proposed joint detail locations.

In addition to the requirements of AWS D1.1, welding procedure qualifications for work welded in conformance with this code shall conform to the following:

When a nonstandard weld joint is to be made using a combination of WPSs, a single test may be conducted combining the WPSs to be used in production, provided the essential variables, including weld bead placement, of each process are limited to those established in Table 4.5.

Upon approval of the proposed joint detail locations and qualification of the proposed joint details, welders and welding operators using these details shall perform a qualification test plate using the WPS variables and the joint detail to be used in production. The test plate shall have the maximum thickness to be used in production and a minimum length of 18 inches. The test plate shall be mechanically and radiographically tested. Mechanical and radiographic testing and acceptance criteria shall be as specified in the applicable AWS codes.

The Engineer will witness all qualification tests for WPSs that were not previously approved by the Department.

In addition to the requirements specified in the applicable code, the period of effectiveness for a welder's or welding operator's qualification shall be a maximum of 3 years for the same weld process, welding position, and weld type. If welding will be performed without gas shielding, then qualification shall also be without gas shielding. Excluding welding of fracture critical members, a valid qualification at the beginning of work on a contract will be acceptable for the entire period of the contract, as long as the welder's or welding operator's work remains satisfactory.

The Contractor shall notify the Engineer 7 days prior to performing any procedure qualification tests. Witnessing of qualification tests by the Engineer shall not constitute approval of the intended joint locations,
welding parameters, or essential variables. The Contractor shall notify the Engineer using the "Standard TL-38 Inspection Form" located at:

http://www.dot.ca.gov/hq/esc/Translab/OSM/smbforms.htm

Clause 6.14.6, "Personnel Qualification," of AWS D1.1, Section 7.8, "Personnel Qualification," of AWS D1.4, and Clause 6.1.3.4, "Personnel Qualification," of AWS D1.5 are replaced with the following:

Personnel performing nondestructive testing (NDT) shall be qualified and certified in conformance with the requirements of the American Society for Nondestructive Testing (ASNT) Recommended Practice No. SNT-TC-1A and the Written Practice of the NDT firm. The Written Practice of the NDT firm shall meet or exceed the guidelines of the ASNT Recommended Practice No. SNT-TC-1A. Individuals who perform NDT, review the results, and prepare the written reports shall be either:

A. Certified NDT Level II technicians, or;
B. Level III technicians who hold a current ASNT Level III certificate in that discipline and are authorized and certified to perform the work of Level II technicians.

Clause 6.6.5, "Nonspecified NDT Other than Visual," of AWS D1.1, Section 7.6.5 of AWS D1.4 and Clause 6.6.5 of AWS D1.5 shall not apply.

For any welding, the Engineer may direct the Contractor to perform NDT that is in addition to the visual inspection or NDT specified in the AWS or other specified welding codes, in the Standard Specifications, or in these special provisions. Except as provided for in these special provisions, additional NDT required by the Engineer, and associated repair work, will be paid for as extra work as provided in Section 4-1.03D, "Extra Work," of the Standard Specifications. Prior to release of welded material by the Engineer, if testing by NDT methods other than those originally specified discloses an attempt to defraud or reveals a gross nonconformance, all costs associated with the repair of the deficient area, including NDT of the weld and of the repair, and any delays caused by the repair, shall be at the Contractor’s expense. A gross nonconformance is defined as the sum of planar type rejectable indications in more than 20 percent of the tested length.

When less than 100 percent of NDT is specified for any weld, it is expected that the entire length of weld meet the specified acceptance-rejection criteria. Should any welding deficiencies be discovered by additional NDT directed or performed by the Engineer that utilizes the same NDT method as that originally specified, all costs associated with the repair of the deficient area, including NDT of the weld and of the weld repair, and any delays caused by the repair, shall be at the Contractor’s expense.

Repair work to correct welding deficiencies discovered by visual inspection directed or performed by the Engineer, and any associated delays or expenses caused to the Contractor by performing these repairs, shall be at the Contractor’s expense.

WELDING QUALITY CONTROL

Welding quality control shall conform to the requirements in the AWS or other specified welding codes, the Standard Specifications, and these special provisions.

Unless otherwise specified, welding quality control shall apply to work welded in conformance with the provisions in the following:

A. Section 49, "Piling," Section 52, "Reinforcement," Section 55, "Steel Structures," and Section 75-1.035, "Bridge Joint Restrainer Units," of the Standard Specifications
B. "Bearings" of these special provisions

Unless otherwise specified, Clauses 6.1.4.1 and 6.1.4.3 of AWS D1.1, paragraph 2 of Section 7.1.2 of AWS D1.4, and Clauses 6.1.3.2 through 6.1.3.3 of AWS D1.5 are replaced with the following:

The QC Inspector shall be currently certified as an AWS Certified Welding Inspector (CWI) in conformance with the requirements in AWS QC1, "Standard for AWS Certification of Welding Inspectors."

The QC Inspector may be assisted by an Assistant QC Inspector provided that this individual is currently certified as an AWS Certified Associate Welding Inspector (CAWI) in conformance with the requirements in AWS QC1, "Standard for AWS Certification of Welding Inspectors." The Assistant QC Inspector may perform inspection under the direct supervision of the QC Inspector provided the assistant is always within visible and audible range of the QC Inspector. The QC Inspector shall be responsible for signing all reports and for determining if welded
materials conform to workmanship and acceptance criteria. The ratio of QC Assistants to QC Inspectors shall not exceed 5 to 1.

The Contractor shall designate in writing a welding Quality Control Manager (QCM). The QCM shall be responsible directly to the Contractor for the quality of welding, including materials and workmanship, performed by the Contractor and subcontractors.

The QCM shall be the sole individual responsible to the Contractor for submitting, receiving, reviewing, and approving all correspondence, required submittals, and reports to and from the Engineer. The QCM shall be a registered professional engineer or shall be currently certified as a CWI. Unless the QCM is hired by a subcontractor providing only QC services, the QCM shall not be employed or compensated by any subcontractor, or by other persons or entities hired by subcontractors, who will provide other services or materials for the project. The QCM may be an employee of the Contractor.

The QCM shall sign and furnish to the Engineer, a Certificate of Compliance in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications for each item of work for which welding was performed. The certificate shall state that all of the materials and workmanship incorporated in the work, and all required tests and inspections of this work, have been performed in conformance with the details shown on the plans, the Standard Specifications, and these special provisions.

Welding inspection personnel or NDT firms to be used in the work shall not be employed or compensated by any subcontractor, or by other persons or entities hired by subcontractors, who will provide other services or materials for the project, except for the following conditions:

A. The work is welded in conformance with AWS D1.5 and is performed at a permanent fabrication or manufacturing facility that is certified under the AISC Quality Certification Program, Category CBR, Major Steel Bridges and Fracture Critical endorsement F, when applicable.

B. Structural steel for building work is welded in conformance with AWS D1.1 and is performed at a permanent fabrication or manufacturing facility that is certified under the AISC Quality Certification Program, Category STD, Standard for Steel Building Structures.

For welding performed at such facilities, the inspection personnel or NDT firms may be employed or compensated by the facility performing the welding provided the facility maintains a QC program that is independent from production.

Unless otherwise specified, an approved independent third party will witness the qualification tests for welders or welding operators. The independent third party shall be a current CWI and shall not be an employee of the contractor performing the welding. The Contractor shall allow the Engineer 15 days to review the qualifications and copy of the current certification of the independent third party.

Prior to submitting the Welding Quality Control Plan (WQCP) required herein, a prewelding meeting between the Engineer, the Contractor's QCM, and a representative from each entity performing welding or inspection for this project, shall be held to discuss the requirements for the WQCP.

Information regarding the contents, format, and organization of a WQCP, is available at the Transportation Laboratory and at:

http://www.dot.ca.gov/hq/esc/Translab/OSM/smbresources.htm

The Contractor shall submit to the Engineer, in conformance with the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications, 2 copies of a separate WQCP for each subcontractor or supplier for each item of work for which welding is to be performed. The Contractor shall allow the Engineer 15 days to review the WQCP submittal after a complete plan has been received. No welding shall be performed until the WQCP is approved in writing by the Engineer.

An amended WQCP or any addendum to the approved WQCP shall be submitted to, and approved in writing by the Engineer, for proposed revisions to the approved WQCP. An amended WQCP or addendum will be required for revisions to the WQCP, including but not limited to a revised WPS; additional welders; changes in NDT firms, QC, or NDT personnel or procedures; or updated systems for tracking and identifying welds. The Engineer shall have 7 days to complete the review of the amended WQCP or addendum. Work affected by the proposed revisions shall not be performed until the amended WQCP or addendum has been approved.

After final approval of the WQCP, amended WQCP, or addendum, the Contractor shall submit 7 copies to the Engineer of the approved documents. A copy of the Engineer approved document shall be available at each location where welding is to be performed.
All welding will require inspection by the Engineer. The Contractor shall request inspection at least 3 business
days prior to the beginning of welding for locations within California and 5 business days for locations outside of
California. The Contractor shall request inspection at:

http://www.dot.ca.gov/hq/esc/Translab/OSM/smbforms.htm

Continuous inspection shall be provided when any welding is being performed. Continuous inspection, as a
minimum, shall include having a QC Inspector within such close proximity of all welders or welding operators so
that inspections by the QC Inspector of each welding operation at each welding location does not lapse for a period
exceeding 30 minutes.

A daily production log for welding shall be kept for each day that welding is performed. The log shall clearly
indicate the locations of all welding. The log shall include the welders' names, amount of welding performed, any
problems or deficiencies discovered, and any testing or repair work performed, at each location. The daily report
from each QC Inspector shall also be included in the log.

The following items shall be included in a Welding Report that is to be submitted to the Engineer within 15
days following the performance of any welding:

A. A daily production log.
B. Reports of all visual weld inspections and NDT.
C. Radiographs and radiographic reports, and other required NDT reports.
D. A summary of welding and NDT activities that occurred during the reporting period.
E. Reports of each application of heat straightening.
F. A summarized log listing the rejected lengths of weld by welder, position, process, joint configuration, and
 piece number.
G. Documentation that the Contractor has evaluated all radiographs and other nondestructive tests and
 corrected all rejectable deficiencies, and that all repaired welds have been reexamined using the required
 NDT and found acceptable.

The following information shall be clearly written on the outside of radiographic envelopes: name of the QCM,
name of the nondestructive testing firm, name of the radiographer, date, contract number, complete part description,
and all included weld numbers, report numbers, and station markers or views, as detailed in the WQCP. In addition,
all interleaves shall have clearly written on them the part description and all included weld numbers and station
markers or views, as detailed in the WQCP. A maximum of 2 pieces of film shall be used for each interleave.

Reports of all visual inspections and NDT shall be signed by the inspector or technician and submitted daily to
the QCM for review and signature prior to submittal to the Engineer. Corresponding names shall be clearly printed
or typewritten next to all signatures. Reports of all NDT, whether specified, additional, or informational, performed
by the Contractor shall be submitted to the Engineer.

The Engineer will review the Welding Report to determine if the Contractor is in conformance with the WQCP.
Except for field welded steel pipe piling, the Engineer shall be allowed 15 days to review the report and respond in
writing after the complete Welding Report has been received. Prior to receiving notification from the Engineer of
the Contractor's conformance with the WQCP, the Contractor may encase in concrete or cover welds for which the
Welding Report has been submitted. However, should the Contractor elect to encase or cover those welds prior to
receiving notification from the Engineer, it is expressly understood that the Contractor shall not be relieved of the
responsibility for incorporating material in the work that conforms to the requirements of the plans and
specifications. Material not conforming to these requirements will be subject to rejection.

For field welded steel pipe piling, including bar reinforcement in the piling, the Contractor shall allow the
Engineer 2 business days to review the Welding Report and respond in writing after the required items have been
received. No field welded steel pipe piling shall be installed, and no reinforcement in the piling shall be encased in
concrete until the Engineer has approved the above requirements in writing.

In addition to the requirements in AWS D1.1 and AWS D1.5, third-time excavations of welds or base metal to
repair unacceptable discontinuities, regardless of NDT method, and all repairs of cracks require prior approval of the
Engineer.

The Engineer shall be notified immediately in writing when welding problems, deficiencies, base metal repairs,
or any other type of repairs not submitted in the WQCP are discovered, and also of the proposed repair procedures to
correct them. For requests to perform third-time excavations or repairs of cracks, the Contractor shall include an
engineering evaluation of the proposed repair. The engineering evaluation, at a minimum, shall address the
following:
A. What is causing each defect?
B. Why the repair will not degrade the material properties?
C. What steps are being taken to prevent similar defects from happening again?

The Contractor shall allow the Engineer 7 days to review these procedures. No remedial work shall begin until the repair procedures are approved in writing by the Engineer.

Clause 6.5.4 of AWS D1.5 is replaced with the following:

The QC Inspector shall inspect and approve each joint preparation, assembly practice, welding technique, joint fit-up, and the performance of each welder, welding operator, and tack welder to make certain that the applicable requirements of this code and the approved Welding Procedure Specification (WPS) are met. The QC Inspector shall examine the work to make certain that it meets the requirements of Clauses 3 and 6.26. The size and contour of all welds shall be measured using suitable gages. Visual inspection for cracks in welds and base metal, and for other discontinuities shall be aided by strong light, magnifiers, or such other devices as may be helpful. Acceptance criteria different from those specified in this code may be used when approved by the Engineer.

In addition to the requirements of AWS D1.5, Clause 5.12 or 5.13, welding procedures qualification for work welded in conformance with that code shall conform to the following requirements:

A. Unless considered prequalified, fillet welds shall be qualified in each position. The fillet weld soundness test shall be conducted using the essential variables of the WPS as established by the Procedure Qualification Record (PQR).
B. For qualification of joints that do not conform to Figures 2.4 and 2.5 of AWS D1.5, a minimum of 2 WPS qualification tests are required. The tests shall be conducted using both Figure 5.1 and Figure 5.3. The test conforming to Figure 5.1 shall be conducted in conformance with AWS D1.5, Clause 5.12 or 5.13. The test conforming to Figure 5.3 shall be conducted using the welding electrical parameters that were established for the test conducted conforming to Figure 5.1. The ranges of welding electrical parameters established during welding per Figure 5.1 in conformance with AWS D1.5, Clause 5.12, shall be further restricted according to the limits in Table 5.3 during welding per Figure 5.3.
C. Multiple zones within a weld joint may be qualified. The travel speed, amperage, and voltage values that are used for tests conducted per AWS D1.5 Clause 5.13 shall be consistent for each pass in a weld joint, and shall in no case vary by more than ±10 percent for travel speed, ±10 percent for amperage, and ±7 percent for voltage as measured from a predetermined target value or average within each weld pass or zone. The travel speed shall in no case vary by more than ±15 percent when using submerged arc welding.
D. For a WPS qualified in conformance with AWS D1.5 Clause 5.13, the values to be used for calculating ranges for current and voltage shall be based on the average of all weld passes made in the test. Heat input shall be calculated using the average of current and voltage of all weld passes made in the test for a WPS qualified in conformance with Clause 5.12 or 5.13.
E. Macroetch tests are required for WPS qualification tests, and acceptance shall be per AWS D1.5 Clause 5.19.3.
F. When a nonstandard weld joint is to be made using a combination of WPSs, a test conforming to Figure 5.3 may be conducted combining the WPSs to be used in production, provided the essential variables, including weld bead placement, of each process are limited to those established in Table 5.3.
G. Prior to preparing mechanical test specimens, the PQR welds shall be inspected by visual and radiographic tests. Backing bar shall be 3 inches in width and shall remain in place during NDT testing. Results of the visual and radiographic tests shall comply with AWS D1.5 Clause 6.26.2, excluding Clause 6.26.2.2. Test plates that do not comply with both tests shall not be used.

WELDING FOR OVERHEAD SIGN AND POLE STRUCTURES

The Contractor shall meet the following requirements for any work welded in conformance with the provisions in Section 56-1, "Overhead Sign Structures," or Section 86-2.04, "Standards, Steel Pedestals and Posts," of the Standard Specifications.

Welding inspection personnel or NDT firms to be used in the work shall not be employed or compensated by any subcontractor or by other persons or entities hired by subcontractors who will provide other services or materials for the project except for when the welding is performed at a permanent fabrication or manufacturing facility that is certified under the AISC Quality Certification Program. The AISC Certification category for overhead sign structures shall be Simple Steel Bridge Structures (SBR), and the AISC Certification category for pole structures shall be Simple Steel Bridge Structures (SBR) or Standard for Steel Building Structures (STD).
Welding Qualification Audit

Contractors or subcontractors performing welding operations for overhead sign and pole structures shall have successfully completed the Department's "Manufacturing Qualification Audit for Overhead Sign and Pole Structures." Copies of the audit form and procedures for requesting and completing the audit are available at:

http://www.dot.ca.gov/hq/esc/Translab/OSM/smbresources.htm

An audit that was approved by the Engineer no more than 3 years prior to the award of the contract will be acceptable for the entire period of this contract provided the Engineer determines the audit was for the same type of work that is to be performed on this contract.

A list of facilities that have successfully completed the audit and are authorized to provide material for this contract is available at:

Successful completion of an audit shall not relieve the Contractor of the responsibility for furnishing materials or producing finished work of the quality specified in these special provisions and as shown on the plans.

Welding Report

For work welded in conformance with the provisions in Section 56-1, "Overhead Sign Structures," or Section 86-2.04, "Standards, Steel Pedestals and Posts," of the Standard Specifications, a Welding Report shall be submitted in conformance with the provisions in "Welding Quality Control" of these special provisions.

PAYMENT

Full compensation for conforming to the requirements of "Welding" shall be considered as included in the contract prices paid for the various items of work involved and no additional compensation will be allowed therefor.

SECTION 9. DESCRIPTION OF BRIDGE WORK

The bridge work to be done consists, in general, of the following:

SANTA ANA RIVER BRIDGE (WIDEN)
(Bridge No. 0471 R/L)

Widen two existing 12 span bridges with CIP box girder bridges, that are approximately 711 feet long and 18 feet wide, founded on steel piles, with the last four spans of the widening joining into one CIP box median bridge widening that narrows in width to fill the gap between the two existing bridges. Existing box culverts are extended and joined together with new box culverts between the two existing bridges.

I-215 / I-10 SEPARATION RT (WIDEN)
(Bridge No. 54-0479R)

Widen an existing two span PC/PS I Girder bridge, on the left side, that is approximately 260 feet long with a new PC/PS Concrete Bulb-Tee Girder bridge that is founded on driven steel piles and approximately 17 feet wide. The existing right side Type 9 barrier is to be replaced with Type 732R concrete barrier. The existing bent cap, girders, and columns are to be retrofitted with Carbon FRP systems, and the existing bridge deck is to be cleaned and treated with methacrylate.

I-215 / I-10 SEPARATION LT (WIDEN)
(Bridge No. 54-0479L)

Widen an existing two span PC/PS I Girder bridge, on the right side, that is approximately 260 feet long with a new PC/PS Concrete Bulb-Tee Girder bridge that is founded on driven steel piles and approximately 17 feet wide. The existing left side Type 9 barrier is to be replaced with Type 732R concrete barrier. The existing bent cap, girders, and columns are to be retrofitted with Carbon FRP systems, and the existing bridge deck is to be cleaned and treated with methacrylate.
COLTON-LOMA LINDA OH RT (WIDEN)
(Bridge No. 54-0482R)

Widen an existing six span steel girder bridge, on the left side, that is approximately 749 feet long with a composite welded steel plate girders bridge that is founded on driven concrete piles and approximately 17 feet wide, and replace existing right-side bridge overhang and Type 9 barrier railing with new Type 732 barrier and chain link railing.

COLTON-LOMA LINDA OH LT (WIDEN)
(Bridge No. 54-0482L)

Widen an existing six span steel girder bridge, on the right side, that is approximately 748 feet long with a composite welded steel plate girders bridge that is founded on driven steel piles and approximately 18 feet wide, and replace existing left-side bridge overhang and Type 9 barrier railing with new Type 732 barrier and chain link railing. One existing column is to be retrofitted with a steel column casing.

NEWPORT AVE OC (REPLACE)
(Bridge No. 54-1294)

Remove an existing bridge and construct a two span CIP/PS box girder bridge that is approximately 185 feet long and 51 feet wide, founded on spread footing and construct four Type 1 retaining walls, as shown on the plans.

HIGHGROVE UP (SHOOFLY) DBL TRACK
(Bridge No. 54-1306)

Remove an existing bridge and construct a four span structural steel shoofly bridge, that is approximately 373 feet long and 37 feet wide, and founded on cidh piles at the bents and spread footings at the abutments, as shown on the plans.

HIGHGROVE UNDERPASS #1
(Bridge No. 54-1304)

Construct a structural steel truss bridge that is approximately 406 feet long and 21 feet wide having two spans and founded on cidh piles.

HIGHGROVE UNDERPASS #2
(Bridge No. 54-1305)

Construct a structural steel truss bridge that is approximately 406 feet long and 21 feet wide having two spans and founded on cidh piles. Remove the UP shoofly bridge (Bridge No. 54-1306).

HIGHGROVE UNDERPASS #3
(Bridge No. 54-1303)

Construct a structural steel truss bridge that is approximately 406 feet long and 21 feet wide having two spans and founded on cidh piles, and remove an existing bridge.

HIGHGROVE UP (SHOOFLY) VIADUCT
(Bridge No.54-1306S)

Construct a two-span reinforced concrete slab sidehill viaduct bridge that is approximately 50 feet long and 14 feet wide founded on driven concrete piles at the abutments and a cidh pile at the bent, and construct retaining walls, as shown on the plans.

IOWA AVE OC RETAINING WALL 28
(Bridge No. 54E0041)

Construct two Type 1 retaining walls that are approximately 64 feet and 89 feet long, and construct a ground anchor wall that is approximately 60 feet long.
IOWA AVE OC RETAINING WALL 31
(Bridge No. 54E0042)

Construct two Type 1 retaining walls that are approximately 36 feet and 44 feet long, and construct a ground anchor wall that is approximately 60 feet long.

RETAINING WALL 40
(Bridge No. 54E0111)

Construct a Type 1 retaining wall that are approximately 1,193 feet long.

RETAINING WALL 100
(Bridge No. 54E0043)

Construct a Type 1SW (MOD) retaining wall that is approximately 303 feet long with a masonry block sound wall on top.

RETAINING WALL No. 103
(Bridge No. 54E0044)

Construct a Type 1 (MOD) retaining wall that is approximately 203 feet long, and construct a soil nail wall that is approximately 1,639 feet long.

RETAINING WALL No. 104
(Bridge No. 54E0045)

Construct a soil nail wall that is approximately 2,054 feet long.

Miscellaneous Bridge Work: Remove existing steel bridge, Grand Terrace UP (Bridge No. 54-0519), which crosses Route 215 at PM 0.8 which is approximately 0.5 miles northeast of South Iowa Avenue.

SECTION 10. CONSTRUCTION DETAILS

SECTION 10-1. GENERAL

10-1.00 CONSTRUCTION PROJECT INFORMATION SIGNS

Before any major physical construction work readily visible to highway users is started on this contract, the Contractor shall furnish and erect 6 Type 1 Construction Project Information signs at the locations designated by the Engineer.

The signs and overlays shall be of a type and material consistent with the estimated time of completion of the project and shall conform to the details shown on the plans.

The sign letters, the border and the Department's construction logos shall conform to the colors (non-reflective) and details shown on the plans, and shall be on a white background (non-reflective). The colors blue and orange shall conform to PR Color Number 3 and Number 6, respectively, as specified in the Federal Highway Administration's Color Tolerance Chart.

The sign message to be used for fund types shall consist of the following, in the order shown:

<table>
<thead>
<tr>
<th>FEDERAL HIGHWAY TRUST FUNDS</th>
<th>STATE HIGHWAY FUNDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIVERSIDE AND SAN BERNARDINO COUNTY</td>
<td></td>
</tr>
<tr>
<td>TRANSPORTATION FUNDS</td>
<td></td>
</tr>
</tbody>
</table>

The sign message to be used for type of work shall consist of the following:

HIGHWAY CONSTRUCTION
The sign message to be used for the Year of Completion of Project Construction will be furnished by the Engineer. The Contractor shall furnish and install the "Year" sign overlay within 10 working days of notification of the year date to be used.

The letter sizes to be used shall be as shown on the plans. The information shown on the signs shall be limited to that shown on the plans.

The signs shall be kept clean and in good repair by the Contractor.

Upon completion of the work, the signs shall be removed and disposed of outside the highway right of way in conformance with the provisions in Section 7-1.13 of the Standard Specifications.

Full compensation for furnishing, erecting, maintaining, and removing and disposing of the construction project information signs shall be considered as included in the contract lump sum price paid for construction area signs and no additional compensation will be allowed therefor.

10-1.01 ORDER OF WORK

Order of work shall conform to the provisions in Section 5-1.05, "Order of Work," of the Standard Specifications and these special provisions.

Temporary railing (Type K) and temporary crash cushions shall be secured in place prior to commencing work for which the temporary railing and crash cushions are required.

Attention is directed to "Water Pollution Control" of these special provisions regarding the submittal and approval of the Storm Water Pollution Prevention Plan prior to performing work having potential to cause water pollution.

Pile driving activities in the Santa Ana River shall be performed after September 15 and prior to February 15 to avoid the nesting bird season.

Before work on the Riverside Canal can begin, approval will be given in writing by the City’s Operations Manager and the Engineer contingent upon the review and acceptance of a detailed schedule of the work to be performed on the canal and a contingency plan. A plan for a by-pass system, approved by the City RPU Water Operations Manager and the Engineer, shall be provided and installed at no cost to the Department nor City.

The contingency plan provided by the Contractor shall include and explain how storm water flow that would normally be conveyed by the canal will be handled and what equipment shall be installed and operated, at no cost to the Department nor City.

Once the contingency plan, by pass system, and schedule are approved by the Water Operations Manager and the Engineer, a written 14 calendar day advance notice of the date work will begin, will be submitted to the Water Operations Manager and Engineer.

The Contractor shall maintain delivery of all the water conveyed by the canal at all times. The contractor shall anticipate minimum RPU Water delivery rates of 12 cubic feet per second (cfs) of water at Drainage System DS 17 (Riverside Canal at E. La Cadena Drive between Citrus Street and Oxford Street) and 12 cfs at Drainage System DS 82 (Riverside Canal at BNSF underpass north of Main Street), with a maximum of 100 cfs to include additional runoff amounts conveyed by the canal attributed to storm runoff.

In any instance, if the Contractor does not maintain the flow through the canal, the Contractor will be assessed $1,000 per day at Drainage System DS 17, and $1,000 per day from Drainage System DS 82. No pro-rated allowance will be given to the Contractor.

Payment for providing a detailed schedule, contingency plan and bypass system and canal dewatering are included in the contract price for constructing DS 17 and 82 and no additional payment will be made.

Bridge decks shall be treated with methacrylate before cleaning expansion joints and replacing joint seals.

Attention is directed to "Shotcrete," of these special provisions regarding furnishing preconstruction shotcrete test panels for each mixture being considered before performing shotcrete work.

Attention is directed to "Architectural Surface (Textured Concrete)" and "Prepare and Stain Concrete" of these special provisions regarding furnishing preconstruction test panels.

Attention is directed to "Slope Paving" of these special provisions regarding constructing a 4’ x 6’ test panel prior to placing the permanent slope paving.

Attention is directed to "Miscellaneous Concrete Construction" of these special provisions regarding constructing a 2’ x 2’ test panel prior to constructing curb ramps with detectable warning surfaces.

Attention is directed to "Individual Slab Replacement" of these special provisions in regards to providing a pre-operation conference and the just-in-time training prior to commencing pavement replacement operations.

Attention is directed to "Environmentally Sensitive Area" and "Temporary Fence (Type ESA)" of these special provisions. Prior to beginning work, the boundaries of the Environmentally Sensitive Areas (ESA) shall be clearly delineated in the field. The boundaries shall be delineated by the installation of temporary fence (Type ESA).

The first order of work shall be to place the order for the electrical equipment. The Engineer shall be furnished a statement from the vendor that the order for the electrical equipment has been received and accepted by the vendor.
Prior to commencement of the traffic signal functional test at any location, all items of work related to signal control shall be completed and all roadside signs, pavement delineation, and pavement markings shall be in place at that location.

Attention is directed to "Maintaining Traffic" and "Temporary Pavement Delineation" of these special provisions and to the stage construction sheets of the plans.

The work shall be performed in conformance with the stages of construction shown on the plans. Nonconflicting work in subsequent stages may proceed concurrently with work in preceding stages, provided satisfactory progress is maintained in the preceding stages of construction.

In each stage, after completion of the preceding stage, the first order of work shall be the removal of existing pavement delineation as directed by the Engineer. Pavement delineation removal shall be coordinated with new delineation so that lane lines are provided at all times on traveled ways open to public traffic.

Before obliterating any pavement delineation (traffic stripes, pavement markings, and pavement markers) that is to be replaced on the same alignment and location, as determined by the Engineer, the pavement delineation shall be referenced by the Contractor, with a sufficient number of control points to reestablish the alignment and location of the new pavement delineation. The references shall include the limits or changes in striping pattern, including one- and 2-way barrier lines, limit lines, crosswalks and other pavement markings. Full compensation for referencing existing pavement delineation shall be considered as included in the contract prices paid for new pavement delineation and no additional compensation will be allowed therefor.

Prior to applying hot mix asphalt, the Contractor shall cover all manholes, valve and monument covers, grates, or other exposed facilities located within the area of application, using a plastic or oil resistant construction paper secured to the facility being covered by tape or adhesive. The covered facilities shall be referenced by the Contractor, with a sufficient number of control points to relocate the facilities after the hot mix asphalt has been placed. After completion of the hot mix asphalt operation, all covers shall be removed and disposed of in a manner satisfactory to the Engineer. Full compensation for covering manholes, valve and monument covers, grates, or other exposed facilities, referencing, and removing temporary cover shall be considered as included in the contract price paid per ton for hot mix asphalt, and no additional compensation will be allowed therefor.

At those locations exposed to public traffic where guard railings or barriers are to be constructed, reconstructed, or removed and replaced, the Contractor shall schedule operations so that at the end of each working day there shall be no post holes open nor shall there be any railing or barrier posts installed without the blocks and rail elements assembled and mounted thereon.

At least 60 days before planting the plants, furnish the Engineer a statement from the vendor that the order for the plants required for this contract, including inspection plants, has been received and accepted by the vendor. The statement from the vendor must include the names, sizes, and quantities of plants ordered and the anticipated date of delivery.

Place orders for replacement plants with the vendor at the appropriate time so that the roots of the replacement plants are not in a root-bound condition.

Unless otherwise shown on the plans or specified in these special provisions, conduits to be jacked or drilled or installed by the open trench method for water line crossovers and sprinkler control crossovers must be installed before the installation of other pipe supply lines.

Before the start of irrigation work, check existing irrigation facilities that are to remain in place, as specified under "Existing Highway Irrigation Facilities" of these special provisions.

Do not perform clearing, grubbing, and earthwork operations in areas where existing irrigation facilities are to remain in place until existing irrigation facilities have been checked for proper operation as specified under "Existing Highway Irrigation Facilities" of these special provisions.

Locate existing conduits to be extended as specified under "Extend Irrigation Crossovers" of these special provisions before the start of other work in these areas.

Submittal of working drawings for electrical components must comply with Section 20-5.027B, "Wiring Plans and Diagrams," of the Standard Specifications.

Preinstall irrigation components in the irrigation controller enclosure cabinet before field installation as specified under "Irrigation Controller Enclosure Cabinet" of these special provisions.

10-1.02 CONTRACTOR SUPPLIED BIOLOGIST

GENERAL

Summary

This work includes providing a Contractor supplied biologist to monitor construction and other activities to protect regulated species that may be harmed during construction activities.
Submittals
Qualifications: Within 7 days after contract approval, submit each biologist's name, resume, and statement of qualifications to the Engineer. Allow 15 days for the Engineer's review. If the submittal is incomplete, the Engineer will provide comments. Within 7 days after receiving the Engineer's comments, update and re-submit qualifications data. Do not start construction activities until the Contractor Supplied Biologist is authorized by the Engineer.

Incident Report: Submit an Incident Report within 24 hours of the incident.

Annual Monitoring Report: Submit no later than January 15 during each year of construction.

Final Monitoring Report: Submit no later than 20 days after completion of the project.

Qualifications:
A biologist must meet PLAC requirements and provide required qualifications to the Engineer for transmittal to regulatory agencies. All project specific authorizations must be current and valid for the duration of this project.

Protocols
Use protocols required in PLACs.

CONSTRUCTION
Pre-Construction Survey
Survey the work area for regulated species within 7 days before beginning construction activities. The biologist must:

• Monitor for regulated species within the project area.
• Assure that construction activities do not result in take of regulated species.
• Assure that construction activities comply with PLACs.
• Immediately notify the Engineer of any take of regulated species.
• Prepare, submit, and sign notifications and reports.

Notification and Reporting
All reports must include:

• PLAC requirement implementation
• Name(s) of the biologist(s) conducting biological activity
• Date(s) and time(s) of monitoring
• Locations and activities monitored
• Representative photographs
• Findings
• When regulated species are observed, reports must recommend actions to protect the regulated species
• Name of the biologist who prepared the report
• Signature of the biologist certifying the accuracy of the report

The Pre-Construction Survey Report includes:

• Detailed observations and locations where regulated species were observed or statement that no regulated species were observed by each biologist

The incident report includes:

• Description of any take incident
• Species name and number taken
• Details of required notifications with contact information
• Corrective actions proposed or taken
• Disposition of taken species
The Annual Monitoring Report includes:

- Construction beginning and ending dates
- Identification of project impacts on the species covered in the plan
- Species protection measures with protection measure implementation details
- Incidental take details, including species name, number taken, people contacted, contact information, and disposition of taken species
- An assessment of the effectiveness of the species protection measures to mitigate Project impacts
- Recommendations to improve efficiency of protection measures to mitigate impacts to regulated species

The Final Monitoring Report must be a cumulative report following the format of the Annual Monitoring Report.

MEASUREMENT AND PAYMENT

The contract lump sum price paid for Contractor supplied Biologist includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in Contractor supplied Biologist as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.03 BIOLOGICAL RESOURCE INFORMATION PROGRAM

GENERAL

Summary

This work includes preparing and presenting a Biological Resource Information Program to familiarize construction staff with regulated species and related requirements.

A Contractor supplied biologist must prepare and present training to personnel as required in PLACs, regarding regulated species, related laws and regulations, and protection measures.

Submittals

Outline: Within 7 days after contract approval, submit an outline of the Biological Resource Information Program to the Engineer. Allow 10 days for the Engineer's review. If the submittal is incomplete, the Engineer will provide comments. Within 7 days after receiving the Engineer's comments, update and submit the outline to the Engineer.

Schedule: Notify the Engineer of scheduled training classes at least 7 days prior to the first training class.

Attendance List: Provide the Engineer with an attendance list including the printed and signed name of each attendee of the biological resource information program. Provide the Engineer with the attendance list within 2 working days following each environmental education session. Submit a separate attendance list for each subsequent session for new workers.

CONSTRUCTION

Workers must receive Biological Resource Information training before performing on-site work. Workers include laborers, tradesmen, material suppliers, equipment maintenance personnel, supervisors, foremen, office personnel, food vendors, and other personnel that stay on the project longer than 30 minutes.

The biological resource information program includes:

- A description of regulated species that may be affected by construction
- Requirements for the protection of regulated species
- Definition and consequences of "take"
- What to do when you see a regulated species or a species that looks like a regulated species
- Permit requirements to touch or move a regulated species
- Identification of work area and Environmentally Sensitive Area
- Biological Monitoring Area requirements
- Description of avoidance and minimization measures
- Natural Resources Protection Plan or PLAC requirements
- Description and general ecology of the regulated species
- Description of specific habitats used by the regulated species and their location
• Handout to implement species protection measures that describe species, habitats, and actions as listed in Species Protection or in PLACs

Provide a handout to implement species protection measures that describes species, habitats, and actions as listed in Species Protection or in PLACs. Distribute the handout to each attendee. Display and maintain the handout at all construction field offices and on all information boards.

MEASUREMENT AND PAYMENT

Full compensation for the Biological Resource Information Program is included in the contract lump sum price paid for Contractor Supplied Biologist and no additional compensation will be allowed.

10-1.04 WATER POLLUTION CONTROL

GENERAL

Summary

This work includes developing and implementing a storm water pollution prevention plan (SWPPP). This project is risk level 2.

Discharges of stormwater from the project must comply with National Pollutant Discharge Elimination System (NPDES) General Permit for Storm Water Discharges Associated with Construction and Land Disturbance Activities (Order No. 2009-0009-DWQ, NPDES No. CAS000002) referred to herein as "Permit."

Information on forms, reports, and other documents can be found in the following Department manuals:

1. Field Guide for Construction Site Dewatering
2. Storm Water Pollution Prevention Plan (SWPPP) and Water Pollution Control Program (WPCP) Preparation Manual

For the above-referenced manuals, go to the Department's Web site for the Division of Construction, Storm Water and Water Pollution Control Information, or the Department's Publication Distribution Unit.

Do not start job site activities until:

1. The SWPPP is approved.
2. The waste discharge identification number is issued.
3. SWPPP review requirements have been fulfilled. If the Regional Water Quality Control Board (RWQCB) requires time for review, allow 30 days for the review. For projects in the Lake Tahoe Hydrologic Unit and the Mammoth Lakes Hydrologic Unit, the Lahontan RWQCB will review the SWPPP.

If you operate a Contractor-support facility, protect stormwater systems and receiving waters from the discharge of potential pollutants by using water pollution control practices.

Contractor-support facilities include:

1. Staging areas
2. Storage yards for equipment and materials
3. Mobile operations
4. Batch plants for PCC and HMA
5. Crushing plants for rock and aggregate
6. Other facilities installed for your convenience, such as haul roads

Discharges from manufacturing facilities, such as batch plants and crushing plants, must comply with the general waste discharge requirements for Order No. 97-03-DWQ, NPDES General Permit No. CAS000001, issued by the State Water Resources Control Board (SWRCB) for "Discharge of Storm Water Associated with Industrial Activities Excluding Construction Activities" and referred to herein as "General Industrial Permit." For the General Industrial Permit, go to the Web site for the SWRCB.

If you operate a batch plant to manufacture PCC, HMA, or other material or a crushing plant to produce rock or aggregate, obtain coverage under the General Industrial Permit. You must be covered under the General Industrial Permit for batch plants and crushing plants located:

1. Outside of the job site
2. Within the job site that serve 1 or more contracts
If you obtain or dispose of material at a noncommercially operated borrow or disposal site, prevent water pollution due to erosion at the site during and after completion of your activities. Upon completion of your work, leave the site in a condition such that water will not collect or stand therein.

The Department does not pay for water pollution control practices at Contractor-support facilities and noncommercially operated borrow or disposal sites.

Definitions

active area: Area where soil-disturbing work activities have occurred at least once within 15 days.

construction phase: Includes (1) highway construction phase for building roads and structures, (2) plant establishment and maintenance phase for placing vegetation for final stabilization, and (3) suspension phase for suspension of work activities or winter shutdown. The construction phase continues from the start of work activities to contract acceptance.

inactive area: Area where soil-disturbing work activities have not occurred within 15 days.

normal working hours: Hours you normally work on the project.

qualifying rain event: Storm that produces at least 0.5 inch of precipitation with a 48-hour or greater period between rain events.

storm event: Storm that produces or is forecasted to produce at least 0.10 inch of precipitation within a 24-hour period.

Submittals

Storm Water Pollution Prevention Plan

General

Within 20 days of contract approval:

1. Submit 3 copies of your SWPPP for review. Allow 20 days for the Department's review. The Engineer provides comments and specifies the date when the review stopped if revisions are required.
2. Resubmit a revised SWPPP within 15 days of receiving the Engineer's comments. The Department's review resumes when a complete SWPPP has been resubmitted.
3. When the Engineer approves the SWPPP, submit an electronic copy and 4 printed copies of the approved SWPPP.
4. If the RWQCB requires review of the approved SWPPP, the Engineer submits the approved SWPPP to the RWQCB for its review and comment.
5. If the Engineer requests changes to the SWPPP based on the RWQCB's comments, amend the SWPPP within 10 days.

A qualified SWPPP developer (QSD) must develop the SWPPP. The SWPPP must comply with the Department's Storm Water Pollution Prevention Plan (SWPPP) and Water Pollution Control Plan (WPCP) Prepariation Manual. Include the following in the SWPPP:

1. Description of the work involved in the installation, maintenance, repair, and removal of temporary and permanent water pollution control practices.
2. Maps showing:
 2.1. Locations of disturbed soil areas
 2.2. Water bodies and conveyances
 2.3. Locations and types of water pollution control practices that will be used for each Contractor-support facility
 2.4. Locations and types of temporary water pollution control practices that will be used in the work for each construction phase
 2.5. Locations and types of water pollution control practices that will be installed permanently under the contract
 2.6. Pollutant sampling locations
 2.7. Locations planned for storage and use of potential nonvisible pollutants
 2.8. Receiving water sampling locations
3. Copy of permits obtained by the Department, including Fish & Game permits, US Army Corps of Engineers permits, RWQCB 401 certifications, aerially deposited lead variance from the Department of Toxic Substance Control, aerially deposited lead variance notification, and RWQCB waste discharge requirements for aerially deposited lead reuse.

Include the following items in the SWPPP:

1. For all projects:

 1.1. Schedule
 1.2. Construction site monitoring program (CSMP)

2. For risk level 2 projects add:

 2.1. Adherence to effluent standards for numeric action levels (NALs)
 2.2. Rain event action plan (REAP)

3. For risk level 3 projects add:

 3.1. Adherence to effluent standards for NALs and numeric effluent levels (NELs)
 3.2. REAP

Schedule

The SWPPP schedule must show when:

1. Work activities will be performed that could cause the discharge of pollutants into stormwater
2. Water pollution control practices associated with each construction phase will be implemented
3. Soil stabilization and sediment control practices for disturbed soil areas will be implemented

Construction Site Monitoring Program

A QSD must prepare the CSMP. Change the program to reflect current job site activities as needed. The CSMP must include the following:

1. For all projects:

 1.1. Visual monitoring procedures
 1.2. Sampling and analysis plan (SAP) for nonvisible pollutants
 1.3. SAP for nonstormwater discharges
 1.4. SAP for monitoring required by RWQCB

2. For risk level 2 projects add SAP for pH and turbidity

3. For risk level 3 projects add:

 3.1. SAP for pH and turbidity
 3.2. SAP for temporary active treatment systems

Sampling and Analysis Plan

Include a SAP in the CSMP.

Describe the following water quality sampling procedures in the SAP:

1. Sampling equipment
2. Sample preparation
3. Collection
4. Field measurement methods
5. Analytical methods
6. Quality assurance and quality control
7. Sample preservation and labeling
8. Collection documentation
9. Sample shipping
10. Chain of custody
11. Data management and reporting
12. Precautions from the construction site health and safety plan
13. Laboratory selection and certifications

The SAP must identify the State-certified laboratory, sample containers, preservation requirements, holding times, and analytical method. For a list of State-certified laboratories go to the CDPH Web site.

The SAP must include procedures for sample collection during precipitation.
The SAP must list conditions when you will not be required to physically collect samples such as:

1. Dangerous weather
2. Flooding or electrical storms
3. Times outside of normal working hours

Amend the SAP whenever discharges or sampling locations change because of changed work activities or knowledge of site conditions.

For a risk level 2 or risk level 3 project, include procedures in the SAP for collecting and analyzing at least 3 samples for each day of each qualifying rain event. Describe the collection of effluent samples at all locations where the stormwater is discharged off-site.

The SAP for nonvisible pollutants must describe the sampling and analysis strategy for monitoring nonvisible pollutants.

The SAP for nonvisible pollutants must identify potential nonvisible pollutants present at the job site associated with any of the following:

1. Construction materials and wastes
2. Existing contamination due to historical site usage
3. Application of soil amendments, including soil stabilization materials, with the potential to change pH or contribute toxic pollutants to stormwater

The SAP for nonvisible pollutants must include sampling procedures for the following conditions when observed during a stormwater visual inspection. Include a procedure for collecting at least 1 sample for each storm event for:

1. Materials or wastes containing potential nonvisible pollutants not stored under watertight conditions
2. Materials or wastes containing potential nonvisible pollutants stored under watertight conditions at locations where a breach, leak, malfunction, or spill occurred and was not cleaned up before the precipitation
3. Chemical applications occurring within 24 hours before precipitation or during precipitation that could discharge pollutants to surface waters or drainage systems, including fertilizer, pesticide, herbicide, methyl methacrylate concrete sealant, or nonpigmented curing compound
4. Applied soil amendments, including soil stabilization materials that could change pH levels or contribute toxic pollutants to stormwater runoff and discharge pollutants to surface waters or drainage systems, unless independent test data is available to indicate acceptable concentrations of nonvisible pollutants in the material
5. Stormwater runoff from an area contaminated by historical usage of the site that could discharge pollutants to surface waters or drainage systems

The SAP for nonvisible pollutants must provide sampling procedures and a schedule for:

1. Sample collection during the first 2 hours of rain events that generate runoff
2. Sample collection during normal working hours
3. Each nonvisible pollutant source
4. Uncontaminated control sample

The SAP for nonvisible pollutants must identify locations for sampling downstream and control samples and the reasons for selecting those locations. Select locations for control samples where the sample does not come in contact with materials, wastes, or areas associated with potential nonvisible pollutants or disturbed soil areas.
Amendments

Amend and resubmit the SWPPP:

1. Annually before July 15th
2. Whenever:
 2.1. Changes in work activities could affect the discharge of pollutants
 2.2. Water pollution control practices are added by Contract Change Order
 2.3. Water pollution control practices are added at your discretion
 2.4. Changes in the quantity of disturbed soil are substantial
 2.5. Objectives for reducing or eliminating pollutants in stormwater discharges have not been achieved
 2.6. You receive a written notice of a permit violation for the project from the RWQCB or any other regulatory agency

Allow the same review time for amendments to the SWPPP as for the original SWPPP.

Training Records

Submit water pollution control training records for all employees and subcontractors who will be working at the job site. Include the training subjects, training dates, ongoing training, and tailgate meetings with your submittal. Submit records for:

1. Existing employees within 5 business days of obtaining SWPPP approval
2. New employees within 5 business days of receiving the training
3. A subcontractor’s employees at least 5 business days before the subcontractor starts work

Contractor-Support Facility

At least 5 business days before operating any Contractor-support facility, submit:

1. A plan showing the location and quantity of water pollution control practices associated with the Contractor-support facility
2. A copy of the notice of intent approved by the RWQCB and the SWPPP approved by the RWQCB if you will be operating a batch plant or a crushing plant under the General Industrial Permit

Annual Certification

Submit an annual certification of compliance as described in the Department's Storm Water Pollution Prevention Plan (SWPPP) and Water Pollution Control Plan (WPCP) Preparation Manual before July 15th of each year.

Site Inspection Reports

The water pollution control (WPC) manager must submit the following within 24 hours of completing a weekly inspection:

2. Best management practices (BMP) status report. The WPC manager must oversee the preparation of the report. The report must include:
 2.1. Location and quantity of installed water pollution control practices
 2.2. Location and quantity of disturbed soil for active and inactive areas

Visual Monitoring Reports

Submit a visual monitoring report for:

1. Each storm event. Include:
 1.1. Date, time, and rain gauge reading
 1.2. Visual observations:
1.2.1. Within 2 business days before the storm for:
 1.2.1.1. Spills, leaks, and uncontrolled pollutants in drainage areas
 1.2.1.2. Proper implementation of water pollution control practices
 1.2.1.3. Leaks and adequate freeboard in storage areas

1.2.2. Every 24 hours during the storm for:
 1.2.2.1. Effective operation of water pollution control practices
 1.2.2.2. Water pollution control practices needing maintenance and repair

1.2.3. Within 2 business days after a qualifying rain event for:
 1.2.3.1. Stormwater discharge locations
 1.2.3.2. Evaluation of design, implementation, effectiveness, and locations of water pollution control practices including locations where additional water pollution control practices may be needed

2. Nonstormwater discharges during each of the following periods:
 2.1. January through March
 2.2. April through June
 2.3. July through September
 2.4. October through December

Use the Stormwater Site Inspection Report form to document visual monitoring. A visual monitoring report must include:

1. Name of personnel performing the inspection, inspection date, and date the inspection report is completed
2. Storm and weather conditions
3. Location of any:
 3.1. Floating and suspended material, sheen on the surface, discoloration, turbidity, odor, and source of observed pollutants for flowing and contained stormwater systems
 3.2. Nonstormwater discharges and their sources

4. Corrective action taken

Retain visual monitoring reports at the job site as part of the SWPPP.

Sampling and Analysis

Whenever sampling is required, submit a printed copy and electronic copy of water quality analysis results, and quality assurance and quality control reports within 48 hours of field sampling, and within 30 days of laboratory analysis. Electronic copies must be in one of the following formats: (1) xls, (2) .txt, (3) .cvs, (4) .dbs, or (5) .mdb. Include an evaluation of whether the downstream samples show levels of the tested parameter that are higher than the control sample. The evaluation must include:

1. Sample identification number
2. Contract number
3. Constituent
4. Reported value
5. Analytical method
6. Method detection limit
7. Reported limit

Numeric Action Level Exceedance Reports

Whenever a NAL is exceeded for a risk level 2 or risk level 3 project, notify the Engineer and submit a NAL exceedance report within 48 hours after conclusion of a storm event. The report must include:
1. Field sampling results and inspections, including:
 1.1. Analytical methods, reporting units, and detection limits
 1.2. Date, location, time of sampling, visual observations, and measurements
 1.3. Quantity of precipitation from the storm event

2. Description of BMP and corrective actions taken to manage NAL exceedance

Numeric Effluent Limit Violation Reports
Whenever a NEL is exceeded for a risk level 3 project, notify the Engineer and submit a NEL violation report within 6 hours. The report must include:

1. Field sampling results and inspections, including:
 1.1. Analytical methods, reporting units, and detection limits
 1.2. Date, location, time of sampling, visual observation and measurements
 1.3. Quantity of precipitation from the storm event

2. Description of BMP and corrective actions taken to manage NEL exceedance

Rain Event Action Plan
For a risk level 2 or risk level 3 project, submit a REAP whenever the National Weather Service is predicting a storm event with at least 50 percent probability of precipitation within 72 hours. The WPC manager must submit the REAP at least 48 hours before a forecasted storm event. The REAP must include:

1. Site location
2. Project risk level
3. Contact information including 24-hour emergency phone numbers for:
 3.1. WPC manager
 3.2. Erosion and sediment control providers or subcontractors
 3.3. Stormwater sampling providers or subcontractors

4. Storm information
5. Description of:
 5.1. Construction phase, including active and inactive areas
 5.2. Active work areas and activities
 5.3. Subcontractors and trades on the job site
 5.4. Prestorm activities including:
 5.4.1. Responsibilities of the WPC manager
 5.4.2. Responsibilities of the crew and crew size
 5.4.3. Stabilization practices for active and inactive disturbed soil areas
 5.4.4. Stockpile management practices
 5.4.5. Corrective actions taken for deficiencies identified during prestorm visual inspections
 5.5. Activities to be performed during storm events, including:
 5.5.1. Responsibilities of the WPC manager
 5.5.2. Responsibilities of the crew and crew size
 5.5.3. BMP for maintenance and repair

6. Flood contingency measures
Storm Water Annual Report

Submit 2 copies of a storm water annual report that covers the preceeding period from July 1st to June 30th. The report must be submitted before July 15th if construction occurs from July 1st to June 30th or within 15 days after contract acceptance if construction ends before June 30th. Allow 10 days for the Engineer's review. The Engineer provides comments and specifies the date when the review stopped if revisions are required. Obtain approval for the format of the storm water annual report. The report must include:

1. Project information such as description and work locations
2. Stormwater monitoring information, including:
 2.1. Summary and evaluation of sampling and analysis results and laboratory reports
 2.2. Analytical methods, reporting units, and detections limits for analytical parameters
 2.3. Summary of corrective actions taken
 2.4. Identification of corrective actions taken and compliance activities not implemented
 2.5. Summary of violations
 2.6. Names of individuals performing stormwater inspections and sampling
 2.7. Logistical information for inspections and sampling, including location, date, time, and precipitation
 2.8. Visual observations and sample collection records
3. Documentation of training for individuals responsible for:
 3.1. Permit compliance
 3.2. BMP installation, inspection, maintenance, and repair
 3.3. Preparing, revising, and amending the SWPPP

Submit a revised storm water annual report within 5 business days of receiving the Engineer's comments. The Engineer's review resumes when a complete report has been resubmitted.

When the storm water annual report is approved, submit 1 electronic copy and 2 printed copies of the report signed by the WPC manager.

Information After Storm Event

Within 48 hours after the conclusion of a storm event resulting in a discharge, after a nonstormwater discharge, or after receiving a written notice or an order from the RWQCB or another regulatory agency, the WPC manager must submit the following information:

1. Date, time, location, and nature of the activity and the cause of the notice or order
2. Type and quantity of discharge
3. Water pollution control practices in use before the discharge or before receiving the notice or order
4. Description of water pollution control practices and corrective actions taken to manage the discharge or cause of the notice

Quality Control and Assurance

Training

Employees must receive initial water pollution control training before starting work at the job site. For your project managers, supervisory personnel, subcontractors, and employees involved in water pollution control work:

1. Provide stormwater training in the following subjects:
 1.1. Water pollution control rules and regulations
 1.2. Implementation and maintenance for:
 1.2.1. Temporary soil stabilization
 1.2.2. Temporary sediment control
 1.2.3. Tracking control
 1.2.4. Wind erosion control
 1.2.5. Material pollution prevention and control
 1.2.6. Waste management
1.2.7. Nonstormwater management

2. Conduct weekly training meetings covering:
 2.1. Deficiencies and corrective actions for water pollution control practices
 2.2. Water pollution control practices required for work activities during the week
 2.3. Spill prevention and control
 2.4. Material delivery, storage, usage, and disposal
 2.5. Waste management
 2.6. Nonstormwater management procedures

Training for personnel who collect water quality samples must include:

1. CSMP review
2. Health and safety review
3. Sampling simulations

Water Pollution Control Manager

General

The WPC manager must be a QSD. Assign 1 WPC manager to implement the SWPPP. You may assign a QSD other than the WPC manager to develop the SWPPP.

Qualifications

A QSD must:

1. Have completed stormwater management training described in the Department's Web site for the Division of Construction, Storm Water and Water Pollution Control Information
2. Be one or more of the following:
 2.1. California registered civil engineer
 2.2. California registered professional geologist or engineering geologist
 2.3. California licensed landscape architect
 2.4. Professional hydrologist registered through the American Institute of Hydrology
 2.5. Certified Professional in Erosion and Sediment Control (CPESC)™ registered through Enviro Cert International, Inc.
 2.6. Certified Professional in Storm Water Quality (CPSWQ)™ registered through Enviro Cert International, Inc.
 2.7. Professional in erosion and sediment control registered through the National Institute for Certification in Engineering Technologies (NICET)
3. Have completed SWRCB approved QSD training and passed the QSD exam

Responsibilities

The WPC manager must:

1. Be responsible for water pollution control work
2. Be the primary contact for water pollution control work
3. Oversee:
 3.1. Maintenance of water pollution control practices
 3.2. Inspections of water pollution control practices identified in the SWPPP
 3.3. Inspections and reports for visual monitoring
 3.4. Preparation and implementation of REAPs
 3.5. Sampling and analysis
 3.6. Preparation and submittal of:
 3.6.1. NAL exceedance reports
 3.6.2. NEL violation reports
3.6.3. SWPPP annual certification
3.6.4. Annual reports
3.6.5. BMP status reports

4. Oversee and enforce hazardous waste management practices including spill prevention and control measures
5. Have authority to mobilize crews to make immediate repairs to water pollution control practices
6. Ensure that all employees have current water pollution control training
7. Implement the approved SWPPP
8. Amend the SWPPP if required
9. Be at the job site within 2 hours of being contacted
10. Have the authority to stop construction activities damaging water pollution control practices or causing water pollution

Sampling and Analysis

Assign trained personnel to collect water quality samples. Document the personnel and training in the SAP.

Samples taken by assigned field personnel must comply with the equipment manufacturer's instructions for collection, analytical methods, and equipment calibration.

Samples taken for laboratory analysis must comply with water quality sampling procedures and be analyzed by a State-certified laboratory under 40 CFR part 136, Guidelines Establishing Test Procedures for the Analysis of Pollutants.

Whenever downstream samples show increased levels of pollutants, assess water pollution control practices, site conditions, and surrounding influences to determine the probable cause for the increase.

For a risk level 2 or risk level 3 project, obtain samples of pH and turbidity by the test methods shown in the following table:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test method</th>
<th>Detection limit (min)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>Field test with calibrated portable instrument</td>
<td>0.2</td>
<td>pH units</td>
</tr>
<tr>
<td>Turbidity</td>
<td>Field test with calibrated portable instrument</td>
<td>1</td>
<td>NTU</td>
</tr>
</tbody>
</table>

Whenever the turbidity NEL is exceeded for a risk level 3 project, obtain samples and analyze the suspended sediment concentration by the test method shown in the following table:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test method</th>
<th>Detection limit (min)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suspended sediment concentration</td>
<td>ASTM D 3977</td>
<td>5</td>
<td>Mg/L</td>
</tr>
</tbody>
</table>

For a risk level 3 project, obtain samples of pH and turbidity from representative and accessible locations upstream of the discharge point and downstream of the discharge point.

For multiple discharge points, obtain samples from a single upstream and a single downstream location.
Numeric Action Levels

For a risk level 2 or risk level 3 project, NALs must comply with the values shown in the following table:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test method</th>
<th>Detection limit (min)</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
</table>
| pH | Field test with calibrated portable instrument | 0.2 | pH | Lower NAL = 6.5
 | | | | Upper NAL = 8.5 |
| Turbidity | Field test with calibrated portable instrument | 1 | NTU | 250 NTU max |

The storm event daily average must not exceed the NAL for pH.
The storm event daily average must not exceed the NAL for turbidity.

Numeric Effluent Limits

For a risk level 3 project, NELs must comply with the values shown in the following table:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test method</th>
<th>Detection limit (min)</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
</table>
| pH | Field test with calibrated portable instrument | 0.2 | pH | Lower NEL = 6.0
 | | | | Upper NEL = 9.0 |
| Turbidity | Field test with calibrated portable instrument | 1 | NTU | 500 NTU max |

The storm event daily average for storms up to the 5-year, 24-hour storm must not exceed the NEL for turbidity.
The daily average sampling results must not exceed the NEL for pH.

MATERIALS

Not Used

CONSTRUCTION

General

Manage work activities to reduce the discharge of pollutants to surface waters, groundwater, and municipal separate storm sewer systems.

Retain a printed copy of the approved SWPPP at the job site.

Install facilities and devices used for water pollution control practices before performing work activities. Install soil stabilization materials for water pollution control practices in all inactive areas or before storm events.

Repair or replace water pollution control practices within 24 hours of discovering any damage, unless a longer period is authorized.

The Department does not pay for the cleanup, repair, removal, disposal, or replacement of water pollution control practices due to improper installation or your negligence.

You may request changes to the water pollution control work or the Engineer may order changes to water pollution control work. Changes may include additional or new water pollution control practices. Additional water pollution control work is paid for as extra work under Section 4-1.03D, "Extra Work," of the Standard Specifications.
You may request or the Engineer may order laboratory analysis of stormwater samples. If ordered, laboratory analysis of stormwater samples is paid for as extra work under Section 4-1.03D, "Extra Work," of the Standard Specifications.

Continue SWPPP implementation during any suspension of work activities.

Monitoring

Monitor the National Weather Service's forecast on a daily basis. For the National Weather Service's forecast, go to the Web site for the National Weather Service.

Obtain, install, and maintain a rain gauge at the job site. Observe and record daily precipitation.

Inspections

Use the Stormwater Site Inspection Report form for documenting site inspections. The WPC manager must oversee:

1. Inspections of water pollution control practices identified in SWPPP:
 1.1. Before a forecasted storm event
 1.2. After a qualifying rain event that produces site runoff
 1.3. At 24-hour intervals during extended storm events
 1.4. On a predetermined schedule of at least once a week

2. Daily inspections of:
 2.1. Storage areas for hazardous materials and waste
 2.2. Hazardous waste disposal and transporting activities
 2.3. Hazardous material delivery and storage activities

3. Inspections of:
 3.1. Vehicle and equipment cleaning facilities:
 3.1.1. Daily if vehicle and equipment cleaning occurs daily
 3.1.2. Weekly if vehicle and equipment cleaning does not occur daily
 3.2. Vehicle and equipment maintenance and fueling areas:
 3.2.1. Daily if vehicle and equipment maintenance and fueling occurs daily
 3.2.2. Weekly if vehicle and equipment maintenance and fueling does not occur daily
 3.3. Vehicles and equipment at the job site for leaks and spills on a daily schedule. Verify that operators are inspecting vehicles and equipment each day of use.
 3.4. Demolition sites within 50 feet of storm drain systems and receiving waters daily.
 3.5. Pile driving areas for leaks and spills:
 3.5.1. Daily if pile driving occurs daily
 3.5.2. Weekly if pile driving does not occur daily
 3.6. Temporary concrete washouts:
 3.6.1. Daily if concrete work occurs daily
 3.6.2. Weekly if concrete work does not occur daily
 3.7. Paved roads at job site access points for street sweeping:
 3.7.1. Daily if earthwork and other sediment or debris-generating activities occur daily
 3.7.2. Weekly if earthwork and other sediment or debris-generating activities do not occur daily
 3.7.3. Within 24 hours of precipitation forecasted by the National Weather Service
3.8. Dewatering work:
 3.8.1. Daily if dewatering work occurs daily
 3.8.2. Weekly if dewatering work does not occur daily

3.9. Temporary active treatment system:
 3.9.1. Daily if temporary active treatment system activities occur daily
 3.9.2. Weekly if temporary active treatment system activities do not occur daily

3.10. Work over water:
 3.10.1. Daily if work over water occurs daily
 3.10.2. Weekly if work over water does not occur daily

Deficiencies
Whenever you or the Engineer identify a deficiency in the implementation of the approved SWPPP, correct the deficiency:
1. Immediately, unless a later date is authorized
2. Before precipitation occurs

The Department may correct the deficiency and deduct the cost of correcting the deficiency from payment if you fail to correct the deficiency by the agreed date or before the onset of precipitation.

Rain Event Action Plan
For a risk level 2 or risk level 3 project, have the REAP at the job site at least 24 hours before a forecasted storm event. The WPC manager must submit the REAP on the following forms:
1. Rain Event Action Plan Highway Construction Phase
2. Rain Event Action Plan Plant Establishment Phase
3. Rain Event Action Plan For Inactive Project

Retain a printed copy of each REAP at the job site as part of the SWPPP.
Implement the REAP, including mobilizing crews to complete activities, within 24 hours before precipitation occurs.

Sampling and Analysis
Perform sample collection during:
1. Normal working hours
2. Each qualifying rain event
3. First 2 hours of each storm event

Do not physically collect samples during dangerous weather conditions, such as flooding or electrical storms.
Document sample collection during precipitation.
Whenever downstream samples show increased levels of pH, turbidity, and other constituents, assess water pollution control practices, site conditions, and surrounding influences to determine the probable cause for the increase.
Collect samples:
1. During a storm event for:
 1.1. Each nonvisible pollutant source and a corresponding uncontaminated control sample
 1.2. All locations identified on the Storm Event Sampling and Analyses Plan form
2. During a qualifying rain event for:

2.1. Each nonvisible pollutant source and a corresponding uncontaminated control sample
2.2. pH, turbidity, and other constituents as required
2.3. At least 3 samples for each day of a qualifying rain event
2.4. All locations identified on the Qualifying Rain Event Sampling and Analyses Plan form

Collect receiving-water samples for a risk level 3 project and whenever a direct discharge to receiving waters occurs and NELs are violated.

Retain documentation of water quality sampling and analysis results with the SWPPP at the job site.

The Department does not pay for the preparation, collection, laboratory analysis, and reporting of stormwater samples for nonvisible pollutants if water pollution control practices are not implemented before precipitation or if you fail to correct a water pollution control practice before precipitation.

MEASUREMENT AND PAYMENT

The contract lump sum price for prepare storm water pollution prevention plan includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in developing and implementing a SWPPP, including providing a WPC manager, conducting water pollution control training, and monitoring, inspecting and correcting water pollution control practices at the job site, as shown on the plans, as specified in the Standard Specifications and these special provisions, and directed by the Engineer.

For projects with 60 working days or less, the Department pays you for prepare stormwater pollution prevention plan as follows:

1. A total of 75 percent of the item total upon approval of the SWPPP
2. A total of 100 percent of the item total upon contract acceptance

For projects with more than 60 working days, the Department pays you for prepare stormwater pollution prevention plan as follows:

1. A total of 50 percent of the item total upon approval of the SWPPP
2. A total of 90 percent of the item total over the life of the contract
3. A total of 100 percent of the item total upon contract acceptance

If risk level 2 or 3, the Department pays $500 for each rain event action plan submitted. The contract unit price paid for rain event action plan includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in preparing REAPs, including preparing and submitting REAP forms, and monitoring weather forecasts, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

The Department does not adjust payment for an increase or decrease in the quantity of rain event action plan. Section 4-1.03B, "Increased or Decreased Quantities," of the Standard Specifications does not apply.

The Department pays $2,000 for each storm water annual report submitted. The contract unit price paid for storm water annual report includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in preparing and submitting storm water annual reports, including annual certifications, monitoring reports, inspection, and sampling results, and obtaining acceptance of storm water annual reports, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

The Department does not adjust payment for an increase or decrease in the quantity of storm water annual report. Section 4-1.03B, "Increased or Decreased Quantities," of the Standard Specifications does not apply.

The work to complete the final storm water annual report contract item is excluded from Section 7-1.17, "Acceptance of Contract," of the Standard Specifications.

If risk level 2 or 3, the contract unit price paid for storm water sampling and analysis day includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals and for doing all the work involved in reporting on stormwater quality per storm events and qualifying rain events, including preparation, collection, analysis of stormwater samples for pH, turbidity, and other constituents, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. A single day of sampling is counted as 1 unit.

The Department does not adjust payment for an increase or decrease in the quantity of storm water sampling and analysis day. Section 4-1.03B, "Increased or Decreased Quantities," of the Standard Specifications does not apply.
The Department does not pay for the preparation, collection, laboratory analysis, and reporting of stormwater samples for nonvisible pollutants if water pollution control practices are not implemented before precipitation or if you fail to correct a water pollution control practice before precipitation.

For each failure to submit a completed storm water annual report, the Department withholds $10,000. This withhold is in addition to other withholds under Section 9-1.07E(3) "Performance Failure Withholds," of the Standard Specifications.

Each failure to comply with any part of these special provisions and each failure to implement water pollution control practices are considered separate performance failures.

10-1.05 CONSTRUCTION SITE MANAGEMENT

GENERAL

Summary

This work includes preventing and controlling spills, dewatering, and managing materials, waste, and nonstormwater.

Implement effective handling, storage, usage, and disposal practices to control material pollution and manage waste and nonstormwater at the job site before they come in contact with storm drain systems and receiving waters.

The following abbreviations are used in this special provision:

DTSC: Department of Toxic Substance Control.
ELAP: Environmental Laboratory Accreditation Program.
WPC: Water Pollution Control.

Submittals

Before you start dewatering, submit a dewatering and discharge work plan under Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications and "Water Pollution Control" of these special provisions. The dewatering and discharge work plan must include:

1. Title sheet and table of contents
2. Description of dewatering and discharge activities detailing locations, quantity of water, equipment, and discharge point
3. Estimated schedule for dewatering and discharge start and end dates of intermittent and continuous activities
4. Discharge alternatives, such as dust control or percolation
5. Visual monitoring procedures with inspection log
6. Copy of written approval to discharge into a sanitary sewer system at least 5 business days before starting discharge activities

Submit the following:

1. Material Safety Data Sheet at least 5 business days before material is used or stored
2. Monthly inventory records for material used or stored

Submit written approval from the local health agency, city, county, and sewer district before discharging from a sanitary or septic system directly into a sanitary sewer system.

MATERIALS

Not Used

CONSTRUCTION

Spill Prevention and Control

General

Keep material or waste storage areas clean, well organized, and equipped with enough cleanup supplies for the material being stored.

Implement spill and leak prevention procedures for chemicals and hazardous substances stored on the job site. Whenever you spill or leak chemicals or hazardous substances at the job site, you are responsible for all associated cleanup costs and related liability.
Report minor, semi-significant, and significant or hazardous spills to the WPC manager. The WPC manager must notify the Engineer immediately.

As soon as it is safe, contain and clean up spills of petroleum materials and sanitary and septic waste substances listed under 40 CFR, Parts 110, 117, and 302.

Minor Spills

Minor spills consist of quantities of oil, gasoline, paint, or other materials that are small enough to be controlled by a 1st responder upon discovery of the spill.

Clean up a minor spill using the following procedures:

1. Contain the spread of the spill
2. Recover the spilled material using absorption
3. Clean the contaminated area
4. Dispose of the contaminated material and absorbents promptly and properly under "Waste Management" of these special provisions

Semi-Significant Spills

Semi-significant spills consist of spills that can be controlled by a 1st responder with help from other personnel.

Clean up a semi-significant spill immediately using the following procedures:

1. Contain the spread of the spill.
2. On paved or impervious surfaces, encircle and recover the spilled material with absorbent materials. Do not allow the spill to spread widely.
3. If the spill occurs on soil, contain the spill by constructing an earthen dike and dig up the contaminated soil for disposal.
4. If the spill occurs during precipitation, cover the spill with 10-mil plastic sheeting or other material to prevent contamination of runoff.
5. Dispose of the contaminated material promptly and properly under "Waste Management" of these special provisions.

Significant or Hazardous Spills

Significant or hazardous spills consist of spills that cannot be controlled by job site personnel. Immediately notify qualified personnel of a significant or hazardous spill. Take the following steps:

1. Do not attempt to clean up the spill until qualified personnel have arrived
2. Notify the Engineer and follow up with a report
3. Obtain the immediate services of a spill contractor or hazardous material team
4. Notify local emergency response teams by dialing 911 and county officials by using the emergency phone numbers retained at the job site
5. Notify the California Emergency Management Agency State Warning Center at (916) 845-8911
6. Notify the National Response Center at (800) 424-8802 regarding spills of Federal reportable quantities under 40 CFR 110, 119, and 302
7. Notify other agencies as appropriate, including:

 7.1. Fire Department
 7.2. Public Works Department
 7.3. Coast Guard
 7.4. Highway Patrol
 7.5. City Police or County Sheriff's Department
 7.6. Department of Toxic Substances
 7.7. California Division of Oil and Gas
 7.8. Cal/OSHA
 7.9. Regional Water Resources Control Board

Prevent a spill from entering stormwater runoff before and during cleanup activities. Do not bury or wash the spill with water.
Material Management

General

Minimize or eliminate discharge of material into the air, storm drain systems, and receiving waters while taking delivery of, using, or storing the following materials:

1. Hazardous chemicals, including acids, lime, glues, adhesives, paints, solvents, and curing compounds
2. Soil stabilizers and binders
3. Fertilizers
4. Detergents
5. Plaster
6. Petroleum materials, including fuel, oil, and grease
7. Fertilizers
8. Pesticides and herbicides

Employees trained in emergency spill cleanup procedures must be present during the unloading of hazardous materials or chemicals.

Use less hazardous materials if practicable.

The following activities must be performed at least 100 feet from concentrated flows of stormwater, drainage courses, and inlets if within the floodplain and at least 50 feet if outside the floodplain, unless otherwise approved by the Engineer:

1. Stockpiling materials
2. Storing pile-driving equipment and liquid waste containers
3. Washing vehicles and equipment in outside areas
4. Fueling and maintaining vehicles and equipment

Material Storage

If materials are stored:

1. Store liquids, petroleum materials, and substances listed in 40 CFR 110, 117, and 302 and place them in secondary containment facilities as specified by US DOT for storage of hazardous materials.
2. Secondary containment facilities must be impervious to the materials stored there for a minimum contact time of 72 hours.
3. Cover secondary containment facilities during non-working days and whenever precipitation is forecasted. Secondary containment facilities must be adequately ventilated.
4. Keep secondary containment facilities free of accumulated rainwater or spills. After precipitation, or in the event of spills or leaks, collect accumulated liquid and place it into drums within 24 hours. Handle the liquid as hazardous waste under “Waste Management” of these special provisions unless testing confirms that the liquid is nonhazardous.
5. Do not store incompatible materials, such as chlorine and ammonia, in the same secondary containment facility.
6. Store materials in their original containers with the original material labels maintained in legible condition. Immediately replace damaged or illegible labels.
7. Secondary containment facilities must have the capacity to contain precipitation from a 24-hour-long, 25-year storm, plus 10 percent of the aggregate volume of all containers or the entire volume of the largest container within the facility, whichever is greater.
8. Store bagged or boxed material on pallets. Protect bagged or boxed material from wind and rain during non-working days and whenever precipitation is forecasted.
9. Provide sufficient separation between stored containers to allow for spill cleanup or emergency response access. Storage areas must be kept clean, well organized, and equipped with cleanup supplies appropriate for the materials being stored.
10. Repair or replace perimeter controls, containment structures, covers, and liners as necessary. Inspect storage areas before and after precipitation and at least weekly during other times.
Stockpile Management

Minimize stockpiling of materials at the job site.
Implement water pollution control practices within 72 hours of stockpiling material or before a forecasted storm event, whichever occurs first. If stockpiles are being used, do not allow soil, sediment, or other debris to enter storm drains, open drainage, and watercourses.
Active and inactive soil stockpiles must be:

1. Covered with soil stabilization material or a temporary cover
2. Surrounded with a linear sediment barrier

Stockpiles of asphalt concrete and PCC rubble, HMA, aggregate base, or aggregate subbase must be:

1. Covered with a temporary cover
2. Surrounded with a linear sediment barrier

Stockpiles of pressure-treated wood must be:

1. Placed on pallets
2. Covered with impermeable material

Stockpiles of cold mix asphalt concrete must be:

1. Placed on an impervious surface
2. Covered with an impermeable material
3. Protected from stormwater run-on and runoff

Control wind erosion year round under Section 14-9.02, "Dust Control," of the Standard Specifications.
Repair or replace linear sediment barriers and covers as needed to keep them functioning properly. Whenever sediment accumulates to 1/3 of the linear sediment barrier height, remove the accumulated sediment.

Waste Management

Solid Waste

Do not allow litter, trash, or debris to accumulate anywhere on the job site, including storm drain grates, trash racks, and ditch lines. Pick up and remove litter, trash, and debris from the job site at least once a week. The WPC manager must monitor solid waste storage and disposal procedures on the job site.
If practicable, recycle nonhazardous job site waste and excess material. If recycling is not practicable, dispose of it under Section 7-1.13, "Disposal of Materials Outside the Highway Right of Way," of the Standard Specifications.
Furnish enough closed-lid dumpsters of sufficient size to contain the solid waste generated by work activities. When refuse reaches the fill line, empty the dumpsters. Dumpsters must be watertight. Do not wash out dumpsters at the job site. Furnish additional containers and pick up dumpsters more frequently during the demolition phase of construction.
Solid waste includes:

1. Brick
2. Mortar
3. Timber
4. Metal scraps
5. Sawdust
6. Pipe
7. Electrical cuttings
8. Nonhazardous equipment parts
9. Styrofoam and other packaging materials
10. Vegetative material and plant containers from highway planting
11. Litter and smoking material, including litter generated randomly by the public
12. Other trash and debris
Furnish and use trash receptacles in the job site yard, field trailers, and locations where workers gather for lunch and breaks.

Hazardous Waste and Contamination

If hazardous waste is, or will be, generated on the job site, the WPC manager must be thoroughly familiar with proper hazardous waste handling and emergency procedures under 40 CFR § 262.34(d)(5)(iii) and must have successfully completed training under 22 CA Code of Regs § 66265.16.

The WPC manager must:

1. Oversee and enforce hazardous waste management practices
2. Inspect all hazardous waste storage areas daily, including all temporary containment facilities and satellite collection locations
3. Oversee all hazardous waste transportation activities on the job site

Submit a copy of uniform hazardous waste manifest forms to the Engineer within 24 hours of transporting hazardous waste.

Submit receiving landfill documentation of proper disposal to the Engineer within 5 business days of hazardous waste transport from the project.

Unanticipated Discovery of Asbestos and Hazardous Substances

Upon discovery of asbestos or a hazardous substance, comply with Section 14-11.02 "Asbestos and Hazardous Substances," of the Standard Specifications.

Hazardous Waste Management Practices

Handle, store, and dispose of hazardous waste under 22 CA Code of Regs Div 4.5.

Use the following storage procedures:

1. Store hazardous waste and potentially hazardous waste separately from nonhazardous waste at the job site.
2. For hazardous waste storage, use metal containers approved by the United States Department of Transportation for the transportation and temporary storage of hazardous waste.
3. Store hazardous waste in sealed, covered containers labeled with the contents and accumulation start date under 22 CA Code of Regs, Div 4.5. Labels must comply with the provisions of 22 CA Code of Regs, Div 4.5 § 66262.31 and § 66262.32. Immediately replace damaged or illegible labels.
4. Handle hazardous waste containers such that no spillage occurs.
5. Store hazardous waste away from storm drains, watercourses, moving vehicles, and equipment.
6. Furnish containers with adequate storage volume at convenient satellite locations for hazardous waste collection. Immediately move these containers to secure temporary containment facilities when no longer needed at the collection location or when full.
7. Store hazardous waste and potentially hazardous waste in secure temporary containment enclosures having secondary containment facilities impervious to the materials stored there for a minimum contact-time of 72 hours. Temporary containment enclosures must be located away from public access. Acceptable secure enclosures include a locked chain link fenced area or a lockable shipping container located within the project limits.
8. Design and construct secondary containment facilities with a capacity to contain precipitation from a 24-hour-long, 25-year storm; and 10 percent of the aggregate volume of all containers, or the entire volume of the largest container within the facility, whichever is greater.
9. Cover secondary containment facilities during non-working days and if a storm event is predicted. Secondary containment facilities must be adequately ventilated.
10. Keep secondary containment facility free of accumulated rainwater or spills. After a storm event, or in the event of spills or leaks, collect accumulated liquid and place into drums within 24 hours. Handle these liquids as hazardous waste unless testing determines them to be nonhazardous.
11. Do not store incompatible wastes, such as chlorine and ammonia, in the same secondary containment facility.
12. Provide sufficient separation between stored containers to allow for spill cleanup or emergency response access. Storage areas must be kept clean, well organized, and equipped with cleanup supplies appropriate for the wastes being stored.
13. Repair or replace perimeter controls, containment structures, covers, and liners as necessary. Inspect storage areas before and after a storm event, and at least weekly during other times.
Do not:
1. Overfill hazardous waste containers
2. Spill hazardous waste or potentially hazardous waste
3. Mix hazardous wastes
4. Allow hazardous waste or potentially hazardous waste to accumulate on the ground

Dispose of hazardous waste within 90 days of the start of generation. Use a hazardous waste manifest and a transporter registered with the DTSC and in compliance with the CA Highway Patrol Biennial Inspection of Terminals Program to transport hazardous waste to an appropriately permitted hazardous waste management facility.

Dust Control for Hazardous Waste or Contamination

Excavation, transportation, and handling of material containing hazardous waste or contamination must result in no visible dust migration. Have a water truck or tank on the job site at all times while clearing and grubbing and performing earthwork operations in work areas containing hazardous waste or contamination.

Stockpiling of Hazardous Waste or Contamination

Do not stockpile material containing hazardous waste or contamination unless ordered. Stockpiles of material containing hazardous waste or contamination must not be placed where affected by surface run-on or run-off. Cover stockpiles with 13 mils minimum thickness of plastic sheeting or 1 foot of nonhazardous material. Do not place stockpiles in environmentally sensitive areas. Stockpiled material must not enter storm drains, inlets, or waters of the State.

Contractor-Generated Hazardous Waste

You are the generator of hazardous waste generated as a result of materials you bring to the job site. Use hazardous waste management practices if you generate waste on the job site from the following substances:

1. Petroleum materials
2. Asphalt materials
3. Concrete curing compound
4. Pesticides
5. Acids
6. Paints
7. Stains
8. Solvents
9. Wood preservatives
10. Roofing tar
11. Road flares
12. Lime
13. Glues and adhesives
14. Materials classified as hazardous waste under 22 CA Code of Regs, Div 4.5

If hazardous waste constituent concentrations are unknown, use a laboratory certified by the ELAP under the California Department Of Public Health to analyze a minimum of 4 discrete representative samples of the waste to determine whether it is a hazardous waste and to determine safe and lawful methods for storage and disposal. Perform sampling and analysis in compliance with US EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW-846) and under 22 CA Code of Regs, Div 4.5.

Use your US EPA Generator Identification Number and sign hazardous waste manifests for the hazardous waste you generate.

Identify contaminated soil resulting from spills or leaks by noticing discoloration, or differences in soil properties. Immediately notify the Engineer of spills or leaks. Clean up spills and leaks under the Engineer's direction and to the satisfaction of the Engineer. Soil with evidence of contamination must be sampled and analysis performed by a laboratory certified by ELAP.

If sampling and analysis of contaminated soil demonstrates that it is a hazardous waste, handle and dispose of the soil as hazardous waste. You are the generator of hazardous waste created as the result of spills or leaks for which you are responsible.
Prevent the flow of water, including ground water, from mixing with contaminated soil by using one or a combination of the following measures:

1. Berms
2. Cofferdams
3. Grout curtains
4. Freeze walls
5. Concrete seal course

If water mixes with contaminated soil and becomes contaminated, sample and analyze the water using a laboratory certified by the ELAP. If analysis results demonstrate that the water is a hazardous waste, manage and dispose of the water as hazardous waste.

Department-Generated Hazardous Waste

If the Department is the generator of hazardous waste during the work performed on this project, use hazardous waste management practices.

Labels must comply with the provisions of 22 CA Code of Regs § 66262.31 and § 66262.32. Mark labels with:

1. Date the hazardous waste is generated
2. The words “Hazardous Waste”
3. Composition and physical state of the hazardous waste (for example, asphalt grindings with thermoplastic or paint)
4. The word “Toxic”
5. Name, address, and telephone number of the Engineer
6. Contract number
7. Contractor or subcontractor name

Handle the containers such that no spillage occurs.

Hazardous Waste Transport and Disposal

Dispose of hazardous waste within California at a disposal site operating under a permit issued by the DTSC. The Engineer will obtain the US EPA Generator Identification Number for hazardous waste disposal. The Engineer will sign all hazardous waste manifests. Notify the Engineer 5 business days before the manifests are to be signed.

The Department will not consider you a generator of the hazardous waste and you will not be obligated for further cleanup, removal, or remedial action for such material if handled or disposed of under these specifications and the appropriate State and federal laws and regulations and county and municipal ordinances and regulations regarding hazardous waste.

Paint Waste

Clean water-based and oil-based paint from brushes or equipment within a contained area in a way that does not contaminate soil, receiving waters, or storm drain systems. Handle and dispose of the following as hazardous waste: paints, thinners, solvents, residues, and sludges that cannot be recycled or reused. When thoroughly dry, dispose of the following as solid waste: dry latex paint, paint cans, used brushes, rags, absorbent materials, and drop cloths.

Concrete Waste

Use practices to prevent the discharge of asphalt concrete, PCC, and HMA waste into storm drain systems and receiving waters. Collect and dispose of asphalt concrete, PCC, and HMA waste generated at locations where:

1. Concrete material, including grout, is used
2. Concrete dust and debris result from demolition
3. Sawcutting, coring, grinding, grooving, or hydro-concrete demolition creates a residue or slurry
4. Concrete trucks or other concrete-coated equipment is cleaned at the job site
Sanitary and Septic Waste

Do not bury or discharge wastewater from a sanitary or septic system within the highway. A sanitary facility discharging into a sanitary sewer system must be properly connected and free from leaks. Place a portable sanitary facility at least 50 feet away from storm drains, receiving waters, and flow lines.
Comply with local health agency provisions if using an on-site disposal system.

Liquid Waste

Use practices that will prevent job-site liquid waste from entering storm drain systems and receiving waters. Liquid waste include the following:

1. Drilling slurries or fluids
2. Grease-free and oil-free wastewater and rinse water
3. Dredgings, including liquid waste from cleaning drainage systems
4. Liquid waste running off a surface, including wash or rinse water
5. Other nonstormwater liquids not covered by separate permits

Hold liquid waste in structurally sound, leak-proof containers, such as roll-off bins or portable tanks. Liquid waste containers must be of sufficient quantity and volume to prevent overflow, spills, and leaks.
Store containers at least 50 feet from moving vehicles and equipment.
Remove and dispose of deposited solids from sediment traps unless the Engineer approves another method. Liquid waste may require testing to determine hazardous material content before disposal. Dispose of drilling fluids and residue.

If a location approved by the Engineer is available within the job site, fluids and residue exempt under 23 CA Code of Regs § 2511(g) may be dried by evaporation in a leak-proof container. Dispose of the remaining as solid waste.

Nonstormwater Management

Water Control and Conservation

Manage water used for work activities in a way that will prevent erosion and the discharge of pollutants into storm drain systems and receiving waters. Obtain authorization before washing anything at the job site with water that could discharge into a storm drain system or receiving waters. Report discharges immediately.
Implement water conservation practices if water is used at the job site. Inspect irrigation areas. Adjust watering schedules to prevent erosion, excess watering, or runoff. Shut off the water source to broken lines, sprinklers, or valves and repair breaks within 24 hours. Reuse water from waterline flushing for landscape irrigation if practicable. Sweep and vacuum paved areas. Do not wash paved areas with water.
Direct runoff water, including water from water line repair, from the job site to areas where it can infiltrate into the ground. Do not allow runoff water to enter storm drain systems and receiving waters. Do not allow spilled water to escape filling areas for water trucks. Direct water from off-site sources around the job site if practicable. Minimize the contact of off-site water with job site water.

Illegal Connection and Discharge Detection and Reporting

Before starting work, inspect the job site and the job site's perimeter for evidence of illicit connections, illegal discharges, and dumping. After starting work, inspect the job site and perimeter on a daily schedule for illicit connections and illegal dumping and discharges.
Whenever illegal connections, discharges, or dumping are discovered, notify the Engineer immediately. Do not take further action unless ordered. Assume that unlabeled or unidentifiable material is hazardous.
Look for the following evidence of illicit connections, illegal discharges, and dumping:

1. Debris or trash piles
2. Staining or discoloration on pavement or soils
3. Pungent odors coming from drainage systems
4. Discoloration or oily sheen on water
5. Stains and residue in ditches, channels, or drain boxes
6. Abnormal water flow during dry weather
7. Excessive sediment deposits
8. Nonstandard drainage junction structures
9. Broken concrete or other disturbances at or near junction structures
Vehicle and Equipment Cleaning

Limit vehicle and equipment cleaning or washing at the job site except what is necessary to control vehicle tracking or hazardous waste. Notify the Engineer before cleaning vehicles and equipment at the job site with soap, solvents, or steam. Contain and recycle or dispose of resulting waste under "Waste Management" of these special provisions, whichever is applicable. Do not use diesel to clean vehicles or equipment. Minimize the use of solvents.

Clean or wash vehicles and equipment in a structure equipped with disposal facilities. You may wash vehicles in an outside area if the area is:

1. Paved with asphalt concrete, HMA, or PCC
2. Surrounded by a containment berm
3. Equipped with a sump to collect and dispose of wash water

Use as little water as practicable whenever washing vehicles and equipment with water. Hoses must be equipped with a positive shutoff valve.

Discharge liquid from wash racks to a recycling system or to another system approved by the Engineer. Remove liquids and sediment as necessary.

Vehicle and Equipment Fueling and Maintenance

If practicable, perform maintenance on vehicles and equipment off-site.

If fueling or maintenance must be done at the job site, assign a site or sites, and obtain authorization before using them. Minimize mobile fueling and maintenance activities. Fueling and maintenance activities must be performed on level ground in areas protected from stormwater run-on and runoff.

Use containment berms or dikes around fueling and maintenance areas. Keep adequate quantities of absorbent spill-cleanup material and spill kits in the fueling or maintenance area and on fueling trucks. Dispose of spill-cleanup material and kits immediately after use under "Waste Management" of these special provisions. Use drip pans or absorbent pads during fueling or maintenance.

Do not leave fueling or maintenance areas unattended during fueling and maintenance activities. Fueling nozzles must be equipped with an automatic shutoff control. Nozzles must be equipped with vapor-recovery fueling nozzles where required by the Air Quality Management District. Secure nozzles in an upright position when not in use. Do not top off fuel tanks.

Recycle or properly dispose of used batteries and tires under "Waste Management" of these special provisions. If leaks cannot be repaired immediately, remove the vehicle or equipment from the job site.

Material and Equipment Used Over Water

Place drip pans and absorbent pads under vehicles and equipment used over water. Keep an adequate supply of spill-cleanup material with vehicles and equipment. Place drip pans or plastic sheeting under vehicles and equipment on docks, barges, or other surfaces over water whenever vehicles or equipment will be idle for more than 1 hour.

Furnish watertight curbs or toe boards on barges, platforms, docks, or other surfaces over water to contain material, debris, and tools. Secure material to prevent spills or discharge into the water due to wind.

Report discharges to receiving waters immediately upon discovery. Submit a discharge notification to the Engineer.

Structure Removal Over or Adjacent to Water

Do not allow demolished material to enter storm drain systems and receiving waters. Use covers and platforms approved by the Engineer to collect debris. Use attachments on equipment to catch debris during small demolition activities. Empty debris-catching devices daily.

Paving, Sealing, Sawcutting, Grooving, and Grinding Activities

Prevent material from entering storm drain systems and receiving waters including:

1. Cementitious material
2. Asphalitic material
3. Aggregate or screenings
4. Sawcutting, grooving, and grinding residue
5. Pavement chunks
6. Shoulder backing
7. Methacrylate
8. Sandblasting residue

Cover drainage inlets and use linear sediment barriers to protect downhill receiving waters until paving, sealing, sawcutting, grooving, and grinding activities are completed and excess material has been removed. Cover drainage inlets and manholes during the application of seal coat, tack coat, slurry seal, or fog seal.

Whenever precipitation is forecasted, limit paving, sawcutting, and grinding to places where runoff can be captured.

Do not start seal coat, tack coat, slurry seal, or fog seal activities whenever precipitation is forecasted during the application and curing period. Do not excavate material from existing roadways during precipitation.

Use a vacuum to remove slurry immediately after slurry is produced. Do not allow the slurry to run onto lanes open to traffic or off the pavement.

Collect the residue from PCC grooving and grinding activities with a vacuum attachment on the grinding machine. Do not leave the residue on the pavement or allow the residue to flow across pavement.

You may stockpile material excavated from existing roadways under "Material Management" of these special provisions if approved by the Engineer.

Do not coat asphalt trucks and equipment with substances that contain soap, foaming agents, or toxic chemicals. Park paving equipment over drip pans or plastic sheeting with absorbent material to catch drips if the paving equipment is not in use.

Thermoplastic Striping and Pavement Markers

Do not preheat, transfer, or load thermoplastic within 50 feet of drainage inlets and receiving waters.

Do not unload, transfer, or load bituminous material for pavement markers within 50 feet of drainage inlets and receiving waters.

Collect and dispose of bituminous material from the roadway after removing markers under "Waste Management" of these special provisions.

Pile Driving

Keep spill kits and cleanup materials at pile driving locations. Park pile driving equipment over drip pans, absorbent pads, or plastic sheeting with absorbent material. Protect pile driving equipment by parking on plywood and covering with plastic whenever precipitation is forecasted.

Store pile driving equipment on level ground and protect it from stormwater run-on when not in use. Use vegetable oil instead of hydraulic fluid if practicable.

Concrete Curing

Do not overspray chemical curing compounds. Minimize the drift by spraying as close to the concrete as practicable. Do not allow runoff of curing compounds. Cover drainage inlets before applying the curing compound.

Minimize the use and discharge of water by using wet blankets or similar methods to maintain moisture when concrete is curing.

Concrete Finishing

Collect and dispose of water and solid waste from high-pressure water blasting under "Waste Management" of these special provisions. Collect and dispose of sand and solid waste from sandblasting under "Waste Management" of these special provisions. Before sandblasting, cover drainage inlets within 50 feet of sandblasting. Minimize the drift of dust and blast material by keeping the nozzle close to the surface of the concrete. If the character of the blast residue is unknown, test it for hazardous materials and dispose of it properly.

Inspect containment structures for concrete finishing for damage before each day of use and before forecasted precipitation. Remove liquid and solid waste from containment structures after each work shift.

Sweeping

Sweep by hand or mechanical methods, such as vacuuming. Do not use methods that use only mechanical kick brooms.

Sweep paved roads at construction entrance and exit locations and paved areas within the job site:

1. During clearing and grubbing activities
2. During earthwork activities
3. During trenching activities
4. During roadway structural-section activities
5. When vehicles are entering and leaving the job site
6. After soil-disturbing activities
7. After observing off-site tracking of material

Monitor paved areas and roadways within the project. Sweep within:

1. 1 hour whenever sediment or debris is observed during activities that require sweeping
2. 24 hours whenever sediment or debris is observed during activities that do not require sweeping

Remove collected material, including sediment, from paved shoulders, drain inlets, curbs and dikes, and other drainage areas. You may stockpile collected material at the job site under "Material Management" of these special provisions. If stockpiled, dispose of collected material at least once per week under "Waste Management" of these special provisions.

You may dispose of sediment within the job site collected during sweeping activities. Protect the disposal areas against erosion.

Keep dust to a minimum during street sweeping activities. Use water or a vacuum whenever dust generation is excessive or sediment pickup is ineffective.

Remove and dispose of trash collected during sweeping under "Waste Management" of these special provisions.

Dewatering

Dewatering consists of discharging accumulated stormwater, groundwater, or surface water from excavations or temporary containment facilities.

Perform dewatering work as specified for the work items involved, such as temporary active treatment system or dewatering and discharge.

If dewatering and discharging activities are not specified under a work item and you perform dewatering activities:

1. Conduct dewatering activities under the Department's Field Guide for Construction Site Dewatering.
2. Ensure that any dewatering discharge does not cause erosion, scour, or sedimentary deposits that could impact natural bedding materials.
3. Discharge the water within the project limits. If the water cannot be discharged within project limits due to site constraints or contamination, dispose of the water as directed by the Engineer.
4. Do not discharge stormwater or nonstormwater that has an odor, discoloration other than sediment, an oily sheen, or foam on the surface. Notify the Engineer immediately upon discovering any such condition.

MEASUREMENT AND PAYMENT

The contract lump sum price paid for construction site management includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals and for doing all the work involved in spill prevention and control, material management, waste management, nonstormwater management, and dewatering activities, including identifying, sampling, testing, handling, and disposing of hazardous waste resulting from your activities, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as ordered by the Engineer.

10-1.06 STREET SWEEPING

GENERAL

Summary

This work includes street sweeping using machine-operated sweepers. Street sweeping must comply with the specifications for sweeping in the Section titled, "Construction Site Management," of these special provisions except a machine-operated sweeper must be used.

Street sweeping does not void specifications for main residue collection included in other work activities, such as grooving, grinding, or asphalt concrete planing.

The SWPPP must describe and include the use of street sweeping as a water pollution control practice for sediment control and tracking control.

Submittals

At least 5 business days before you start clearing and grubbing, earthwork, or other activities with the potential for tracking sediment or debris, submit:
1. Number of machine-operated sweepers described in the SWPPP
2. Type of sweeper technology

Quality Control and Assurance
Retain and submit records of street sweeping, including:

1. Quantity of disposed sweeping waste
2. Sweeping times and locations

MATERIALS
Machine-operated sweepers must use one of the following technologies:

1. Mechanical sweeper followed by a vacuum-assisted sweeper
2. Vacuum-assisted dry (waterless) sweeper
3. Regenerative-air sweeper

CONSTRUCTION
At least 1 machine-operated sweeper must be on the job site at all times when street sweeping work is required. The sweeper must be in good working order.

MEASUREMENT AND PAYMENT
The contract lump sum price paid for street sweeping includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals and for doing all the work involved in street sweeping, including disposal of collected material, as shown on the plans, as specified in the Standard Specifications, these special provisions, and as directed by the Engineer.

10-1.07 TEMPORARY SOIL BINDER

GENERAL

Summary
This work includes applying, maintaining, and removing temporary soil binder. Soil binder uses a mixture of soil binder, and water to stabilize active and nonactive disturbed soil areas.
The SWPPP must describe and include the use of temporary soil binder as a water pollution control practice for soil stabilization.

Submittals
At least 5 business days before applying soil binder, submit:

1. Material Safety Data Sheet for the soil binder.
2. Product label describing the soil binder as an erosion control product.
4. Determination of acute and chronic toxicity for aquatic organisms conforming to EPA methods for the soil binder.
5. Composition of ingredients including chemical formulation.

Submit a Certificate of Compliance as specified in Section 6-1.07, "Certificates of Compliance" of the Standard Specifications for soil binder:

Quality Control and Assurance
Retain and submit records of temporary soil binder applications including:

1. Compliance with specified rates
2. Application area
3. Application time
4. Quantity
MATERIALS

Soil Binder
The soil binder must be:

1. Nonflammable
2. Nontoxic to aquatic organisms
3. Free from growth or germination inhibiting factors
4. Either a plant-based product or a polymeric emulsion blend

Soil binder classified as a plant-based product must be:

1. A natural high molecular weight polysaccharide
2. A high viscosity hydrocolloid that is miscible in water
3. Functional for at least 180 days
4. Labeled as either guar, psyllium, or starch

Guar must be:

1. A guar gum based product derived from the ground endosperm of the guar plant, Cyanmopsis tetragonolobus
2. Treated with dispersant agents for easy mixing
3. Able to be diluted at the rate of 1 to 5 pounds per 100 gallons of water

Psyllium must be:

1. Made of the finely ground muciloid coating of plantago ovata or plantago ispaghula seeds
2. Able to dry and form a firm but rewettable membrane

Starch must be a non-ionic, water-soluble granular material derived from corn, potato, or other plant-based source.

Soil binder classified as a polymeric emulsion blend must be:

1. A polymeric emulsion blend with a liquid or dry powder formulation
2. Anionic with a residual monomer content that is at most 0.05 percent by weight
3. Functional for at least 180 days
4. A prepackaged product labeled as containing one of the following as the primary active ingredient of the polymeric emulsion blend:
 4.1 Acrylic copolymers and polymers
 4.2 Polymers of methacrylates and acrylates
 4.3 Copolymers of sodium acrylates and acrylamides
 4.4 Polyacrylamide (PAM) and copolymer of acrylamide
 4.5 Hydrocolloid polymers

Coloring Agent

Use a biodegradable, nontoxic coloring agent free from copper, mercury, and arsenic to ensure the hydraulic mulch contrasts with the application area.

CONSTRUCTION

Application

Apply temporary soil binder when an area is ready to receive temporary erosion control under "Move-in/Move-out (Temporary Erosion Control)."

Apply soil binder:

1. Per the manufacturer's recommendations for the job site soil conditions. Prewet the area if recommended by the manufacturer.
2. From 2 or more directions to achieve a continuous cover.
3. During dry weather or at least 24 hours before predicted rain.
Do not apply soil binder if:

1. Water is standing on or moving across the soil surface
2. Soil is frozen
3. Air temperature is below 40 °F during the tackifier curing period unless allowed by the manufacturer and approved by the Engineer

Do not over-spray soil binder onto the traveled way, sidewalks, lined drainage channels, or existing vegetation.

Maintenance

Reapply soil binder within 24 hours of discovering visible erosion, unless the Engineer approves a longer period.

Temporary soil binder disturbed or displaced by the Contractor's vehicles, equipment, or operations must be reapplied at the Contractor's expense.

Cleanup, repair, removal, disposal, or replacement due to improper installation or the Contractor's negligence are not included in the cost for performing maintenance.

Removal

Remove soil binder by mechanically blending it into the soil with track laying equipment, disking, or other approved method.

MEASUREMENT AND PAYMENT

Temporary soil binder is measured by the square yard from measurements along the slope of the areas covered by the soil binder.

The contract item price paid per square yard for temporary soil binder includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in applying temporary soil binder, complete in place, including removal of soil binder, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

The State and the Contractor share the cost of maintaining the temporary soil binder. The State determines the maintenance cost under Section 9-1.03, "Force Account Payment," of the Standard Specifications and pays to the Contractor one-half of that cost.

10-1.08 TEMPORARY CONCRETE WASHOUT BIN

GENERAL

Summary

This work includes removal and disposal of concrete waste by furnishing, maintaining, and removing temporary concrete washout bins.

The SWPPP must describe and include the use of temporary concrete washout bins as a water pollution control practice for waste management and materials pollution control.

Submittals

At least 5 business days before concrete operations start, submit:

1. Location of the washout bins
2. Name and location of the off-site concrete waste disposal facility to receive concrete waste
3. Copy of the permit issued by RWQCB for the off-site commercial disposal facility
4. Copy of the license for the off-site commercial disposal facility
5. Copy of the permit issued by the state or local agency having jurisdiction over the disposal facility if the disposal site is located outside of the State of California

Quality Control and Assurance

Retain and submit records of disposed concrete waste including:

1. Weight tickets
2. Delivery and removal of concrete washout bins
MATERIALS

Concrete Washout Bin

Concrete washout bin must:

1. Be a commercially available watertight container
2. Have sufficient capacity to contain all liquid and concrete waste generated by washout operations without seepage or spills
3. Be not less than 5 cubic yards of capacity
4. Be a roll-off bin and may include folding steel ramps
5. Be labeled for the exclusive use as a concrete waste and washout facility

Concrete Washout Sign

Concrete washout sign must:

1. Comply with the provisions in Section 12-3.06B, "Portable Signs" of the Standard Specifications
2. Be approved by the Engineer
3. Consist of a base, framework, and a sign panel
4. Be made out of plywood
5. Be a minimum size of 2 feet by 4 feet
6. Read "Concrete Washout" with black letters, 3 inches high, on a white background

CONSTRUCTION

Placement

Place concrete washout bins at the job site:

1. Before concrete placement activities begin
2. In the immediate area of the concrete work as approved by the Engineer
3. No closer then 50 feet from storm drain inlets, open drainage facilities, ESAs, or watercourses
4. Away from construction traffic or public access areas

Install a concrete washout sign adjacent to each temporary concrete washout bin location.

Operation

Use concrete washout bins for:

1. Washout from concrete delivery trucks
2. Slurries containing portland cement concrete or hot mix asphalt from sawcutting, coring, grinding, grooving, and hydro-concrete demolition
3. Concrete waste from mortar mixing stations

Relocate concrete washout bins as needed for concrete construction work. Replace concrete washout bins when filled to capacity. Do not fill higher then 6 inches below rim. Your WPCM must inspect concrete washout bins:

1. Daily if concrete work occurs daily
2. Weekly if concrete work does not occur daily

Maintenance

When relocating or transporting a concrete washout bin within the project site, secure the concrete washout bin to prevent spilling of concrete waste material. If any spilled material is observed, remove the spilled material and place it into the concrete washout bin.

Removal

Dispose of concrete waste material at a facility specifically licensed to receive solid concrete waste, liquid concrete waste, or both. Remove and dispose of concrete waste within 2 days of the concrete washout bin becoming filled to capacity.
MEASUREMENT AND PAYMENT

Temporary concrete washout bin is measured by the actual count of concrete washout bins in place.

The contract unit price paid for temporary concrete washout bin includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in furnishing, maintaining, and removing the concrete washout bin, including removal and disposal of concrete waste, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.09 TEMPORARY CHECK DAM

GENERAL

Summary

This work includes constructing, maintaining, and removing temporary check dams.

The SWPPP must describe and include the use of temporary check dams as a water pollution control practice for soil stabilization in flow conveyances.

Submittals

Submit a Certificate of Compliance as specified in Section 6-1.07, "Certificates of Compliance" of the Standard Specifications for:

1. Fiber rolls
2. Gravel-filled bag fabric

MATERIALS

Fiber Rolls

Fiber rolls must:

1. Last for at least one year after installation
2. Be Type 1 or Type 2

If specified, Type 1 fiber rolls must be:

1. Made from an erosion control blanket:
 1.1. Classified by the Erosion Control Technology Council (ECTC) as ECTC 2D
 1.2. With a Universal Soil Loss Equation (USLE) C-Factor of not more than 0.20 at a 2:1 (horizontal:vertical) slope
 1.3. Capable to withstand a maximum shear stress of 1.75 pounds per square foot under ASTM D 6460
 1.4. With a minimum tensile strength of 75 pounds per foot under ASTM D 5035
 1.5. With top and bottom surfaces covered with extruded photodegradable plastic netting or lightweight non-synthetic netting
 1.6. Either of the following:
 1.6.1. Double net straw and coconut blanket with 70 percent straw and 30 percent coconut fiber
 1.6.2. Double net excelsior blanket with 80 percent of the wood excelsior fibers being 6 inches or longer
 2. Rolled along the width
 3. Secured with natural fiber twine every 6 feet and 6 inches from each end
 4. Finished to be either:
 4.1. From 8 to 10 inches in diameter, from 10 to 20 feet long, and at least 0.5 pounds per linear foot
 4.2. From 10 to 12 inches in diameter, at least 10 feet long, and at least 2 pounds per linear foot

If specified, Type 2 fiber rolls must:

1. Be filled with rice or wheat straw, wood excelsior, or coconut fiber
2. Be covered with a photodegradable plastic netting or a biodegradable jute, sisal, or coir fiber netting
3. Have the netting secured tightly at each end
4. Be finished to be either:

4.1. From 8 to 10 inches in diameter, from 10 to 20 feet long, and at least 1.1 pounds per linear foot
4.2. From 10 to 12 inches in diameter, at least 10 feet long, and at least 3 pounds per linear foot

Wood Stakes

Wood stakes must be:

1. Untreated fir, redwood, cedar, or pine and cut from sound timber
2. Straight and free of loose or unsound knots and other defects which would render the stakes unfit for use
3. Pointed on the end to be driven into the ground

For fiber rolls, wood stakes must be at least:

1. 1" x 1" x 24" in size for Type 1 installation
2. 1" x 2" x 24" in size for Type 2 installation

Rope

For Type 2 installation, rope must:

1. Be biodegradable, such as sisal or manila
2. Have a minimum diameter of 1/4 inch

Gravel-filled Bag Fabric

Geosynthetic fabric for temporary gravel bag berm must consist of one of the following:

1. Polyester
2. Polypropylene
3. Combined polyester and polypropylene

Sample under ASTM D 4354, Procedure C.
Test under ASTM D 4759. All properties are based on Minimum Average Roll Value (MARV).
Identify, store, and handle under ASTM D 4873.
Protect geosynthetics from moisture, sunlight and damage during shipping and storage. Label each unit with the manufacturer's name, identifying information and product identification.
Gravel-filled bag fabric must comply with:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grab breaking load</td>
<td>205</td>
</tr>
<tr>
<td>1-inch grip, lb, min. in each direction</td>
<td></td>
</tr>
<tr>
<td>Apparent elongation</td>
<td>50</td>
</tr>
<tr>
<td>percent, min., in each direction</td>
<td></td>
</tr>
<tr>
<td>Water Flow Rate</td>
<td>80-150</td>
</tr>
<tr>
<td>max. average roll value, gallons per minute/square foot</td>
<td></td>
</tr>
<tr>
<td>Permittivity</td>
<td>1.2</td>
</tr>
<tr>
<td>1/sec., min.</td>
<td></td>
</tr>
<tr>
<td>Apparent opening size</td>
<td>40-80</td>
</tr>
<tr>
<td>max. average roll value, U.S. Standard sieve size</td>
<td></td>
</tr>
<tr>
<td>Ultraviolet Degradation</td>
<td>70</td>
</tr>
<tr>
<td>percent of original unexposed grab breaking load 500 hr, minimum</td>
<td></td>
</tr>
</tbody>
</table>

Gravel

Gravel for gravel-filled bags must be:

1. From 3/8 to 3/4 inch in diameter
2. Clean and free from clay balls, organic matter, and other deleterious materials
Gravel-filled Bags

Gravel-filled bags must:

2. Have inside dimensions from 24 to 32 inches in length, and from 16 to 20 inches in width.
3. Have the opening bound to retain the gravel. The opening must be sewn with yarn, bound with wire, or secured with a closure device.
4. Weigh from 30 to 50 pounds when filled with gravel.

CONSTRUCTION

Before placing temporary check dam, remove obstructions including rocks, clods, and debris greater than one inch in diameter from the ground.

If check dams are to be placed in the same areas as erosion control blankets, then install the blankets before placing the check dams.

Temporary check dams must be:

1. Placed approximately perpendicular to the centerline of the ditch or drainage line
2. Installed with sufficient spillway depth to prevent flanking of concentrated flow around the ends of the check dam
3. Type 1 for lashed fiber rolls, Type 2 for gravel-filled bags, or a combination:
 3.1. If the ditch is lined with concrete or hot mix asphalt, use temporary check dam (Type 2)
 3.2. If the ditch is unlined, you may use temporary check dam (Type 1) or (Type 2)

Temporary check dam (Type 1) must be:

1. Secured with rope and notched wood stakes.
2. Installed by driving stakes into the soil until the notch is even with the top of the fiber roll.
3. Installed by lacing the rope between stakes and over the fiber roll. Knot the rope at each stake.
4. Tightened by driving the stakes further into the soil forcing the fiber roll against the surface of the ditch or drainage line.

Temporary check dam (Type 2) must be:

1. Placed as a single layer of gravel bags
2. End-to-end to eliminate gaps

If you need to increase the height of the temporary check dam (Type 2):

1. Increase height by adding rows of gravel-filled bags
2. Stack bags in a way that the bags in the top row overlap the joints in the lower row
3. Stabilize dam by adding rows of bags at the bottom

MAINTENANCE

Maintain temporary check dams to provide sediment holding capacity and to reduce concentrated flow velocities.

Remove sediment deposits, trash, and debris from temporary check dams as needed or when directed by the Engineer. If removed sediment is deposited within project limits, it must be stabilized and not subject to erosion by wind or water. Trash and debris must be removed and disposed of as specified in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

Maintain temporary check dams by:

1. Removing sediment from behind the check dam when sediment is 1/3 the height of the check dam above ground
2. Repairing or adjusting the check dams when scour and other evidence of concentrated flow occur beneath the fiber roll
3. Repairing or replacing the fiber rolls or gravel-filled bags when they become split, torn, or unraveled
4. Adding stakes when the fiber rolls slump or sag
5. Replacing broken or split wood stakes

Replace temporary check dams within 24 hours of discovering damage unless the Engineer approves a longer period.

If your vehicles, equipment, or activities disturb or displace temporary check dams, repair temporary check dams at your expense.

The Department does not pay maintenance costs for cleanup, repair, removal, disposal, or replacement due to improper installation or your negligence.

REMOVAL

When the Engineer determines that temporary check dams are not required, they must be removed and disposed of under Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

Ground disturbance, including holes and depressions, caused by the installation and removal of the temporary check dams must be backfilled and repaired under Section 15-1.02, "Preservation of Property," of the Standard Specifications.

MEASUREMENT AND PAYMENT

Temporary check dam is measured by the linear foot along the centerline of the check dams. Where temporary fiber rolls are joined and overlapped, the overlap is measured as a single installed check dam.

The contract price paid per linear foot for temporary check dams includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in constructing the temporary check dams, complete in place, including removal of materials, cleanup and disposal of retained sediment and debris, and backfilling and repairing holes, depressions and other ground disturbance, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

The State and you share the cost of maintaining the temporary check dams. The State determines the maintenance cost under Section 9-1.03, "Force Account Payment," of the Standard Specifications and pays you one-half of that cost.

10-1.10 TEMPORARY FIBER ROLL

GENERAL

Summary

This work includes constructing, maintaining, and removing temporary fiber roll.

The SWPPP must describe and include the use of temporary fiber roll as a water pollution control practice for sediment control.

Submittals

Submit a Certificate of Compliance as specified in Section 6-1.07, "Certificates of Compliance" of the Standard Specifications for fiber roll.

MATERIALS

Fiber Roll

Fiber roll must:

1. Last for at least one year after installation
2. Be Type 1 or Type 2

If specified, Type 1 fiber roll must be:

1. Made from an erosion control blanket:
 1.1. Classified by the Erosion Control Technology Council (ECTC) as ECTC 2D
 1.2. With a Universal Soil Loss Equation (USLE) C-Factor of not more than 0.20 at a 2:1 (horizontal:vertical) slope
 1.3. Capable to withstand a maximum shear stress of 1.75 pounds per square foot under ASTM D 6460
 1.4. With a minimum tensile strength of 75 pounds per foot under ASTM D 5035
 1.5. With top and bottom surfaces covered with extruded photodegradable plastic netting or lightweight non-synthetic netting
1.6. That complies with one of the following:

 1.6.1. Double net straw and coconut blanket with 70 percent straw and 30 percent coconut fiber
 1.6.2. Double net excelsior blanket with 80 percent of the wood excelsior fibers being 6 inches or longer

2. Rolled along the width
3. Secured with natural fiber twine every 6 feet and 6 inches from each end
4. Finished to be either:

 4.1. From 8 to 10 inches in diameter, from 10 to 20 feet long, and at least 0.5 pounds per linear foot
 4.2. From 10 to 12 inches in diameter, at least 10 feet long, and at least 2 pounds per linear foot

If specified, Type 2 fiber roll must:

 1. Be filled with rice or wheat straw, wood excelsior, or coconut fiber
 2. Be covered with a photodegradable plastic netting or a biodegradable jute, sisal, or coir fiber netting
 3. Have the netting secured tightly at each end
 4. Be finished to be either:

 4.1. From 8 to 10 inches in diameter, from 10 to 20 feet long, and at least 1.1 pounds per linear foot
 4.2. From 10 to 12 inches in diameter, at least 10 feet long, and at least 3 pounds per linear foot

Wood Stakes

Wood stakes must be:

1. Untreated fir, redwood, cedar, or pine and cut from sound timber
2. Straight and free of loose or unsound knots and other defects which would render the stakes unfit for use
3. Pointed on the end to be driven into the ground

For fiber roll, wood stakes must be at least:

 1. 1” x 1” x 24” in size for Type 1 installation
 2. 1” x 2” x 24” in size for Type 2 installation

Rope

For Type 2 installation, rope must:

1. Be biodegradable, such as sisal or manila
2. Have a minimum diameter of 1/4 inch

CONSTRUCTION

Before placing fiber roll, remove obstructions including rocks, clods, and debris greater than one inch in diameter from the ground.

If fiber roll is to be placed in the same area as erosion control blanket, install the blanket before placing the fiber roll. For other soil stabilization practices such as hydraulic mulch or compost, place the fiber roll and then apply the soil stabilization practice.

Place fiber roll on slopes at the following spacing unless the plans show a different spacing:

 1. 10 feet apart for slopes steeper than 2:1 (horizontal:vertical)
 2. 15 feet apart for slopes from 2:1 to 4:1 (horizontal:vertical)
 3. 20 feet apart for slopes from 4:1 to 10:1 (horizontal:vertical)
 4. 50 feet apart for slopes flatter than 10:1 (horizontal:vertical)

Place fiber roll approximately parallel to the slope contour. For any 20 foot section of fiber roll, do not allow the fiber roll to vary more than 5 percent from level.

Type 1 and Type 2 fiber roll may be installed using installation method Type 1, Type 2, or a combination:
For installation method Type 1, install fiber roll by:

1. Placing in a furrow that is from 2 to 4 inches deep
2. Securing with wood stakes every 4 feet along the length of the fiber roll
3. Securing the ends of the fiber roll by placing a stake 6 inches from the end of the roll
4. Driving the stakes into the soil so that the top of the stake is less than 2 inches above the top of the fiber roll

For installation method Type 2, install fiber roll by:

1. Securing with rope and notched wood stakes.
2. Driving stakes into the soil until the notch is even with the top of the fiber roll.
3. Lacing the rope between stakes and over the fiber roll. Knot the rope at each stake.
4. Tightening the fiber roll to the surface of the slope by driving the stakes further into the soil.

MAINTENANCE

Maintain temporary fiber roll to provide sediment holding capacity and to reduce runoff velocities.

Remove sediment deposits, trash, and debris from temporary fiber roll as needed or when directed by the Engineer. If removed sediment is deposited within project limits, it must be stabilized and not subject to erosion by wind or water. Trash and debris must be removed and disposed of as specified in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

Maintain temporary fiber roll by:

1. Removing sediment from behind the fiber roll when sediment is 1/3 the height of the fiber roll above ground
2. Repairing or adjusting the fiber roll when rills and other evidence of concentrated runoff occur beneath the fiber roll.
3. Repairing or replacing the fiber roll when they become split, torn, or unraveled
4. Adding stakes when the fiber roll slump or sag
5. Replacing broken or split wood stakes

Repair temporary fiber roll within 24 hours of discovering damage unless the Engineer approves a longer period.

If your vehicles, equipment, or activities disturb or displace temporary fiber roll, repair temporary fiber roll at your expense.

The Department does not pay maintenance costs for cleanup, repair, removal, disposal, or replacement due to improper installation or your negligence.

REMOVAL

When the Engineer determines that temporary fiber roll is not required, they must be removed and disposed of under Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

Ground disturbance, including holes and depressions, caused by the installation and removal of the temporary fiber roll must be backfilled and repaired under Section 15-1.02, "Preservation of Property," of the Standard Specifications.

MEASUREMENT AND PAYMENT

Temporary fiber roll is measured by the linear foot along the centerline of the installed roll. Where temporary fiber roll is joined and overlapped, the overlap is measured as a single installed roll.

The contract price paid per linear foot for temporary fiber roll includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in constructing the temporary fiber roll, complete in place, including removal of materials, cleanup and disposal of retained sediment and debris, and backfilling and repairing holes, depressions and other ground disturbance, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

The State and you share the cost of maintaining the temporary fiber roll. The State determines the maintenance cost under Section 9-1.03, "Force Account Payment," of the Standard Specifications and pays you one-half of that cost.
10-1.11 TEMPORARY FENCE AND GATES

Temporary fence and gates shall be furnished, constructed, maintained, and later removed as shown on the plans, as specified in these special provisions and as directed by the Engineer.

Except as otherwise specified in this section, temporary fence and gates shall conform to the plan details and the specifications for permanent fence of similar character as provided in Section 80, "Fences," of the Standard Specifications.

Used materials may be installed provided the used materials are good, sound and are suitable for the purpose intended, as determined by the Engineer.

Materials may be commercial quality provided the dimensions and sizes of the materials are equal to, or greater than, the dimensions and sizes shown on the plans or specified herein.

Posts shall be either metal or wood at the Contractor's option.

Galvanizing and painting of steel items will not be required.

Treating wood with a wood preservative will not be required.

Concrete footings for metal posts will not be required.

Temporary fence and gates that is damaged during the progress of the work shall be repaired or replaced by the Contractor at the Contractor's expense.

When no longer required for the work, as determined by the Engineer, temporary fence and gates shall be removed. Removed facilities shall become the property of the Contractor and shall be removed from the site of the work, except as otherwise provided in this section.

Removed temporary fence and gates materials that are not damaged may be constructed in the permanent work provided the materials conform to the requirements specified for the permanent work and such materials are new when used for the temporary fence and gates.

Holes caused by the removal of temporary fence and gates shall be backfilled in conformance with the provisions in the second paragraph of Section 15-1.02, "Preservation of Property," of the Standard Specifications.

The various types and kinds of temporary fence will be measured and paid for in the same manner specified for permanent fence of similar character as provided in Section 80, "Fences," of the Standard Specifications.

Full compensation for temporary gates is included in the contract price paid per linear foot for temporary fence and no separate payment will be made therefor.

Full compensation for maintaining, removing, and disposing of temporary fence and gates shall be considered as included in the contract prices paid per linear foot for the various types of temporary fence and no additional compensation will be allowed therefor.

10-1.12 TEMPORARY FENCE (TYPE ESA)

GENERAL

Summary

This work includes constructing, maintaining, and removing temporary fence (Type ESA). Temporary fence (Type ESA) provides a visible boundary adjacent to protected areas such as an environmentally sensitive area.

Signs are required for temporary fence (Type ESA).

Submittals

Submit a Certificate of Compliance as specified in Section 6-1.07, "Certificates of Compliance" of the Standard Specifications for:

1. High visibility fabric
2. Safety cap for metal posts

MATERIALS

High Visibility Fabric

High visibility fabric for temporary fence (Type ESA) must consist of one of the following:

1. Polyethylene
2. Polypropylene
3. Combined polyethylene and polypropylene

Sample high visibility fabric under ASTM D 4354, Procedure C.

Test high visibility fabric under ASTM D 4759. All properties must be based on Minimum Average Roll Value.
Identify, store, and handle high visibility fabric rolls and samples under ASTM D 4873. High visibility fabric must:

1. Contain ultraviolet inhibitors
2. Comply with the requirements shown in the following table:

<table>
<thead>
<tr>
<th>Property</th>
<th>Specifications</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width, inches, Min</td>
<td>Measured</td>
<td>48</td>
</tr>
<tr>
<td>Opening size inches</td>
<td>Measured</td>
<td>1” x 1” (Min) 2” x 4” (Max)</td>
</tr>
<tr>
<td>Color</td>
<td>Observed</td>
<td>Orange</td>
</tr>
<tr>
<td>Roll weight, lb Min for 4’ x 100’ roll</td>
<td>Measured</td>
<td>12</td>
</tr>
<tr>
<td>Tensile strength, lb Min, machine direction x cross direction</td>
<td>ASTM D 4595</td>
<td>225 x 95</td>
</tr>
<tr>
<td>Ultraviolet Degradation Percent of original unexposed grab breaking load 500 hr, minimum</td>
<td>ASTM D 4355</td>
<td>70</td>
</tr>
</tbody>
</table>

Posts

Posts must be wood or steel.

Wood posts must be:

1. Untreated fir, redwood, cedar, or pine and cut from sound timber
2. Straight and free of loose or unsound knots and other defects that would render the stakes unfit for use
3. Pointed on the end to be driven into the ground
4. At least 2” x 2” in size and 6 feet long

Steel posts must:

1. Have a "U," "T," "L," or other cross sectional shape that can resist failure from lateral loads.
2. Be pointed on the end to be driven into the ground.
3. Weigh at least 0.75-pound per foot.
4. Be at least 6 feet long.
5. Have a safety cap attached to the exposed end. The safety cap must be yellow, orange or red plastic and fit snugly to the metal post.

Signs

Signs for temporary fence (Type ESA) must be:

1. Weatherproof and fade-proof and may include plastic laminated printed paper affixed to an inflexible weatherproof backer board
2. Attached to the high visibility fabric with tie wire or locking plastic fasteners

CONSTRUCTION

General

Install temporary fence (Type ESA):

1. With high visibility fabric, posts, and fasteners as follows:
 1.1. If wood posts are used, fasteners must be staples or nails
 1.2. If steel posts are used, fasteners must be tie wires or locking plastic fasteners
 1.3. Spacing of the fasteners must be no more than 8 inches apart
2. Before clearing and grubbing activities
3. From outside of the protected area
4. With posts spaced 8 feet apart and embedded at least 16 inches in the soil

Install signs for temporary fence (Type ESA) as follows:

1. Attach signs with the top of the sign panel flush with the top of the high visibility fabric
2. Place signs 100 feet apart along the length and at each end of the fence

If trees and other plants need protection, install fence to:

1. Enclose the foliage canopy (drip line) of protected plants
2. Protect visible roots from encroachment

Maintenance

Maintain temporary fence (Type ESA) by:

1. Keeping posts in a vertical position
2. Reattaching fabric to posts
3. Replacing damaged sections of fabric
4. Replacing and securing signs

Removal

When the Engineer determines that temporary fence (Type ESA) is no longer required, remove and dispose of it under Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

Backfill and repair ground disturbance caused by the installation and removal of temporary fence (Type ESA), including holes and depressions, under Section 15-1.02, "Preservation of Property," of the Standard Specifications.

MEASUREMENT AND PAYMENT

Temporary fence (Type ESA) is measured and paid for by the linear foot in the same manner specified for fence (Type BW or WM) in Section 80, "Fences," of the Standard Specifications.

The contract price paid per linear foot for temporary fence (Type ESA) includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in constructing the temporary fence (Type ESA), complete in place, including maintenance, removal of materials, and backfilling and repairing holes, depressions and other ground disturbance, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as ordered by the Engineer.

10-1.13 TEMPORARY CONSTRUCTION ENTRANCE

GENERAL

Summary

This work includes constructing, maintaining, and removing temporary construction entrance to provide temporary access.

The SWPPP must describe and include the use of temporary construction entrance as a water pollution control practice for tracking control.

Temporary construction entrance must be Type 1, Type 2, or a combination.

Submittals

Submit a Certificate of Compliance under Section 6-1.07, "Certificates of Compliance," of the Standard Specifications for:

1. Temporary entrance fabric
2. Rock

Submit details for alternatives at least 5 business days before installation. You may propose alternatives for the following items:

1. Alternative sump
2. Alternative corrugated steel panels
If the Engineer approves, you may eliminate the sump.

MATERIALS

Temporary Entrance Fabric

Temporary entrance fabric must comply with the specifications for rock slope protection fabric (Class 8) in Section 88-1.06, "Channel and Shore Protection," of the Standard Specifications.

Rock

Rock must be Type A or Type B.
Rock (Type A) must comply with:

1. Requirements under Section 72-2.02, "Materials," of the Standard Specifications
2. Following sizes:

<table>
<thead>
<tr>
<th>Square Screen Size (inch)</th>
<th>Percentage Passing</th>
<th>Percentage Retained</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Rock (Type B) must be Railway Ballast Number 25. Do not use blast furnace slag. Railway Ballast Number 25 must comply with:

1. Description in AREMA Manual for Railway Engineering.
2. Following sizes:

<table>
<thead>
<tr>
<th>Nominal Size Square Opening</th>
<th>Percentage Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>3"</td>
<td>100</td>
</tr>
<tr>
<td>2-1/2"</td>
<td>80-100</td>
</tr>
<tr>
<td>2"</td>
<td>60-85</td>
</tr>
<tr>
<td>1-1/2"</td>
<td>50-70</td>
</tr>
<tr>
<td>1"</td>
<td>25-50</td>
</tr>
<tr>
<td>3/4"</td>
<td>-</td>
</tr>
<tr>
<td>1/2"</td>
<td>5-20</td>
</tr>
<tr>
<td>3/8"</td>
<td>0-10</td>
</tr>
<tr>
<td>No. 4</td>
<td>0-3</td>
</tr>
</tbody>
</table>

3. Following properties:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent material passing No. 200 sieve, max.</td>
<td>1.0</td>
</tr>
<tr>
<td>Bulk specific gravity, min.</td>
<td>2.60</td>
</tr>
<tr>
<td>Absorption, percent min.</td>
<td>1.0</td>
</tr>
<tr>
<td>Clay lumps and friable particles, percent max.</td>
<td>0.5</td>
</tr>
<tr>
<td>Degradation, percent max.</td>
<td>30</td>
</tr>
<tr>
<td>Soundness (Sodium Sulfate), percent max.</td>
<td>5.0</td>
</tr>
<tr>
<td>Flat, elongated particles, or both, percent max.</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Corrugated Steel Panels

Corrugated steel panels must:

1. Be made of steel.
2. Be pressed or shop welded
3. Have a slot or hook for connecting panels together
CONSTRUCTION

Prepare location for temporary construction entrance by:

1. Removing vegetation to ground level and clear away debris
2. Grading ground to uniform plane
3. Grading ground surface to drain
4. Removing sharp objects that may damage fabric
5. Compacting the top 1.5 feet of soil to at least 90 percent relative compaction

If temporary entrance (Type 1) is specified, use rock (Type A).
If temporary construction entrance (Type 2) is specified, use Rock (Type B) under corrugated steel panels. Use at least 6 corrugated steel panels for each entrance. Couple panels together.

Install temporary construction entrance by:

1. Positioning fabric along the length of the entrance
2. Overlapping sides and ends of fabric by at least 12 inches
3. Spreading rock over fabric in the direction of traffic
4. Covering fabric with rock within 24 hours
5. Keeping a 6 inch layer of rock over fabric to prevent damage to fabric by spreading equipment

Do not drive on fabric until rock is spread.
Unless the Engineer eliminates the sump, install a sump within 20 feet of each temporary construction entrance.
Repair fabric damaged during rock spreading by placing a new fabric over the damaged area. New fabric must be large enough to cover damaged area and provide at least 18-inch overlap on all edges.

Maintenance

Maintain temporary construction entrance to minimize generation of dust and tracking of soil and sediment onto public roads. If dust or sediment tracking increases, place additional rock unless the Engineer approves another method.

Repair temporary construction entrance if:

1. Fabric is exposed
2. Depressions in the entrance surface develop
3. Rock is displaced

Repair temporary construction entrance within 24 hours of discovering damage unless the Engineer approves a longer period.
During use of temporary construction entrance, do not allow soil, sediment, or other debris tracked onto pavement to enter storm drains, open drainage facilities, or watercourses. When material is tracked onto pavement, remove it within 24 hours unless the Engineer approves a longer period.
If your vehicles, equipment, or activities disturb or displace the temporary construction entrance, repair it at your expense.
The Department does not pay maintenance costs for cleanup, repair, removal, disposal, or replacement due to improper installation or your negligence.

Removal

When the Engineer determines that temporary construction entrance is not required, remove and dispose of it under Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.
Backfill and repair ground disturbance, including holes and depressions, caused by installation and removal of temporary construction entrance under Section 15-1.02, "Preservation of Property," of the Standard Specifications.

MEASUREMENT AND PAYMENT

Temporary construction entrance is determined from actual count in place. Temporary construction entrance is measured one time only and no additional measurement will be recognized.
The contract price paid for temporary construction entrance includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in constructing temporary construction entrance, complete in place, including removal of temporary construction entrance, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.
No additional compensation will be made if the temporary construction entrance is relocated during the course of construction.

The State and you share the cost of maintaining temporary construction entrance. The State determines the maintenance cost under Section 9-1.03, "Force Account Payment," of the Standard Specifications and pays you one-half of that cost.

10-1.14 MOVE-IN/MOVE-OUT (TEMPORARY EROSION CONTROL)

GENERAL

Summary

This work includes moving onto the project when an area is ready to receive temporary erosion control, setting up required personnel and equipment for the application of erosion control materials, and moving out all personnel and equipment when temporary erosion control in that area is completed.

Temporary erosion control consists of any water pollution control practice for soil stabilization.

When notified by the Engineer that an area is ready for temporary erosion control, start erosion control work within 5 business days.

MEASUREMENT AND PAYMENT

Move-in/move-out (temporary erosion control) is measured as units from actual count. A move-in followed by a move-out is considered one unit.

The contract unit price paid for move-in/move-out (temporary erosion control) includes full compensation for furnishing all labor, materials (excluding temporary erosion control materials), tools, equipment, and incidentals and for doing all the work involved in moving in and removing from the project all personnel and equipment necessary for application of temporary erosion control, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.15 TEMPORARY DRAINAGE INLET PROTECTION

GENERAL

Summary

This work includes constructing, maintaining, and removing temporary drainage inlet protection. Drainage inlet protection settles and filters sediment before stormwater runoff discharges into storm drainage systems.

The SWPPP must describe and include the use of temporary drainage inlet protection as a water pollution control practice for sediment control.

Provide temporary drainage inlet protection to meet the changing conditions around the drainage inlet. Temporary drainage inlet protection must be:

Appropriate type to meet the conditions around the drainage inlet

Submittals

Submit a Certificate of Compliance as specified in Section 6-1.07, "Certificates of Compliance" of the Standard Specifications for:

1. Erosion control blanket
2. Fiber rolls
3. Safety cap for metal posts
4. Silt fence fabric
5. Sediment filter bag
6. Foam barrier
7. Rigid plastic barrier
8. Gravel-filled bag fabric

If you substitute the steel wire staple with an alternative attachment device, submit a sample of the device for approval at least 5 business days before installation.

MATERIALS

Geosynthetic Fabrics

Geosynthetic fabrics for temporary drainage inlet protection must consist of one of the following:
1. Polyester
2. Polypropylene
3. Combined polyester and polypropylene

Geosynthetic fabrics for temporary drainage inlet must comply with the specifications for water pollution control in Section 88-1.05, “Water Pollution Control,” of the Standard Specifications. Foam barrier must comply with:

<table>
<thead>
<tr>
<th>Foam Barrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Property</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Grab breaking load</td>
</tr>
<tr>
<td>1-inch grip, lb, min. in each direction</td>
</tr>
<tr>
<td>Apparent elongation</td>
</tr>
<tr>
<td>percent, min., in each direction</td>
</tr>
<tr>
<td>Water Flow Rate</td>
</tr>
<tr>
<td>max. average roll value, gallons per minute/square foot</td>
</tr>
<tr>
<td>Permittivity</td>
</tr>
<tr>
<td>1/sec., min.</td>
</tr>
<tr>
<td>Apparent opening size</td>
</tr>
<tr>
<td>max. average roll value, U.S. Standard sieve size</td>
</tr>
<tr>
<td>Ultraviolet Degradation</td>
</tr>
<tr>
<td>percent of original unexposed grab breaking load 500 hr, minimum</td>
</tr>
</tbody>
</table>

Sample under ASTM D 4354, Procedure C.
Test under ASTM D 4759. All properties are based on Minimum Average Roll Value (MARV). Identify, store, and handle under ASTM D 4873.

Erosion Control Blanket
Erosion control blanket must be:

1. Described as a rolled erosion control product (RECP)
2. Classified as temporary and degradable or long-term and non-degradable
3. Machine-made mats
4. Provided in rolled strips
5. Classified by the Erosion Control Technology Council (ECTC)

Erosion control blanket classified as temporary and degradable must be one of the following:

1. Double net excelsior blanket:
 1.1. Classified as ECTC Type 2D
 1.2. Classified as an erosion control blanket
 1.3. Designed to last for at least one year after installation
 1.4. With a Universal Soil Loss Equation (USLE) C-Factor of not more than 0.20 at a 2:1 (horizontal:vertical) slope
 1.5. With 80 percent of the wood excelsior fibers being 6 inches or longer
 1.6. Capable to withstand a maximum shear stress of 1.75 pounds per square foot under ASTM D 6460
 1.7. With a minimum tensile strength of 75 pounds per foot under ASTM D 5035
1.8. With top and bottom surfaces covered with extruded photodegradable plastic netting or lightweight non-synthetic netting

2. Double net straw and coconut blanket:

 2.1. Classified as ECTC Type 2D
 2.2. Classified as an erosion control blanket
 2.3. Designed to last for at least one year after installation
 2.4. With a USLE C-Factor of not more than 0.20 at a 2:1 (horizontal:vertical) slope
 2.5. Comprised of 70 percent straw and 30 percent coconut fiber
 2.6. Capable to withstand a maximum shear stress of 1.75 pounds per square foot under ASTM D 6460
 2.7. With a minimum tensile strength of 75 pounds per foot under ASTM D 5035
 2.8. With top and bottom surfaces covered with extruded photodegradable plastic netting or lightweight non-synthetic netting

3. Jute netting:

 3.1. Classified as ECTC Type 3B
 3.2. Classified as an open weave textile and have from 14 to 20 strands per foot in each direction
 3.3. Designed to last for at least one year after installation
 3.4. With a USLE C-Factor of not more than 0.25 at a 1.5:1 (horizontal:vertical) slope
 3.5. Comprised of 100 percent unbleached and undyed spun yarn made of jute fiber
 3.6. With an average open area from 63 to 70 percent
 3.7. From 48 to 72 inches in width
 3.8. Capable to withstand a maximum shear stress of 2.0 pounds per square foot under ASTM D 6460
 3.9. With a minimum tensile strength of 100 pounds per foot under ASTM D 5035
 3.10. From 0.90 to 1.20 pounds per square yard in weight

4. Coir netting:

 4.1. Classified as ECTC Type 4
 4.2. Classified as an open weave textile and from 13 to 18 strands per foot in each direction
 4.3. Designed to last for at least three years after installation
 4.4. With a USLE C-Factor of not more than 0.25 at a 1:1 (horizontal:vertical) slope
 4.5. Comprised of 100 percent unbleached and undyed spun coir yarn made of coconut fiber
 4.6. With an average open area from 63 to 70 percent
 4.7. From 72 to 158 inches in width
 4.8. Capable to withstand a maximum shear stress of 2.25 pounds per square foot under ASTM D6460
 4.9. With a minimum tensile strength of 125 pounds per foot under ASTM D 5035
 4.10. From 1.20 to 1.67 pounds per square yard in weight

Erosion control blanket classified as long-term and non-degradable must:

1. Be a geosynthetic fabric
2. Comply with the specifications for rock slope protection fabric (Class 8) in Section 88-1.06, "Channel and Shore Protection," of the Standard Specifications

Staples

You may use an alternative attachment device such as a geosynthetic pins or plastic pegs to install erosion control blanket.

Rock

Rock must comply with:

1. Requirements under Section 72-2.02, "Materials," of the Standard Specifications
2. Following sizes:
<table>
<thead>
<tr>
<th>Square Screen Size (inch)</th>
<th>Percentage Passing</th>
<th>Percentage Retained</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Rope

Rope for fiber rolls must be:

1. Biodegradable, such as sisal or manila
2. At least 1/4 inch in diameter

Fiber Rolls

Fiber rolls must:

1. Last for at least one year after installation
2. Be Type 1 or Type 2

For Type 1, fiber rolls must be:

1. Made from an erosion control blanket classified as temporary and degradable
2. Rolled along the width
3. Secured with natural fiber twine every 6'-6" from each end
4. Finished to be either:
 4.1. From 8 to 10 inches in diameter, from 10 to 20 feet long, and at least 0.5 pounds per linear foot
 4.2. From 10 to 12 inches in diameter, at least 10 feet long, and at least 2 pounds per linear foot

For Type 2, fiber rolls must:

1. Be filled with rice or wheat straw, wood excelsior, or coconut fiber
2. Be covered with photodegradable plastic netting, biodegradable jute, sisal, or coir fiber netting
3. Have netting secured tightly at each end
4. Be finished to be either:
 4.1. From 8 to 10 inches in diameter, from 10 to 20 feet long, and at least 1.1 pounds per linear foot
 4.2. From 10 to 12 inches in diameter, at least 10 feet long, and at least 3 pounds per linear foot

Wood Stakes

Wood stakes must be:

1. Untreated fir, redwood, cedar, or pine and cut from sound timber
2. Straight and free of loose or unsound knots and other defects which would render the stakes unfit for use
3. Pointed on the end to be driven into the ground

For fiber rolls, wood stakes must be at least:

1. 1” x 1” x 24” in size for Type 1 installation
2. 1” x 2” x 24” in size for Type 2 installation

Posts

Posts must be wood or metal.

Wood posts must be:

1. Untreated fir, redwood, cedar, or pine and cut from sound timber
2. Straight and free of loose or unsound knots and other defects that would render the stakes unfit for use
3. Pointed on the end to be driven into the ground
4. At least 2” x 2” in size, and 4 feet long
Metal posts must:

1. Be made of steel.
2. Have a "U," "T," "L," or other cross sectional shape that can resist failure from lateral loads.
3. Be pointed on the end to be driven into the ground.
4. Weigh at least 0.75-pound per foot.
5. Be at least 4 feet long.
6. Have a safety cap attached to the exposed end. The safety cap must be orange or red plastic and fit snugly to the metal post.

Silt Fence

Silt fence must be:

1. Constructed with silt fence fabric, posts, and fasteners
2. Prefabricated or assembled at the job site

Silt fence fabric must be attached to posts using these methods:

1. If prefabricated silt fence is used, posts must be inserted into sewn pockets
2. If assembled on the job site:
 2.1. If wood posts are used, fasteners must be staples or nails
 2.2. If steel posts are used, fasteners must be tie wires or locking plastic fasteners
 2.3. Spacing of the fasteners must be at least 8 inches

Gravel-filled Bags

Gravel-filled bags must:

1. Be made from fabric.
2. Have inside dimensions from 24 to 32 inches in length, and from 16 to 20 inches in width.
3. Have the opening bound to retain the gravel. The opening must be sewn with yarn, bound with wire, or secured with a closure device.
4. Weigh from 30 to 50 pounds when filled with gravel.

Gravel for gravel-filled bags must be:

1. From 3/8 to 3/4 inch in diameter
2. Clean and free from clay balls, organic matter, and other deleterious materials

Sediment Filter Bag

Sediment filter bag must:

1. Be made of fabric
2. Be sized to fit the catch basin or drainage inlet
3. Include a high-flow bypass

Sediment filter bag may include a metal frame. Sediment filter bags that do not have a metal frame and are deeper than 18 inches must:

1. Include lifting loops and dump straps
2. Include a restraint cord to keep the sides of the bag away from the walls of the catch basin

Foam Barriers

Foam barriers must:

1. Be filled with a urethane foam core
2. Have a geosynthetic fabric cover and flap
3. Have a triangular, circular, or square shaped cross section
4. Have a vertical height of at least 5 inches after installation
5. Have a horizontal flap of at least 8 inches in width
6. Have a length of at least 4 feet per unit
7. Have the ability to interlock separate units into a longer barrier so that water does not flow between the units
8. Be secured to:
 8.1. Pavement with 1-inch concrete nails with 1-inch washers and solvent-free adhesive
 8.2. Soil with 6-inch nails with 1-inch washers

Rigid Plastic Barriers

Rigid plastic barriers must:

1. Have an integrated filter
2. Have a formed outer jacket of perforated high density polyethylene (HDPE) or polyethylene terephthalate (PET)
3. Have a flattened tubular shaped cross section
4. Be made from virgin or recycled materials
5. Be free from biodegradable filler materials that degrade the physical or chemical characteristics of the finished filter core or outer jacket
6. Have a length of at least 4 feet per unit
7. Have the ability to interlock separate units into a longer barrier so that water does not flow between the units
8. Be secured to:
 8.1 Pavement with 1-inch concrete nails with 1-inch washers and solvent-free adhesive, with gravel-filled bags, or a combination
 8.2 Soil with 6-inch nails with 1-inch washers and wood stakes

9. Comply with the following properties:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grab tensile strength of outer jacket material, pounds/square inch, min. in each direction ASTM D 4632*</td>
<td>4000</td>
</tr>
<tr>
<td>Break strength of outer jacket, pounds/square inch ASTM D 4632*</td>
<td>1300</td>
</tr>
<tr>
<td>Permittivity of filter core, 1/sec., min. ASTM D 4491</td>
<td>0.38</td>
</tr>
<tr>
<td>Flow rate of filter core, gallons per minute per square foot, ASTM D 4491</td>
<td>100 min. to 200 max.</td>
</tr>
<tr>
<td>Filter core aperture size, max., Average Opening Size (AOS), microns ASTM D 4355 (xenon-arc lamp and water spray weathering method)</td>
<td>425</td>
</tr>
<tr>
<td>Ultraviolet stability (outer jacket & filter core), percent tensile strength retained after 500 hours, min. ASTM D 4355 (xenon-arc lamp and water spray weathering method)</td>
<td>90</td>
</tr>
</tbody>
</table>

* or appropriate test method for specific polymer

If used at a curb inlet without a grate, rigid plastic barriers must:

1. Have a horizontal flap of at least 6 inches with an under-seal gasket to prevent underflows
2. Include a high-flow bypass
3. Have a vertical height of at least 7 inches after installation
4. Be sized to fit the catch basin or drainage inlet

If used at a grated catch basin without a curb inlet, rigid plastic barriers must:

1. Cover the grate by at least 2 inches on each side and have an under-seal gasket to prevent underflows
2. Include a high-flow bypass
3. Have a vertical height of at least 1.5 inches after installation
4. Be sized to fit the catch basin or drainage inlet

If used at a curb inlet with a grate, rigid plastic barriers must:

1. Have a horizontal flap that covers the grate by at least 2 inches on the 3 sides away from the curb opening and have an under-seal gasket to prevent underflows
2. Include a high-flow bypass
3. Have a vertical section that covers the curb opening by at least 5 inches after installation
4. Be sized to fit the catch basin or drainage inlet

If used as a linear sediment barrier, rigid plastic barriers:

1. Must have an installed height of at least 6 inches
2. May have a horizontal flap of at least 4 inches

Linear Sediment Barrier
Linear sediment barriers must consist of one or more of the following:

1. Silt fence
2. Gravel-filled bags
3. Fiber roll
4. Rigid plastic barrier
5. Foam barrier

Flexible Sediment Barrier
Flexible sediment barriers consist of one or more of the following:

1. Rigid plastic barrier
2. Foam barrier

CONSTRUCTION
For drainage inlet protection at drainage inlets in paved and unpaved areas:

1. Prevent ponded runoff from encroaching on the traveled way or overtopping the curb or dike. Use linear sediment barriers to redirect runoff and control ponding.
2. Clear the area around each drainage inlet of obstructions including rocks, clods, and debris greater than one inch in diameter before installing the drainage inlet protection.
3. Install a linear sediment barrier up-slope of the existing drainage inlet and parallel with the curb, dike, or flow line to prevent sediment from entering the drainage inlet.

Erosion Control Blanket
To install erosion control blanket and geosynthetic fabric:

1. Secure blanket or fabric to the surface of the excavated sediment trap with staples and embed in a trench adjacent to the drainage inlet
2. Anchor the perimeter edge of the erosion control blanket in a trench

Silt Fence
If silt fence is used as a linear sediment barrier:

1. Place fence along the perimeter of the erosion control blanket, with the posts facing the drainage inlet
2. Install fence with the bottom edge of the silt fence fabric in a trench. Backfill the trench with soil and compact manually
Gravel Bag Berm
If gravel bag berm is used as a linear sediment barrier:

1. Place gravel-filled bags end-to-end to eliminate gaps
2. Stack bags in a way that the bags in the top row overlap the joints in the lower row

If gravel bag berms are used for Type 3A and Type 3B:

1. Place gravel-filled bags end-to-end to eliminate gaps
2. Stack bags in a way that the bags in the top row overlap the joints in the lower row
3. Arrange bags to create a spillway by removing one or more gravel-filled bags from the upper layer

If used within shoulder area, place gravel-filled bags behind temporary railing (Type K).

Fiber Rolls
If fiber rolls are used as a linear sediment barrier:

1. Place fiber rolls in a furrow.
2. Secure fiber rolls with stakes installed along the length of the fiber rolls. Stakes must be installed from 6 to 12 inches from the end of the rolls.

If fiber rolls are used as a linear sediment barrier for Type 4A, place them over the erosion control blanket.

Foam Barriers
If foam barriers are used as a linear sediment barrier:

1. Install barriers with the horizontal flap in a 3 inch deep trench and secured with nails and washers placed no more than 4 feet apart
2. Secure barriers with 2 nails at the connection points where separate units overlap
3. Place barriers without nails or stakes piercing the core

Flexible Sediment Barriers
If flexible sediment barriers are used:

1. Secure barriers to the pavement with nails and adhesive, gravel-filled bags, or a combination
2. Install barriers flush against the sides of concrete, asphalt concrete, or hot mix asphalt curbs or dikes
3. Place barriers to provide a tight joint with the curb or dike and anchored in a way that runoff cannot flow behind the barrier

If flexible sediment barriers are used for Type 4B:

1. Secure barriers to the pavement according to the angle and spacing shown on the plans
2. Place barriers to provide a tight joint with the curb or dike. Cut the cover fabric or jacket to ensure a tight fit

Rigid Sediment Barriers
If rigid sediment barriers are used at a grated catch basin without a curb inlet:

1. Place barriers using the gasket to prevent runoff from flowing under the barrier
2. Secure barriers to the pavement with nails and adhesive, gravel-filled bags, or a combination

If rigid sediment barriers are used for linear sediment barriers:

1. Install barriers in a trench. Backfill the trench with soil and compact manually
2. Place barrier with separate units overlapping at least 4 inches
3. Reinforce barriers with a wood stake at each overlap
4. Fasten barriers to the wood stakes with steel screws, 16 gauge galvanized steel wire, or with UV stabilized cable ties that are from 5 to 7 inches in length
Sediment Filter Bags

Install sediment filter bags for Type 5 by:

1. Removing the drainage inlet grate
2. Placing the sediment bag in the opening
3. Replacing the grate to secure the sediment filter bag in place

MAINTENANCE

Maintain temporary drainage inlet protection to provide sediment holding capacity and to reduce runoff velocities.

Remove sediment deposits, trash, and debris from temporary drainage inlet protection as needed or when directed by the Engineer. If removed sediment is deposited within project limits, it must be stabilized and not subject to erosion by wind or water. Trash and debris must be removed and disposed of as specified in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

Maintain temporary drainage inlet protection by removing sediment from:

1. Behind flexible sediment barriers when sediment exceeds 1 inch in depth
2. Surface of the erosion control blanket when sediment exceeds 1 inch in depth
3. Sediment trap for Type 2 when the volume has been reduced by approximately one-half
4. Behind silt fence when the sediment is 1/3 the height of the silt fence fabric above ground
5. Sediment filter bags when filled or when the restraint cords are no longer visible

If rills and other evidence of concentrated runoff occur beneath the linear sediment barrier, repair or adjust the barrier.

If silt fence fabric becomes split, torn, or unraveled, repair or replace silt fence.
If geosynthetic fabric becomes split, torn, or unraveled, repair or replace foam barriers.
Repair or replace sagging or slumping linear sediment barriers with additional stakes. Replace broken or split wood stakes.
Reattach foam barriers and rigid plastic barriers that become detached or dislodged from the pavement.
Repairs to a split or torn rigid plastic barriers with 16 gauge galvanized steel wire or UV stabilized cable ties that are from 5 to 7 inches in length.
For sediment filter bags without metal frames, empty by placing one inch steel reinforcing bars through the lifting loops and then lift the filled bag from the drainage inlet. For sediment filter bags with metal frames, empty by lifting the metal frame from the drainage inlet. Rinse before replacing in the drainage inlet. When rinsing the sediment filter bags, do not allow the rinse water to enter a drain inlet or waterway.
Repair temporary drainage inlet protection within 24 hours of discovering damage unless the Engineer approves a longer period.
If your vehicles, equipment, or activities disturb or displace temporary drainage inlet protection, repair temporary drainage inlet protection at your expense.
The Department does not pay maintenance costs for cleanup, repair, removal, disposal, or replacement due to improper installation or your negligence.

REMOVAL

When the Engineer determines that the temporary drainage inlet protection is not required, it must be removed and disposed of under Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

Ground disturbance, including holes and depressions, caused by the installation and removal of the temporary drainage inlet protection must be backfilled and repaired under Section 15-1.02, "Preservation of Property," of the Standard Specifications.

MEASUREMENT AND PAYMENT

Quantities of temporary drainage inlet protection will be determined from actual count in place. The protection will be measured one time only and no additional measurement will be recognized.
The contract unit price paid for temporary drainage inlet protection includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in constructing the temporary drainage inlet protection, complete in place, including removal of materials, cleanup and disposal of retained
sediment and debris, and backfilling and repairing holes, depressions and other ground disturbance, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.
No additional compensation will be made if the temporary drainage inlet protection is relocated during the course of construction.

The State and you share the cost of maintaining the temporary drainage inlet protection. The State determines the maintenance cost under Section 9-1.03, "Force Account Payment," of the Standard Specifications and pays you one-half of that cost.

10-1.16 SCAFFOLDING

Scaffolding shall be defined in accordance with and shall conform to the Construction Safety Orders of the Division of Occupational Safety and Health and these special provisions.

If scaffolding is constructed for this project over or adjacent to traffic, or suspended from the traveled way, the Contractor shall submit to the Engineer working drawings for scaffolding systems in conformance with Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications, and these special provisions.

Scaffolding working drawings shall include the following:

A. Descriptions, calculations, and values for all loads anticipated during the erection, use, and removal of scaffolding.
B. Methods and equipment for erecting, moving, and removing scaffolding.
C. Design details including bolt layouts, welding details, and any connections to existing structures.
D. Stress sheets including a summary of computed stresses in the (1) scaffolding, (2) connections between scaffolding and any existing structures, and (3) existing load supporting members. The computed stresses shall include the effects of erection, movement, and removal of the scaffolding.

If manufactured scaffolding is used, the manufacturer's name, address, and phone number shall be shown on the working drawings.

The working drawings shall be stamped and signed by an engineer who is registered as a Civil Engineer. In addition, prior to submitting the working drawings to the Engineer, the working drawings shall be stamped and signed by an independent reviewer who is registered as a Civil Engineer in the State of California. The independent reviewer shall not be employed by the same entity preparing the working drawings.

The Contractor shall allow 7 days for the review of a complete submittal for scaffolding working drawings. In the event the Engineer fails to complete the review within the time allowed, and if, in the opinion of the Engineer, completion of the work is delayed or interfered with by reason of the Engineer's delay in completing the review, the Contractor will be compensated for any resulting loss, and an extension of time will be granted, in the same manner as provided for in Section 8-1.09, "Right of Way Delays," of the Standard Specifications.

Welding for the manufacturing and erection of scaffolding shall conform to the requirements in AWS D1.1 or AWS D1.2 for steel or aluminum construction respectively.

Full compensation for conforming to the above requirements shall be considered as included in the contract prices paid for the various contract items of work, and no additional compensation will be allowed therefor.

10-1.17 COOPERATION

It is anticipated that work by another contractor may be in progress adjacent to or within the limits of this project during progress of the work on this contract. The following table lists contracts anticipated to be in progress during this contract.

<table>
<thead>
<tr>
<th>Contract No.</th>
<th>Co-Rte-PM Location</th>
<th>Type of Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>08-0J0704</td>
<td>SBD-215-0.58/1.66 Barton Road Interchange</td>
<td>Reconstruct Interchange</td>
</tr>
</tbody>
</table>

Comply with Section 7-1.14, "Cooperation," of the Standard Specifications.

10-1.18 PROGRESS SCHEDULE (CRITICAL PATH METHOD)

GENERAL

Summary

Comply with Section 8-1.04, "Progress Schedule," of the Standard Specifications, except you must:

1. Use a computer software to prepare the schedule
2. Furnish compatible software for the Engineer's exclusive possession and use
You are responsible for assuring that all activity sequences are logical and that each schedule shows a coordinated plan for complete performance of the work.

Definitions

contract completion date: The current extended date for completion of the contract shown on the weekly statement of working days furnished by the Engineer as specified in Section 8-1.06, "Time of Completion," of the Standard Specifications.

data date: The day after the date through which a schedule is current. Everything occurring earlier than the data date is "as-built" and everything on or after the data date is "planned."

early completion time: The difference in time between an early scheduled completion date and the contract completion date.

float: The difference between the earliest and latest allowable start or finish times for an activity.

milestone: An event activity that has zero duration and is typically used to represent the beginning or end of a certain stage of the project.

narrative report: A document submitted with each schedule that discusses topics related to project progress and scheduling.

near critical path: A chain of activities with total float exceeding that of the critical path but having no more than 10 working days of total float.

State owned float activity: The activity documenting time saved on the critical path by actions of the State. It is the last activity prior to the scheduled completion date.

time impact analysis: A schedule and narrative report developed specifically to demonstrate what effect a proposed change or delay has on the current scheduled completion date.

time-scaled network diagram: A graphic depiction of a CPM schedule comprised of activity bars with relationships for each activity represented by arrows. The tail of each arrow connects to the activity bar for the predecessor and points to the successor.

total float: The amount of time that an activity or chain of activities can be delayed before extending the scheduled completion date.

Submittals

General Requirements

Submit to the Engineer baseline, monthly updated, and final updated schedules, each consistent in all respects with the time and order of work requirements of the contract. Perform work in the sequence indicated on the current accepted schedule.

Each schedule must show:

1. Calculations using the critical path method to determine controlling activities.
2. Duration activities less than 20 working days.
3. At least 50 but not more than 500 activities, unless authorized. The number of activities must be sufficient to assure adequate planning of the project, to permit monitoring and evaluation of progress, and to do an analysis of time impacts.
4. Each required constraint. Constraints other than those required by the special provisions may be included only if authorized.
5. State-owned float as the predecessor activity to the scheduled completion date.
6. Activities with identification codes for responsibility, stage, work shifts, location, and contract pay item numbers.

You may show early completion time on any schedule provided that the requirements of the contract are met. Early completion time is considered a resource for your exclusive use. You may increase early completion time by improving production, reallocating resources to be more efficient, performing sequential activities concurrently, or by completing activities earlier than planned. You may also submit for approval a VECP as specified in Section 4-1.035B, "Value Engineering Change Proposal." of the Standard Specifications that will reduce time of construction.

You may show a scheduled completion date that is later than the contract completion date on an update schedule, after the baseline schedule is accepted. Provide an explanation for a late scheduled completion date in the narrative report that is included with the schedule.

State-owned float is considered a resource for the exclusive use of the State. The Engineer may accrue State-owned float by the early completion of review of any type of required submittal when it saves time on the critical path. Prepare a time impact analysis, when requested by the Engineer, to determine the effect of the action as
specified in "Time Impact Analysis." The Engineer documents State-owned float by directing you to update the State-owned float activity on the next updated schedule. Include a log of the action on the State-owned float activity and include a discussion of the action in the narrative report. The Engineer may use State-owned float to mitigate past, present, or future State delays by offsetting potential time extensions for contract change orders.

The Engineer may adjust contract working days for ordered changes that affect the scheduled completion date as specified in Section 4-1.03, "Changes," of the Standard Specifications. Prepare a time impact analysis to determine the effect of the change as specified in "Time Impact Analysis" and include the impacts acceptable to the Engineer in the next updated schedule. Changes that do not affect the controlling operation on the critical path will not be considered as the basis for a time adjustment. Changes that do affect the controlling operation on the critical path will be considered by the Engineer in decreasing time or granting an extension of time for completion of the contract. Time extensions will only be granted if the total float is absorbed and the scheduled completion date is delayed one or more working days because of the ordered change.

The Engineer’s review and acceptance of schedules does not waive any contract requirements and does not relieve you of any obligation or responsibility for submitting complete and accurate information. Correct rejected schedules and resubmit them within 7 days of notification by the Engineer, at which time a new review period of 7 days will begin.

Errors or omissions on schedules do not relieve you from finishing all work within the time limit specified for completion of the contract. If, after a schedule has been accepted by the Engineer, either you or the Engineer discover that any aspect of the schedule has an error or omission, you must correct it on the next updated schedule.

Computer Software

Submit to the Engineer for review a description of proposed schedule software to be used. After the Engineer accepts the proposed software, furnish schedule software and all original software instruction manuals. All software must be compatible with the current version of the Windows operating system in use by the Engineer. The schedule software must include the latest version of Oracle Primavera P6 Professional Project Management for Windows, or equivalent.

If a schedule software equivalent to P6 is proposed, it must be capable of:

1. Generating files that can be imported into P6
2. Comparing 2 schedules and providing reports of changes in activity ID, activity description, constraints, calendar assignments, durations, and logic ties

The schedule software and schedule-comparing software will be returned to you before the final estimate. The Department will compensate you as specified in Section 4-1.03D, "Extra Work," of the Standard Specifications for replacement of software or manuals damaged, lost, or stolen after delivery to the Engineer.

Instruct the Engineer in the use of the software and provide software support until the contract is accepted. Within 15 days of contract approval, provide a commercial 8-hour training session for 2 Department employees in the use of the software at a location acceptable to the Engineer. It is recommended that you also send at least 2 employees to the same training session to facilitate development of similar knowledge and skills in the use of the software. If schedule software other than P6 is submitted, then the training session must be a total of 16-hours for each Department employee.

Network Diagrams, Reports, and Data

Include the following with each schedule submittal:

1. Two sets of originally plotted, time-scaled network diagrams
2. Two copies of a narrative report
3. One read-only compact disk or floppy diskette containing the schedule data

The time-scaled network diagrams must conform to the following:

1. Show a continuous flow of information from left to right
2. Be based on early start and early finish dates of activities
3. Clearly show the primary paths of criticality using graphical presentation
4. Be prepared on 34” x 44”
5. Include a title block and a timeline on each page
The narrative report must be organized in the following sequence with all applicable documents included:

1. Transmittal letter
2. Work completed during the period
3. Identification of unusual conditions or restrictions regarding labor, equipment or material; including multiple shifts, 6-day work weeks, specified overtime or work at times other than regular days or hours
4. Description of the current critical path
5. Changes to the critical path and scheduled completion date since the last schedule submittal
6. Description of problem areas
7. Current and anticipated delays:
 7.1. Cause of delay
 7.2. Impact of delay on other activities, milestones, and completion dates
 7.3. Corrective action and schedule adjustments to correct the delay
8. Pending items and status thereof:
 8.1. Permits
 8.2. Change orders
 8.3. Time adjustments
 8.4. Noncompliance notices
9. Reasons for an early or late scheduled completion date in comparison to the contract completion date

Schedule submittals will only be considered complete when all documents and data have been submitted as described above.

Preconstruction Scheduling Conference

Schedule a preconstruction scheduling conference with your project manager and the Engineer within 15 days after contract approval. The Engineer will conduct the meeting and review the requirements of this section with you.

Submit a general time-scaled logic diagram displaying the major activities and sequence of planned operations and be prepared to discuss the proposed work plan and schedule methodology that comply with the requirements of this section. If you propose deviations to the construction staging, then the general time-scaled logic diagram must also display the deviations and resulting time impacts. Be prepared to discuss the proposal.

At this meeting, also submit the alphanumeric coding structure and activity identification system for labeling work activities. To easily identify relationships, each activity description must indicate its associated scope or location of work by including such terms as quantity of material, type of work, bridge number, station to station location, side of highway (such as left, right, northbound, southbound), lane number, shoulder, ramp name, ramp line descriptor, or mainline.

The Engineer reviews the logic diagram, coding structure, and activity identification system, and provide any required baseline schedule changes to you for implementation.

Baseline Schedule

Beginning the week following the preconstruction scheduling conference, meet with the Engineer weekly to discuss schedule development and resolve schedule issues until the baseline schedule is accepted.

Submit a baseline schedule within 20 days of contract approval. Allow 20 days for the Engineer's review after the baseline schedule and all support data are submitted. In addition, the baseline schedule submittal is not considered complete until the computer software is delivered and installed for use in review of the schedule.

The baseline schedule must include the entire scope of work and how you plan to complete all work contemplated. The baseline schedule must show the activities that define the critical path. Multiple critical paths and near-critical paths must be kept to a minimum. A total of not more than 50 percent of the baseline schedule activities must be critical or near critical, unless otherwise authorized.

The baseline schedule must not extend beyond the number of contract working days. The baseline schedule must have a data date of contract approval. If you start work before contract approval, the baseline schedule must have a data date of the 1st day you performed work at the job site.

If you submit an early completion baseline schedule that shows contract completion in less than 85 percent of the contract working days, the baseline schedule must be supplemented with resource allocations for every task
activity and include time-scaled resource histograms. The resource allocations must be shown to a level of detail that facilitates report generation based on labor crafts and equipment classes for you and your subcontractors. Use average composite crews to display the labor loading of on-site construction activities. Optimize and level labor to reflect a reasonable plan for accomplishing the work of the contract and to assure that resources are not duplicated in concurrent activities. The time-scaled resource histograms must show labor crafts and equipment classes to be used. The Engineer may review the baseline schedule activity resource allocations using Means Productivity Standards or equivalent to determine if the schedule is practicable.

Updated Schedule

Submit an updated schedule and meet with the Engineer to review contract progress, on or before the 1st day of each month, beginning one month after the baseline schedule is accepted. Allow 15 days for the Engineer's review after the updated schedule and all support data are submitted, except that the review period will not start until the previous month's required schedule is accepted. Updated schedules that are not accepted or rejected within the review period are considered accepted by the Engineer.

The updated schedule must have a data date of the 21st day of the month or other date established by the Engineer. The updated schedule must show the status of work actually completed to date and the work yet to be performed as planned. Actual activity start dates, percent complete, and finish dates must be shown as applicable. Durations for work that has been completed must be shown on the updated schedule as the work actually occurred, including Engineer submittal review and your resubmittal times.

You may include modifications such as adding or deleting activities or changing activity constraints, durations, or logic that do not (1) alter the critical path(s) or near critical path(s) or (2) extend the scheduled completion date compared to that shown on the current accepted schedule. Justify in writing the reasons for any changes to planned work. If any proposed changes in planned work will result in (1) or (2) above, then submit a time impact analysis as specified in this section.

Time Impact Analysis

Submit a written time impact analysis (TIA) with each request for adjustment of contract time, or when you or the Engineer consider that an approved or anticipated change may impact the critical path or contract progress.

The TIA must illustrate the impacts of each change or delay on the current scheduled completion date or internal milestone, as appropriate. The analysis must use the accepted schedule that has a data date closest to and before the event. If the Engineer determines that the accepted schedule used does not appropriately represent the conditions before the event, the accepted schedule must be updated to the day before the event being analyzed. The TIA must include an impact schedule developed from incorporating the event into the accepted schedule by adding or deleting activities, or by changing durations or logic of existing activities. If the impact schedule shows that incorporating the event modifies the critical path and scheduled completion date of the accepted schedule, the difference between scheduled completion dates of the two schedules must be equal to the adjustment of contract time. The Engineer may construct and use an appropriate project schedule or other recognized method to determine adjustments in contract time until you provide the TIA.

Submit 2 copies of your TIA within 20 days of receiving a written request for a TIA from the Engineer. Allow the Engineer 15 days after receipt to review the submitted TIA. All approved TIA schedule changes must be shown on the next updated schedule.

If a TIA you submit is rejected, meet with the Engineer to discuss and resolve issues related to the TIA. If clarification is still needed, you are allowed 15 days to submit a protest as specified in Section 5-1.011, "Protests," of the Standard Specifications. If agreement is not reached, you are allowed 5 days from the date you receive the Engineer's response to your protest to submit an Initial Potential Claim Record as specified in Section 5-1.146B, "Initial Potential Claim Record," of the Standard Specifications. Only show actual as-built work, not unapproved changes related to the TIA, in subsequent updated schedules. If agreement is reached at a later date, approved TIA schedule changes must be shown on the next updated schedule. The Engineer withholds remaining payment on the schedule contract item if a TIA is requested and not submitted within 20 days. The schedule item payment resumes on the next estimate after the requested TIA is submitted. No other contract payment is withheld regarding TIA submittals.

Final Updated Schedule

Submit a final update, as-built schedule with actual start and finish dates for the activities, within 30 days after completion of contract work. Provide a written certificate with this submittal signed by your project manager or an officer of the company stating, "To my knowledge and belief, the enclosed final update schedule reflects the actual start and finish dates of the actual activities for the project contained herein." An officer of the company may delegate in writing the authority to sign the certificate to a responsible manager.
PAYMENT

Progress schedule (critical path method) will be paid for at a lump sum price. The contract lump sum price paid for progress schedule (critical path method) includes full compensation for furnishing all labor, material, tools, equipment, and incidentals, including computer software, and for doing all the work involved in preparing, furnishing, and updating schedules, and instructing and assisting the Engineer in the use of computer software, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

Payments for the progress schedule (critical path method) contract item will be made progressively as follows:

1. A total of 25 percent of the item amount will be paid upon achieving all of the following:
 1.1. Completion of 5 percent of all contract item work.
 1.2. Acceptance of all schedules and approval of all TIAs required to the time when 5 percent of all contract item work is complete.
 1.3. Delivery of schedule software to the Engineer.
 1.4. Completion of required schedule software training.

2. A total of 50 percent of the item amount will be paid upon completion of 25 percent of all contract item work and acceptance of all schedules and approval of all TIAs required to the time when 25 percent of all contract item work is complete.

3. A total of 75 percent of the item amount will be paid upon completion of 50 percent of all contract item work and acceptance of all schedules and approval of all TIAs required to the time when 50 percent of all contract item work is complete.

4. A total of 100 percent of the item amount will be paid upon completion of all contract item work, acceptance of all schedules and approval of all TIAs required to the time when all contract item work is complete, and submittal of the certified final update schedule.

If you fail to complete any of the work or provide any of the schedules required by this section, the Engineer makes an adjustment in compensation as specified in Section 4-1.03C, "Changes in Character of Work," of the Standard Specifications for the work not performed. Adjustments in compensation for schedules will not be made for any increased or decreased work ordered by the Engineer in submitting schedules.

10-1.19 TIME-RELATED OVERHEAD

The Contractor will be compensated for time-related overhead as described below and in conformance with "Force Account Payment" of these special provisions. The Contractor will not be compensated for time-related overhead for delays to the controlling operations caused by the Engineer that occur prior to the first working day, but will be compensated for actual overhead costs incurred, as determined by an independent Certified Public Accountant audit examination and report.

Attention is directed to "Beginning of Work, Time of Completion and Liquidated Damages," "Force Account Payment," and "Progress Schedule (Critical Path Method)" of these special provisions.

The provisions in Section 9-1.08D(2)(b), "Overhead Claims," of the Standard Specifications shall not apply.

Time-related overhead shall consist of those overhead costs, including field and home office overhead, that are in proportion to the time required to complete the work. Time-related overhead shall not include costs that are not related to time, including but not limited to, mobilization, licenses, permits, and other charges incurred only once during the contract. Time-related overhead shall not apply to subcontractors of any tier, suppliers, fabricators, manufacturers, or other parties associated with the Contractor.

Field office overhead expenses include time-related costs associated with the normal and recurring operations of the construction project, and shall not include costs directly attributable to the work of the contract. Time-related costs of field office overhead include, but are not limited to, salaries, benefits, and equipment costs of project managers, general superintendents, field office managers and other field office staff assigned to the project, and rent, utilities, maintenance, security, supplies, and equipment costs of the project field office.

Home office overhead or general and administrative expenses refer to the fixed costs of operating the Contractor's business. These costs include, but are not limited to, general administration, insurance, personnel and subcontract administration, purchasing, accounting, and project engineering and estimating. Home office overhead costs shall exclude expenses specifically related to other contracts or other businesses of the Contractor, equipment coordination, material deliveries, and consultant and legal fees.
The amount of time-related overhead associated with a reduction in contract time for an accepted VECP under Section 4-1.035B, "Value Engineering Change Proposal," of the Standard Specifications shall be considered a construction cost attributable to the resultant estimated net savings due to the cost reduction incentive.

If the final increased amount of time-related overhead exceeds 149 percent of the contract lump sum price bid, the Contractor shall, within 60 days of the Engineer's written request, submit to the Engineer an audit examination and report performed by an independent Certified Public Accountant of the Contractor's actual overhead costs. The audit examination and report shall depict the Contractor's project and company-wide financial records and shall specify the actual overall average daily rates for both field and home office overhead for the entire duration of the project, and whether the costs have been properly allocated. The rates of field and home office overhead shall exclude unallowable costs as determined in the Federal Acquisition Regulations, 48 CFR, Chapter 1, Part 31.

Independent Certified Public Accountant's audit examinations shall be performed in conformance with the requirements of the American Institute of Certified Public Accountants Attestation Standards. Audit examinations and reports shall determine if the rates of field office overhead and home office overhead are:

A. Allowable in conformance with the requirements of the Federal Acquisition Regulations, 48 CFR, Chapter 1, Part 31.
B. Adequately supported by reliable documentation.
C. Related solely to the project under examination.

Within 20 days of receipt of the Engineer's written request, the Contractor shall make its financial records available for audit by the State for the purpose of verifying the actual rate of time-related overhead specified in the audit submitted by the Contractor. The actual rate of time-related overhead specified in the audit, submitted by the Contractor, will be subject to approval by the Engineer.

If the Engineer requests the independent Certified Public Accountant audit, or if it is requested in writing by the Contractor, the contract lump sum payment for time-related overhead, in excess of 149 percent of the lump sum price bid, will be adjusted to reflect the actual rate.

The cost of performing an independent Certified Public Accountant audit examination and submitting the report, requested by the Engineer, will be borne equally by the State and the Contractor. The division of the cost will be made by determining the cost of providing an audit examination and report in conformance with the provisions of Section 9-1.04, "Extra Work Performed by Specialists" of the Standard Specifications, and paying to the Contractor one-half of that cost. The cost of performing an audit examination and submitting the independent Certified Public Accountant audit report for overhead claims other than for the purpose of verifying the actual rate of time-related overhead shall be entirely borne by the Contractor. The cost of performing an audit examination and submitting the independent Certified Public Accountant audit report to verify actual overhead costs incurred prior to the first working day shall be entirely borne by the Contractor.

Time-related overhead will be paid for at a lump sum price. The contract lump sum price bid for time-related overhead will be increased or decreased only as a result of suspensions or adjustments of contract time which revise the current contract completion date and which satisfy any of the following criteria:

A. Suspensions of work ordered in conformance with the provisions in Section 8-1.05, "Temporary Suspension of Work," of the Standard Specifications, except:
 1. Suspensions ordered due to weather conditions being unfavorable for the suitable prosecution of the controlling operation or operations.
 2. Suspensions ordered due to the failure on the part of the Contractor to carry out orders given, or to perform the provisions of the contract.
 3. Suspensions ordered due to factors beyond the control of and not caused by the State or the Contractor, for which the Contractor is granted non-working days.
 4. Other suspensions that mutually benefit the State and the Contractor.

B. Adjustments of contract time granted by the State and set forth in approved contract change orders, in conformance with the provisions in Section 4-1.03, "Changes," of the Standard Specifications.

A delay to the controlling operation may be concurrent and any of the following:

1. Nonexcusable: A nonexcusable delay is caused by the fault, nonperformance, or deficiency of the Contractor, subcontractors of any tier, or suppliers. The days during a nonexcusable delay are working days. No time or payment adjustment for a nonexcusable delay is allowed.
2. **Excusable**: An excusable delay is caused by factors beyond the control and without the fault of the State or the Contractor. The days during an excusable delay are non-working days.

3. **Compensable**: A compensable delay is caused solely by the fault, deficiency, error, omission, or change made by the State. A time adjustment and a payment adjustment for the actual cost without markup or profit are allowed.

A concurrent delay occurs when 2 or more separate delays overlap partially or entirely. A nonexcusable delay concurrent with either an excusable or a compensable delay is a nonexcusable delay. An excusable delay concurrent with a compensable delay is an excusable delay.

The quantity of time-related overhead is only adjusted as a result of a compensable delay and is not adjusted as a result of either a nonexcusable or an excusable delay.

An approved time impact analysis submitted as specified in "Progress Schedule (Critical Path Method)" of these special provisions is used to determine the type and duration of a delay.

For each day the number of working days bid to complete the contract, in conformance with the provisions in "Beginning Of Work, Time Of Completion And Liquidated Damages," of these special provisions, is increased or decreased due to suspensions or adjustments of contract time as specified above, the lump sum price for time-related overhead will be increased or decreased by an amount equal to the contract lump sum price bid for time-related overhead divided by the number of working days bid to complete the contract.

In the event an early completion progress schedule, as defined in "Progress Schedule (Critical Path Method)" of these special provisions, is submitted by the Contractor and approved by the Engineer, the amount of time-related overhead eligible for payment will be based on the total number of working days for the project, in conformance with the provisions in "Beginning of Work, Time of Completion and Liquidated Damages" of these special provisions, rather than the Contractor's early completion progress schedule.

The contract lump sum price paid for time-related overhead shall include full compensation for time-related overhead, including the Contractor's share of costs of an independent Certified Public Accountant audit of overhead costs requested by the Engineer, as specified in these special provisions, and as directed by the Engineer.

The provisions in Sections 4-1.03B, "Increased or Decreased Quantities," and 4-1.03C, "Changes in Character of the Work," of the Standard Specifications shall not apply to the contract item of time-related overhead.

Full compensation for additional overhead costs incurred during days of inclement weather when the contract work is extended into additional construction seasons due to delays caused by the State shall be considered as included in the time-related overhead paid during the contract working days, and no additional compensation will be allowed therefor.

Full compensation for additional overhead costs involved in performing additional contract item work that is not a controlling operation shall be considered as included in the contract items of work involved, and no additional compensation will be allowed therefor.

Full compensation for overhead, other than time-related overhead measured and paid for as specified above, and other than overhead costs included in the markups specified in "Force Account Payment" of these special provisions, shall be considered as included in the various items of work and no additional compensation will be allowed therefor.

Overhead costs incurred by subcontractors of any tier, suppliers, fabricators, manufacturers, and other parties associated with the Contractor shall be considered as included in the various items of work and as specified in Section 9-1.03, "Force Account Payment," of the Standard Specifications.

For the purpose of making progress payments pursuant to the provisions in Section 9-1.07, "Progress Payments," of the Standard Specifications, the amount of time-related overhead in each monthly partial payment will be based on the number of working days that occurred during that monthly estimate period, including compensable suspensions and right of way delays. Working days granted by contract change order due to extra work or changes in character of work, will be compensated upon completion of the contract. The amount earned per working day for time-related overhead shall be the lesser of the following amounts:

A. The contract lump sum price for time-related overhead, divided by the number of working days bid to complete the contract, in conformance with the provisions in "Beginning Of Work, Time Of Completion And Liquidated Damages," of these special provisions.

B. Twenty percent of the original total contract amount, divided by the number of working days bid to complete the contract, in conformance with the provisions in "Beginning Of Work, Time Of Completion And Liquidated Damages," of these special provisions.

After the work has been completed, except plant establishment work, as provided in Section 20-4.08, "Plant Establishment Work," of the Standard Specifications, the amount of the total contract lump sum price for time-related overhead not yet paid will be included for payment in the first estimate made after completion of
roadway construction work, in conformance with the provisions in Section 9-1.07, "Progress Payments," of the Standard Specifications.

10-1.20 CONSTRUCTION AREA TRAFFIC CONTROL DEVICES

Flagging, signs, and temporary traffic control devices furnished, installed, maintained, and removed when no longer required shall conform to the provisions in Section 12, "Construction Area Traffic Control Devices," of the Standard Specifications and these special provisions.

Category 1 temporary traffic control devices are defined as small and lightweight (less than 100 pounds) devices. These devices shall be certified as crashworthy by crash testing, crash testing of similar devices, or years of demonstrable safe performance. Category 1 temporary traffic control devices include traffic cones, plastic drums, portable delineators, and channelizers.

If requested by the Engineer, the Contractor shall provide written self-certification for crashworthiness of Category 1 temporary traffic control devices at least 5 business days before beginning any work using the devices or within 2 business days after the request if the devices are already in use. Self-certification shall be provided by the manufacturer or Contractor and shall include the following:

A. Date,
B. Federal Aid number (if applicable),
C. Contract number, district, county, route and post mile of project limits,
D. Company name of certifying vendor, street address, city, state and zip code,
E. Printed name, signature and title of certifying person; and
F. Category 1 temporary traffic control devices that will be used on the project.

The Contractor may obtain a standard form for self-certification from the Engineer.

Category 2 temporary traffic control devices are defined as small and lightweight (less than 100 pounds) devices that are not expected to produce significant vehicular velocity change, but may cause potential harm to impacting vehicles. Category 2 temporary traffic control devices include barricades and portable sign supports.

Category 2 temporary traffic control devices shall be on the Federal Highway Administration's (FHWA) list of Acceptable Crashworthy Category 2 Hardware for Work Zones. This list is maintained by FHWA and can be located at:

http://safety.fhwa.dot.gov/roadway_dept/policy_guide/road_hardware/listing.cfm?code=workzone

The Department also maintains this list at:

Category 2 temporary traffic control devices that have not received FHWA acceptance shall not be used. Category 2 temporary traffic control devices in use that have received FHWA acceptance shall be labeled with the FHWA acceptance letter number and the name of the manufacturer. The label shall be readable and permanently affixed by the manufacturer. Category 2 temporary traffic control devices without a label shall not be used.

If requested by the Engineer, the Contractor shall provide a written list of Category 2 temporary traffic control devices to be used on the project at least 5 business days before beginning any work using the devices or within 2 business days after the request if the devices are already in use.

Category 3 temporary traffic control devices consist of temporary traffic-handling equipment and devices that weigh 100 pounds or more and are expected to produce significant vehicular velocity change to impacting vehicles. Temporary traffic-handling equipment and devices include crash cushions, truck-mounted attenuators, temporary railing, temporary barrier, and end treatments for temporary railing and barrier.

Type III barricades may be used as sign supports if the barricades have been successfully crash tested, meeting the NCHRP Report 350 criteria, as one unit with a construction area sign attached.

Category 3 temporary traffic control devices shall be shown on the plans or on the Department's Highway Safety Features list. This list is maintained by the Division of Engineering Services and can be found at:

http://www.dot.ca.gov/hq/esc/approved_products_list/

Category 3 temporary traffic control devices that are not shown on the plans or not listed on the Department's Highway Safety Features list shall not be used.

Full compensation for providing self-certification for crashworthiness of Category 1 temporary traffic control devices and for providing a list of Category 2 temporary traffic control devices used on the project shall be
considered as included in the prices paid for the various items of work requiring the use of the Category 1 or Category 2 temporary traffic control devices and no additional compensation will be allowed therefor.

10-1.21 CONSTRUCTION AREA SIGNS

Construction area signs for temporary traffic control shall be furnished, installed, maintained, and removed when no longer required in conformance with the provisions in Section 12, "Construction Area Traffic Control Devices," of the Standard Specifications and these special provisions.

Attention is directed to "Furnish Sign" of these special provisions.

Attention is directed to the provisions in "Prequalified and Tested Signing and Delineation Materials" of these special provisions. Type II retroreflective sheeting shall not be used on construction area sign panels. Type III, IV, VII, VIII, or IX retroreflective sheeting shall be used for stationary mounted construction area sign panels.

Unless otherwise shown on the plans or specified in these special provisions, the color of construction area warning and guide signs shall have black legend and border on orange background, except W10-1 or W47(CA) (Highway-Rail Grade Crossing Advance Warning) sign shall have black legend and border on yellow background.

Orange background on construction area signs shall be fluorescent orange.

Repair to construction area sign panels will not be allowed, except when approved by the Engineer. At nighttime under vehicular headlight illumination, sign panels that exhibit irregular luminance, shadowing or dark blotches shall be immediately replaced at the Contractor's expense.

The Contractor shall notify the appropriate regional notification center for operators of subsurface installations at least 2 business days, but not more than 14 days, prior to commencing excavation for construction area sign posts. The regional notification centers include, but are not limited to, the following:

<table>
<thead>
<tr>
<th>Notification Center</th>
<th>Telephone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underground Service Alert</td>
<td>811</td>
</tr>
</tbody>
</table>

Excavations required to install construction area signs shall be performed by hand methods without the use of power equipment, except that power equipment may be used if it is determined there are no utility facilities in the area of the proposed post holes. The post hole diameter, if backfilled with portland cement concrete, shall be at least 4 inches greater than the longer dimension of the post cross section.

Construction area signs placed within 15 feet from the edge of the travel way shall be mounted on stationary mounted sign supports as specified in "Construction Area Traffic Control Devices" of these special provisions.

The Contractor shall maintain accurate information on construction area signs. Signs that are no longer required shall be immediately covered or removed. Signs that convey inaccurate information shall be immediately replaced or the information shall be corrected. Covers shall be replaced when they no longer cover the signs properly. The Contractor shall immediately restore to the original position and location any sign that is displaced or overturned, from any cause, during the progress of work.

10-1.22 MAINTAINING TRAFFIC

Maintaining traffic shall conform to the provisions in Sections 7-1.08, "Public Convenience," Section 7-1.09, "Public Safety," and Section 12, "Construction Area Traffic Control Devices," of the Standard Specifications and these special provisions.

Closure is defined as the closure of a traffic lane or lanes, including shoulder, ramp or connector lanes, within a single traffic control system.

Closures shall conform to the provisions in "Traffic Control System for Lane Closure" of these special provisions.

At locations where falsework pavement lighting or pedestrian openings through falsework are designated, falsework lighting shall be installed in conformance with the provisions in Section 86-6.11, "Falsework Lighting," of the Standard Specifications.

Openings shall be provided through bridge falsework for the use of public traffic at each location where falsework is constructed over the streets or routes listed in the following table. The type, minimum width, height, and number of openings at each location, and the location and maximum spacing of falsework lighting, if required for each opening, shall conform to the requirements in the table. The width of vehicular openings shall be the clear width between temporary railings or other protective work. The spacing shown for falsework pavement lighting is the maximum distance center to center in feet between fixtures.
NEWPORT AVE OC (REPLACE)
(Bridge No. 54-1294)

<table>
<thead>
<tr>
<th>Number</th>
<th>Width</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle Openings</td>
<td>2</td>
<td>64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
<th>Spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Falsework Pavement Lighting</td>
<td></td>
</tr>
<tr>
<td>R and L</td>
<td>22.5</td>
</tr>
<tr>
<td>C</td>
<td>22.5 staggered 1/2 space</td>
</tr>
</tbody>
</table>

(Width and Height in feet)
(R = Right side of traffic. L = Left side of traffic)
(C = Centered overhead)

SANTA ANA RIVER BRIDGE (WIDEN)
(Bridge No. 54-0471R/L)

<table>
<thead>
<tr>
<th>Number</th>
<th>Width</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle Opening at FAIRWAY DR.</td>
<td>1</td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
<th>Spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Falsework Pavement Lighting</td>
<td></td>
</tr>
<tr>
<td>R and L</td>
<td>30 staggered 1/2 space</td>
</tr>
</tbody>
</table>

(Width and Height in feet)
(R = Right side of traffic. L = Left side of traffic)
(C = Centered overhead)

At the following location, no temporary railing is required. In addition to the falsework pavement lighting specified, each side of each vehicular passageway between portals shall be illuminated by a string of yellow 25-W lamps spaced at 12-foot intervals, mounted at a height of 8 feet to 8-1/2 feet above the pavement:

SANTA ANA RIVER BRIDGE (WIDEN)
(Bridge No. 54-0471R/L)

<table>
<thead>
<tr>
<th>Number</th>
<th>Width</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle Opening at MAINT. ROADWAY</td>
<td>1</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
<th>Spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Falsework Pavement Lighting</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>22.5</td>
</tr>
</tbody>
</table>

(Width and Height in feet)
(R = Right side of traffic. L = Left side of traffic)

The exact location of openings will be determined by the Engineer.
Work that interferes with public traffic shall be limited to the hours when lane closures are allowed, except for work required under Sections 7-1.08, "Public Convenience," and Section 7-1.09, "Public Safety."

Designated legal holidays are: January 1st, the third Monday in February, the last Monday in May, July 4th, the first Monday in September, November 11th, Thanksgiving Day, and December 25th. When a designated legal holiday falls on a Sunday, the following Monday shall be a designated legal holiday. When November 11th falls on a Saturday, the preceding Friday shall be a designated legal holiday.

Special days are: Martin Luther King Jr. Day, Cesar Chavez Day, Good Friday thru Easter Sunday, Day after Thanksgiving, December 26 thru January 2.

The closure starts with the first cone down and ends with the last cone picked up. No closure sign(s) shall be exposed to traffic more than 30 minutes before or after a closure, except as otherwise indicated in the special provisions.

Under one-way reversing traffic control operations, public traffic may be stopped in one direction for periods not to exceed 15 minutes. After each stoppage, all accumulated traffic for that direction shall pass through the work zone before another stoppage is made.

The maximum length of a single stationary lane closure shall be 2 miles.

Not more than one separate stationary lane closures will be allowed in each direction of travel at one time. Concurrent stationary closures shall be spaced no closer than 1.25 miles apart and closures shall be along the same lane/s.

Local authorities shall be notified at least 5 business days before work begins. The Contractor shall cooperate with local authorities to handle traffic through the work area and shall make arrangements to keep the work area clear of parked vehicles.

Adjacent ramps, in the same direction of travel, servicing 2 consecutive local streets shall not be closed simultaneously unless directed by the Engineer.

SC6-3(CA) (RAMP CLOSED) sign shall be used to inform motorists of the temporary closing of a connector, entrance ramp or exit ramp for 1 business day.

SC6-4(CA) (RAMP CLOSED) sign shall be used to inform motorists of the temporary closing of a connector, entrance ramp or exit ramp for more than 1 business day.

The SC6-3(CA) or SC6-4(CA) signs shall be installed at least 7 days before closing the connector or ramp, but not more than 15 days before the connector or ramp closure. The Contractor shall notify the Engineer at least 2 business days before installing the SC6-3(CA) or SC6-4(CA) signs.

Accurate information shall be maintained on the SC6-3(CA) or SC6-4(CA) signs. The SC6-3(CA) or SC6-4(CA) signs, when no longer required, shall be immediately covered or removed.

Freeways may be closed only if signed for closing 7 days in advance. The Contractor shall notify the Engineer not less than 5 business days prior to signing the freeway. If the freeway is not closed on the posted day, the closure shall be changed to allow a 3-business-day advance notice before closure.

During blasting, hauling, slide removal excavation operations, the road may be closed and public traffic stopped for periods not to exceed 15 minutes. After one closure is made, accumulated traffic shall pass through the work before another closure is allowed.

Personal vehicles of the Contractor's employees shall not be parked on the traveled way or shoulders including sections closed to public traffic.

When work vehicles or equipment are parked within 6 feet of a traffic lane to perform active construction, the shoulder area shall be closed as shown on the plans.

A minimum of one paved traffic lane, not less than 12 feet wide, shall be open for use by public traffic.

If minor deviations from the lane requirement charts are required, a written request shall be submitted to the Engineer at least 15 days before the proposed date of the closure. The Engineer may approve the deviations if there is no significant increase in the cost to the State and if the work can be expedited and better serve the public traffic.

Full compensation for furnishing, erecting, maintaining, and removing and disposing of the SC6-3(CA), SC6-4(CA) signs shall be considered as included in the contract lump sum price paid for construction area signs and no additional compensation will be allowed therefor.

In addition to the signs shown on the plans, the following described signs shall be furnished and placed:

A. A portable 48" x 48" C23 (Road Work Ahead) sign shall be furnished and placed at locations where traffic approaches a bridge that has work underway. The signs shall conform to the provisions in Section 12-3.06, "Construction Area Signs," of the Standard Specifications. An orange, fluorescent orange, or red flag, not less than 16 inches square, shall be attached to each sign. The exact location of the signs will be determined by the Engineer. The signs shall be maintained in place when cleaning and painting operations are being performed and shall be removed at the end of each day's work.
B. Separate individual signs, each approximately 4 feet square with the words "CLEANING AND PAINTING OPERATIONS" in black letters approximately 4 inches high and the Contractor's name, address, and telephone number, on an orange background, shall be furnished and placed. The signs shall be in place when cleaning and painting operations are under way and shall be placed near each of the C23 (Road Work Ahead) signs.

Full compensation for furnishing, placing, maintaining, and removing the signs as specified in the preceding paragraph shall be considered as included in the prices paid for the various contract items of work and no separate payment will be made therefor.

Attention is directed to "Railroad Relations and Insurance" of these special provisions regarding occupancy of the railroad right of way.

The Contractor may occupy one 12-foot width of the bridge roadway, adjacent to the curb, during the time cleaning and painting is being performed. Occupancy of the roadway shall be limited to one side of the bridge at a time.

The Contractor shall close the lane in conformance with the provisions in "Traffic Control System" of these special provisions before occupying the portion of the bridge roadway.

At the close of each day's work when operations are not in progress, obstructions shall be removed and the roadway left clear and unobstructed for the free passage of public traffic. Loose blasting material shall be removed from the traveled way before the area is opened to public traffic.

Supply lines may be laid along the top of curbs adjacent to railing posts, provided the supply lines do not interfere with public traffic. These lines shall be removed when work is not in progress.
Lane Closure Restriction for Designated Legal Holidays and Special Days

<table>
<thead>
<tr>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
<th>Sun</th>
<th>Mon</th>
<th>Tues</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
<th>Sun</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Legends:
- Refer to lane closure charts
- **x**: The full width of the traveled way shall be open for use by public traffic after 06:00.
- **xx**: The full width of the traveled way shall be open for use by public traffic.
- **xxx**: The full width of the traveled way shall be open for use by public traffic until 18:00.
- **H**: Designated Legal Holiday
- **SD**: Special Day
Chart No. 1
Freeway/Expressway Lane Requirements

<table>
<thead>
<tr>
<th>County: Riverside</th>
<th>Route/Direction: 91/EB</th>
<th>PM:20.7/21.5</th>
</tr>
</thead>
</table>

Closure Limits:

| FROM HOUR TO HOUR | 24 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
|-------------------|----|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Mondays through Tuesdays | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 |
| Wednesday through Fridays | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 |
| Saturdays | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 |
| Sundays | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 |

Legend:

1. Provide at least one through freeway lane open in direction of travel
2. Provide at least two adjacent through freeway lanes open in direction of travel

Work permitted within project right of way where shoulder or lane closure is not required.

REMARKS:

Chart No. 2
Freeway/Expressway Lane Requirements

<table>
<thead>
<tr>
<th>County: Riverside</th>
<th>Route/Direction: 91/WB</th>
<th>PM:20.7/21.5</th>
</tr>
</thead>
</table>

Closure Limits:

| FROM HOUR TO HOUR | 24 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
|-------------------|----|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Mondays through Thursdays | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 |
| Fridays | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 |
| Saturdays | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 |
| Sundays | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 |

Legend:

1. Provide at least one through freeway lane open in direction of travel
2. Provide at least two adjacent through freeway lanes open in direction of travel

Work permitted within project right of way where shoulder or lane closure is not required.

REMARKS:
Chart No. 3
Freeway/Expressway Lane Requirements

<table>
<thead>
<tr>
<th>County: Riverside</th>
<th>Route/Direction: 215/NB</th>
<th>PM:43.2/45.3</th>
</tr>
</thead>
</table>

Closure Limits:

<table>
<thead>
<tr>
<th>FROM HOUR TO HOUR</th>
<th>24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mondays through Thursdays</td>
<td>1 1 1 1 2 2 2 2</td>
</tr>
<tr>
<td>Fridays</td>
<td>1 1 1 1 2 2 2 2</td>
</tr>
<tr>
<td>Saturdays</td>
<td>2 1 1 1 1 2 2 2</td>
</tr>
<tr>
<td>Sundays</td>
<td>2 1 1 1 1 1 2 2</td>
</tr>
</tbody>
</table>

Legend:

1. Provide at least one through freeway lane open in direction of travel
2. Provide at least two adjacent through freeway lanes open in direction of travel

REMARKS:

Work permitted within project right of way where shoulder or lane closure is not required.

Chart No. 4
Freeway/Expressway Lane Requirements

<table>
<thead>
<tr>
<th>County: Riverside</th>
<th>Route/Direction: 215/SB</th>
<th>PM:43.2/45.3</th>
</tr>
</thead>
</table>

Closure Limits:

<table>
<thead>
<tr>
<th>FROM HOUR TO HOUR</th>
<th>24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mondays through Thursdays</td>
<td>1 1 1 1 2 2 2 2</td>
</tr>
<tr>
<td>Fridays</td>
<td>1 1 1 1 2 2 2 2</td>
</tr>
<tr>
<td>Saturdays</td>
<td>1 1 1 1 1 1 2 2</td>
</tr>
<tr>
<td>Sundays</td>
<td>2 1 1 1 1 1 1 2 2 2</td>
</tr>
</tbody>
</table>

Legend:

1. Provide at least one through freeway lane open in direction of travel
2. Provide at least two adjacent through freeway lanes open in direction of travel

REMARKS:

Work permitted within project right of way where shoulder or lane closure is not required.
Chart No. 5
Freeway/Expressway Lane Requirements

<table>
<thead>
<tr>
<th>County: San Bernardino</th>
<th>Route/Direction: 215/NB</th>
<th>PM: 0.0/5.1</th>
</tr>
</thead>
</table>

Closure Limits:

FROM HOUR TO HOUR	24	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
Mondays through Thursdays	1	1	1	1	2						2	2	1													
Fridays	1	1	1	1	2																					
Saturdays	1	1	1	1	1	1																				2
Sundays	1	1	1	1	1	1																				1

Legend:

1. Provide at least one through freeway lane open in direction of travel
2. Provide at least two adjacent through freeway lanes open in direction of travel

Work permitted within project right of way where shoulder or lane closure is not required.

REMARKS:

Chart No. 6
Freeway/Expressway Lane Requirements

<table>
<thead>
<tr>
<th>County: San Bernardino</th>
<th>Route/Direction: 215/SB</th>
<th>PM: 0.0/5.1</th>
</tr>
</thead>
</table>

Closure Limits:

FROM HOUR TO HOUR	24	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
Mondays through Thursdays	1	1	1	1	2						2	2	1													
Fridays	1	1	1	1	2																					
Saturdays	1	1	1	1	1	1																				2
Sundays	2	1	1	1	1	1																				2

Legend:

1. Provide at least one through freeway lane open in direction of travel
2. Provide at least two adjacent through freeway lanes open in direction of travel

Work permitted within project right of way where shoulder or lane closure is not required.

REMARKS:
Chart No. 7
Complete Freeway/Expressway Closure Hours

FROM HOUR TO HOUR	24	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
Mondays through Thursdays																										
Fridays																										
Saturdays																										
Sundays	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C

Legend:
- **C** Freeway or expressway may be closed completely.
- No complete freeway or expressway closure is permitted.

REMARKS: Maximum of 11 full closures shall be allowed with 20% traffic diversion.

Chart No. 8
Complete Freeway/Expressway Closure Hours

FROM HOUR TO HOUR	24	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
Mondays through Thursdays																										
Fridays																										
Saturdays																										
Sundays	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C

Legend:
- **C** Freeway or expressway may be closed completely.
- No complete freeway or expressway closure is permitted.

REMARKS: Maximum of 11 full closures shall be allowed with 20% traffic diversion.
Chart No. 9
Complete Connector Closure Hours/Connector Lane Requirements

<table>
<thead>
<tr>
<th>County: San Bernardino</th>
<th>Route/Direction: 215/SB</th>
<th>PM: 43.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closure Limits: 215SB to 60EB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FROM HOUR TO HOUR	24	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24		
Mondays through Thursdays	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Fridays	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Saturdays	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Sundays	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Legend:

1. Provide at least one connector lane open in direction of travel

Remarks:

Chart No. 10
Complete Ramp Closure Hours

<table>
<thead>
<tr>
<th>County: Riverside</th>
<th>Route/Direction: 215/NB</th>
<th>PM: 43.2/45.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closure Limits:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FROM HOUR TO HOUR	24	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
Mondays through Thursdays	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
Fridays	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
Saturdays	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
Sundays	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C

Legend:

C. Ramp may be closed completely

Remarks:
Chart No. 11
Complete Ramp Closure Hours

<table>
<thead>
<tr>
<th>County: Riverside</th>
<th>Route/Direction: 215/SB</th>
<th>PM: 43.2/45.3</th>
</tr>
</thead>
</table>

Closure Limits:

<table>
<thead>
<tr>
<th>FROM HOUR TO HOUR</th>
<th>24</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mondays through Thursdays</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td></td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Fridays</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Saturdays</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Sundays</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

Legend:

- **C** Ramp may be closed completely

- Work permitted within project right of way where shoulder or lane closure is not required.

REMARKS:

Chart No. 12
Complete Ramp Closure Hours

<table>
<thead>
<tr>
<th>County: San Bernardino</th>
<th>Route/Direction: 215/NB</th>
<th>PM: 0.0/5.1</th>
</tr>
</thead>
</table>

Closure Limits:

<table>
<thead>
<tr>
<th>FROM HOUR TO HOUR</th>
<th>24</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mondays through Thursdays</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td></td>
<td>C</td>
<td>C</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fridays</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Saturdays</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Sundays</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

Legend:

- **C** Ramp may be closed completely

- Work permitted within project right of way where shoulder or lane closure is not required.

REMARKS:
Chart No. 13
Complete Ramp Closure Hours

<table>
<thead>
<tr>
<th>County: San Bernardino</th>
<th>Route/Direction: 215/SB</th>
<th>PM: 0.0/5.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closure Limits:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FROM HOUR TO HOUR</td>
<td>24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24</td>
<td></td>
</tr>
<tr>
<td>Mondays through Thursdays</td>
<td>C C</td>
<td></td>
</tr>
<tr>
<td>Fridays</td>
<td>C C</td>
<td></td>
</tr>
<tr>
<td>Saturdays</td>
<td>C C</td>
<td></td>
</tr>
<tr>
<td>Sundays</td>
<td>C C</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- C Ramp may be closed completely
- Work permitted within project right of way where shoulder or lane closure is not required.

REMARKS:

Chart No. 14
Complete Ramp Closure Hours

<table>
<thead>
<tr>
<th>County: Riverside</th>
<th>Route/Direction: 215/SB</th>
<th>PM: 44.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closure Limits:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FROM HOUR TO HOUR</td>
<td>24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24</td>
<td></td>
</tr>
<tr>
<td>Mondays through Thursdays</td>
<td>C C</td>
<td></td>
</tr>
<tr>
<td>Fridays</td>
<td>C C</td>
<td></td>
</tr>
<tr>
<td>Saturdays</td>
<td>C C</td>
<td></td>
</tr>
<tr>
<td>Sundays</td>
<td>C C</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- C Ramp may be closed completely
- Work permitted within project right of way where shoulder or lane closure is not required.

REMARKS:
The ramp shall be allowed to be fully closed, only once, up to 10 days. The starting day & time shall be on Friday at 21PM and the ending day & time shall be on Monday at 5AM.

Precast concrete members shall not be cast within the right of way of Route 215, nor Route 91.

Erection of girders over Route 215 shall be undertaken one span at a time. During girder erection, public traffic in the lanes over which girders are being placed shall be detoured or stopped as specified in this section, "Maintaining Traffic."

Erection and removal of falsework at locations where falsework openings are required shall be undertaken one location at a time. During falsework erection and removal, public traffic in the lanes over which falsework is being erected or removed shall be detoured or stopped as specified in this section, "Maintaining Traffic." Falsework erection shall include adjustments or removal of components that contribute to the horizontal stability of the falsework system. Falsework removal shall include lowering falsework, blowing sand from sand jacks, turning screws on screw jacks, and removing wedges.

The Contractor shall have necessary materials and equipment on the site to erect or remove the girders or falsework in any one span or over any one opening before detouring or stopping public traffic.
10-1.23 CLOSURE REQUIREMENTS AND CONDITIONS

Closures shall conform to the provisions in "Maintaining Traffic" of these special provisions and these special provisions.

CLOSURE SCHEDULE

A written schedule of planned closures for the next week period, defined as Sunday noon through the following Sunday noon, shall be submitted by noon each Monday. A written schedule shall be submitted not less than 25 days and not more than 125 days before the anticipated start of any operation that will:

1. Reduce horizontal clearances, traveled way, including shoulders, to two lanes or less due to such operations as temporary barrier placement and paving
2. Reduce the vertical clearances available to the public due to such operations as pavement overlay, overhead sign installation, or falsework or girder erection

The Closure Schedule shall show the locations and times of the proposed closures. The Closure Schedule request forms furnished by the Engineer shall be used. Closure Schedules submitted to the Engineer with incomplete or inaccurate information will be rejected and returned for correction and resubmittal. The Contractor will be notified of disapproved closures or closures that require coordination with other parties as a condition of approval.

Closure Schedule amendments, including adding additional closures, shall be submitted by noon to the Engineer, in writing, at least 3 business days in advance of a planned closure. Approval of Closure Schedule amendments will be at the discretion of the Engineer.

The Engineer shall be notified of cancelled closures 2 business days before the date of closure.

Closures that are cancelled due to unsuitable weather may be rescheduled at the discretion of the Engineer.

CONTINGENCY PLAN

A detailed contingency plan shall be prepared for reopening closures to public traffic. If required by "Beginning of Work, Time of Completion and Liquidated Damages" of these special provisions, the contingency plan shall be submitted to the Engineer before work at the job site begins. Otherwise, the contingency plan shall be submitted to the Engineer within one business day of the Engineer's request.

LATE REOPENING OF CLOSURES

If a closure is not reopened to public traffic by the specified time, work shall be suspended in conformance with the provisions in Section 8-1.05, "Temporary Suspension of Work," of the Standard Specifications. No further closures are to be made until the Engineer has accepted a work plan, submitted by the Contractor, that will insure that future closures will be reopened to public traffic at the specified time. The Engineer will have 2 business days to accept or reject the Contractor's proposed work plan. The Contractor will not be entitled to compensation for the suspension of work resulting from the late reopening of closures.

For each 10-minute interval, or fraction thereof past the time specified to reopen the closure, the Department will deduct the amount per interval shown below from moneys due or that may become due the Contractor under the contract. Damages are limited to 5 percent of project cost per occurrence and will not be assessed when the Engineer requests that the closure remain in place beyond the scheduled pickup time.
Type of Facility	**Route or Segment**	**Period**	**Damages/Interval ($)**
Mainline | Riv 91 EB PM 20.7-21.5 | 1st half hour 2nd half hour 2nd hour and beyond | $2,650/ 10 minutes $3,975 / 10 minutes $5,300 / 10 minutes

Mainline | Riv 91 WB PM 20.7-21.5 | 1st half hour 2nd half hour 2nd hour and beyond | $1,000/ 10 minutes $1,125 / 10 minutes $1,500 / 10 minutes

Mainline | Riv 215 NB PM 43.2-45.3 | 1st half hour 2nd half hour 2nd hour and beyond | $2,550/ 10 minutes $3,825 / 10 minutes $1,900 / 10 minutes

Mainline | Riv 215 SB PM 43.2-45.3 | 1st half hour 2nd half hour 2nd hour and beyond | $1,000/ 10 minutes $1,125 / 10 minutes $2,000 / 10 minutes

Mainline | SBd 215 NB PM 0.0-5.1 | 1st half hour 2nd half hour 2nd hour and beyond | $1,000/ 10 minutes $1,125 / 10 minutes $1,500 / 10 minutes

Mainline | SBd 215 SB PM 0.0-5.1 | 1st half hour 2nd half hour 2nd hour and beyond | $1,000/ 10 minutes $1,425/ 10 minutes $1,900 / 10 minutes

Mainline (FULL FWY) | SBd 215 NB PM 0.0-2.0 | 1st half hour 2nd half hour 2nd hour and beyond | $1,850/ 10 minutes $2,775 / 10 minutes $3,700 / 10 minutes

Mainline (FULL FWY) | SBd 215 SB PM 0.0-2.0 | 1st half hour 2nd half hour 2nd hour and beyond | $1,050/ 10 minutes $1,575/ 10 minutes $2,100 / 10 minutes

COMPENSATION

The Engineer shall be notified of delays in the Contractor's operations due to the following conditions, and if, in the opinion of the Engineer, the Contractor's controlling operation is delayed or interfered with by reason of those conditions, and the Contractor's loss due to that delay could not have been avoided by rescheduling the affected closure or by judicious handling of forces, equipment and plant, the delay will be considered a right of way delay and will be compensated in conformance with the provisions in Section 8-1.09, "Right of Way Delays," of the Standard Specifications:

1. The Contractor's proposed Closure Schedule is denied and his planned closures are within the time frame allowed for closures in "Maintaining Traffic" of these special provisions, except that the Contractor will not be entitled to compensation for amendments to the Closure Schedule that are not approved.

2. The Contractor is denied a confirmed closure.

Should the Engineer direct the Contractor to remove a closure before the time designated in the approved Closure Schedule, delay to the Contractor's schedule due to removal of the closure will be considered a right of way delay and compensation for the delay will be determined in conformance with the provisions in Section 8-1.09, "Right of Way Delays," of the Standard Specifications.

10-1.24 IMPACT ATTENUATOR VEHICLE

GENERAL

Summary

Work includes protecting traffic and workers by using impact attenuator vehicle as a shadow vehicle when placing and removing components of a traffic control system, and when performing a moving lane closure.

Impact attenuator vehicle must comply with the following test levels under National Cooperative Highway Research Program 350:

1. Test level 3 for pre-construction posted speed limit of 50 mph or more
2. Test levels 2 or 3 for pre-construction posted speed limit of 45 mph or less
Comply with the attenuator manufacturer’s recommendations for:

1. Support truck
2. Trailer-mounted operation
3. Truck-mounted operation

Definitions

impact attenuator vehicle: Support truck towing a deployed attenuator mounted to a trailer or support truck with a deployed attenuator mounted to the support truck.

Submittals

Upon request, submit a Certificate of Compliance for attenuator to the Engineer under Section 6-1.07, "Certificates of Compliance,” of the Standard Specifications.

Quality Control and Assurance

Attenuator must be a brand listed on the Department's pre-approved list under Highway Safety Features at:

http://www.dot.ca.gov/hq/esc/approved_products_list/

MATERIALS

The combined weight of the support truck and the attenuator must be at least 19,800 pounds, except the weight of the support truck must not be less than 16,100 pounds or greater than 26,400 pounds.

If using the Trinity MPS-350 truck-mounted attenuator, the support truck must not have any underneath fuel tank mounted within 10'-6” of the rear of the support truck.

Each impact attenuator vehicle must:

1. Have standard brake lights, taillights, sidelights, and turn signals
2. Have an inverted "V" chevron pattern placed across the entire rear of the attenuator composed of alternating 4 inch wide non-reflective black stripes and 4 inch wide yellow retroreflective stripes sloping at 45 degrees
3. Have a Type II flashing arrow sign
4. Have a flashing or rotating amber light
5. Have an operable 2-way communication system for maintaining contact with workers

CONSTRUCTION

Use impact attenuator vehicle to follow behind equipment and workers who are placing and removing components of a traffic control system for a lane closure or a ramp closure. Flashing arrow sign must be operating in arrow mode during this activity. Follow at a distance to prevent intrusion into the workspace from passing traffic.

After placing components of a traffic control system for a lane closure or a ramp closure you may use impact attenuator vehicle in a closed lane and in advance of a work area to protect traffic and workers.

Secure objects including equipment, tools and ballast on impact attenuator vehicle to prevent loosening upon impact by an errant vehicle.

Do not use a damaged attenuator in the work. Replace, at your expense, an attenuator damaged from an impact during work.

MEASUREMENT AND PAYMENT

Full compensation for furnishing and operating impact attenuator vehicle is included in the contract lump sum price paid for traffic control system, and no additional compensation will be allowed therefor.

10-1.25 TRAFFIC CONTROL SYSTEM FOR LANE CLOSURE

A traffic control system shall consist of closing traffic lanes in conformance with the details shown on the plans, the provisions in Section 12, "Construction Area Traffic Control Devices,” of the Standard Specifications, the provisions under "Maintaining Traffic" and "Construction Area Signs" of these special provisions, and these special provisions.

The provisions in this section will not relieve the Contractor from the responsibility to provide additional devices or take measures as may be necessary to comply with the provisions in Section 7-1.09, "Public Safety," of the Standard Specifications.
During traffic stripe operations and pavement marker placement operations using bituminous adhesive, traffic shall be controlled, at the option of the Contractor, with either stationary or moving lane closures. During other operations, traffic shall be controlled with stationary lane closures. Attention is directed to the provisions in Section 84-1.04, "Protection From Damage," and Section 85-1.06, "Placement," of the Standard Specifications.

If components in the traffic control system are displaced or cease to operate or function as specified, from any cause, during the progress of the work, the Contractor shall immediately repair the components to the original condition or replace the components and shall restore the components to the original location.

STATIONARY LANE CLOSURE

When lane closures are made for work periods only, at the end of each work period, all components of the traffic control system, except portable delineators placed along open trenches or excavation adjacent to the traveled way, shall be removed from the traveled way and shoulder. If the Contractor so elects, the components may be stored at selected central locations designated by the Engineer within the limits of the highway right of way.

On 2-lane, 2-way roadway, each vehicle used to place, maintain and remove components of a traffic control system on multilane highways shall be equipped with a Type II flashing arrow sign which shall be in operation when the vehicle is being used for placing, maintaining or removing the components. Vehicles equipped with Type II flashing arrow sign not involved in placing, maintaining or removing the components when operated within a stationary type lane closure shall only display the caution display mode. The sign shall be controllable by the operator of the vehicle while the vehicle is in motion. The flashing arrow sign shown on the plans shall not be used on the vehicles which are doing the placing, maintaining and removing of components of a traffic control system and shall be in place before a lane closure requiring the sign's use is completed.

One-way traffic shall be controlled through the project in conformance with the plan entitled "Traffic Control System for Lane Closure on Two Lane Conventional Highways" and these special provisions.

Utilizing a pilot car will be at the option of the Contractor. If the Contractor elects to use a pilot car, the cones shown along the centerline on the plan need not be placed. The pilot car shall have radio contact with personnel in the work area. The maximum speed of the pilot car through the traffic control zone shall be 25 miles per hour.

MOVING LANE CLOSURE

Flashing arrow signs used in moving lane closures shall be truck-mounted. Flashing arrow signs shall be in the caution display mode when used on 2-lane highways. Changeable message signs used in moving lane closure operations shall conform to the provisions in Section 12-3.12, "Portable Changeable Message Signs," of the Standard Specifications, except the signs shall be truck-mounted. The full operation height of the bottom of the sign may be less than 7 feet above the ground, but should be as high as practicable.

Truck-mounted attenuators (TMA) for use in moving lane closures shall be any of the following approved models, or equal:

 1.1. Northern California: Traffic Control Service, Inc., 8585 Thys Court, Sacramento, CA 95828, telephone (800) 884-8274, FAX (916) 387-9734
 1.2. Southern California: Traffic Control Service, Inc., 1818 E. Orangethorpe, Fullerton, CA 92831-5324, telephone (800) 222-8274, FAX (714) 526-9501

2. Cal T–001 Model 2 or Model 3, manufacturer and distributor: Hexcel Corporation, 11711 Dublin Boulevard, P.O. Box 2312, Dublin, CA 94568, telephone (925) 551–4900

3. Renco Rengard Model Nos. CAM 8–815 and RAM 8–815, manufacturer and distributor: Renco Inc., 1582 Pflugerville Loop Road, P.O. Box 730, Pflugerville, TX 78660–0730, telephone (800) 654–8182

Each TMA shall be individually identified with the manufacturer's name, address, TMA model number, and a specific serial number. The names and numbers shall each be a minimum 1/2 inch high and located on the left (street) side at the lower front corner. The TMA shall have a message next to the name and model number in 1/2 inch high letters which states, "The bottom of this TMA shall be _____ inches ± _____ inch above the ground at all points for proper impact performance." A TMA which is damaged or appears to be in poor condition shall not be used unless recertified by the manufacturer. The Engineer shall be the sole judge whether used TMAs supplied under this contract need recertification. Each unit shall be certified by the manufacturer to meet the requirements for TMAs in conformance with the standards established by the Transportation Laboratory.
Approvals for new TMA designs proposed as equal to the above approved models shall be in conformance with the procedures (including crash testing) established by the Transportation Laboratory. For information regarding submittal of new designs for evaluation contact: Transportation Laboratory, 5900 Folsom Boulevard, Sacramento, CA 95819.

New TMAs proposed as equal to approved TMAs or approved TMAs determined by the Engineer to need recertification shall not be used until approved or recertified by the Transportation Laboratory.

PAYMENT

The contract lump sum price paid for traffic control system shall include full compensation for furnishing all labor (except for flagging costs), materials (including signs), tools, equipment, and incidentals, and for doing all the work involved in placing, removing, storing, maintaining, moving to new locations, replacing, and disposing of the components of the traffic control system and for furnishing and operating the pilot car, (including driver, radios, other equipment, and labor required), as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. Flagging costs will be paid for as provided in Section 12-2.02, "Flagging Costs," of the Standard Specifications.

The adjustment provisions in Section 4-1.03, "Changes," of the Standard Specifications shall not apply to the item of traffic control system. Adjustments in compensation for traffic control system will be made only for increased or decreased traffic control system required by changes ordered by the Engineer and will be made on the basis of the cost of the increased or decreased traffic control necessary. The adjustment will be made on a force account basis as provided in Section 9-1.03, "Force Account Payment," of the Standard Specifications for increased work, and estimated on the same basis in the case of decreased work.

Traffic control system required by work which is classed as extra work, as provided in Section 4-1.03D of the Standard Specifications, will be paid for as a part of the extra work.

10-1.26 TEMPORARY PAVEMENT DELINEATION

Temporary pavement delineation shall be furnished, placed, maintained, and removed in conformance with the provisions in Section 12-3.01, "General," of the Standard Specifications and these special provisions. Nothing in these special provisions shall be construed as reducing the minimum standards specified in the California MUTCD or as relieving the Contractor from the responsibilities specified in Section 7-1.09, "Public Safety," of the Standard Specifications.

GENERAL

When the work causes obliteration of pavement delineation, temporary or permanent pavement delineation shall be in place before opening the traveled way to public traffic. Laneine or centerline pavement delineation shall be provided for traveled ways open to public traffic. On multilane roadways (freeways and expressways) edgeline delineation shall be provided for traveled ways open to public traffic.

The Contractor shall perform the work necessary to establish the alignment of temporary pavement delineation, including required lines or markers. Surfaces to receive application of paint or removable traffic tape temporary pavement delineation shall be dry and free of dirt and loose material. Temporary pavement delineation shall not be applied over existing pavement delineation or other temporary pavement delineation. Temporary pavement delineation shall be maintained until superseded or replaced with a new pattern of temporary pavement delineation or permanent pavement delineation, or as determined by the Engineer.

Temporary pavement markers, including underlying adhesive, and removable traffic tape that are applied to the final layer of surfacing or existing pavement to remain in place or that conflicts with a subsequent or new traffic pattern for the area shall be removed when no longer required for the direction of public traffic, as determined by the Engineer.

TEMPORARY LANELINE AND CENTERLINE DELINEATION

When lanelines or centerlines are obliterated and temporary pavement delineation to replace the lines is not shown on the plans, the minimum laneine and centerline delineation to be provided for that area shall be temporary pavement markers placed at longitudinal intervals of not more than 24 feet. The temporary pavement markers shall be the same color as the laneine or centerline the pavement markers replace. Temporary pavement markers shall be, at the option of the Contractor, one of the temporary pavement markers listed for short term day/night use (14 days or less) or long term day/night use (180 days or less) in "Prequalified and Tested Signing and Delineation Materials" of these special provisions. The temporary pavement markers shall be placed in conformance with the manufacturer's instructions. Temporary pavement markers for long term day/night use (180 days or less) shall be cemented to the surfacing with the adhesive recommended by the manufacturer, except epoxy adhesive shall not be
used to place the temporary pavement markers in areas where removal of the temporary pavement markers will be required.

Temporary lane line or centerline delineation consisting entirely of temporary pavement markers listed for short term day/night use (14 days or less), shall be placed on longitudinal intervals of not more than 24 feet and shall be used for a maximum of 14 days on lanes opened to public traffic. Before the end of the 14 days the permanent pavement delineation shall be placed. If the permanent pavement delineation is not placed within the 14 days, the Contractor shall replace the temporary pavement markers and provide additional temporary pavement delineation and shall bear the cost thereof. The additional temporary pavement delineation to be provided shall be equivalent to the pattern specified for the permanent pavement delineation for the area, as determined by the Engineer.

TEMPORARY EDGELINE DELINEATION

On multilane roadways (freeways and expressways), when edgelines are obliterated and temporary pavement delineation to replace those edgelines is not shown on the plans, the edgeline delineation to be provided for those areas adjacent to lanes open to public traffic shall be as follows:

1. Temporary pavement delineation for right edgelines shall, at the option of the Contractor, consist of either a solid 4-inch wide traffic stripe tape of the same color as the stripe it replaces, traffic cones, portable delineators or channelizers placed at longitudinal intervals not to exceed 100 feet.
2. Temporary pavement delineation for left edgelines shall, at the option of the Contractor, consist of either solid 4-inch wide traffic stripe tape of the same color as the stripe it replaces, traffic cones, portable delineators or channelizers placed at longitudinal intervals not to exceed 100 feet or temporary pavement markers placed at longitudinal intervals of not more than 6 feet.

Where removal of the 4-inch wide traffic stripe will not be required, painted traffic stripe conforming to the provisions of "Temporary Traffic Stripe (Paint)" of these special provisions may be used.

The lateral offset for traffic cones, portable delineators or channelizers used for temporary edgeline delineation shall be as determined by the Engineer. If traffic cones or portable delineators are used as temporary pavement delineation for edgelines, the Contractor shall provide personnel to remain at the project site to maintain the cones or delineators during the hours of the day that the portable delineators are in use.

Channelizers used for temporary edgeline delineation shall be the surface mounted type and shall be orange in color. Channelizer bases shall be cemented to the pavement in the same manner provided for cementing pavement markers to pavement in "Pavement Markers" of these special provisions, except epoxy adhesive shall not be used to place channelizers on the top layer of pavement. Channelizers shall be, at the Contractor's option, one of the surface mount types (36 inch) listed in "Prequalified and Tested Signing and Delineation Materials" of these special provisions.

Temporary edgeline delineation shall be removed when no longer required for the direction of public traffic as determined by the Engineer.

TEMPORARY TRAFFIC STRIPE (PAINT)

The painted temporary traffic stripe shall be complete in place at the location shown before opening the traveled way to public traffic.

Temporary painted traffic stripe shall conform to the provisions in "Paint Traffic Stripe and Pavement Marking" of these special provisions, Section 84-3, "Painted Traffic Stripes and Pavement Markings," of the Standard Specifications, except for payment. Two coats shall be applied regardless of whether on new or existing pavement.

TEMPORARY PAVEMENT MARKING (PAINT)

Temporary pavement marking consisting of painted pavement marking shall be applied and maintained at the locations shown on the plans. The painted temporary pavement marking shall be complete in place at the location shown before opening the traveled way to public traffic. Removal of painted temporary pavement marking will not be required.

Temporary painted pavement marking shall conform to the provisions in "Paint Traffic Stripe and Pavement Marking" of these special provisions, except for payment. Two coats shall be applied regardless whether on new or existing pavement.

At the Contractor's option, temporary removable pavement marking tape or permanent pavement marking tape listed in "Prequalified and Tested Signing and Delineation Materials" of these special provisions may be used instead of painted temporary pavement markings. When pavement marking tape is used, regardless of which type of tape is placed, the tape will be measured and paid for by the square foot as temporary pavement marking (paint).
TEMPORARY PAVEMENT MARKERS

Temporary pavement markers shall be applied complete in place before opening the traveled way to public traffic.

Temporary pavement markers shall be, at the option of the Contractor, one of the temporary pavement markers for long term day/night use (180 days or less) listed in "Prequalified and Tested Signing and Delineation Materials" of these special provisions.

Temporary pavement markers shall be placed in conformance with the manufacturer's instructions and shall be cemented to the surfacing with the adhesive recommended by the manufacturer, except epoxy adhesive shall not be used in areas where removal of the pavement markers will be required.

Retroreflective pavement markers conforming to the provisions in "Pavement Markers" of these special provisions. Section 85, "Pavement Markers," of the Standard Specifications may be used in place of temporary pavement markers for long term day/night use (180 days or less) except to simulate patterns of broken traffic stripe. Placement of the retroreflective pavement markers used for temporary pavement markers shall conform to the provisions in "Pavement Markers" of these special provisions except the waiting period provisions before placing the pavement markers on new hot mix asphalt surfacing as specified in Section 85-1.06, "Placement," of the Standard Specifications shall not apply and epoxy adhesive shall not be used to place pavement markers in areas where removal of the pavement markers will be required.

MEASUREMENT AND PAYMENT

Temporary traffic stripe and temporary pavement marking shown on the plans will be measured and paid for in the same manner specified for paint traffic stripe and paint pavement marking in Section 84-3.06, "Measurement," and Section 84-3.07, "Payment," of the Standard Specifications.

Temporary pavement markers shown on the plans will be measured and paid for by the unit in the same manner specified for retroreflective pavement markers in Section 85-1.08, "Measurement," and Section 85-1.09, "Payment," of the Standard Specifications.

Full compensation for furnishing, placing, maintaining, and removing the temporary pavement markers (including underlying adhesive, layout (dribble) lines to establish alignment of temporary pavement markers or used for temporary laneline and centerline delineation and signing specified for "no passing" zones) for those areas where temporary laneline and centerline delineation is not shown on the plans and for providing equivalent patterns of permanent traffic lines for those areas when required, shall be considered as included in the contract prices paid for the items of work that obliterated the laneline and centerline pavement delineation and no separate payment will be made therefor.

Full compensation for furnishing, placing, maintaining, and removing temporary edgeline delineation not shown on the plans shall be considered as included in the contract prices paid for the items of work that obliterated the edgeline pavement delineation and no separate payment will be made therefor. The quantity of channelizers used as temporary edgeline delineation will not be included in the quantity of channelizer (surface mounted) to be paid for.

10-1.27 BARRICADE

Barricades shall be furnished, placed and maintained at the locations shown on the plans, specified in the Standard Specifications or in these special provisions or where designated by the Engineer. Barricades shall conform to the provisions in Section 12, "Construction Area Traffic Control Devices," of the Standard Specifications and these special provisions.

Attention is directed to "Prequalified and Tested Signing and Delineation Materials" of these special provisions regarding retroreflective sheeting for barricades.

Construction area sign and marker panels conforming to the provisions in Section 12-3.06, "Construction Area Signs," of the Standard Specifications shall be installed on barricades in a manner determined by the Engineer at the locations shown on the plans.

Sign panels for construction area signs and marker panels installed on barricades shall conform to the provisions in Section 12-3.06A, "Stationary Mounted Signs," of the Standard Specifications.

Full compensation for furnishing, installing, maintaining, and removing construction area signs and marker panels on barricades shall be considered as included in the contract unit price paid for the type of barricade involved and no separate payment will be made therefor.

Barricades shown on the plans as part of a traffic control system will be paid for as provided in "Traffic Control System for Lane Closure" of these special provisions and will not be included in the count for payment of barricades.
10-1.28 PORTABLE CHANGEABLE MESSAGE SIGNS

GENERAL

Summary

Definitions
useable shoulder area: Paved or unpaved contiguous surface adjacent to the traveled way with:
1. Sufficient weight bearing capacity to support portable changeable message sign
2. Slope not greater than 6:1 (horizontal:vertical)

Submittals
Upon request, submit a Certificate of Compliance for each portable changeable message sign under Section 6-1.07, "Certificates of Compliance," of the Standard Specifications.

Quality Control and Assurance
Comply with the manufacturer's operating instructions for portable changeable message sign. Approaching drivers must be able to read the entire message for all phases at least twice at the posted speed limit before passing portable changeable message sign. You may use more than 1 portable changeable message sign to meet this requirement.
Only display the message shown on the plans or ordered by the Engineer or specified in these special provisions.

MATERIALS
Portable changeable message sign must have 24-hour timer control or remote control capability.
The text of the message displayed on portable changeable message sign must not scroll, or travel horizontally or vertically across the face of the message panel.

CONSTRUCTION
Continuously repeat the entire message in no more than 2 phases of at least 3 seconds per phase.
If useable shoulder area is at least 15 feet wide, the displayed message on portable changeable message sign must be minimum 18-inch character height. If useable shoulder area is less than 15 feet wide, you may use a smaller message panel with minimum 12-inch character height to prevent encroachment in the traveled way.
You or your representative must be available by cell phone for operations that require portable changeable message signs. Give the Engineer your cell phone number. When the Engineer contacts you, immediately comply with the Engineer's request to modify the displayed message.
Start displaying the message on portable changeable message sign 30 minutes before closing the lane.
Place portable changeable message sign in advance of the first warning sign for:

1. Each stationary lane closure
2. Each off-ramp closure
3. Each connector closure
4. Each shoulder closure
5. Each speed reduction zone

For 5 days starting on the day of signal activation, place 1 portable changeable message sign in each direction of travel and display the message, "SIGNAL AHEAD -- PREPARE TO STOP."
Place portable changeable message sign as far from the traveled way as practicable where it is legible to traffic and does not encroach on the traveled way. Place portable changeable sign before or at the crest of vertical roadway curvature where it is visible to approaching traffic. Avoid placing portable changeable message sign within or immediately after horizontal roadway curvature. Where possible, place portable changeable message sign behind guardrail or temporary railing (Type K).
Except where placed behind guardrail or temporary railing (Type K) use traffic control for shoulder closure to delineate portable changeable message sign.
Remove portable changeable message sign when not in use.
10-1.29 CHANNELIZER

Channelizers shall conform to the provisions in Section 12, "Construction Area Traffic Control Devices," of the Standard Specifications and these special provisions.

Channelizers shall conform to the provisions in "Prequalified and Tested Signing and Delineation Materials" of these special provisions.

When no longer required for the work as determined by the Engineer, channelizers (except channelizers to be left in place) and underlying adhesive used to cement the channelizer bases to the pavement shall be removed. Removed channelizers and adhesive shall become the property of the Contractor and shall be removed from the site of work.

10-1.30 TEMPORARY TRAFFIC SCREEN

Temporary traffic screen shall be furnished, installed, and maintained on top of temporary railing (Type K) at the locations designated on the plans, specified in the special provisions or directed by the Engineer and shall conform to the provisions specified for traffic handling equipment and devices in Section 12, "Construction Area Traffic Control Devices," of the Standard Specifications and these special provisions.

Temporary traffic screen panels shall be new or used CDX Grade, or better, plywood or weather resistant strandboard mounted and anchored on temporary railing (Type K). Wale boards shall be new or used Douglas fir, rough sawn, Construction Grade, or better. Pipe screen supports shall be new or used galvanized steel pipe, Schedule 40. Nuts, bolts, and washers shall be cadmium plated. Screws shall be black or cadmium plated flat head, cross slotted screws with full thread length.

When no longer required, as determined by the Engineer, temporary traffic screen shall be removed from the site of the work and shall become the property of the Contractor.

Temporary traffic screen will be measured by the linear foot from actual measurements along the line of the completed temporary traffic screen, at each location designated on the plans, specified or directed by the Engineer. If the Engineer orders a lateral move of temporary railing, with temporary traffic screen attached, and the repositioning is not shown on the plans, moving the temporary traffic screen will be paid for as part of the extra work for moving the temporary railing as specified in Section 12-4.01, “Measurement and Payment,” of the Standard Specifications. Temporary traffic screen placed in excess of the length shown, specified or directed by the Engineer will not be paid for.

The contract price paid per linear foot for temporary traffic screen shall include full compensation for furnishing all labor, materials (including anchoring systems), tools, equipment, and incidentals, and for doing all the work involved in installing, maintaining, and removing the temporary traffic screen, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.31 TEMPORARY CRASH CUSHION MODULE

This work shall consist of furnishing, installing, and maintaining sand filled temporary crash cushion modules in groupings or arrays at each location shown on the plans, as specified in these special provisions or where designated by the Engineer. The grouping or array of sand filled modules shall form a complete sand filled temporary crash cushion in conformance with the details shown on the plans and these special provisions.

Temporary crash cushions shall be secured in place prior to commencing work for which the temporary crash cushions are required.

Whenever the work or the Contractor's operations establishes a fixed obstacle, the exposed fixed obstacle shall be protected with a sand filled temporary crash cushion. The sand filled temporary crash cushion shall be in place prior to opening the lanes adjacent to the fixed obstacle to public traffic.

Sand filled temporary crash cushions shall be maintained in place at each location, including times when work is not actively in progress. Sand filled temporary crash cushions may be removed during a work period for access to the work provided that the exposed fixed obstacle is 15 feet or more from a lane carrying public traffic and the temporary crash cushion is reset to protect the obstacle prior to the end of the work period in which the fixed obstacle was exposed. When no longer required, as determined by the Engineer, sand filled temporary crash cushions shall be removed from the site of the work.

Sand filled temporary crash cushion modules shall be one of the following, or equal, and be manufactured after March 31, 1997:

1. Energite III and Fitch Inertial Modules, manufactured by Energy Absorption Systems, Inc., 35 East Wacker Drive, Suite 1100, Chicago, IL 60601:
 1.1. Northern California: Traffic Control Service, Inc., 8585 Thys Court, Sacramento, CA 95828, telephone (800) 884-8274, FAX (916) 387-9734
1.2. Southern California: Traffic Control Service, Inc., 1818 E. Orangethorpe, Fullerton, CA 92831-5324, telephone (800) 222-8274, FAX (714) 526-9501

2. TrafFix Sand Barrels, manufactured by TrafFix Devices, Inc., 220 Calle Pintoresco, San Clemente, CA 92672, telephone (949) 361-5663, FAX (949) 361-9205

2.1. Northern California: United Rentals, Inc., 1533 Berger Drive, San Jose, CA 95112, telephone (408) 287-4303, FAX (408) 287-1929

2.2. Southern California: Statewide Safety & Sign, Inc., P.O. Box 1440, Pismo Beach, CA 93448, telephone (800) 559-7080, FAX (805) 929-5786

3. CrashGard Model CC-48 Sand Barrels, manufactured by Plastic Safety Systems, Inc., 2444 Baldwin Road, Cleveland, OH 44104:

3.1. Northern California:

3.1.1. Capitol Barricade Safety & Sign, 6329 Elvas Ave, Sacramento, CA 95819, telephone (888) 868-5021, FAX (916) 451-5388

3.1.2. Sierra Safety, Inc., 9093 Old State Highway, New Castle, CA 95658, telephone (916) 663-2026, FAX (916) 663-1858

3.2. Southern California: Hi Way Safety Inc., 13310 5th Street, Chino, CA 91710, telephone (909) 591-1781, FAX (909) 627-0999

Modules contained in each temporary crash cushion shall be of the same type at each location. The color of the modules shall be the standard yellow color, as furnished by the vendor, with black lids. The modules shall exhibit good workmanship free from structural flaws and objectionable surface defects. The modules need not be new. Good used undamaged modules conforming to color and quality of the types specified herein may be utilized. If used Fitch modules requiring a seal are furnished, the top edge of the seal shall be securely fastened to the wall of the module by a continuous strip of heavy duty tape.

Modules shall be filled with sand in conformance with the manufacturer's directions, and to the sand capacity in pounds for each module shown on the plans. Sand for filling the modules shall be clean washed concrete sand of commercial quality. At the time of placing in the modules, the sand shall contain not more than 7 percent water as determined by California Test 226.

Modules damaged due to the Contractor's operations shall be repaired immediately by the Contractor at the Contractor's expense. Modules damaged beyond repair, as determined by the Engineer, due to the Contractor's operations shall be removed and replaced by the Contractor at the Contractor's expense.

Temporary crash cushion modules may be placed on movable pallets or frames. Comply with dimensions shown on the plans. The pallets or frames shall provide a full bearing base beneath the modules. The modules and supporting pallets or frames shall not be moved by sliding or skidding along the pavement or bridge deck.

A Type R or P marker panel shall be attached to the front of the crash cushion as shown on the plans, when the closest point of the crash cushion array is within 12 feet of the traveled way. The marker panel, when required, shall be firmly fastened to the crash cushion with commercial quality hardware or by other methods determined by the Engineer.

At the completion of the project, temporary crash cushion modules, sand filling, pallets or frames, and marker panels shall become the property of the Contractor and shall be removed from the site of the work. Temporary crash cushion modules shall not be installed in the permanent work.

Temporary crash cushion modules will be measured by the unit as determined from the actual count of modules used in the work or ordered by the Engineer at each location. Temporary crash cushion modules placed in conformance with Section 7-1.09, "Public Safety," of the Standard Specifications and modules placed in excess of the number specified or shown will not be measured nor paid for.

Repairing modules damaged by public traffic will be paid for as extra work as provided in Section 4-1.03D of the Standard Specifications. Modules damaged beyond repair by public traffic, when ordered by the Engineer, shall be removed and replaced immediately by the Contractor. Modules replaced due to damage by public traffic will be measured and paid for as temporary crash cushion module.

If the Engineer orders a lateral move of the sand filled temporary crash cushions and the repositioning is not shown on the plans, moving the sand filled temporary crash cushion will be paid for as extra work as provided in Section 4-1.03D of the Standard Specifications and these temporary crash cushion modules will not be counted for payment in the new position.
The contract unit price paid for temporary crash cushion module shall include full compensation for furnishing all labor, materials (including sand, pallets or frames and marker panels), tools, equipment, and incidentals, and for doing all the work involved in furnishing, installing, maintaining, moving, and resetting during a work period for access to the work, and removing from the site of the work when no longer required (including those damaged by public traffic) sand filled temporary crash cushion modules, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.32 TREATED WOOD WASTE

GENERAL

Summary
This work includes handling, storing, transporting, and disposing of treated wood waste (TWW).

Wood removed from metal beam guard railing and roadside sign is treated with one or more of the following:

1. Creosote
2. Pentachlorophenol
3. Copper azole
4. Copper boron azole
5. Chromated copper arsenate
6. Ammoniacal copper zinc arsenate
7. Copper naphthenate
8. Alkaline copper quaternary

Manage TWW under Title 22 CA Code of Regulations, Division 4.5, Chapter 34.

Submittals
For disposal of TWW submit a copy of each completed shipping record and weight receipt to the Engineer within 5 business days of disposal.

CONSTRUCTION

Provide training to personnel who handle TWW or may come in contact with TWW that includes:

1. All applicable requirements of Title 8 CA Code of Regulations
2. Procedures for identifying and segregating TWW
3. Safe handling practices
4. Requirements of Title 22 CA Code of Regulations, Division 4.5, Chapter 34
5. Proper disposal methods

Store TWW before disposal using any of the following methods:

1. Elevate on blocks above a reasonably foreseeable run-on elevation and protect from precipitation
2. Place in water-resistant containers designed for shipping or solid waste collection
3. Place on a containment surface or pad protected from run-on and precipitation
4. Place in a storage building as defined in Title 22 CA Code of Regulations, Div. 4.5, Chp. 34, Section 67386.6 (a)(2)(c).

Prevent unauthorized access to TWW using a secured enclosure such as a locked chain link fenced area or a lockable shipping container located within the project limits.

Resize and segregate TWW at a location where debris from the operation including sawdust and chips can be contained. Collect and manage the debris as TWW.

Provide water-resistant labels, that comply with Title 22 CA Code of Regulations, Division 4.5, Chapter 34, to clearly mark and identify TWW and accumulation areas. Labels must include:

1. Caltrans, District number, Construction, contract number
2. District office address
3. Engineer's name, address, and telephone number
4. Contractor's contact name and telephone number
5. Date placed in storage
Before transporting TWW, obtain an agreement from the receiving facility that the treated wood waste will be accepted. Protect shipments of treated wood waste from loss and exposure to precipitation. For projects with 10,000 pounds or more of TWW, request a hazardous waste generator identification number from the Engineer at least 5 business days before the first shipment. Each shipment must be accompanied by a shipping record such as a bill of lading or invoice that includes:

1. Caltrans with district number
2. Construction contract number
3. District office address
4. Engineer's name, address, and telephone number
5. Contractor's contact name and telephone number
6. Receiving facility name and address
7. Waste description: treated wood waste (preservative type if known or unknown/mixture)
8. Project location
9. Estimated quantity of shipment by weight or volume
10. Date of transport
11. Date of receipt by the receiving TWW facility
12. Weight of shipment as measured by the receiving TWW facility
13. For projects with 10,000 pounds or more of TWW include the generator identification number

The shipping record must be at least a 4-part carbon or carbonless 8-1/2” x 11” form to allow retention of copies by the Engineer, transporter, and disposal facility.

Dispose of TWW at an approved TWW facility. A list of currently approved TWW facilities may be viewed at:

Dispose of TWW within:

1. 90 days of generation if stored on blocks
2. 180 days of generation if stored on a containment surface or pad.
3. One year of generation if filling a water-resistant container, or 90 days after the container is full, whichever is shorter
4. One year of generation if storing in a storage building as defined in Title 22 CA code of Regulations, Div. 4.5, Chp. 34, Section 67386.6(a)(2)(C)

MEASUREMENT AND PAYMENT

Full compensation for handling, storing, transporting, and disposing TWW, including personnel training, is included in the contract price paid per linear foot and unit price for remove metal beam guard railing and remove roadside sign and no additional compensation will be allowed therefor.

10-1.33 EXISTING HIGHWAY FACILITIES

The work performed in connection with various existing highway facilities shall conform to the provisions in Section 15, "Existing Highway Facilities," of the Standard Specifications and these special provisions.

Except as otherwise provided for damaged materials in Section 15-2.04, "Salvage," of the Standard Specifications, the materials to be salvaged shall remain the property of the State, and shall be cleaned, packaged, bundled, tagged, and hauled to the District Recycle Center at 175 Cluster Street, San Bernardino, CA 92401 and stockpiled.

The Contractor shall notify the Engineer and the District Recycle Coordinator, telephone (951) 787-6931 a minimum of 48 hours prior to hauling salvaged material to the Recycle Center.

Attention is directed to Section 7-1.06, "Safety and Health Provisions," of the Standard Specifications. Work practices and worker health and safety shall conform to the California Division of Occupational Safety and Health Construction Safety Orders Title 8, of the California Code of Regulations including Section 5158, "Other Confined Space Operations."

Existing footing concrete that is below ground and outside of the footing limits shown on the contract plans or original contract plans shall be removed as directed by the Engineer and will be paid in conformance with Section 4-1.03D, "Extra Work," of the Standard Specifications.
EXISTING PAINT SYSTEMS

The existing paint systems on bridges listed in the following table contain hazardous materials:

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>Hazardous Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>54-0482L</td>
<td>Lead primer and Chromium.</td>
</tr>
<tr>
<td>54-0482R</td>
<td>Lead primer and Chromium.</td>
</tr>
<tr>
<td>54-0518</td>
<td>Lead primer.</td>
</tr>
<tr>
<td>54-0519</td>
<td>Lead primer.</td>
</tr>
</tbody>
</table>

Any work that disturbs the existing paint system will expose workers to health hazards and will (1) produce debris containing heavy metal in amounts that exceed the thresholds established in Titles 8 and 22 of the California Code of Regulations or (2) produce toxic fumes when heated. The grime and debris on the bridge may also contain lead. Consider the grime and debris part of the paint system. All debris produced when the existing paint system is disturbed must be contained.

Debris Containment and Collection Program

Prior to starting work, the Contractor must submit a debris containment and collection program to the Engineer in conformance with the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications, for debris produced when the existing paint system is disturbed. The program must identify materials, equipment, and methods to be used when the existing paint system is disturbed and must include working drawings of containment systems, loads applied to the bridge by containment structures, provisions for ventilation and air movement for visibility and worker safety, name and address of analytical lab that will perform the analyses, CA Department of Toxic Substances Control registration certificate and documentation of compliance with the CA Highway Patrol Biennial Inspection of Terminals Program of the hazardous waste hauler that will transport the hazardous waste, and the name and address of the disposal site that will accept the hazardous waste residue.

If the measures being taken by the Contractor are inadequate to provide for the containment and collection of debris produced when the existing paint system is disturbed, the Engineer will direct the Contractor to revise the operations and the debris containment and collection program. The directions will be in writing and will specify the items of work for which the Contractor's debris containment and collection program is inadequate. No further work must be performed on the items until the debris containment and collection program is adequate and, if required, a revised program has been approved for the containment and collection of debris produced when the existing paint system is disturbed.

The Engineer will notify the Contractor of the approval or rejection of the submitted or revised debris containment and collection program within 2 weeks of submittal of the Contractor's program or revised program.

The State will not be liable to the Contractor for failure to approve all or any portion of an originally submitted or revised debris containment and collection program, nor for delays to the work due to the Contractor's failure to submit an acceptable program.

Full compensation for the debris containment and collection program must be considered as included in the contract price paid for the item of work causing the existing paint system to be disturbed, and no additional compensation will be allowed therefor.

Safety and Health Provisions

Attention is directed to Section 7-1.06, "Safety and Health Provisions," of the Standard Specifications. Work practices and worker health and safety must conform to the California Code of Regulations, Title 8, Construction Safety Orders, including Section 1532.1, "Lead."

The Contractor must furnish the Engineer a written Code of Safe Practices and must implement an Injury and Illness Prevention Program and a Hazard Communication Program in conformance with the requirements of Construction Safety Orders, Sections 1509 and 1510.

Prior to starting work that disturbs the existing paint system, and when revisions to the compliance program are required submit a lead compliance plan under Section 7-1.07, "Lead Compliance Plan," of the Standard Specifications. Copies of all air monitoring or jobsite inspection reports made by or under the direction of the CIH in conformance with Section 1532.1, "Lead," must be furnished to the Engineer within 10 days after the date of monitoring or inspection.

Full compensation for furnishing the Engineer with the submittals and for implementing the programs required by this safety and health section must be considered as included in the contract price paid for the item of work causing the existing paint system to be disturbed, and no additional compensation will be allowed therefor.
Debris Handling

Debris produced when the existing paint system is disturbed must not be temporarily stored on the ground. Debris accumulated inside the containment system must be removed before the end of each work shift. Debris must be stored in metal containers approved by the U.S. Department of Transportation for the transportation and temporary storage of hazardous waste. The containers must be handled such that no spillage occurs. The containers must be stored in a secured enclosure. Acceptable secure enclosures include a locked chain link fenced area or a lockable shipping container located within the project limits until disposal as approved.

Handling, storing, transporting, and disposing of debris produced when the existing paint system is disturbed must be performed in conformance with all applicable Federal, State, and local hazardous waste laws. Laws that govern this work include:

2. Title 22; California Code of Regulations, Division 4.5, (Environmental Health Standards for the Management of Hazardous Waste).
3. Title 8, California Code of Regulations.

The Contractor must make necessary arrangements to test the debris as required by the disposal facility and as specified. Testing must include at a minimum:

1. Total lead and chromium by US EPA Method 6010B
2. Soluble lead and chromium by CA WET
3. Soluble lead and chromium by Toxicity Characteristic Leaching Procedure (TCLP)

From the first 220 gal of hazardous waste or portion thereof if less than 220 gal of hazardous waste are produced, a minimum of 4 randomly selected samples must be taken and analyzed individually. Samples must not be composited. From each additional 880 gal of hazardous waste or portion thereof if less than 880 gal are produced, a minimum of 1 additional random sample must be taken and analyzed. Use chain of custody procedures consistent with Chapter 9 of the US EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW-846) while transporting samples from the project to the laboratory. Each sample must be homogenized before analysis by the laboratory performing the analyses. A sample aliquot sufficient to cover the amount necessary for the total and the soluble analyses must then be taken. This aliquot must be homogenized a second time and the total and soluble analyses run on this aliquot. The homogenization process must not include grinding of the samples. Submit the name and location of the disposal facility that will be accepting the hazardous waste and the analytical laboratory along with the testing requirements not less than 5 business days before the start of the work that disturbs the existing paint system. The analytical laboratory must be certified by the CDPH ELAP for all analyses to be performed.

Submit analytical test results of the debris, including chain of custody documentation, for review and acceptance before:

1. Requesting the Engineer's signature on the waste profile requested by the disposal facility
2. Requesting the Engineer obtain a US EPA Generator Identification Number for disposal
3. Removing the residue from the site

Submit a request for the US EPA Generator Identification Number when the Engineer accepts the waste characterization analytical test results documenting that the debris is a hazardous waste.

Except as otherwise provided herein, debris produced when the existing paint system is disturbed must be disposed of by the Contractor at an approved California Department of Toxic Substances Control permitted Class 1 disposal facility within California in conformance with the requirements of the disposal facility operator. The Engineer will obtain the US EPA Generator Identification Number and will sign all manifests as the generator within 2 business days of receiving and accepting the waste characterization analytical test results and receiving your request for the US EPA Generator Identification Number. Disposal must occur after the Engineer accepts the waste characterization analytical test results and within 30 days after accumulating 220 pounds of residue and dust.

If less than 220 pounds of hazardous waste debris is generated in total, dispose of it within 30 days after the start of accumulation of the debris.

The debris must be hauled by a transporter currently registered with the California Department of Toxic Substances Control and in compliance with the CA Highway Patrol Biennial Inspection of Terminals Program using correct manifesting procedures. The Contractor must make all arrangements with the operator of the disposal facility and perform any testing of the debris required by the operator.
If analytical test results demonstrate that the residue is a non-hazardous waste and the Engineer agrees, dispose of the residue at an appropriately permitted Class II or Class III facility or recycle it.

At the option of the Contractor, the debris produced when the existing paint system is disturbed may be disposed of by the Contractor at a facility equipped to recycle the debris, subject to the following requirements:

1. Copper slag abrasive blended by the supplier with a calcium silicate compound must be used for blast cleaning.
2. The debris produced when the existing paint system is disturbed must be tested by the Contractor to confirm that the solubility of the heavy metals is below regulatory limits and that the debris may be transported to the recycling facility as a nonhazardous waste.
3. The Contractor must make all arrangements with the operator of the recycling facility and perform any testing of the debris produced when the existing paint system is disturbed that is required by the operator.

Submit receiving landfill or recycling facility documentation of proper disposal within 5 business days of debris transport from the project.

Full compensation for debris handling and disposal must be considered as included in the contract price paid for the item of work causing the existing paint system to be disturbed, and no additional compensation will be allowed therefor.

If analytical test results demonstrate that the debris is a non-hazardous waste, the Engineer agrees, and debris is disposed of at an appropriately permitted Class II, Class III, or recycling facility, the Department does not adjust payment.

REMOVE METAL BEAM GUARD RAILING

Existing metal beam guard railing, where shown on the plans to be removed, shall be removed and disposed of.

Existing concrete anchors or steel foundation tubes shall be completely removed and disposed of. Full compensation for removing concrete anchors shall be considered as included in the contract price paid per linear foot for remove metal beam guard railing and no separate payment will be made therefor.

Full compensation for removing cable anchor assemblies, terminal anchor assemblies or steel foundation tubes shall be considered as included in the contract price paid per linear foot for remove metal beam guard railing and no separate payment will be made therefor.

REMOVE SIGN STRUCTURE

Existing sign structures, where shown on the plans to be removed, shall be removed and disposed of.

Overhead sign structure removal shall consist of removing posts, frames, portions of foundations, sign panels, walkways with safety railings, and sign lighting electrical equipment.

Bridge mounted sign structure removal shall consist of removing sign panels and frames, sign lighting electrical equipment, walkways with safety railings, structural braces and supports, and hardware.

A sign structure shall not be removed until the structure is no longer required for the direction of public traffic.

Concrete foundations may be abandoned in place, except that the top portion, including anchor bolts, reinforcing steel, and conduits shall be removed to a depth of not less than 3 feet below the adjacent finished grade. The resulting holes shall be backfilled and compacted with material equivalent to the surrounding material.

Electrical wiring shall be removed to the nearest pull box. Fuses within spliced connections in the pull box shall be removed and disposed of.

Electrical equipment, where shown on the plans, shall be salvaged.

REMOVE PAVEMENT MARKER

Existing pavement markers, including underlying adhesive, when no longer required for traffic lane delineation as determined by the Engineer, shall be removed and disposed of.

REMOVE TRAFFIC STRIPE AND PAVEMENT MARKING

This work includes removing existing traffic stripe and pavement marking at the locations shown on the plans.

Submit a lead compliance plan under Section 7-1.07, "Lead Compliance Plan," of the Standard Specifications.

Waste residue from removal of thermoplastic and painted traffic stripe and pavement marking is a non-hazardous waste residue and contains lead in average concentrations less than 1000 mg/kg total lead and 5 mg/L soluble lead. This waste residue does not contain heavy metals in concentrations that exceed thresholds established by the Health and Safety Code and 22 CA Code of Regs and is not regulated under the Federal Resource Conservation and Recovery Act (RCRA), 42 USC § 6901 et seq.
RESIDUE CONTAINING LEAD FROM PAINT AND THERMOPLASTIC
Residue from grinding or cold planing contains lead from paint and thermoplastic. The average lead concentrations are less than 1,000 mg/kg total lead and 5 mg/L soluble lead. This residue:

1. Is a nonhazardous waste
2. Does not contain heavy metals in concentrations that exceed thresholds established by the Health and Safety Code and 22 CA Code of Regs

Submit a lead compliance plan under Section 7-1.07, "Lead Compliance Plan," of the Standard Specifications. Payment for handling, removal, and disposal of grinding or cold planing residue that is a nonhazardous waste is included in the payment for the type of removal work involved.

REMOVE DRAINAGE FACILITY
Existing pipe culverts, inlets, and headwalls, where any portion of these structures is within 3 feet of the grading plane in excavation areas, or within one foot of original ground in embankment areas, or where shown on the plans to be removed, shall be completely removed and disposed of.

REMOVE ASPHALT CONCRETE DIKE
Existing asphalt concrete dike, where shown on the plans to be removed, shall be removed.
Prior to removing the dike, the outside edge of the asphalt concrete to remain in place shall be cut on a neat line to a minimum depth of 0.17-foot.
The dike shall be removed in such a manner that the surfacing which is to remain in place is not damaged.
The dike may be buried in embankments in the same manner provided for burying concrete in embankments in Section 15-3, "Removing Concrete," of the Standard Specifications.

REMOVE ROADSIDE SIGN
Existing roadside signs, at those locations shown on the plans to be removed, shall be removed and disposed of. Existing roadside signs shall not be removed until replacement signs have been installed or until the existing signs are no longer required for the direction of public traffic, unless otherwise directed by the Engineer.

RESET ROADSIDE SIGN
Existing roadside signs, where shown on the plans to be reset, shall be removed and reset.
Each roadside sign shall be reset on the same day that the sign is removed.
Two holes shall be drilled in each existing post as required to provide the breakaway feature shown on the plans.

RELOCATE ROADSIDE SIGN
Existing roadside signs shall be removed and relocated to the new locations shown on the plans.
Each roadside sign shall be installed at the new location on the same day that the sign is removed from its original location.
Two holes shall be drilled in each existing post as required to provide the breakaway feature shown on the plans.

ADJUST RISER
Existing riser shall be adjusted as shown on the plans.
Adjustment of inlets shall be performed in accordance to Section 15-2.05, "Reconstruction," of the Standard Specifications and details shown on the plans.
Where risers are located in areas to be paved or surfaced, no individual structure shall be constructed to final grade until the paving or surfacing has been completed immediately adjacent to the structure.
Adjust riser will be measured by the unit.
The contract price paid per unit for adjust riser shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in adjusting riser, including removing portions of inlets, bar reinforcing steel, concrete and structure excavation and structure backfill, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.
ADJUST MANHOLE TO GRADE

General

Summary
This work involves raising manhole to grade after paving.
Adjust manhole of existing utilities to grade shall conform to the provisions in Section 15-2.05, "Reconstruction," of the Standard Specifications and details shown on the plans.

Construction
Adjust manhole of existing utilities to grade as shown on the plans after completion of paving activities.

Payment
The contract unit price paid for adjust manhole to grade includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in and raising manholes to grade, complete in place, including concrete and HMA (Type A), as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

OBLITERATE SURFACING
Existing surfacing, when no longer required for the passage of public traffic, shall be obliterated at the locations shown on the plans.
Obliteration shall not be obliterated by the earth cover method.
Obliteration shall consist of rooting, plowing, pulverizing or scarifying the existing surfacing in conformance with the provisions in Section 15-2.02A, "Obliterating Roads and Detours," of the Standard Specifications.

REMOVE BALLAST, SUB-BALLAST AND RAILROAD SHOOFLY
Existing ballast, sub-ballast and railroad shoofly where shown on the plans to be removed, shall be removed and graded to original condition. Resulting holes and depressions shall be backfilled with earthy material selected from excavation to the lines and grade established by the Engineer.
The material removed shall be disposed of outside the highway right of way in conformance with the provisions in Section 15-2.03, "Disposal," of the Standard Specifications.
Removing ballast, sub-ballast and railroad shoofly will be measured by the cubic yard in the same manner specified for roadway excavation in conformance with the provisions in Section 19, "Earthwork," of the Standard Specifications and will be paid for at the contract price per cubic yard for remove ballast, sub-ballast and railroad shoofly. Full compensation for backfilling with earthy material selected from excavation to the lines and grade established by the Engineer shall be considered as included in the contract price paid per cubic yard for remove ballast, sub-ballast and railroad shoofly.

COLD PLANE ASPHALT CONCRETE PAVEMENT

GENERAL

Summary
This work includes cold planing existing asphalt concrete pavement.

Sequencing and Scheduling
Schedule cold planing activities to ensure hot mix asphalt (HMA) is placed over cold planed area during the same work shift before opening to traffic. If you cannot place HMA over the entire cold planed area before opening it to traffic:

1. Construct a temporary HMA taper to the level of the existing pavement.
2. Place HMA during the next lane or shoulder closure for that area.
3. Submit a corrective action plan that shows that you are able to cold plane and place HMA in the same work shift. Do not perform cold planing work until the Engineer approves the corrective action plan.

MATERIALS
HMA for temporary tapers must be of the same quality as the HMA used elsewhere on the project or comply with "Minor Hot Mix Asphalt" of these special provisions.
CONSTRUCTION

General
Perform planing of asphalt concrete pavement without the use of a heating device to soften the pavement.

Cold Planing Equipment
Cold planing machine must be:

1. Equipped with a cutter head width that matches the planing width. If the only available cutter head width is wider than the cold plane area shown, submit to the Engineer a request for using a wider cutter head. Do not cold plane until the Engineer approves your request.
2. Equipped with automatic controls to control the longitudinal grade and transverse slope of the cutter head and:
 2.1. If a ski device is used, it must be at least 30 feet long, rigid, and 1 piece unit. The entire length must be used in activating the sensor.
 2.2. If referencing from existing pavement, the cold planing machine must be controlled by a self-contained grade reference system. The system must be used at or near the centerline of the roadway. On the adjacent pass with the cold planing machine, a joint matching shoe may be used.
3. Equipped to effectively control dust generated by the planing operation.
4. Operated so that no fumes or smoke is produced.

Replace broken, missing, or worn machine teeth.

Grade Control and Surface Smoothness
Furnish, install, and maintain grade and transverse slope references.
The depth, length, width, and shape of the cut must be as shown or as ordered. The final cut must result in a neat and uniform surface. Do not damage remaining surface.
The completed surface of the planed asphalt concrete pavement must not vary more than 0.02 foot when measured with a 12-foot straightedge parallel with the centerline. The transverse slope of the planed surface must not vary more than 0.03 foot from the straightedge when placed at right angles to the centerline.
A drop-off of more than 0.15 foot is not allowed between adjacent lanes open to public traffic.

Temporary HMA Tapers
If a drop-off between the existing pavement and the planed area at transverse joints cannot be avoided before opening to traffic, construct a temporary HMA taper. HMA for temporary taper must be:

1. Placed to the level of the existing pavement and tapered on a slope of 30:1 (Horizontal: Vertical) or flatter to the level of the planed area
2. Compacted by any method that will produce a smooth riding surface
3. Completely removed before placing the permanent surfacing. The removed material must be disposed of outside the highway right of way in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

Disposal of Planed Material
Remove cold planed material concurrent with planing activities, within 50 feet of the planer or as ordered. Dispose of planed material and under Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

MEASUREMENT AND PAYMENT
Cold plane asphalt concrete pavement is measured by the square yard.
The contract price paid per square yard for cold plane asphalt concrete pavement includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in cold planing asphalt concrete surfacing and disposing of planed material, including constructing, maintaining, removing temporary HMA tapers if applicable, as specified in the Standard Specifications and these special provisions and as directed by the Engineer.
Full compensation for removal of thermoplastic traffic stripe, painted traffic stripe, and pavement marking in areas of cold plane asphalt concrete is included in the contract price paid for cold plane asphalt concrete and no separate payment will be made therefor.

CAP INLET

Existing pipe inlets and concrete drainage inlets, where shown on the plans to be capped, shall be capped and the bottoms of the inlets shall be rounded with portland cement concrete as shown on the plans.

Concrete shall be minor concrete conforming to the provisions in Section 90-10, "Minor Concrete," of the Standard Specifications. The concrete shall contain not less than 590 pounds of cementitious material per cubic yard.

Inlets shall be removed to a depth of at least one foot below the grading plane.

Concrete removal shall be performed without damage to portions of the inlet that are to remain in place. Damage to existing concrete, which is to remain in place, shall be repaired by the Contractor to a condition equal to that existing prior to the beginning of removal operations. The repair of existing concrete damaged by the Contractor's operations shall be at the Contractor's expense.

Existing reinforcement that is to be incorporated in the new work shall be protected from damage and shall be thoroughly cleaned of adhering material before being embedded in the new concrete.

The quantity of capping inlets will be determined as units from actual count.

The contract unit price paid for cap inlet shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in capping inlets, including removing portions of inlets, rounding bottoms of inlets, bar reinforcing steel, and structure excavation and structure backfill, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

BRIDGE REMOVAL

Removing bridges or portions of bridges shall conform to the provisions in Section 15-4, "Bridge Removal," of the Standard Specifications and these special provisions.

Bridge removal (portion) shall consist of removing portions of existing structures as briefly described below:

Location A:

Santa Ana River Bridge
(Bridge No. 54-0471L/R)

The bridge removal (portion) work at this location consist of removing portions of bridge, culverts, channel lining and nosing, and slope paving, as shown on the plans.

Location B:

I-215/I-10 Separation (Left)
(Bridge No. 54-0479L)

The bridge removal (portion) work at this location consist of removing portions of existing wingwalls, overhang, concrete barrier and railing, and approach slabs as shown on the plans.

Location C:

I-215/I-10 Separation (Right)
(Bridge No. 54-0479R)

The bridge removal (portion) work at this location consist of removing portions of existing wingwalls, overhang, concrete barrier, and railing as shown on the plans.

Location D:

Colton-Loma Linda Yard OH (LT)
(Bridge No. 54-0482L)

The bridge removal (portion) work at this location consist of removing portions of existing abutments, overhang, and concrete barrier as shown on the plans.
Location E:
Colton-Loma Linda Yard OH (RT)
(Bridge No. 54-0482R)
The bridge removal (portion) work at this location consist of removing portions of existing abutments, footings, curtain walls, backwalls, overhang, concrete barrier, and approach slabs as shown on the plans.

Bridge removal shall consist of removing complete structures, as briefly described below:

Location F:
Newport Ave OC
(Bridge No. 54-0529)
The bridge removal work at this location consist of removing an existing CIP-RC bridge, as shown on the as-built plans.

Location G:
Highgrove UP
(Bridge No. 54-0518)
The bridge removal work at this location consists of removing an existing simply supported 4 span riveted steel through plate girder structure. The existing structure is 328 feet long by 37 feet wide and has reinforced concrete two column bents and reinforced concrete seated abutments with wing walls. Bent 3, in the median, is supported on concrete piling. The remainder of the supports are on spread footings. Bridge removal at Bent 3 shall include partial removal of footings as shown on the plans.

Location H:
Highgrove UP Shoofly
(Bridge No. 54-1306)
The bridge removal work at this location consists of removing an existing simply supported 4 span bolted steel through plate girder structure. The existing structure is 371 feet long by 39 feet wide and has reinforced concrete three column bents and reinforced concrete seated abutments with wing walls and a retaining wall. Bridge removal at these locations shall include partial removal as shown on the plans.

Location I:
Grand Terrace UP
(Bridge No. 54-0519)
The bridge removal work at this location consists of removing an existing 4 span simply supported riveted steel through plate girder (2) with reinforced concrete deck. The existing structure is 265 feet long by 23 feet wide and has reinforced concrete two column bents and reinforced concrete seated abutments with wing walls. All supports are on spread footings. There is an existing 14” diameter water pipe utility supported on the west side of west girder for the entire length of the bridge. The utility is to be removed and rerouted by others.

Removed materials that are not to be salvaged or used in the reconstruction shall become the property of the Contractor and shall be disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

The Contractor shall submit a complete bridge removal plan to the Engineer for each bridge listed above, detailing procedures, sequences, and all features required to perform the removal in a safe and controlled manner.

The bridge removal plan shall include, but not be limited to, the following:

A. The removal sequence, including staging of removal operations.
B. Equipment locations on the structure during removal operations.
C. Temporary support shoring or temporary bracing.
D. Locations where work is to be performed over traffic, utilities, or railroad property.
E. Details, locations, and types of protective covers to be used.
F. Measures to assure that people, property, utilities, and improvements will not be endangered.
G. Details and measures for preventing material, equipment, and debris from falling onto public traffic, or railroad property.

When protective covers are required for removal of portions of a bridge or when superstructure removal work on bridges is involved, the Contractor shall submit working drawings with design calculations to the Engineer for the proposed bridge removal plan, and the bridge removal plan shall be prepared and signed by an engineer who is registered as a Civil Engineer in the State of California. The design calculations shall be adequate to demonstrate the stability of the structure during all stages of the removal operations. Calculations shall be provided for each stage of bridge removal and shall include dead and live load values assumed in the design of protective covers. At a minimum, a stage will be considered to be removal of the deck, the soffit, or the girders, in any span; or walls, bent caps, or columns at support locations.

Temporary support shoring, temporary bracing, and protective covers, as required, shall be designed and constructed in conformance with the provisions in Section 51-1.06, "Falsework," of the Standard Specifications and these special provisions.

The assumed horizontal load to be resisted by the temporary support shoring and temporary bracing, for removal operations only, shall be the sum of the actual horizontal loads due to equipment, construction sequence, or other causes and an allowance for wind, but in no case shall the assumed horizontal load to be resisted in any direction be less than 5 percent of the total dead load of the structure to be removed.

The bridge removal plan shall conform to the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications. The number of sets of drawings, design calculations, and unless otherwise specified in the following table, the time for reviewing bridge removal plans shall be the same as specified for falsework working drawings in Section 51-1.06A, "Falsework Design and Drawings," of the Standard Specifications.

The time to be provided for the Engineer's review of the bridge removal plans for removing specific structures, or portions thereof, shall be as follows:

<table>
<thead>
<tr>
<th>Structure or Portion of Structure</th>
<th>Review Time - Weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>All RR Bridges</td>
<td>10</td>
</tr>
<tr>
<td>Non RR bridges</td>
<td>4</td>
</tr>
</tbody>
</table>

For bridge removal over railroad property, approval by the Engineer of the bridge removal plans will be contingent upon the drawings being satisfactory to the railroad company involved.

Temporary support shoring, temporary bracing, and protective covers over railroad property shall conform to the latest guidelines of the railroad company involved and shall provide the minimum clearances required under "Relations with Railroad Company" of these special provisions for the passage of railroad traffic.

For bridge removal work that requires the Contractor's registered engineer to prepare and sign the bridge removal plan, the Contractor's registered engineer shall be present at all times when bridge removal operations are in progress. The Contractor's registered engineer shall inspect the bridge removal operation and report in writing on a daily basis the progress of the operation and the status of the remaining structure. A copy of the daily report shall be available at the site of the work at all times. Should an unplanned event occur or the bridge operation deviate from the approved bridge removal plan, the Contractor's registered engineer shall submit immediately to the Engineer for approval the procedure of operation proposed to correct or remedy the occurrence.

PREPARE CONCRETE BRIDGE DECK SURFACE

This work includes abrasive blast cleaning the concrete deck surface with steel shot and blowing the deck surface clean.

Steel shot must comply with SSPC-AB3. Recycled steel shot must comply with SSPC-AB2.

Abrasive blast clean the deck surface with steel shot. Remove all laitance, contaminants, and foreign material.

Sweep the deck surface. Blow the deck surface clean using high-pressure air.

Coarse aggregate remaining above the removal limit must be firmly embedded in the remaining concrete.

The deck must be dry when abrasive blast cleaning is performed. Removal of unsound concrete under "Remove Unsound Concrete" of these special provisions and any concrete deck or asphaltic concrete removal must be performed before abrasive blast cleaning.

Laitance, surface contaminants, chip or slurry seal contrast treatments, and foreign material must be removed from the concrete deck surface.

If the deck surface becomes contaminated before placing the overlay, abrasive blast clean the contaminated area and sweep the deck clean.

Residue from abrasive blasting must be removed by a vacuum attachment operating concurrently with blasting equipment when abrasive blasting within 10 feet of public traffic.
Dispose of removed materials under Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

Prepare concrete bridge deck surface will be measured and paid for by the square foot of deck surface prepared. The contract price paid per square foot for prepare concrete bridge deck surface shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in preparing the concrete bridge deck surface, except removal of slurry or chip seal contrast treatment, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

Removal of slurry or chip seal contrast treatment will be paid for as extra work as specified in Section 4-1.03D, "Extra Work," of the Standard Specifications.

REMOVE CONCRETE

Concrete, where shown on the plans to be removed, shall be removed. The pay quantities of concrete to be removed will be measured by the cubic yard, measured before and during removal operations.

Removing concrete curb, and concrete barrier will be measured by the linear foot, measured along the curb before removal operations.

Concrete removed shall be disposed of outside the highway right of way in conformance with the provisions in Section 7-1.13, “Disposal of Material Outside the Highway Right of Way,” of the Standard Specifications.

Concrete within construction limits, both inside and outside the highway right of way, shall be removed, except for curbs and sidewalks adjacent to frontage roads and through city streets.

Where no joint exists between concrete to be removed and concrete to remain in place, the concrete shall be cut on a neat line to a minimum depth of 0.17-foot with a power driven saw before the concrete is removed.

Where concrete has been removed outside the roadway prism, the backfilled areas shall be graded to drain and blend in with the surrounding terrain.

Concrete to be removed which has portions of the same structure both above and below ground will be considered as concrete above ground for compensation.

10-1.34 REMOVAL OF ASBESTOS CONTAINING MATERIALS

Asbestos containing materials (ACM), as defined in section 1529, "Asbestos," of the Construction Safety Orders, Title 8, of the California Code of Regulations are present in the structure proposed for demolition or renovation.

In compliance with Standard Specifications Section 14-9.01, the Contractor must notify the US EPA, the California Air Resources Board, and the South Coast Air Quality Management District (SCAQMD) as required by the National Emission Standards for Hazardous Air Pollutants (NESHAP) 40 CFR Part 61, Subpart M, California Health and Safety Code section 39658(b)(1), and the California Air Resources Board regulations. Provide a copy of the notification form and attachments to the Engineer prior to submittal. Notification must take place a minimum of 10 days prior to starting demolition or renovation activities. Contractor must contact the AQMD for confirmation. Notify other local permitting agencies and utility companies prior to demolition or alteration.

Mail Original Notification To:

South Coast Air Quality Management District
Asbestos Notifications, File #55641
Los Angeles, CA 90074-5641

Send Copy or Fax To:

California Air Resources Board
Enforcement Division
Asbestos NESHAP Notification
Post Office Box 2815
Sacramento, California 95812
Fax: (916) 445-7986

Friable ACM is defined under the Asbestos Hazard Emergency Response Act (AHERA) as "any material containing more than 1 percent (1%) asbestos by area that hand pressure can crumble, pulverize or reduce to powder when dry." The term non-friable implies that the asbestos fibers are tightly bound into the matrix of the material.
and should not become an airborne hazard as long as the material remains intact and undamaged, and is not sawed, sanded, drilled or otherwise abraded during removal.

Codes, which govern removal and disposal of materials containing asbestos include, but are not limited to, the following:

3. California Code of Regulations, Title 8, Sections 1529 and 341
4. California Code of Regulations, Title 22, Division 4.5
5. Occupational Safety and Health Administration, Part 26 (amended), of Title 29 of the Code of Federal Regulations.
6. Code of Federal Regulations (CFR), Title 40, Part 61, subpart M.

ASBESTOS SURVEY

Asbestos was detected at 75% to 85% Chrysotile in the following bridges:

<table>
<thead>
<tr>
<th>Bridge Name</th>
<th>Bridge Number</th>
<th>Asbestos Type & Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highgrove BNSF Railroad</td>
<td>54-0518</td>
<td>Friable -85% Chrysotile; Guardrail Shims</td>
</tr>
<tr>
<td>Grand Terrace UP Railroad</td>
<td>54-0519</td>
<td>Friable 85% Chrysotile, Guardrail Shims</td>
</tr>
<tr>
<td>Grand Terrace UP Railroad</td>
<td>54-0519</td>
<td>Friable 70% Chrysotile, Pipe Wrap</td>
</tr>
<tr>
<td>Santa Ana River</td>
<td>54-0471 L/R</td>
<td>Friable 75% Chrysotile; Guardrail Shims</td>
</tr>
<tr>
<td>Colton/Loma Linda OH</td>
<td>54-0482 L/R</td>
<td>Friable 75% Chrysotile; Guardrail Shims</td>
</tr>
<tr>
<td>I-215/I-10 Separation</td>
<td>54-0479 L/R</td>
<td>Friable 75% Chrysotile; Guardrail Shims</td>
</tr>
<tr>
<td>Newport Ave OC</td>
<td>54-0529</td>
<td>No asbestos was detected</td>
</tr>
</tbody>
</table>

All other suspected areas have tested negative for asbestos-containing material. Portions of the survey report are included in the "Information Handout." The complete report entitled "Asbestos Containing Materials and Lead-Based Paint Survey Report" is available for inspection at the Department of Transportation, Environmental Engineering Office, located at 464 W. 4th Street, San Bernardino, CA 92401.

ASBESTOS SAMPLING AND ANALYSIS WORKPLAN

SUBMITTALS

ASBESTOS COMPLIANCE PLAN

Prepare an Asbestos Compliance Plan (ACP) to prevent or minimize exposure to asbestos. Attention is directed to Title 8, California Code of Regulations, Construction Safety Orders, section 5192 (b) and section 1529, "Asbestos", Occupational Safety and Health Guidance Manual published by the National Institute of Occupational Safety and Health (NIOSH) and the USEPA for elements of the ACP. The ACP must contain as a minimum but not be limited to: identification of key personnel for the project, job hazard analysis for work assignments, summary of risk assessment, personal protective equipment, delineation of work zones on-site, decontamination procedures, general safe work practices, security measures, emergency response plans and worker training. The ACP must be authorized in writing by an industrial hygienist certified in the practice of industrial hygiene by the American Board of Industrial Hygiene before submission to the Engineer for review and acceptance. Submit the ACP to the Engineer at least 15 days prior to beginning work in areas containing or suspected to contain asbestos.

TRAINING

Prior to performing work in areas containing or suspected to contain asbestos, personnel who have no prior training or are not current in their training status, including State personnel, must complete a safety training program provided by the Contractor, which meets the requirement of Title 8, California Code of Regulations, Section 1529. Provide a written certification of completion of safety training to the Engineer for trained personnel prior to performing work in areas containing or suspected to contain asbestos.
EQUIPMENT AND MEDICAL SURVEILLANCE

Provide personnel protective equipment, training, and medical surveillance required by the Contractor’s Asbestos Compliance Plan to State personnel. The number of State personnel will be 5.

REMOVAL

Prepare a work plan for the removal, storage, transportation and disposal of ACM (Guardrail Shims). Removal and management of ACM will be performed by a contractor registered pursuant to Section 6501.5 of the Labor Code and certified pursuant to Section 7058.6 of the Business and Professions Code. Asbestos removal must conform to Cal/OSHA requirements in Title 8 Sections 1529 and 341. For bridges built before 1980, where ACM is suspected, but cannot be sampled before demolition, a CAC must be present during demolition in case unforeseen ACM is encountered. Remove all friable material in a manner that conforms to OSHA work practice requirements. Remove and handle all non-friable ACM to prevent breakage. Non-friable ACM such as asbestos cement pipe must be disposed of to a landfill facility permitted to take ACM. The removal of ACM encased in concrete or other similar structural material is not required prior to demolition, but such material must be adequately wetted whenever exposed during demolition. Packaging, storage, transporting, and disposing of ACM, must conform to Title 22, Division 4.5, Chapters 11, 12 and 13 of the California Code of Regulations. No visible dust must be generated when handling, removing, transporting, and disposing of ACM.

Asbestos removal procedures include, but are not limited to:

1. Installing asbestos warning signs at perimeters of abatement work areas.
2. Wetting asbestos materials with sprayers.
3. Containing large volumes of asbestos materials in disposal bins for temporary storage until removed from the site.
4. Providing manifests for the Engineer to sign for disposal of friable ACM waste or a waste shipment record for disposal of non-friable ACM waste.
5. Providing transporters registered to transport hazardous waste in the State of California in accordance with the provisions of Chapter 6.5, Division 20 of the Health and Safety Code and Title 22 of the California Code of Regulations, Division 4.5.
6. Disposing of asbestos materials at a permitted disposal facility, which accepts such materials.
7. Working in accordance with Federal, State, and Local requirements for asbestos work.

Mark all vehicles used to transport ACM as specified below, or an equivalent warning:

DANGER
ASBESTOS
CANCER AND LUNG DISEASE HAZARD
AUTHORIZED PERSONNEL ONLY

Handling

Comply with CCR Title 22, Division 4.5, Chapter 12, Article 3 requirements for the packaging and labeling of removed ACM, and place such removed material in approved plastic containers (double ply plastic bags) with caution labels affixed to bags. Such caution labels must have conspicuous, legible lettering, which spells out the following, or equivalent warning:

DANGER
CONTAINS ASBESTOS FIBERS
AVOID CREATING DUST
CANCER AND LUNG DISEASE HAZARD

At the option of the Contractor, the removed materials containing asbestos may be placed directly into a covered roll off or drop box, which must have the same caution label, affixed on all sides.
Transporting

Haulers of friable asbestos containing material will have current registration with the State Department of Toxic Substances Control (DTSC), and must have a U.S. Environmental Protection Agency Identification Number (U.S. EPA I.D. Number). A valid registration issued by DTSC is required for all vehicles used to transport hazardous waste material. Non-friable ACM is not hazardous waste and can be transported with a waste shipment record (WSR) or comparable shipping document.

Disposal

The Engineer will obtain the required EPA generator identification numbers, and will sign the hazardous waste manifests for disposal of friable asbestos containing material. The Contractor must dispose of friable and non-friable waste containing asbestos at a disposal facility permitted to accept such material and that meets all the requirements specified by Federal, State, and Local regulations. Notify the proper authorities at the disposal site in advance of delivery of asbestos containing material to the disposal site. Conduct additional sampling deemed necessary by the owner of the disposal facility for acceptance of the material at your expense.

MEASUREMENT AND PAYMENT

Full compensation for furnishing all labor, materials, tools, equipment, and incidentals and for doing all the work involved in preparing the Asbestos Compliance Plan, including paying the Certified Industrial Hygienist, and for providing personal protective equipment, training, medical surveillance, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer will be considered as included in the contract prices paid for the various items of work involved and no additional compensation will be allowed therefor.

Full compensation for preparation of a Removal Work Plan and for the removal, transportation, and disposal of asbestos-containing material is included in the contract items of work involved and no additional compensation will be allowed therefor.

10-1.35 CLEARING AND GRUBBING

Clearing and grubbing shall conform to the provisions in Section 16, "Clearing and Grubbing," of the Standard Specifications and these special provisions.

Vegetation shall be cleared and grubbed only within the excavation and embankment slope lines.

10-1.36 EARTHWORK

Earthwork shall conform to the provisions in Section 19, "Earthwork," of the Standard Specifications and these special provisions.

Sand Backfill shall conform to the provisions in Section 19-3.06, "Structure Backfill" and Section 19-3.025B, "Sand Bedding" of the Standard and these special Provisions.

Sand backfill materials shall be clean, free draining, and free from roots and other deleterious substances.

The contract price paid per cubic yard for sand backfill shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in backfilling with sand, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

Attention is directed to the "Construction Considerations" section of each foundation report provided in "Supplemental Project Information" of these special provisions for existing conditions and additional requirements for each structure location.

Surplus excavated material not designated as hazardous waste due to aerially deposited lead shall become the property of the Contractor and shall be disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

Where a portion of the existing surfacing is to be removed, the outline of the area to be removed shall be cut on a neat line with a power-driven saw to a minimum depth of 0.17-foot before removing the surfacing. Full compensation for cutting the existing surfacing shall be considered as included in the contract price paid per cubic yard for roadway excavation and no additional compensation will be allowed therefor.

Reinforcement or metal attached to reinforced concrete rubble placed in embankments shall not protrude above the grading plane. Prior to placement within 2 feet below the grading plane of embankments, reinforcement or metal shall be trimmed to no greater than 3/4 inch from the face of reinforced concrete rubble. Full compensation for trimming reinforcement or metal shall be considered as included in the contract prices paid per cubic yard for the types of excavation shown in the Engineer's estimate, or the contract prices paid for furnishing and placing imported borrow or embankment material, as the case may be, and no additional compensation will be allowed therefor.
10-1.37 RAILROAD SUBBALLAST

PART 1 - GENERAL

1.1 SUMMARY

A. "Subballast": This item shall consist of a foundation course for asphalt surface course or railroad ballast and shall be composed of crushed stone from an approved source, materials and shall be constructed as herein specified in one or more courses in conformity with the typical sections shown on plans and to the lines provided by the Engineer.

PART 2 - PRODUCTS

2.1 MATERIALS

A. REQUIREMENTS

Materials shall be 100% crushed stone produced from oversize quarried aggregate, sized by crushing and produced from a naturally occurring single source. Aggregate shall have a percentage of wear, by the Los Angeles abrasion test, of not more than 50. A higher or lower percentage of wear may be specified by the Engineer, depending on the material available. 10% max loss freeze/thaw test.

B. GRADATIONS

It is the intent of this specification, that unless otherwise indicated on the plans, the subballast shall consist of gradations as set forth in the following table:

<table>
<thead>
<tr>
<th>SIEVE SIZE</th>
<th>2"</th>
<th>1"</th>
<th>3/8"</th>
<th>No. 10</th>
<th>No. 40</th>
<th>No. 200</th>
</tr>
</thead>
<tbody>
<tr>
<td>% passing (opt.)</td>
<td>100</td>
<td>95</td>
<td>67</td>
<td>38</td>
<td>21</td>
<td>3</td>
</tr>
<tr>
<td>% passing (perm.)</td>
<td>100</td>
<td>90-100</td>
<td>50-84</td>
<td>26-50</td>
<td>12-30</td>
<td>0-6</td>
</tr>
</tbody>
</table>

2.2 DESIGN REQUIREMENTS

A. Subballast will be used as indicated by the following charts or as directed by the Engineer:

6” OF SUBBALLAST SHALL BE REQUIRED WHEN SUB-GRADE MATERIAL SIZES ARE SMALLER THAN LISTED ABOVE, BUT NOT FINER THAN THE GRADATIONS LISTED BELOW:

<table>
<thead>
<tr>
<th>PERCENT PASSING By Weight</th>
<th>SIEVE SIZE</th>
<th>GRAIN SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. Mesh per in</td>
<td>In mm</td>
</tr>
<tr>
<td>19</td>
<td>200</td>
<td>.08</td>
</tr>
<tr>
<td>74</td>
<td>100</td>
<td>.16</td>
</tr>
<tr>
<td>92</td>
<td>60</td>
<td>.26</td>
</tr>
<tr>
<td>100</td>
<td>40</td>
<td>.42</td>
</tr>
</tbody>
</table>

12” OF SUBBALLAST SHALL BE REQUIRED WHEN SUB-GRADE MATERIALS HAVE GRADATION SMALLER THAN LISTED ABOVE.

PART 3 - EXECUTION

3.1 CONSTRUCTION METHODS

A. Preparation of Subgrade. The road bed shall be shaped in conformity with the typical sections shown on plans and to the line and grades provided by the Engineer. All unstable or otherwise objectionable material shall be removed from the subgrade and replaced with approved material. All holes, ruts and depressions shall be filled with
approved material and if required, the subgrade shall be properly wetted with water and reshaped and rolled to the extent directed in order to place the subgrade in an acceptable condition to receive the subballast material. Sufficient subgrade shall be prepared in advance to insure satisfactory progression of the work.

B. If the required compacted depth of the subballast exceeds 6 inches, the subballast shall be constructed in two or more layers of approximate equal thickness. The maximum compacted thickness of any one layer shall not exceed 6 inches and shall be compacted to a 95 percent relative compaction, as specified in Section 19-5.03 "Relative Compaction (95 Percent)" of the Standard Specifications.

C. If the material is laid and compacted in more than one layer, the Contractor shall plan and coordinate this work in such a manner that the previously placed and compacted layers be allowed ample time for curing and development of sufficient stability before vehicles hauling materials for the succeeding layers, or other heavy equipment are permitted on the subballast. Prior to placing the succeeding layers of material, the top of the under layer shall be sufficiently moist to insure a strong bond between the layers. The edges and/or edge slopes of the subballast shall be bladed or otherwise dressed to conform to the lines and dimensions shown on the plans and present straight, neat, and workmanlike lines and/or slopes as free of loose material as practicable.

PART 4

4.1 MEASUREMENT AND PAYMENT

Furnishing and placement of subballast shall be measured in cubic yards within the neat lines of the typical sections, line, grades and slopes established.

The contract price per cubic yard for subballast shall include full compensation for furnishing unloading, hauling, compacting, dressing, testing, all labor, materials, tools, equipment, and incidentals and for doing all the work involved in placing the subballast, complete in place, as shown on the plans, as specified in these special provisions, and as directed by the Engineer.

10-1.38 SOIL NAIL WALL AND GROUND ANCHOR WALL EARTHWORK

This work consists of stability testing, excavating for wall construction, and backfilling around completed soil nail walls and ground anchor walls in conformance with the details shown on the plans, the provisions in Section 19-3, "Structure Excavation and Backfill," of the Standard Specifications, and these special provisions.

Working Drawings

The Contractor must submit a complete working drawing submittal for earthwork for each soil nail wall and ground anchor wall to the Offices of Structure Design in conformance with the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications. Working drawings must be 11" x 17" in size. For initial review, 5 sets of drawings must be submitted. After review, between 6 and 12 sets, as requested by the Engineer, must be submitted to Offices of Structure Design for final approval and use during construction.

Working drawing submittals for soil nail wall and ground anchor wall earthwork must show the contract number, structure number, full name of the structure as shown on the project plans, and District-County-Route-Post Mile on each drawing and calculation sheet. The Contractor's name, address, and telephone and fax numbers must be shown on the working drawings. Each sheet must be numbered in the lower right hand corner.

The working drawing submittal for soil nail wall and ground anchor wall earthwork must contain all information required for the construction and quality control of the earthwork, including the following:

1. A proposed schedule and detailed construction sequence. The construction sequence must include measures to ensure wall and slope stability during all stages of wall construction, including provisions for installation of verification and proof test soil nails and discontinuous rows of soil nails.
2. Methods of excavation to the staged lifts indicated and types of excavation equipment.
3. Exposed vertical soil lift height and proposed maximum duration of exposure for each wall zone, including supporting calculations, and provisions for stabilization of the exposed soil face.
4. Details for measuring the movement of the excavated face and the wall during stability testing and construction.
5. Information on space requirements for installation equipment.
6. A detailed construction dewatering plan addressing all elements necessary to divert, control, and dispose of surface water and ground water.
The working drawings must be stamped and signed by an engineer who is registered as a Civil Engineer in the State of California.

The Contractor must allow the Engineer 4 weeks to review the working drawings after a complete submittal has been received.

Should the Engineer fail to review the complete working drawing submittal within the time specified and if, in the opinion of the Engineer, the Contractor’s controlling operation is delayed or interfered with by reason of the delay in reviewing the soil nail wall or ground anchor wall earthwork working drawing submittal, an extension of time commensurate with the delay in completion of the work thus caused will be granted in conformance with the provisions in Section 8-1.09, ”Right of Way Delays,” of the Standard Specifications.

Stability Testing

The Contractor must perform stability testing to verify the Contractor's proposed excavation lift height and exposure duration for soil nail wall and ground anchor wall construction. Stability testing must be performed before roadway excavation.

Perform at least 1 stability test within the limits of each wall zone.

Stability testing does not apply to ground anchored soldier pile walls.

The wall zones for the soil nail wall at Retaining Walls 103 are listed in the following table:

<table>
<thead>
<tr>
<th>Wall Zone</th>
<th>Beginning Stationing</th>
<th>End Stationing</th>
<th>Nail length (ft)</th>
<th>Ultimate Bond Strength (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Top 5 feet)</td>
<td>104+00</td>
<td>112+00</td>
<td>20.0</td>
<td>10.0</td>
</tr>
<tr>
<td>2 (5 ft below)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 (Top 5 feet)</td>
<td>112+00</td>
<td>125+00</td>
<td>30.0</td>
<td>10.0</td>
</tr>
<tr>
<td>4 (5 ft below)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The wall zones for the soil nail wall at Retaining Walls 104 are listed in the following table:

<table>
<thead>
<tr>
<th>Wall Zone</th>
<th>Beginning Stationing</th>
<th>End Stationing</th>
<th>Nail length (ft)</th>
<th>Ultimate Bond Strength (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Top 5 feet)</td>
<td>103+60</td>
<td>109+50</td>
<td>16.0</td>
<td>10.0</td>
</tr>
<tr>
<td>2 (5 ft below)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 (Top 5 feet)</td>
<td>109+50</td>
<td>124+58</td>
<td>30.0</td>
<td>10.0</td>
</tr>
<tr>
<td>4 (5 ft below)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For ground anchored walls, a wall zone is the entire wall.

The stability tests must be conducted by performing staged roadway excavation to produce a neat excavated face no more than 5 feet in front of the location of the final wall face. The height of the excavated face must be as specified in the approved working drawings. The excavated face must be 20 feet long and parallel to the wall alignment. The excavated face must have a constant height within the 20-foot section. Ramps may be excavated outside the 20-foot section to provide construction access. The excavated face must be left open for the duration specified in the approved working drawings.

The excavated face must maintain its integrity without raveling, sloughing, or measurable lateral movement at the completion of the stability test. After written approval by the Engineer, the proposed excavation height may be used in that wall zone as the stand-up height of the excavated face for the duration observed in the stability test.

If at any time the exposed excavated face fails to maintain its integrity without raveling, sloughing, or measurable lateral movement for the duration of time observed in the approved stabilization test, the Contractor must immediately stabilize the excavated face and perform additional stability testing as described herein.

If the Contractor uses a maximum excavation lift height of not greater than 5 feet or an exposure duration longer than 1 work shift, no stability testing will be required.

When stability testing is not performed, shotcrete must be applied during the same work shift in which excavation has occurred. Completion of the shotcrete facing may be delayed up to 24 hours if the Contractor demonstrates that the integrity of the excavated face is maintained.

Construction

No excavation or drilling for installation of production or proof soil nails will be permitted in any wall zone until stability testing and verification soil nail testing have been completed in that wall zone, and the test results have been approved by the Engineer.
No excavation or drilling for installation of ground anchors will be permitted in any wall zone until stability testing has been completed in that wall zone and the test results have been approved by the Engineer.

Excavation for soil nail or ground anchor installation must proceed from the top down in a staged lift sequence as shown on the approved wall earthwork working drawings.

The complete excavated face must be cleaned of all loose materials, mud, rebound, and other materials that could prevent or reduce shotcrete bond to the excavated face and soil nails or ground anchors.

The Contractor must remove all cobbles, boulders or portions of boulders, rubble, or debris that are encountered at the final wall alignment during wall face excavation and that protrude from the excavated face more than 2 inches into the design shotcrete thickness as shown on the plans. Such over excavation must be backfilled with shotcrete.

The Contractor must immediately notify the Engineer of the occurrence of raveling or local instability of the final wall face excavation or a horizontal movement of the wall face exceeding 0.4 percent of the total excavated wall height.

Unstable areas must be temporarily stabilized by means of buttressing the exposed excavation face with an earth berm or other methods approved in writing by the Engineer. Construction of the wall in unstable areas must be suspended until remedial measures, submitted by the Contractor and approved by the Engineer, have been taken.

The Contractor must protect installed soil nails and ground anchors during excavation and subsequent operations. Damaged soil nails and ground anchors must be replaced by the Contractor, at the Contractor's expense.

The Contractor must complete soil nail or ground anchor construction and application of shotcrete wall facing in conformance with the construction sequence in the approved wall earthwork working drawings.

Where the Contractor's excavation and installation methods result in a discontinuous wall along any soil nail row, the ends of the structurally completed wall section must extend beyond the ends of the next lower excavation lift by a distance equal to twice the lift height. The Contractor must maintain temporary slopes at the ends of each wall section to ensure slope stability.

No excavation must proceed to the next underlying excavation lift until the portion of wall in the current excavation lift is structurally complete. A portion of wall must be considered structurally complete when:

1. Soil nails or ground anchors are installed and grouted.
2. Reinforced shotcrete facing is constructed.
3. Grout and shotcrete have been cured for at least 72 hours or have attained a minimum compressive strength of 3,600 psi.
4. Specified tests have been completed for that portion of wall.
5. The test results have been approved in writing by the Engineer.
6. The soil nail facing anchorages have been attached or ground anchors locked off.

Measurement and Payment

Excavation and backfill for soil nail wall construction will be measured and paid for as structure excavation (soil nail wall) and structure backfill (soil nail wall).

Excavation and backfill for ground anchor wall construction will be measured and paid for as structure excavation (ground anchor wall) and structure backfill (ground anchor wall).

Full compensation for stability testing and furnishing, constructing, and removing working and stabilizing berms for soil nail wall or ground anchor wall construction are considered as included in the contract price paid per cubic yard for structure excavation (soil nail wall) or structure excavation (ground anchor wall), respectively, and no additional compensation will be allowed therefor.

Full compensation for shotcrete used to fill voids created by the removal of cobbles and boulders or other obstructions are considered as included in the contract price paid per cubic yard for shotcrete and no additional compensation will be allowed therefor.

10-1.39 SOIL NAILS

This work consists of drilling holes in existing foundation materials, installing and grouting steel bars in drilled holes, installing anchorage systems, and testing of installed soil nails in conformance with the details shown on the plans, the provisions of the Standard Specifications, and these special provisions.

Working Drawings

The Contractor must submit a complete working drawing submittal for soil nails to the Offices of Structure Design in conformance with the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications. Working drawings must be 11" x 17" in size. For initial review, 5 sets of drawings must be submitted. After review, between 6 and 12 sets, as requested by the Engineer, must be submitted to the Offices of Structure Design for final approval and use during construction.

Contract No. 08-0M94U4
183
Working drawing submittals for soil nails must show the contract number, structure number, full name of the structure as shown on the project plans, and District-County-Route-Post mile on each drawing and calculation sheet. The Contractor's name, address, and telephone and fax numbers must also be shown on the working drawings. Each working drawing sheet must be numbered in the lower right hand corner of the sheet.

The working drawing submittal for soil nails must contain all information required for the construction and quality control of the soil nail wall, including the following:

1. The proposed schedule and detailed construction sequence of the installation and grouting of soil nails, application of shotcrete, and construction of cast-in-place reinforced concrete.
2. Complete details and specifications for the anchorage system, soil nails, and test soil nails, including encapsulation materials and grouting methods.
3. Drilling methods and equipment, including proposed drilled hole diameter with assumed bond strength, supporting calculations, and equipment space requirements.
4. Repair procedure for damaged sheathing.
5. Grout mix designs and testing procedures.
6. Grout placement procedures and equipment, including minimum required cure time.
7. Proposed soil nail testing equipment, including jacking frame and appurtenant bracing, and the method and equipment for determining soil nail displacement during testing.
8. Details for providing bonded and unbonded lengths, including type of packers or other appropriate devices.
9. Details for isolation of installed proof soil nails during shotcrete installation.
10. Procedure for extraction of grouted soil nails.

The working drawings must be stamped and signed by an engineer who is registered as a Civil Engineer in the State of California.

The Contractor must allow the Engineer 4 weeks to review the working drawings after a complete submittal has been received.

Materials

The materials specified below must be used for construction of soil nails and test soil nails.

Bar reinforcement for production soil nails must conform to the provisions for bar reinforcement in Section 52, "Reinforcement," of the Standard Specifications. When Grade 60 soil nails are shown on the plans, the bar reinforcement must also conform to the requirements in ASTM Designation: A 615/A 615M or A706/A706M. When Grade 75 soil nails are shown on the plans, the bar reinforcement must also conform to the requirements in ASTM Designation: A 615/A 615M. The soil nail must be either a reinforcing bar encapsulated full length in a grouted corrugated plastic sheathing or an epoxy-coated prefabricated reinforcing bar partially encapsulated in a grouted corrugated plastic sheathing. The bar must be centered in the sheathing and the space between the sheathing and the bar must be filled with grout. The epoxy coating must conform to the provisions in "Epoxy-Coated Prefabricated Reinforcement" of these special provisions and must have a minimum thickness of 12 mils.

Soil nails must be lengthened or additional soil nails must be installed if ordered by the Engineer. The lengthening or addition of soil nails, if ordered by the Engineer, will be paid for as extra work as provided in Section 4-1.03D, "Extra Work," of the Standard Specifications.

Bar reinforcement for production soil nails must have a minimum length of 6 inches of thread on the anchorage end. Threading may be continuous spiral deformed ribbing provided by the bar deformations or may be cut into a reinforcing bar. If threads are cut into a reinforcing bar, the bar size must be the next larger bar designation number from that shown on the plans and coarse threads must be used. The epoxy coating at the anchorage end of epoxy-coated bars may be omitted for a maximum length of 6 inches. Metal surfaces of assembled splices of epoxy-coated bars must be epoxy coated.

Corrugated plastic sheathing must be either polyvinyl chloride (PVC) or high-density polyethylene (HDPE). The width of corrugations, the distance between corrugations, and the height of corrugations of corrugated plastic sheathing must be approximately the same. The minimum sheathing wall thickness must be 25 mils.

PVC sheathing must conform to the requirements in ASTM Designation: D 1784, Class 13464-B.

HDPE must have a density between 0.940 and 0.960 grams per cubic centimeter when measured in conformance with the requirements in ASTM Designation: D 792.

The sheathing must have sufficient strength to prevent damage during construction operations and must be watertight, chemically stable without embrittlement or softening, and nonreactive with concrete and steel.

Splicing of soil nails must be made only at the locations shown in the approved working drawings or at ends of soil nails that the Engineer has ordered to be lengthened.

Bar reinforcement for verification and proof test soil nails must conform to the provisions for bar reinforcement in Section 52, "Reinforcement," of the Standard Specifications and must be of a size and grade determined by the

Contract No. 08-0M94U4

184
Contractor. Test soil nail bars must be not smaller than the production soil nails they represent.

Verification and proof test soil nails must be lengthened if ordered by the Engineer. The lengthening of test soil nails, if ordered by the Engineer, will be paid for as extra work as provided in Section 4-1.03D, "Extra Work," of the Standard Specifications.

Bar reinforcement for verification and proof test soil nails need not be epoxy coated or encapsulated in grouted plastic sheathing. Splicing of test soil nails must be made only at locations outside of the bonded length.

Anchorages for soil nails must conform to the details shown on the plans and the provisions in Section 75-1.02, "Miscellaneous Iron and Steel," of the Standard Specifications, except that nuts, washers, wedges, and bearing plates to be fully encased in concrete, grout, or shotcrete need not be galvanized. Concrete anchors on bearing plates must conform to the provisions for stud connectors in Section 55-2, "Materials," of the Standard Specifications.

Grout must conform to the provisions in Section 50-1.09, "Bonding and Grouting," of the Standard Specifications. California Test 541 will not be required nor will the grout be required to pass through a screen with a 0.07-inch maximum clear opening prior to being introduced into the grout pump. Fine aggregate may be added to the grout mixture of cement and water in drilled holes 6 inches or greater in diameter, but only to the extent that the cement content of the grout is not less than 845 pounds per cubic yard of grout. Fine aggregate, if used, must conform to the provisions in Section 90-2, "Materials," and Section 90-3, "Aggregate Gradings," of the Standard Specifications. Grout with fine aggregate must have a nominal penetration equal to or greater than 90 mm when measured in conformance with California Test 533 and must have an air content of equal to or less than 2 percent when measured in conformance with California Test 504. Air-entraining admixtures must not be used for grout with fine aggregate.

The consistency of grout with fine aggregate must be verified prior to use by producing a batch to be tested. The test batch must be produced and delivered to the project under conditions and in time periods similar to those expected during the placement of grout in the soil nails. Grout for the test batch must be placed in an excavated hole or suitable container of adequate size to allow testing in conformance with California Test 533. The test batch must demonstrate that the proposed grout mix achieves the specified nominal penetration. Upon completion of the testing, the grout must be disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

Construction

No excavation or drilling for the installation of production or proof soil nails will be permitted in any wall zone until stability testing and verification soil nail testing have been completed in that wall zone and the test results have been approved by the Engineer.

Difficult soil nail construction is anticipated due to caving soils and traffic control.

Water and grout from soil nail construction operations must not fall on public traffic, flow across shoulders or lanes occupied by public traffic, or flow into landscaping, gutters, or other drainage facilities.

The Engineer must be present during drilling, installation, grouting, and testing for verification soil nails.

The Contractor must determine the required drilled hole diameter and installation method to achieve the soil nail pullout resistance values specified on the plans.

The holes must be drilled by either the rotary or rotary percussion drilling method.

Drilling equipment must be designed to drill straight and clean holes. The drilling method and the size and capability of the drilling equipment must be as approved in the working drawings.

At locations where caving conditions are anticipated, sufficient casing and auger lengths must be available on site to maintain uninterrupted installation of soil nails.

At locations where hard drilling conditions such as rock, cobbles, boulders, or obstructions are anticipated, a down hole pneumatic hammer drill rig and drill bit must be available on site to drill holes for soil nails.

Drilled holes for walls must not extend beyond the right-of-way or easement limits as shown on the plans or as specified in these special provisions.

Holes must be drilled in the existing foundation materials. Holes for verification and proof soil nails must be of the same diameter as those for the production soil nails they represent.

Holes must be cleaned to remove material resulting from drilling operations. Water for cleaning holes must not be used unless approved in writing by the Engineer. Soil nails must not be inserted in the drilled holes until the holes have been inspected by the Engineer.

Soil nails must be installed in drilled holes in an expeditious manner so that caving or deterioration of the drilled holes does not occur.

Centralizers must be used during installation to support the soil nail in the center of the drilled hole. Centralizers must be spaced at a maximum of 7.5 feet on center along the length of the bar, and 18 inches from the end of the bar. Plastic centralizers may be used.

Prior to inserting each soil nail into the drilled hole, the nail must be clean and free of oil, grease, dirt, or other extraneous substances, and any damage to the sheathing must be repaired or replaced.
Where the soil nail cannot be completely inserted, the Contractor must remove the bar and clean or redrill the hole to permit unobstructed installation. Partially installed bars must not be driven or forced into the drilled hole and will be rejected. When open-hole drilling methods are being used, the Contractor must have hole cleaning tools on site suitable for drilling drilled holes along their full length just prior to bar insertion and grouting.

The Contractor must furnish to the Engineer complete results for each soil nail tested. Data for each test must list key personnel, test loading equipment, soil nail location, hole diameter and depth, bonded length, type of soil, method of drilling, quantity of grout and grout pressure used within the bonded length, and amount of ground water encountered within the bonded length. Test data must also include the dates and times of drilling, soil nail installation, grouting, and testing. The test load and amount of displacement must be included in the test data when any displacement of the soil nail relative to a fixed reference point occurs.
The test load \(T \) must be determined by the following equation:

\[
T = L_B \times Q_d
\]

Where:

\(L_B \) = soil nail bonded length (ft), not less than 10 feet
\(Q_d \) = design pullout resistance (pounds/linear foot), as shown on the plans.

The Contractor must perform load testing on verification soil nails in the presence of the Engineer. Two verification soil nails must be installed and tested for each soil nail wall zone listed. Installation and testing of verification soil nails may be performed during stability testing.

The verification test procedure must conform to the following:

1. The test must be conducted by measuring and recording the test load applied to the verification soil nail and the movement of the soil nail head at each load listed in the following loading schedule.

<table>
<thead>
<tr>
<th>VERIFICATION TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEST LOAD</td>
</tr>
<tr>
<td>AL (0.10T)</td>
</tr>
<tr>
<td>0.20T</td>
</tr>
<tr>
<td>0.40T</td>
</tr>
<tr>
<td>0.60T</td>
</tr>
<tr>
<td>0.80T</td>
</tr>
<tr>
<td>1.00T (Creep Test)</td>
</tr>
<tr>
<td>1.25T</td>
</tr>
<tr>
<td>1.50T (Maximum Test Load)</td>
</tr>
<tr>
<td>AL</td>
</tr>
</tbody>
</table>

\(T \) = Test load as determined by Contractor.
\(AL \) = Alignment load = 0.10T

2. Each increment of load must be applied in less than one minute and held for at least one minute but not more than 2 minutes, except that the creep test load must be held for 60 minutes. During the creep test, the movement of the soil nail head must be measured and recorded at 1, 2, 3, 4, 5, 6, 10, 20, 30, 40, 50, and 60 minutes. The observation period for the 60-minute load hold must start when the pump begins to apply the increment of load from 0.80T to 1.00T. A creep curve showing the movement between 6 minutes and 60 minutes must be plotted as a function of the logarithm of time.

3. If the movement measured between 6 minutes and 60 minutes at 1.00T is less than 0.08 inch, the load must continue to be increased incrementally to 1.50T, held for 10 minutes, then reduced to the ending alignment load. Start the observation period for the load hold when the pump starts to apply the load increment from 1.25T to 1.50T. Measure and record the nail head movement at 1, 2, 3, 4, 5, 6, and 10 minutes.

4. If the movement measured between 6 minutes and 60 minutes is 0.08 inch or greater, the load must be reduced to the ending alignment load.

The Contractor must perform load testing on proof soil nails at locations shown on the plans in the presence of the Engineer. In addition to proof soil nails designated on the plans, the Engineer will instruct the Contractor to install and test 20 additional proof soil nails at locations to be determined by the Engineer.

Proof soil nail testing must be performed against a temporary bearing yoke that bears directly on the shotcrete facing. Test loads transmitted through the temporary bearing yoke must not fracture the shotcrete or cause displacement or sloughing of the soil surrounding the drilled hole.

The proof test procedure must conform to the following:

1. The proof test must be conducted by measuring and recording the test load applied to the soil nail and the movement of the soil nail head at each load listed in the following loading schedule.
PROOF TEST

<table>
<thead>
<tr>
<th>TEST LOAD</th>
<th>HOLD TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL (0.10T)</td>
<td>Until Stable</td>
</tr>
<tr>
<td>0.20T</td>
<td>1–2 minutes</td>
</tr>
<tr>
<td>0.40T</td>
<td>1–2 minutes</td>
</tr>
<tr>
<td>0.60T</td>
<td>1–2 minutes</td>
</tr>
<tr>
<td>0.80T</td>
<td>1–2 minutes</td>
</tr>
<tr>
<td>1.00T (Creep Test) (Maximum Test Load)</td>
<td>10 or 60 minutes</td>
</tr>
<tr>
<td>1.25T*</td>
<td>1–2 minutes</td>
</tr>
<tr>
<td>1.50T*</td>
<td>1–2 minutes</td>
</tr>
<tr>
<td>AL</td>
<td>Until stable</td>
</tr>
</tbody>
</table>

T = Test load as determined by Contractor.
AL = Alignment load = 0.10T
* Loads for supplemental load testing only

2. Each increment of load must be applied in less than one minute and held for at least one minute but not more than 2 minutes, except that the creep test load must be held for 10 minutes. During the creep test, the movement of the soil nail head must be measured and recorded at 1, 2, 3, 4, 5, 6, and 10 minutes. The observation period for the 10-minute load hold must start when the pump begins to apply the increment of load from 0.80T to 1.00T.

3. If the load of 1.00T cannot be maintained with 0.08 inch or less of measured movement between one minute and 10 minutes, the 1.00T load must be maintained for an additional 50 minutes. Soil nail head movement must be measured at 20, 30, 40, 50, and 60 minutes. A creep curve showing the movement between 6 minutes and 60 minutes must be plotted as a function of the logarithm of time.

4. The load must be reduced to the ending alignment load after creep testing is completed.

Soil nails must be unloaded only after completion of testing.

A soil nail will be considered acceptable when:

1. For verification tests, a total creep movement of less than 0.08 inch is measured between 6 minutes and 60 minutes of creep testing and the creep rate is linear or decreasing in time logarithmic scale between the 6-minute and 60-minute readings.

2. For proof tests, (1) a total creep movement of 0.08 inch or less is measured between one minute and 10 minutes of creep testing or (2) a creep movement of less than 0.08 inch is measured between 6 minutes and 60 minutes and the creep rate is linear or decreasing in time logarithmic scale between the 6-minute and 60-minute readings.

3. The total measured movement at the maximum test load minus the measured residual movement at the ending alignment load exceeds 80 percent of the theoretical elastic elongation of the soil nail unbonded length.

4. A pullout failure of the soil nail does not occur. A pullout failure has occurred when attempts to increase the test load result in movement of the soil nail relative to a fixed reference point without an increase in load. The pullout failure load must be recorded as part of the test data.

The Engineer will select up to one-half of proof test nails for supplemental load testing. Only those proof nails exhibiting a creep movement of less than 0.08 inch measured between one and 10 minutes will be considered for supplemental testing. Supplemental testing must be performed immediately following creep testing. Soil nails selected for supplemental testing must be tested to the loads and for the durations specified in these special provisions. The test load and movement of the soil nail head must be recorded, and the results included in the soil nail test data.

Verification soil nails that fail to meet acceptance criteria will be rejected. The Contractor must submit revised working drawings for additional verification soil nails.

The Engineer will determine the cause of failure for each rejected verification test nail. Installation methods, if determined to be the cause of failure, will be rejected and the Contractor must include proposed alternative installation methods in the revised working drawings. The Contractor, at the Contractor's expense, must install and test additional verification soil nails at the direction of the Engineer until acceptance criteria are met. If the Engineer
revises soil nail lengths or design pullout resistance values, the additional verification test nails will be paid for as extra work as provided in Section 4-1.03D, "Extra Work," of the Standard Specifications.

The Contractor must log horizontal borings for additional verification soil nails and submit a test boring report to the Engineer. The soil and rock classification must conform to the "Soil and Rock Logging, Classification, and Presentation Manual." The test boring report must be signed by a geologist or engineer who is registered as a Geologist or Civil Engineer in the State of California. The logging manual can be obtained by contacting the Transportation Laboratory and is available at:

http://www.dot.ca.gov/hq/esc/geotech/request.htm

The test boring report must include the following:

1. Summary of drilling methods, drilling equipment, drill platforms, and any drilling difficulties encountered.
2. Location map of the surveyed position of the new test borings relative to existing and proposed facilities (in California Coordinate System and bridge stationing).
3. Bore hole survey notes.
4. Depth increments of borings.
5. Soil and rock classifications and descriptions.
6. Photographs of cuttings.
7. Copies of original daily drilling notes, including dates and weather conditions.

Logging of horizontal test borings and submittal of the test boring report will be paid for as extra work as provided in Section 4-1.03D, "Extra Work," of the Standard Specifications.

Production soil nails represented by proof soil nails that fail to meet acceptance criteria, except those represented by proof soil nails selected for supplemental load testing, will be rejected. The Contractor must propose alternative installation methods, revise production soil nails, or modify the soil nail plan to the satisfaction of the Engineer. The Contractor must submit revised working drawings for replacement soil nails. Additional proof test soil nails, production soil nails, installation, and testing, including revised working drawings, are at the Contractor's expense.

Verification and proof soil nails must be removed to 6 inches behind the front face of the shotcrete after testing has been completed, and the void filled with grout.

Verification and proof soil nails must be extracted when requested by the Engineer, and the void filled with grout.

Measurement and Payment

Soil nail will be measured and paid for by the linear foot. The length to be paid for will be the length of soil nail or test soil nail measured along the bar centerline from the back face of shotcrete to the tip end shown on the plans or ordered in writing by the Engineer.

The contract price paid per linear foot for soil nail includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in constructing the soil nails, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

Verification and proof test soil nails will be paid for as soil nail.

Full compensation for load testing and extracting verification and proof test soil nails is included in the contract price paid per linear foot for soil nail, and no separate payment will be made therefor.

Full compensation for furnishing, installing, and removing casing is included in the contract price paid per linear foot for soil nail, and no additional compensation will be allowed therefor.

The quantities of trial batch grout will not be included in any contract item of work, and full compensation for furnishing, producing, and disposing of trial batches is included in the contract price paid per linear foot for soil nail, and no additional compensation will be allowed therefor.

Payment for proof soil nails that fail supplemental testing will be reduced by $1.00 per linear foot of proof soil nail.

10-1.40 MATERIAL CONTAINING HAZARDOUS WASTE CONCENTRATIONS OF AERIALLY DEPOSITED LEAD

Earthwork involving material containing aerially deposited lead shall conform to the provisions in Section 19, "Earthwork," of the Standard Specifications and these special provisions.

Attention is directed to "Aerially Deposited Lead" of these special provisions.
Type Y-1 material contains aerially deposited lead in average concentrations (using the 90 percent Upper Confidence Limit) of 1.5 mg/L or less extractable lead (based on a modified waste extraction test using deionized water as the extractant) and 1411 mg/kg or less total lead. Type Y-1 material exists between 0 feet and 6 feet, measured horizontally from the edges of existing pavement, from Station 540+00 to Station 546+30.76 (southbound only), and from a depth of surface feet to 3 feet below existing grade, as shown on the plans. This material shall be placed as shown on the plans, unless otherwise directed by the Engineer, and covered with a minimum 1.0-foot layer of nonhazardous soil or the pavement structural section. This material is hazardous waste regulated by the State of California that may be reused as permitted under the Variance of the California Department of Toxic Substances Control (DTSC) provided that the lead contaminated soil is placed a minimum of 5 feet above the maximum historic water table elevation and covered with at least one foot of nonhazardous soil. Temporary surplus material may be generated on this project due to the requirements of stage construction. Temporary surplus material shall not be transported outside the State right of way. In order to conform to the requirements of these provisions it may be necessary to stockpile material for subsequent stages, to construct some embankments out of stage, or to handle temporary surplus material more than once.

LEAD COMPLIANCE PLAN

Submit a lead compliance plan under Section 7-1.07, "Lead Compliance Plan," of the Standard Specifications. The Lead Compliance Plan shall include perimeter air monitoring incorporating upwind and downwind locations as shown on the plans or as approved by the Engineer. Monitoring shall be by personal air samplers using National Institute of Safety and Health Method 7082. Sampling shall achieve a detection limit of 0.05 µg/m³ of air per day. Daily monitoring shall take place while the Contractor clears and grubs and performs earthwork operations. A single representative daily sample shall be analyzed for lead. Results shall be analyzed and provided to the Engineer within 24 hours. Average lead concentrations shall not exceed 1.5 µg/m³ of air per day and 0.15 µg/m³ per day on a rolling 90-day basis. Average daily concentrations shall be calculated based on monitoring to date, and projection based on those monitoring trends for the next 90 days or to the end of work subject to the Lead Compliance Plan if less than the specified averaging period. If concentrations exceed these levels the Contractor shall stop work and modify the work to prevent release of lead. Monitoring shall be done under the direction of, and the data shall be reviewed by and signed by a Certified Industrial Hygienist.

EXCAVATION AND TRANSPORTATION PLAN

Within 15 days after approval of the contract, the Contractor shall submit 3 copies of an Excavation and Transportation Plan to the Engineer. The Engineer will have 3 days to review the plan. If revisions are required, as determined by the Engineer, the Contractor shall revise and resubmit the plan within 7 days of receipt of the Engineer's comments. The Engineer will have 3 days to review the revisions. Upon the Engineer's approval of the plan, 3 additional copies incorporating the required changes shall be submitted to the Engineer. Minor changes to or clarifications of the initial submittal may be made and attached as amendments to the Excavation and Transportation Plan. In order to allow construction to proceed, the Engineer may conditionally approve the plan while minor revisions or amendments are being completed.

The Contractor shall prepare the written, project specific Excavation and Transportation Plan establishing the procedures the Contractor will use to comply with requirements for excavating, stockpiling, transporting, and placing (or disposing) of material containing aerially deposited lead. The plan shall conform to the regulations of the DTSC and Cal-OSHA. The sampling and analysis portions of the Excavation and Transportation Plan shall meet the requirements for the design and development of the sampling plan, statistical analysis, and reporting of test results contained in USEPA, SW 846, "Test Methods for Evaluating Solid Waste," Volume II: Field Manual Physical/Chemical, Chapter Nine, Section 9.1. The plan shall contain, but not be limited to the following elements:

A. Excavation schedule (by location and date),
B. Temporary locations of stockpiled material,
C. Sampling and analysis plans for areas after removal of a stockpile,
 1. Location and number of samples,
 2. Analytical laboratory,
D. Survey methods for Type Y-1 material burial locations,

DUST CONTROL

Excavation, transportation, placement, and handling of material containing aerially deposited lead shall result in no visible dust migration. The Contractor shall have a water truck or tank on the job site at all times while clearing
and grubbing and performing earthwork operations in work areas containing aerially deposited lead. Apply water to prevent visible dust.

STOCKPILING

Stockpiles of material containing aerially deposited lead shall not be placed where affected by surface run-on or run-off. Stockpiles shall be covered with plastic sheeting 13 mils minimum thickness or one foot of nonhazardous material. Stockpiles shall not be placed in environmentally sensitive areas. Stockpiled material shall not enter storm drains, inlets, or waters of the State.

SURVEYING TYPE Y-1 or Y-2 MATERIAL BURIAL LOCATIONS

Survey the location of the bottom and top perimeters of each area where you bury Type Y-1 material (burial locations). The survey must be performed by or under the direction of either:

1. A land surveyor licensed under Chapter 15 of the Business and Professions Code (commencing with Section 8700), or
2. A civil engineer licensed prior to January 1, 1982 under Chapter 7 of the Business and Professions Code (commencing with Section 6700).

Survey ten points to determine each burial location horizontally and vertically within the specified accuracies and to create closed polygons of the perimeters of the bottom and top of the burial location. If ten points are not sufficient to define the polygon add additional points until the polygon is defined. Establish the position of the bottom and top perimeters before placing subsequent layers of material that obstruct the location.

Report each burial location in California State Plane Coordinates in US Survey feet within the appropriate zone of the California Coordinate System of 1983 (CCS83) and in latitude and longitude. Horizontal positions shall be referenced to CCS83 (epoch 2007.00 or later NGS or CSRC published epoch) to an accuracy of 3 feet horizontally. Elevations of the bottom and top of Type Y-1 material shall be referenced to North American Vertical Datum of 1988 (NAVD88). Report accuracy of spatial data in US Survey feet under FGDC-STD-007.1-1998.

Within five business days of completing placement of Type Y-1 material at a burial location, submit a report for that burial location, including form CEM 1901 and electronic geospatial vector data shapefiles of the top and bottom perimeters of the burial location to the Engineer and to the following email address:

ADL@dot.ca.gov

The Engineer will notify you of acceptance or rejection of the burial location report within five business days of receipt. If the report is rejected, you have five business days to submit a corrected report.

MATERIAL TRANSPORTATION

Prior to traveling on public roads, loose and extraneous material shall be removed from surfaces outside the cargo areas of the transporting vehicles and the cargo shall be covered with tarpaulins or other cover, as outlined in the approved Excavation and Transportation Plan. The Contractor shall be responsible for costs due to spillage of material containing lead during transport.

The Department will not consider the Contractor a generator of the hazardous material, and the Contractor will not be obligated for further cleanup, removal, or remedial action for such material handled or disposed of in conformance with the requirements specified in these special provisions and the appropriate State and Federal laws and regulations and county and municipal ordinances and regulations regarding hazardous waste.

Sampling, analyzing, transporting, and disposing of material containing aerially deposited lead excavated outside the pay limits of excavation will be at the Contractor’s expense.

MEASUREMENT AND PAYMENT

Quantities of roadway excavation (aerially deposited lead) and structure excavation (aerially deposited lead), of the types shown in the Engineer's Estimate, will be measured and paid for in the same manner specified for roadway excavation and structure excavation, respectively, in Section 19, "Earthwork," of the Standard Specifications.

Full compensation for preparing an approved Excavation and Transportation Plan, transporting material containing aerially deposited lead reused in the work from location to location, and transporting and disposing of material containing aerially deposited lead shall be considered as included in the contract prices paid per cubic yard.
for the items of roadway excavation (aerially deposited lead) and structure excavation (aerially deposited lead) of the types involved, and no additional compensation will be allowed therefor.

No payment for stockpiling of material containing aerially deposited lead will be made, unless the stockpiling is ordered by the Engineer. No payment for sampling and analysis will be made unless ordered by the Engineer. The Contractor is responsible for all additional sampling and analysis costs required by the receiving landfill.

Sampling, analyses, and reporting of results for surplus material not previously sampled will be paid for as extra work as provided in Section 4-1.03D, "Extra Work," of the Standard Specifications.

The contract lump sum price paid for ADL Burial Location Report includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in collecting and reporting the data as specified in these special provisions, and as directed by the Engineer.

10-1.41 EROSION CONTROL (HYDROSEED)

GENERAL

Summary

This work includes removing and disposing of weeds and applying erosion control materials including seed, fiber, and tackifier to erosion control (Hydroseed) areas shown on the plans.

If notified by the Engineer that an area is ready to receive erosion control materials, start erosion control (Hydroseed) work within 5 business days of the Engineer's notification to perform the work.

The Engineer will designate the ground location of all erosion control (Hydroseed) areas in increments of one acre or smaller by directing the placing of stakes or other suitable markers. Furnish all tools, labor, materials, and transportation required to adequately indicate the various erosion control (Hydroseed) locations.

MATERIALS

Seed

Seed not required to be labeled under the California Food and Agricultural Code must be tested for purity and germination by a seed laboratory certified by the Association of Official Seed Analysts or by a seed technologist certified by the Society of Commercial Seed Technologists. Measure and mix individual seed species in the presence of the Engineer.

Seed must contain at most 1.0 percent total weed seed by weight.

Deliver seed to the job site in unopened separate containers with the seed tag attached. Containers without a seed tag attached are not accepted. The Engineer takes a sample of approximately one ounce or 0.25 cup of seed for each seed lot greater than 2 pounds.

Seed must comply with the following:
Seed Sampling Supplies

At the time of seed sampling, provide the Engineer a glassine lined bag and custody seal tag for each seed lot sample.

Tackifier

Tackifier must be:

1. Polymeric Emulsion Blend

 Tackifier must comply with the following:

 1. Nonflammable
 2. Nontoxic to aquatic organisms
 3. Free from growth or germination inhibiting factors
 4. Either a plant-based product or a polymeric-emulsion blend

 Tackifier classified as polymeric emulsion blend must comply with the following:

 1. A liquid or dry powder formulation
 2. Anionic with a residual monomer content that is at most 0.05 percent by weight
 3. Functional for at least 180 days
 4. A prepackaged product labeled as containing one of the following as the primary active ingredient of the polymeric emulsion blend:

 4.1 Acrylic copolymers and polymers
 4.2 Polymers of methacrylates and acrylates

<table>
<thead>
<tr>
<th>Botanical Name (Common Name)</th>
<th>Percent Germination (Minimum)</th>
<th>Pounds Pure Live Seed Per Acre (Slope Measurement)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hordeum depressum (Low Barley)</td>
<td>40</td>
<td>10.0</td>
</tr>
<tr>
<td>Poa secunda (Pine Bluegrass)</td>
<td>40</td>
<td>5.0</td>
</tr>
<tr>
<td>Vulpia microstachys (Three Week Fescue)</td>
<td>40</td>
<td>15.0</td>
</tr>
<tr>
<td>Total</td>
<td>30.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Botanical Name (Common Name)</th>
<th>Percent Germination (Minimum)</th>
<th>Pounds Pure Live Seed Per Acre (Slope Measurement)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achillea millefolium (White Yarrow)</td>
<td>40</td>
<td>1.0</td>
</tr>
<tr>
<td>Calandrina ciliate (Red Maids)</td>
<td>30</td>
<td>2.0</td>
</tr>
<tr>
<td>Eschscholzia californica (California Poppy)</td>
<td>40</td>
<td>4.0</td>
</tr>
<tr>
<td>Lasthenia californica (Dwarf Goldfiels)</td>
<td>30</td>
<td>2.0</td>
</tr>
<tr>
<td>Lupinus bicolor (Pigmy-Leaved Lupine)</td>
<td>40</td>
<td>4.0</td>
</tr>
<tr>
<td>Lupinus succulentus (Arroyo Lupine)</td>
<td>40</td>
<td>6.0</td>
</tr>
<tr>
<td>Plantago erecta (California Plantain)</td>
<td>40</td>
<td>5.0</td>
</tr>
<tr>
<td>Total</td>
<td>24.0</td>
<td></td>
</tr>
</tbody>
</table>
4.3 Copolymers of sodium acrylates and acrylamides
4.4 Polyacrylamide (PAM) and copolymer of acrylamide
4.5 Hydrocolloid polymers

Fiber
Fiber must be:

1. Wood

Fiber must comply with the following:

1. Free from lead paint, printing ink, varnish, petroleum products, seed germination inhibitors, or chlorine bleach
2. Free from synthetic or plastic materials
3. At most 7 percent ash

Wood Fiber must comply with the following:

1. Long strand, whole wood fibers, thermo-mechanically processed from clean, whole wood chips
2. Not made from sawdust, cardboard, paper, or paper byproducts
3. At least 25 percent of fibers 3/8 inch long
4. At least 40 percent held on a No. 25 sieve

Coloring Agent
Use a biodegradable, nontoxic coloring agent free from copper, mercury, and arsenic.

CONSTRUCTION
Site Preparation
Immediately prior to applying seed to erosion control (Hydroseed) areas, trash and debris and weeds must be removed.

 Removed weeds must be disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

Application
Apply erosion control (Hydroseed) materials in separate applications in the following sequence:

1. Apply the following mixture with hydroseeding equipment at the rates indicated within 60 minutes after the seed has been added to the mixture:

<table>
<thead>
<tr>
<th>Material</th>
<th>Pounds Per Acre (Slope Measurement)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seed</td>
<td>54</td>
</tr>
<tr>
<td>Fiber</td>
<td>1500</td>
</tr>
</tbody>
</table>

2. Apply the following mixture with hydro-seeding equipment at the corresponding rates:

<table>
<thead>
<tr>
<th>Material</th>
<th>Pounds Per Acre (Slope Measurement)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiber</td>
<td>1500</td>
</tr>
<tr>
<td>Tackifier</td>
<td>100</td>
</tr>
</tbody>
</table>

The ratio of total water to total tackifier in the mixture must be as recommended by the manufacturer.

The Engineer may change the rates of erosion control (Hydroseed) materials to meet field conditions.

For any area where erosion control (Hydroseed) materials are to be applied, the application of all erosion control (Hydroseed) materials to be applied to that area must be completed within 72 hours from when the first materials were applied.
MEASUREMENT AND PAYMENT

Erosion control (Hydroseed) of the various types will be measured by the square foot or by the acre, whichever is designated in the Engineer's Estimate. The area will be calculated on the basis of actual or computed slope measurements.

The contract price paid per square foot or acre for erosion control (Hydroseed Type 1) and erosion control (Hydroseed Type 2) includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in erosion control (Hydroseed Types 1 and 2) complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.42 ROCK BLANKET

Rock blanket shall be placed as shown on the plans and in conformance with these special provisions.

MATERIALS

Rock for the rock blanket shall be clean, smooth multi-colored cobble type rock colored reddish brown in overall appearance and shall be obtained from a single source.

Rock shall conform to the following grading:

<table>
<thead>
<tr>
<th>Rock Size (Inches)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-12</td>
<td>100</td>
</tr>
</tbody>
</table>

A sample of the rock shall be submitted to the Engineer for approval prior to delivery of the rock to the project site.

Rock shall be secured in place with Class 2 concrete conforming to the provisions in Section 90, "Portland Cement Concrete," of the Standard Specifications and these special provisions. Concrete aggregate size shall be 3/8 inch maximum. Mortar for laying rock blanket shall consist, by volume, of one part cementitious material, 0 to 0.5 parts hydrated lime, and 2.25 to 3 parts mortar sand. Sufficient water shall be added to make a workable mortar. Each batch of mortar shall be accurately measured and thoroughly mixed. Mortar shall be freshly mixed as required. Mortar shall not be tempered more than one hour after mixing.

SITE PREPARATION

Prior to beginning rock blanket work, areas to receive the rock blanket shall be cleared in conformance with the provisions in "Roadside Clearing" of these special provisions.

After clearing, the areas shall be excavated to the depth shown on the plans, graded to a smooth uniform surface and compacted to a minimum relative compaction of 90 percent.

After compaction, the areas shall be sterilized with oxadiazon. The sterilant shall be applied at the maximum label rate and shall not be applied more than 12 inches beyond the rock blanket limits. Soil sterilant shall conform to the provisions in Section 20-4.026, "Pesticides," of the Standard Specifications.

PLACEMENT

Rock shall be placed while concrete is still plastic, and spaced randomly mixing the various sizes of rock. Rocks shall have a 1 inch maximum separation between the top of adjacent rock surfaces. The Contractor shall remove concrete adhering to the exposed surfaces of the rock. Loose rocks shall be reset at the Contractor's expense by methods determined by the Engineer. Gaps between the rocks shall be filled with mortar. Finished rock blanket surfacing shall be uniform and maintain flow lines, slope gradients and contours of the project site.

REFEREE SAMPLE

The rock shall match the color type and overall appearance of the referee sample located at the interchange of Orange Show Road on route 215 in the city of San Bernardino.

TEST PANEL

A test panel at least 3 feet x 3 feet in size shall be successfully completed at a location approved by the Engineer before beginning work on placing rock blanket. The test panel shall be constructed and finished with the materials, tools, equipment and methods to be used for finished rock blanket. If ordered by the Engineer, additional test panels shall be constructed until the specified placement, finish, and texture are obtained, as determined by the Engineer.
In the event more than two test panels are required by the Engineer, each additional sample will be paid for as extra work as provided in Section 4-1.03 of the Standard Specifications. The test panel approved by the Engineer shall be used as the standard of comparison in determining acceptability of placing rock blanket.

MEASUREMENT AND PAYMENT

Rock blanket will be measured by the square yard as determined from actual measurements made parallel to the ground slope.

The contract price paid per square yard for rock blanket shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in placing rock blanket, complete in place, including furnishing and applying soil sterilant, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.43 IRRIGATION CROSSOVERS

Irrigation crossovers shall conform to the provisions in Section 20-5, "Irrigation Systems," of the Standard Specifications and these special provisions.

Conduits shall be placed in open trenches in conformance with the provisions in Section 20-5.03B, "Conduit for Irrigation Crossovers," of the Standard Specifications.

Conduits shall be corrugated steel pipe.

Water line crossovers shall conform to the provisions in Section 20-5.03C, "Water Line Crossovers," of the Standard Specifications.

Fittings for water line crossovers shall be Schedule 80.

Sprinkler control crossovers shall conform to the provisions in Section 20-5.027D, "Sprinkler Control Crossovers," of the Standard Specifications.

Installation of pull boxes shall conform to the provisions in Section 20-5.027I, "Conductors, Electrical Conduit and Pull Boxes," of the Standard Specifications. When no conductors are installed in electrical conduits, pull boxes for irrigation crossovers shall be installed on a foundation of compacted soil.

10-1.44 TRANSPLANT PALM TREES

Transplanting palm trees shall conform to the provisions in Section 20-4, "Highway Planting," of the Standard Specifications and these special provisions.

Palm trees to be transplanted shall be removed and either stored or transplanted at the new locations prior to performing other work within the location of the palm trees.

When the palm trees are removed and the work within the areas to which the trees are to be transplanted is not completed to the stage at which the trees can be planted, the trees shall be stored and maintained until transplanting can be completed. In other cases, the palm trees shall be planted at the new locations the same day the palm trees are removed.

Before each palm tree is planted, dead fronds and frond stubs shall be removed from the trunk. In addition, green fronds shall be removed up to 2 rows of fronds away from the center growth. The 2 remaining rows of fronds shall be tied in an upright position with light hemp or manila rope. Fronds and frond stubs for Phoenix dactylifera (Date Palm) shall be removed approximately 4 inches from the trunk. Other fronds and frond stubs shall be removed at the trunk in a manner that will not injure the tree trunk.

The roots of each palm tree or clump of palm trees shall be balled in a manner approved by the Engineer. Approval shall be obtained before removing any palm tree to be transplanted. The diameter and depth of each root ball shall be a minimum of 8 inches larger than the trunk diameter at the ground line. Exposed root balls shall be kept covered with wet burlap or canvas until the trees are planted.

Holes resulting from the removal of transplanted palm trees shall be backfilled the same day the trees are removed. Soil from the surrounding area may be used to backfill the holes. The backfill shall be mounded slightly above the surrounding ground level.

Palm trees shall not be dragged during transplanting operations and the trunks shall be protected from injury.

Each planting hole shall conform to the details shown on the plans.

Backfill material for the palm tree planting holes shall be 100 percent washed plaster sand.

After the planting holes have been backfilled, water shall be applied to the full depth of the backfill soil.

Watering basins for the transplanted palm trees shall be constructed as shown on the plans.

When the palm trees are planted, a root stimulant, approved by the Engineer, shall be applied to the roots of each palm tree in conformance with the printed instructions of the root stimulant manufacturer. A copy of the printed instructions shall be furnished to the Engineer before applying a stimulant. Root stimulants to be used shall be submitted to the Engineer not less than 2 weeks prior to the stimulant’s intended use. Root stimulants not approved by the Engineer shall not be used.
Palm trees to be transplanted shall be maintained by the Contractor from the time the palm trees are removed to the time of acceptance of the contract. The palm trees shall be watered as necessary to maintain the trees in a healthy condition. Trash, debris and weeds within the basins, including the basin walls, shall be removed and disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications. Weeds shall be removed before the weeds exceed 2 inches in length. Pesticides to be used for weed control shall be submitted to the Engineer not less than 2 weeks prior to the pesticide's intended use. Pesticides not approved by the Engineer shall not be used.

The provisions specified in Section 20-4.07, "Replacement," of the Standard Specifications for the replacement of unsuitable plants shall apply to transplanted palm trees. The replacement palm tree for each unsuitable transplanted palm tree shall be the same size and species as the palm tree being replaced. Each replacement palm tree shall be planted in the planting hole of the unsuitable palm tree which the new tree is replacing. The method for planting replacement palm trees shall be as specified in this section for transplanting palm trees. Removed unsuitable transplanted palm trees shall be disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

The quantity of transplant palm trees will be measured by the unit as determined from actual count in place.

The contract unit price paid for transplant palm tree shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in transplanting palm trees, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.45 MULCH

This work includes spreading mulch on embankment slopes, excavation slopes, and areas shown on the plans. Mulch must comply with Section 20-3, "Erosion Control," of the Standard Specifications.

If the slope on which the mulch is to be placed is finished during the rainy season as specified in "Water Pollution Control" of these special provisions, apply mulch immediately to the slope.

MATERIALS

Mulch must consist of either wood chips or tree bark or a combination of both.

CONSTRUCTION

Application

Spread mulch to a uniform thickness. Extend mulch to the edge of retaining walls, dikes, paving and to within 4 feet from the flow line of paved and unpaved drainage ditches.

MEASUREMENT AND PAYMENT

Quantities of mulch will be measured by the cubic yard in the vehicle at the point of delivery.

The contract price paid per cubic yard for mulch includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals and for doing all the work involved in providing mulch complete in place, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.46 DECOMPOSED GRANITE (MISCELLANEOUS AREAS)

GENERAL

Summary

This work consists of installing and stabilizing decomposed granite for miscellaneous areas.

Submittals

Submit the following items for approval:

1. Product Data: A copy of the manufacturer's product sheet together with instructions for installation of solidifying emulsion 5 days before installation.

2. Certificates of Compliance under Section 6-1.07, "Certificates of Compliance," of the Standard Specifications for the following items no more than 5 days before construction:

2.2. Solidifying emulsion
3. Samples: A five pound sample of burgundy color proposed decomposed granite before delivery of materials to the site.

MATERIALS

Edging
Edging must be commercial quality, made of steel, and have a brown color powder coated finish. Edging must be a minimum 5 inches in height x 0.2" thick. Stake size and spacing must be according to the manufacturer's recommendations for use and site conditions.

Soil Sterilant
Soil sterilant must be oxadiazon and must comply with Section 20-4.026, "Pesticides," of the Standard Specifications.

Decomposed Granite
Decomposed Granite must be crushed granite rock screenings graded from 3/8-inch particles to dust. The material must comply with the following gradation:

<table>
<thead>
<tr>
<th>Size</th>
<th>Percent (Min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8 inch</td>
<td>100</td>
</tr>
</tbody>
</table>

Note: Gradation based upon AASHTO T11-82 and T27-82

The color of decomposed granite must be uniform and Burgundy. Decomposed granite must closely resemble the texture and color of the referee sample available for inspection at the Department of Transportation-District 8 Landscape Architecture Office, Phone number (909) 383-4521 located at 464 West Fourth Street, 10th floor, San Bernardino, Ca. 92401-1400.

Solidifying Emulsion
Solidifying emulsion must be a water-based polymer, specifically manufactured to harden decomposed granite. The solidifying emulsion must not alter the decomposed granite color.

Test Plots
Construct a test plot at least 3' x 12' at the location proposed for the permanent work. Remove and dispose of rejected test plots. Construct additional test plots until a plot is produced in which the decomposed granite has been mixed with the solidifying emulsion and water under the manufacturer's rates and instructions and compacted to 95 percent compaction. In the event more than two test plots are required by the Engineer, each additional test plot will be paid for as extra work under Section 4-1.03D, "Extra Work," of the Standard Specifications. Do not place decomposed granite on the project before approval of a test plot prepared by the Contractor.

CONSTRUCTION

Clearing
Prior to beginning decomposed granite work, areas to receive the decomposed granite shall be cleared in conformance with the provisions in "Roadside Clearing" of these special provisions.

Earthwork
Earthwork must comply with Section 19, "Earthwork," of the Standard Specifications and these special provisions.

After clearing, excavate areas to receive decomposed granite. Where decomposed granite is to be placed adjacent to an existing curb, dike, pavement or sidewalk excavate so that the finished decomposed granite elevation adjacent to curb, dike, pavement or sidewalk will maintain planned flow lines, slope gradient and contours of the project site. After excavation, grade areas to receive decomposed granite to a smooth, uniform surface and compact to not less than 90 percent relative compaction.
Treatment of Soil

After compaction, the areas shall be sterilized with oxadiazon. The soil sterilant shall be applied at the maximum label rate and shall not be applied more than 12 inches beyond the decomposed granite limits. Soil sterilant shall conform to the provisions in Section 20-4.026, "Pesticides," of the Standard Specifications, except recommendations from a licensed Pest Control Adviser will not be required.

Edging Installation

Install edging to delineate the limits of the decomposed granite areas. Edging is not required between decomposed granite areas and the adjacent face of soundwalls, pavement edges, curbs, dikes or rock blanket areas.

Decomposed Granite Installation

Do not install decomposed granite work during rainy conditions.

Mix solidifying emulsion thoroughly and uniformly throughout the decomposed granite per the manufacturer’s recommendations. Mix the material in the field using portable mixing equipment, or delivered in mixer trucks from a local ready-mixed plant.

Place decomposed granite uniformly in layers no more than 1 1/2-inch thick. Compact each layer of decomposed granite to a relative compaction of not less than 90 percent. Compaction must not begin less than 6 hours after placement, nor more than 48 hours.

Apply a final application of solidifying emulsion as recommended by the manufacturer. Prevent runoff or overspray of solidifying emulsion onto adjacent paved or planting areas.

When work is complete, the surface must be smooth, compacted to 90 percent, and uniform; maintaining original flow lines, slope gradient and contours of the project site.

After satisfactory completion of decomposed granite work, each year thereafter until the plant establishment period is completed the decomposed granite areas shall receive a topcoat of solidifying emulsion at the rate recommended by the manufacturer.

MEASUREMENT AND PAYMENT

Decomposed granite (miscellaneous areas) will be measured by the square yard as determined from actual measurements made parallel to the ground slope.

The contract unit price paid per square yard for decomposed granite (miscellaneous areas) includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in installing and stabilizing decomposed granite, complete in place, including site preparation, earthwork, soil treatment, solidifying emulsion, edging, and test plots as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.47 GRAVEL (MISCELLANEOUS AREAS)

GENERAL

Summary

This work consists of installing gravel in miscellaneous areas outside the traveled way.

Submittals

Submit the following items for approval:

1. Samples: Submit a 5 pound sample of burgundy colored gravel for approval before delivery of materials to the site.

MATERIALS

Edging

Edging must be commercial quality, made of steel, and have a brown colored powder coated finish. Edging must be a minimum 5 inches in height x .02" thick. Stake size and spacing must be according to the manufacturer’s recommendations for use and site conditions.

Soil Sterilant

Soil sterilant must be oxadiazon and must comply with Section 20-4.026, "Pesticides," of the Standard Specification.
Gravel
Gravel must consist of crushed rock and must comply with the following:

Grading Requirements

<table>
<thead>
<tr>
<th>TYPE 1</th>
<th>Size</th>
<th>Percent (MIN.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4 inch</td>
<td>95</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPE 2</th>
<th>Size</th>
<th>Percent (MIN.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 1/2"</td>
<td>95</td>
<td></td>
</tr>
</tbody>
</table>

The color of gravel must be Burgundy.
Gravel must closely resemble the texture and color of the referee samples available for inspection at the Department of Transportation - District 8 Landscape Architecture Office, Phone number (909) 383-4521, located at 464 West Fourth Street, 10th floor, San Bernardino, CA 92401-1400.

CONSTRUCTION

Clearing
Prior to beginning gravel work, areas to receive the gravel shall be cleared in conformance with the provisions in "Roadside Clearing" of these special provisions.

Earthwork
Earthwork must comply with Section 19, "Earthwork," of the Standard Specifications and these special provisions.
After clearing, excavate areas to receive gravel. Where gravel is to be placed adjacent to an existing curb, dike, pavement, sidewalk or soundwall excavate so that the finished gravel elevation adjacent to those items will maintain planned flow lines, slope gradient and contours of the project site. After excavation, grade areas to receive gravel to a smooth, uniform surface and compact to not less than 90 percent relative compaction.

Treatment of Soil
After compaction, the areas shall be sterilized with oxadiazon. The soil sterilant shall be applied at the maximum label rate and shall not be applied more than 12 inches beyond the gravel limits. Soil sterilant shall conform to the provisions in Section 20-4.026, "Pesticides," of the Standard Specifications.
Prior to placement of gravel, soil shall be scarified to a minimum depth of 0.125 foot. Immediately prior to placement of gravel, scarified material shall be watered. Gravel shall be placed, watered, and rolled with a double drum smooth roller, weighing approximately 2 tons, to form a uniform, compacted surface. No soil shall be exposed to view on the finished surface. Watering shall conform to the provisions in Section 17, “Watering,” of the Standard Specifications.

Edging Installation
Install edging to delineate the limits of the gravel areas. Edging will not be required between gravel areas and the adjacent face of soundwalls, pavement edges, curbs, dikes or rock blanket areas.
Place gravel and compact by rolling. When work is complete, the surface must be smooth, and uniform; maintaining original flow lines, slope gradient and contours of the project site.

MEASUREMENT AND PAYMENT
Gravel (miscellaneous areas) will be measured by the square yard as determined from actual measurements made parallel to the ground slope.
The contract unit price paid per square yard for the various types of gravel (miscellaneous areas) includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in installing gravel (miscellaneous areas), complete in place, including site preparation, earthwork, soil treatment, and edging, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.
10-1.48 AGGREGATE BASE

Aggregate base must comply with Section 26, "Aggregate Bases," of the Standard Specifications and these special provisions.

Aggregate base must be Class 2.

Do not store reclaimed asphalt concrete or aggregate base with reclaimed asphalt concrete within 100 feet measured horizontally of any culvert, watercourse, or bridge.

10-1.49 LEAN CONCRETE BASE

Lean concrete base shall conform to the provisions in Section 28, "Lean Concrete Base," of the Standard Specifications and these special provisions.

The finished surface of lean concrete base shall not be above the grade established by the Engineer, or more than 0.05-foot below the grade established by the Engineer.

10-1.50 HOT MIX ASPHALT

GENERAL

Summary

This work includes producing and placing hot mix asphalt (HMA) Type A using the Quality Control/Quality Assurance process.

Comply with Section 39, "Hot Mix Asphalt," of the Standard Specifications.

Submittals

Quality Control / Quality Assurance Projects

With the job mix formula (JMF) submittal, submit:

1. California Test 204 plasticity index results
2. California Test 371 tensile strength ratio results for untreated HMA
3. California Test 371 tensile strength ratio results for treated HMA if untreated HMA tensile strength ratio is below 70

At project start-up and once during production, submit samples split from your HMA production sample for California Test 371 to the Engineer and the Transportation Laboratory, Attention: Moisture Test.

With the JMF submittal, at project start-up, and each 5,000 tons, submit the California Test 371 test results for mix design and production to the Engineer and electronically to:

Moisture_Tests@dot.ca.gov

Data Cores

Three business days before starting coring, submit proposed methods and materials for backfilling data core holes.

Submit to the Engineer and electronically to Coring@dot.ca.gov:

1. A summary of data cores taken
2. A photograph of each data core

For each data core, the summary must include:

1. Project identification number
2. Date cored
3. Core identification number
4. Type of materials recovered
5. Type and approximate thickness of unstabilized material not recovered
6. Total core thickness
7. Thickness of each individual material to within:

 7.1. For recovered material, 1/2 inch
 7.2. For unstabilized material, 1.0 inch
8. Location including:
8.1. County
8.2. Route
8.3. Post mile
8.4. Lane number
8.5. Lane direction
8.6. Station

Each data core digital photograph must include a ruler laid next to the data core. Each photograph must include:

1. The core
2. Project identification number
3. Core identification number
4. Date cored
5. County
6. Route
7. Post mile
8. Lane number
9. Lane direction

After data core summary and photograph submittal, dispose of cores under Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

Quality Control and Assurance

Quality Control / Quality Assurance Projects

For the mix design, determine the plasticity index of the aggregate blend under California Test 204. Choose an antistrip treatment and use the corresponding laboratory procedure for the mix design in compliance with:

<table>
<thead>
<tr>
<th>Plasticity index from 4 to 10^4</th>
<th>Lab Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry hydrated lime with marination</td>
<td>LP-6</td>
</tr>
<tr>
<td>Lime slurry with marination</td>
<td>LP-7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plasticity index less than 4</th>
<th>Lab Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid</td>
<td>LP-5</td>
</tr>
<tr>
<td>Dry hydrated lime without marination</td>
<td>LP-6</td>
</tr>
<tr>
<td>Dry hydrated lime with marination</td>
<td>LP-6</td>
</tr>
<tr>
<td>Lime slurry with marination</td>
<td>LP-7</td>
</tr>
</tbody>
</table>

Notes:
- If the plasticity index is greater than 10, do not use that aggregate blend.

For the mix design, determine tensile strength ratio under California Test 371 on untreated HMA. If the tensile strength ratio is less than 70:

1. Choose from the antistrip treatments specified based on plasticity index.
2. Test treated HMA under California Test 371.
3. Treat to a minimum tensile strength ratio of 70.

On the first production day and at least every 5,000 tons, sample HMA and test under California Test 371. The Department does not use California Test 371 test results for JMF verification and production to determine specification compliance.

MATERIALS

Asphalt Binder

The grade of asphalt binder mixed with aggregate for HMA Type A must be PG 64-28.
Aggregate
The aggregate for HMA Type A must comply with the 3/4-inch grading.

CONSTRUCTION

Vertical Joints
Before opening the lane to public traffic, pave shoulders and median borders adjacent to a lane being paved. Do not leave a vertical joint more than 0.15 foot high between adjacent lanes open to public traffic.

Widening
If widening existing pavement, construct new structural section on both sides of the existing pavement to match the elevation of the existing pavement's edge for the project’s entire length before placing HMA over the existing pavement.

Conform Tapers
Place additional HMA along the pavement's edge to conform to road connections and private drives. Hand rake, if necessary, and compact the additional HMA to form a smooth conform taper.

Data Cores
Take data cores that include the completed HMA pavement, underlying base, and subbase material. Protect data cores and surrounding pavement from damage.
Take 4-inch or 6-inch diameter data cores:
1. At the beginning, end, and every 1/2 mile within the paving limits of each route on the project
2. After all paving is complete
3. From the center of the specified lane

On a 2-lane roadway, take data cores from either lane. On a 4-lane roadway, take data cores from each direction in the outermost lane. On a roadway with more than 4 lanes, take data cores from the median lane and the outermost lane in each direction.
Each core must include the stabilized materials encountered. You may choose not to recover unstabilized material but you must identify the material. Unstabilized material includes:
1. Granular material
2. Crumbled or cracked stabilized material
3. Sandy or clayey soil

PAYMENT
The contract lump sum price paid for data core includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in data coring, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.51 RUBBERIZED HOT MIX ASPHALT (GAP GRADED)

GENERAL

Summary
This work includes producing and placing rubberized hot mix asphalt (gap graded) (RHMA-G) using the Quality Control/Quality Assurance process.
Comply with Section 39, "Hot Mix Asphalt," of the Standard Specifications.

Submittals
Quality Control / Quality Assurance Projects
With the job mix formula (JMF) submittal, submit:
1. California Test 371 tensile strength ratio results for untreated RHMA-G
2. California Test 204 plasticity index results on the aggregate blend if untreated RHMA-G tensile strength ratio is below 70
3. California Test 371 tensile strength ratio results for treated RHMA-G if untreated RHMA-G tensile strength ratio is below 70

At project start-up and once during production, submit samples split from your RHMA-G production sample for California Test 371 to the Engineer and the Transportation Laboratory, Attention: Moisture Test.

With JMF submittal, at project start-up, and each 5,000 tons, submit California Test 371 test results for mix design and production to the Engineer and electronically to:

Moisture_Tests@dot.ca.gov

Data Cores

Three business days before starting coring, submit proposed methods and materials for backfilling data core holes.

Submit to the Engineer and electronically to Coring@dot.ca.gov:

1. A summary of data cores taken
2. A photograph of each data core

For each data core, the summary must include:

1. Project identification number
2. Date cored
3. Core identification number
4. Type of materials recovered
5. Type and approximate thickness of unstabilized material not recovered
6. Total core thickness
7. Thickness of each individual material to within:
 7.1 For recovered material, 1/2 inch
 7.2 For unstabilized material, 1.0 inch
8. Location including:
 8.1. County
 8.2. Route
 8.3. Post mile
 8.4. Lane number
 8.5. Lane direction
 8.6. Station

Each data core digital photograph must include a ruler laid next to the data core. Each photograph must include:

1. The core
2. Project identification number
3. Core identification number
4. Date cored
5. County
6. Route
7. Post mile
8. Lane number
9. Lane direction

After data core summary and photograph submittal, dispose of cores under Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.
Quality Control and Assurance
Quality Control / Quality Assurance Projects

For the mix design:

1. Determine tensile strength ratio under California Test 371 on untreated RHMA-G. Comply with the following:

 1.1. If the test result is greater than or equal to 70, the Engineer does not require further tensile strength ratio testing or plasticity index testing for mix design.

 1.2. If the tensile strength ratio for untreated RHMA-G is less than 70:

 1.2.1. Determine the plasticity index of the aggregate blend under California Test 204.

 1.2.2. Choose an antistrip treatment based on the "Antistrip Treatment and Lab Procedures for Mix Design" table and treat RHMA-G.

 1.2.3. Determine tensile strength ratio under California Test 371 on treated RHMA-G.

2. If the tensile strength ratio testing for treated RHMA-G is greater than or equal to 70, use that antistrip treatment in the mix design.

3. If the tensile strength ratio testing for treated RHMA-G is less than 70, the minimum tensile strength specification is waived, but you must use any of the following:

 3.1. HMA aggregate lime treatment – slurry method

 3.2. HMA aggregate lime treatment – dry lime method

 3.3. Liquid antistrip treatment using 0.5 percent liquid antistrip

Choose an antistrip treatment and use the corresponding laboratory procedure for the mix design in compliance with:

<table>
<thead>
<tr>
<th>Antistrip Treatment and Lab Procedures for Mix Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antistrip Treatment</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>Plasticity index from 4 to 10 a</td>
</tr>
<tr>
<td>Dry hydrated lime with marination</td>
</tr>
<tr>
<td>Lime slurry with marination</td>
</tr>
<tr>
<td>Plasticity index less than 4</td>
</tr>
<tr>
<td>Liquid</td>
</tr>
<tr>
<td>Dry hydrated lime without marination</td>
</tr>
<tr>
<td>Dry hydrated lime with marination</td>
</tr>
<tr>
<td>Lime slurry with marination</td>
</tr>
</tbody>
</table>

Notes:

a If the plasticity index greater than 10, do not use that aggregate blend

On the first production day and at least every 5,000 tons, sample RHMA-G and test under California Test 371. The Department does not use your California Test 371 test results to determine specification compliance.

MATERIALS

Asphalt Binder
Asphalt binder mixed with asphalt modifier and crumb rubber modifier (CRM) for asphalt rubber binder must be PG 64-16.

Aggregate
The aggregate for RHMA-G must comply with the 1/2-inch and 3/4-inch grading.

Asphalt Rubber Binder Content
Determine the amount of asphalt rubber binder to be mixed with the aggregate for RHMA-G under California Test 367 except:
1. Determine the specific gravity used in California Test 367, Section B, "Void Content of Specimen," using California Test 308, Method A.

2. California Test 367, Section C, "Optimum Bitumen Content," is revised as follows:

 2.1. Base the calculations on the average of 3 briquettes produced at each asphalt rubber binder content.
 2.2. Use California Test 309 to determine theoretical maximum specific gravity and density of the RHMA-G.
 2.3. Plot asphalt rubber binder content versus average air voids content based on California Test 309 for each set of three specimens on Form TL-306 (Figure 3), and connect adjacent points with a best-fit curve.
 2.4. Plot asphalt rubber binder content versus average Hveem stability for each set of three specimens and connect adjacent points with a best-fit curve.
 2.5. Calculate voids in mineral aggregate (VMA) and voids filled with asphalt (VFA) for each specimen, average each set, and plot the average versus asphalt rubber binder content.
 2.6. Calculate the dust proportion and plot versus asphalt rubber binder content.
 2.7. From the curve plotted in Step 2.3, select the theoretical asphalt rubber binder content that has 5 percent air voids.
 2.8. At the selected asphalt rubber binder content, evaluate corresponding voids in mineral aggregate, voids filled with asphalt, and dust proportion to verify compliance with requirements. If necessary, develop an alternate composite aggregate gradation to conform to the RHMA-G requirements.
 2.9. Record the asphalt rubber binder content in Step 2.7 as the Optimum Bitumen Content (OBC).
 2.10. To establish a recommended range, use the OBC as the high value and 0.3 percent less as the low value. Notwithstanding, the recommended range must not extend below 7.0 percent. If the OBC is 7.0 percent, then there is no recommended range, and 7.0 percent is the recommended value.

3. Laboratory mixing and compaction must comply with California Test 304, except the mixing temperature of the aggregate must be between 300 °F and 325 °F. The mixing temperature of the asphalt-rubber binder must be between 375 °F and 425 °F. The compaction temperature of the combined mixture must be between 290 °F and 300 °F.

CONSTRUCTION

Vertical Joints

Before opening the lane to public traffic, pave shoulders and median borders adjacent to a lane being paved. Do not leave a vertical joint more than 0.15 foot high between adjacent lanes open to public traffic.

Widening

If widening existing pavement, construct new structural section on both sides of the existing pavement to match the elevation of the existing pavement's edge for the project's entire length before placing HMA (Type A) over the existing pavement.

Data Cores

Take data cores that include the completed HMA pavement, underlying base, and subbase material. Protect data cores and surrounding pavement from damage.

Take 4-inch or 6-inch diameter data cores:

1. At the beginning, end, and every 1/2 mile within the paving limits of each route on the project
2. After all paving is complete
3. From the center of the specified lane

On a 2-lane roadway, take data cores from either lane. On a 4-lane roadway, take data cores from each direction in the outermost lane. On a roadway with more than 4 lanes, take data cores from the median lane and the outermost lane in each direction.

Each core must include the stabilized materials encountered. You may choose not to recover unstabilized material but you must identify the material. Unstabilized material includes:

1. Granular material
2. Crumbled or cracked stabilized material
3. Sandy or clayey soil
PAYMENT

The contract lump sum price paid for data core includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in data coring, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.52 HOT MIX ASPHALT (TYPE A - BOND BREAKER)

GENERAL

Summary

This work includes producing and placing hot mix asphalt Type A - Bond Breaker using the Standard process. HMA Type A - Bond Breaker must comply with the requirements for HMA Type A of Section 39, "Hot Mix Asphalt," of the Standard Specifications.

QUALITY CONTROL TESTING

Perform sampling and testing at the specified frequency for the following quality characteristics:

<table>
<thead>
<tr>
<th>HMA Type A – Bond Breaker Minimum Quality Control</th>
<th>Test Method</th>
<th>Minimum Sampling and Testing Frequency</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate gradation<sup>a</sup></td>
<td>CT 202</td>
<td>1 per 750 tons and any remaining part</td>
<td>JMF ± Tolerance<sup>b</sup></td>
</tr>
<tr>
<td>Sand equivalent (min.)<sup>c,g</sup></td>
<td>CT 217</td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>Asphalt binder content</td>
<td>CT 379 or 382</td>
<td></td>
<td>JMF ± 0.45%</td>
</tr>
<tr>
<td>HMA moisture content (max.)</td>
<td>CT 370</td>
<td>1 per 2500 tons but not less than 1 per paving day</td>
<td>1.0%</td>
</tr>
<tr>
<td>Percent of maximum theoretical density (minimum)<sup>d,e</sup></td>
<td>Quality control plan</td>
<td>2 per business day (min.)</td>
<td>96%</td>
</tr>
<tr>
<td>Aggregate moisture content at continuous mixing plants and RAP moisture content at continuous mixing plants and batch mixing plants<sup>f</sup></td>
<td>CT 226 or CT 370</td>
<td>2 per day during production</td>
<td>--</td>
</tr>
<tr>
<td>Percent of crushed particles coarse aggregate (% min.)<sup>g</sup></td>
<td>CT 205</td>
<td>As necessary and designated in the QCP. At least once per project</td>
<td>90</td>
</tr>
<tr>
<td>One fractured face</td>
<td></td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>Two fractured faces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fine aggregate (% min)<sup>g</sup></td>
<td></td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>(Passing No. 4 sieve and retained on No. 8 sieve.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One fractured face</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Los Angeles Rattler (% max)<sup>g</sup></td>
<td>CT 211</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>Loss at 500 rev.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

^a Determine combined aggregate gradation containing RAP under Laboratory Procedure LP-9.
^b The tolerances must comply with the allowable tolerances in Section 39-1.02E, "Aggregate."
^c Report the average of 3 tests from a single split sample.
^d Required if the total paved thickness is at least 0.15-foot.
^e Determine maximum theoretical density (California Test 309) at the frequency specified for Test Maximum Density under California Test 375, Part 5.D.
^f For adjusting the plant controller at the HMA plant.
^g The point and method of sampling will be agreed upon before aggregate production begins. Perform this test before lime treatment.

Apply white pigmented curing compound to the finished surface of the HMA Type A (Bond Breaker) within 2 days of placing the portland cement concrete pavement. Pigmented curing compound must conform to the
requirements of ASTM Designation C 309, Type 2, Class A. Curing compound must be applied in 2 separate applications to the area to be surfaced with portland cement concrete pavement. Apply curing compound at the rate of 1 gallon per 150 square feet.

ENGINEER'S ACCEPTANCE

The Engineer samples for acceptance testing, and tests for:

<table>
<thead>
<tr>
<th>HMA Type A – Bond Breaker Acceptance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality Characteristic</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>Aggregate gradation a</td>
</tr>
<tr>
<td>Sand equivalent (min.) c, f</td>
</tr>
<tr>
<td>Asphalt binder content</td>
</tr>
<tr>
<td>HMA moisture content (max.)</td>
</tr>
<tr>
<td>Percent of maximum theoretical density (minimum) d, e</td>
</tr>
<tr>
<td>Percent of crushed particles coarse aggregate (% min.) f</td>
</tr>
<tr>
<td>One fractured face</td>
</tr>
<tr>
<td>Two fractured faces</td>
</tr>
<tr>
<td>Fine aggregate (% min.) f</td>
</tr>
<tr>
<td>(Passing No. 4 sieve and retained on No. 8 sieve.)</td>
</tr>
<tr>
<td>One fractured face</td>
</tr>
<tr>
<td>Los Angeles Rattler (% max.) f</td>
</tr>
<tr>
<td>Loss at 500 rev.</td>
</tr>
</tbody>
</table>

Notes:

a The Engineer determines combined aggregate gradation containing RAP under Laboratory Procedure LP-9.

b The tolerances must comply with the allowable tolerances in Section 39-1.02E, "Aggregate."

c The Engineer reports the average of 3 tests from a single split sample.

d Required if the total paved thickness is at least 0.15-foot.

e The Engineer determines maximum theoretical density (California Test 309) at the frequency specified for Test Maximum Density under California Test 375, Part 5.D.

f The point and method of sampling will be agreed upon before aggregate production begins. Perform this test before lime treatment.

MATERIALS

Asphalt Binder

The grade of asphalt binder mixed with aggregate for HMA Type A - Bond Breaker must be PG 64-16.

Aggregate

The aggregate for HMA Type A – Bond Breaker must comply with the 3/8-inch grading.

Asphalt Binder Content

Increase the amount of asphalt binder mixed with aggregate for HMA Type A - Bond Breaker by 1.0 percent by weight of the dry aggregate over the optimum binder content (OBC) determined for use in HMA Type A under California Test 367.

Job Mix Formula and HMA Type A – Bond Breaker Evaluation

Prior to the 1.0 percent increase in asphalt binder, HMA Type A used for HMA Type A - Bond Breaker must conform to the requirements of Hot Mix Asphalt Mix Design Requirements.

Verification is testing for compliance with the specifications for:

1. Aggregate quality
2. HMA quality specified in the table HMA Type A - Bond Breaker Acceptance except percent of maximum theoretical density
CONSTRUCTION

Tack Coat
Apply tack coat for the HMA Type A – Bond Breaker to the Lean Concrete Base at the same rate as HMA over existing PCC pavement per Section 39-1.09.

Antistrip Treatment
Treat aggregate with lime slurry under "Hot Mix Asphalt Aggregate Lime Treatment – Slurry Method" and use Lab Procedure LP-7 for the mix design.

PAYMENT
HMA Type A - Bond Breaker will be measured and paid for in the same manner specified for HMA in conformance with the requirements of Section 39-8, "Measurement and Payment,” of the Standard Specifications.
Full compensation for the additional 1 percent of asphalt binder used in HMA Type A - Bond Breaker and for furnishing and applying white pigmented curing compound to the surface of the HMA Type A - Bond Breaker is included in the contract price paid per ton for HMA Type A- Bond Breaker as designated in the Engineer's Estimate and no separate payment will be made therefor.

10-1.53 HOT MIX ASPHALT (MISCELLANEOUS AREAS)

GENERAL
Summary
This work includes producing hot mix asphalt (HMA) and placing it on miscellaneous areas.
Comply with Section 39, "Hot Mix Asphalt," of the Standard Specifications.

MEASUREMENT AND PAYMENT
If there is a contract item for place hot mix asphalt (miscellaneous area) paid for by the square yard, this item is limited to the areas listed on the plans and is in addition to the contract items for the materials involved.

10-1.54 MINOR HOT MIX ASPHALT

GENERAL
Summary
This work includes producing hot mix asphalt (HMA) at a central mixing plant and placing it as specified.

MATERIALS
For minor HMA:

1. Do not submit a job mix formula.
2. Choose the 3/8-inch or 1/2-inch HMA Type A or Type B aggregate gradation under Section 39-1.02E, "Aggregate," of the Standard Specifications.
3. Minimum asphalt binder content must be 6.8 percent for 3/8-inch aggregate gradation and 6.0 percent for 1/2-inch aggregate gradation.
4. Choose asphalt binder Grade PG 64-10, PG 64-16, or PG 70-10 under Section 92, "Asphalts," of the Standard Specifications.

If you request and the Engineer authorizes, you may reduce the minimum asphalt binder content.
Tack coat must comply with Section 39, "Hot Mix Asphalt," of the Standard Specifications.

CONSTRUCTION
Using a self-propelled spreader, spread minor HMA ready for compacting without further shaping.
Compact minor HMA with a vibratory roller providing a minimum of 7,000 pounds centrifugal force. With the vibrator on, compact at least 3 complete coverages over each layer, overlapping to prevent displacement. The speed of the vibratory roller in miles per hour must not exceed the vibrations per minute divided by 1,000. If the HMA layer thickness is less than 0.08 foot, turn the vibrator off. Complete the first coverage before the mixture's temperature drops below 250 °F.
Minor HMA finished surface must be:

1. Textured uniformly
2. Compacted firmly
3. Without depressions, humps, and irregularities

10-1.55 HOT MIX ASPHALT AGGREGATE LIME TREATMENT - SLURRY METHOD

GENERAL

Summary
This work includes treating hot mix asphalt (HMA) aggregate with lime using the slurry method and placing it in stockpiles to marinate.
Treat aggregate for HMA Type A, and RHMA-G with lime slurry.

Submittals
Determine the exact lime proportions for fine and coarse virgin aggregate and submit them as part of the proposed job mix formula (JMF) under Section 39, "Hot Mix Asphalt," of the Standard Specifications.
Submit the averaged aggregate quality test results to the Engineer within 24 hours of sampling.
Submit a treatment data log from the slurry proportioning device in the following order:

1. Treatment date
2. Time of day the data is captured
3. Aggregate size being treated
4. Wet aggregate flow rate collected directly from the aggregate weigh belt
5. Moisture content of the aggregate just before treatment, expressed as a percent of the dry aggregate weight
6. Dry aggregate flow rate calculated from the wet aggregate flow rate
7. Lime slurry flow rate measured by the slurry meter
8. Dry lime flow rate calculated from the slurry meter output
9. Approved lime ratio for each aggregate size being treated
10. Actual lime ratio calculated from the aggregate weigh belt and the slurry meter output, expressed as a percent of the dry aggregate weight
11. Calculated difference between the approved lime ratio and the actual lime ratio
12. Dry lime and water proportions at the slurry treatment time

Every day during lime treatment, submit the treatment data log on electronic media in tab delimited format on a removable CD-ROM storage disk. Each continuous treatment data set must be a separate record using a line feed carriage return to present the specified data on one line. The reported data must include data titles at least once per report.

Quality Control and Assurance
Your quality control plan (QCP) must include aggregate quality control sampling and testing during aggregate lime treatment. Perform sampling and testing in compliance with:
Aggregate Quality Control During Lime Treatment

<table>
<thead>
<tr>
<th>Quality Characteristic</th>
<th>Test Method</th>
<th>Minimum sampling and testing frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand Equivalent</td>
<td>CT 217</td>
<td>Once per 1,000 tons of aggregate treated with lime</td>
</tr>
<tr>
<td>Percent of crushed particles</td>
<td>CT 205</td>
<td>As necessary and as designated in the QCP</td>
</tr>
<tr>
<td>Los Angeles Rattler</td>
<td>CT 211</td>
<td></td>
</tr>
<tr>
<td>Fine aggregate angularity</td>
<td>CT 234</td>
<td></td>
</tr>
<tr>
<td>Flat and elongated particles</td>
<td>CT 235</td>
<td></td>
</tr>
</tbody>
</table>

Note: During lime treatment, sample coarse and fine aggregate from individual stockpiles. Combine aggregate in the JMF proportions. Run tests for aggregate quality in triplicate and report test results as the average of 3 tests.

The Engineer orders proportioning operations stopped for any of the following if you:

1. Do not submit the treatment data log.
2. Do not submit the aggregate quality control data.
3. Submit incomplete, untimely, or incorrectly formatted data.
4. Do not take corrective actions.
5. Take late or unsuccessful corrective actions.
6. Do not stop treatment when proportioning tolerances are exceeded.
7. Use malfunctioning or failed proportioning devices.

If you stop treatment, notify the Engineer of any corrective actions taken and conduct a successful 20-minute test run before resuming treatment.

For the aggregate to be treated, determine the moisture content at least once during each 2 hours of treatment. Calculate moisture content under California Test 226 or California Test 370 and report it as a percent of dry aggregate weight. Use the moisture content calculations as a set point for the proportioning process controller.

MATERIALS

High-calcium hydrated lime and water must comply with Section 24-1.02, "Materials," of the Standard Specifications.

Before virgin aggregate is treated, it must comply with the aggregate quality specifications. Do not test treated aggregate for quality control except for gradation. The Engineer does not test treated aggregate for acceptance except for gradation.

The Engineer determines the combined aggregate gradation during HMA production after you have treated aggregate. If reclaimed asphalt pavement (RAP) is used, the Engineer determines combined aggregate gradations containing RAP under Laboratory Procedure LP-9.

Treated aggregate must not have lime balls or clods.

CONSTRUCTION

General

Notify the Engineer at least 24 hours before the start of aggregate treatment.

Treat aggregate separate from HMA production.

Do not treat RAP.

Add lime to the aggregate as slurry consisting of mixed dry lime and water at a ratio of 1 part lime to between 2 parts and 3 parts water by weight. The slurry must completely coat the aggregate.

Lime treat and marinate coarse and fine aggregates separately.

Immediately before mixing lime slurry with aggregate, water must not visibly separate from aggregate.

Treat aggregate and stockpile for marination only once.

The lime ratio is the pounds of dry hydrated lime per 100 pounds of dry virgin aggregate expressed as a percent.

Water content of slurry or untreated aggregate must not affect the lime ratio.

Lime ratio ranges are:
Aggregate Gradation	Lime Ratio
Coarse | 0.4 to 1.0
Fine | 1.5 to 2.0
Combined virgin aggregate | 0.8 to 1.5

The lime ratio for fine and coarse aggregate must be within ±0.2 percent of the lime ratio in the accepted JMF. The lime ratio must be within ±0.2 percent of the approved lime ratio when you combine the individual aggregate sizes in the JMF proportions. The lime ratio must be determined before the addition of RAP.

If 3 consecutive sets of recorded treatment data indicate deviation more than 0.2 percent above or below the lime ratio in the accepted JMF, stop treatment.

If a set of recorded treatment data indicates a deviation of more than 0.4 percent above or below the lime ratio in the accepted JMF, stop treatment and do not use the material represented by that set of data in HMA.

If 20 percent or more of the total daily treatment indicates deviation of more than 0.2 percent above or below the lime ratio in the accepted JMF, stop treatment and do not use the day's total treatment in HMA.

If you stop treatment for noncompliance, you must implement corrective action and successfully treat aggregate for a 20-minute period. Notify the Engineer before beginning the 20-minute treatment period.

Lime Slurry Proportioning

Proportion lime and water with a continuous or batch operation.

The device controlling slurry proportioning must produce a treatment data log. The log consists of a series of data sets captured at 10-minute intervals throughout daily treatment. The data must be a treatment activity register and not a summation. The material represented by the data set is the amount produced 5 minutes before and 5 minutes after the capture time. For the contract's duration, collected data must be stored by the controller.

Proportioning and Mixing Lime Slurry Treated Aggregate

Treat HMA aggregate by proportioning lime slurry and aggregate by weight in a continuous operation.

Marinate treated aggregate in stockpiles from 24 hours to 60 days before using in HMA. Do not use aggregate marinated longer than 60 days.

MEASUREMENT AND PAYMENT

Full compensation for treating aggregates with lime slurry shall be considered as included in the contract price paid per ton for HMA as designated in the Engineer's Estimate and no separate payment will be made therefor.

10-1.56 HOT MIX ASPHALT AGGREGATE LIME TREATMENT - DRY LIME METHOD

GENERAL

Summary

This work includes treating hot mix asphalt (HMA) aggregate with lime using the dry lime method either with marination or without.

Treat aggregate for HMA Type A, and RHMA-G with dry lime.

Marinate aggregate if the plasticity index determined under California Test 204 is from 4 to 10.

Submittals

Determine the exact lime proportions for fine and coarse virgin aggregate and submit them as part of the proposed job mix formula (JMF) under Section 39, “Hot Mix Asphalt,” of the Standard Specifications.

If marination is required, submit in writing the averaged aggregate quality test results to the Engineer within 24 hours of sampling.

Submit in writing a treatment data log from the dry lime and aggregate proportioning device in the following order:

1. Treatment date
2. Time of day the data is captured
3. Aggregate size being treated
4. HMA type and mix aggregate size
5. Wet aggregate flow rate collected directly from the aggregate weigh belt
6. Aggregate moisture content, expressed as a percent of the dry aggregate weight
7. Flow rate of dry aggregate calculated from the flow rate of wet aggregate
8. Dry lime flow rate
9. Lime ratio from the accepted JMF for each aggregate size being treated
10. Lime ratio from the accepted JMF for the combined aggregate
11. Actual lime ratio calculated from the aggregate weigh belt output, the aggregate moisture input, and the dry lime meter output, expressed as a percent of the dry aggregate weight
12. Calculated difference between the approved lime ratio and the actual lime ratio

Every day during lime treatment, submit the treatment data log on electronic media in tab delimited format on a removable CD-ROM storage disk. Each continuous treatment data set must be a separate record using a line feed carriage return to present the specified data on one line. The reported data must include data titles at least once per report.

Quality Control and Assurance

If marination is required, the quality control plan (QCP) specified in Section 39-4, "Quality Control / Quality Assurance," must include aggregate quality control sampling and testing during lime treatment. Perform sampling and testing in compliance with:

<table>
<thead>
<tr>
<th>Quality Characteristic</th>
<th>Test Method</th>
<th>Minimum sampling and testing frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand Equivalent</td>
<td>CT 217</td>
<td>Once per 1,000 tons of aggregate treated with lime</td>
</tr>
<tr>
<td>Percent of crushed particles</td>
<td>CT 205</td>
<td>As necessary and as designated in the QCP</td>
</tr>
<tr>
<td>Los Angeles Rattler</td>
<td>CT 211</td>
<td></td>
</tr>
<tr>
<td>Fine aggregate angularity</td>
<td>CT 234</td>
<td></td>
</tr>
<tr>
<td>Flat and elongated particles</td>
<td>CT 235</td>
<td></td>
</tr>
</tbody>
</table>

Note: During lime treatment, sample coarse and fine aggregate from individual stockpiles. Combine aggregate in the JMF proportions. Run tests for aggregate quality in triplicate and report test results as the average of 3 tests.

The Engineer orders proportioning operations stopped for any of the following if you:

1. Do not submit the treatment data log
2. Do not submit the aggregate quality control data for marinated aggregate
3. Submit incomplete, untimely, or incorrectly formatted data
4. Do not take corrective actions
5. Take late or unsuccessful corrective actions
6. Do not stop treatment when proportioning tolerances are exceeded
7. Use malfunctioning or failed proportioning devices

If you stop treatment, notify the Engineer of any corrective actions taken and conduct a successful 20-minute test run before resuming treatment.

MATERIALS

Lime must be high-calcium hydrated lime. Lime and water must comply with Section 24-1.02, "Materials," of the Standard Specifications.

Before virgin aggregate is treated, it must comply with the aggregate quality specifications. Do not test treated aggregate for quality control except for gradation. The Engineer does not test treated aggregate for acceptance except for gradation.

The Engineer determines the combined aggregate gradation during HMA production after you have treated aggregate. If reclaimed asphalt pavement (RAP) is used, the Engineer determines combined aggregate gradations containing RAP under Laboratory Procedure LP-9.

Treated aggregate must not have lime balls or clods.

CONSTRUCTION

General

Notify the Engineer in writing at least 24 hours before the start of aggregate treatment.

Do not treat RAP.
If marination is required:

1. Treat and marinate coarse and fine aggregates separately.
2. Treat aggregate and stockpile for marination only once.
3. Treat aggregate separate from HMA production.

The lime ratio is the pounds of dry hydrated lime per 100 pounds of dry virgin aggregate expressed as a percent. Water content of untreated aggregate must not affect the lime ratio.

Lime ratio ranges are:

<table>
<thead>
<tr>
<th>Aggregate Gradation</th>
<th>Lime Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse</td>
<td>0.4 to 1.0</td>
</tr>
<tr>
<td>Fine</td>
<td>1.5 to 2.0</td>
</tr>
<tr>
<td>Combined virgin aggregate</td>
<td>0.8 to 1.5</td>
</tr>
</tbody>
</table>

You may reduce the combined aggregate lime ratio for open graded friction course to between 0.5 and 1.0 percent.

The lime ratio for fine and coarse aggregate must be within ±0.2 percent of the lime ratio in the accepted JMF. The lime ratio must be within ±0.2 percent of the approved lime ratio when you combine the individual aggregate sizes in the JMF proportions. Determine the lime ratio before you add RAP.

Proportion dry lime by weight with a continuous operation.

The device controlling dry lime and aggregate proportioning must produce a treatment data log. The log consists of a series of data sets captured at 10-minute intervals throughout daily treatment. The data must be a treatment activity register and not a summation. The material represented by a data set is the amount produced 5 minutes before and 5 minutes after the capture time. For the duration of the contract, collected data must be stored by the controller.

If 3 consecutive sets of recorded treatment data indicate deviation more than 0.2 percent above or below the lime ratio in the accepted JMF, stop treatment of lime treated aggregates.

If a set of recorded treatment data indicates a deviation of more than 0.4 percent above or below the lime ratio in the accepted JMF, stop treatment of lime treated aggregates and do not use the material represented by that set of data in HMA.

If 20 percent or more of the total daily treatment indicates deviation of more than 0.2 percent above or below the lime ratio in the accepted JMF, stop treatment and do not use the day's treated aggregate in HMA.

If you stop treatment for noncompliance, you must implement corrective action and successfully treat aggregate for a 20-minute period. Notify the Engineer before beginning the 20-minute treatment period.

If you use a batch-type proportioning operation for HMA production, control proportioning in compliance with the specifications for continuous mixing plants. Use a separate dry lime aggregate treatment operation from HMA batching operations including:

1. Pugmill mixer
2. Controller
3. Weigh belt for the lime
4. Weigh belt for the aggregate

If using a continuous mixing operation for HMA without lime marinated aggregates, use a controller that measures the blended aggregate weight after any additional water is added to the mixture. The controller must determine the amount of lime added to the aggregate from the aggregate weigh belt input in connection with the manually input total aggregate moisture, the manually input target lime content, and the lime proportioning system output. Use a continuous aggregate weigh belt and pugmill mixer for the lime treatment operation in addition to the weigh belt for the aggregate proportioning to asphalt binder in the HMA plant. If you use a water meter for moisture control for lime treatment, the meter must comply with California Test 109.

At the time of mixing dry lime with aggregate, the aggregate moisture content must ensure complete lime coating. The aggregate moisture content must not cause aggregate to be lost between the point of weighing the combined aggregate continuous stream and the dryer. Add water for mixing and coating aggregate to the aggregate before dry lime addition. Immediately before mixing lime with aggregate, water must not visibly separate from aggregate.

The HMA plant must be equipped with a bag house dust system. Material collected in the dust system must be returned to the mix.
Mixing Dry Lime and Aggregate

Mix aggregate, water, and dry lime with a continuous pugmill mixer with twin shafts. Immediately before mixing lime with aggregate, water must not visibly separate from aggregate. Store dry lime in a uniform and free flowing condition. Introduce dry lime to the pugmill in a continuous operation. The introduction must occur after the aggregate cold feed and before the point of proportioning across a weigh belt and the aggregate dryer. Prevent loss of dry lime.

If marination is required, marinate treated aggregate in stockpiles between 24 hours and 60 days before using in HMA. Do not use aggregate marinated more than 60 days.

The pugmill must be equipped with paddles arranged to provide sufficient mixing action and mixture movement. The pugmill must produce a homogeneous mixture of uniformly coated aggregates at mixer discharge.

If the aggregate treatment operation is stopped longer than 1 hour, clean the equipment of partially treated aggregate and lime.

Aggregate must be completely treated before introduction into the mixing drum.

MEASUREMENT AND PAYMENT

Full compensation for dry lime treating HMA aggregate including marination shall be considered as included in the contract price paid per ton for HMA as designated in the Engineer's Estimate and no separate payment will be made therefor.

10-1.57 LIQUID ANTISTRIP TREATMENT

GENERAL

Summary

This work includes treating asphalt binder with liquid antistrip (LAS) treatment to bond the asphalt binder to aggregate in hot mix asphalt (HMA).

Submittals

For LAS, submit with the proposed job mix formula (JMF) submittal under Section 39, "Hot Mix Asphalt," of the Standard Specifications:

1. Materials Safety Data Sheet (MSDS)
2. One 1-pint sample
3. Infrared analysis including copy of absorption spectra

Submit a certified copy of test results and a MSDS for each LAS lot. Submit a Certificate of Compliance under Section 6-1.07, "Certificates of Compliance," of the Standard Specifications for each LAS shipment. With each certificate also submit:

1. Your signature and printed name
2. Shipment number
3. Material type
4. Material specific gravity
5. Refinery
6. Consignee
7. Destination
8. Quantity
9. Contact or purchase order number
10. Shipment Date

Submit proportions for LAS as part of the JMF submittal specified in Section 39-1.03, "Hot Mix Asphalt Mix Design Requirements," of the Standard Specifications. If you change the brand or type of LAS, submit a new JMF.

For each job site delivery of LAS, submit one 1/2-pint sample to the Transportation Laboratory. Submit shipping documents to the Engineer. Label each LAS sampling container with:

1. LAS type
2. Application rate
3. Sample date
4. Contract number
At the end of each day's production shift, submit production data in electronic and printed media. Present data on electronic media in tab delimited format. Use line feed carriage return with one separate record per line for each production data set. Allow sufficient fields for the specified data. Include data titles at least once per report. For each mixing operation type, submit in order:

1. Batch Mixing:
 1.1. Production date
 1.2. Time of batch completion
 1.3. Mix size and type
 1.4. Each ingredient's weight
 1.5. Asphalt binder content as percentage of dry aggregate weight
 1.6. LAS content as percentage of asphalt binder weight

2. Continuous Mixing:
 2.1. Production date
 2.2. Data capture time
 2.3. Mix size and type
 2.4. Flow rate of wet aggregate collected directly from the aggregate weigh belt
 2.5. Aggregate moisture content as percentage of dry aggregate weight
 2.6. Flow rate of asphalt binder collected from the asphalt binder meter
 2.7. Flow rate of LAS collected from the LAS meter
 2.8. Asphalt binder content as percentage of dry aggregate weight calculated from:
 2.8.1. Aggregate weigh belt output
 2.8.2. Aggregate moisture input
 2.8.3. Asphalt binder meter output
 2.9. LAS content as percentage of asphalt binder weight calculated from:
 2.9.1. Asphalt binder meter output
 2.9.2. LAS meter output

Quality Control and Assurance

For continuous mixing and batch mixing operations, sample asphalt binder before adding LAS. For continuous mixing operations, sample combined asphalt binder and LAS after the static mixer.

The Engineer orders proportioning operations stopped for any of the following if you:

1. Do not submit data
2. Submit incomplete, untimely, or incorrectly formatted data
3. Do not take corrective actions
4. Take late or unsuccessful corrective actions
5. Do not stop production when proportioning tolerances are exceeded
6. Use malfunctioning or failed proportioning devices

If you stop production, notify the Engineer of any corrective actions taken before resuming.

MATERIALS

LAS-treated asphalt binder must comply with Section 39, "Hot Mix Asphalt," of the Standard Specifications. LAS does not substitute for asphalt binder.

LAS total amine value must be 325 minimum when tested under ASTM D 2074.

Use only 1 LAS type or brand at a time. Do not mix LAS types or brands.

Store and mix LAS under the manufacturer's recommendations.

CONSTRUCTION

LAS must be between 0.5 and 1.0 percent by weight of asphalt binder.
If 3 consecutive sets of recorded production data show actual delivered LAS weight is more than ±1 percent of the approved mix design LAS weight, stop production and take corrective action.

If a set of recorded production data shows actual delivered LAS weight is more than ±2 percent of the approved mix design LAS weight, stop production. If the LAS weight exceeds 1.2 percent of the asphalt binder weight, do not use the HMA represented by that data.

The continuous mixing plant controller proportioning the HMA must produce a production data log. The log consists of a series of data sets captured at 10-minute intervals throughout daily production. The data must be a production activity register and not a summation. The material represented by the data is the amount produced 5 minutes before and 5 minutes after the capture time. For the duration of the contract, collected data must be stored by the plant controller or a computer's memory at the plant.

MEASUREMENT AND PAYMENT

Full compensation for LAS is included in the contract price paid per ton for HMA as designated in the Engineer's Estimate and no separate payment will be made therefor.

10-1.58 PRIME COAT

GENERAL

Summary

This work includes applying liquid asphalt prime coat. The Engineer designates areas receiving prime coat. Comply with Section 93, "Liquid Asphalts," of the Standard Specifications.

MATERIALS

Liquid asphalt for prime coat must be Grade SC-70.

CONSTRUCTION

Apply at least 0.20 gallon of prime coat per square yard of designated area. Do not apply more prime coat than can be absorbed completely by the aggregate base in 24 hours.

You may request in writing the Engineer's approval to modify prime coat application rates.

Before paving, prime coat must cure for 48 hours.

Close public traffic to areas receiving prime coat. Do not track prime coat onto pavement surfaces beyond the job site.

MEASUREMENT AND PAYMENT

The Engineer determines prime coat quantities under the specifications for liquid asphalt in Section 93-1.04, "Measurement," of the Standard Specifications.

The contract price paid per ton for liquid asphalt (prime coat) includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in prime coat complete in place as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

If there is no contract item for liquid asphalt (prime coat), full compensation for furnishing and applying the prime coat is included in the contract price paid per ton for hot mix asphalt as designated in the Engineer's Estimate and no separate payment will be made therefor.

10-1.59 JOINTED PLAIN CONCRETE PAVEMENT

GENERAL

Summary

This work includes constructing jointed plain concrete pavement.

Comply with Section 40, "Concrete Pavement," of the Standard Specifications.

Submittals

Fabricate test specimens from a single sample of concrete for coefficient of thermal expansion testing under AASHTO T 336. Submit 4 test specimens for assurance testing.

Submit all your coefficient of thermal expansion data at the Web site:

http://169.237.179.13/cte/
For rejected test strips, submit a plan for changed materials, methods, or equipment before constructing additional test strips.

Quality Control and Assurance

General
Perform coefficient of thermal expansion testing under AASHTO T 336 at a frequency of 1 test for each 5,000 cubic yards of paving but not less than 1 test for projects with less than 5,000 cubic yards of JCPC. This test is not going to be used for acceptance.

Prepaving Conference
Meet with the Engineer at a prepaving conference at a mutually agreed time and place. Discuss methods of performing the production and paving work.
Prepaving conference attendees must sign an attendance sheet provided by the Engineer. The prepaving conference must be attended by your:

1. Project superintendent
2. Quality control manager
3. Paving construction foreman
4. Subcontractor's workers including:
 4.1. Foremen
 4.2. Concrete plant manager
 4.3. Concrete plant operator
 4.4. Personnel performing saw cutting and joint sealing

Do not start paving activities including test strips until the listed personnel have attended a prepaving conference.

Test Strips
The first paving activity must be to construct a test strip:

1. 700 to 1,000 feet long
2. Same width as the planned paving
3. With the same equipment used for the planned paving

The Engineer evaluates the test strip for compliance with the specifications for Engineer's acceptance. The Engineer selects from 6 to 12 core locations for dowel bars and up to 6 locations for tie bars per test strip. If you use mechanical dowel bar inserters, the test strip must demonstrate they do not leave voids, segregations, or surface irregularities such as depressions, dips, or high areas.
Allow the Engineer 3 days to evaluate the test strip for:

1. Smoothness
2. Dowel bar and tie bar alignment
3. Thickness
4. Final finishing except coefficient of friction

During the 3-day evaluation, the Engineer rejects a test strip if:

1. Surface varies more than 0.02 foot from a 12-foot straightedge's lower edge
2. Wheel path's individual high points are greater than 0.025 foot in 25 feet
3. Dowel bars do not comply with specified placement tolerances
4. Concrete pavement thickness deficiency is greater than 0.05 foot
5. Final finishing does not comply with the specifications except coefficient of friction

Remove the test strip if the Engineer rejects it for noncompliance with the specifications for dowel bar alignment or thickness. Dispose of rejected test strip material under Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

Contract No. 08-0M94U4

218
If the Engineer rejects the test strip for noncompliance with the smoothness or final finishing specifications except coefficient of friction, you may grind the test strip into compliance if you intend to leave it as part of the paving.

If the Engineer does not reject the test strip during the 3-day evaluation, you may begin production paving while the Engineer continues to evaluate the test strip for compliance with the other specifications. If the Engineer rejects the test strip for noncompliance with the other specifications, stop production paving until you construct a test strip the Engineer accepts.

Construct additional test strips until the Engineer accepts one.

Construct additional test strips if you:

1. Propose different paving equipment including:
 1.1. Paver
 1.2. Dowel bar inserter
 1.3. Tie bar inserter
 1.4. Tining
 1.5. Curing equipment

2. Change concrete mix proportions

You may request authorization to eliminate the test strip if you use paving equipment and personnel from a Department project (1) for the same type of pavement and (2) completed within the past 12 months. Submit supporting documents and previous project information with your request.

MATERIALS

Concrete

For field qualification, perform coefficient of thermal expansion testing under AASHTO T 336. Add enough air-entraining admixture in compliance with Section 90-4, "Admixtures," of the Standard Specifications to attain an air content of 4 ± 1.5 percent in the freshly mixed concrete.

Joint Seal

Use compression seal for longitudinal and transverse contraction joint.

Joint Filler for Isolation Joints

Joint filler for isolation joints must be bituminous expansion joint filler, Type 1.

Tack Coat

Tack coat must comply with Section 39, "Hot Mix Asphalt," of the Standard Specifications.

CONSTRUCTION

Tie Bar Spacing On Curves

If the curvature of a concrete pavement slab prevents equal spacing of tie bars to maintain the minimum clearance from transverse joints, space them from 15 to 18 inches.

Transverse Contraction Joints

Transverse contraction joints must be Type A1. If widening existing concrete pavement, do not construct transverse contraction joints to match the existing pavement's joint spacing or skew unless specified. Transverse joints in concrete pavement on a curve must be on a single straight line through the curve's radius point.

Longitudinal Contraction Joints

Longitudinal contraction joints must be Type A2.

Transition Joints With Hot Mix Asphalt

If a joint between concrete pavement and hot mix asphalt is specified, apply tack coat between the concrete pavement and hot mix asphalt.
Concrete Pavement Removal
When removing and replacing concrete, remove it to full depth and width.

Crack Treatment
If cracks form that do not extend to the full depth of a slab, treat the cracks with a high molecular weight methacrylate resin under "Concrete Pavement Crack Treatment."

Removal and Replacement of Slabs Without Bar Reinforcement
For full depth and partial length slab removal, saw cut the full depth and width.
Saw cut full slabs at the longitudinal and transverse joints. Saw cut partial slabs at joints and where the Engineer orders. You may make additional saw cuts within the removal area to facilitate slab removal or to prevent binding of the saw cut at the removal area's edge. Saw cut perpendicular to the slab surface.
Use slab lifting equipment with lifting devices that attach to the slab. After lifting the slab, paint the cut ends of dowels and tie bars.
Construct transverse and longitudinal construction joints between the new slab and existing concrete using dowel bars. For longitudinal joints, offset dowel bar holes from original tie bars by 3 inches. For transverse joints, offset dowel bar holes from the original dowel bars by 3 inches.
Drill holes and use chemical adhesive to bond the dowel bars to the existing concrete. Use an automated dowel bar drilling machine. Holes must be at least 1/8-inch greater than the dowel bar diameter. Clean the holes in compliance with the chemical adhesive manufacturer's instructions. Holes must be dry when you place chemical adhesive.
Immediately after inserting dowel bars into the chemical adhesive-filled holes, support the dowel bars and leave them undisturbed for the minimum cure time recommended by the chemical adhesive manufacturer.
Clean the faces of joints and underlying base from loose material and contaminants. Coat the faces with a double application of pigmented curing compound under Section 28-1.07, "Curing," of the Standard Specifications.
For partial slab replacements, place preformed sponge rubber expansion joint filler at new transverse joints in compliance with ASTM D 1752.

MEASUREMENT AND PAYMENT
If the Engineer accepts a test strip and it remains as part of the paving surface, the test strip is measured and paid for as jointed plain concrete pavement, seal pavement joint, and seal isolation joint as the case may be.
The contract item for concrete pavement transition panel as designated in the Verified Bid Item List is measured by the cubic yard. The Engineer calculates the pay quantity volume based on the plan dimensions. The Engineer does not measure concrete pavement placed outside those dimensions unless it was ordered by the Engineer.
The contract price paid per cubic yard for concrete pavement transition panel as designated in the Verified Bid Item List includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in constructing the concrete pavement, complete in place including bar reinforcement, tie bars, and dowel bars as shown on the plans and as specified in these specifications and the special provisions, and as directed by the Engineer.
Full compensation for providing a facility for and attending the prepaving conference is included in the contract price paid per cubic yard for jointed plain concrete pavement and no additional compensation is allowed therefor.
Full compensation for applying tack coat at transverse transition joints and end anchors is included in the contract price paid per cubic yard for jointed plain concrete pavement and no separate payment is made therefor.
If the curvature of a slab affects tie bar spacing and additional tie bars are required, they are included in the contract price paid per cubic yard for jointed plain concrete pavement and no additional compensation is allowed therefor.

10-1.60 JOINTED PLAIN CONCRETE PAVEMENT (RAPID STRENGTH CONCRETE)
GENERAL
Summary
This work includes constructing jointed plain concrete pavement (JPCP) with rapid strength concrete (RSC). Comply with Section 40, "Concrete Pavement," of the Standard Specifications.
Definitions
early age: Time less than 10 times the concrete's final set time.
final set time: Time a specific penetration resistance of 4,000 psi is achieved, determined under ASTM C 403.
opening age: Time the concrete achieves the specified strength for opening to traffic.

transverse crack: A crack running from one longitudinal edge of the panel to the other.

Submittals
Submit AASHTO T 336 coefficient of thermal expansion test results to the Engineer and at the website http://169.237.179.13/cte/.

Quality Control and Assurance

Prepaving Conference
Meet with the Engineer at a prepaving conference at a mutually agreed time and place. Discuss methods of performing the production and paving work.
Prepaving conference attendees must sign an attendance sheet provided by the Engineer. The prepaving conference must be attended by your:

1. Project superintendent
2. Quality control manager
3. Paving construction foreman
4. Subcontractor's workers including:
 4.1. Foremen
 4.2. Concrete plant manager
 4.3. Concrete plant operator
 4.4. Personnel performing saw cutting and joint sealing

Do not start paving activities until the listed personnel have attended a prepaving conference.

Mix Design
At least 10 days before use, submit a mix design for RSC that includes:

1. Opening age
2. Proposed aggregate gradation
3. Proportions of hydraulic cement and aggregate
4. Types and amounts of chemical admixtures
5. Maximum time allowed between batching and placing
6. Range of ambient temperatures over which the mix design is effective
7. Final set time
8. Any special instructions or conditions such as water temperature requirements

Submit more than 1 mix design to plan for ambient temperature variations anticipated during RSC placement. Each mix design must have a maximum ambient temperature range of 18 °F.
Submit modulus of rupture development data for each mix design. You may use modulus of rupture development data from laboratory-prepared samples. The testing ages for modulus of rupture development data must include 1 hour before opening age, opening age, one hour after opening age, 24 hours, 7 days, and 28 days.
During concrete mix design, perform coefficient of thermal expansion testing under AASHTO T 336 from trial mixture samples. Provide a split test sample to METS. If changing an aggregate supply source or the mix properties or proportions, perform coefficient of thermal expansion testing for the new concrete mix.

Calibration Testing Certificates of Compliance
Submit a Certificate of Compliance under Section 6-1.07, "Certificates of Compliance," of the Standard Specifications with each delivery of aggregate, cement, and admixtures to be used for calibration tests. Submit certified copies of the weight of each delivery. The Certificate of Compliance must state the source of materials used for the calibration tests is from the same source to be used in the work. The Certificate of Compliance must be signed by your authorized representative.

Cement and Admixtures
At least 45 days before intended use, submit a sample of cement from each proposed lot and samples of proposed admixtures in the quantities ordered by the Engineer.
During RSC pavement operations, submit uniformity reports for hydraulic cement at least once every 30 days to the Transportation Laboratory, Attention: Cement Laboratory. Uniformity reports must comply with ASTM C 917, except testing age and water content may be modified to suit the particular material.

MATERIALS

Temporary Roadway Pavement Structure

Aggregate Base
Aggregate base for temporary roadway pavement structure must be produced from any combination of broken stone, crushed gravel, natural rough-surfaced gravel, reclaimed concrete and sand. Grading of aggregate base must comply with the 3/4-inch maximum grading specified in Section 26-1.02A, "Class 2 Aggregate Base," of the Standard Specifications.

Hot Mix Asphalt
For hot mix asphalt:

1. Choose the 3/8-inch or 1/2-inch HMA Type A or Type B aggregate gradation under Section 39-1.02E, "Aggregate," of the Standard Specifications.
2. Minimum asphalt binder content must be 6.8 percent for 3/8-inch aggregate gradation and 6.0 percent for 1/2-inch aggregate gradation.
3. Choose asphalt binder Grade PG 64-10, PG 64-16, or PG 70-10 under Section 92, "Asphalts," of the Standard Specifications.

Rapid Strength Concrete
RSC that fails to meet opening strength but has a modulus of rupture of at least 200 psi may serve as temporary roadway and must be replaced prior to acceptance of the contract.

Bond Breaker
Bond breaker must be one of the following:

1. White curing paper under ASTM C 171
2. White opaque polyethylene film under ASTM C 171, except that the minimum thickness must be 6 mils
3. Paving asphalt, Grade PG 64-10, under Section 92, "Asphalts," of the Standard Specifications
4. Curing compound (5) under Section 90-7.01b, "Curing Compound Method," of the Standard Specifications

Rapid Strength Concrete
RSC must be one of the following:

1. Concrete complying with section 90 “Portland Cement Concrete”, except you may use Type III portland cement.
2. Concrete complying with section 90 “Portland Cement Concrete”, except:
 2.1. You may use any cement that complies with the definition of hydraulic cement or blended hydraulic cement in ASTM C 219 and the requirements shown in the following table:
Hydraulic Cement

<table>
<thead>
<tr>
<th>Test Description</th>
<th>Test Method</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contraction in air</td>
<td>California Test 527, W/C Ratio = 0.39 ±0.010</td>
<td>0.053 %, max.</td>
</tr>
<tr>
<td>Mortar expansion in water</td>
<td>ASTM C 1038</td>
<td>0.04 %, max.</td>
</tr>
<tr>
<td>Soluble chloride(^a)</td>
<td>California Test 422</td>
<td>0.05 %, max.</td>
</tr>
<tr>
<td>Soluble sulfates(^c)</td>
<td>California Test 417</td>
<td>0.30 %, max.</td>
</tr>
<tr>
<td>Thermal stability</td>
<td>California Test 553</td>
<td>90 %, min.</td>
</tr>
<tr>
<td>Compressive strength @ 3 days</td>
<td>ASTM C 109</td>
<td>2,500 psi</td>
</tr>
</tbody>
</table>

Note:
\(^a\) Perform test on a cube specimen fabricated under ASTM C 109. Cure the specimen at least 14 days and then pulverized to 100 percent passing the No. 50 sieve.
\(^b\) If you use chemical admixtures, include them when testing.
\(^c\) The requirements of this table does not apply to portland cement.

2.2. You may use citric acid or borax if you submit a written request from the cement manufacturer and a test sample.

Section 40-2.01C does not apply.

Supplementary cementitious material is not required in RSC.

Choose the combined aggregate grading for RSC from either the 1-1/2 inch maximum or the 1-inch maximum combined grading under Section 90-3.04, "Combined Aggregate Gradings," of the Standard Specifications.

Aggregates for RSC must be either:

1. Innocuous in conformance with the provisions in Section 90-2.02, "Aggregates."
2. When tested under ASTM C 1567 using the proposed aggregate and cementitious materials, the expansion is less than 0.10 percent. Submit test data with each mix design. Test data authorized by the Department no more than 3 years before the 1st day of the Contract is authorized for the entire Contract. The test data must be for the same concrete mix and must use the same materials and material sources to be used on the Contract.

You may use Type C accelerating and Type E accelerating and water reducing chemical admixtures as specified in Section 90-4, "Admixtures," of the Standard Specifications. The requirement for air entrainment of concrete in freeze-thaw areas only applies when portland cement is used.

During concrete mix design, perform coefficient of thermal expansion testing under AASHTO T 336 from trial mixture samples. If changing an aggregate supply source or the mix properties or proportions, perform coefficient of thermal expansion testing for the new concrete mix. This test will not be used for acceptance.

Joint Seal

Use compression seal for longitudinal and transverse contraction joints.

Joint Filler for Isolation Joints

Joint filler for isolation joints must be bituminous expansion joint filler, Type 1.

Tack Coat

Tack coat must comply with Section 39, "Hot Mix Asphalt," of the Standard Specifications.

CONSTRUCTION

Tie Bar Spacing On Curves

If the curvature of a concrete pavement slab prevents equal spacing of tie bars to maintain the minimum clearance from transverse joints, space them from 15 to 18 inches.

Transverse Contraction Joints

Transverse contraction joints must be Type A1. If widening existing concrete pavement, do not construct transverse contraction joints to match the existing pavement's joint spacing or skew unless specified. Transverse joints in concrete pavement on a curve must be on a single straight line through the curve's radius point.
Longitudinal Contraction Joints

Longitudinal contraction joints must be Type A2.

Transition Joints With Hot Mix Asphalt

If a joint between concrete pavement and hot mix asphalt is specified, apply tack coat between the concrete pavement and hot mix asphalt.

Temporary Roadway Pavement Structure

Place hot mix asphalt and aggregate base where existing pavement is replaced for construction of a temporary roadway pavement structure. The quantity must be equal to the quantity of pavement removed during the work shift. If you place temporary roadway pavement structure, it must be maintained and later removed as the first order of work when JPCP (RSC) activities resume. The temporary roadway pavement structure must consist of 3-1/2 inch thick hot mix asphalt over aggregate base. RSC not conforming to the specifications may be used for temporary roadway pavement structure with the Engineer's approval.

Spread and compact aggregate base and hot mix asphalt by methods that produce a well-compacted, uniform base, with a surface of uniform smoothness, texture and density. Surfaces must be free from pockets of coarse or fine material. You may spread aggregate base and hot mix asphalt each in one layer. The finished surface of hot mix asphalt must not vary more than 0.05 foot from the lower edge of a 12-foot long straightedge placed parallel with the centerline and must match the elevation of existing concrete pavement along the joints between the existing pavement and temporary surfacing.

After removing temporary roadway pavement structure, you may stockpile removed aggregate base at the project site and reuse it for temporary roadway pavement structures. When no longer required, dispose of standby material or stockpiled material for temporary roadway pavement structures under Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

Rapid Strength Concrete

General

Concrete pavement penetration specified in Section 90-6.06, "Amount of Water and Penetration," of the Standard Specifications does not apply to RSC.

RSC must develop the specified opening age and 7-day modulus of rupture strengths.

Proportioning

Weighing, measuring, and metering devices used for proportioning materials must comply with Section 9-1.01, "Measurement of Quantities," of the Standard Specifications.

For batches with a volume of 1 cubic yard or more, proportioning must comply with one of the following methods:

1. Batch the ingredients at a central batch plant and charge them into a mixer truck for transportation to the pour site. Proportion ingredients under Section 90-5, "Proportioning," of the Standard Specifications.
2. Batch the ingredients except the cement at a central batch plant and charge them into a mixer truck for transportation to a cement silo and weigh system, which must proportion cement for charging into the mixer truck.
3. Batch ingredients except the cement at a central batch plant and charge them into a mixer truck for transportation to a location where pre-weighed containerized cement is added to the mixer truck. The cement pre-weighing operation must utilize a platform scale. The platform scale must have a maximum capacity of 2.75 tons with a maximum graduation size of 1 pound. Pre-weigh cement into a fabric container. The minimum amount of cement to be proportioned into any single container must be 1/2 of the total amount required for the load of RSC being produced.
4. Cement, water, and aggregate are proportioned volumetrically.

For central batch plants, indicators for weighing and measuring systems such as over and under dials must be grouped so that each indicator's smallest increment can be accurately read from the control point of the proportioning operation. In addition, indicators for weighing and measuring cement batched from a remote weighing system must be placed so that each indicator can be accurately read from the control point of the proportioning operation.
Weighing equipment must be insulated from other equipment's vibration or movement. When the plant is operating, each draft's material weight must not vary from the designated weight by more than the specified tolerances. Each scale graduation must be 0.001 of the usable scale capacity.

Aggregate must be weighed cumulatively. Equipment for weighing aggregate must have a zero tolerance of ±0.5 percent of the aggregate's designated total batch weight. Equipment for the separate weighing of the cement must have a zero tolerance of ±0.5 percent of the cement's designated individual batch draft. Equipment for measuring water must have a zero tolerance of ±0.5 percent of the water's designated weight or volume.

The weight indicated for any individual batch of material must not vary from the preselected scale setting by more than:

<table>
<thead>
<tr>
<th>Material</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate</td>
<td>±1.0 percent of designated batch weight</td>
</tr>
<tr>
<td>Cement</td>
<td>±0.5 percent of designated batch weight</td>
</tr>
<tr>
<td>Water</td>
<td>±1.5 percent of designated batch weight or volume</td>
</tr>
</tbody>
</table>

Proportioning consists of dividing the aggregate into the specified sizes and storing them in separate bins, and then combining the aggregate with cement and water. Proportion dry ingredients by weight. Proportion liquid ingredients by weight or volume.

Control aggregate discharged from several bins with gates or mechanical conveyors. The means of discharge from the bins and from the weigh hopper must be interlocked so that no more than 1 bin can discharge at a time, and the weigh hopper cannot be discharged until the required quantity from each of the bins has been deposited in the weigh hopper.

At the time of batching, dry and drain aggregates to a stable moisture content. Do not proportion aggregates with visible separation of water from the aggregate during proportioning. At the time of batching, the free moisture content of fine aggregate must not exceed 8 percent of its saturated, surface-dry weight.

If the proportioning plant has separate supplies of the same size group of aggregate with different moisture content, specific gravity, or surface characteristics affecting workability, exhaust 1 supply before using another supply.

Keep cement separated from the aggregate until discharged into the mixer. When discharged into the mixer, cement must be free of lumps and clods. Before reuse, clean fabric containers used for transportation or proportioning of cement.

Weigh systems for proportioning aggregate and cement must be individual and distinct from other weigh systems. Each weigh system must have a hopper, a lever system, and an indicator.

When ordered by the Engineer, determine the gross weight and tare weight of truck mixers on scales designated by the Engineer.

Install and maintain in operating condition an electrically actuated moisture meter. The meter must indicate on a readily visible scale the changes in the fine aggregate moisture content as it is batched. The meter must have a sensitivity of 0.5 percent by weight of the fine aggregate.

Obtain the Engineer's acceptance before mixing water into the concrete during hauling or after arrival at the delivery point. If the Engineer accepts additional water be incorporated into the concrete, the drum must revolve not less than 30 revolutions at mixing speed after the water is added and before starting discharge. Measure water added to the truck mixer at the job site through a meter in compliance with Section 9-1.01, "Measurement of Quantities," of the Standard Specifications.

Volumetric Proportioning

You may choose to proportion RSC by volume.

Batch-mixer trucks must proportion cement, water, aggregate, and additives by volume. Aggregate feeders must be connected directly to the drive on the cement vane feeder. The cement feed rate must be tied directly to the feed rate for the aggregate and other ingredients. Only change the ratio of cement to aggregate by changing the gate opening for the aggregate feed. The drive shaft of the aggregate feeder must have a revolution counter reading to the nearest full or partial revolution of the aggregate delivery belt.
Proportion aggregate with a belt feeder operated with an adjustable cutoff gate delineated to the nearest quarter increment. The gate opening height must be readily determinable. Proportion cement by any method that complies with the accuracy tolerance specifications. Proportion water with a meter under Section 9-1.01, "Measurement and Payment," of the Standard Specifications.

Calibrate the cutoff gate for each batch-mixer truck used and for each aggregate source. Calibrate batch-mixer trucks at 3 different aggregate gate settings that are commensurate with production needs. Perform at least 2 calibration runs for each aggregate gate.

Individual aggregate delivery rate check-runs must not deviate more than 1.0 percent from the mathematical average of all runs for the same gate and aggregate type. Each test run must be at least 1,000 pounds.

At the time of batching, dry and drain aggregates to a stable moisture content. Do not proportion aggregates with visible separation of water from the aggregate during proportioning. At the time of batching, the free moisture content of fine aggregate must not exceed 8 percent of its saturated, surface-dry weight.

If the proportioning plant has separate supplies of the same size group of aggregate with different moisture content, specific gravity, or surface characteristics affecting workability, exhaust 1 supply before using another supply.

Cover rotating and reciprocating equipment on batch-mixer trucks with metal guards.

Individual cement delivery rate check-runs must not deviate more than 1.0 percent of the mathematical average of 3 runs of at least 1,000 pounds each.

When the water meter operates from 50 to 100 percent of production capacity, the indicated weight of water delivered must not differ from the actual weight delivered by more than 1.5 percent for each of 2 runs of 300 gallons. Calibrate the water meter under California Test 109. The water meter must be equipped with a resettable totalizer and display the operating rate.

Conduct calibration tests for aggregate, cement, and water proportioning devices with a platform scale located at the calibration site. Platform scales for weighing test-run calibration material must have a maximum capacity of 2.75 tons with maximum graduations of 1 pound. Error test the platform scale within 8 hours of calibrating the batch-mixer truck proportioning devices. Perform error-testing with test weights under California Test 109. Furnish a witness scale that is within 2 graduations of the test weight load. The witness scale must be available for use at the production site throughout the production period. Equipment needed for the calibration of proportioning systems must remain available at the production site throughout the production period.

The batch-mixer truck must be equipped so that accuracy checks can be made. Recalibrate proportioning devices every 30 days after production starts or when you change the source or type of any ingredient.

A spot calibration is calibration of the cement proportioning system only. Perform a 2-run spot calibration each time 55 tons of cement passes through the batch-mixer truck. If the spot calibration shows the cement proportioning system does not comply with the specifications, complete a full calibration of the cement proportioning system before you resume production.

Proportion liquid admixtures with a meter.

Locate cement storage immediately before the cement feeder. Equip the system with a device that automatically shuts down power to the cement feeder and aggregate belt feeder when the cement storage level is less than 20 percent of the total volume.

Submit aggregate moisture determinations, made under California Test 223, at least every 2 hours during proportioning and mixing operations. Record moisture determinations and submit them at the end of each production shift.

Equip each aggregate bin with a device that automatically shuts down the power to the cement feeder and the aggregate belt feeder when the aggregate discharge rate is less than 95 percent of the scheduled discharge rate.

Proportioning device indicators must be in working order before starting proportioning and mixing operations and must be visible when standing near the batch-mixer truck.

Identifying numbers of batch-mixer trucks must be at least 3 inches in height, and be located on the front and rear of the vehicles.

Mix volumetric proportioned RSC in a mechanically operated mixer. You may use auger-type mixers. Operate mixers uniformly at the mixing speed recommended by the manufacturer. Do not use mixers that have an accumulation of hard concrete or mortar.

Do not mix more material than will permit complete mixing. Reduce the volume of material in the mixer if complete mixing is not achieved. Continue mixing until a homogeneous mixture is produced at discharge. Do not add water to the RSC after discharge.

Do not use equipment with components made of aluminum or magnesium alloys that may have contact with plastic concrete during mixing or transporting of RSC.

The Engineer determines uniformity of concrete mixtures by differences in penetration measurements made under California Test 533. Differences in penetration are determined by comparing penetration tests on 2 samples of mixed concrete from the same batch or truck mixer load. The differences must not exceed 5/8 inch. Submit
samples of freshly mixed concrete. Sampling facilities must be safe, accessible, clean, and produce a sample that is representative of production. Sampling devices and sampling methods must comply with California Test 125.

Do not use ice to cool RSC directly. If ice is used to cool water used in the mix, it must be melted before entering the mixer.

When proportioning and charging cement into the mixer, prevent variance of the required quantity by conditions such as wind or accumulation on equipment.

Each mixer must have metal plates that provide the following information:

1. Designed usage
2. Manufacturer's guaranteed mixed concrete volumetric capacity
3. Rotation speed

The device controlling the proportioning of cement, aggregate, and water must produce production data. The production data must be captured at 15-minute intervals throughout daily production. Each capture of production data represents production activity at that time and is not a summation of data. The amount of material represented by each production capture is the amount produced in the period from 7.5 minutes before to 7.5 minutes after the capture time. The daily production data must be submitted in electronic or printed media at the end of each production shift. The reported data must be in the order including data titles as follows:

1. Weight of cement per revolution count
2. Weight of each aggregate size per revolution count
3. Gate openings for each used aggregate size
4. Weight of water added to the concrete per revolution count
5. Moisture content of each used aggregate size
6. Individual volume of other admixtures per revolution count
7. Time of day
8. Day of week
9. Production start and stop times
10. Batch-mixer truck identification
11. Name of supplier
12. Specific type of concrete being produced
13. Source of the individual aggregate sizes
14. Source, brand, and type of cement
15. Source, brand and type of individual admixtures
16. Name and signature of operator

You may input production data by hand into a pre-printed form or it may be captured and printed by the proportioning device. Present electronic media containing recorded production data in a tab delimited format on a CD or DVD. Each capture of production data must be followed by a line-feed carriage-return with sufficient fields for the specified data.

Bond Breaker

Place bond breaker between JPCP (RSC) and concrete treated base layer.

If you use curing paper or polyethylene film, place it in a wrinkle free manner. Overlap adjacent sheets a minimum of 6 inches in the same direction as the concrete pour.

If you use curing compound or paving asphalt, before application remove foreign and loose materials remaining from slab removal.

If you use paving asphalt, do not add water before applying asphalt to the base surface. Apply the paving asphalt in one even application at a rate from 0.02 to 0.10 gallon per square yard over the entire base surface area. Do not place concrete pavement until the paving asphalt has cured.

If you use curing compound, apply it in 2 separate applications. Apply each application evenly at a rate from 0.07 to 0.11 gallon per square yard over the entire base surface area.

Spreading, Compacting, and Shaping

You may use metal or wood side forms. Wood side forms must not be less than 1-1/2 inches thick. Side forms must be of sufficient rigidity, both in the form and in the connection with adjoining forms, that movement will not occur under forces from subgrading and paving equipment or from the pressure of concrete.
Side forms must remain in place until the pavement edge no longer requires the protection of forms. Clean and oil side forms before each use.

After you deposit the RSC on the subgrade, consolidate RSC with high-frequency internal vibrators. Consolidate adjacent to forms and across the full paving width. Place RSC as nearly as possible to its final position. Do not use vibrators for extensive shifting of RSC.

Spread and shape RSC with powered finishing machines supplemented by hand finishing.

After you mix and place RSC, do not add water to the surface to facilitate finishing. Use surface finishing additives as recommended by the manufacturer of the cement after their use is approved by the Engineer.

Joints

Before placing RSC against existing concrete, place 1/4-inch thick commercial quality polyethylene flexible foam expansion joint filler across the original transverse and longitudinal joint faces and extend the excavation's full depth. Place the top of the joint filler flush with the top of the pavement. Secure joint filler to the joint face of the existing pavement to prevent the joint filler from moving during the placement of RSC.

Final Finishing

If the Engineer determines by visual inspection the final texturing may not comply with the specifications for coefficient of friction, the Engineer tests to determine coefficient of friction. Open the pavement to traffic and allow 5 days after concrete placement for the Department to test for coefficient of friction. If pavement does not comply with the specifications for coefficient of friction, grind the pavement under Section 42-2, "Grinding," of the Standard Specifications. Perform grinding before sealing joints.

Concrete Pavement Removal

When removing and replacing concrete, remove it to full depth and width.

Crack Treatment

If cracks form that do not extend to the full depth of a slab, treat the cracks with a high molecular weight methacrylate resin under "Concrete Pavement Crack Treatment."

Removal and Replacement of Slabs Without Bar Reinforcement

For full depth and partial length slab removal, saw cut the full depth and width. Saw cut full slabs at the longitudinal and transverse joints. Saw cut partial slabs at joints and where the Engineer orders. You may make additional saw cuts within the removal area to facilitate slab removal or to prevent binding of the saw cut at the removal area's edge. Saw cut perpendicular to the slab surface.

Use slab lifting equipment with lifting devices that attach to the slab. After lifting the slab, paint the cut ends of dowels and tie bars.

Construct transverse and longitudinal construction joints between the new slab and existing concrete using dowel bars. For longitudinal joints, offset dowel bar holes from original tie bars by 3 inches. For transverse joints, offset dowel bars holes from the original dowel bars by 3 inches.

Drill holes and use chemical adhesive to bond the dowel bars to the existing concrete. Use an automated dowel bar drilling machine. Holes must be at least 1/8-inch greater than the dowel bar diameter. Clean the holes in compliance with the chemical adhesive manufacturer's instructions. Holes must be dry when you place chemical adhesive.

Immediately after inserting dowel bars into the chemical adhesive-filled holes, support the dowel bars and leave them undisturbed for the minimum cure time recommended by the chemical adhesive manufacturer.

Clean the faces of joints and underlying base from loose material and contaminants. Coat the faces with a double application of pigmented curing compound under Section 28-1.07, "Curing," of the Standard Specifications. For partial slab replacements, place preformed sponge rubber expansion joint filler at new transverse joints in compliance with ASTM D 1752.

MEASUREMENT AND PAYMENT

The contract price paid per cubic yard for jointed plain concrete pavement (rapid strength concrete) as designated in the Verified Bid Item List includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in constructing the concrete pavement, complete in
place including bond breaker, bar reinforcement, tie bars, dowel bars, anchors, and fasteners, as shown on the plans and as specified in these specifications and the special provisions, and as directed by the Engineer.

Full compensation for furnishing and disposing of standby materials for temporary roadway pavement structure, constructing, maintaining, removing, and disposing of temporary roadway pavement structure, and work involved in determining the modulus of rupture of RSC are included in the contract price paid per cubic yard for jointed plain concrete pavement (rapid strength concrete) and no additional compensation will be allowed therefor.

The Engineer adjusts payment for jointed plain concrete pavement (rapid strength concrete) in compliance with "Pay Factor Adjustment for Low Modulus of Rupture."

Repair, or removal and replacement of damaged pavement and base is at your expense and will not be measured or paid for.

The contract item for concrete pavement transition panel as designated in the Verified Bid Item List is measured by the cubic yard. The Engineer calculates the pay quantity volume based on the plan dimensions. The Engineer does not measure concrete pavement placed outside those dimensions unless it was ordered by the Engineer.

The contract price paid per cubic yard for concrete pavement transition panel as designated in the Verified Bid Item List includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in constructing the concrete pavement, complete in place including bar reinforcement, tie bars, and dowel bars as shown on the plans and as specified in these specifications and the special provisions, and as directed by the Engineer.

Full compensation for providing a facility for and attending the prepaving conference is included in the contract price paid per cubic yard for jointed plain concrete pavement (rapid strength concrete) and no additional compensation is allowed therefor.

Full compensation for applying tack coat at transverse transition joints and end anchors is included in the contract price paid per cubic yard for jointed plain concrete pavement (rapid strength concrete) and no separate payment is made therefor.

If the curvature of a slab affects tie bar spacing and additional tie bars are required, they are included in the contract price paid per cubic yard for jointed plain concrete pavement (rapid strength concrete) and no additional compensation is allowed therefor.

If calibration of volumetric batch-trucks is performed more than 100 miles from the project limits, payment for individual slab replacement is reduced by $1,000 per calibration session.

10-1.61 CONCRETE PAVEMENT JUST-IN-TIME-TRAINING

GENERAL

Summary

Your personnel required to attend the prepaving conference must also complete Just-In-Time-Training (JITT). JITT is a formal training class for the following pavement types:

<table>
<thead>
<tr>
<th>Pavement Types for JITT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jointed Plain Concrete Pavement</td>
</tr>
</tbody>
</table>

Submittals

At least 7 business days before JITT, submit the instructor's name and listed experience, the JITT facility's location, and 1 copy each of the course syllabus, handouts, and presentation materials.

The Engineer provides training evaluation forms and each attendee must complete them. 5 business days after JITT, submit completed training evaluation forms to the Engineer and to:

Construction_Engineering_HQ@dot.ca.gov

Just-In-Time-Training

JITT must be:

1. At least 4 hours long
2. At your option, an extension of the prepaving conference
3. Conducted within 3 miles of the job site
4. Completed at least 20 days before you start paving activities
5. Conducted during normal working hours
Provide a JITT instructor who is experienced with the specified pavement construction methods, materials, and tests. The instructor must be neither your employee nor a Department field staff member. Upon JITT completion, the instructor must issue a certificate of completion to each participant.

The Engineer may waive training for personnel who have completed equivalent training within the 12 months preceding JITT. Submit certificates of completion for the equivalent training.

MEASUREMENT AND PAYMENT

The Engineer determines the costs for providing JITT under Section 9-1.03, "Force Account Payment," of the Standard Specifications, except no markups are added and you are paid for one half of the JITT cost. Costs for providing JITT include training materials, class site, and the JITT instructor including the JITT instructor's travel, lodging, meals and presentation materials. The Engineer does not pay your costs for attending JITT.

10-1.62 CONCRETE PAVEMENT CRACK TREATMENT

GENERAL

Summary

This work includes applying a high molecular weight methacrylate (HMWM) resin system to concrete pavement surface cracks that do not extend the full slab depth. HMWM resin system consists of:

1. HMWM resin
2. Promoter
3. Initiator

HMWM is not to be applied to any cracks in continuously reinforced concrete pavement.

Submittals

Before starting crack treatment, submit the following plans under the specifications for working drawings in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications:

1. Public safety plan for HMWM resin system
2. Placement plan for the construction activity
3. Material Safety Data Sheet for each component of the HMWM resin system

The public safety plan and the placement plan must identify materials, equipment, and methods to be used. The public safety plan must include details for:

1. Shipping
2. Storage
3. Handling
4. Disposal of residual HMWM and the containers

The public safety plan must also include an airborne emissions monitoring plan prepared by a industrial hygienist with current certification in Comprehensive Practice by the American Board of Industrial Hygiene. Submit a copy of the hygienist's certification. The hygienist must monitor the emissions at a minimum of 4 points including the mixing point, the application point, and the point of nearest public contact. At work completion, submit a report by the industrial hygienist with results of the airborne emissions monitoring plan.

The placement plan must include:

1. Crack treatment schedule including coefficient of friction testing
2. Methods and materials including:
 2.1. Equipment description for HMWM resin system application
 2.2. Equipment description for sand application
 2.3. Gel time range and final cure time for resin

Revise rejected plans and resubmit. With each plan rejection, the Engineer gives revision directions including detailed comments in writing. The Engineer notifies you of a plan's acceptance or rejection within 2 weeks of receiving that plan.

Submit HMWM samples 20 days before use.
Quality Control and Assurance

Before starting crack treatment, treat a 500-square foot test area within the project limits and at a location accepted by the Engineer. Use test areas outside the traveled way if available. Weather and pavement conditions during the test crack treatment must be similar to those expected during production crack treatment. Use equipment during testing similar to those to be used during crack treatment.

For the test area and during crack treatment, use test tiles for evaluating the HMWM resin system cure time. Coat at least one 4” x 4” smooth glazed tile for each batch of HMWM resin system. Place the coated tile adjacent to the area being treated. Do not apply sand to the test tiles.

Do not start crack treatment until the Engineer accepts the test area.

The Engineer accepts a treated area if:

1. The corresponding test tiles are dry to the touch
2. The treated surface is tack-free and non-oily
3. The sand cover adheres enough to resist hand brushing
4. You remove excess sand
5. The coefficient of friction is at least 0.30 determined under California Test 342

MATERIALS

Promoter and initiator in the HMWM resin system must be compatible. The HMWM resin may be a prepromoted resin consisting of promoter and resin mixed together before filling containers. Identify prepromoted resin on the container label.

The resin gel time must be from 40 to 90 minutes at the application temperature. Adjust the gel time to compensate for temperature changes throughout the application.

HMWM resin must comply with:

<table>
<thead>
<tr>
<th>Property</th>
<th>Requirement</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity</td>
<td>25 cP, maximum, (Brookfield RVT with UL adapter, 50 RPM at 77 °F)</td>
<td>ASTM D 2196</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>0.90 minimum, at 77 °F</td>
<td>ASTM D 1475</td>
</tr>
<tr>
<td>Flash Point</td>
<td>180 °F, minimum</td>
<td>ASTM D 3278</td>
</tr>
<tr>
<td>Vapor Pressure</td>
<td>1.0 mm Hg, maximum, at 77 °F</td>
<td>ASTM D 323</td>
</tr>
<tr>
<td>Tack-free Time</td>
<td>400 minutes, maximum, at 77 °F</td>
<td>Specimen prepared under California Test 551</td>
</tr>
<tr>
<td>Volatile Content</td>
<td>30 percent, maximum</td>
<td>ASTM D 2369</td>
</tr>
<tr>
<td>PCC Saturated Surface-Dry Bond Strength</td>
<td>500 psi, minimum at 24 hours and 77 °F±2 °F</td>
<td>California Test 551</td>
</tr>
</tbody>
</table>

Note:

*Test must be performed before adding initiator.

Sand must be commercial quality dry blast sand. At least 95 percent of the sand must pass the No. 8 sieve and at least 95 percent must be retained on the No. 20 sieve.

CONSTRUCTION

Apply HMWM resin system after any grinding.

Prevent deleterious material such as oil from being deposited on the pavement by equipment with devices such as traps, filters, and drip pans.

Before applying HMWM resin system, clean the pavement surface by abrasive blasting and blow loose material from visible cracks with high-pressure air. Remove concrete curing seals from the pavement to be treated. The
pavement must be dry when blast cleaning is performed. If the pavement surface becomes contaminated before applying the HMWM resin system, clean the pavement surface by abrasive blasting.

If performing abrasive blasting within 10 feet of a lane occupied by traffic, operate abrasive blasting equipment with a concurrently operating vacuum attachment.

During pavement treatment, protect pavement joints, working cracks, and surfaces not to be treated. Block drains and openings that convey water to water ways.

The machine applying HMWM resin system must combine the components by either static in-line mixers or by external intersecting spray fans. The pump pressure at the spray bars must not cause atomization. Do not use compressed air to produce the spray. Use a shroud to enclose the spray bar apparatus.

You may apply HMWM resin system manually to prevent overspray onto adjacent traffic. If applying resin manually, limit the batch quantity of HMWM resin system to 5 gallons.

Do not apply HMWM resin system in more than 90 percent relative humidity. The prepared area must be dry and the surface temperature must be from 50 to 100 °F when the HMWM resin system is applied. Apply HMWM resin system at a rate of 90 square feet per gallon.

Protect existing facilities from the HMWM resin system application. Repair or replace existing facilities contaminated with HMWM resin system at your expense.

Flood the treatment area with HMWM resin system, penetrating the pavement and cracks. Apply HMWM resin system within 5 minutes after complete mixing. Mixed HMWM resin system viscosity must not increase. Redistribute excess material with squeegees or brooms within 10 minutes of application. Remove excess material from tined grooves.

Wait at least 20 minutes after applying HMWM resin system before applying sand. Apply sand at a rate of approximately 2 pounds per square yard or until refusal. Remove excess sand by vacuuming or sweeping.

Do not allow traffic on the treated surface until:

1. Treated surface is tack-free and non-oily
2. Sand cover adheres enough to resist hand brushing
3. Excess sand is removed
4. Coefficient of friction is at least 0.30 determined under California Test 342

PAYMENT

Full compensation for concrete pavement crack treatment is included in the contract price paid per cubic yard for concrete pavement as designated in the Engineer's Estimate and no separate payment will be made therefor.

10-1.63 GRIND EXISTING CONCRETE PAVEMENT

This work shall consist of grinding existing portland cement concrete as shown on the plans, as specified in Section 42-2, "Grinding," of the Standard Specifications and these special provisions, and as directed by the Engineer.

Grinding equipment for grinding concrete pavements shall use diamond blades mounted on a self-propelled machine designed for grinding and texturing concrete pavements. Grinding equipment that causes raveling, aggregate fracturing, or spalling, or that damages the transverse or longitudinal joints shall not be used.

Grinding shall be performed in the longitudinal direction of the traveled way and shall be done full lane width so that the grinding begins and ends at lines perpendicular to the pavement centerline.

Grinding concrete pavement shall result in a parallel corduroy texture consisting of grooves 0.08-inch to 0.12-inch wide with 55 grooves to 60 grooves per foot width of grinding. Tops of ridges shall be between 0.06-inch and 0.08-inch from the bottom of the blade grooves.

The ground surface at transverse joints or cracks will be tested with a 12-foot ±2-1/2 inches long straightedge laid on the pavement parallel with the centerline with its midpoint at the joint or crack. The surface shall not vary by more than 0.01-foot from the lower edge of the straightedge.

Cross-slope uniformity and positive drainage shall be maintained across the entire traveled way and shoulder. The cross-slope shall be uniform so that when tested with a 12-foot ±2-1/2 inches long straightedge placed perpendicular to the centerline, the ground pavement surface shall not vary more than 1/4 inch from the lower edge of the straightedge.

After grinding has been completed, the pavement surface shall be profiled in conformance with the requirements of Section 40-1.03, "Quality Control and Assurance," of the Standard Specifications. Two profiles shall be obtained in each lane approximately 3 feet from the lane lines. The average profile index shall be determined by averaging the two profiles in each lane. Additional grinding shall be performed, where necessary, to bring the ground pavement surface within the Profile Index requirements specified in Section 40-1.03, "Quality Control and Assurance," of the Standard Specifications.
Full compensation for profiling the ground pavement surface with a California profilograph or equivalent and any necessary additional grinding to bring the finished surface within the specified tolerances and for furnishing final profilograms to the Engineer shall be considered as included in the contract price paid per square yard for grind existing concrete pavement and no additional compensation will be allowed therefor.

10-1.64 PILING

GENERAL

Piling shall conform to the provisions in Section 49, "Piling," of the Standard Specifications, and these special provisions.

Unless otherwise specified, welding of any work performed in conformance with the provisions in Section 49, "Piling," of the Standard Specifications, shall be in conformance with the requirements in AWS D1.1.

Attention is directed to "Supplemental Project Information" and "Welding" of these special provisions.

Attention is directed to the "Construction Considerations" section of each foundation report provided in "Supplemental Project Information" of these special provisions for existing conditions and additional requirements for each structure location.

Difficult pile installation is anticipated due to the presence of caving soils, existing reinforced concrete footings and piles as shown on the plans, high ground water, and traffic control.

When a calculated nominal driving resistance is shown on the plans for piling, that value shall be utilized in lieu of nominal resistance in Section 49, "Piling," of the Standard Specifications, the plans, and these special provisions.

Predrilled Holes

Piles shall be driven in oversized drilled holes in conformance with the provisions in Section 49-1.06, "Predrilled Holes," of the Standard Specifications at the locations and to the corresponding bottom of hole elevations listed in the following table:

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>Abutment Number</th>
<th>Bent Number</th>
<th>Elevation of Bottom of Hole</th>
</tr>
</thead>
<tbody>
<tr>
<td>54-0482L/R</td>
<td>1 and 7</td>
<td></td>
<td>966 ft</td>
</tr>
<tr>
<td>54-479L</td>
<td>1</td>
<td></td>
<td>967 ft</td>
</tr>
<tr>
<td>54-479L</td>
<td>3</td>
<td></td>
<td>969 ft</td>
</tr>
<tr>
<td>54-479R</td>
<td>1</td>
<td></td>
<td>971 ft</td>
</tr>
<tr>
<td>54-479R</td>
<td>3</td>
<td></td>
<td>969 ft</td>
</tr>
<tr>
<td>54-471L/R</td>
<td>1</td>
<td></td>
<td>962 ft</td>
</tr>
<tr>
<td>54-471L/R</td>
<td>13</td>
<td></td>
<td>973 ft</td>
</tr>
</tbody>
</table>

CAST-IN-DRILLED-HOLE CONCRETE PILES

GENERAL

Summary

Cast-in-drilled-hole (CIDH) concrete piling shall conform to the provisions in Section 49-4, "Cast-In-Place Concrete Piles," of the Standard Specifications and these special provisions.

The provisions of "Welding" of these special provisions shall not apply to temporary steel casings.

Definitions

dry hole:

1. Except for CIDH concrete piles specified as end bearing, a drilled hole that:

 1.1. Accumulates no more than 12 inches of water in the bottom of the drilled hole during a period of 1 hour without any pumping from the hole during the hour.

 1.2. Has no more than 3 inches of water in the bottom of the drilled hole immediately before placing concrete.

2. For CIDH concrete piles specified as end bearing, a drilled hole free of water without the use of pumps.
Submittals

Pile Installation Plan

The Contractor shall submit a pile installation plan to the Engineer for approval for all CIDH concrete piling. The pile installation plan shall be submitted at least 15 days before constructing CIDH concrete piling and shall include complete descriptions, details, and supporting calculations for the following:

A. Concrete mix design, certified test data, and trial batch reports.
B. Drilling or coring methods and equipment.
C. Proposed method for casing installation and removal when necessary.
D. Methods for placing, positioning, and supporting bar reinforcement. If plastic spacers are proposed for use, include the manufacturer's data and a sample of the plastic spacer.
E. Methods and equipment for determining the depth of concrete and actual and theoretical volume placed, including effects on volume of concrete when any casings are withdrawn.
F. Methods and equipment for verifying that the bottom of the drilled hole is clean before placing concrete.
G. Methods and equipment for preventing upward movement of reinforcement, including the Contractor's means of detecting and measuring upward movement during concrete placement operations.

For concrete placed under slurry, the pile installation plan shall also include complete descriptions, details, and supporting calculations for the following:

A. Concrete batching, delivery, and placing systems, including time schedules and capacities. Time schedules shall include the time required for each concrete placing operation at each pile.
B. Concrete placing rate calculations. When requested by the Engineer, calculations shall be based on the initial pump pressures or static head on the concrete and losses throughout the placing system, including anticipated head of slurry and concrete to be displaced.
C. Suppliers’ test reports on the physical and chemical properties of the slurry and any proposed slurry chemical additives, including Material Safety Data Sheet.
D. Slurry testing equipment and procedures.
E. Methods of removal and disposal of excavation, slurry, and contaminated concrete, including removal rates.
F. Methods and equipment for slurry agitating, recirculating, and cleaning.

QUALITY ASSURANCE

Concrete Test Batch

Before concrete is deposited under slurry, a concrete test batch shall be produced and delivered to the project under conditions and in time periods similar to those expected during placement of concrete in the piles. Concrete shall be placed in an excavated hole or suitable container of adequate size to allow for testing as specified herein. Depositing of concrete under slurry will not be required. In addition to meeting the specified nominal slump, the concrete test batch shall meet the following requirements:

A. For piles where the time required for each concrete placing operation, as submitted in the placing plan, will be 2 hours or less, the concrete test batch shall demonstrate that the proposed concrete mix design achieves a slump of at least 7 inches after twice that time has elapsed.
B. For piles where the time required for each concrete placing operation, as submitted in the placing plan, will be more than 2 hours, the concrete test batch shall demonstrate that the proposed concrete mix design achieves a slump of at least 7 inches after that time plus 2 hours has elapsed.

The time period shall begin at the start of placement. Concrete shall not be vibrated or agitated during the test period. Slump tests will be performed in conformance with the requirements in California Test 556, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

Preconstruction Meeting

A preconstruction meeting for CIDH concrete pile construction shall be held (1) at least 5 business days after submitting the pile installation plan and (2) at least 10 days before the start of CIDH concrete pile construction.

The meeting shall include the Engineer, the Contractor, and any subcontractors involved in the CIDH concrete pile construction.

The purpose of this meeting is to:
A. Establish contacts and communication protocol between the Contractor, any subcontractors involved in CIDH concrete pile construction, and the Engineer
B. Review the construction process, acceptance testing, and anomaly mitigation of CIDH concrete piles

The Contractor shall schedule the meeting and provide a facility for the meeting. The Engineer will conduct the meeting. The following will be discussed:

A. Pile placement plan, dry and wet
B. Acceptance testing, including gamma-gamma logging, cross-hole sonic logging, and coring
C. Pile Design Data Form
D. Mitigation process
E. Timeline and critical path activities
F. Structural, geotechnical, and corrosion design requirements
G. Future meetings, if necessary, for pile mitigation and pile mitigation plan review
H. Safety requirements, including Cal/OSHA and Tunnel Safety Orders

MATERIALS

Concrete
Concrete deposited under slurry shall have a nominal slump equal to or greater than 7 inches, contain not less than 675 pounds of cementitious material per cubic yard, and be proportioned to prevent excessive bleed water and segregation. The nominal and maximum slump and penetration requirements in Section 90-6.06, "Amount of Water and Penetration," of the Standard Specifications shall not apply.

Aggregate Grading
The combined aggregate grading shall be either the 1-inch maximum grading, the 1/2-inch maximum grading, or the 3/8-inch maximum grading and shall conform to the requirements in Section 90-3, "Aggregate Gradings," of the Standard Specifications.

When concrete is placed under slurry, the combined aggregate grading shall be either the 1/2-inch maximum grading or the 3/8-inch maximum grading and shall conform to the requirements in Section 90-3, "Aggregate Gradings," of the Standard Specifications.

Spacers
Spacers shall conform to Section 52-1.07, "Placing," of the Standard Specifications, except plastic spacers may be used.

Plastic spacers shall conform to Sections 3.4 and 3.5 of the Concrete Reinforcing Steel Institute's "Manual of Standard Practice" and shall have at least 25 percent of their gross plane area perforated to compensate for the difference in the coefficient of thermal expansion between the plastic and concrete. Plastic spacers shall be commercial quality.

Slurry
Water shall not be used as slurry.

Mineral Slurry
Mineral slurry shall be mixed and thoroughly hydrated in slurry tanks, and slurry shall be sampled from the slurry tanks and tested before placement in the drilled hole.

Slurry shall be recirculated or continuously agitated in the drilled hole to maintain the specified properties.

Recirculation shall include removal of drill cuttings from the slurry before discharging the slurry back into the drilled hole. When recirculation is used, the slurry shall be sampled and tested at least every 2 hours after beginning its use until tests show that the samples taken from the slurry tank and from near the bottom of the hole have consistent specified properties. Subsequently, slurry shall be sampled at least twice per shift as long as the specified properties remain consistent.

Slurry that is not recirculated in the drilled hole shall be sampled and tested at least every 2 hours after beginning its use. The slurry shall be sampled mid-height and near the bottom of the hole. Slurry shall be recirculated when tests show that the samples taken from mid-height and near the bottom of the hole do not have consistent specified properties.
Slurry shall also be sampled and tested before final cleaning of the bottom of the hole and again just before placing concrete. Samples shall be taken from mid-height and near the bottom of the hole. Cleaning of the bottom of the hole and placement of the concrete shall not start until tests show that the samples taken from mid-height and near the bottom of the hole have consistent specified properties.

Mineral slurry shall be tested for conformance to the requirements shown in the following table:

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>REQUIREMENT</th>
<th>TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (pcf)</td>
<td>- before placement in the drilled hole 64.3* to 69.1*</td>
<td>Mud Weight (Density) API 13B-1 Section 1</td>
</tr>
<tr>
<td></td>
<td>- during drilling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- before final cleaning</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- immediately before placing concrete 64.3* to 75.0*</td>
<td></td>
</tr>
<tr>
<td>Viscosity (seconds/quart)</td>
<td>28 to 50</td>
<td>Marsh Funnel and Cup API 13B-1 Section 2.2</td>
</tr>
<tr>
<td>bentonite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>attapulgite</td>
<td>28 to 40</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>8 to 10.5</td>
<td>Glass Electrode pH Meter or pH Paper</td>
</tr>
<tr>
<td>Sand Content (percent)</td>
<td>- before final cleaning</td>
<td>Sand API 13B-1 Section 5</td>
</tr>
<tr>
<td></td>
<td>- immediately before placing concrete less than or equal to 4.0</td>
<td></td>
</tr>
</tbody>
</table>

*When approved by the Engineer, slurry may be used in salt water, and the allowable densities may be increased up to 2 pcf. Slurry temperature shall be at least 40°F when tested.

Any caked slurry on the sides or bottom of hole shall be removed before placing reinforcement. If concrete is not placed immediately after placing reinforcement, the reinforcement shall be removed and cleaned of slurry, the sides of the drilled hole cleaned of caked slurry, and the reinforcement again placed in the hole for concrete placement.
Synthetic Slurry

Synthetic slurries shall be used in conformance with the manufacturer's recommendations and these special provisions. The following synthetic slurries may be used:

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>MANUFACTURER</th>
</tr>
</thead>
<tbody>
<tr>
<td>SlurryPro CDP</td>
<td>KB Technologies Ltd.</td>
</tr>
<tr>
<td></td>
<td>3648 FM 1960 West</td>
</tr>
<tr>
<td></td>
<td>Suite 107</td>
</tr>
<tr>
<td></td>
<td>Houston, TX 77068</td>
</tr>
<tr>
<td></td>
<td>(800) 525-5237</td>
</tr>
<tr>
<td>Super Mud</td>
<td>PDS Company</td>
</tr>
<tr>
<td></td>
<td>c/o Champion Equipment Company</td>
</tr>
<tr>
<td></td>
<td>8140 East Rosecrans Ave.</td>
</tr>
<tr>
<td></td>
<td>Paramount, CA 90723</td>
</tr>
<tr>
<td></td>
<td>(562) 634-8180</td>
</tr>
<tr>
<td>Shore Pac GCV</td>
<td>CETCO Drilling Products Group</td>
</tr>
<tr>
<td></td>
<td>1350 West Shure Drive</td>
</tr>
<tr>
<td></td>
<td>Arlington Heights, IL 60004</td>
</tr>
<tr>
<td></td>
<td>(847) 392-5800</td>
</tr>
<tr>
<td>Terragel of Novagel</td>
<td>Geo-Tech Drilling Fluids</td>
</tr>
<tr>
<td>Polymer</td>
<td>220 N. Zapata Hwy, Suite 11A</td>
</tr>
<tr>
<td></td>
<td>Laredo, TX 78043</td>
</tr>
<tr>
<td></td>
<td>(210) 587-4758</td>
</tr>
</tbody>
</table>

Inclusion of a synthetic slurry on the above list may be obtained by meeting the Department's requirements for synthetic slurries. The requirements can be obtained from the Offices of Structures Design, P.O. Box 168041, MS# 9-4/11G, Sacramento, CA 95816-8041.

Synthetic slurries listed may not be appropriate for a given site.

Synthetic slurries shall not be used in holes drilled in primarily soft or very soft cohesive soils as determined by the Engineer.

A manufacturer's representative, as approved by the Engineer, shall provide technical assistance for the use of their product, shall be at the site before introduction of the synthetic slurry into a drilled hole, and shall remain at the site until released by the Engineer.

Synthetic slurries shall be sampled and tested at both mid-height and near the bottom of the drilled hole. Samples shall be taken and tested during drilling as necessary to verify the control of the properties of the slurry. Samples shall be taken and tested when drilling is complete, but before final cleaning of the bottom of the hole. When samples are in conformance with the requirements shown in the following tables for each slurry product, the bottom of the hole shall be cleaned and any loose or settled material removed. Samples shall be obtained and tested after final cleaning and immediately before placing concrete.
SlurryPro CDP synthetic slurries shall be tested for conformance to the requirements shown in the following table:

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>REQUIREMENT</th>
<th>TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (pcf)</td>
<td>less than or equal to 67.0*</td>
<td>Mud Weight (Density) API 13B-1 Section 1</td>
</tr>
<tr>
<td></td>
<td>less than or equal to 64.0*</td>
<td></td>
</tr>
<tr>
<td>Viscosity (seconds/quart)</td>
<td>50 to 120</td>
<td>Marsh Funnel and Cup API 13B-1 Section 2.2</td>
</tr>
<tr>
<td>pH</td>
<td>6 to 11.5</td>
<td>Glass Electrode pH Meter or pH Paper</td>
</tr>
<tr>
<td>Sand Content (percent)</td>
<td>less than or equal to 0.5</td>
<td>Sand API 13B-1 Section 5</td>
</tr>
</tbody>
</table>

*When approved by the Engineer, slurry may be used in salt water, and the allowable densities may be increased up to 2 pcf. Slurry temperature shall be at least 40°F when tested.
Super Mud synthetic slurries shall be tested for conformance to the requirements shown in the following table:

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>REQUIREMENT</th>
<th>TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (pcf)</td>
<td>less than or equal to 64.0*</td>
<td>Mud Weight (Density) API 13B-1 Section 1</td>
</tr>
<tr>
<td>- before final cleaning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- just before placing concrete</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viscosity (seconds/quart)</td>
<td>32 to 60</td>
<td>Marsh Funnel and Cup API 13B-1 Section 2.2</td>
</tr>
<tr>
<td>- during drilling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- before final cleaning</td>
<td>less than or equal to 60</td>
<td></td>
</tr>
<tr>
<td>- just before placing concrete</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>8 to 10.0</td>
<td>Glass Electrode pH Meter or pH Paper</td>
</tr>
<tr>
<td>Sand Content (percent)</td>
<td>less than or equal to 0.5</td>
<td>Sand API 13B-1 Section 5</td>
</tr>
<tr>
<td>- before final cleaning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- just before placing concrete</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*When approved by the Engineer, slurry may be used in salt water, and the allowable densities may be increased up to 2 pcf. Slurry temperature shall be at least 40°F when tested.
Shore Pac GCV synthetic slurries shall be tested for conformance to the requirements shown in the following table:

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>REQUIREMENT</th>
<th>TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (pcf)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- before final cleaning</td>
<td>less than or equal to 64.0*</td>
<td>Mud Weight (Density) API 13B-1 Section 1</td>
</tr>
<tr>
<td>- just before placing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>concrete</td>
<td></td>
</tr>
<tr>
<td>Viscosity (seconds/quart)</td>
<td>33 to 74</td>
<td>Marsh Funnel and Cup API 13B-1 Section 2.2</td>
</tr>
<tr>
<td>- during drilling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- before final cleaning</td>
<td>less than or equal to 57</td>
<td></td>
</tr>
<tr>
<td>- just before placing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>concrete</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>8.0 to 11.0</td>
<td>Glass Electrode pH Meter or pH Paper</td>
</tr>
<tr>
<td>Sand Content (percent)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- before final cleaning</td>
<td>less than or equal to 0.5</td>
<td>Sand API 13B-1 Section 5</td>
</tr>
<tr>
<td>- just before placing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>concrete</td>
<td></td>
</tr>
</tbody>
</table>

*When approved by the Engineer, slurry may be used in salt water, and the allowable densities may be increased up to 2 pcf.

Slurry temperature shall be at least 40°F when tested.
Terragel or Novagel Polymer synthetic slurries shall be tested for conformance to the requirements shown in the following table:

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>REQUIREMENT</th>
<th>TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (pcf)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- during drilling</td>
<td>less than or equal to 67.0*</td>
<td>Mud Weight (Density) API 13B-1 Section 1</td>
</tr>
<tr>
<td>- before final cleaning</td>
<td>less than or equal to 64.0*</td>
<td></td>
</tr>
<tr>
<td>- just before placing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>concrete</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viscosity (seconds/quart)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- during drilling</td>
<td>45 to 104</td>
<td>Marsh Funnel and Cup API 13B-1 Section 2.2</td>
</tr>
<tr>
<td>- before final cleaning</td>
<td>less than or equal to 104</td>
<td></td>
</tr>
<tr>
<td>- just before placing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>concrete</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>6.0 to 11.5</td>
<td>Glass Electrode pH Meter or pH Paper</td>
</tr>
<tr>
<td>Sand Content (percent)</td>
<td>less than or equal to 0.5</td>
<td>Sand API 13B-1 Section 5</td>
</tr>
<tr>
<td>- before final cleaning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- just before placing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>concrete</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*When approved by the Engineer, slurry may be used in salt water, and the allowable densities may be increased up to 2 pcf. Slurry temperature shall be at least 40°F when tested.

CONSTRUCTION

General

CIDH concrete piling 24 inches in diameter or larger may be constructed by excavation and depositing concrete under slurry.

Portions of CIDH concrete piling shown on the plans to be formed shall be formed and finished in conformance with the provisions for concrete structures in Section 51, “Concrete Structures,” of the Standard Specifications.

Unless otherwise shown on the plans, the bar reinforcing steel cage shall have at least 3 inches of clear cover measured from the outside of the cage to the sides of the hole or casing.

Spacers shall be placed at least 5 inches clear from any inspection tubes. Plastic spacers shall be placed around the circumference of the cage and at intervals along the length of the cage, as recommended by the manufacturer of the plastic spacer.

Steel casings shall be installed by impact or vibratory hammers, oscillators, rotators, or by placing in a drilled hole. The provisions of Section 49-1.08, "Pile Driving Acceptance Criteria," of the Standard Specifications shall not apply to permanent steel casings.

Steel casings placed in a drilled hole shall conform to the following requirements:

A. Casings shall be watertight and of sufficient strength to prevent damage and to withstand the loads from installation procedures, drilling and tooling equipment, lateral concrete pressures, and earth pressures.

B. Casings shall be positioned with spacers to center the casing inside the drilled hole. Spacers may be welded to the outside of the casing.
C. Voids in the annular space between the casing and the soil shall be filled with grout.
D. Grout shall be placed from the bottom of the casing using grout tubes. Placement of grout shall continue until all voids have been filled and the grout reaches the top of the casing. Free fall of the grout from the top to the bottom of the casing will not be allowed.
E. Grout shall be pumped into the annular space such that the grout head is maintained uniformly around the casing and no visible evidence of water or air is ejected at the top of the grout.
F. One grout tube shall be placed every 4 feet along the circumference of the casing with a minimum of 4 grout tubes per casing.
G. Grout tubes shall extend down to no less than 1 foot from the bottom of the casing.

If the Contractor elects to construct the optional construction joint shown on the plans for CIDH concrete piling and a permanent steel casing is not shown on the plans, the Contractor shall furnish and install a casing that:

A. Remains permanently in place.
B. Is watertight and of sufficient strength to prevent damage and to withstand the loads from installation procedures, drilling and tooling equipment, lateral concrete pressures, and earth pressures.
C. Extends to an elevation at least 5 feet below the construction joint.
D. Does not extend above the top of the drilled hole or final grade whichever is lower.
E. Conforms to the requirements in Section 5-1.02A, "Excavation Safety Plans," of the Standard Specifications.
F. Does not increase the diameter of the CIDH concrete piling more than 2 feet.
G. Is installed in conformance with the installation requirements for permanent steel casings except that slurry cement backfill may be used instead of grout.

Placing Concrete

Concrete deposited under slurry shall be carefully placed in a compact, monolithic mass and by a method that will prevent washing of the concrete. Concrete deposited under slurry need not be vibrated. Placing concrete shall be a continuous operation lasting not more than the time required for each concrete placing operation at each pile, as submitted in the placing plan, unless otherwise approved in writing by the Engineer. Concrete shall be placed with concrete pumps and delivery tube system of adequate number and size to complete the placing of concrete in the time specified. The delivery tube system shall consist of one of the following:

A. A tremie tube or tubes, each of which are at least 10 inches in diameter, fed by one or more concrete pumps.
B. One or more concrete pump tubes, each fed by a single concrete pump.

The delivery tube system shall consist of watertight tubes with sufficient rigidity to keep the ends always in the mass of concrete placed. If only one delivery tube is utilized to place the concrete, the tube shall be placed near the center of the drilled hole. Multiple tubes shall be uniformly spaced in the hole. Internal bracing for the steel reinforcing cage shall accommodate the delivery tube system. Tremies shall not be used for piles without space for a 10-inch tube.

Spillage of concrete into the slurry during concrete placing operations shall not be allowed. Delivery tubes shall be capped with a watertight cap, or plugged above the slurry level with a good quality, tight fitting, moving plug that will expel the slurry from the tube as the tube is charged with concrete. The cap or plug shall be designed to be released as the tube is charged. The pump discharge or tremie tube shall extend to the bottom of the hole before charging the tube with concrete. After charging the delivery tube system with concrete, the flow of concrete through a tube shall be induced by slightly raising the discharge end. During concrete placement, the tip of the delivery tube shall be maintained as follows to prevent reentry of the slurry into the tube. Until at least 10 feet of concrete has been placed, the tip of the delivery tube shall be within 6 inches of the bottom of the drilled hole, and then the embedment of the tip shall be maintained at least 10 feet below the top surface of the concrete. Rapid raising or lowering of the delivery tube shall not be permitted. If the seal is lost or the delivery tube becomes plugged and must be removed, the tube shall be withdrawn, the tube cleaned, the tip of the tube capped to prevent entrance of the slurry, and the operation restarted by pushing the capped tube 10 feet into the concrete and then reinitiating the flow of concrete.

When slurry is used, a fully operational standby concrete pump, adequate to complete the work in the time specified, shall be provided at the site during concrete placement. The slurry level shall be maintained 10 feet above the piezometric head or within 12 inches of the top of the drilled hole, whichever is higher.

A log of concrete placement for each drilled hole shall be maintained by the Contractor when concrete is deposited under slurry. The log shall show the pile location, tip elevation, dates of excavation and concrete placement operations.
placement, total quantity of concrete deposited, length and tip elevation of any casing, and details of any hole stabilization method and materials used. The log shall include a 8-1/2” x 11” sized graph of the concrete placed versus depth of hole filled. The graph shall be plotted continuously throughout placing of concrete. The depth of drilled hole filled shall be plotted vertically with the pile tip oriented at the bottom and the quantity of concrete shall be plotted horizontally. Readings shall be made at least at each 5 feet of pile depth, and the time of the reading shall be indicated. The graph shall be labeled with the pile location, tip elevation, cutoff elevation, and the dates of excavation and concrete placement. The log shall be delivered to the Engineer within 1 working day of completion of placing concrete in the pile.

After placing reinforcement and before placing concrete in the drilled hole, if drill cuttings settle out of the slurry, the bottom of the drilled hole shall be cleaned. The Contractor shall verify that the bottom of the drilled hole is clean.

If a temporary casing is used, maintain concrete placed under slurry at a level at least 5 feet above the bottom of the casing. The equivalent hydrostatic pressure inside the casing must be greater than the hydrostatic pressure on the outside of the casing. The withdrawal of the casing must not cause contamination of the concrete with slurry.

Material resulting from using slurry shall be disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

Acceptance Testing and Mitigation

Vertical inspection pipes for acceptance testing shall be provided in all CIDH concrete piling 24 inches in diameter or larger, except when the holes are dry or when the holes are dewatered without the use of temporary casing in a manner that controls ground water.

The furnishing and placing of inspection pipes shall conform to the following:

A. Inspection pipes shall be Schedule 40 PVC pipe conforming to ASTM D 1785 with a nominal pipe size of 2 inches. Watertight PVC couplers conforming to ASTM D 2466 are permitted to facilitate pipe lengths in excess of those which are commercially available. The Contractor shall log the location of the inspection pipe couplers with respect to the plane of pile cut off, and these logs shall be delivered to the Engineer upon completion of the placement of concrete in the drilled hole.

B. Each inspection pipe shall be capped at the bottom and shall extend from 3 feet above the pile cutoff down to the bottom of the reinforcing cage. A temporary top cap or similar means shall be provided to keep the pipes clean before testing. If pile cutoff is below the ground surface or working platform, inspection pipes shall be extended to 3 feet above the ground surface or working platform. Approved covers or railings shall be provided and inspection pipes shall be located as necessary to minimize exposure of testing personnel to potential falling hazards.

C. Inspection pipes shall be completely clean, dry, and unobstructed at the time of testing providing a 2-inch diameter clear opening.

D. The inspection pipes shall be installed in straight alignment, parallel to the main reinforcement, and securely fastened in place to prevent misalignment during installation of the reinforcement and placing of concrete in the hole. The CIDH concrete piling shall be constructed so that the relative distance of inspection pipes to vertical steel reinforcement shall remain constant.

E. When any changes are made to the tip of CIDH concrete piling, the Contractor shall also extend the inspection pipes to the bottom of the reinforcing cage.

The following additional requirements apply if inspection pipes are not shown on the plans:

A. Inspection pipes shall be placed radially around the pile, inside the outermost spiral or hoop reinforcement and no more than 1 inch clear of the outermost spiral or hoop reinforcement.

B. Inspection pipes shall be placed around the pile at a uniform spacing not exceeding 33 inches measured along the circle passing through the centers of inspection pipes. A minimum of 2 inspection pipes per pile shall be used. Inspection pipes shall be placed to provide the maximum diameter circle that passes through the centers of the inspection pipes while maintaining the spacing required herein.

C. Inspection pipes shall be placed a minimum of 3 inches clear of the vertical reinforcement. When the vertical reinforcement configuration does not permit this clearance while achieving radial location requirements, distance to vertical rebar shall be maximized while still maintaining the requirement for radial location.

D. Where the dimensions of the pile reinforcement do not permit inspection pipes to be placed per these requirements, a plan for tube placement shall be submitted to the Engineer for approval in the Pile Placement Plan with a request for deviation before fabricating pile reinforcement.
After placing concrete, inspection pipes shall be filled with water to prevent debonding of the pipe. Before requesting acceptance tests, each inspection pipe shall be tested by the Contractor in the presence of the Engineer by passing a 1-1/4-inch-diameter rigid cylinder 4.5 feet long through the length of pipe. If an inspection pipe fails to pass the 1-1/4-inch-diameter cylinder, the Contractor shall immediately fill all inspection pipes in the pile with water.

For each inspection pipe that does not pass the 1-1/4-inch-diameter cylinder, the Contractor shall core a nominal 2-inch diameter hole through the concrete for the entire length of the pile. Cored holes shall be located as close as possible to the inspection pipes they are replacing and shall be no more than 5 inches clear from the reinforcement.

Coring shall not damage the pile reinforcement. Cored holes shall be made with a double wall core barrel system utilizing a split tube type inner barrel. Coring with a solid type inner barrel will not be allowed. Coring methods and equipment shall provide intact cores for the entire length of the pile. The coring operation shall be logged by an Engineering Geologist or Civil Engineer licensed in the State of California and experienced in core logging. Coring logs shall be in conformance with the Department's "Soil and Rock Logging, Classification, and Presentation Manual." Coring logs shall include Core Recovery (REC), Rock Quality Designation (RQD), locations of breaks, and complete descriptions of inclusions and voids encountered during coring, and shall be delivered to the Engineer upon completion. Concrete cores shall be preserved, identified with the exact location the core was recovered from within the pile, and delivered to the Engineer upon completion. The Engineer will evaluate the portion of the pile represented by the cored hole based on the submitted core logs.

Acceptance tests of the concrete will be made by the Engineer, without cost to the Contractor. Acceptance tests will evaluate the homogeneity of the placed concrete. Tests will include gamma-gamma logging conducted in conformance with California Test 233. The Contractor shall not conduct operations within 25 feet of the gamma-gamma logging operations. The Contractor shall separate reinforcing steel as necessary to allow the Engineer access to the inspection pipes to perform gamma-gamma logging or other acceptance testing. After requesting acceptance tests and providing access to the piles, the Contractor shall allow 15 days for the Engineer to conduct these tests and make determination of acceptance.

If acceptance testing performed by the Engineer determines that a pile does not meet the requirements of the specifications and California Test 233, Part 5C, then that pile will be rejected and all depositing of concrete under slurry or concrete placed using temporary casing for the purpose of controlling groundwater shall be suspended until written changes to the methods of pile construction are approved in writing by the Engineer.

The Engineer will determine whether the rejected pile requires mitigation due to structural, geotechnical, or corrosion concerns. The Engineer will consider the estimated size and location of the anomaly and potential effects upon the design. The Engineer will provide the conclusions of this analysis to the Contractor for development of a mitigation plan, if required. The Contractor shall allow 30 days for the Engineer to determine whether the pile requires mitigation and provide information to the Contractor. Day 1 of the 30 days shall be the 1st day after access has been provided to the Engineer to perform acceptance testing. If the Contractor submits additional information to the Engineer that modifies the size, shape, or nature of the anomaly, the Contractor shall allow 10 additional days for the subsequent analysis.

The Engineer may elect to perform additional tests to further evaluate a rejected pile. These tests may include crosshole sonic logging and other means of inspection selected by the Engineer. The pile acceptance test report will indicate if the Department intends to perform any additional testing and when the testing will be performed. The Contractor shall allow the Department 20 additional days for a total of 50 days to perform these tests and to provide supplemental results. The Contractor may progress with the mitigation plan process without waiting for these supplemental results.

Inspection pipes and cored holes shall be dewatered and filled with grout after notification by the Engineer that the pile is acceptable. Grout shall conform to the provisions in Section 50-1.09, "Bonding and Grouting," of the Standard Specifications. Inspection pipes and holes shall be filled using grout tubes that extend to the bottom of the pipe or hole or into the grout already placed.

If a rejected pile does not require mitigation, the Contractor may repair the pile per an approved mitigation plan or the Department will deduct the amount shown in the table for each anomaly up to the maximum total deduction:
The Department deducts the amount from any moneys due, or that may become due to the Contractor under the Contract.

If the Engineer determines that a rejected pile requires mitigation, the Contractor shall submit to the Engineer for approval a mitigation plan for repair, supplementation, or replacement for each rejected CIDH concrete pile conforming to the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications. If the Engineer determines that it is not feasible to repair the rejected pile, the Contractor shall not include repair as a means of mitigation and shall proceed with the submittal of a mitigation plan for replacement or supplementation of the rejected pile.

If the Engineer determines it is not feasible to use one of ADSC’s standard mitigation plans to mitigate the pile, the Contractor shall schedule a meeting and meet with the Engineer before submitting a nonstandard mitigation plan. The meeting attendees shall include the Contractor's representatives and the Engineer's representatives involved in the pile mitigation. The purpose of the meeting is to discuss the type of pile mitigation that would be acceptable to the Department. The Contractor shall provide the meeting facility. The Engineer will conduct the meeting.

Pile mitigation plans shall include the following:

A. The designation and location of the pile addressed by the mitigation plan.
B. A review of the structural, geotechnical, and corrosion design requirements of the rejected pile.
C. A step by step description of the mitigation work to be performed, including drawings if necessary.
D. An assessment of how the proposed mitigation work will address the structural, geotechnical, and corrosion design requirements of the rejected pile.
E. Methods for preservation or restoration of existing earthen materials.
F. A list of affected facilities, if any, with methods and equipment for protection of these facilities during mitigation.
G. The State assigned contract number, bridge number, full name of the structure as shown on the contract plans, District-County-Route-Post Mile, and the Contractor's (and Subcontractor's if applicable) name on each sheet.
H. A list of materials, with quantity estimates, and personnel, with qualifications, to be used to perform the mitigation work.
I. The seal and signature of an engineer who is licensed as a Civil Engineer by the State of California. This requirement is waived for mitigation plans when either of the following conditions are present:
 1. The proposed mitigation will be performed in conformance with the most recent Department-published version of "ADSC Standard Mitigation Plan 'A' - Basic Repair" without exception or modification.
 2. The Engineer has determined that the rejected pile does not require mitigation due to structural, geotechnical, or corrosion concerns, and the Contractor elects to repair the pile using most recent Department-published version of "ADSC Standard Mitigation Plan 'B' - Grouting Repair" without exception or modification.

The most recent Department published version of the "ADSC Standard Mitigation Plan" is available at:

http://www.dot.ca.gov/hq/esc/geotech/ft/adscmitplan.htm

For rejected piles to be repaired, the Contractor shall submit a pile mitigation plan that contains the following additional information:

A. An assessment of the nature and size of the anomalies in the rejected pile.
B. Provisions for access for additional pile testing if required by the Engineer.
For rejected piles to be replaced or supplemented, the Contractor shall submit a pile mitigation plan that contains the following additional information:

A. The proposed location and size of additional piles.
B. Structural details and calculations for any modification to the structure to accommodate the replacement or supplemental piles.

All provisions for CIDH concrete piling shall apply to replacement piles.

The Contractor shall allow the Engineer 20 days to review the mitigation plan after a complete submittal has been received.

When repairs are performed, the Contractor shall submit a mitigation report to the Engineer within 10 days of completion of the repair. This report shall state exactly what repair work was performed and quantify the success of the repairs relative to the submitted mitigation plan. The mitigation report shall be stamped and signed by an engineer that is licensed as a Civil Engineer by the State of California. The mitigation report shall show the State assigned contract number, bridge number, full name of the structure as shown on the contract plans, District-County-Route-Post Mile, and the Contractor (and subcontractor if applicable) name on each sheet. The Engineer will be the sole judge as to whether a mitigation proposal is acceptable, the mitigation efforts are successful, and to whether additional repairs, removal and replacement, or construction of a supplemental foundation is required.

MEASUREMENT AND PAYMENT (PILING)

Measurement and payment for the various types and classes of piles shall conform to the provisions in Sections 49-6.01, ”Measurement,” and 49-6.02, ”Payment,” of the Standard Specifications and these special provisions.

Full compensation for conforming with the construction considerations requirements provided in the foundation reports for each structure shall be considered as included in the contract prices paid for piling of the types and sizes listed in the Engineer’s Estimate, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, as directed by the Engineer, and no additional compensation will be allowed therefor.

Payment for cast-in-place concrete piling shall conform to the provisions in Section 49-6.02, ”Payment,” of the Standard Specifications and these special provisions except that when the diameter of cast-in-place concrete piling is shown on the plans as 24 inches or larger, reinforcement in the piling will be paid for by the pound as bar reinforcing steel (bridge).

Full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in drilling or coring holes, disposing of the material resulting from drilling or coring holes, furnishing and placing concrete, slurry, depositing concrete under slurry, test batches, inspection pipes, filling inspection holes and pipes with grout, drilling oversized cast-in-drilled-hole concrete piling, filling cave-ins and oversized piles with concrete, and redrilling through concrete and conforming with the requirements provided in the foundation reports shall be considered as included in the contract prices paid per linear foot for cast-in-drilled-hole concrete piling of the types and sizes listed in the Engineer’s Estimate, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, as directed by the Engineer, and no additional compensation will be allowed therefor.

Full compensation for furnishing and installing permanent steel casings due to the Contractor’s choice to utilize the optional construction joint shown on the plans shall be considered as included in the contract prices paid per linear foot for cast-in-drilled-hole concrete piling of the types and sizes listed in the Engineer’s Estimate, and no separate payment will be made therefor.

10.1.65 PRESTRESSING CONCRETE

Prestressing concrete shall conform to the provisions in Section 50, ”Prestressing Concrete,” of the Standard Specifications and these special provisions.

The number of working drawings to be submitted for initial review shall be 8 sets for railroad bridges and 4 sets for other structures.

The number of working drawings to be submitted for initial review shall be 8 sets for railroad bridges and 6 sets for other structures.

The number of working drawings to be submitted for initial review shall be 10 sets for railroad bridges and 6 sets for other structures.

The details shown on the plans for cast-in-place prestressed box girder bridges are based on a bonded full length draped tendon prestressing system. For these bridges the Contractor may, in conformance with the provisions in Section 5-1.14, ”Cost Reduction Incentive,” of the Standard Specifications, propose an alternative prestressing
system utilizing bonded partial length tendons provided the proposed system and associated details meet the following requirements:

A. The proposed system and details shall provide moment and shear resistances at least equal to those used for the design of the structure shown on the plans.
B. The concrete strength shall not be less than that shown on the plans.
C. Not less than 35 percent of the total prestressing force at any section shall be provided by full length draped tendons.
D. Anchorage blocks for partial length tendons shall be located so that the blocks will not interfere with the placement of the utility facilities shown on the plans or of any future utilities to be placed through openings shown on the plans.
E. Temporary prestressing tendons, if used, shall be detensioned, and the temporary ducts shall be filled with grout before completion of the work. Temporary tendons shall be either removed or fully encased in grout before completion of the work.
F. All details of the proposed system, including supporting checked calculations, shall be included in the drawings submitted in conformance with the provisions in Section 50-1.02, "Drawings," of the Standard Specifications.

Moments and shears for loads used in the design shown on the plans will be made available to the Contractor upon written request to the Engineer.

10-1.66 GROUND ANCHORS

Ground anchors at Retaining Walls 28 and 31, consisting of bars or strands and anchorage assemblies that are grouted in cored, formed, or drilled holes, and the testing of installed anchors, shall conform to the details shown on the plans, the provisions in Section 50, "Prestressing Concrete," of the Standard Specifications, and these special provisions.

Difficult ground anchor installation is anticipated due to the presence caving soils.

The Contractor shall determine the bonded length necessary to meet acceptance criteria specified herein.

In fabricating, handling, shipping, and placing ground anchors, adequate care shall be taken to avoid damage to the sheathing. Damage to the sheathing caused by handling and fabrication prior to ground anchor installation shall be repaired or replaced as determined by the Engineer.

The working drawing submittal for ground anchors shall contain all information required for the construction and quality control of the ground anchors, including the following:

A. The proposed schedule and detailed construction sequence of the installation and grouting of ground anchors.
B. Complete details and specifications for the anchorage system and ground anchors, including encapsulation materials and grouting methods.
C. Drilling methods and equipment, including proposed drilled hole diameter and equipment space requirements.
D. Repair procedure for damaged sheathing.
E. Grout mix designs and testing procedures.
F. Grout placement procedures and equipment, including minimum required cure time.
G. Proposed ground anchor testing equipment, including jacking frame and appurtenant bracing, and the method and equipment for determining anchor displacement during testing.
H. Details for providing bonded and unbonded lengths, including type of packers or other appropriate devices, if used.
I. Shim thickness and supporting calculations, if shims are used during lock-off.

MATERIALS

Whenever "member" is referred to in Section 50, "Prestressing Concrete," of the Standard Specifications, it shall be considered to mean "ground anchor."

The anchorage enclosure assembly and the steel tube and bearing plate of the anchorage assembly for the ground anchors shall be galvanized and shall conform to the provisions in Section 55, "Steel Structures," of the Standard Specifications and these special provisions. The provisions of "Welding Quality Control" of these special provisions shall not apply to the anchorage enclosure welds or to the weld between the steel tube and the bearing plate of the anchorage assembly.
The permanent bearing plate of the ground anchor shall effectively distribute the factored test load (FTL) uniformly to the concrete, such that the concrete bearing stress does not exceed 2400 pounds per square inch and the bending stress does not exceed 0.90 f_c for steel nor 0.55 f_c for cast steel or cast iron.

Grout shall conform to the provisions in Section 50-1.09, "Bonding and Grouting," of the Standard Specifications. The grout will not be required to pass through a screen with a 0.07-inch maximum clear opening prior to being introduced into the grout pump. Fine aggregate may be added to the grout mixture of cement and water used outside of the grouted sheathing in drilled holes which are 8 inches or greater in diameter, but only to the extent that the cement content of the grout is not less than 845 pounds per cubic yard of grout. Fine aggregate, if used, shall conform to the provisions in Section 90-2, "Materials," and Section 90-3, "Aggregate Gradings," of the Standard Specifications.

When a bond breaker is shown on the plans near the bearing plate, the bond breaker shall be a 1/4-inch premolded joint filler conforming to the provisions in Section 51-1.12C, "Premolded Expansion Joint Fillers," of the Standard Specifications.

The plastic sheathing for ground anchors shall conform to one of the following: polyvinyl chloride (PVC) sheathing, high density polyethylene (HDPE) sheathing, or polypropylene sheathing.

Corrugated plastic sheathing shall be PVC or HDPE. The width of corrugations, the distance between corrugations, and the height of corrugations of corrugated plastic sheathing shall be approximately the same.

PVC sheathing may be used for smooth sheathing for bar tendons, and may be used for corrugated sheathing for either strand or bar tendons. PVC sheathing shall conform to ASTM Designation: D 1784, Class 13464-B. Corrugated PVC sheathing shall have a nominal wall thickness of 40 mils. HDPE sheathing may be used for smooth sheathing for bar tendons, and may be used for corrugated sheathing for either strand or bar tendons. HDPE sheathing shall have a density between 940 kg/m3 and 960 kg/m3 as measured in accordance with ASTM Designation: D 792. Corrugated HDPE sheathing shall have a density between 940 kg/m3 and 960 kg/m3 as measured in accordance with ASTM Designation: D 792. Smooth HDPE sheathing shall have a minimum wall thickness of 60 mils for sheathing with an outside diameter of 3 inches or greater, and a nominal wall thickness of 40 mils for sheathing with an outside diameter less than 3 inches.

HDPE sheathing may be used for the smooth sheathing encapsulating individual strands of strand type tendons. Smooth HDPE sheathing for encapsulating strands shall have a minimum wall thickness of 40 mils. Polypropylene sheathing may be used for the smooth plastic sheathing encapsulating individual strands of strand type tendons. Polypropylene sheathing shall have a density between 900 kg/m3 and 910 kg/m3 as measured in accordance with ASTM Designation: D 792. Smooth polypropylene sheathing shall have a minimum wall thickness of 40 mils.

The smooth sheathing for the unbonded length of the individual strands, including joints, shall have sufficient strength to prevent damage during construction operations and shall be watertight, chemically stable without embrittlement or softening, and nonreactive with concrete, steel, or corrosion inhibiting grease.

The corrugated sheathing, including joints, shall have sufficient strength to prevent damage during construction operations and shall be grout-tight and watertight, chemically stable without embrittlement or softening, and nonreactive with concrete, steel, or corrosion inhibiting grease.

The transition between the corrugated plastic sheathing and the anchorage assembly shall be an approved detail that allows stressing to the maximum test load without evidence of distress in the corrugated plastic sheathing.

Additional requirements for ground anchors with strand type tendons are as follows:

A. The individual strands of a tendon, except for the bonded length, shall be fully coated with corrosion inhibiting grease and then encapsulated by a smooth HDPE or polypropylene sheath. The corrosion inhibiting grease shall fill all space between strand wires and shall encapsulate the strand giving an encasement diameter at least 5 mils greater than the diameter of the bare strand. The sheath shall be hot melt extruded onto the strand or shall be shop applied by an approved method that assures that all spaces between the sheath and the strand and between the strand wires are filled with corrosion inhibiting grease.

B. The corrosion inhibiting grease shall provide a continuous nonbrittle film of corrosion protection to the prestressing steel and lubrication between the strand and the sheathing, shall resist flow from the sheathing, shall be chemically stable and nonreactive with the prestressing steel, sheathing material, and concrete, and shall be organic with appropriate polar, moisture displacing, and corrosion inhibiting additives.

C. The corrosion inhibiting grease shall have the physical properties listed in Table 1 of Specification for Unbonded Single Strand Tendons by the Post Tensioning Institute.

D. At least 40 days before use, a sample from the lot to be used and test results shall be provided for the corrosion inhibiting grease.

CONSTRUCTION

Ground anchors shall be installed in accordance with the manufacturer's recommendations. In case of a conflict between the manufacturer's recommendations and these special provisions, these special provisions shall prevail.
Water and grout from ground anchor construction operations shall not fall on public traffic, flow across shoulders or lanes occupied by public traffic, or flow into landscaping, gutters, or other drainage facilities. Excessive amounts of water shall not be used in any of the drilling and the ground anchor installation procedures.

Ground anchor steel shall be protected prior to completion of all grouting against rust, corrosion, and physical damage in conformance with the provisions in Section 50, "Prestressing Concrete," of the Standard Specifications. In addition, there shall be no evidence of distress in the plastic sheathing or crushing of the grout within the pregrouted sheathing.

The anchorage assembly shall be protected against rust, corrosion, and physical damage prior to completion of all grouting of enclosure or encasement in concrete.

The ground anchor installation method selected by the Contractor shall be sufficient to achieve the loadings specified herein. Holes for ground anchors shall be drilled in the foundation to a depth sufficient to provide the necessary bonded length beyond the minimum unbonded length shown on the plans.

Drilled holes for walls shall not extend beyond the right-of-way or easement limits as shown on the plans or as specified in these special provisions.

Ground anchor holes shall be drilled by either the rotary or rotary percussion drilling method.

Drilling equipment shall be designed to drill straight and clean holes. The drilling method and the size and capability of the drilling equipment shall be as approved in the working drawings.

At locations where caving conditions are anticipated, sufficient casing and auger lengths shall be available on site to maintain uninterrupted installation of ground anchors.

At locations where hard drilling conditions such as rock, cobbles, boulders, or obstructions are anticipated, a down hole pneumatic hammer drill rig and drill bit shall be available on site to drill holes for ground anchors.

Holes shall be cleaned to remove material resulting from drilling operations. Ground anchors shall not be inserted in the drilled holes until the holes have been inspected by the Engineer.

Ground anchors shall be installed in drilled holes in an expeditious manner so that caving or deterioration of the drilled holes does not occur.

Where a ground anchor cannot be completely inserted without difficulty, the Contractor shall remove the anchor and clean or redrill the hole to permit unobstructed installation. Partially inserted anchors shall not be driven or forced into the drilled hole and will be rejected. When open-hole drilling methods are being used, the Contractor shall have hole cleaning tools on site suitable for cleaning drilled holes along their full length just prior to anchor insertion and grouting.

The diameter of the drilled hole shall be large enough to provide a minimum of one inch grout cover for the full length of the tendon. Centralizers shall be placed at 10-foot maximum intervals for the full length of the tendon, with the uppermost centralizer located 2 feet from the end of the steel tube and the deepest centralizer located 2 feet from the end of the anchor.

Pregrouting shall occur at least 48 hours before placing the tendon in the drilled hole.

Prior to installing each anchor assembly into the drilled hole, the anchor assembly shall be clean and free of oil, grease, dirt, or other extraneous substances, and any damage to the sheathing shall be repaired or replaced.

Grout for all stages of ground anchor construction shall be injected at the low end of the void being filled. The grout shall be placed using grout tubes, unless another method is approved by the Engineer. The quantity of the grout and the grout pressures shall be recorded.

After placing initial grout, the anchor shall remain undisturbed until the grout has reached a strength sufficient to provide anchorage during testing operations.

Additional requirements for ground anchors with bar type tendons are as follows:

A. The bar tendons in the unbonded area shall be sheathed with smooth sheathing that extends into the steel tube of the permanent anchorage assembly, as shown on the plans. For this portion of smooth sheathing there is no minimum wall thickness and the sheathing shall be either PVC or HDPE.

B. In addition, bar tendons shall be sheathed full-length with corrugated sheathing. The annular space between the bar and the corrugated sheathing shall be pregrouted prior to placing the tendon in the drilled hole. The bar shall be centered in the sheathing.

C. There shall be a seal between the smooth sheathing and the corrugated sheathing at the top and bottom of the length of smooth sheathing.

D. For bar tendons, the initial grout in the drilled hole may be placed before or after insertion of the bar tendon.

E. Grout in the unbonded length shall not be placed under pressure.

F. Bars for multiple bar tendons shall be stressed simultaneously.
Additional requirements for ground anchors with strand type tendons are as follows:

A. The strand tendons shall be sheathed with corrugated sheathing. The individual strands within the bonded length shall be separated by spacers so that the entire surface of each strand is bonded in the grout. The maximum spacing of strand spacers shall be 5 feet. The strand spacers shall be plastic and of a construction and strength that will provide support for the individual strands during construction operations.

B. The tendon shall be sheathed full length with corrugated sheathing and pregrouted a minimum length of 2 feet before placing the tendon in the hole. After placing the tendon into the drilled hole and before placing initial grout in the drilled hole, the grout shall be injected at the low end of the corrugated sheathing and the grout shall be expelled at the high end until there is no evidence of entrapped air, water, or diluted grout.

C. Grout in the unbonded length shall not be placed under pressure.

Testing

Load testing shall be performed against the completed structural element shown on the plans. Load testing shall not be performed directly against the soil. Concrete shall either attain a compressive strength of 2880 pounds per square inch or cure for 7 days before loading. Bearing pads shall be kept a minimum of one foot away from the edges of the drilled hole. Test loads shall be applied using a hydraulic jack supported by a reaction frame capable of supporting the test equipment without excessive deformation. Each jack and its gage shall be accompanied by a certified calibration chart. Test loads shall be maintained within 5 percent of the intended load throughout hold periods. The magnitude of applied test loads shall be determined with a calibrated pressure gage or a load cell.

The test load may be verified by State forces with State-furnished equipment operated in conformance with the requirements of California Test 677. The Contractor shall provide sufficient labor, equipment, and material to install and support such testing equipment at the ground anchor and to remove the testing equipment after the testing is complete, as ordered by the Engineer.

Movements of the end of the anchor, relative to an independent fixed reference point, shall be measured using a gage capable of measuring to 0.001-inch and recorded to the nearest 0.001-inch at each load increment, including the ending alignment load, during the load tests. The gage shall have sufficient capacity to allow the test to be completed without resetting the gage during testing. Unloading or repositioning of test equipment during testing will not be allowed. The Contractor shall perform the measuring and recording and shall furnish the Engineer copies of the recorded movements.

At the completion of testing ground anchors, or when requested by the Engineer, the Contractor shall furnish to the Engineer complete test results for each ground anchor tested. Data for each test shall list key personnel, test loading equipment, ground anchor location, hole diameter and depth, method of drilling, type of soil, and bonded and unbonded length of ground anchor. Test data shall also list quantity of grout and grout pressure used within the bonded length, amount of ground water encountered within the bonded length, and the time and dates of drilling, ground anchor installation, grouting, and testing. The ground anchor end movements at each increment of load or at each increment of time during the load hold period of the loading schedule shall be included in the test data.

A minimum of 3 ground anchors at each wall shall be performance tested. The Engineer shall determine the location of the anchors to be performance tested.

The performance test or proof test shall be conducted by measuring and recording the test load applied to the ground anchor and the ground anchor end movement during incremental loading and unloading of the anchor in accordance with the loading schedule. The maximum test load shall be held constant for 10 minutes. During the maximum test load hold, the movement of the end of the tendon shall be measured at 1, 2, 3, 4, 5, 6, and 10 minutes. If the total movement between one minute and 10 minutes exceeds 0.04-inch, the maximum test load shall be held for an additional 50 minutes. Total movement shall be measured at 15, 20, 25, 30, 45, and 60 minutes. If the maximum test load is held for 60 minutes, a creep curve showing the creep movement between 6 minutes and 60 minutes shall be plotted as a function of the logarithm of time. The load shall be reduced to the ending alignment load and the residual movement shall be recorded.
<table>
<thead>
<tr>
<th>LOADING SCHEDULES</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERFORMANCE TEST</td>
</tr>
<tr>
<td>AL</td>
</tr>
<tr>
<td>0.20FTL</td>
</tr>
<tr>
<td>AL</td>
</tr>
<tr>
<td>0.20FTL</td>
</tr>
<tr>
<td>0.40FTL</td>
</tr>
<tr>
<td>AL</td>
</tr>
<tr>
<td>0.20FTL</td>
</tr>
<tr>
<td>0.40FTL</td>
</tr>
<tr>
<td>0.60FTL</td>
</tr>
<tr>
<td>AL</td>
</tr>
<tr>
<td>0.20FTL</td>
</tr>
<tr>
<td>0.40FTL</td>
</tr>
<tr>
<td>0.60FTL</td>
</tr>
<tr>
<td>0.80FTL</td>
</tr>
<tr>
<td>AL</td>
</tr>
<tr>
<td>0.20FTL</td>
</tr>
<tr>
<td>0.40FTL</td>
</tr>
<tr>
<td>0.60FTL</td>
</tr>
<tr>
<td>0.80FTL</td>
</tr>
<tr>
<td>1.00FTL*</td>
</tr>
<tr>
<td>AL</td>
</tr>
</tbody>
</table>

FTL = Factored test load shown on the plans.
AL = Alignment load = 0.10FTL
* Maximum test load

For performance and proof tests, each increment of load shall be applied in less than one minute and held for at least one minute but not more than 2 minutes or as specified above. The observation period for the maximum test load shall start when the pump begins to apply the last increment of load.

The jacking equipment, including the tendon movement measuring system, shall be stable during all phases of the ground anchor loading operations.

All ground anchors not performance tested shall be proof tested. If a ground anchor fails to conform to the acceptance criteria, the ground anchor shall be redesigned or replaced. Ground anchors shall not be retested, unless the anchor bonded length is post-grouted after the unacceptable test.

A performance tested or proof tested ground anchor shall conform to the following acceptance criteria:

A. The total measured movement at the maximum test load minus the measured residual movement at the ending alignment load exceeds 80 percent of the theoretical elastic elongation of the sum of the unbonded length and the jacking length; and
B. The creep movement between one and 10 minutes is less than 0.04-inch.

Performance tested or proof tested ground anchors which fail to meet acceptance criterion B will be acceptable if the maximum test load is held for 60 minutes and the creep movement is less than 0.08-inch between 6 and 60 minutes and the creep rate is linear or decreasing in time logarithmic scale from the 6- to the 60-minute reading.

Lock-off

After successful testing of the ground anchors, they shall be tensioned and locked off at the lock-off load shown on the plans. The lock-off load is the load on the jacks that is maintained while the anchor head is permanently set. Immediately after lock-off, a lift-off test shall be performed to demonstrate that the lock-off load was attained. Adjustments in the shim thickness shall be made if required to maintain the lock-off load.

To lock-off a strand tendon, the tendon shall be stressed to the maximum test load, the permanent wedges shall be fully set in the anchor head, and then the shims shall be removed or other appropriate means shall be used to achieve the lock-off load shown on the plans.

Grouting to the level of secondary grouting to the dimensions shown on the plans shall be completed only after successful testing and lock-off has been completed. At least 24 hours after the secondary grout has set, the remaining void in the steel tube and bearing plate shall be filled with grout. Grout shall be injected at the low end.
and expelled at the high end until there is no evidence of entrapped air or water. A minimum grout head of 2 feet shall be maintained until the grout has set.

The anchor head or anchor nuts shall be enclosed with a grouted anchorage enclosure device. After grouting the steel tube, the bearing plate surface shall be cleaned, sealant placed, and the anchorage enclosure bolted in place. After bolting the anchorage enclosure in place the void in the anchorage enclosure shall be filled with grout by injecting grout at the low end of the void and venting at the high end. Any holes in the top of the anchorage enclosure used for grout placement shall be cleaned and sealed with sealant. Sealant shall be a non-sag polysulfide or polyurethane sealing compound conforming to the requirements in ASTM Designation: C 920.

MEASUREMENT AND PAYMENT
No payment will be made for ground anchors which do not pass the specified testing requirements. Ground anchors will be measured and paid for by the unit, and the number for payment will be determined by the requirements of the details shown on the plans.

The contract unit price paid for ground anchor shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in constructing the ground anchors, including special measures taken to contain grout in the drilled hole, testing, and furnishing and installing anchorage assemblies, complete in place, including repair or replacement of sheathing as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

Full compensation for coring concrete shall be considered as included in the contract unit price paid for ground anchors, and no separate payment will be made therefor.

10-1.67 CONCRETE STRUCTURES
Portland cement concrete structures shall conform to the provisions in Section 51, "Concrete Structures," of the Standard Specifications and these special provisions.

GENERAL
Attention is directed to "Precast Concrete Quality Control" of these special provisions.
Shotcrete shall not be used as an alternative construction method for reinforced concrete members unless otherwise specified.
Intermediate diaphragm, end diaphragm, and bent cap concrete shall reach 5 ksi prior to placing deck concrete for precast girder bridges. Falsework for supporting precast girders, cast-in-place bent caps and diaphragms shall not be removed prior to bridge deck concrete reaching 5 ksi.

MASS CONCRETE
Structural concrete elements shown on the plans that have a minimum dimension exceeding 7 feet shall be constructed as mass concrete and shall conform to the details shown on the plans and these special provisions.

Thermal Control Plan
Prior to mass concrete construction, the Contractor shall submit to the Engineer for approval, a Thermal Control Plan with design calculations in conformance with the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications for each mass concrete element. The number of sets of the Thermal Control Plan and design calculations and review time shall be the same as those specified for falsework working drawings in Section 51-1.06A, "Falsework Design and Drawings," of the Standard Specifications.

The Thermal Control Plan shall show complete details and determine the maximum allowable temperature differentials between the hottest point of the concrete and the exterior faces based on the design assumption that cracking as a result of heat of hydration shall not occur. As a minimum, the Thermal Control Plan shall include the following:

A. Mix design.
B. Duration and method of curing.
C. Procedures to control concrete temperature at time of placement.
D. Methods of controlling temperature differentials.
E. Temperature sensor types and locations.
F. Temperature monitoring and recording system.
G. Field measures to ensure conformance with the maximum concrete temperature and temperature differential requirements.
Construction

Prior to mass concrete placement, an engineer for the Contractor who is registered as a Civil Engineer in the State of California shall inspect and test the temperature monitoring and recording system. The Contractor's registered engineer shall be present at the jobsite when the mass concrete operation is in progress and shall report to the Engineer in writing on a daily basis the progress of the operation. A copy of the daily report shall be available at the jobsite.

Mechanical cooling systems may be used to control the internal temperature of mass concrete during curing. If the Contractor elects to use a mechanical cooling system, the mechanical cooling system shall be designed in conformance with the Thermal Control Plan and the following requirements:

A. The mechanical cooling system shall be embedded within mass concrete elements and surface connections to cooling pipes shall be removable to a depth of 4 inches from the surface.
B. Forms shall be designed so that removal of the forms shall not disrupt the cooling or temperature monitoring.
C. Cooling pipes shall not break and deform during mass concrete placement and shall be secured to prevent movement. Damaged cooling pipes shall be removed and replaced immediately.
D. The mechanical cooling system shall be pressure tested at 30 psi for 30 minutes for leaking prior to mass concrete placement. Coolant circulation shall be in progress at the time that concrete placement begins.
E. After cooling is completed, cooling pipes shall be fully grouted under pressure with a nonshrink grout mixture in conformance with ASTM Designation: C 1107 and ASTM Designation: C 827 for 0.0 percent shrinkage, and 0.0 percent minimum and 4.0 percent maximum expansion. The placement of nonshrink grout shall be in conformance with the manufacturer’s recommendations.
F. After surface connections to the cooling pipes are removed, the holes shall be reamed and filled with mortar conforming to Section 51-1.135, "Mortar," of the Standard Specifications.

The temperature monitoring and recording system for mass concrete shall consist of temperature sensors connected to a data acquisition system capable of printing, storing, and downloading data to a computer. Temperature sensors shall be located such that the maximum temperature difference within a mass concrete element can be monitored. As a minimum, concrete temperatures shall be monitored at the calculated hottest location, on at least 2 outer faces, and top surfaces.

Temperature readings shall be automatically recorded on an hourly or more frequent basis. A redundant set of sensors shall be installed near the primary set. Provisions shall be made for recording the redundant set, but records of the redundant sensors need not be made if the primary set is operational. The hourly temperature recording may be discontinued when the maximum internal temperature is falling, the difference between the interior concrete temperature and the average daily air temperature is less than the allowable temperature difference for three consecutive days, and there are no mass concrete elements to be cast adjacent. Data shall be printed and submitted to the Engineer daily.

Methods of concrete consolidation shall prevent damage to the temperature monitoring and recording system. Wiring from temperature sensors cast into the concrete shall be protected to prevent movement. Wire runs shall be kept as short as possible. The ends of the temperature sensors shall not come into contact with either a support or concrete form, or bar reinforcing steel.

When any equipment used in the temperature control and monitoring and recording system fails during the mass concrete construction operation, the Contractor shall take immediate measures to correct the situation as specified in the Thermal Control Plan. Failure to conform to the temperature requirements will be cause for rejection of the concrete.

Acceptance

Mass concrete shall conform to the concrete acceptance criteria and the following temperature requirements:

A. The maximum allowable temperature of mass concrete shall not exceed 160°F.
B. The maximum temperature differential of mass concrete shall not exceed the requirement as determined in the Thermal Control Plan.

If the Contractor fails to conform to any of the temperature requirements above, the mass concrete elements will be rejected. The rejected mass concrete shall be removed at the Contractor’s expense. The contractor shall modify the Thermal Control Plan and design calculations to correct the problem and resubmit the revised Thermal Control Plan.
The Contractor shall allow the Engineer 15 days for review and approval of the revised Thermal Control Plan. Mass concrete placement shall not begin until the Engineer has approved the revised Thermal Control Plan. No extension of time or compensation will be made for any rejected mass concrete element or revisions of the Thermal Control Plan.

Full compensation for conforming to the above requirements shall be considered as included in the contract prices paid for the various contract items of work involved and no additional compensation will be allowed therefor.

FALSEWORK

Falsework shall conform to the provisions in Section 51, "Concrete Structures,” of the Standard Specifications and these special provisions.

Attention is directed to "Railroad Relations and Insurance" of these special provisions for additional requirements for falsework over railroads.

In addition to the provisions in Section 51-1.06A, “Falsework Design and Drawings,” of the Standard Specifications, the time to be provided for the Engineer's review of the working drawings for specific structures, or portions thereof, shall be 10 weeks for all railroad structures and 4 weeks for all other structures.

Temporary crash cushion modules, as shown on the plans and conforming to the provisions in "Temporary Crash Cushion Module” of these special provisions, shall be installed at the approach end of temporary railings which are located less than 15 feet from the edge of a traffic lane. For 2-way traffic openings, temporary crash cushion modules shall be installed at the departing end of temporary railings which are located less than 6 feet from the edge of a traffic lane.

The Contractor's engineer who signs the falsework drawings shall also certify in writing that the falsework is constructed in conformance with the approved drawings and the contract specifications prior to placing concrete. This certification shall include performing any testing necessary to verify the ability of the falsework members to sustain the stresses required by the falsework design. The engineer who signs the drawings may designate a representative to perform this certification. Where falsework contains openings for railroads, vehicular traffic, or pedestrians, the designated representative shall be qualified to perform this work, shall have at least 3 years of combined experience in falsework design or supervising falsework construction, and shall be registered as a Civil Engineer in the State of California. For other falsework, the designated representative shall be qualified to perform this work and shall have at least 3 years of combined experience in falsework design or supervising falsework construction. The Contractor shall certify the experience of the designated representative in writing and provide supporting documentation demonstrating the required experience if requested by the Engineer.

Welding and Nondestructive Testing

Welding of steel members, except for previously welded splices and except for when fillet welds are used where load demands are less than or equal to 1,000 pounds per inch for each 1/8 inch of fillet weld, shall conform to AWS D1.1 or other recognized welding standard. The welding standard to be utilized shall be specified by the Contractor on the working drawings. Previously welded splices for falsework members are defined as splices made prior to the member being shipped to the project site.

Splices made by field welding of steel beams at the project site shall undergo nondestructive testing (NDT). At the option of the Contractor, either ultrasonic testing (UT) or radiographic testing (RT) shall be used as the method of NDT for each field weld and any repair made to a previously welded splice in a steel beam. Testing shall be performed at locations selected by the Contractor. The length of a splice weld where NDT is to be performed, shall be a cumulative weld length equal to 25 percent of the original splice weld length. The cover pass shall be ground smooth at the locations to be tested. The acceptance criteria shall conform to the requirements of AWS D1.1, Clause 6, for cyclically loaded nontubular connections subject to tensile stress. If repairs are required in a portion of the weld, additional NDT shall be performed on the repaired sections. The NDT method chosen shall be used for an entire splice evaluation including any required repairs.

For all field welded splices, the Contractor shall furnish to the Engineer a letter of certification which certifies that all welding and NDT, including visual inspection, are in conformance with the specifications and the welding standard shown on the approved working drawings. This letter of certification shall be signed by an engineer who is registered as a Civil Engineer in the State of California and shall be provided prior to placing any concrete for which the falsework is being erected to support.

For previously welded splices, the Contractor shall determine and perform all necessary testing and inspection required to certify the ability of the falsework members to sustain the stresses required by the falsework design. This welding certification shall (1) itemize the testing and inspection methods used, (2) include the tracking and identifying documents for previously welded members, (3) be signed by an engineer who is registered as a Civil Engineer in the State of California, (4) and shall be provided prior to erecting the members.

Contract No. 08-0M94U4
254
COST REDUCTION INCENTIVE PROPOSALS FOR CAST-IN-PLACE PRESTRESSED BOX GIRDER BRIDGES

Except as provided herein, cast-in-place prestressed box girder bridges shall be constructed in conformance with the details shown on the plans and the provisions in Section 50, "Prestressing Concrete," and Section 51, "Concrete Structures," of the Standard Specifications.

If the Contractor submits cost reduction incentive proposals for cast-in-place prestressed box girder bridges, the proposals shall be in conformance with the provisions in Section 5-1.14, "Cost Reduction Incentive," of the Standard Specifications and these special provisions.

The Engineer may reject any proposal which, in the Engineer's judgment, may not produce a structure which is at least equivalent to the planned structure.

At the time the cost reduction incentive proposal (CRIP) is submitted to the Engineer, the Contractor shall also submit 4 sets of the proposed revisions to the contract plans, design calculations, and calculations from an independent checker for all changes involved in the proposal, including revisions in camber, predicted deck profile at each construction stage, and falsework requirements to the Offices of Structure Design, Documents Unit, P.O. Box 942874, Sacramento, CA 94274-0001 (1801 30th Street, Sacramento, CA 95816), telephone (916) 227-8230.

When notified in writing by the Engineer, the Contractor shall submit 12 sets of the CRIP plan revisions and calculations to the Offices of Structure Design for final approval and use during construction. The calculations shall verify that all requirements are satisfied. The CRIP plans and calculations shall be signed by an engineer who is registered as a Civil Engineer in the State of California.

The CRIP plans shall be either 11" x 17", or 22" x 34" in size. Each CRIP plan sheet and calculation sheet shall include the State assigned designations for the contract number, bridge number, full name of the structure as shown on the contract plans, and District-County-Route-Post Mile. Each CRIP plan sheet shall be numbered in the lower right hand corner and shall contain a blank space in the upper right hand corner for future contract sheet numbers.

Within 3 weeks after final approval of the CRIP plan sheets, one set of the corrected good quality prints on 20-pound (minimum) bond paper, 22" x 34" in size, of all CRIP plan sheets prepared by the Contractor for each CRIP shall be furnished to the Offices of Structure Design, Documents Unit.

Each CRIP shall be submitted prior to completion of 25 percent of the contract working days and sufficiently in advance of the start of the work that is proposed to be revised by the CRIP to allow time for review by the Engineer and correction by the Contractor of the CRIP plans and calculations without delaying the work. The Contractor shall allow a minimum of 5 weeks for the review of a CRIP. In the event that several CRIPs are submitted simultaneously, or an additional CRIP is submitted for review before the review of a previously submitted CRIP has been completed, the Contractor shall designate the sequence in which the CRIPs are to be reviewed. In this event, the time to be provided for the review of any proposal in the sequence shall be not less than the review time specified herein for that proposal, plus 2 weeks for each CRIP of higher priority which is still under review.

Should the review not be complete by the date specified in the Contractor's CRIP, or such other date as the Engineer and Contractor may subsequently have agreed to in writing and if, in the opinion of the Engineer, the Contractor's controlling operation is delayed or interfered with by reason of the delay in review of CRIP plans and calculations, an extension of time commensurate with the delay in completion of the work thus caused will be granted as provided in Section 8-1.07, "Liquidated Damages," of the Standard Specifications except that the provisions in Section 8-1.09, "Right of Way Delays," of the Standard Specifications shall not apply.

Permits and approvals required of the State have been obtained for the structures shown on the plans. Proposals which result in a deviation in configuration may require new permits or approvals. The Contractor shall be responsible for obtaining the new permits and approvals before the Engineer will reach a decision on the proposal. Delays in obtaining permits and approvals will not be reason for granting an extension of contract time.

All proposed modifications shall be designed in conformance with the bridge design specifications and procedures currently employed by the Department. The proposal shall include all related, dependent or incidental changes to the structure and other work affected by the proposal. The proposal will be considered only when all aspects of the design changes are included for the entire structure. Changes, such as but not limited to, additional reinforcement and changes in location of reinforcement, necessary to implement the CRIP after approval by the Engineer, shall be made at the Contractor's expense.

Modifications may be proposed in (1) the thickness of girder stems and deck slabs, (2) the number of girders, (3) the deck overhang dimensions as specified herein, (4) the amount and location of reinforcing steel, (5) the amount and location of prestressing force in the superstructure, and (6) the number of hinges, except that the number of hinges shall not be increased. The strength of the concrete used may be increased but the strength employed for design or analysis shall not exceed 6,000 psi.

Modifications proposed to the minimum amount of prestressing force which must be provided by full length draped tendons are subject to the provisions in "Prestressing Concrete" of these special provisions.

No modifications will be permitted in (1) the foundation type, (2) the span lengths or (3) the exterior dimensions of columns or bridge superstructure, except that the overhang dimension from face of exterior girder to
the outside edge of roadway deck may be uniformly increased or decreased by 25 percent on each side of the box girder section. Fixed connections at the tops and bottoms of columns shown on the plans shall not be eliminated. The Contractor shall be responsible for determining construction camber and obtaining the final profile grade as shown on the plans. The Contractor shall reimburse the State for the actual cost of investigating CRIPs for cast-in-place prestressed box girder bridges submitted by the Contractor. The Department will deduct this cost from any moneys due, or that may become due the Contractor under the contract, regardless of whether or not the proposal is approved or rejected.

BRIDGE DECK SURFACE TEXTURE

GENERAL
This work includes the longitudinal texturing of new bridge decks including approach slabs. Longitudinal texturing of bridge widenings shall not be required.

CONSTRUCTION

General
Texture the deck surfaces longitudinally using grinding and grooving as specified below.

After receiving surface texture, portions of surfaces that do not meet the friction requirements of Section 51-1.17, "Finishing Bridge Decks," of the Standard Specifications shall be ground or grooved parallel to the centerline in conformance with the provisions of Section 42, "Groove and Grind Pavement," of the Standard Specifications until the friction criteria are met.

Grinding and Grooving

Place an additional 1/4 inch of sacrificial concrete cover on the bridge deck above the finished grade shown on the plans. Place embedments in the concrete based on the final profile grade elevations shown on the plans. Construct joint seals after completing grinding and grooving operations.

Grind and groove surfaces in the following sequence:

1. Comply with the smoothness and deck crack treatment requirements of Section 51-1.17, "Finishing Bridge Decks," of the Standard Specifications.
2. Grind the entire surface between the face of concrete barriers to within 18 inches of the toe of barrier under Section 42-2, "Grinding," of the Standard Specifications. Grinding must not reduce the concrete cover on reinforcing steel to less than 1 3/4 inches.

Full compensation for conforming to the above requirements shall be considered as included in the contract price paid per cubic yard for the structural concrete item requiring the texturing, and no additional compensation will be allowed therefor.

DECK CLOSURE POURS

Where a deck closure pour is shown on the plans, reinforcement protruding into the closure space and forms for the closure pour shall conform to the following:

A. During the time of placement of concrete in the deck, other than for the closure pour itself, reinforcing steel which protrudes into the closure space shall be completely free from any connection to the reinforcing steel, concrete, or other attachments of the adjacent structure, including forms. The reinforcing steel shall remain free of any connection for a period of not less than 24 hours following completion of the pour.
B. Forms for the closure pour shall be supported from the superstructure on both sides of the closure space.

ELASTOMERIC BEARING PADS

Elastomeric bearing pads shall conform to the provisions in Section 51-1.12H, "Elastomeric Bearing Pads," of the Standard Specifications.

PRECAST CONCRETE GIRDERS

Precast reinforced concrete girders shall conform to the provisions in Section 51, "Concrete Structures," of the Standard Specifications.
PRECAST PRESTRESSED CONCRETE BRIDGE MEMBERS

Before curing operations, the top surface of each member shall be given a coarse texture by brooming with a stiff bristled broom or by other suitable devices that will result in uniform transverse scoring.

The top surface texture of girders, and box girders or double T girders with a concrete deck shown on the plans, shall have at least a 1/4-inch amplitude.

The top surface of girders shall be cleaned of surface laitance and curing compound before placing the deck concrete. Exposure of clean aggregate will not be required.

The anticipated deflection and method of accommodation of deflection of precast prestressed concrete girders, prior to the time the deck concrete is placed, shall be shown on the working drawings in conformance with the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications. The deflection shall include the following:

A. Anticipated upward deflection caused by the prestressing forces.
B. Downward deflection caused by the dead load of the girder.
C. Deflection caused by the creep and shrinkage of the concrete for the time interval between the stressing of the girders and the planned placement of the deck.

The deflection shall be substantiated by calculations that consider the ages of the girder concrete at the time of stressing and the Contractor's planned placement of the deck. Deflection calculations shall be based on the concrete producer's estimate of the modulus of elasticity at the applicable concrete age.

Adjustments to accommodate girder deflections that occur prior to the time the deck concrete is placed may include revisions in bearing seat elevations, but the adjustments shall be limited by the following conditions:

A. The minimum permanent vertical clearance under the structure as shown on the plans shall not be reduced.
B. The profile grade and cross slope of the deck shall not be changed.
C. A minimum of one inch of deck slab concrete between the top of the precast girders and the deck slab reinforcement shall be maintained.

Girders with unanticipated girder deflection that do not comply with conditions A, B, and C will be rejected in conformance with the provisions in Section 6-1.04, "Defective Materials," of the Standard Specifications.

Adjustments to accommodate girder deflections will not be considered a change in dimensions. Full compensation for increases in the cost of construction, including increases in the quantity of deck or bearing seat concrete, resulting from adjustments to accommodate girder deflections shall be considered as included in the contract prices paid for the various items of work involved, and no additional compensation will be allowed therefor.

The Contractor shall submit a girder erection plan to the Engineer for approval in conformance with the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications. The girder erection plan shall include procedures, details, and sequences for unloading, lifting, erecting, and installing temporary bracing, and shall be signed by an engineer who is registered as a Civil Engineer in the State of California. The Contractor shall allow 20 days for the review of the girder erection plan.

Temporary lateral bracing shall be provided for precast girders. The bracing shall be installed at a minimum at each end of each girder segment and at midspan. The bracing shall be in place prior to the release of the erection equipment from the girder and shall remain in place until 48 hours after the concrete diaphragms have been placed. The bracing shall be designed to prevent overturning of the girders prior to completion of the work and to resist the following lateral pressures applied at the top of the girder in either direction:

<table>
<thead>
<tr>
<th>Structure Height, H (feet above ground)</th>
<th>Lateral Pressure (psf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 < H ≤ 30</td>
<td>15</td>
</tr>
<tr>
<td>30 < H ≤ 50</td>
<td>20</td>
</tr>
<tr>
<td>50 < H ≤ 100</td>
<td>25</td>
</tr>
<tr>
<td>H > 100</td>
<td>30</td>
</tr>
</tbody>
</table>

MEASUREMENT AND PAYMENT

Measurement and payment for concrete in structures shall conform to the provisions in Section 51-1.22, "Measurement," and Section 51-1.23, "Payment," of the Standard Specifications and these special provisions.
Full compensation for public notification and airborne monitoring for deck crack treatment shall be considered as included in the contract price paid per cubic yard for structural concrete, bridge, and no additional compensation will be allowed therefor.

10-1.68 BEARING

Bearings, consisting of steel reinforced elastomeric bearing pads, polytetrafluoroethylene (PTFE) surfacing, and stainless steel and steel plates, shall conform to the details shown on the plans, the provisions in Section 51, "Concrete Structures," of the Standard Specifications, and these special provisions.

The Contractor shall submit working drawings for the bearings to the Offices of Structure Design, (OSD) for approval in conformance with the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications. For initial review, 6 sets of drawings shall be submitted for railroad bridges and 4 sets shall be submitted for other structures. After review, between 6 and 12 sets, as requested by the Engineer, shall be submitted to OSD for final approval and for use during construction.

Working drawings shall be 11" x 17" and each drawing and calculation sheet shall include the name of the structure as shown on the contract plans, District-County-Route, bridge number, and contract number.

Working drawings shall be submitted sufficiently in advance of the start of the affected work to allow time for review by the Engineer and correction by the Contractor of the drawings without delaying the work. The time shall be proportional to the complexity of the work but in no case shall the time be less than 55 days for railroad bridges or 45 days for other structures after complete drawings and all support data are submitted. The location of match marks on plate edges shall be shown on the working drawings.

For railroad bridges, approval by the Engineer of the working drawings will be contingent upon the working drawings being satisfactory to the railroad company involved.

At the completion of each structure on the contract, one set of 11" x 17" prints on 20 pound (minimum) bond paper of the corrected original tracings of all working drawings for each structure shall be furnished to the Engineer. Prints of drawings that are common to more than one structure shall be submitted for each structure. An index prepared specifically for the drawings for each structure containing sheet numbers and titles shall be included on the first print in the set for each structure. Prints for each structure shall be arranged in the order of drawing numbers shown in the index.

The edge of the corrected original tracing image shall be clearly visible and visually parallel with the edges of the page. A clear, legible symbol shall be provided as near to the upper left side of each page as is feasible within the original print to show the amount of reduction and a horizontal and vertical scale shall be provided on each reduced print to facilitate enlargement to original scale.

For railroad bridges, in addition to the bond prints of the working drawings, the Contractor shall furnish to the Engineer one set of working drawings consisting of either ink tracings on cloth, ink tracings on polyester base drafting film, silver sensitized cloth duplicate tracings, or silver sensitized polyester based reproduction films with matte surface on both sides.

The manufacturer shall furnish Certificates of Compliance in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications for all material used in the bearings.

The shear modulus of the elastomer in the elastomeric bearing pads shall be 110±11 psi.

PTFE sheet shall be made from unfilled PTFE resin and shall conform to the following requirements:

<table>
<thead>
<tr>
<th>Test</th>
<th>Test Method</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength (Minimum)</td>
<td>ASTM D 4894 or D 4895</td>
<td>2800 psi</td>
</tr>
<tr>
<td>Elongation (Minimum)</td>
<td>ASTM D 4894 or D 4895</td>
<td>200 %</td>
</tr>
</tbody>
</table>

The PTFE resin shall be virgin material (not reprocessed) meeting the requirements of ASTM Designation: D 4894 or D 4895, with a minimum thickness of 1/4 inch. Specific gravity shall be from 2.13 to 2.19. Melting point shall be 623±2°F.

The PTFE sliding surface shall be provided with lubricant dimples with a maximum diameter of 0.32-inch, a minimum depth of 0.08-inch, and a maximum depth of one half of the PTFE sheet thickness. The dimples shall be uniformly distributed within the area 1/4 inch from the edges of the PTFE sheet and occupy between 20 percent and 30 percent of the PTFE sheet area.

Stainless steel plates shall conform to the requirements of ASTM Designation: A 240, Type 304, with a minimum thickness of 1/8 inch.

Steel plates, except stainless steel, shall conform to the requirements of ASTM Designation: A 709/A 709M.

Welding of structural steel shall conform to the requirements of AWS D1.1. Welding of structural steel to stainless steel shall conform to the requirements of AWS D1.6.

The PTFE sheet shall be adhesive bonded in the recess of steel plate under controlled factory conditions. The adhesive material shall be an epoxy resin conforming to the requirements of Federal Specification: MMM-A-134.

Contact surfaces of PTFE sheet and steel plate to be bonded shall be uniformly roughened to a minimum roughness height value of 250 microinches.

The side of the PTFE sheet to be bonded shall be factory treated by the sodium naphthalene or sodium ammonia process, after the contact surface is roughened.

After completion of the bonding operation the PTFE surface shall be smooth and free from bubbles. The PTFE sheet shall show no signs of delamination and shall be fully bonded within the recess.

The side of the PTFE sheet to be bonded shall be factory treated by the sodium naphthalene or sodium ammonia process, after the contact surface is roughened.

After completion of the bonding operation the PTFE surface shall be smooth and free from bubbles. The PTFE sheet shall show no signs of delamination and shall be fully bonded within the recess.

The stainless steel plate shall be attached by perimeter welding using Type 309L electrodes. After completion of the weld operation, the stainless steel plate shall be smooth and free from waves.

The flatness of the bearing elements shall be controlled such that upon completion of the bearing assembly, the PTFE/stainless steel sliding interface shall be in full bearing.

The mating surface of the stainless steel plate with the PTFE surfacing shall have a minimum #8 mirror finish determined according to ANSI Standard B46.1. The sliding element of the production bearings shall have a first movement static coefficient of friction not exceeding 0.06 when tested without the coating of silicone grease.

Steel reinforced elastomeric bearing pads shall be fully vulcanized to the steel plates under factory controlled conditions, and the bond shall have a peel-strength of at least 5.3 newtons per millimeter as determined by California Test 663.

Metal surfaces of bearings exposed to the atmosphere and in contact with the structure in the completed work, except stainless steel surfaces, shall be cleaned and painted in conformance with the provisions in “Clean and Paint Joint Seal Assemblies, Bearings and Restrainer Units” of these special provisions.

After installation, the top of the assembly shall be removed and a 1/16 inch thick coating of silicone grease shall be applied to the entire PTFE surface and the bearing reassembled without damage to the mating sliding surfaces. Silicone grease shall conform to the requirements in Military Specification: MIL-S-8660.

Damaged bearings and bearings with scratched mating surfaces shall be returned to the factory for replacement or resurfacing.

Prior to proof testing or painting, all individual components shall be permanently die-stamped on 2 of 4 sides with markings consisting of bearing number and contract number. Each bearing shall have a unique bearing number and match marks on plate edges to insure correct assembly at the job site.

Full sized bearings shall be proof tested and evaluated for compression and coefficient of initial static friction in the presence of the Engineer. The proof tests shall be performed on samples randomly selected by the Engineer from the production bearings to be used in the work. Proof testing shall be performed by the Contractor at the manufacturer's plant or at an approved laboratory. If proof tests cannot be performed at the specified load, the Contractor shall submit to the Engineer for review and approval a testing plan listing additional physical tests. These tests shall be performed in the presence of the Engineer, and shall demonstrate that the requirements for proof testing at the specified load are satisfied. The Contractor shall give the Engineer at least 7 days notice before beginning proof testing. Proof testing of bearings shall conform to the following requirements:

A. One bearing per lot of production bearings shall be proof tested. A lot is defined as 25 bearings or fraction thereof of the same type, within a load category.

B. A load category shall consist of bearings of differing vertical load capacity within a range defined as follows:

1. Bearings with less than or equal to 500 kips maximum vertical load capacity.
2. Bearings with greater than 500 kips but less than or equal to 2000 kips maximum vertical load capacity.

C. Bearings shall be proof tested for compression and coefficient of friction.

D. Proof tests for compression: The bearing shall be held for one hour at 1.5 times the maximum vertical load shown on the plans for the bearing.

E. Proof tests for coefficient of friction: The tests shall be performed at the minimum dead load shown on the plans for the bearing with the test load applied for 12 hours continuously and the test load shall not be reduced or removed prior to friction measurement and the following:

1. The tests shall be arranged to allow measurement of the static coefficient of friction on the first movement of the bearing.
2. The first movement static and dynamic coefficients of friction shall be measured at a sliding speed not exceeding one inch per minute and shall not exceed the specified coefficient of initial static friction.

3. The test bearings shall be subjected to a minimum of 100 movements of at least one inch of relative movement at a sliding speed not exceeding 12 inches per minute. After cycling, the first movement static and dynamic coefficients of friction shall be measured again at a sliding speed not exceeding one inch per minute and shall not exceed the specified coefficient of initial static friction.

F. The bearing surfaces shall be cleaned prior to testing.

G. Proof testing of bearings shall be done after conditioning specimens for 12 hours at 75°±5°F.

H. The proof tested bearings shall show no visible sign of: (1) bond failure of bearing surfaces, (2) separation or lift-off of plates from each other or from PTFE surfaces, (3) excessive transfer of PTFE to the stainless steel surface, or (4) other defects. When a proof tested bearing fails to comply with these specifications, all bearings in that lot shall be individually tested for acceptance.

I. Proof test results shall be certified correct and signed by the testing laboratory personnel who conducted the test and interpreted the test results. Proof test results shall include the bearing numbers of the bearings tested.

One sample of elastomeric bearing pad, 2.25±0.125" high and not less than 8" x 12" in plan, shall be cut by the manufacturer from one of the thickest production elastomeric bearing pads, as directed by the Engineer, and furnished to the Transportation Laboratory. The Contractor shall allow 20 days for testing and obtaining satisfactory results after the sample elastomeric bearing pad has been received.

A test specimen taken from the sample furnished to the Transportation Laboratory will be tested in conformance with the requirements in California Test 663 for 10,000 cycles at the design load and 0.5 T (T = total thickness of elastomer) translation. The testing speed shall not exceed 115 millimeters per minute. Specimens tested shall show no indication of deterioration of elastomer or loss of bond between the elastomer and steel laminates.

Bearing sole plates shall be temporarily supported during concrete placement. Temporary supports shall prevent the rotation or displacement of the bearings during concrete placing operations. Temporary supports shall not inhibit the functioning of the bearings after concrete is placed. Temporary supports shall not restrict the movement at bridge joints due to temperature changes and shortening from prestress forces. Materials for temporary supports within the limits for placing concrete shall conform to the requirements for form fasteners.

PTFE and stainless steel surfaces shall be protected from contamination and weather damage.

Quantities of bearings will be determined as units from actual count in the completed work. A bearing with more than one disc shall be considered a single bearing.

The contract unit price paid for bearing shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in constructing the bearing, complete in place, including temporary supports, proof testing, and cleaning and painting of bearings, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

Full compensation for furnishing the sample of elastomeric bearing pad shall be considered as included in the contract unit price paid for bearing, and no separate payment will be made therefor.

If a portion or all of the bearings are either fabricated or tested at a site more than 300 air line miles from both Sacramento and Los Angeles, additional shop inspection expenses will be sustained by the State. Whereas it is and will be impractical and extremely difficult to ascertain and determine the actual increase in such expenses, it is agreed that payment to the Contractor for bearings will be reduced $5,000 for each fabrication or testing site located more than 300 air line miles from both Sacramento and Los Angeles and an additional $10,000 ($15,000 total) for each fabrication or testing site located more than 3000 air line miles from both Sacramento and Los Angeles.

10-1.69 STRUCTURE APPROACH SLABS (TYPE N)

GENERAL

Summary

This work includes constructing reinforced concrete approach slabs, structure approach drainage systems, and treated permeable base.

Reinforced concrete approach slabs must comply with Section 51, "Concrete Structures," of the Standard Specifications.

Submittals

Furnish a Certificate of Compliance under Section 6-1.07, "Certificates of Compliance," of the Standard Specifications for the geocomposite drain certifying that the drain complies with these special provisions. The Certificate of Compliance must be accompanied by a flow capability graph for the geocomposite drain showing flow.
rates and the externally applied pressures and hydraulic gradients. The flow capability graph must be stamped with the verification of an independent testing laboratory.

Notify the Engineer of the type of treated permeable base to be furnished at least 30 days before the start of placement. Once you have notified the Engineer of the selection, the type to be furnished must not be changed without a prior written request to do so and approval thereof by the Engineer.

Notify the Engineer of the source of woven tape fabric at least 45 days before use.

MATERIALS

Concrete

Concrete for structure approach slabs must contain not less than 675 pounds of cementitious material per cubic yard and must either:

1. Cure for not less than 5 days before opening to public traffic, or
2. Comply with "Rapid Strength Concrete for Structures" of these special provisions.

Drainage Pads

Concrete for use in drainage pads must be minor concrete.

Geocomposite Drain

Geocomposite drain must consist of a manufactured core not less than 0.25 inch thick nor more than 2 inches thick with one or both sides covered with a layer of filter fabric that will provide a drainage void. The drain must produce a flow rate through the drainage void of at least 2 gallons per minute per foot of width at a hydraulic gradient of 1.0 and a minimum externally applied pressure of 3,500 psf.

The manufactured core must be one of the following:

1. Preformed grid of embossed plastic
2. Mat of random shapes of plastic fibers
3. Drainage net consisting of a uniform pattern of polymeric strands forming 2 sets of continuous flow channels
4. System of plastic pillars and interconnections forming a semirigid mat

The core material and filter fabric must be capable of maintaining the drainage void for the entire height of geocomposite drain. Filter fabric must be integrally bonded to the side of the core material with the drainage void.

Filter Fabric

Plastic Pipe

Plastic pipe shall conform to the provisions for pipe for edge drains and edge drain outlets in Section 68-3, "Edge Drains," of the Standard Specifications.

Treated Permeable Base

Treated permeable base under structure approach slabs must be an asphalt treated permeable base or a cement treated permeable base as specified in Section 29, "Treated Permeable Bases," of the Standard Specifications.

Miscellaneous Materials

Steel components of abutment ties, including plates, nuts, washers, and rods, must comply with Section 75-1.03, "Miscellaneous Bridge Metal," of the Standard Specifications.

Steel angles, plates, and bars at the concrete barrier joints must comply with Section 75-1.03, "Miscellaneous Bridge Metal," of the Standard Specifications.

Hardboard and expanded polystyrene must comply with Section 51-1.12D, "Sheet Packing, Preformed Pads, and Board Fillers," of the Standard Specifications.

Building paper must be commercial quality 30-pound asphalt felt.

PVC conduit used to encase the abutment tie rod must be commercial quality.
CONSTRUCTION

Geocomposite Drain

Install the geocomposite drain with the drainage void and the filter fabric facing the embankment. The fabric facing the embankment side must overlap a minimum of 3 inches at all joints and wrap around the exterior edges a minimum of 3 inches beyond the exterior edge. If additional fabric is needed to provide overlap at joints and wraparound at edges, the added fabric must overlap at least 6 inches and be attached to the fabric on the geocomposite drain.

Place core material manufactured from impermeable plastic sheeting having non-connecting corrugations with the corrugations approximately perpendicular to the drainage collection system.

If the fabric on the geocomposite drain is torn or punctured, replace the damaged section completely or repair it by placing a piece of fabric that is large enough to cover the damaged area and provide a 6-inch overlap.

If asphalt treated permeable base is placed around the slotted plastic pipe at the bottom of the geocomposite drain, it must be placed at a temperature of not less than 180 °F nor more than 230 °F.

Filter Fabric

Place filter fabric immediately after grading and compacting the subgrade to receive the filter fabric. Align, handle, and place filter fabric in a wrinkle-free manner under the manufacturer's recommendations. Adjacent borders of the filter fabric must be overlapped from 12 inches to 18 inches or stitched. The preceding roll must overlap the following roll in the direction the material is being spread or must be stitched. When the fabric is joined by stitching, it must be stitched with yarn of a contrasting color. The size and composition of the yarn must be as recommended by the fabric manufacturer. The number of stitches per 1 inch of seam must be 5 to 7. Equipment or vehicles must not be operated or driven directly on the filter fabric.

Woven Tape Fabric

Woven tape fabric to be placed between the treated permeable base and the approach slab must be a fabric made of woven strips or tapes and shall conform to the following:

<table>
<thead>
<tr>
<th>Property</th>
<th>ASTM Designation</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight, ounces per square yard, min.</td>
<td>D 3776</td>
<td>3</td>
</tr>
<tr>
<td>Grab Tensile Strength, pounds, min.</td>
<td>D 4632</td>
<td>50</td>
</tr>
<tr>
<td>Elongation, percent, max.</td>
<td>D 4632</td>
<td>35</td>
</tr>
<tr>
<td>Toughness, pounds, min.</td>
<td>----</td>
<td>1,200</td>
</tr>
<tr>
<td>(Percent elongation times grab tensile strength)</td>
<td>----</td>
<td>1,200</td>
</tr>
</tbody>
</table>

Woven tape fabric must be treated to provide a minimum of 70 percent breaking strength retention after 500 hours exposure when tested under ASTM D 4355.

Treated Permeable Base

Construct treated permeable base under Section 29, "Treated Permeable Bases," of the Standard Specifications and these special provisions.

Place asphalt treated permeable base at a temperature of not less than 200 °F nor more than 250 °F. Do not use material stored in excess of 2 hours in the work.

Asphalt treated permeable base may be spread in 1 layer. Compact the base with a vibrating shoe type compactor or a roller weighing at least 1.5 tons but not more than 5 tons. Begin compacting the base as soon as the mixture has cooled sufficiently to support the weight of the equipment without undue displacement.

Cement treated permeable base may be spread in 1 layer. Compact the base with a vibrating shoe type compactor or with a steel-drum roller weighing at least 1.5 tons but not more than 5 tons. Compaction must begin within one-half hour of spreading and must consist of 2 complete coverages of the cement treated permeable base.

Finishing Approach Slabs

Finish and treat the top surface of approach slabs under Section 51-1.17, "Finishing Bridge Decks," of the Standard Specifications. Edges of slabs must be edger finished.

Cure approach slabs with pigmented curing compound (1) under the specifications for curing structures in Section 90-7.01B, "Curing Compound Method," of the Standard Specifications.
Sealing Joints

Type AL joint seals must comply with Section 51-1.12F, "Sealed Joints," of the Standard Specifications. The sealant may be mixed by hand-held power-driven agitators and placed by hand methods.

The pourable seal between the steel angle and concrete barrier must comply with the requirements for Type A and AL seals in Section 51-1.12F(3), "Materials and Installation," of the Standard Specifications.

The sealant may be mixed by hand-held power-driven agitators and placed by hand methods. Immediately before placing the seal, thoroughly clean the joint, including abrasive blast cleaning of the concrete surfaces, so that all foreign material and concrete spillage are removed from all joint surfaces. Joint surfaces must be dry at the time the seal is placed.

MEASUREMENT AND PAYMENT

Structural concrete, approach slab (Type N) will be measured and paid for in conformance with the provisions in Section 51-1.22, "Measurement," and Section 51-1.23, "Payment," of the Standard Specifications and these special provisions.

Full compensation for the structure approach drainage system including geocomposite drain, plastic pipe, and drainage pads, treated permeable base, filter fabric, woven tape fabric, miscellaneous metal, pourable seals, waterstops, and sliding joints shall be considered as included in the contract price paid per cubic yard for structural concrete, approach slab of the type shown in the Engineer's Estimate, and no additional compensation will be allowed therefor.

10-1.70 STRUCTURE APPROACH SLABS (TYPE R)

GENERAL

Summary

This work includes removing existing pavement and base and constructing new reinforced concrete approach slabs at structure approaches.

Reinforced concrete approach slabs must comply with Section 51, "Concrete Structures," of the Standard Specifications.

Quality Control and Assurance

Trial Slab

Before beginning work on approach slabs constructed using RSC, you must successfully complete one or more trial slabs for each concrete mix design to be used in constructing the approach slabs.

Trial slabs must be constructed, finished, cured, and tested with the materials, tools, equipment, personnel, and methods to be used in completing the approach slab. Trial slabs must demonstrate that you are capable of producing approach slabs in conformance with the provisions in this section, within anticipated time periods including delivery, placement, finishing, and curing times, and under similar atmospheric and temperature conditions expected during construction operations. Multiple trial slabs for each approach slab concrete mix design may be required to envelop variable atmospheric conditions.

The minimum trial slab dimensions must be 10' x 20' x 9". Place trial slabs near the job site at a location acceptable to the Engineer except slabs must not be placed on the roadway or within the project limits.

Perform compressive strength testing under Section 90-9, "Compressive Strength," of the Standard Specifications. Trial slab concrete must develop compressive strengths of at least 1200 psi at the age of break used for prequalification of the concrete, and at least 2500 psi at 3 days.

MATERIALS

Concrete

Concrete for structure approach slabs must contain not less than 675 pounds of cementitious material per cubic yard and must either:

1. Cure for not less than 5 days before opening to public traffic, or
2. Comply with "Rapid Strength Concrete for Structures" of these special provisions.

Temporary Structural Section

HMA must consist of commercial quality aggregate and asphalt binder. The grading of the aggregate must comply with the 3/4-inch HMA Types A and B grading specified in Section 39-1.02E, "Aggregate," of the Standard Specifications. The asphalt binder must comply with the requirements for liquid asphalt SC-800 in Section 93,
"Liquid Asphalts," of the Standard Specifications. The amount of asphalt binder to be mixed with the aggregate must be approximately 0.3 percent less than the optimum bitumen content as determined by California Test 367.

Aggregate Base (Approach Slab)

Aggregate base (approach slab) for filling voids below the reinforced structure approach slab concrete must be produced from commercial quality aggregates consisting of broken stone, crushed gravel or natural rough-surfaced gravel, and sand, or any combination thereof. The grading of the aggregate base must comply with the 3/4-inch maximum grading specified in Section 26-1.02A, "Class 2 Aggregate Base," of the Standard Specifications.

Miscellaneous Materials

Steel components of abutment ties, including plates, nuts, washers, and rods, must comply with Section 75-1.03, "Miscellaneous Bridge Metal," of the Standard Specifications.

Steel angles, plates, and bars at the concrete barrier joints must comply with Section 75-1.03, "Miscellaneous Bridge Metal," of the Standard Specifications.

Hardboard and expanded polystyrene must comply with Section 51-1.12D, "Sheet Packing, Preformed Pads, and Board Fillers," of the Standard Specifications.

Building paper must be commercial quality 30-pound asphalt felt.

PVC conduit used to encase the abutment tie rod must be commercial quality.

CONSTRUCTION

General

The thickness shown on the plans for structure approach slabs is the minimum thickness. The thickness may vary depending on the thickness of the pavement and base materials removed.

Dispose of all materials no longer required in the work under Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

Schedule your work so that the pavement and base materials removed during a work period are replaced in that same work period with properly finished and cured approach slab concrete before the time the lane is to be opened to public traffic as specified in "Maintaining Traffic" of these special provisions.

If the existing pavement and base materials are removed, and you are unable to construct, finish, and cure the new approach slab by the time the lane is to be opened to public traffic, you must fill the excavation with a temporary roadway structural section as specified in this section, "Structure Approach Slabs (Type R)."

Temporary Roadway Structural Section

Provide a standby quantity of hot mix asphalt (HMA) and aggregate base at the job site equal to the quantity of pavement removed during the work shift for construction of a temporary roadway structural section. The temporary structural section must consist of a 0.3-foot-thick layer of HMA over aggregate base.

Spread and compact aggregate base and HMA by methods that will produce a well-compacted, uniform base, free from pockets of coarse or fine material and a surfacing of uniform smoothness, texture, and density. The aggregate base and the HMA may each be spread and compacted in one layer. The finished surface of the HMA must not vary more than 0.05 foot from the lower edge of a 12-foot straightedge placed parallel with the centerline and must match the elevation of the existing pavement and structure along the joints between the existing pavement and structure and the temporary surfacing.

Maintain the temporary structural section until you are able to construct and cure the approach slab with the prescribed time limit.

Removing Portions Of Existing Structures

Removing Existing Pavement And Base Materials

Sawcut full depth the outline of portland cement concrete to be removed with a power-driven concrete saw.

Cut the outlines of excavations in asphalt concrete on a neat line to a minimum depth of 0.25 foot with a power-driven concrete saw or wheel-type rock cutting excavator before any asphalt concrete material is removed. These excavations must be permanently or temporarily backfilled to conform to the grade of the adjacent pavement before opening the lane to public traffic. Surplus excavated material may be used as temporary backfill material.

Regardless of the type of equipment used to remove concrete within the sawed outline, do not use power impact tools within 1.5 feet of the pavement that is required to remain in place.
Uniformly grade and compact the existing base material remaining in place after removing the existing pavement and base materials to the required depth. The finished surface of the base material at any point must not extend above the grade approved by the Engineer.

Fill areas of base material that are low as a result of over excavation with structure approach slab concrete in the same operation that the new concrete is placed.

Where pavement subsurfacing has been performed under existing approach slabs, remove the full depth of subsurfacing material. Where removal of cement treated base is required to construct the approach slab, remove the full depth of the cement treated base.

Fill voids between the new structure approach slab and the base material remaining in place that are caused by removal of subsurfacing material or cement treated base with either aggregate base (approach slab) or structure approach slab concrete. If you choose to fill these voids with structure approach slab concrete, fill the voids in the same operation that the new concrete is placed.

Establish a grade line for the new approach slab that will provide a smooth profile grade. The profile grade will be subject to approval by the Engineer.

Aggregate Base (Approach Slab)

Spread and compact aggregate base (approach slab) for filling voids below the reinforced structure approach slab concrete by methods that will produce a well-compacted, uniform base, free from pockets of coarse or fine material to the grade approved by the Engineer. Where the required thickness of aggregate base is 8 inches or less, the base may be spread and compacted in one layer. Where the required thickness of aggregate base is more than 8 inches, the base must be spread and compacted in 2 or more layers of approximately equal thickness. The maximum compacted thickness of any one layer shall not exceed 8 inches.

The finished surface of the base material at any point must not extend above the grade approved by the Engineer. Fill areas of base material that are lower than the grade approved by the Engineer with structure approach slab concrete in the same operation that the new concrete is placed.

Bonding Bar Reinforcement

Bond bar reinforcement or abutment tie rods in drilled holes under the provisions for drilling and bonding dowels in Section 83-2.02D(1), "General," of the Standard Specifications.

If reinforcement is encountered during drilling before the specified depth is attained, notify the Engineer. Unless the Engineer approves coring through the reinforcement, the hole will be rejected and a new hole must be drilled adjacent to the rejected hole to the depth shown on the plans.

Finishing Approach Slabs

Finish the top surface of the approach slab under the provisions for decks in Section 51-1.17, "Finishing Bridge Decks," of the Standard Specifications. The finished top surface must not vary more than 0.02 foot from the lower edge of a 12-foot straightedge placed parallel with the centerline. Edges of slabs must be edger finished. The provisions for deck crack treatment do not apply to Type R approach slabs.

The surface of the approach slab will not be profiled, and the Profile Index requirements do not apply.

Approach slab concrete shall be cured before the time the lane is to be opened to public traffic as specified in "Maintaining Traffic" of these special provisions.

Sealing Joints

Type AL joint seals must comply with Section 51-1.12F, "Sealed Joints," of the Standard Specifications. The sealant may be mixed by hand-held power-driven agitators and placed by hand methods.

The pourable seal between the steel angle and concrete barrier must comply with the requirements for Type A and AL seals in Section 51-1.12F(3), "Materials and Installation," of the Standard Specifications. The sealant may be mixed by hand-held power-driven agitators and placed by hand methods. Immediately before placing the seal, thoroughly clean the joint, including abrasive blast cleaning of the concrete surfaces, so that all foreign material and concrete spillage are removed from all joint surfaces. Joint surfaces must be dry at the time the seal is placed.

MEASUREMENT AND PAYMENT

Structural concrete, approach slab (Type R) will be measured and paid for in conformance with the provisions in Section 51-1.22, "Measurement," and Section 51-1.23, "Payment," of the Standard Specifications and these special provisions.

Full compensation for removing and disposing of pavement materials and pourable seals shall be considered as included in the contract price paid per cubic yard for structural concrete, approach slab (Type R), and no separate payment will be made therefor.
The quantity of aggregate base (approach slab) to be paid for shall include the actual volume of aggregate base (approach slab) used to fill voids below the reinforced structure approach slab concrete, except for the volume of areas low as a result of over excavation. The volume to be paid for will be calculated on the basis of the constructed length, width, and thickness of the filled voids. Structure approach slab concrete used to fill voids lower than the approved grade of the base, except for the areas low as a result of over excavation, will be measured and paid for by the cubic yard as aggregate base (approach slab).

The contract price paid per cubic yard for aggregate base (approach slab) shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in constructing aggregate base (approach slab), complete in place, including excavation and removing and disposing of base and subsealing materials, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

Full compensation for furnishing, stockpiling, and disposing of standby material for construction of temporary structural sections; and for constructing, maintaining, removing, and disposing of temporary structural sections shall be considered as included in the contract price paid per cubic yard for structural concrete, approach slab (Type R), and no separate payment will be made therefor.

Full compensation for drilling and bonding of abutment tie rods shall be considered as included in the contract price paid per cubic yard for structural concrete, approach slab (Type R), and no separate payment will be made therefor.

Full compensation for constructing, testing, and removing trial slabs shall be considered as included in the contract price paid per cubic yard for structural concrete, approach slab (Type R), and no separate payment will be made therefor.

10-1.71 PAVING NOTCH EXTENSION

This work shall consist of extending existing paving notches in conformance with the details shown on the plans and these special provisions.

Concrete for paving notch extension shall be a high-strength material consisting of either magnesium phosphate concrete, modified high alumina based concrete, or portland cement based concrete. Magnesium phosphate concrete shall conform to the provisions for magnesium phosphate concrete in Section 83-2.02D(1), "General," of the Standard Specifications and these special provisions. Modified high alumina based concrete and portland cement based concrete shall be water activated and shall conform to the provisions for single component (water activated) magnesium phosphate concrete in Section 83-2.02D(1), "General," of the Standard Specifications and these special provisions.

At least one hour shall elapse between the time of placing concrete for the paving notch extension and placing concrete for the structure approach slab.

A clean, uniform, rounded aggregate filler may be used to extend the concrete. The moisture content of the aggregate shall not exceed 0.5 percent. Grading of the aggregate shall conform to the following:

<table>
<thead>
<tr>
<th>Sieve Sizes</th>
<th>Percentage Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2"</td>
<td>100</td>
</tr>
<tr>
<td>No. 16</td>
<td>0-5</td>
</tr>
</tbody>
</table>

The amount of aggregate filler shall conform to the manufacturer's recommendation, but in no case shall the concrete strengths be less than that specified for magnesium phosphate concrete in Section 83-2.02D(1), "General," of the Standard Specifications.

The components of dual component (with a prepackaged liquid activator) magnesium phosphate shall be combined by mixing complete units supplied by the manufacturer. Portions of units shall not be used. Water shall not be added to dual component magnesium phosphate.

Magnesium phosphate concrete shall not be mixed in containers or worked with tools containing zinc, cadmium, aluminum or copper. Modified high alumina based concrete shall not be mixed in containers or worked with tools containing aluminum.

Concrete shall not be retempered. Finishing tools that are cleaned with water shall be thoroughly dried before working the concrete.

When placing concrete on slopes exceeding 5 percent, the Engineer may require the Contractor to provide a flow controlled modified material.

Modified high alumina based concrete and portland cement based concrete shall be cured in conformance with the provisions in Section 90-7.01B, "Curing Compound Method," of the Standard Specifications. Magnesium phosphate concrete shall not be cured.
The surface temperature of the areas to receive the concrete shall be 40°F or above when the concrete is placed. The contact surface to receive the magnesium phosphate concrete shall be dry. The contact surfaces to receive the modified high alumina concrete or portland cement based concrete may be damp but not saturated.

The construction joint between the paving notch extension and the existing abutment shall conform to the provisions for horizontal construction joints in Section 51-1.13, "Bonding," of the Standard Specifications. Concrete shall be placed in the spalled portions of the existing paving notch concurrently with the concrete for the paving notch extension.

Attention is directed to "Reinforcement" of these special provisions.

Drilling of holes and bonding of reinforcing steel dowels shall conform to the provisions for drilling and bonding dowels in Section 83-2.02D(1), "General," of the Standard Specifications. If reinforcement is encountered during drilling before the specified depth is attained, the Engineer shall be notified. Unless the Engineer approves coring through the reinforcement, the hole will be rejected and a new hole, in which reinforcement is not encountered, shall be drilled adjacent to the rejected hole to the depth shown on the plans.

The quantity of concrete for paving notch extension will be measured by the cubic foot.

The contract price paid per cubic foot for paving notch extension shall include full compensation for furnishing all labor, materials (including concrete for the paving notch spalled areas), tools, equipment, and incidentals, and for doing all the work involved in constructing the paving notch extension, complete in place, including structure excavation and backfill, reinforcement, and drilling and bonding dowels, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.72 SOUND WALL

DESCRIPTION

This work shall consist of constructing sound walls of masonry block. Sound walls shall be supported on retaining walls, as shown on the plans.

SOUND WALL (MASONRY BLOCK)

General

Summary

This section includes specifications for constructing masonry block sounds walls.

The angle of internal friction (ϕ) to be used with the plans for the soil for the sound wall are shown in the table below:

<table>
<thead>
<tr>
<th>Sound wall number</th>
<th>Angle of internal friction (ϕ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>82</td>
<td>30</td>
</tr>
<tr>
<td>87</td>
<td>30</td>
</tr>
<tr>
<td>91</td>
<td>30</td>
</tr>
<tr>
<td>94</td>
<td>30</td>
</tr>
<tr>
<td>97</td>
<td>35</td>
</tr>
</tbody>
</table>

Submittals

Submit test data for:

1. Prepackaged mortar materials
2. Compressive strength of masonry for preconstruction testing and field QC testing
3. Grout compressive strength

Submit samples of the CMUs to the Engineer for each color and texture as specified in ASTM C 90. Submit manufacturer's descriptive data for each type of CMU, accessory, and manufactured product.

Submit mix designs for approval for:

1. Each grout mix proposed for use. Admixtures are not allowed unless authorized.
2. Mortar cap.

Submit qualification documentation for the authorized laboratory.

Submit certificates of compliance for CMUs, aggregate for grout, and grout.
Submit a copy of the daily field report on the business day following the preparation of the report. Upon completion of the work requiring special inspection, submit a copy of the final report.

Quality Control And Assurance

General

Obtain CMUs of a uniform color and texture from a single source and from a single manufacturer. Obtain mortar ingredients of a uniform quality, including color, from a single manufacturer for cement and lime and from a single source or producer for each aggregate.

If prepackaged mortar materials are used, perform the following preconstruction tests at an authorized laboratory:

1. California Test 551. Test data must be from samples having a moist cure except that the samples must not be immersed in lime water. The average 28-day compressive strength of mortar must be not less than 1,800 psi.
2. California Test 422 or 417. Mortar must not contain more than 0.05 percent soluble chlorides when tested under California Test 422 or more than 0.25 percent soluble sulfates as SO_4^{2-} when tested under California Test 417.

Masonry Preconstruction Testing

Perform masonry preconstruction testing at an authorized laboratory. The authorized laboratory must comply with ASTM E 329.

Determine the compressive strength of masonry for each grout mix to be used under one of the following 2007 California Building Code (CBC) test methods:

1. Section 2105.2.2.1, "Unit strength method," except the grout must meet the requirements under Section 2105.2.2.1.2, "Concrete Masonry," 3.3.2
2. Section 2105.2.2.2, "Prism test method"

If the prism test method is used to determine the compressive strength, you must also test the grout compressive strength under ASTM C 1019.

Field Quality Control

You must employ a special inspector and an authorized laboratory to perform Level 1 inspections and structural tests of masonry to verify the masonry construction complies with Section 1704, "Special Inspections," and Section 2105, "Quality Assurance," of the 2007 CBC.

Masonry special inspection personnel used in the work must not be employed or compensated by any subcontractor, or by other persons or entities hired by subcontractors, who will provide other services or materials for the project.

The special inspector must be an ICC certified Structural Masonry Special Inspector. The special inspector must perform the inspections required under Section 1704.5, "Masonry Construction," of the 2007 CBC.

The special inspector must prepare a daily field report providing information regarding the specific activities witnessed, including placing of CMUs and bar reinforcing, grouting, fabrication of test specimens, and other observations of importance to the work.

A daily field report is required for each day that the special inspector is on the job site. The special inspector must prepare a signed final report stating whether the work requiring special inspection was, to the best of the inspector's knowledge, in compliance with the plans, specifications, and the applicable workmanship requirements of these specifications and the 2007 CBC.

Test the compressive strength of masonry for each 10,000 square feet of sound wall area, or portion thereof. Determine the compressive strength as specified for masonry preconstruction testing in the "Masonry Preconstruction Testing" section.

Materials

Concrete

Concrete for sound wall footings, pile caps, and grade beams, if required, must comply with Section 51, "Concrete Structures," of the Standard Specifications.
Concrete Masonry Units

CMUs must comply with ASTM C 90 for hollow, load bearing, lightweight or medium weight class units. You may use standard or open-end units. If using open-ended units, do not reduce the spacing of the bar reinforcement shown.

The weight of a CMU for a sound wall on a bridge must not exceed 38 pounds.
The color of the CMUs must comply with color no. 30227 of FED-STD-595.
Identify each high-strength CMU with a groove in an interior corner. The groove must extend from a mortar surface for a length of about 2 inches and must have a depth of about 3/16 inch.

Mortar

Mortar must comply with ASTM C 270 except the cement must comply with Section 90-2.01A, "Cement," of the Standard Specifications.
Aggregate must comply with ASTM C 144.
Hydrated lime must comply with ASTM C 207, Type S.
Mortar for laying CMUs must consist by volume of 1 part cement, 0.25 to 0.5 part hydrated lime, and 2.25 to 3 parts mortar sand. Add enough water to make a workable mortar. Accurately measure and thoroughly mix each batch of mortar. Do not retemper mortar more than 1 hour after mixing.
Color mortar to match the CMUs. Color pigments must be iron oxides complying with ASTM C 979. The dosage must not exceed 10 percent by weight of cement in the mortar.
If authorized, you may use prepackaged mortar materials and mortar containing admixtures complying with ASTM C 270.
Packages of mortar materials must bear the manufacturer's name, brand, contents, weight, and color identification.

Grout

The minimum compressive strength of the grout at 28 days must be 85 percent of the greater of (1) the masonry compressive strength shown on the plans or (2) 2,000 psi.
Cementitious material must comply with Section 90-2.01, "Cementitious Materials," of the Standard Specifications.
Grout must contain at least 550 pounds of cementitious material per cubic yard. Grout for high strength CMUs must contain at least 675 pounds of cementitious material per cubic yard.
Aggregate must comply with Section 90-2.02, "Aggregates," of the Standard Specifications. Aggregate for grout must be a mixture of fine and coarse aggregate. At least 20 percent of the aggregate must be coarse aggregate. One hundred percent of the combined grading must pass the 1/2-inch sieve.
Mix grout with sufficient water to produce a mix consistency suitable for pumping without segregation. Provide grout with a slump from 8 to 11 inches.

Reinforcement

Bar reinforcing steel must comply with ASTM A 615/A 615 M, Grade 60 or ASTM A 706/A 706 M.
Ladder type joint reinforcement must comply with ASTM A 951, hot-dip galvanized.

Expansion Joint Filler

Expansion joint filler must comply with ASTM D 1751 or ASTM D 2000 M2AA 805.

Construction

General

Construct sound wall with hand laid CMUs.
Vertical lines and surfaces must not vary from plumb by more than 1/4 inch in 10 feet.
Provide bond beam units or recesses for horizontal reinforcement.
Construct the walls in 4-foot-maximum-height lifts. Complete grouting of each lift before beginning construction of the next lift. The top course of each lift must be a bond beam.
Bond beams must be continuous. Cover the top of unfilled cells under horizontal bond beams with metal or plastic lath.
Roughen, clean, and lightly wet contact surfaces where fresh masonry joins masonry that is partially or totally set. The roughened surface must be at least as rough as a wood troweled surface. Remove laitance, curing compounds, debris, dirt, and any substance which decreases bond to the fresh masonry.
Roughen and clean concrete surfaces on which masonry walls are to be constructed, exposing the aggregate. Immediately before laying the CMUs, flush the surface with water and allow to dry to a surface dry condition.

Use a masonry saw to cut CMUs to neat and true lines.

Protect masonry as specified for protecting concrete in Section 90-8, "Protecting Concrete," of the Standard Specifications.

During erection in inclement weather, keep cells dry by covering partially completed walls. The covering must be waterproof fabric, plastic or paper sheeting, or other authorized material. Do not use wooden boards or planks as covering materials. Extend the covering down each side of masonry walls approximately 2 feet.

- Remove splashes, stains, and spots from exposed faces of the wall.

Mortar Bedding and Jointing

Mortar joints must be approximately 3/8 inch thick.

Walls and cross webs forming cells to be filled with grout shall be full bedded in mortar to prevent leakage of grout. All head and bed joints must be solidly filled with mortar for a distance in from the face of the wall or unit not less than the thickness of the longitudinal face shells. Shove head joints tight.

Reinforcement

- Before placing grout, securely hold reinforcement in position at the top and bottom and at intervals not exceeding 192 bar diameters with wire ties or spacing devices. Wire must be 16 gage or heavier. Wooden, aluminum, or plastic spacing devices must not be used.
- Splice vertical reinforcement only at the locations shown on the plans.

Grouting

- Preserve the unobstructed vertical continuity of the grout during mortar placement in joints. Any overhanging mortar projecting more than 1/2 inch, or other obstruction or debris, must be removed from the inside of cells.
- Only fill those cells containing reinforcement with grout.
- Consolidate grout in the cells by vibrating and reconsolidating after excess moisture has been absorbed and before plasticity is lost. Do not slice grout with a trowel.
- If placing of grout in grout filled cells is stopped for more than 1 hour, a construction joint must be made. The construction joint must be approximately 1-1/2 inches below the top of the last course filled with grout.

ACCESS GATES

- Access gates shall conform to the details shown on the plans and these special provisions.
- Timber members shall be tongue and groove Douglas fir sub-flooring free of knotholes. The location of knots of adjoining boards shall be staggered. The construction of the gate shall be with the tongue placed in the up position. The tongue of the top board and the groove of the bottom board shall be removed.
- Timber members, steel frames, channels, anchorage devices, mounting hardware, gate rollers, corrugated steel pipe, nylon washers, and neoprene tubing shall be of commercial quality.
- The one-inch round ladder rungs with nonskid surface shall consist of No. 8 deformed bar reinforcing steel of commercial quality.
- Gate rollers shall be rigid casters with self-lubricating bearings and hard rubber wheels.
- All metal parts and hardware shall be hot-dip galvanized.
- Timber surfaces of the access gates shall be primed and then stained with 2 coats of stain to match the adjacent sound wall. Primer and stain shall be of the top grade primer and stain from an established manufacturer. An established manufacturer is one who has manufactured industrial paints and stains to meet custom specifications for at least 10 years.
- Where the back side of the masonry wall is to be split faced or rough surface blocks, the bond beam above the gate opening upon which the upper gate guide is to be mounted shall have smooth-sided blocks.
- Material from excavation may be used for backfill outside of the pipe landings. Aggregate filling inside the pipe landings shall be a coarse concrete aggregate of commercial quality. Compacting of the aggregate will not be required.

MEASUREMENT AND PAYMENT

Sound walls of the types designated in the Engineer's Estimate will be measured by the square foot of the area of wall projected on a vertical plane between the elevation lines shown on the plans and length of wall (including the exposed posts, backup wall for access openings, and access gates).

The contract price paid per square foot for sound wall of the types designated in the Engineer's Estimate shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the
work involved in constructing the sound wall, complete in place, including all anchorages, and reinforcement, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. Sound wall supports will be measured and paid for as separate items of work.

Full compensation for performing testing, special inspections, and preparing all required testing and inspection reports shall be considered as included in the contract price paid per square foot for sound wall (masonry block) and no additional compensation will be allowed therefor.

10-1.73 DRILL AND BOND DOWEL (CHEMICAL ADHESIVE)

Drilling and bonding dowels with chemical adhesives shall conform to the details shown on the plans and these special provisions.

Reinforcing steel dowels shall conform to the provisions in "Reinforcement" of these special provisions.

Threaded rods used as dowels shall conform to the provisions in Section 75-1.03, "Miscellaneous Bridge Metal," of the Standard Specifications. The threaded rods shall be installed in conformance with the requirements for dowels specified herein.

Chemical adhesives to be used shall be selected from the Pre-Qualified Products List at:

http://www.dot.ca.gov/hq/esc/approved_products_list/

The Contractor may propose to use a chemical adhesive not on the Pre-Qualified Products List. Information regarding product qualification can be obtained at the Transportation Laboratory.

The chemical adhesive system used shall be appropriate for the concrete temperature and installation conditions in conformance with the requirements in the Department's prequalification list.

Chemical adhesive systems shall be accompanied by a Certificate of Compliance as provided in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications. The certificate shall state that the material complies in all respects to the requirements of ICBO AC58 and Caltrans Augmentation/Revisions to ICBO AC58 available at the Transportation Laboratory and at:

http://www.dot.ca.gov/hq/esc/approved_products_list/

At least 25 days prior to use, the Contractor shall submit one sample of each chemical adhesive system per lot to the Transportation Laboratory for testing. The sample shall consist of one unit of chemical adhesive, one mixing nozzle, and one retaining nut. A lot of chemical adhesives is defined as 100 units, or fraction thereof, of the same brand and product name.

Each chemical adhesive system shall be clearly and permanently marked with the manufacturer's name, model number of the system, manufacturing date, lot number, shelf life or expiration date, and current ICBO Evaluation Report (ER) number. Each carton of chemical adhesives shall contain the manufacturer's recommended installation procedures and warnings or precautions concerning the contents as may be required by State or Federal laws and regulations.

The holes shall be drilled by methods that will not shatter or damage the concrete adjacent to the holes. If reinforcement is encountered during drilling, before the specified depth is attained, the Engineer shall be notified. Unless the Engineer approves coring through the reinforcement, the hole will be rejected and a new hole, in which reinforcement is not encountered, shall be drilled adjacent to the rejected hole. The drilled holes shall be cleaned in conformance with the manufacturer's instructions and shall be dry at the time of placing the chemical adhesive. Unless otherwise specified, the diameter and depth of drilled holes shall conform to the values listed in the ICBO ER for the size of dowel or rod being installed.

The depth of the drilled hole listed in the ICBO ER shall be increased by 50 percent when epoxy coating of dowels is required.

Storage and installation procedures shall be as recommended by the manufacturer. A copy of the manufacturer's recommended installation procedure shall be provided to the Engineer at least 2 days prior to the start of work.

Immediately after inserting the dowels into the chemical adhesive, the dowels shall be supported as necessary to prevent movement during curing and shall remain undisturbed until the epoxy has cured a minimum time as specified in the Department's Pre-Qualified Products List. Dowels that are improperly bonded, as determined by the Engineer, will be rejected. Adjacent new holes shall be drilled, and new dowels shall be placed and securely bonded to the concrete. All work necessary to correct improperly bonded dowels shall be performed at the Contractor's expense.

Unless otherwise provided, dowels to be bonded into drilled holes will be measured and paid for as bar reinforcing steel (bridge).
Unless otherwise provided, drilling and bonding dowels with chemical adhesives will be measured and paid for by the unit as drill and bond dowel (chemical adhesive). The number of units to be paid for will be determined from actual count of the completed units in place.

The contract unit price paid for drill and bond dowel (chemical adhesive) shall include full compensation for furnishing all labor, materials (except dowels), tools, equipment, and incidentals, and for doing all the work involved in drilling the holes and bonding dowels with chemical adhesives, including coring through reinforcement when approved by the Engineer, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.74 DRILL AND BOND DOWELS

Drilling and bonding dowels shall conform to the details shown on the plans, the provisions in Section 83-2.02D(1), "General," of the Standard Specifications, and these special provisions.

Dowels shall conform to the provisions for bar reinforcement in "Reinforcement" of these special provisions.

If reinforcement is encountered during drilling before the specified depth is attained, the Engineer shall be notified. Unless the Engineer approves coring through the reinforcement, the hole will be rejected and a new hole, in which reinforcement is not encountered, shall be drilled adjacent to the rejected hole to the depth shown on the plans.

Unless otherwise provided, dowels to be bonded into drilled holes will be paid for as bar reinforcing steel (bridge).

Unless otherwise provided, drilling and bonding dowels will be measured and paid for by the linear foot determined by the number and the required depth of holes as shown on the plans or as ordered by the Engineer.

The contract price paid per linear foot for drill and bond dowel shall include full compensation for furnishing all labor, materials (except reinforcing steel dowels), tools, equipment, and incidentals, and for doing all the work involved in drilling the holes, including coring through reinforcement when approved by the Engineer, and bonding the dowels, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.75 CORE CONCRETE

Coring concrete shall consist of coring holes through reinforced concrete bridge members as shown on the plans and in conformance with these special provisions.

The holes shall be cored by methods that will not shatter or damage the concrete adjacent to the holes.

Water for core drilling operations shall be from the local domestic water supply or shall not contain more than 1,000 parts per million of chlorides as Cl, nor more than 1,300 parts per million of sulfates as SO_4, nor shall the water contain any impurities in a sufficient amount that would cause discoloration of the concrete or produce etching of the surface.

Water from core drilling operations shall not be permitted to fall on public traffic, to flow across shoulders or lanes occupied by public traffic, or to flow into gutters or other drainage facilities.

Coring concrete will be measured by the linear foot as core concrete of the sizes listed in the Engineer's Estimate. The cored concrete will be measured along the centerline of the hole without deduction for expansion joints.

The contract price paid per linear foot for core concrete of the sizes listed in the Engineer's Estimate shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in coring the holes, including control of water from core drilling and repairing any damaged reinforcement, as shown on the plans, as specified in these special provisions, and as directed by the Engineer.

10-1.76 CLEAN EXPANSION JOINTS

All deck joints shown on the plans to be cleaned shall be cleaned as specified herein.

Cleaning shall include removal of all existing seal material, dirt, debris, damaged waterstop, and joint filler, and shall be accomplished by methods that do not damage existing sound concrete surfaces.

Joint size shall be verified after the joint has been cleaned.

The Contractor shall take necessary precautions to ensure that material removed from expansion joints does not fall onto public traffic, railroad property, private property, or into the waterway beneath the bridges. The Contractor shall submit for the Engineer's approval, details for preventing material, equipment, or debris from falling onto traffic or railroad property.

Joints with undamaged waterstops shall be cleaned only to the top of the waterstop, provided the waterstop does not have to be removed for placement of the seal.

Joints without waterstops and joints with waterstops with existing damage or damage caused by the Contractor, shall be cleaned down to the hinge seat or bearing seat, unless otherwise directed by the Engineer.
All joint damage shall be repaired as directed by the Engineer.

Cleaning joints below existing damaged waterstops and repairing existing joint damage will be paid for as extra work as provided in Section 4-1.03D, "Extra Work," of the Standard Specifications. The cost of repairing damage caused by the Contractor's operations shall be borne by the Contractor.

Materials removed from the expansion joint, except for surface dust, shall be recovered and disposed of away from the site in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

Cleaning expansion joints will be measured by the linear foot for the length of the deck joint as shown on the plans.

The contract price paid per linear foot for clean expansion joint shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals and for doing all the work involved in cleaning expansion joints, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.77 SEALING JOINTS

Joints in concrete bridge decks and joints between concrete structures and concrete approach slabs must be sealed in conformance with the details shown on the plans, the provisions in Section 51, "Concrete Structures," of the Standard Specifications, and these special provisions.

When ordered by the Engineer, a joint seal larger than called for by the Movement Rating shown on the plans must be furnished and installed. Payment to the Contractor for furnishing the larger seal and for saw cutting the increment of additional depth of groove required will be determined as provided in Section 4-1.03, "Changes," of the Standard Specifications.

10-1.78 JOINT SEAL ASSEMBLIES (MAXIMUM MOVEMENT RATING, 4 INCHES)

Joint seal assemblies shall conform to the details shown on the plans, the provisions in Section 51, "Concrete Structures," of the Standard Specifications, and these special provisions.

All metal parts of the joint seal assembly shall conform to the provisions in Section 75-1.03, "Miscellaneous Bridge Metal," of the Standard Specifications. Bolts, nuts, and washers shall conform to the requirements in ASTM Designation: A 325.

At the Contractor's option, cleaning and painting of all new metal surfaces of the joint seal assembly, except stainless steel and anchorages embedded in concrete, may be substituted for galvanizing. Cleaning and painting shall be in conformance with the provisions in "Clean and Paint Structural Steel" of these special provisions.

Finish coats will not be required on joint seal assemblies.

Sheet neoprene shall conform to the provisions for neoprene in Section 51-1.14, "Waterstops," of the Standard Specifications. The sheet neoprene shall be fabricated to fit the joint seal assembly accurately.

Metal parts of the joint seal assembly shall be preassembled before installation to verify the geometry of the completed seal.

The bridge deck surface shall conform to the provisions in Section 51-1.17, "Finishing Bridge Decks," of the Standard Specifications prior to placing and anchoring the joint seal assembly.

The assembly shall be placed in a blocked-out recess in the concrete deck surface. The depth and width of the recess shall permit the installation of the assembly anchorage components or anchorage bearing surface to the lines and grades shown on the plans.

Sheet neoprene shall be installed at such time and in such manner that the sheet neoprene will not be damaged by construction operations. The joint shall be cleaned of all dirt, debris and other foreign material immediately prior to installation of the sheet neoprene.

ALTERNATIVE JOINT SEAL ASSEMBLY

At the Contractor's option, an alternative joint seal assembly may be furnished and installed provided: (1) that the quality of the alternative and its suitability for the intended application are at least equal to that of the joint seal assembly shown on the plans, (2) that acceptable working drawings and a Certificate of Compliance are furnished as specified herein and (3) that the alternative conforms to the following requirements:

A. The determination as to the quality and suitability of a joint seal assembly will be made in the same manner as provided in Section 6-1.05, "Trade Names and Alternatives," of the Standard Specifications. The factors to be considered will include the ability of the assembly to resist the intrusion of foreign material and water throughout the full range of movement for the application, and the ability to function without distress to any component.
B. Joint seal assemblies will not be considered for approval unless it can be proven that the assembly has had at least one year of satisfactory service under conditions similar to this application.

C. The Contractor shall submit complete working drawings for each joint seal assembly to the Offices of Structure Design (OSD) in conformance with the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications. The working drawings shall show complete details of the joint seal assembly and anchorage components and the method of installation to be followed, including concrete blockout details and additions or rearrangements of the reinforcing steel from that shown on the plans. For initial review, 5 sets of working drawings shall be submitted. After review, between 6 and 12 sets of working drawings, as requested by the Engineer, shall be submitted to OSD for final approval and use during construction.

D. The working drawings shall be supplemented with calculations for each proposed joint seal assembly, as requested by the Engineer. Working drawings shall be either 11” x 17” or 22” x 34” in size. Each drawing and calculation sheet shall include the State assigned designations for the contract number, bridge number, full name of the structure as shown on the contract plans, and District-County-Driver-Route-Post Mile. The design firm’s name, address, and telephone number shall be shown on the working drawings. Each sheet shall be numbered in the lower right hand corner and shall contain a blank space in the upper right hand corner for future contract sheet numbers.

E. Calculations, when requested, and working drawings, shall be stamped and signed by an engineer who is registered as a Civil Engineer. The Contractor shall allow the Engineer 4 weeks to review the drawings after a complete set has been received.

F. Within 3 weeks after final working drawing approval, one set of the corrected good quality prints on 20 pound (minimum) bond paper (22” x 34” in size) of all working drawings prepared by the Contractor for each joint seal assembly shall be furnished to OSD.

G. Each shipment of joint seal materials shall be accompanied by a Certificate of Compliance in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications. The certificate shall state that the materials and fabrication involved comply in all respects to the specifications and data submitted in obtaining the approval.

H. The elastomer portion of the joint seal assembly shall be neoprene conforming to the requirements in Table 1 of ASTM Designation: D 2628 and the following, except that no recovery tests or compression-deflection tests will be required:

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>TEST METHOD</th>
<th>REQUIREMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness, Type A Durometer, points</td>
<td>ASTM D 2240 (Modified)</td>
<td>55–70</td>
</tr>
<tr>
<td>Compression set, 70 hours at 212°F, maximum percent</td>
<td>ASTM D 395 (Modified)</td>
<td>40</td>
</tr>
</tbody>
</table>

I. All metal parts of an alternative joint seal assembly shall conform to the requirements above for the joint seal assembly shown on the plans. At the Contractor’s option, metal parts may conform to the requirements in ASTM Designation: A 572/A 572M.

J. The design loading shall be the AASHTO LRFD Bridge Design Specifications Design Truck with 100 percent dynamic load allowance. The tire contact area used to distribute the tire loads shall be 10 inches, measured normal to the longitudinal axis of the assembly, by 20 inches wide. The assembly shall provide a smooth riding joint without slapping of components or wheel tire rumble.

K. The Movement Rating of the assembly shall be measured normal to the longitudinal axis of the assembly. The dimensions for positioning the assembly within the Movement Rating during installation shall be measured normal to the longitudinal axis, disregarding any skew of the deck expansion joint.

L. The assembly shall have cast-in-place anchorage components forming a mechanical connection between the joint components and the concrete deck. Anchorage components must include anchor studs spaced at a maximum of 4-1/2 inches. Studs must be at least 5/8 inch in diameter and 8 inches long, except the studs may be 6 inches long in the overhang.

M. The maximum depth and width of the recess shall be such that the primary reinforcement to provide the necessary strength of the structural members is outside the recess. The maximum depth of the recess at abutments and at hinges shall be 10 inches. The maximum width of the recess on each side of the expansion joint shall be 12 inches.

N. All reinforcement other than the primary reinforcement shall continue through the recess construction joint into the recess and engage the anchorage components of the assembly.

O. Horizontal angle points and vertical corners at curbs in assemblies shall consist of either premolded sections or standard sections of the joint seal assembly that have been specially miter cut or bent to fit the structure.
P. The elastomer portion of the assembly shall be installed in conformance with the manufacturer's recommendations at such time and in such a manner that the elastomer portion will not be damaged by construction operations. The joint and blockout shall be cleaned of all dirt, debris, and other foreign material immediately prior to the installation of the elastomer.

Full compensation for additional materials or work required because of the application of the optional cleaning and painting or the use of an alternative type joint seal assembly, shall be considered as included in the contract price paid per linear foot for the joint seal assembly involved and no additional compensation will be allowed therefor.

10-1.79 ARCHITECTURAL SURFACE (TEXTURED CONCRETE)

GENERAL

Summary

This work includes constructing architectural textures for concrete surfaces. Architectural treatment shall conform to the provisions in "Architectural Surface (Textured Concrete)" of these special provisions. Architectural textures must comply with Section 51, "Concrete Structures," of the Standard Specifications. Architectural textures listed below are required at concrete surfaces shown on the plans:

1. Fractured rib texture
2. Fractured rib with Ribbon motif texture
3. Bi-County Mural motif texture

The fractured rib texture must be an architectural texture simulating the appearance of straight ribs of concrete with a fractured concrete texture imparted to the raised surface between the ribs. Grooves between ribs must be continuous with no apparent curves or discontinuities. Variation of the groove from straightness must not exceed 1/4 inch for each 10 feet of groove. The architectural texture must have random shadow patterns. Broken concrete at adjoining ribs and groups of ribs must have a random pattern. The architectural texture must not have secondary patterns imparted by shadows or repetitive fractured surfaces.

Fractured rib with ribbon motif texture shall be an architectural texture of fractured rib texture and smooth concrete with relief patterns simulating the appearance of a ribbon as shown on the plans.

Bi-county mural motif texture shall be a combination of architectural textures of fractured rib, split slate, split face, dimpled textures with smooth concrete with relief patterns simulating the appearance of different scenes as shown on the plans.

Quality Control and Assurance

Referee Sample

The architectural texture must match the texture, color, and pattern of the referee sample located at Caltrans Landscape Architecture Department, 464 W. Fourth St., San Bernardino, CA.

WORKING DRAWINGS

The Contractor shall submit working drawings with architectural treatment elevations for all walls as shown on the plans, to the Engineer for approval and use during construction. Working drawings shall show placement of all joint lines, including expansion joints, weakened plane joints and joints between formliner units.

Working drawings shall conform to the Earth Retaining Structures section of these Special Provisions. In addition, an electronic version of the working drawings shall be submitted to the District Landscape Architect and shall be ".dgn" or a format readable with the current software used by the State (Microstation, CAiCE, and IPLOT).

Test Panel

Test panels shall be at least 10’ft x 10’ft in size and shall be successful completed at locations approved by the Engineer before beginning work on architectural textures. The areas of architectural texture and portion of relief pattern to be depicted on each test panel shall be as shown on the plans and as directed by the Engineer. Each test panel shall be constructed and finished including color staining, with the materials, tools, equipment and methods to be used, including placement of expansion joints, weakened planes, and joints between formliner units, in constructing the architectural textures, including areas representative of the fractured rib, split slate, split face and dimpled textures. If ordered by the Engineer, additional test
panels shall be constructed and finished until the specified finish, texture and color are obtained, as determined by the Engineer.

The test panel approved by the Engineer must be used as the standard of comparison in determining acceptability of architectural texture for concrete surfaces.

MATERIALS
Not Used

CONSTRUCTION

Form Liners

Form liners must be used for of the fractured rib, split slate, split face and dimpled textures textured concrete surfaces and must be installed in conformance with the manufacturer's recommendations, unless other methods of forming textured concrete surfaces are approved by the Engineer. Form liners must be manufactured from an elastomeric material by a manufacturer of commercially available concrete form liners. Form liners must leave crisp, sharp definition of the architectural surface. Recurring textural configurations exhibited by repeating, recognizable shadow patterns must be prevented by proper casting of form liner patterns. Textured concrete surfaces with such recurring textural configurations must be reworked to remove such patterns as approved by the Engineer or the concrete must be replaced.

Form liners must have the following properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Test</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shore A hardness</td>
<td>ASTM D 2240</td>
<td>50–90</td>
</tr>
<tr>
<td>Tensile strength</td>
<td>ASTM D 412</td>
<td>1,000 psi min</td>
</tr>
</tbody>
</table>

Cuts and tears in form liners must be sealed and repaired in conformance with the manufacturer's recommendations. Form liners that are delaminated from the form must not be used. Form liners with deformations to the manufactured surface caused by improper storage practices or any other reason must not be used.

Form liners must extend the full height of texturing with vertical joints at 8 foot minimum spacing. Small pieces of form liners must not be used. Horizontal joints within the same texture shall not be allowed. Grooves must be aligned straight and true. Grooves must match at joints between form liners. Joints in the direction of grooves in grooved patterns must be located only in the depressed portion of the textured concrete. Adjoining liners must be butted together without distortion, open cracks, or offsets at the joints. Joints between liners must be cleaned before each use to remove any mortar in the joint.

Adhesives must be compatible with the form liner material and with concrete. Adhesives must be approved by the liner manufacturer. Adhesives must not cause swelling of the liner material.

Releasing Form Liners

Products and application procedures for form release agents must be approved by the form liner manufacturer. Release agents must not cause swelling of the liner material or delamination from the forms. Release agents must not stain the concrete or react with the liner material. For reliefs simulating fractured concrete or wood grain surfaces the application method must include the scrubbing method using a natural bristle scrub brush in the direction of grooves or grain. The release agent must coat the liner with a thin film. Following application of form release agent, the liner surfaces must be cleaned of excess amounts of agent using compressed air. Buildup of form release agent caused by the reuse of a liner must be removed at least every 5 uses.

Form liners must release without leaving particles or pieces of liner material on the concrete and without pulling or breaking concrete from the textured surface. The concrete surfaces exposed by removing forms must be protected from damage.

Abrasive Blasting

The architectural texture must be abrasive blasted with fine abrasive to remove the sheen without exposing coarse aggregate.

Curing

Concrete surfaces with architectural texture must be cured only by the forms-in-place or water methods. Seals and curing compounds must not be used.
MEASUREMENT AND PAYMENT

Architectural texture will be measured and paid for by the square foot.

The contract price paid per square foot for architectural texture of the types listed in the Bid Item List includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in architectural texture, complete in place, including test panels, stain and working drawings as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.80 REINFORCEMENT

Reinforcement shall conform to the provisions in Section 52, "Reinforcement," of the Standard Specifications and these special provisions.

The provisions in "Welding Quality Control" of these special provisions do not apply to resistance butt welding.

When joining new reinforcing bars to existing reinforcement, sample splices shall be made using only the deformation pattern of the new reinforcement to be spliced.

The following shall apply to ultimate splices for bar reinforcing cages of columns and cast-in-place piles where the longitudinal bars are spliced vertically at the job site in or above their final positions:

1. Instead of being removed from the completed lot, sample splices may be prepared in the same manner as specified in Section 52-1.08C(2)(a), "Production Test Requirements for Service Splices," of the Standard Specifications for service sample splices. These sample splices shall be tested in conformance with the requirements in Section 52-1.08C(3), "Ultimate Butt Splice Test Criteria," of the Standard Specifications.

2. Splices may be encased in concrete prior to having the QCM review, approve, and forward each Production Test Report to the Engineer. Should the Contractor exercise this option, it is expressly understood that the Contractor will not be relieved of the Contractor's responsibility for incorporating material in the work that conforms to the requirements of the plans and specifications. Material not conforming to these requirements will be subject to rejection.

For bar reinforcing cages measuring 4 feet in diameter and larger:

1. At least 4 vertical bars of each cage, equally spaced around the circumference, shall be tied at all reinforcement intersections with double wire ties.

2. At least 25 percent of remaining reinforcement intersections in each cage shall be tied with single wire ties. Tied intersections shall be staggered from adjacent ties.

3. Bracing shall be provided to avoid collapse of the cage during assembly, transportation, and installation.

Successful completion of these minimum baseline requirements for reinforcement cages 4 feet in diameter and larger will in no way relieve the Contractor of full responsibility for engineering the temporary support and bracing of the cages during construction.

Reinforcement shown on the plans to be galvanized shall be galvanized in conformance with the requirements in ASTM Designation: A 767/A 767M, Class 1, except that chromating will not be required.

Within areas where galvanized reinforcement is required, tie wire and bar chairs or other metallic devices used to secure or support the reinforcement shall be galvanized, plastic coated, or epoxy coated to prevent corrosion of the devices or damage to the galvanized reinforcement.

Galvanized surfaces that are abraded or damaged caused by shipping, handling, or installation shall be repaired as specified in Section 75-1.05, "Galvanizing," of the Standard Specifications.

MEASUREMENT AND PAYMENT

Measurement and payment for reinforcement in structures shall conform to the provisions in Section 52-1.10, "Measurement," and Section 52-1.11, "Payment," of the Standard Specifications and these special provisions.

Full compensation for galvanizing steel reinforcement shall be considered as included in the prices paid for the various items of work involved and no additional compensation will be allowed therefor.

10-1.81 HEADED BAR REINFORCEMENT

GENERAL

Summary

This section includes specifications for fabricating and placing bar reinforcement with heads attached to one or both ends. Unless otherwise shown, use only headed bar reinforcement with heads having a net area of at least 9 times the area of the reinforcing bar (designated as "Full Size" on the Department's Prequalified Products List).
Definitions:

affected zone: Part of a reinforcing bar where a property, including a physical, metallurgical, or material characteristic, of the bar has been changed by the manufacturing process for headed bar reinforcement.

lot: One hundred fifty, or fraction thereof, of headed bar reinforcement of the same bar size with heads of the same size and type and manufactured by the same method and produced from bar material of a single heat number and head material of a single heat number. A reinforcing bar that has a head on each end is counted as 2 reinforcing bars for establishing and testing production lots.

visible necking: A visible decrease in the sample's cross sectional area at the point of fracture.

Submittals

Submit a certificate of compliance for each shipment of headed bar reinforcement delivered to the job site. Include with the submittal:

1. Copy of the mill test report
2. Specified production test reports
3. Daily production logs

A production test report for all testing performed on each lot must be prepared by the laboratory performing the testing and submitted for review and approval. The report must be signed by an engineer who represents the laboratory and is registered as a civil engineer in the State. For each set of samples, the report must include:

1. Contract number
2. Bridge number
3. Lot number
4. Bar size
5. Type of headed bar reinforcement
6. Physical condition of test sample
7. Notable defects
8. Affected-zone limits
9. Location of visible necking area
10. Ultimate strength of each headed bar

If any part of the head is fabricated in the field, submit a prequalification report as specified for service splices and ultimate butt splices in conformance with Section 52-1.08C(1), "Splice Prequalification Report," of the Standard Specifications.

Quality Control and Assurance

General

The provisions of "Welding Quality Control" do not apply to headed bar reinforcement. Inspect and test before, during, and after manufacturing headed bar reinforcement to ensure materials and workmanship comply with the specifications.

The manufacturer must maintain a daily production log for the manufacture of headed bar reinforcement for each production lot. The log must show:

1. Production lot numbers
2. Heats of bar material and head material used in the manufacture of each production lot
3. Number of bars in each production lot
4. Manufacturing records, including tracking and production parameters for welds or forgings

If any part of the head is fabricated in the field, the operator and procedure must be prequalified as specified for service and ultimate butt splices in conformance with Section 52-1.08C(1), "Splice Prequalification Report," of the Standard Specifications.
Production Tests

Perform production tests on headed bar reinforcement samples at a laboratory on the Department's Pre-Qualified Products List that has:

1. Tensile testing machine capable of breaking the largest size of reinforcing bar to be tested
2. Operators who have received formal training for performing the testing in ASTM Designation: A 970/A 970M
3. Record of annual calibration of testing equipment performed by an independent third party that has:
 3.1. Standards traceable to NIST
 3.2. Formal reporting procedure, including published test forms

Notify the Engineer when any lots of headed bar reinforcement are ready for testing. Include in the notification:

1. Number of lots to be tested
2. Location where the tests will be conducted

After being notified, the Engineer randomly selects 4 test samples from each production lot of headed bar reinforcement that is ready for shipment to the job site. Test samples are 4 feet long for bar reinforcement sizes #9 and below, and 6 feet long for bar reinforcement sizes #10 and above. Test samples of epoxy-coated headed bar reinforcement are taken after the reinforcement has been prepared for epoxy coating.

Before shipping to the laboratory, securely bundle the 4 samples for each production test and identify with a completed sample identification card furnished by the Engineer. Do not perform production tests on samples from bundles containing fewer than 4 samples.

Tensile test 3 samples from each production lot. Conduct 1 tensile test on each sample.

Tensile tests must comply with ASTM Designation: A 970/ A970M, Class A, except at rupture, visible necking in the reinforcing bar must exist at a distance of at least 1 bar diameter away from the affected zone.

If 1 of the test samples fails to comply with the requirements, perform 1 test on the additional sample. If the additional test sample or any of the other original test samples fails to comply with these requirements, the Department rejects all headed bar reinforcement represented by the tests.

Tag each unit of headed bar reinforcement in a production lot to be shipped to the job site in a way that allows accurate identification at the job site. The Department rejects unidentified headed bar reinforcement received at the job site.

MATERIALS

The type of headed bar reinforcement must be on the Department's Prequalified Products List.

Welding, welder qualifications, and inspection of welding must comply with the specifications for friction welding in AWS C6.1.

Equipment used to perform friction welding must be fitted with an in-process monitoring system to record essential production parameters that describe the process of welding the head onto the reinforcement. The parameters to be recorded include:

1. Friction welding force
2. Forge force
3. Rotational speed
4. Friction upset distance and time
5. Forge upset distance and time

MEASUREMENT AND PAYMENT

Quantities of headed bar reinforcement are measured as units determined from the number of heads shown on the plans or as directed by the Engineer.

The contract unit price paid for headed bar reinforcement includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in furnishing headed bar reinforcement, including conforming to all testing requirements, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

Bar reinforcement to be used in the manufacture of headed bar reinforcement and placing the completed headed bar reinforcement into the work is measured and paid for as specified in Section 52, "Reinforcement," of the
Standard Specifications, except that the lengths to be used in the computation of calculated weight of bar reinforcement is the entire length of the completed headed bar, including heads.

10-1.82 SHOTCRETE

Shotcrete shall conform to the specifications in Section 51, "Concrete Structures," and Section 53, "Shotcrete," of the Standard Specifications and these special provisions.

Shotcrete shall completely encase reinforcement and other obstructions shown on the plans.

Attention is directed to the section, "Order of Work," in these special provisions regarding furnishing preconstruction shotcrete test panels.

Except for finish coats, shotcrete shall be applied by the wet-mix process only.

Finish coats, applied by the dry-mix process, may be used only when approved by the Engineer.

Shotcrete shall have a minimum compressive strength of 4000 psi at 28 days. No shotcrete work shall be performed before verification by the Engineer of the required compressive strength.

Splicing of reinforcing bars No. 7 or larger in shotcrete shall be by butt splicing only.

The Contractor shall be responsible for obtaining and testing all required preconstruction and production test cores. Coring and testing shall be performed in the presence of the Engineer. The Engineer shall be notified a minimum of 24 hours before the Contractor performs any coring or testing.

All cores shall be obtained and tested for compressive strength in conformance with the specifications in ASTM Designation: C 42/C 42M. Cores used for determining compressive strength shall be free of bar reinforcement or other obstructions. The testing shall be performed at an independent testing facility approved by the Engineer. A copy of the test results shall be furnished to the Engineer within 5 days following completion of testing. Test cylinders specified in Section 90-9 "Compressive Strength" of the Standard Specifications will not be required for shotcrete.

All test panels shall become the property of the Contractor and shall be disposed of in conformance with the specifications in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

PRECONSTRUCTION REQUIREMENTS

Before performing shotcrete work, the Contractor shall construct at least 2 preconstruction shotcrete test panels for each mixture being considered.

The nozzleperson shall have a minimum of 3000 hours experience as a nozzleperson on projects with a similar application.

At least 15 days before constructing any shotcrete test panels, the Contractor shall submit, in conformance with specifications in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications, a Quality Control Plan (QCP) for the proposed method of shotcrete placement. The plan shall include:

1. The number and qualifications of nozzlepersons available to place shotcrete, the number of nozzlepersons on the project site at any time during the shotcrete placement, description of their work schedule, and the procedures for avoiding fatigue of any nozzleperson.
2. The proposed method of placing shotcrete, including, but not limited to, application rates, details of any proposed construction joints and their locations, and methods for achieving the required thickness and surface finish.
3. The procedure for curing shotcrete surfaces.
4. The description of a debris containment system, to be used during the cleaning of bar reinforcing steel and concrete and placing of shotcrete, as required to provide for public safety.

The Engineer shall have 15 days to review and approve the QCP submittal after a complete plan has been received. No construction of shotcrete test panels shall be performed until the QCP is approved by the Engineer. Should the Engineer fail to complete the review within this time allowance, and if, in the opinion of the Engineer, the Contractor's controlling operation is delayed or interfered with by reason of the delay in approving the QCP, the delay will be considered a right of way delay in conformance with the specifications in Section 8-1.09, "Right of Way Delays," of the Standard Specifications.

Preconstruction shotcrete test panels shall be constructed by the nozzlepersons and application crew scheduled to do the work, using equipment, materials, mixing proportions, ambient temperatures and procedures proposed for the work. The preconstruction shotcrete test panels shall conform to the following:

1. One shotcrete test panel, of the size determined by the Contractor, shall be unreinforced and shall have 3 cores taken from it and tested for compressive strength. The compressive strength shall be the average
strength of the 3 cores, except that, if any core should show evidence of improper coring, the core shall be discarded and the compressive strength shall be the average strength of the remaining cores. The test panel shall be identified and submitted to the Engineer with the test results including a description of the mixture, proportions, and ambient temperature.

2. One shotcrete test panel shall have the same (1) thickness, (2) bar size and quantity of bar reinforcement or other obstructions, and (3) positioning of bar reinforcement or obstructions as the most heavily reinforced section of shotcrete to be placed. The test panel shall be square with the length of the sides equal to at least 3 times the thickness of the most heavily reinforced section of shotcrete to be placed, but not less than 30 inches. After a minimum 7 days of cure, the test panel shall be broken by the Contractor, in the presence of the Engineer, into pieces no larger than 10 inches in greatest dimension. The surfaces of the broken pieces shall be dense and free of laminations and sand pockets, and shall verify the bar reinforcement or other obstructions are completely encased.

3. Both test panels shall be cured under conditions similar to the actual work.
4. At the option of the Contractor, cores to be used for determining the compressive strength may be taken from the reinforced test panel described above instead of making a separate unreinforced test panel as described above. The compressive strength shall be the average strength of the 3 cores, except that, if any core should show evidence of improper coring or contains bar reinforcement or other obstructions, the core shall be discarded and the compressive strength shall be the average strength of the remaining cores. If cores are taken from the reinforced test panel, the panel shall not be broken into pieces, as described above, until it has cured for a minimum of 14 days.

PLACING

An air blowpipe shall be used during shotcrete placement to remove rebound, overspray, and other debris from the areas to receive shotcrete.

Construction joints shall be tapered and shall conform to the specifications in Sections 51-1.13, "Bonding," of the Standard Specifications.

All overspray and rebound shall be removed before final set and before placement of shotcrete on adjacent surfaces.

Rebound or any other material which has already exited the nozzle shall not be reused.

Shotcrete shall be cured in conformance with the specifications in Section 90-7.03, "Curing Structures," of the Standard Specifications.

When a finish coat is to be used, all loose, uneven or excess material, glaze, and rebound shall be removed by brooming, scraping, or other means and the surface left scarified. Surface deposits which take a final set shall be removed by abrasive blasting. Before placing the finish coat, the receiving surface shall be washed down with an air-water blast.

Shotcrete extending into the space shown on the plans for cast-in-place concrete shall be removed.

TESTING AND ACCEPTANCE

At least 3 production shotcrete test cores shall be taken from each 50 cubic yards or portion thereof of shotcrete placed each day. The cores shall be 3 inches in diameter. The location where cores are to be taken will be designated by the Engineer. Test cores shall be identified by the Contractor, and a description of the core location and mixture, including proportions, shall be submitted to the Engineer with the test cores, immediately after coring. Cored holes shall be filled with mortar in conformance with the specifications in Section 51-1.135, "Mortar," of the Standard Specifications.

Upon receipt of the cores, the Engineer will perform a visual examination to determine acceptance, as described below. Within 48 hours after receipt, the Engineer will return the cores to the Contractor for compressive strength testing.

The compressive strength test shall be performed using the shotcrete production test cores described above. The compressive strength shall be the average strength of the 3 cores, except that, if any core should show evidence of improper coring, the core shall be discarded, and the compressive strength shall be the average strength of the remaining cores.

The basis of acceptance for production shotcrete test cores shall be (1) that the core is dense and free of laminations and sand pockets, and shows the reinforcement or other obstructions are completely encased and (2) the same as specified for test cylinders in the 4th and 5th paragraphs of Section 90-9.01, "General," of the Standard Specifications.

If any production test core shows signs of defective shotcrete as described in (1) above, the shotcrete represented by that test core will be rejected, unless the Contractor, at the Contractor's expense, obtains and submits evidence acceptable to the Engineer that the strength and quality of the shotcrete placed in the work are acceptable.
The surface finish of the shotcrete shall conform to the specifications in Section 51-1.18, "Surface Finishes," of the Standard Specifications.

MEASUREMENT AND PAYMENT

Full compensation for the Quality Control Plan, constructing and breaking test panels, furnishing and testing cores and patching cored holes shall be considered as included in the contract price paid per cubic yard for shotcrete, and no additional compensation will be allowed therefor.

Bar reinforcement in shotcrete will be paid for as bar reinforcing steel (retaining wall).

10-1.83 WATERPROOFING

Waterproofing shall conform to the provisions in Section 54, "Waterproofing," of the Standard Specifications and these special provisions.

Membrane waterproofing shall be applied to the painted undercoat of steel column casings in the same manner provided for waterproofing concrete surfaces.

The exposed surfaces of the membrane waterproofing applied to steel column casings shall be of uniform height above ground without unsightly bulges, depressions or other imperfections.

At the option of the Contractor, a preformed membrane waterproofing system may be furnished and applied in lieu of the asphalt membrane waterproofing specified above. Preformed membrane waterproofing shall conform to these special provisions.

A Certificate of Compliance conforming to the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications shall be furnished for the preformed membrane sheet. The Certificate of Compliance shall include the following information: (1) type of preformed membrane sheet, and (2) the conditioner or primer application rates.

The preformed membrane waterproofing system shall consist of an adhesive, conditioner or primer applied to a prepared surface; a preformed membrane sheet of rubberized asphalt or polymer modified bitumen; mastic or tape for sealing the edges of the sheet; and a protective covering over the sheet held by an adhesive.

The preformed membrane sheet shall be either permanently applied to a polyethylene film or reinforced with a polypropylene mesh fabric, polyester/polypropylene fabric or a fiberglass mesh fabric. The membrane sheet shall conform to the following requirements:

<table>
<thead>
<tr>
<th>Property</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Polyethylene Film</td>
</tr>
<tr>
<td>Tensile Strength (min.) (1) ASTM D 882 (2)</td>
<td>20 lbs/in (3)</td>
</tr>
<tr>
<td>Percent Elongation at break (min.) (4) ASTM D 882 (2)</td>
<td>150 percent (3)</td>
</tr>
<tr>
<td>Pliability ASTM D 146 (5)</td>
<td>No cracks</td>
</tr>
<tr>
<td>Thickness (min.) (6)</td>
<td>60 mils</td>
</tr>
<tr>
<td>Rubberized Asphalt Softening Point (min.) AASHTO T 53</td>
<td>165°F</td>
</tr>
<tr>
<td>Polymer Modified Bitumen Softening Point (min.) AASHTO T 53</td>
<td>210°F</td>
</tr>
</tbody>
</table>

Notes:
(1) Breaking factor in machine direction.
(2) Method A, average 5 samples.
(3) At 73.4°F ±3.6°F
(4) Machine direction.
(5) 180-degree bend over a one-inch mandrel at 10°F
(6) Total thickness of preformed membrane sheet and polyethylene film or fabric reinforcement

Adhesives, conditioners, primers, mastics and sealing tapes shall be manufactured for use with the respective preformed membrane sheet materials and shall be applied according to the manufacturer's recommendations.

The protective covering shall be 1/8 inch minimum thickness hardboard or other material that furnishes equivalent protection. Backfill material and equipment shall not cut, scratch, depress or cause any other damage to the preformed membrane.

Surfaces designated to receive preformed membrane waterproofing shall be thoroughly cleaned of dirt, dust, loose or unsound concrete, and other extraneous material and shall be free from fins, sharp edges, and protrusions that would, in the opinion of the Engineer, puncture or otherwise damage the membrane. Sharp corners to be covered shall be rounded (outside) or chamfered (inside).
Surfaces shall be dry when components of the preformed membrane waterproofing system are applied. Preformed membrane waterproofing shall not be applied to any surface until the Contractor is prepared to follow its application with the placing of the protective covering and backfill within a sufficiently short time that the membrane will not be damaged by workers or equipment, exposure to weathering, or from any other cause. Damaged membrane or protective covering shall be repaired or replaced by the Contractor at the Contractor's expense.

All projecting pipe, conduits, sleeves or other facilities passing through the preformed membrane waterproofing shall be flashed with prefabricated or field-fabricated boots, fitted coverings or other devices as necessary to provide watertight construction.

All conditioner or primers shall be thoroughly mixed and continuously agitated during application. Conditioner, primers or adhesive shall be allowed to dry to a tack free condition prior to placing membrane sheets.

The surfaces shall be recoated if membrane sheets are not placed over primer, conditioner or adhesive within the time recommended by the manufacturer.

The preformed membrane sheet shall not be applied in wet or foggy weather, nor when the ambient temperature is below 40° F.

Preformed membrane material shall be placed starting at the bottom and lapped by a minimum of 6 inches at splices and at repairs to holes or tears.

Exposed edges of membrane sheets shall have a trowelled bead of manufacturer's recommended mastic or sealing tape applied after the membrane is placed.

The surface of the preformed membrane shall be cleaned free of dirt and other deleterious material before the protective covering is placed.

The protective covering shall be placed on a coating of adhesive of a type recommended by the manufacturer. The adhesive shall be applied at a rate sufficient to hold the protective covering in position until the backfill is placed.

Preformed membrane waterproofing will be measured and paid for by the square foot as asphalt membrane waterproofing.

Dampproofing will be measured and paid for as asphalt membrane waterproofing.

10-1.84 WATERPROOFING AND COVER

Membrane waterproofing and protective cover shall be furnished and applied to the surface of the deck of the BNSF railroad underpasses in conformance with the details shown on the plans and the requirements of the AREMA Manual for Railway Engineering and these special provisions.

The waterproofing membrane shall be butyl rubber secured with an approved adhesive. At the option of the Contractor and subject to the requirements for butyl rubber, ethylene-propylene-diene-monomer (EPDM) may be substituted for butyl rubber.

The butyl rubber membrane, adhesive, splicing cement, butyl gum splicing tape, anti-bonding paper, and fibered aluminum roof coating shall conform to the requirements of the AREMA Manual, Chapter 29, Part 2, "Membrane Waterproofing."

Butyl rubber membrane shall be 0.060 inch thick, minimum.

The protective cover over the membrane waterproofing shall be 2 layers of asphaltic panels applied with adhesive and sealing compound to a total thickness not less than 3/4 inch. Sealing compound for joints and edges shall be compatible with the membrane, the adhesive used to fasten the membrane to the deck, splicing cement, and the protective cover panels. All materials shall conform to the requirements of AREMA Manual, Chapter 29, and the following:

A. The individual panels shall be 3/8 inch thick. Panels shall be installed in sizes not less than 4' x 8', except as cut for closures.
B. Panels shall be shipped and stored on smooth, flat surfaces.
C. When panels are shipped with an inert material between the sheets to prevent sticking, all inert material shall be removed from the panel before installation.

Membrane waterproofing shall not be applied to any surface until the Contractor is prepared to follow its application with the placing of the protective cover within a sufficiently short time that the membrane will not be damaged by workers or equipment, exposure to weathering or from any other cause.

Concrete surfaces to receive the seal shall be swept or air blown clean of all dirt, dust, gravel, loose concrete particles, and other extraneous materials. Projections or depressions on the surface on which the membrane is to be applied that may cause injury to the membrane shall be removed or filled as directed by the Engineer.

There shall be no depressions or pockets in horizontal surfaces of the finished waterproofing. The membrane shall be carefully turned into drainage fittings. Special care shall be taken to make the waterproofing effective along
the sides and ends of girders and decks and at stiffeners, gussets, expansion joints, offsets in ballast retainers, and other discontinuities.

The Contractor shall be responsible for preventing damage to the membrane waterproofing by workers or equipment.

Construction of butyl membrane waterproofing shall conform to the following:

A. The surface shall be dry at the time of application and the membrane shall not be applied when the atmospheric temperature is below 34° F.

B. Butyl rubber membrane shall be fastened to the surface to be waterproofed by adhesive material.

C. The adhesive shall be applied by squeegee to the entire deck surfaces to be waterproofed at a rate of not less than one gallon per 100 square feet of deck surface.

D. Membrane sheets shall first be positioned and drawn tight without stretching. Half of the membrane shall then be uniformly rolled in a direction away from the starting edge or subsequent splice. Adhesive shall then be applied to the exposed deck area. Adhesive shall be allowed to dry to a tack free condition. The membrane shall then be unrolled and pressed firmly and uniformly in place, using care to avoid trapping of air. The same procedure shall be repeated for the remaining half of the membrane sheet. Wrinkles and buckles shall be avoided. Each succeeding sheet shall be positioned to fit the previously installed sheet and spliced.

E. Splices shall be tongue-and-groove type conforming to the details in Figure 2, Type No. 3 of AREMA Manual, Chapter 29. All seam, lap, and splice areas shall be cleaned with heptane, hexane, toluene, trichloroethylene or white gasoline, using a clean cloth, mop, or similar synthetic cleaning device. Splicing cement shall be spread continuously on the seam, lap, and splice areas at a uniform rate of not less than one gallon per 75 square feet based on both mating surfaces. After cement has dried to a tack free condition, apply butyl gum splicing tape to cemented area of membrane, extending tape to at least 1/8 inch beyond edges of splice and lap areas. Roll or press the tape firmly into place so as to obtain full contact. Bridging and wrinkles shall be avoided. Corner splices shall be reinforced with 2 continuous layers of rubber membrane over one layer of butyl tape.

F. All projections, such as pipes, conduits or sleeves, passing through the butyl rubber membrane waterproofing shall be flashed with prefabricated or field-fabricated boots or fitted coverings as necessary to provide watertight construction. Butyl gum tape shall be used between layers of rubber membrane.

G. Holes in the membrane sheeting shall be patched with a minimum overlap of 4 inches and in accordance with manufacturer's instructions.

H. At transverse expansion joints in the bridge deck, a 12-inch wide galvanized 22-gage steel plate covered by a 18-inch wide strip of antibond paper shall be laid and centered on the joint prior to laying the membrane across the joint.

Construction of asphaltic protective cover shall conform to the following:

A. The surface of the membrane applied to the deck shall be thoroughly cleaned of dirt and other deleterious material before the protective cover is placed.

B. At transverse expansion joints in the bridge deck, a 12-inch wide galvanized 22-gage steel plate covered by a 18-inch wide strip of antibond paper shall be laid and centered on the joint above the membrane before the protective cover is placed.

C. Panels shall be laid with 2 superimposed layers. Joints in the second layer shall be offset from the joints in the first layer by approximately one-half the width of the panel.

D. Panels shall be laid in a coating of adhesive. The adhesive shall be applied by squeegee at a rate of not less than one-gallon per 100 square feet of deck surface. As successive panels are laid, the edges and ends of adjacent panels already laid shall be thoroughly coated with a sealing compound. Panels shall be laid tightly against those previously laid so that the sealing compound will completely fill the joints and be squeezed out at the top. After all of the panels have been laid, any void between panels shall be filled with the sealing compound.

E. Where edges or protrusions of asphaltic panels are exposed to prolonged sunlight exposure, exposed areas shall be coated with fibered aluminum roof coating.

Retainer-buffers and headers, including anchor bolt assemblies, shall be furnished and installed where shown on the plans. Timbers shall be No. 1 structural grade Douglas fir pressure treated in conformance with AWPA Use Category System: UC4B, Commodity Specification A, except that chromated copper arsenate shall not be used. Steel bolts, plates, and sheet metal shall be commercial quality, hot-dip galvanized.
Membrane waterproofing and asphalitic protective cover panels will be paid for at the contract price per square foot for waterproofing and cover. The quantity of waterproofing and cover will be computed from measurements, along the slopes including timber retainers and headers, of the actual areas placed.

The contract price paid per square foot for waterproofing and cover shall include full compensation for furnishing all labor, materials (including galvanized sheet metal, timber retainers and headers, and steel bolts and plates), tools, equipment, and incidentals, and for doing all the work involved in furnishing and applying membrane waterproofing and protective cover, complete in place, as shown on the plans, as specified in these special provisions, and as directed by the Engineer.

10-1.85 BRIDGE DECK METHACRYLATE RESIN TREATMENT

GENERAL

Summary

This work includes applying a high molecular weight methacrylate (HMWM) resin system with sand and absorbent material to bridge decks.

Submittals

Submit a HMWM resin system placement plan and a public safety plan under Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications. The plan review time is 15 days.

The HMWM resin system placement plan must include:

1. Schedule of work and testing for each bridge
2. Description of equipment for applying HMWM resin
3. Range of gel time and final cure time for HMWM resin
4. Absorbent material to be used
5. Description of equipment for applying and removing excess sand and absorbent material
6. Procedure for removing HMWM resin from the deck, including equipment
7. Storage and handling of HMWM resin components and absorbent material
8. Disposal of excess HMWM resin and containers

Submit a material safety data sheet for each HMWM resin system component and diatomaceous earth shipment before use.

Quality Control and Assurance

Submit samples of HMWM resin components 15 days before use under Section 6-3, "Testing," of the Standard Specifications. Notify the Engineer 15 days before delivery of HMWM resin components in containers over 55 gallons to the job site.

Complete a test area before starting work.

The test area must:

1. Be approximately 500 sq ft
2. Be placed within the project limits outside the traveled way at an approved location
3. Be constructed using the same equipment as the production work
4. Replicate field conditions for the production work
5. Demonstrate proposed means and methods meet the acceptance criteria
6. Demonstrate production work will be completed within the time allowed

The test area will be acceptable if:

1. The treated deck surface is tack free and non-oily
2. The sand cover adheres and resists brushing by hand
3. Excess sand and absorbent material has been removed
4. The coefficient of friction is at least 0.35 when tested under California Test 342

MATERIALS

HMWM resin system consists of a resin, promoter, and initiator. HMWM resin must be low odor and comply with the following:
Sand for abrasive sand finish must:

1. Be commercial quality dry blast sand
2. Have at least 95 percent pass the No. 8 sieve and at least 95 percent retained on the No. 20 sieve when tested under California Test 205

Absorbent material must be diatomaceous earth, abrasive blast dust, or substitute recommended by the HMWM resin supplier and approved by the Engineer.

CONSTRUCTION

HMWM resin system applied by machine must be:

1. Combined in volumetric streams of promoted resin to initiated resin by static in-line mixers
2. Applied without atomization

HMWM resin system may be applied manually. Limit the quantity of resin mixed for manual application to 5 gallons at a time.

Prepare the deck under "Prepare Concrete Bridge Deck Surface" of these special provisions.

The deck must be dry before applying HMWM resin. The concrete surface must be at least 50 degrees F and at most 100 degrees F. Relative humidity must be expected to be at most 85 percent during the work shift.

Thoroughly mix all components of HMWM resin. Apply HMWM resin to the deck surface within 5 minutes of mixing at approximately 90 sq ft per gallon. The Engineer determines the exact application rate. HMWM resin that thickens during application is rejected.

Spread the HMWM resin uniformly. Completely cover surfaces to be treated and fill all cracks. Redistribute excess resin using squeegees or brooms within 10 minutes of application. For textured or grooved deck surfaces, excess resin must be removed from the texture indentations.

Apply the abrasive sand finish of at least 2 lbs per sq yd or until saturation as determined by the Engineer no sooner than 20 minutes after applying resin. Apply absorbent material before opening lane to traffic. Remove excess sand and absorbent material by vacuuming or power sweeping.

Traffic or equipment will be allowed on the overlay after the Engineer has determined:

1. The treated deck surface is tack free and non-oily
2. The sand cover adheres and resists brushing by hand
3. Excess sand and absorbent material has been removed
4. No material will be tracked beyond limits of treatment by traffic

Remove the HMWM resin from the deck surface if the Engineer determines (1) the above listed conditions have not been met and (2) the allowable lane closure time will be exceeded.
The Engineer performs California Test 342 on treated deck surfaces. The Engineer provides at least a 15-day notice for the Contractor to provide traffic control for each bridge location. The coefficient of friction of the treated deck must be at least 0.35.

MEASUREMENT AND PAYMENT

Bridge deck methacrylate resin treatment will be measured by the square foot based on the dimensions shown on the plans and will be paid for as treat bridge deck. Furnish bridge deck treatment material will be measured by the gallon of mixed HMWM resin actually placed and will be paid for as furnish bridge deck treatment material. No payment will be made for materials wasted or not incorporated in the work.

The contract price paid per square foot for treat bridge deck shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in preparing and applying bridge deck HMWM resin treatment, including sand and absorbent material, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

The contract price paid per gallon for furnish bridge deck treatment material shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals necessary to furnish the bridge deck treatment material to the site of the work ready for application, as specified in the Standard Specifications and these special provisions and as directed by the Engineer.

Full compensation for providing traffic control for the Engineer to perform inspections and testing shall be considered as included in the contract prices paid for the items of work involving bridge deck methacrylate resin treatment and no additional compensation will be allowed therefor.

10-1.86 COMPOSITE COLUMN CASING AND FRP STRIPS

This work shall consist of furnishing and constructing composite column casings and FRP strips as shown on the plans in accordance with the provisions specified in the Standard Specifications and these special provisions.

The allowable kinds of casing to be used for construction of composite column casing are shown on the plans for each bridge. The kind of casing to be constructed shall be selected by the Contractor from the allowable kinds of casings shown on the plans. Only one kind shall be used in any one bridge. The kind of casing selected shall conform to the requirements for such casing briefly described in the following subsection, "Alternatives."

Composite Column Casing--Composite column casing consists of System 2, an epoxy resin-prepreg carbon fiber composite casing with painted exterior surface.

The acceptable composite column casing systems for this project must be selected from the Department's current list of prequalified composite column casings, and are limited to only those systems which have been determined to have characteristics suitable for this project. Only prequalified composite column casing systems, casing system suppliers or installers, materials or construction processes will be allowed, unless otherwise directed by the Engineer. Among the systems shown, some may be proprietary.

The list of prequalified systems and the prequalification requirements can be obtained from the Earthquake Engineering, P.O. Box 942874, MS 9, Sacramento, CA 94274-0001, or can be found at the following internet site:

http://www.dot.ca.gov/hq/esc/approved_products_list/

The spaces to be occupied by the column casing materials shall be cleared of plants and other materials prior to encasing the column.

Removed plants and other materials shall be disposed of outside the highway right of way in accordance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

The same information that is painted on existing columns shall be painted on column casings in accordance with the provisions in Section 51-1.21, "Bridge Name, Number, and Bent Numbers," of the Standard Specifications.

WORKING DRAWINGS

Working drawings for the column casing shall conform to Section 55-1.02, "Drawings," of the Standard Specifications and these special provisions.

Contractor shall submit working drawings to the Office of Structure Design, Documents Unit, P.O. Box 942874, MS 9, Sacramento, California 94274-0001 (1801 30th Street, Sacramento, CA 95816), telephone (916) 227-8230, for approval in accordance with the provisions in Section 5-1.02, "Plans and Working Drawings." For initial review, 6 sets of such drawings shall be submitted. After review, between 6 and 12 sets, as requested by the Engineer, shall be submitted to the said Office for final approval and for use during construction.
The Contractor shall allow 3 weeks for the review by the Engineer after complete drawings and all supplemental data for the composite column casing alternative are submitted.

The working drawings for composite column casing shall contain details of the dry sheet, fabric or winding thickness; the number of wraps or layers to construct the minimum composite thickness shown on the plans; fiber volume; details of joints and ends of fiber construction; details of the transition in composite thickness; plan for curing, if required; methods for coring and for fabrication of test samples; name of independent testing facility located within 300 air line miles from both Sacramento and Los Angeles to be used to test samples and cores; 3 copies of the Process Specification Manual furnished with prequalification; and all information required for the proper construction of the system at each location including any required revisions or additions to drainage systems or other facilities.

Working drawings for composite column casing shall also include the precautions that are necessary to protect the workmen and the public from hazardous materials that may be present or generated during composite column casing construction.

The working drawings for composite column casing shall include the material supplier's name, material safety data sheets, and commercial material designation for all the materials to be used in the composite column casing. The following properties for the resin (neat) shall be included with the working drawings: mix ratio by weight and volume, pot life, shelf life, resin gel time at proposed cure temperatures, mixing and application temperature ranges. The materials shall be certified by the responsible manufacturer or supplier to have the same properties as used in the prequalified alternative column casings, and a Certificate of Compliance shall be furnished to the Engineer in accordance with the provisions in Section 6-1.07, "Certificate of Compliance," of the Standard Specifications.

At the completion of each structure on the contract, one set of reduced prints on 20 pound (minimum) bond paper, 11 inches by 17 inches in size, of the corrected original tracings of all working drawings for each structure shall be furnished to the Engineer. Reduced prints that are common to more than one structure shall be submitted for each structure. An index prepared specifically for the drawings for each structure containing sheet numbers and titles shall be included on the first reduced print in the set for each structure. Reduced prints for each structure shall be arranged in the order of drawing numbers shown in the index.

The edge of the corrected original tracing image shall be clearly visible and visually parallel with the edges of the page. A clear, legible symbol shall be provided on the upper left side of each page to show the amount of reduction and a horizontal and vertical scale shall be provided on each reduced print to facilitate enlargement to original scale.

CONSTRUCTION

Composite casing shall be constructed by wrapping the column with layers of continuous fiber embedded in resin.

The composite column casing for System 2 shall conform to the following requirements:
<table>
<thead>
<tr>
<th>PROPERTY at 72±2°F</th>
<th>System 2</th>
<th>ASTM TEST METHOD ***</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultimate Tensile Strength, in primary fiber direction *, ksi, min.</td>
<td>175</td>
<td>D 3039</td>
</tr>
<tr>
<td>Ultimate Elongation, percent, min.</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Tensile modulus of primary fibers, ksi, min.</td>
<td>15×10^3</td>
<td></td>
</tr>
<tr>
<td>Ultimate Tensile Strength at 90° to primary fibers, ksi, min.</td>
<td>Not applicable</td>
<td></td>
</tr>
</tbody>
</table>
| Fiber volume, percent, min. | 50 | System 1: D 2584
System 2: D 3171 |
| Glass transition temperature, min. | 220°F. | D 3418 or D 4065 |
| Flammability, seconds, max. | 5 | D 3801, test per paragraph 10.5 |

* Horizontal fibers circumscribing the column.
** Prior to testing, samples for System 1 shall be cured at least 7 days at 75±3°F.
*** Subject to approval of the Engineer, other test methods, such as those published by Suppliers of Advanced Composite Materials Association (SACMA), or manufacturer's published Quality Control Procedures may be used when equivalency and suitability have been documented.

Epoxy resin for System 2 shall conform to the requirements in Section 95-1, "Epoxy," of the Standard Specifications and these special provisions, except that (1) no State Specification Number will be required and (2) the epoxy color shall be the same as that used in prequalification testing.

The storage and handling of materials and the construction of the composite casing for System 2 shall be in accordance with the requirements of the approved Process Specification Manual, except as modified in these special provisions. Materials shall be protected from dirt, moisture, chemicals, extreme temperatures, and physical damage.

Where shown on the plans, corners of columns shall be rounded and smoothed to a Class 1 surface finish in accordance with Section 51, "Concrete Structures," of the Standard Specifications prior to the application of fibers. Filler material, if required, shall be epoxy.

Surfaces to receive composite for System 2 shall be free from fins, sharp edges and protrusions that will cause voids or depressions behind the installed casing or that in the opinion of the Engineer, will damage the fibers. Voids or depressions are defined as volumes greater than 1/2 inch in diameter by 1/8-inch deep when measured from a one foot long straight edge placed on the column surface. Existing uneven surfaces to receive composite, including voids or depressions shall be filled with epoxy. Flat sides of columns shall be filled straight from corner to corner or made slightly convex.

Portland cement based fillers shall not be used on columns which are to receive composite column casing.

Daily Wrapping Data Log

During construction of System 2, the Contractor shall maintain a Daily Wrapping Data Log. The Daily Wrapping Data Log shall be available for review by the Engineer, and a copy furnished to the Engineer at completion of installation and construction for each day's production. The data log shall provide materials traceability and process records for each casing installation, and shall include all of the following information:

- Casing identification with bridge number, construction and installation requirements, including plans and drawings, or references thereto.
- Materials information including product description, date of manufacture, and lot or batch numbers.
Fabrication, inspection and verification data for the manufacturing and construction operations including, wrap counts, composite thickness measurements, towpreg band pitch measurements, ambient temperature and humidity readings at beginning, middle and end of each casing installation shift, curing processes including full documentation of curing temperature ramping and final curing temperature and thickness measurements of any protective coating applied to the completed composite casing following installation.

System 2: Application

The contact surfaces of the column shall be completely dry at time of application of the composite for System 2. The ambient temperature shall be at least 40°F. at time of applying the towpreg to the column. The composite shall be applied when the relative humidity is less than 90 percent at the site and the surface temperature is more than 5°F. above the dew point.

If, in the opinion of the Engineer, the composite is damaged by the elements it shall be replaced or repaired by the Contractor at the Contractor's expense.

Subject to approval by the Engineer in writing, the Contractor may provide suitable enclosures to permit application of the composite for System 2 during inclement weather. Provisions shall be made to control atmospheric conditions artificially inside the enclosures within limits specified for application of the composite.

Prior to application of the composite for System 2, the area of the column to be encased shall be completely coated with a system-compatible resin.

Bands of towpreg for System 2 shall be applied to the surface of the column by wrapping, using methods that produce a uniform constant tensile force that is distributed across each towpreg of the band.

The primary fibers of the fabric for System 2 shall not deviate from a horizontal line more than 1/2 inch per foot.

Towpreg for System 2 shall be continuous throughout the wrap, except as required for splicing. Towpreg splice ends shall overlap by at least 15 inches. Splices shall be staggered so that the minimum distance between towpreg splices is 6 inches.

Undulations in the surfaces of composite column casings for System 2 shall not exceed 1/4 inch per foot in any direction.

System 2 casing shall be completely cured at an elevated temperature. For composite casings 0.15 inches or less in thickness, the temperature shall be monitored and controlled by devices installed at or near the surface of the casing. For composite casings greater than 0.15 inches in thickness, the temperature shall be monitored at both the surface and at the column to casing interface and controlled by devices installed on the surface of the composite casing.

After cure of the final layer of towpreg for System 2, the towpreg, including exposed edges, shall be covered with a 15 mil, minimum, thick coat of resin that produces a uniform finished surface. The resin used in the final layer cover shall be a system-compatible resin formulated to resist crazing and chipping.

Job Control Tests, Inspection and Repair

During progress of the work, in addition to inspection performed by the Engineer, job control tests shall be made on samples and cores of composite casing for Systems 2, and check test cores shall be furnished to the Engineer at the Contractor’s expense. Samples and cores for job control tests of composite casing shall be fabricated or cored by the Contractor and tested at the Contractor's expense in the presence of the Engineer, unless otherwise directed. The job control testing shall be done at an independent testing facility approved by the Engineer. A copy of the job control test results shall be furnished to the Engineer within 30 days following sample fabrication and within sufficient time to allow for review by the Engineer and correction by the Contractor of any deficiencies without delaying completion of the work.

The composite samples for job control tests shall be used to verify compliance with the requirements for ultimate tensile strength, ultimate elongation, tensile modulus, and flammability of the composite column casings. The composite samples shall consist 3-ply laminates at 12 tows per inch of width per lamination for System 2. Each sample of composite shall be at least 4 square feet in total area for each type of composite to be used, and may consist of one piece or individual pieces not less than 12 inches by 12 inches in area. One sample of each day's production of column casing shall be tested. Each composite sample shall be manufactured and cured in the same manner as composite used in the field installation.

The composite casings for System 2 shall have at least the number of wraps and thickness as shown on the plans, and shall conform to the requirements for fiber volume and glass transition temperature for composite column casings. These dimensions and properties shall be verified, after wrapping and cure, by taking 0.5-inch diameter cores from the composite for job control testing. One job control core shall be taken by the Contractor on each thickness, as shown on the plans, of composite casing on each column at locations determined by the Engineer. One check test core shall be taken by the Contractor and furnished to the Engineer for testing for each column at a location determined by the Engineer. Care shall be taken during coring operations to ensure that undamaged cores
are obtained, and that minimal damage occurs to the adjacent composite and column. All cores shall be placed in labeled and sealed polyethylene bags prior to shipment to the testing facility or furnishing to the Engineer. Core holes shall be filled with a system-compatible resin and smoothed flush prior to painting the composite casing.

Should the results of tests for System 2 on the samples or cores in any job control test fail to comply with these specifications, the composite casing represented by that test will be rejected in accordance with the provisions in Section 6-1.04, “Defective Materials,” of the Standard Specifications.

Composite column casings shall be constructed in a manner consistent with the best commercial practices. The cured composite material encasing columns will be inspected for defects consisting of external abrasions or blemishes, delaminations, voids, external cracks, chips, cuts, loose fibers, foreign inclusions, depressible raised areas, or fabric wrinkles. The following criteria shall apply:

All defects with a dimension greater than 1 1/2”, defect areas greater than one square inch, or defect areas with any dimension greater than 1” within one foot from another defect area of similar size, shall be repaired or replaced as determined by the Engineer.

Within either the full casing height or any 10 feet of casing height, whichever is smaller, composite casings with a total number of 10 or more defects of any size shall be repaired or replaced as determined by the Engineer.

Preparation of Surfaces and Painting Composite Casing
Exposed surfaces of composite casing for System 2, including surfaces below ground, shall be cleaned and painted in accordance with the provisions in Sections 59-1, "General," and 91, "Paint," of the Standard Specifications and these special provisions.

Exposed surfaces of composite casing for System 2, including surfaces below ground, shall be cleaned and painted in accordance with the provisions in Sections 59-1, "General," and 91, "Paint," of the Standard Specifications and these special provisions.

The surfaces to be cleaned and painted shall be lightly roughened by uniform abrasive blasting using an abrasive no larger than 80 mesh. The air pressure at the nozzle used for abrasive blasting shall not exceed 80 psi. The abrasive shall be of appropriate hardness to roughen the surface without damage to the fiber portion of the composite. The fiber portion of the composite shall not be exposed by the abrasive blasting operation. Abrasive blasting will not be required for System 1 if the first coat of paint is applied within 72 hours after mixing the components for the final 15 mil resin coating.

Dust and residue shall be removed from all surfaces by flushing with clean water before painting.

All cleaned and roughened surfaces of the composite casing shall be completely dry before receiving a minimum of 2 finish coats of an exterior grade paint that is formulated to be system-compatible with the composite.

The first finish coat shall be applied in 2 applications. The total dry film thickness of all applications of the first finish coat shall be not less than 2 mils.

Successive applications of paint shall be of such a shade as to contrast with the paint being covered.

Except as approved by the Engineer, a minimum drying time of 12 hours shall be allowed between finish coats.

The second finish coat color shall match Federal Standard 595B No. 26408. The total dry film thickness of all applications of the second finish coat shall be not less than 2 mils.

The 2 finish coats shall be applied in 3 or more applications to a total dry film thickness of not less than 4 mils or more than 8 mils.

MEASUREMENT AND PAYMENT
Composite column casing and FRP strips, will be measured by the square foot. The quantity to be paid for will be the area of the existing concrete column surface shown on the plans or actual area applied for FRP strips.

The contract price paid per square foot for composite column casing, and per square foot for FRP strips shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals and for doing all the work involved in furnishing and constructing composite column casings and FRP strips, complete in place, including removing and disposing of plants and other materials, removal of fins, sharp edges and protrusions and filling of voids or depressions in surfaces to receive composite, rounding of corners, job control testing, and cleaning and painting column casings and FRP strips as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

Full compensation for any additional testing, materials, enclosures, or work required because of the use of a particular kind of column casing shall be considered as included in the contract price paid per square foot for the composite column casing, and per square foot for the FRP strips, and no additional compensation will be allowed therefor.

10-1.87 STEEL STRUCTURES
Construction of steel structures shall conform to the provisions in Section 55, "Steel Structures," of the Standard Specifications and these special provisions.
Attention is directed to "Welding" in Section 8, "Materials," of these special provisions.

MATERIALS

Fracture critical members shall conform to the Charpy V-notch (CVN) impact values, welding, and welding inspection of the Fracture Control Plan for Fracture Critical Members in Chapter 15, Part 1 of the AREMA Manual of Railway Engineering. Fabricators of fracture critical members shall be certified under the AISC Quality Certification Program, Category Cbr, Major Steel Bridges, with Endorsement F, Fracture Critical Members. CVN impact values for fracture critical members shall conform to the requirements for Zone 2.

Except for ASTM A325, Type 3, fastener assemblies, all high-strength fastener assemblies and other bolts attached to structural steel with nuts and washers shall be zinc coated. When direct tension indicators are used in these assemblies, the direct tension indicator and all components of the fastener assembly shall be zinc coated by the mechanical deposition process.

CHECK TESTING

Structural steel shall conform to the designated ASTM Standard and the check testing requirements of this section.

Check samples shall be furnished for each heat of maximum thickness of:

A. Tension flanges and webs of fracture critical members.
B. Tension flanges and webs of curved girders.
C. Tension hanger plates.

Steel plates, shapes, or bars containing check samples shall be furnished from the mill with extra length in order to provide for removal of material for check samples at the point of fabrication. Check samples may be cut from either end of the designated plate, shape, or bar.

At the option of the Contractor, check samples may be removed at the rolling mill rather than at the point of fabrication. The sample will be removed from the mill plate that will be stripped by the fabricator to produce the designated plate and may be taken from any location within that plate. The mill plate from which samples are removed shall be marked with the same identifying numbers as are used on the samples.

Material for check samples shall be removed by the Contractor in the presence of the Engineer. Check samples for plates wider than 24 inches shall be 14 inches wide and 18 inches long with the long dimension transverse to the direction of rolling. Check samples for all other products shall be 18 inches long, taken in the direction of rolling, and the width shall be the product width. Check samples shall be removed and delivered to the Engineer before the
The material is fabricated into components. The direction of rolling, heat numbers, and plate numbers shall be marked on the samples with paint or other indelible marking material or may be steel stamped in one corner of the plate.

Check samples shall be delivered to the Transportation Laboratory at the Contractor's expense. The check samples will be tested by the Transportation Laboratory for compliance with the requirements specified in ASTM and these special provisions. Check sample test results will be reported to the Contractor within 3 weeks of delivery to the Transportation Laboratory. In the event several samples are submitted on the same day, an additional day will be added for every 2 samples submitted. The test report will be made for the group of samples.

The results of the tensile and impact tests shall not vary more than 5 percent below the specified minimum or 5 percent above the specified maximum requirements. If the initial check test results vary more than 5 percent but not more than 10 percent from the specified requirements, a retest may be performed on another sample from the same heat and thickness. The results of the retest shall not vary more than 5 percent from the original specified requirements. If the results of check tests exceed these permissible variations, material planned for use from the heat represented by said check samples shall be subject to rejection.

ROTATIONAL CAPACITY TESTING PRIOR TO SHIPMENT TO JOB SITE

Rotational capacity tests shall be performed on all lots of high-strength fastener assemblies prior to shipment of these lots to the project site. Zinc-coated assemblies shall be tested after all fabrication, coating, and lubrication of components has been completed. One hardened washer shall be used under each nut for the tests.

The requirements of this section do not apply to high-strength cap screws or high-strength bolts used for slip base plates.

Each combination of bolt production lot, nut lot, and washer lot shall be tested as an assembly.

A rotational capacity lot number shall be assigned to each combination of lots tested. Each shipping unit of fastener assemblies shall be plainly marked with the rotational capacity lot number.

Two fastener assemblies from each rotational capacity lot shall be tested.

The following equipment, procedure, and acceptance criteria shall be used to perform rotational capacity tests on and determine acceptance of ASTM A 325 long bolts. Fasteners are considered to be long bolts when full nut thread engagement can be achieved when installed in a bolt tension measuring device:

A. Long Bolt Test Equipment:

1. Calibrated bolt tension measuring device with adequate tension capacity for the bolts being tested.
2. Calibrated dial or digital torque wrench. Other suitable tools will be required for performing Steps 7 and 8 of the Long Bolt Test Procedure. A torque multiplier may be required for large diameter bolts.
3. Spacer washers or bushings. When spacer washers or bushings are required, they shall have the same inside diameter and equal or larger outside diameter as the appropriate hardened washers conforming to the requirements in ASTM Designation: F 436.
4. Steel beam or member, such as a girder flange or cross frame, to which the bolt tension measuring device will be attached. The device shall be accessible from the ground.

B. Long Bolt Test Procedure:

1. Measure the bolt length. The bolt length is defined as the distance from the end of the threaded portion of the shank to the underside of the bolt head.
2. Install the nut on the bolt so that 3 to 5 full threads of the bolt are located between the bearing face of the nut and the underside of the bolt head. Measure and record the thread stickout of the bolt. Thread stickout is determined by measuring the distance from the outer face of the nut to the end of the threaded portion of the shank.
3. Insert the bolt into the bolt tension measuring device and install the required number of washers, and additional spacers as needed, directly beneath the nut to produce the thread stickout measured in Step 2 of this procedure.
4. Tighten the nut using a hand wrench to a snug-tight condition. The snug tension shall not be less than the Table A value but may exceed the Table A value by a maximum of 2 kips.
Table A

<table>
<thead>
<tr>
<th>Bolt Diameter (inches)</th>
<th>Snug Tension (kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>1</td>
</tr>
<tr>
<td>5/8</td>
<td>2</td>
</tr>
<tr>
<td>3/4</td>
<td>3</td>
</tr>
<tr>
<td>7/8</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>1-1/8</td>
<td>6</td>
</tr>
<tr>
<td>1-1/4</td>
<td>7</td>
</tr>
<tr>
<td>1-3/8</td>
<td>9</td>
</tr>
<tr>
<td>1-1/2</td>
<td>10</td>
</tr>
</tbody>
</table>

5. Match-mark the assembly by placing a heavy reference start line on the face plate of the bolt tension measuring device which aligns with (1) a mark placed on one corner of the nut and (2) a radial line placed across the flat on the end of the bolt or on the exposed portions of the threads of tension control bolts. Place an additional mark on the outside of the socket that overlays the mark on the nut corner such that this mark will be visible while turning the nut. Make an additional mark on the face plate, either 2/3 of a turn, one turn, or 1-1/3 turn clockwise from the heavy reference start line, depending on the bolt length being tested as shown in Table B.

Table B

<table>
<thead>
<tr>
<th>Bolt Length (measured in Step 1)</th>
<th>Required Rotation (turn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 bolt diameters or less</td>
<td>2/3</td>
</tr>
<tr>
<td>Greater than 4 bolt diameters but no more than 8 bolt diameters</td>
<td>1</td>
</tr>
<tr>
<td>Greater than 8 bolt diameters, but no more than 12 bolt diameters</td>
<td>1-1/3</td>
</tr>
</tbody>
</table>

(a) Nut rotation is relative to bolt, regardless of the element (nut or bolt) being turned. For bolts installed by 1/2 turn and less, the tolerance shall be plus or minus 30 degrees; for bolts installed by 2/3 turn and more, the tolerance shall be plus or minus 45 degrees.

(b) Applicable only to connections in which all material within grip of the bolt is steel.

(c) When bolt length exceeds 12 diameters, the required rotation shall be determined by actual tests in a suitable tension device simulating the actual conditions.

6. Turn the nut to achieve the applicable minimum bolt tension value listed in Table C. After reaching this tension, record the moving torque, in foot-pounds, required to turn the nut, and also record the corresponding bolt tension value in pounds. Torque shall be measured with the nut in motion. Calculate the value, T, where \(T = \left[\frac{\text{the measured tension in pounds} \times \text{the bolt diameter in inches}}{48} \right] \).

Table C

<table>
<thead>
<tr>
<th>Bolt Diameter (inches)</th>
<th>Minimum Tension (kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>12</td>
</tr>
<tr>
<td>5/8</td>
<td>19</td>
</tr>
<tr>
<td>3/4</td>
<td>28</td>
</tr>
<tr>
<td>7/8</td>
<td>39</td>
</tr>
<tr>
<td>1</td>
<td>51</td>
</tr>
<tr>
<td>1-1/8</td>
<td>56</td>
</tr>
<tr>
<td>1-1/4</td>
<td>71</td>
</tr>
<tr>
<td>1-3/8</td>
<td>85</td>
</tr>
<tr>
<td>1-1/2</td>
<td>103</td>
</tr>
</tbody>
</table>
7. Turn the nut further to increase bolt tension until the rotation listed in Table B is reached. The rotation is measured from the heavy reference line made on the face plate after the bolt was snug-tight. Record this bolt tension.

8. Loosen and remove the nut and examine the threads on both the nut and bolt.

C. Long Bolt Acceptance Criteria:

1. An assembly shall pass the following requirements to be acceptable: (1) the measured moving torque (Step 6) shall be less than or equal to the calculated value, T (Step 6), (2) the bolt tension measured in Step 7 shall be greater than or equal to the applicable turn test tension value listed in Table D, (3) the nut shall be able to be removed from the bolt without signs of thread stripping or galling after the required rotation in Step 7 has been achieved, (4) the bolt does not shear from torsion or fail during the test, and (5) the assembly does not seize before the final rotation in Step 7 is reached. Elongation of the bolt in the threaded region between the bearing face of the nut and the underside of the bolt head is expected and will not be considered a failure. Both fastener assemblies tested from one rotational capacity lot shall pass for the rotational capacity lot to be acceptable.

<table>
<thead>
<tr>
<th>Bolt Diameter (inches)</th>
<th>Turn Test Tension (kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>14</td>
</tr>
<tr>
<td>5/8</td>
<td>22</td>
</tr>
<tr>
<td>3/4</td>
<td>32</td>
</tr>
<tr>
<td>7/8</td>
<td>45</td>
</tr>
<tr>
<td>1</td>
<td>59</td>
</tr>
<tr>
<td>1-1/8</td>
<td>64</td>
</tr>
<tr>
<td>1-1/4</td>
<td>82</td>
</tr>
<tr>
<td>1-3/8</td>
<td>98</td>
</tr>
<tr>
<td>1-1/2</td>
<td>118</td>
</tr>
</tbody>
</table>

The following equipment, procedure, and acceptance criteria shall be used to perform rotational capacity tests on and determine acceptance of ASTM A 325 short bolts. Fasteners are considered to be short bolts when full nut thread engagement cannot be achieved when installed in a bolt tension measuring device:

A. Short Bolt Test Equipment:

1. Calibrated dial or digital torque wrench. Other suitable tools will be required for performing Steps 7 and 8 of the Short Bolt Test Procedure. A torque multiplier may be required for large diameter bolts.
2. Spud wrench or equivalent.
3. Spacer washers or bushings. When spacer washers or bushings are required, they shall have the same inside diameter and equal or larger outside diameter as the appropriate hardened washers conforming to the requirements in ASTM Designation: F 436.
4. Steel plate or girder with a hole to install bolt. The hole size shall be 1/16 inch greater than the nominal diameter of the bolt to be tested. The grip length, including any plates, washers, and additional spacers as needed, shall provide the proper number of threads within the grip, as required in Step 2 of the Short Bolt Test Procedure.

B. Short Bolt Test Procedure:

1. Measure the bolt length. The bolt length is defined as the distance from the end of the threaded portion of the shank to the underside of the bolt head.
2. Install the nut on the bolt so that 3 to 5 full threads of the bolt are located between the bearing face of the nut and the underside of the bolt head. Measure and record the thread stickout of the bolt. Thread stickout is determined by measuring the distance from the outer face of the nut to the end of the threaded portion of the shank.
3. Install the bolt into a hole on the plate or girder and install the required number of washers and additional spacers as needed between the bearing face of the nut and the underside of the bolt head to produce the thread stickout measured in Step 2 of this procedure.

4. Tighten the nut using a hand wrench to a snug-tight condition. The snug condition shall be the full manual effort applied to the end of a 12-inch long wrench. This applied torque shall not exceed 20 percent of the maximum allowable torque in Table E.

<table>
<thead>
<tr>
<th>Bolt Diameter (inches)</th>
<th>Torque (ft-lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>145</td>
</tr>
<tr>
<td>5/8</td>
<td>285</td>
</tr>
<tr>
<td>3/4</td>
<td>500</td>
</tr>
<tr>
<td>7/8</td>
<td>820</td>
</tr>
<tr>
<td>1</td>
<td>1220</td>
</tr>
<tr>
<td>1-1/8</td>
<td>1500</td>
</tr>
<tr>
<td>1-1/4</td>
<td>2130</td>
</tr>
<tr>
<td>1-3/8</td>
<td>2800</td>
</tr>
<tr>
<td>1-1/2</td>
<td>3700</td>
</tr>
</tbody>
</table>

5. Match-mark the assembly by placing a heavy reference start line on the steel plate or girder which aligns with (1) a mark placed on one corner of the nut and (2) a radial line placed across the flat on the end of the bolt or on the exposed portions of the threads of tension control bolts. Place an additional mark on the outside of the socket that overlays the mark on the nut corner such that this mark will be visible while turning the nut. Make 2 additional small marks on the steel plate or girder, one 1/3 of a turn and one 2/3 of a turn clockwise from the heavy reference start line on the steel plate or girder.

6. Using the torque wrench, tighten the nut to the rotation value listed in Table F. The rotation is measured from the heavy reference line described in Step 5 made after the bolt was snug-tight. A second wrench shall be used to prevent rotation of the bolt head during tightening. Measure and record the moving torque after this rotation has been reached. The torque shall be measured with the nut in motion.

<table>
<thead>
<tr>
<th>Bolt Length (measured in Step 1)</th>
<th>Required Rotation (turn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 bolt diameters or less</td>
<td>1/3</td>
</tr>
</tbody>
</table>

(a) Nut rotation is relative to bolt, regardless of the element (nut or bolt) being turned. For bolts installed by 1/2 turn and less, the tolerance shall be plus or minus 30 degrees.
(b) Applicable only to connections in which all material within grip of the bolt is steel.

7. Tighten the nut further to the 2/3-turn mark as indicated in Table G. The rotation is measured from the heavy reference start line made on the plate or girder when the bolt was snug-tight. Verify that the radial line on the bolt end or on the exposed portions of the threads of tension control bolts is still in alignment with the start line.

<table>
<thead>
<tr>
<th>Bolt Length (measured in Step 1)</th>
<th>Required Rotation (turn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 bolt diameters or less</td>
<td>2/3</td>
</tr>
</tbody>
</table>

8. Loosen and remove the nut and examine the threads on both the nut and bolt.
C. Short Bolt Acceptance Criteria:

1. An assembly shall pass the following requirements to be acceptable: (1) the measured moving torque from Step 6 shall be less than or equal to the maximum allowable torque from Table E, (2) the nut shall be able to be removed from the bolt without signs of thread stripping or galling after the required rotation in Step 7 has been achieved, (3) the bolt does not shear from torsion or fail during the test, and (4) the assembly shall not seize before the final rotation in Step 7 is reached. Elongation of the bolt in the threaded region between the bearing face of the nut and the underside of the bolt head will not be considered a failure. Both fastener assemblies tested from one rotational capacity lot shall pass for the rotational capacity lot to be acceptable.

INSTALLATION TENSION TESTING AND ROTATIONAL CAPACITY TESTING AFTER ARRIVAL ON THE JOB SITE

Installation tension tests and rotational capacity tests on high-strength fastener assemblies shall be performed by the Contractor prior to acceptance or installation and after arrival of the fastener assemblies on the project site. Installation tension tests and rotational capacity tests shall be performed at the job site, in the presence of the Engineer, on each rotational capacity lot of fastener assemblies.

The requirements of this section do not apply to high-strength cap screws or high-strength bolts used for slip base plates.

Installation tension tests shall be performed on 3 representative fastener assemblies in conformance with the provisions in Section 8, "Installation," of the RCSC Specification. For short bolts, Section 8.2, "Pretensioned Joints," of the RCSC Specification shall be replaced by the "Pre-Installation Testing Procedures," of the "Structural Bolting Handbook," published by the Steel Structures Technology Center, Incorporated.

The rotational capacity tests shall be performed in conformance with the requirements for rotational capacity tests in "Rotational Capacity Testing Prior to Shipment to Job Site" of these special provisions.

At the Contractor's expense, additional installation tension tests, tests required to determine job inspecting torque, and rotational capacity tests shall be performed by the Contractor on each rotational capacity lot, in the presence of the Engineer, if:

1. Any fastener is not used within 3 months after arrival on the job site,
2. Fasteners are improperly handled, stored, or subjected to inclement weather prior to final tightening,
3. Significant changes are noted in original surface condition of threads, washers, or nut lubricant, or
4. The Contractor's required inspection is not performed within 48 hours after all fasteners in a joint have been tensioned.

Failure of a job-site installation tension test or a rotational capacity test will be cause for rejection of unused fasteners that are part of the rotational capacity lot.

When direct tension indicators are used, installation verification tests shall be performed in conformance with Appendix Section X1.4 of ASTM Designation: F 959, except that bolts shall be initially tensioned to a value 5 percent greater than the minimum required bolt tension.

SURFACE PREPARATION

For all bolted connections the following shall be cleaned and coated before assembly in conformance with the provisions for cleaning and painting structural steel of these special provisions:

1. Contact surfaces,
2. Outer surfaces of existing members that are within the grip and will be hidden by surfaces of outside existing members within the grip under bolt heads, nuts, and washers, and
3. Inside surfaces of bolt holes.

SEALING

When zinc-coated tension control bolts are used, the sheared end of each fastener shall be completely sealed with non-silicone type sealing compound conforming to the requirements in ASTM Designation: C 920. The sealant shall be gray in color and shall have a minimum thickness of 50 mils. The sealant shall be applied to a clean sheared surface on the same day that the splined end is sheared off.

WELDING

Table 2.2 of AWS D1.5 is superseded by the following table:
Table: Minimum Effective Partial Joint Penetration Groove Weld Size

<table>
<thead>
<tr>
<th>Base Metal Thickness of the Thicker Part Joined, inches</th>
<th>Minimum Effective Partial Joint Penetration Groove Weld Size*, inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over 1/4 to 1/2 inclusive</td>
<td>3/16</td>
</tr>
<tr>
<td>Over 1/2 to 3/4 inclusive</td>
<td>1/4</td>
</tr>
<tr>
<td>Over 3/4 to 1-1/2 inclusive</td>
<td>5/16</td>
</tr>
<tr>
<td>Over 1-1/2 to 2-1/4 inclusive</td>
<td>3/8</td>
</tr>
<tr>
<td>Over 2-1/4 to 6 inclusive</td>
<td>1/2</td>
</tr>
<tr>
<td>Over 6</td>
<td>5/8</td>
</tr>
</tbody>
</table>

* Except the weld size need not exceed the thickness of the thinner part

Dimensional details and workmanship for welded joints in tubular and pipe connections shall conform to the provisions in Part A, "Common Requirements of Nontubular and Tubular Connections," and Part D, "Specific Requirements for Tubular Connections," in Section 2 of AWS D1.1.

Backings for welds, subject to computed stresses, that is left in place in the completed structure shall be a single length. Backings shall be of the same material as the structural steel being welded. Single lengths of backing shall be obtained by using a continuous strip, or may consist of lengths of backing joined by full penetration butt welds. Butt welds in the backing material shall be subject to the same type and frequency of testing as specified for the type of joint in the material being joined. Butt welds in backing material shall be ground flush as necessary to obtain proper inspection and for proper fit-up in the welded joint with which the backing is to be used.

The requirement of conformance with AWS D1.5 shall not apply to work conforming to Section 56-1, "Overhead Sign Structures," or Section 86-2.04, "Standards, Steel Pedestals and Posts," of the Standard Specifications.

MEASUREMENT AND PAYMENT

If a portion of or all check samples are removed at a mill more than 300 air line miles from both Sacramento and Los Angeles, shop inspection expenses will be sustained by the State which are in addition to expenses incurred for fabrication site inspection. Payment to the Contractor for furnishing structural steel will be reduced $2,000 for each mill located more than 300 air line miles from both Sacramento and Los Angeles.

10-1.88 COLUMN CASINGS

Column casings shall consist of cleaned and painted structural steel shells filled with grout as shown on the plans and conforming to the provisions in Section 55, "Steel Structures," of the Standard Specifications and these special provisions.

Attention is directed to "Welding Quality Control" of these special provisions.

For field welding of column casings, only visual inspection will be required, and the requirements of the second sentence of paragraph 3.13.2 and the first sentence of paragraph 3.13.3 of AWS D1.5 will not apply.

Structural steel for column casings shall conform to the requirements in ASTM Designation: A 36/A 36M, or, at the Contractor's option, ASTM Designation: A 709/A 709M, Grade 36.

Polyethylene shall have a compressive strength of at least 10 psi at no more than 15 percent deflection determined in conformance with the requirements in ASTM Designation: D 3575, Test B. Polyethylene shall be bonded to the column using a suitable waterproof adhesive applied to the entire contact surface.

Drain extension pipe shall conform to the provisions for drainage piping in Section 75-1.03, "Miscellaneous Bridge Metal," of the Standard Specifications.

The spaces to be occupied by the column casing materials shall be cleared of plants and other materials prior to encasing the column.

Removed plants and other materials shall be disposed of outside the highway right of way in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

CLEAN AND PAINT COLUMN CASING

New metal surfaces, except where galvanized or thermal spray coated, shall be cleaned and painted in conformance with the provisions in Sections 59-2, "Painting Structural Steel," and 91, "Paint," of the Standard Specifications and these special provisions.

Prior to performing any painting or paint removal, the Contractor shall submit to the Engineer, in conformance with the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications, 3 copies of a
separate Painting Quality Work Plan (PQWP) for each item of work for which painting or paint removal is to be performed. As a minimum, each PQWP shall include the following:

A. The name of each Contractor or subcontractor to be used.
B. One copy each of all current "SSPC: The Society for Protective Coatings" specifications or qualification procedures which are applicable to the painting or paint removal to be performed. These documents shall become the permanent property of the Department.
C. A copy of the coating manufacturer's guidelines and recommendations for surface preparation, painting, drying, curing, handling, shipping, and storage of painted structural steel, including testing methods and maximum allowable levels for soluble salts.
D. Proposed methods and equipment to be used for any paint application.
E. Proof of each of any required certifications, SSPC-QP 1, SSPC-QP 3. Where SSPC-QP 3 certification is required, an enclosed shop facility shall be required. Certification of AISC Sophisticated Paint Endorsement Quality Program, P-1 Enclosed endorsement, will be considered equivalent to SSPC-QP 3.

1. In lieu of certification in conformance with the requirements in SSPC-QP 1 for this project, the Contractor may submit written documentation showing conformance with the requirements in Section 3, "General Qualification Requirements," of SSPC-QP 1.
F. Proposed methods to control environmental conditions in accordance with the manufacturer's recommendations and these special provisions.
G. Proposed methods to protect the coating during curing, shipping, handling, and storage.
H. Proposed rinse water collection plan.
I. A detailed paint repair plan for the repair of damaged areas.
J. Procedures for containing blast media and water during application of coatings and coating repair of erected steel.
K. Examples of proposed daily reports for all testing to be performed, including type of testing, location, lot size, time, weather conditions, test personnel, and results.

Prior to submitting the PQWP, a pre-painting meeting between the Engineer, the Contractor, and a representative from each entity performing painting for this project shall be held to discuss the requirements for the PQWP.

The Contractor shall allow the Engineer 3 weeks to review the PQWP submittal after a complete plan has been received. No painting or paint removal shall be performed until the PQWP for that work is reviewed by the Engineer. Should the Engineer fail to complete the review within this time allowance and if, in the opinion of the Engineer, the Contractor's controlling operation is delayed or interfered with by reason of the delay in reviewing the PQWP, the delay will be considered a right of way delay in conformance with the provisions in Section 8-1.09, "Right of Way Delays," of the Standard Specifications.

The Engineer's approval of the Contractor's PQWP shall not relieve the Contractor of any responsibility under the contract for the successful completion of the work in conformity with the requirements of the plans and specifications.

The Contractor shall provide enclosures to permit cleaning and painting during inclement weather. Provisions shall be made to control atmospheric conditions inside the enclosures within specified limits during cleaning and painting operations, drying to solvent insolubility, and throughout the curing period in accordance with the manufacturer's recommendations and these special provisions. Full compensation for providing and maintaining such enclosures shall be considered as included in the prices paid for the various contract items of work requiring cleaning and painting, and no additional compensation will be allowed therefor.

Fresh, potable water with a maximum chloride content of 75 ppm and a maximum sulfate content of 200 ppm shall be used for water rinsing or pressure washing operations. No continuous recycling of rinse water will be permitted. If rinse water is collected into a tank and subsequent testing determines the collected water conforms to the specified requirements, reuse may be permitted by the Engineer if no collected water is added to the tank after sample collection for determination of conformance to specified requirements.

Column casing surfaces in contact with grout shall not be considered embedded in concrete.

Column casing surfaces to be painted with inorganic zinc coating shall be blast cleaned and painted with the single undercoat prior to shipment to the job site.

Cleaning

The surfaces to be cleaned and painted shall be dry blast cleaned in conformance with the requirements of SSPC-SP 10, "Near White Blast Cleaning," of the "SSPC: The Society for Protective Coatings." Blast cleaning shall
leave surfaces with a dense, uniform, angular anchor pattern of not less than 1.6 mils nor more than 3.5 mils as measured in conformance with the requirements in ASTM Designation: D 4417.

Mineral and slag abrasives used for blast cleaning steel surfaces shall conform to the requirements for Class A, Grade 2 to 3 abrasives contained in SSPC-AB 1, "Mineral and Slag Abrasives," of the "SSPC: The Society for Protective Coatings," and shall not contain hazardous material.

Steel abrasives used for blast cleaning steel surfaces shall comply with the requirements of SSPC-AB 3, "Ferrous Metallic Abrasive," of the "SSPC: The Society for Protective Coatings." If steel abrasive is recycled through shop or field abrasive blast cleaning units, the recycled abrasive shall conform to the requirements of SSPC-AB 2, "Specification for Cleanliness of Recycled Ferrous Metallic Abrasive," of the "SSPC: The Society for Protective Coatings."

A Certificate of Compliance conforming to the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications and a Material Safety Data Sheet shall be furnished prior to use for each shipment of blast cleaning material for steel.

Abrasive blast cleaned surfaces shall be tested by the Contractor for soluble salts using a Class A or B retrieval method as described in Technology Guide 15, "Field Methods for Retrieval and Analysis of Soluble Salts on Steel and Other Nonporous Substrates," of the "SSPC: The Society for Protective Coatings," and cleaned so the maximum level of soluble salts does not exceed the lesser of the coating manufacturer’s written recommendations or 10 micrograms per square centimeter. Areas of abrasive blast cleaned steel shall be tested at the rate of 3 tests for the first 1000 square feet prepared per day, and one test for each additional 1000 square feet or portion thereof, at locations selected by the Engineer. When less than 1000 square feet of surface area is prepared in a shift, at least 2 tests shall be performed. If levels of soluble salts exceed the maximum allowed by these special provisions, the entire area represented by the testing will be rejected. The Contractor shall perform additional cleaning and testing of rejected areas until soluble salt levels conform to these requirements.

Corners shall be chamfered to remove sharp edges.

Thermal cut edges (TCEs) to be painted shall be conditioned before blast cleaning by shallow grinding or other method approved by the Engineer to remove the thin, hardened layer of material resulting from resolidification during cooling.

Visually evident base metal surface irregularities and defects shall be removed in accordance with ASTM Designation: A 6 or AASHTO Designation: M 160 prior to blast cleaning steel. When material defects exposed by blast cleaning are removed, the blast profile shall be restored by either blast cleaning or by using mechanical tools in accordance with SSPC-SP 11, "Power Tool Cleaning to Bare Metal," of the "SSPC: The Society for Protective Coatings."

Painting

Blast cleaned surfaces to be painted shall receive a single undercoat of an inorganic zinc coating, and exposed surfaces shall receive a minimum of 2 finish coats of an exterior grade latex paint supplied by the manufacturer of the inorganic zinc coating. The single undercoat shall consist of an inorganic zinc coating conforming to the requirements in AASHTO Designation: M 300, Type I or Type II. Inorganic zinc coating shall be selected from the qualified products list, which may be obtained from the Transportation Laboratory.

Inorganic zinc coating shall be used within 12 hours of initial mixing.

The single undercoat of inorganic zinc coating shall be applied to the required dry film thickness in 2 or more applications within 8 hours of the start of blast cleaning. Abrasive blast cleaned steel shall not be exposed to relative humidity exceeding 85 percent prior to application of inorganic zinc coating.

The total dry film thickness of all applications of the single undercoat of inorganic zinc coating shall be not less than 4 mils nor more than 8 mils.

Damaged areas and areas where mudcracking occurs in the inorganic zinc coating shall be blast cleaned and repainted with inorganic zinc coating to the specified thickness.

Steel surfaces coated with Type II inorganic zinc coating shall be protected from conditions that may cause the coating film to dissolve. The Contractor, at the Contractor's expense, shall repair areas where the coating has dissolved by blast cleaning and repainting with inorganic zinc coating to the specified thickness.

Dry spray, or overspray, as defined in the Steel Structures Painting Manual, Volume 1, "Good Painting Practice," of the "SSPC: The Society for Protective Coatings," shall be removed prior to application of subsequent coats or final acceptance. Removal of dry spray shall be by screening or other methods that minimize polishing of the inorganic zinc surface. The dry film thickness of the coating after removal of dry spray shall be in conformance with the provisions for applying the single undercoat, as specified herein.
The Contractor shall test the inorganic zinc coating prior to application of finish coats. The locations of the tests will be determined by the Engineer. The Contractor shall determine the sequence of the testing operations. The testing for adhesion and hardness will be performed no sooner than 72 hours after application of the single undercoat of inorganic zinc coating. At the Contractor's expense, satisfactory access shall be provided to allow the Engineer to determine the location of the tests.

The inorganic zinc coating shall pass the following tests:

A. The inorganic zinc coating shall have a minimum adhesion to steel of 600 psi when measured using a self-aligning adhesion tester in conformance with the requirements in ASTM Designation: D 4541. The Engineer will select 3 locations per column casing section for adhesion testing. If 2 or more of the locations tested fail to meet adhesion requirements, the section will be rejected. If one of the locations tested fails to meet adhesion requirements, an additional 3 locations shall be tested. Should any of the additional locations fail to meet adhesion requirements, the column casing section will be rejected. The Contractor, at the Contractor's expense, shall repair the rejected area by blast cleaning and repainting with inorganic zinc to the specified thickness. Test locations for areas of inorganic zinc meeting adhesion testing requirements shall be repaired by application of organic zinc primer as specified in Section 91-1.04, "Materials," of the Standard Specifications to the specified minimum dry film thickness.

B. Areas of inorganic zinc coating where finish coats are to be applied shall be tested by the Contractor for soluble salts using a Class A or B retrieval method as described in Technology Guide 15, "Field Methods for Retrieval and Analysis of Soluble Salts on Steel and Other Nonporous Substrates," of the "SSPC: The Society for Protective Coatings," and cleaned so the maximum level of soluble salts does not exceed the lesser of the manufacturer's written recommendations or 10 micrograms per square centimeter. Areas of inorganic zinc coating shall be tested at the rate of 3 tests for the first 1000 square feet to be painted per day and one test for each additional 1000 square feet or portion thereof at locations selected by the Engineer. When less than 1000 square feet of surface area is painted in a shift, at least 2 tests shall be performed. If levels of soluble salts exceed the maximum allowed by these special provisions, the entire area represented by the testing will be rejected. The Contractor shall perform additional cleaning and testing of rejected areas until soluble salt levels conform to these requirements.

C. Prior to application of finish coats, the inorganic zinc coating shall exhibit a solid, hard, and polished metal surface when firmly scraped with the knurled edge of a quarter. Inorganic zinc coating that is powdery, soft, or does not exhibit a polished metal surface, as determined by the Engineer, shall be repaired by the Contractor, at the Contractor's expense, by blast cleaning and repainting with inorganic zinc coating to the specified thickness.

Additional Requirements for Water Borne Inorganic Zinc Primers

A. The surface pH of the inorganic zinc primer shall be tested by wetting the surface with deionized water for a minimum of 15 minutes but no longer than 30 minutes and applying pH paper with a capability of measuring in increments of 0.5 pH units. At least 2 surface pH readings shall be taken for every 500 square feet or portion thereof. If less than 500 square feet of steel is coated in a single shift or day, at least 2 surface pH readings shall be taken for primer applied during that period. Application of finish coats will not be permitted until the surface pH is less than or equal to 7.

B. Dry to solvent insolubility for water borne inorganic zinc primers shall be determined in conformance with the requirements in ASTM Designation: D 4752, except that water shall be the solvent. The resistance rating shall be not less than 4. Areas of inorganic zinc coating shall be tested for solvent insolubility at the rate of one test per 500 square feet or portion thereof. Inorganic zinc coating represented by the tested area that does not meet the solvent insolubility requirements will be rejected. The Contractor, at the Contractor's expense, shall repair rejected areas by blast cleaning and repainting with inorganic zinc coating to the specified thickness.

Additional Requirements for Solvent Borne Inorganic Zinc Primers

A. Dry to solvent insolubility for solvent borne inorganic zinc primers shall be determined in conformance with the requirements in ASTM Designation: D 4752. The resistance rating shall be not less than 4. Areas of inorganic zinc coating shall be tested for solvent insolubility at the rate of one test per 500 square feet or portion thereof. Inorganic zinc coating represented by the tested area that does not meet the solvent insolubility requirements will be rejected. The Contractor, at the Contractor's expense, shall repair rejected areas by blast cleaning and repainting with inorganic zinc coating to the specified thickness.
B. Surface hardness of solvent borne inorganic zinc shall be a minimum 2H when measured in conformance with the requirements in ASTM Designation: D 3363. Areas of inorganic zinc coating shall be tested at the rate of one test per 500 square feet or portion thereof. Inorganic zinc coating that fails to meet the surface hardness requirements shall be repaired by the Contractor, at the Contractor's expense, by blast cleaning and repainting with inorganic zinc coating to the specified thickness.

The Contractor, at the Contractor's expense, shall retest all rejected areas of inorganic zinc coating after repairs have been completed.

Except as approved by the Engineer, a minimum curing time of 72 hours shall be allowed between application of inorganic zinc coating and water rinsing.

Exposed areas of inorganic zinc coating where finish coats are specified shall be thoroughly pressure rinsed in conformance with the provisions in Section 59-1.03, "Application," of the Standard Specifications.

The first finish coat shall be applied within 48 hours following water rinsing.

The finish coat paint shall be approved by the manufacturer of the zinc-rich primer used for the undercoat, meet the requirements for SSPC-Paint 24, "Latex Semi-Gloss Exterior Topcoat," of the "SSPC: The Society for Protective Coatings," and conform to the following:

A. No visible color change in the finish coats shall occur when tested for 800 hours in conformance with the requirements in ASTM Designation: D 4587, Test Cycle 2.

B. The vehicle shall be an acrylic or modified acrylic copolymer with a minimum of necessary additives.

The first finish coat shall be applied in 2 applications. The first application shall consist of a spray applied mist application. The second application shall be applied after the mist application has dried to a set to touch condition as determined by the procedure described in Section 7 of ASTM Designation: D1640. The first finish coat color shall match Federal Standard 595B No. 36628. The total dry film thickness of both applications of the first finish coat shall be not less than 2 mils.

Except as approved by the Engineer, a minimum drying time of 12 hours shall be allowed between finish coats.

The second finish coat color shall match Federal Standard 595B No. 26408. The total dry film thickness of all applications of the second finish coat shall be not less than 2 mils.

The second finish coat color for the contrast paint shall closely match the color of the existing aesthetic treatment as approved by the Engineer.

The 2 finish coats shall be applied in 3 or more applications to a total dry film thickness of not less than 4 mils nor more than 8 mils.

The total dry film thickness of all applications of inorganic zinc coating and finish coat paint shall be not less than 8 mils nor more than 14 mils.

GROUTING

Grouting shall conform to the provisions in Section 50-1.09, "Bonding and Grouting," of the Standard Specifications and these special provisions.

For non-circular columns where the minimum gap to be filled with grout is one inch and the maximum gap is greater than 4 inches, aggregate shall be used to extend the grout, but only to the extent that the cement content of the grout is not less than 845 pounds per cubic yard of grout. California Test 541 will not be required nor will the grout be required to pass through a sieve with a 0.07-inch maximum clear opening prior to being introduced into the grout pump. Aggregate shall consist of at least 70 percent fine aggregate and approximately 30 percent pea gravel, by weight. Fine aggregate shall conform to the provisions of Section 90-2, "Materials," of the Standard Specifications. The size of pea gravel shall be such that 100 percent passes the 1/2-inch sieve, a minimum 90 percent passes the 3/8-inch sieve, and not more than 5 percent passes the No. 8 sieve.

The Contractor shall limit the height of each lift of grout to minimize undulations and displacements of the surface of the shell during grouting. Undulations in the shell surface, including undulations from fabrication and erection, shall not exceed ¼-inch in one foot nor shall the total displacement from plan location exceed 2 inches at any point. At the Contractor's option, a bracing system or other means may be employed to restrain the casing within the specified tolerances. Except where shown on the plans, restraints shall not pass through the columns. The grout shall harden prior to placing the next lift of grout, unless a bracing system is used.

In addition to the above grout lift restrictions, the height of grout lifts for portions of column casings containing polyethylene shall not exceed 10 feet. Suitable external grout injection valves shall be installed for filling of the casings. The filling operation shall begin at the bottom of the casing. Spacing of the valves shall be such that the grout will fill the gap between the casing and the polyethylene or column.
Casings shall be sealed at the bottom. Grout shall be pumped into the casing such that the grout head is maintained uniformly around the column, and no visible evidence of water or air is ejected at the top of the grout. The grout at the casing top shall be covered with mortar and sloped to drain. Mortar shall conform to the provisions in Section 51-1.135, "Mortar," of the Standard Specifications.

Casings shall be positioned with spacers to center the casing around the existing column at the location shown on the plans. Spacers may be welded to the inside of the casing. Spacers shall not be used in areas occupied by the polyethylene.

Grout shall not be permitted to flow across shoulders or lanes occupied by public traffic, or to flow into gutters or other drainage facilities.

Clamps, valves, injection ports, lifting ears, and other accessories shall be completely removed not less than 24 hours after placing grout. Voids shall be filled with mortar and finished flush with the exterior surface of the casing.

MEASUREMENT AND PAYMENT

Column casings will be measured and paid for in conformance with the provisions in Section 55-4, "Measurement and Payment," of the Standard Specifications and these special provisions.

The contract price paid per pound for column casing shall include full compensation for furnishing all labor, materials (including polyethylene and adhesive), tools, equipment, and incidentals, and for doing all the work involved in column casings filled with grout, complete in place, including drainage piping, cleaning and painting of structural steel, and testing, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.89 COMPOSITE GIRDER STRENGTHENING

Composite girder strengthening consists of furnishing fiber reinforced polymer (FRP) composite system and constructing to strengthen existing concrete members by adhering layers of continuous fiber/plys sheets impregnated by resin to the girder surfaces, as shown on the plans, and in conformance with the provisions in the Standard Specifications and these special provisions.

WORKING DRAWINGS

The Contractor shall submit working drawings and supplemental data for approval in conformance with the provisions in Section 5-1.02, "Plans and Working Drawings." Working drawings for the composite girder strengthening system shall conform to the provisions in Section 55-1.02, "Drawings," of the Standard Specifications and these special provisions.

The working drawings for the FRP composite system shall contain a description of the system including the material supplier's name, material technical data sheets, material safety data sheets, commercial material designation for all the materials to be used, and a general listing of the material properties of the system. Information provided shall include: the direction and orientation of each ply or layer of fiber reinforced polymer, number of plies or layers and sequence of installation, and locations and details of joints, splices, transitions in composite thickness, and ends of fiber construction. The following properties for the fiber reinforced polymer resin (neat) shall be included: mix ratio by weight and volume, shelf life, resin gel time at proposed cure temperatures, and mixing and application temperature ranges.

The working drawings for the FRP composite system shall contain a process specification manual detailing information required for proper construction of the system, including the following information: installation procedures, including manufacturer’s surface temperature and moisture limitations, and application time limits between successive plies or layers; mixture ratios, mixing times, pot life of resins, including primers and coatings; plans for curing; methods for coring and for fabrication of test samples; methods to replace delaminated or defective sections of sheet; storage and handling of materials; the name of the independent testing facility located within 300 air line miles from both Sacramento and Los Angeles to be used to test samples and cores.

The supplemental data shall include test data provided by the manufacturer of the FRP Composite system showing the performance of the system in similar applications, with a description of the method of installation. The results of the testing shall indicate resistance to the anticipated environment, including moisture, temperature extremes and chemicals normally associated with exposed concrete. Untested systems shall not be used.

A Certificate of Compliance for the FRP composite system and the components thereof shall be furnished to the Engineer in conformance with the provisions in Section 6-1.07, "Certificate of Compliance," of the Standard Specifications.

The Contractor shall allow 3 weeks for review of the working drawings by the Engineer after complete drawings and all supplemental data for the FRP composite systems are submitted.
MATERIAL

The FRP composite system shall consist of fibers and resins, including primers, developed through material characterization and structural testing. The cross-sectional area of the composite shown on the plans shall be compatible to the cross section area used to calculate the tensile modulus of the product. The tensile modulus and strength shall be based on the cured composite. The cured system shall conform to the following requirements:

<table>
<thead>
<tr>
<th>PROPERTIES at 22±1°C</th>
<th>Wet Lay-Up Carbon Woven¹</th>
<th>Unidirectional Wet Lay-Up Carbon Sheet*</th>
<th>ASTM TEST METHOD **</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composite Ultimate Tensile Strength, in primary fiber direction, ksi, minimum.</td>
<td>130.5</td>
<td>336</td>
<td></td>
</tr>
<tr>
<td>Composite Ultimate Elongation, %, minimum.</td>
<td>0.9</td>
<td>1.3</td>
<td>D 3039</td>
</tr>
<tr>
<td>Composite Tensile modulus of primary fibers, msi, minimum.</td>
<td>9.4</td>
<td>29.0</td>
<td></td>
</tr>
<tr>
<td>Fiber volume, percent, %, minimum.</td>
<td>30</td>
<td>20</td>
<td>D 3171</td>
</tr>
<tr>
<td>Glass transition temperature, minimum.</td>
<td>170°F</td>
<td>140°F</td>
<td>D 3418 or D 4065</td>
</tr>
<tr>
<td>Interlaminnar Shear, ksi, minimum.</td>
<td>6.24</td>
<td>6.5</td>
<td>D 2344</td>
</tr>
</tbody>
</table>

¹ FRP system used for anchorage only
* based on dry fiber thickness.
** Subject to approval of the Engineer, other test methods, such as those published by Suppliers of Advanced Composite Materials Association (SACMA), or manufacturer’s published Quality Control Procedures may be used when equivalency and suitability have been documented.

Carbon fiber for the FRP composite system shall consist of unidirectional polyacrylonitrile (PAN) based continuous sheet carbon fiber. Carbon fiber for end anchorage shall consist of 0°/90° woven continuous pan based fiber filament with a minimum density of 8.77 oz/yd².

Resins for the FRP composite system shall be system compatible epoxy. Epoxy resins for all systems shall conform to the provisions in Section 95-1, "Epoxy," of the Standard Specifications and these special provisions, except that no State Specification Number will be required. Carbon fiber shall be properly sized to be compatible with resin used.

The storage and handling of materials and the construction of the FRP composite system shall be in conformance with the manufacturer’s recommendations except as modified in these special provisions. Materials shall be protected from dirt, moisture, chemicals, extreme temperatures, and physical damage. Resin component containers shall be sealed when not in use. Catalysts and initiators shall be stored separately.

FRP composite system shall not support combustion.

Components of the FRP composite system that have exceeded their shelf life shall not be used.

CONSTRUCTION

Surface Preparation

Cracks on the surface to receive FRP composite system that is greater than 0.01 inch shall be epoxy injected in conformance with the provisions in "Epoxy Crack Injection" of these special provisions.

Where shown on the plans, corners of members shall be rounded and smoothed to a minimum ½ inch radius and a Class 1 surface finish in conformance with the provisions in Section 51, "Concrete Structures," of the Standard Specifications prior to the application of fibers. Filler material, if required, shall be system compatible resin.

The surface to receive the FRP composite system shall be prepared by abrasive blasting or grinding. The concrete surface shall be prepared to a minimum Concrete Surface Profile (CSP) 3 as defined by the International Concrete Repair Institute’s (ICRI) Surface-Profile-Chip. Laitance, dust, dirt, oil, curing compound, existing coatings and other materials that may interfere with bond of the FRP composite system shall be removed. Surfaces to receive the composite shall be free from fins, sharp edges and protrusions that will cause voids or depressions behind the installed composite or that, in the opinion of the Engineer, will damage the fibers. Voids or depressions are defined
as volumes greater than ½ inch in diameter by 1/8 inch depth. Existing uneven surfaces to receive composite, including voids or depressions, shall be filled with epoxy or epoxy-based filler. Flat sides of girders shall be filled straight from corner to corner or made slightly convex. The Contractor shall furnish the Engineer with the latest edition of the ICRI Guideline No. 03732 “Selecting and Specifying Concrete Surface Preparation of Sealers, Coatings, and Polymer Overlays” prior to preparing the concrete surface.

The contact surfaces at any stage of installation shall be completely dry and free of dust at the time of application of the composite. The ambient surface temperature and temperature of resin components shall be between 50°F and 95°F at the time of mixing and application. The composite shall be applied when the relative humidity is less than 90 percent at the site and the surface temperature is more than 5°F above the dew point. If the temperature, humidity and dew point parameters recommended by the manufacturer are more restrictive, the manufacturer’s parameters shall be used.

The bond strength between the cured composite and concrete shall develop a minimum tensile strength of 200 psi and failure shall occur in the concrete substrate when tested in conformance with the requirements in "Evaluation of bonded Overlays and Seal Courses" in California Test Method 420, "Method of testing Cleanliness and Soundness of portland Cement Concrete Surfaces and Quality of Bonded Overlays and Seal Courses.”

If, in the opinion of the Engineer, the composite is damaged by the elements, it shall be replaced or repaired by the Contractor at the Contractor's expense.

Subject to approval by the Engineer in writing, the Contractor may provide a suitable enclosure to permit application and curing of the composite during inclement weather. Provisions shall be made to control atmospheric conditions artificially inside the enclosure within limits specified for application and curing of the composite.

Following the application and curing of all systems, the exterior surfaces shall be completely coated with a 15 mil minimum, thick coat of resin that produces a uniform finished surface. The resin used for this cover shall be a system-compatible resin formulated to resist crazing and chipping.

During construction of composite beam/girder strengthening, the Contractor shall maintain a Daily Installation Data Log. The Daily Installation Data Log shall be available for review by the Engineer, and a copy furnished to the Engineer at completion of installation and construction for each day’s production. The data log shall provide materials tractability and process records for the installation, and shall include all of the following information:

A. Location identification with bridge number, construction and installation requirements, including plans and drawings, or references thereto.
B. Materials information including product description, date of manufacture, and lot or batch numbers.
C. Fabrication, inspection and verification data for the manufacturing and construction operations including a list of materials and quantities used during shift, layer counts, composite thickness measurements, installation time, surface temperature, ambient temperature and humidity readings at beginning, middle and end of each installation shift, curing processes including full documentation of time and temperature relationship for curing, location and size of any defects, and thickness measurements of any protective coating applied to the completed composite following installation.

The components of resin shall be proportioned and mixed by power or automated equipment to within 5 percent of the mix ratio recommended by the manufacturer. Provisions shall be made for checking the accuracy of proportions and mixing.

The resin shall be applied within the time recommended by the manufacturer and sufficiently prior to gelation to properly apply fiber layers/plies.

The resin and fiber layers/plies shall be measured and applied uniformly at the rates shown on the approved working drawings.

Fiber layers/plies shall be applied to the surface of the girder using methods that with constant contact pressure that produces a uniform constant tensile force that is distributed across the entire width of the fiber layers/plies.

Successive layers/plies of composite materials shall be placed before the onset of gelation of the previous layer of resin to achieve complete bond between layers/plies.

The fibers of the fiber layers/plies shall not deviate from a straight line, along the axis of the member more than 1/4 inch per foot.

Lap splices shall be staggered a minimum of 3 feet.

Overlap lengths shall be as recommended by the manufacturer, but not less than 18 inches. Overlapping shall be required for splices in the fiber direction of individual layers.

The resin application rate for each layer/plies of composite shall ensure complete saturation of the fiber. No dry fiber installation shall be allowed. If in the opinion of the Engineer, dry fiber is detected, it shall be replaced or repaired by the Contractor at the Contractor’s expense.

Undulations in the surfaces of the composite system shall not exceed 1 percent in any direction. The cured composite shall have uniform thickness, density, bond between layers, and lack of porosity.
Entrapped air beneath each layer/plies shall be rolled or squeezed out before the resin sets, and each individual layer/ply and ending of composite shall be firmly bedded and adhered to the preceding layer or substrate.

After received the FRP composite system, the area shall be protected from exposure to rainfall or submersion for a period of at least 48 hours.

Job Control Tests, Inspection and Repair

During progress of the work, in addition to inspection and testing, performed by the Engineer, job control tests shall be made on samples and cores of composite girder strengthening at the Contractor's expense. Samples and cores for job control tests of composite girder strengthening shall be fabricated or cored by the Contractor and tested at the Contractor's expense in the presence of the Engineer, unless otherwise directed. The job control testing shall be done at an independent testing facility approved by the Engineer. A copy of the job control test results shall be furnished to the Engineer within 30 days following sample fabrication and the Contractor shall allow 3 weeks for review by the Engineer. Deficiencies correction by the Contractor shall not delaying completion of the work.

The composite samples for job control tests shall be used to verify compliance with the requirements shown in the property table. The composite samples shall be provided as follows:

For wet lay-up materials, one sample of composite at least 4 square feet in total area shall be supplied for each batch of resin used, and may consist of one piece or individual pieces not less than 12 inches by 12 inches. The composite samples shall have the same number of plies as the composite beam/girder strengthening application. Each sample shall be fabricated and cured in the same manner as the composite beam/girder strengthening application. One sample of each day's production shall be tested.

Additional samples shall be fabricated when requested by the Engineer. Additional testing shall be performed when requested by the Engineer. Additional sample fabrication and testing will be paid for as extra work as provided in Section 4-1.03D of the Standard Specifications.

One ½ inch diameter job control core shall be taken by the Contractor at a location determined by the Engineer. One ½ inch check test core shall be taken by the Contractor and furnished to the Engineer for testing at a location determined by the Engineer. Additionally, a minimum of 18 inches of FRP, with the same number of layers, shall extend beyond both ends of the anchorage. This area shall be used for four additional core samples, two samples each on both ends. Care shall be taken during coring operations to ensure that undamaged cores are obtained, and that minimal damage occurs to the adjacent composite girder strengthening. All cores shall be placed in labeled and sealed polyethylene bags prior to shipment to the testing facility or furnishing to the Engineer. Core holes shall be filled with a system-compatible resin and smoothed flush prior to painting the composite.

The Contractor shall provide access to the Engineer for inspection and to perform tests, including but not limited to California Test Method 420. Should the results of tests on the samples or cores in any job control test fail to comply with these specifications, the composite girder strengthening will be rejected in conformance with the provisions in Section 6-1.04, “Defective Materials,” of the Standard Specifications.

Composite beam/girder strengthening shall be constructed in a manner consistent with the best commercial practices. The cured composite material adhesive on girder will be inspected for defects consisting of external abrasions or blemishes, delaminations, voids, external cracks, chips, cuts, loose fibers, foreign inclusions, depressible raised areas, or fabric wrinkles. The following criteria shall apply:

A. Each layer/plies shall have full contact with the girder or subsequent layers/plies subject to the following tolerances. All defects or voids with a dimension greater than 1.5 inch, defect or void areas greater than 1 square inch area, defects or voids with a dimension greater than 1 inch at the boundaries of the fiber sheet, or defect or void areas with any dimension greater than 1 inch within 12 inches from another defect area of similar size, shall be repaired as determined by the Engineer.

B. Surfaces at joints shall be flush with adjacent surfaces.

C. Undulations and sags which do not meet previously specified tolerances will be rejected by the Engineer.

D. All repairs shall be completed, cured and approved by the Engineer prior to preparing surfaces for painting.

In addition to areas to receive production application of FRP strips, a 24” by 12” area on a vertical concrete bent-cap surface, at a location to be determined by the Engineer, shall receive a 2-ply strip of fiber reinforced polymer for future testing.
Preparing Surfaces and Painting Composite Girder Strengthening

Exposed surfaces of FRP composite system shall be cleaned and painted in conformance with the provisions in Section 59-1, "General," and Section 91, "Paint," of the Standard Specifications and these special provisions.

The surfaces to be cleaned and painted shall be lightly roughened by uniform abrasive blasting using an abrasive no larger than 80 mesh. The air pressure at the nozzle used for abrasive blasting shall not exceed 80 psi. The abrasive shall be of appropriate hardness to roughen the surface without damage to the fiber portion of the composite. The fiber portion of the composite shall not be exposed by the abrasive blasting operation. Abrasive blasting will not be required if the first coat of paint is applied within 48 hours after mixing the components for the final 15 mil resin coating.

Dust and residue shall be removed from girder surfaces by air blasting and wiping with a dry cloth before painting.

Surfaces of the FRP composite system shall be completely dry before receiving a minimum of 2 finish coats of an exterior grade paint that is formulated to be system-compatible with the composite in conformance with the requirements in ASTM Designation: D-3359, Method A, with a minimum rating of 4A.

The first finish coat shall be applied in a minimum of 2 applications. The total dry film thickness of all applications of the first finish coat shall be not less than 2 mils.

Successive applications of paint shall be of such a shade as to contrast with the paint being covered.

Except as approved by the Engineer, a minimum drying time of 12 hours shall be allowed between finish coats.

The second finish coat color shall match Federal Standard 595B No. 26408. The total dry film thickness of all applications of the second finish coat shall be not less than 2 mils.

The 2 finish coats shall be applied in 3 or more applications to a total dry film thickness of not less than 4 mils or more than 8 mils.

MEASUREMENT AND PAYMENT

Fiber reinforced polymer strip will be measured by the square foot. The quantity to be paid for will be the area receiving the FRP composite system as shown on the plans.

The contract price paid per square foot for fiber reinforced polymer strip shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals and for doing all the work involved in furnishing and constructing composite girder strengthening, complete in place, including removal of fins, sharp edges and protrusions and filling of voids or depressions in surfaces to receive composite, rounding corners, job control testing, and cleaning and painting the girder strengthened with the FRP composite system, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

If a portion of or all samples removed are tested at a location more than 300 air line miles from both Sacramento and Los Angeles, shop inspection expenses will be sustained by the State which are in addition to expenses incurred for fabrication site inspection. Payment to the Contractor for the girder strengthening will be reduced $5,000 for each location more than 300 air line miles from both Sacramento and Los Angeles, or in the case where location is more than 300 air line miles from both Sacramento and Los Angeles, payment will be reduced $8,000.

Full compensation for the 24” x 12” test strip, for any additional testing, materials, enclosures, or work required because of the use of a particular type of FRP composite system shall be considered as included in the contract price paid per square foot for composite girder strengthening, and no additional compensation will be allowed therefor.

10-1.90 SIGN STRUCTURES

Sign structures and foundations for overhead signs shall conform to the provisions in Section 56-1, "Overhead Sign Structures," of the Standard Specifications, "Steel Structures" of these special provisions, and the following requirements.

Before commencing fabrication of sign structures, the Contractor shall submit 2 sets of working drawings to the Engineer in conformance with the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications. The working drawings shall include sign panel dimensions, span lengths, post heights, anchorage layouts, proposed splice locations, a snugging and tensioning pattern for anchor bolts and high-strength bolted connections, and details for permanent steel anchor bolt templates. The working drawings shall be supplemented with a written quality control program that includes methods, equipment, and personnel necessary to satisfy the requirements specified herein.

Working drawings shall be 22” x 34” or 11” x 17” in size and each drawing and calculation sheet shall include the State assigned designations for the sign structure type and reference as shown on the contract plans, District-County-Route-Post Mile, and contract number.
The Engineer shall have 30 days to review the sign structure working drawings after a complete submittal has been received. No fabrication or installation of sign structures shall be performed until the working drawings are approved in writing by the Engineer.

Steel bolts not designated on the plans as high strength (HS) or stainless steel shall be for general applications and shall conform to the requirements in ASTM Designation: A 307.

A permanent steel template shall be used to maintain the proper anchor bolt spacing.

One top nut, one leveling nut, and 2 washers shall be provided for the upper threaded portion of each anchor bolt.

Flatness of surfaces for the following shall conform to the requirements in ASTM Designation: A 6/A 6M:

1. Base plates that are to come in contact with concrete, grout, or washers and leveling nuts
2. Plates in high-strength bolted connections

No holes shall be made in members unless the holes are shown on the plans or are approved in writing by the Engineer.

Partial joint penetration longitudinal seam welds for tapered tubular members shall have at least the minimum penetration shown but not less than 60 percent penetration, except that within 6 inches of circumferential welds, longitudinal seam welds shall be complete joint penetration groove welds. Longitudinal seam welds on structures having telescopic pole segment splices shall be complete joint penetration groove welds on the female end for a length on each end equal to the designated slip-fit splice length plus 6 inches.

Except for welds at posts shown as partial joint penetration welds, longitudinal seam welds of fabricated pipe posts shall be complete joint penetration groove welds.

The length of telescopic slip-fit splices shall be at least 1.5 times the inside diameter of the exposed end of the female section.

Steel members used for overhead sign structures shall receive nondestructive testing (NDT) in conformance with AWS D1.1 and the following:

\[
\begin{array}{|c|c|c|}
\hline
\text{Weld Location} & \text{Weld Type} & \text{Minimum Required NDT} \\
\hline
\text{Splice welds around the perimeter of tubular sections, poles, and arms.} & \text{CJP groove weld with backing ring} & 100\% \text{UT}^{a} \text{ or RT}^{b} \\
\text{Longitudinal seam welds} & \text{CJP or PJP}^{c} \text{ groove weld} & \text{Random 25\% MT}^{d} \\
\text{Longitudinal seam welds within 6 inches of a circumferential splice.} & \text{CJP groove weld} & 100\% \text{ UT or RT} \\
\text{Welds attaching base plates, flange plates, or pole or mast arm plates, to poles or arm tubes.} & \text{CJP groove weld with backing ring and reinforcing fillet} & \begin{cases}
\geq 5/16 \text{ inch: } 100\% \text{UT and MT} \\
< 5/16 \text{ inch: } 100\% \text{ MT after root weld pass and final weld pass} \\
t = \text{pole or arm thickness} \\
\end{cases} \\
\text{External (top) fillet weld for socket-type connections} & 100\% \text{ MT} \\
\hline
\end{array}
\]

a ultrasonic testing
b radiographic testing
c partial joint penetration
d magnetic particle testing

2. The acceptance and repair criteria for UT of welded joints where any of the members are less than 5/16 inch thick or where tubular sections are less than 13 inches in diameter shall conform to the requirements in AWS D1.1, Clause 6.13.3.1. A written procedure approved by the Engineer shall be used when performing this UT. These written procedures shall conform to the requirements in AWS D1.1, Annex K. The acceptance and repair criteria for other welded joints receiving UT shall conform to the requirements in AWS D1.1, Clause, Table 6.3 for cyclically loaded nontubular connections.

3. The acceptance and repair criteria for radiographic or real time image testing shall conform to the requirements of AWS D1.1 for tensile stress welds.

4. For longitudinal seam welds, the random locations for NDT will be selected by the Engineer. The cover pass shall be ground smooth at the locations to be tested. If repairs are required in a portion of a tested weld, the repaired portion shall receive NDT, and additional NDT shall be performed on untested portions.
of the weld. The additional NDT shall be performed on 25 percent of that longitudinal seam weld. After this additional NDT is performed and if more repairs are required, then that entire longitudinal seam weld shall receive NDT.

Circumferential welds and base plate to post welds may be repaired only one time without written permission from the Engineer.

All ferrous metal parts of tubular sign structures shall be galvanized and shall not be painted.

Full compensation for furnishing anchor bolt templates and for testing of welds shall be considered as included in the contract price paid per pound for furnish sign structure, and no additional compensation will be allowed therefor.

10-1.91 ROADSIDE SIGNS

Roadside signs (including laminated type L posts) shall be furnished and installed at the locations shown on the plans or where designated by the Engineer and in conformance with the provisions in Section 56-2, "Roadside Signs," of the Standard Specifications and these special provisions.

The Contractor shall furnish roadside sign panels in conformance with the provisions in "Furnish Sign" of these special provisions.

Wood posts shall be pressure treated after fabrication in conformance with the provisions in Section 58, "Preservative Treatment of Lumber, Timber and Piling," of the Standard Specifications and AWPA Use Category System: UC4A, Commodity Specification A or B.

10-1.92 INSTALL SIGN PANEL ON EXISTING FRAME

Sign panels shall be installed on existing frames at the locations shown on the plans or where designated by the Engineer and in conformance with the provisions in Section 56-1.06, "Sign Panels and Fastening Hardware," of the Standard Specifications and these special provisions.

The Contractor shall furnish sign panels in conformance with the provisions in "Furnish Sign" of these special provisions.

Existing sign panels, as shown on the plans, shall be salvaged or removed and disposed of as provided in Section 15, "Existing Highway Facilities," of the Standard Specifications.

The contract price paid per square foot for install sign panel on existing frame shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in installing sign panels on existing frames, complete in place (including removing, salvaging, and disposing of existing sign panels), as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.93 FURNISH SIGN

Signs shall be fabricated and furnished in accordance with details shown on the plans, the Traffic Sign Specifications, and these special provisions.

Traffic Sign Specifications for California sign codes are available for review at:

http://www.dot.ca.gov/hq/traffops/signtech/signdel/specs.htm

Traffic Sign Specifications for signs referenced with Federal MUTCD sign codes can be found in Standard Highway Signs Book, administered by the Federal Highway Administration, which is available for review at:

Information on cross-referencing California sign codes with the Federal MUTCD sign codes is available at:

http://www.dot.ca.gov/hq/traffops/signtech/signdel/specs.htm

Temporary or permanent signs shall be free from blemishes that may affect the serviceability and detract from the general sign color and appearance when viewing during daytime and nighttime from a distance of 25 feet. The face of each finished sign shall be uniform, flat, smooth, and free of defects, scratches, wrinkles, gel, hard spots, streaks, extrusion marks, and air bubbles. The front, back, and edges of the sign panels shall be free of router chatter marks, burns, sharp edges, loose rivets, delaminated skins, excessive adhesive over spray and aluminum marks.
QUALITY CONTROL FOR SIGNS

The requirements of "Quality Control for Signs" in this section shall not apply to construction area signs.

No later than 14 days before sign fabrication, the Contractor shall submit a written copy of the quality control plan for signs to the Engineer for review. The Engineer will have 10 days to review the quality control plan. Sign fabrication shall not begin until the Engineer approves the Contractor's quality control plan in writing. The Contractor shall submit to the Engineer at least 3 copies of the approved quality control plan. The quality control plan shall include, but not be limited to the following requirements:

A. Identification of the party responsible for quality control of signs,
B. Basis of acceptance for incoming raw materials at the fabrication facility,
C. Type, method and frequency of quality control testing at the fabrication facility,
D. List (by manufacturer and product name) of process colors, protective overlay film, retroreflective sheeting and black non-reflective film,
E. Recommended cleaning procedure for each product, and
F. Method of packaging, transport and storage for signs.

No legend shall be installed at the project site. Legend shall include letters, numerals, tildes, bars, arrows, route shields, symbols, logos, borders, artwork, and miscellaneous characters. The style, font, size, and spacing of the legend shall conform to the Standard Alphabets published in the FHWA Standard Highway Signs Book. The legend shall be oriented in the same direction in accordance with the manufacturer's orientation marks found on the retroreflective sheeting.

On multiple panel signs, legend shall be placed across joints without affecting the size, shape, spacing, and appearance of the legend. Background and legend shall be wrapped around interior edges of formed panel signs as shown on plans to prevent delamination.

The following notation shall be placed on the lower right side of the back of each sign where the notation will not be blocked by the sign post or frame:

A. PROPERTY OF STATE OF CALIFORNIA,
B. Name of the sign manufacturer,
C. Month and year of fabrication,
D. Type of retroreflective sheeting, and
E. Manufacturer's identification and lot number of retroreflective sheeting.

The above notation shall be applied directly to the aluminum sign panels in 1/4-inch upper case letters and numerals by die-stamp and applied by similar method to the fiberglass reinforced plastic signs. Painting, screening, or engraving the notation will not be allowed. The notation shall be applied without damaging the finish of the sign.

Signs with a protective overlay film shall be marked with a dot of 3/8 inch in diameter. The dot placed on white border shall be black, while the dot placed on black border shall be white. The dot shall be placed on the lower border of the sign before application of the protective overlay film and shall not be placed over the legend and bolt holes. The application method and exact location of the dot shall be determined by the manufacturer of the signs.

For sign panels that have a minor dimension of 48 inches or less, no splice will be allowed in the retroreflective sheet except for the splice produced during the manufacturing of the retroreflective sheeting. For sign panels that have a minor dimension greater than 48 inches, only one horizontal splice will be allowed in the retroreflective sheeting.

Unless specified by the manufacturer of the retroreflective sheeting, splices in retroreflective sheeting shall overlap by a minimum of one inch. Splices shall not be placed within 2 inches from edges of the panels. Except at the horizontal borders, the splices shall overlap in the direction from top to bottom of the sign to prevent moisture penetration. The retroreflective sheeting at the overlap shall not exhibit a color difference under the incident and reflected light.

Signs exhibiting a significant color difference between daytime and nighttime shall be replaced immediately.

Repairing sign panels will not be allowed except when approved by the Engineer.

The Department will inspect signs at the Contractor's facility and delivery location, and in accordance with Section 6, "Control of Materials," of the Standard Specifications. The Engineer will inspect signs for damage and defects before and after installation.

Regardless of kind, size, type, or whether delivered by the Contractor or by a common carrier, signs shall be protected by thorough wrapping, tarping, or other methods to ensure that signs are not damaged by weather conditions and during transit. Signs shall be dry during transit and shipped on palettes, in crates, or tier racks. Padding and protective materials shall be placed between signs as appropriate. Finished sign panels shall be
transported and stored by method that protects the face of signs from damage. The Contractor shall replace wet, damaged, and defective signs.

Signs shall be stored in dry environment at all times. Signs shall not rest directly on the ground or become wet during storage. Signs, whether stored indoor or outdoor, shall be free standing. In areas of high heat and humidity signs shall be stored in enclosed climate-controlled trailers or containers. Signs shall be stored indoor if duration of the storage will exceed 30 days.

Screen processed signs shall be protected, transported and stored as recommended by the manufacturer of the retroreflective sheeting.

When requested, the Contractor shall provide the Engineer test samples of signs and materials used at various stages of production. Sign samples shall be 12” x 12” in size with applied background, letter or numeral, and border strip.

The Contractor shall assume the costs and responsibilities resulting from the use of patented materials, equipment, devices, and processes for the Contractor's work.

SHEET ALUMINUM

Alloy and temper designations for sheet aluminum shall be in accordance with ASTM Designation: B 209.

The Contractor shall furnish the Engineer a Certificate of Compliance in conformance with Section 6-1.07, "Certificates of Compliance," of the Standard Specifications for the sheet aluminum.

Sheet aluminum shall be pretreated in accordance to ASTM Designation: B 449. Surface of the sheet aluminum shall be cleaned, deoxidized, and coated with a light and tightly adherent chromate conversion coating free of powdery residue. The conversion coating shall be Class 2 with a weight between 10 milligrams per square foot and 35 milligrams per square foot, and an average weight of 25 milligrams per square foot. Following the cleaning and coating process, the sheet aluminum shall be protected from exposure to grease, oils, dust, and contaminants.

Sheet aluminum shall be free of buckles, warps, dents, cockles, burrs, and defects resulting from fabrication. Base plate for standard route marker shall be die cut.

RETROREFLECTIVE SHEETING

The Contractor shall furnish retroreflective sheeting for sign background and legend in conformance with ASTM Designation: D 4956 and "Prequalified and Tested Signing and Delineation Materials" of these special provisions.

Retroreflective sheeting shall be applied to sign panels as recommended by the retroreflective sheeting manufacturer without stretching, tearing, and damage.

Class 1, 3, or 4 adhesive backing shall be used for Type II, III, IV, VII, VIII, and IX retroreflective sheeting. Class 2 adhesive backing may also be used for Type II retroreflective sheeting. The adhesive backing shall be pressure sensitive and fungus resistant.

When the color of the retroreflective sheeting determined from instrumental testing is in dispute, the Engineer's visual test will govern.

PROCESS COLOR AND FILM

The Contractor shall furnish and apply screened process color, non-reflective opaque black film, and protective overlay film of the type, kind, and product that are approved by the manufacturer of the retroreflective sheeting.

The Contractor shall furnish the Engineer a Certificate of Compliance in accordance to Section 6-1.07, "Certificates of Compliance," of the Standard Specifications for the screened process color, non-reflective opaque black film, and protective overlay film.

The surface of the screened process color shall be flat and smooth. When the screened process colors determined from the instrumental testing in accordance to ASTM Designation: D 4956 are in dispute, the Engineer's visual test will govern.

The Contractor shall provide patterns, layouts, and set-ups necessary for the screened process.

The Contractor may use green, red, blue, and brown reverse-screened process colors for background and non-reflective opaque black film or black screened process color for legend. The coefficient of retroreflection for reverse-screened process colors on white retroreflective sheeting shall not be less than 70 percent of the coefficient of retroreflection specified in ASTM Designation: D 4956.

The screened process colors and non-reflective opaque black film shall have the same outdoor weatherability as that of the retroreflective sheeting.

After curing, screened process colors shall withstand removal when tested by applying 3M Company Scotch Brand Cellophane Tape No. 600 or equivalent tape over the color and removing with one quick motion at 90° angle.
FIBERGLASS REINFORCED PLASTIC PANEL SIGN

The Contractor shall furnish fiberglass reinforced plastic panel sign in accordance with ASTM Designation: D 3841 and “Prequalified and Tested Signing and Delineation Materials” of these special provisions.

Fiberglass reinforced plastic shall be acrylic modified and ultraviolet stabilized for outdoor weatherability. The plastic shall contain additives designed to suppress fire ignition and flame propagation. When tested in accordance with the requirements in the ASTM Designation: D 635, the extent of burning shall not exceed one inch.

Fiberglass reinforced plastic shall be stabilized to prevent the release solvents and monomers. The front and back surfaces of the laminate shall be clean and free of constituents and releasing agents that can interfere with the bonding of retroreflective sheeting.

The fiberglass reinforced plastic panel sign shall be weather resistant Grade II thermoset polyester laminate.

Fiberglass reinforced plastic panels shall be minimum 0.135-inch thick. Finished fiberglass reinforced plastic panel signs shall be flat within a tolerance of ±1/32 inch per linear foot when measured across the plane of the sign in all directions. The finished signs shall have an overall tolerance within ±1/8 inch of the specified dimensions.

Color of fiberglass reinforced plastic panels shall be uniform gray within Munsel color range of N7.5 to N8.5.

Fiberglass reinforced plastic panels shall be cut from a single piece of laminate. Bolt holes shall be predrilled. The predrilled bolt holes, panel edges, and the front and back surfaces of the panels shall be true and smooth. The panel surfaces shall be free of visible cracks, pinholes, foreign inclusions, warping and wrinkles that can affect performance and serviceability.

LAMINATED PANEL SIGN

Laminated panel signs shall consist of two sheet aluminum laminated to a honeycomb core and extruded aluminum frame to produce flat and rigid panels of one-inch or 2-1/2-inch nominal thickness.

The face of laminated panel signs shall be fabricated from sheet aluminum alloy 6061-T6 or 5052-H32 of 0.063-inch thickness. The back of laminated panel signs shall be fabricated from sheet aluminum alloy 3003-H14 of 0.040-inch thickness. The Contractor shall furnish sheet aluminum as provided in "Sheet Aluminum" of these special provisions.

The core material shall be phenolic impregnated kraft paper honeycomb and fungus resistant in accordance to Military Specification MIL-D-5272. The honeycomb cell size shall be 1/2 inch. Weight of the kraft paper shall be 80 pounds and impregnated minimum 18 percent by weight.

A laminating adhesive that can produce a resilient oil and water-resistant bond shall be used to adhere the extruded aluminum frame and the honeycomb core to the sheet aluminum. Edge and interior delamination occur when a 0.010-inch thick feeler gauge of 1/2 inch in length can be inserted into a depth of more than 1/2 inch between the extruded aluminum frame and the sheet aluminum. Laminated panel sign with delamination will be rejected.

Laminated panels shall be able to resist a wind load of 33 pounds per square foot for the following simple span lengths with a bending safety factor of 1.25:

<table>
<thead>
<tr>
<th>Panel Type</th>
<th>Nominal Panel Thickness</th>
<th>Simple Span Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>one inch</td>
<td>9 feet 0 inch</td>
</tr>
<tr>
<td>B</td>
<td>one inch</td>
<td>9 feet 0 inch</td>
</tr>
<tr>
<td>H</td>
<td>2-1/2 inch</td>
<td>14 feet 6 inches</td>
</tr>
</tbody>
</table>

The tensile strength of laminated panels shall be at least 20 pounds per square inch when tested in accordance with the following modification and with ASTM Designations: C 297 and C 481, Cycle B after aging. Instead of spraying with hot water, the specimen shall be totally immersed in 158°F hot water. When requested by the Engineer or the Transportation Laboratory, at least one test sample of 12” x 12” in size shall be taken for every 2,000 square feet of the panel production cycle or of the total factory production order, whichever occurs first.

Rivets used to secure the sheet aluminum to the perimeter frame shall be fabricated from aluminum alloy 5052 and anodized or treated with a conversion coating to prevent corrosion. Size of the aluminum rivets shall be 3/16 inch in diameter and placed at the corners of the laminated panels. Color of the exposed portion of the rivets shall be the same color as the sign background or legend on which the rivets are placed. Rivets or stainless steel screws shall be placed in holes drilled during fabrication in the perimeter frame.

On laminated multiple panel signs, a closure H-Section shall be placed in the top channel of the bottom panel. Perimeter frame of adjoining panel shall accommodate the closure H-Section in the closed position.
For signs with a depth of 5 feet 0 inch or less, the laminated panels shall be fabricated with no horizontal joints, splices or seams. For signs with a depth of greater than 5 feet 0 inch, the laminated panels may be fabricated in two panels.

The face of laminated panels shall be flat with a tolerance of ±3/32 inch per linear foot when measured across the plane of each panel in all directions. Where laminated panels adjoin, the gap between adjoining edges from one corner to the other corner shall not deviate by more than 1/32 inch. Non-adjoining edges from one corner to the other corner shall not deviate by more than 1/8 inch from a straight plane. The front and back sheet aluminum shall be flush with the perimeter frame. The panel edges shall be smooth.

Laminated panel signs shall be within +1/8 inch or -1/2 inch of the detailed dimensions. The difference in length between adjoining panels of multiple panel signs shall not be greater than 1/2 inch.

Roadside laminated panel signs shall be Type B or Type H. Type B panels shall have a nominal thickness of one inch or 2-1/2 inches. Type H panels shall have a nominal thickness of 2-1/2 inches.

The perimeter frame of Type B panels shall consist of extruded channel edges. The interior and exterior sides of the channels, except the sides touching the face and back sheet aluminum, shall be welded at the joint. Sealant shall be placed at the corners of the perimeter frame to prevent moisture penetration.

Each side of the vertical tube spacers of Type B panels shall be welded to the perimeter frame, except the sides touching the front and back sheet aluminum.

The perimeter frame of Type H panels shall consist of extruded channel edges on the vertical sides and consist of extruded tube channel edges on the horizontal sides. The perimeter frame shall be connected by self-tapping hex head stainless steel screws. Sealant shall be placed at the corners of the perimeter frame to prevent moisture penetration.

For Type H panels with a length of 17 feet or longer, centerline panel tube shall be placed along the horizontal centerline of the panel. The ends of the centerline panel tube shall be firmly affixed to the perimeter frame.

Each side of the vertical tube spacers of Type H panels shall be welded to the perimeter frame and the centerline panel tube, except the sides touching the front and back sheet aluminum.

The Contractor shall furnish mounting hardware for roadside laminated panel signs, such as closure H-sections, lags, bolts, nuts, and washers.

Overhead laminated panel signs shall be Type A and have a nominal thickness of one inch.

For overhead laminated signs with a length of 24 feet or less, the laminated panels shall be fabricated with no vertical joints, splices or seams. For signs with a length of greater than 24 feet, the length of each adjoining panel shall be as determined by the Engineer or as shown on the plans.

The perimeter frame of Type A overhead laminated panels shall be connected by self-tapping hex head stainless steel screws. Sealant shall be placed at the corners of the perimeter frame to prevent moisture penetration. The perimeter frame of Type A panels shall consist of extruded channel edges on the vertical sides and consist of modified "H" section extrusion on the horizontal sides. The modified "H" section extrusion acts as an integral retainer track for affixing the bolts to provide blind fastening of panels to the structure support.

The Contractor shall furnish mounting hardware for overhead laminated panel signs, such as closure H-sections, clamps, bolts, nuts, and washers. The clamps shall be cast aluminum alloy with a minimum tensile strength of 25 kips per square inch. Bolt torque used for installing clamps shall not exceed 100 inch-pounds.

MEASUREMENT AND PAYMENT

Furnishing signs (except for construction area signs) will be measured by the square foot and the quantity to be paid for will be the total area, in square feet, of the sign panel types installed in place.

The contract price paid per square foot for furnish sign of the types specified in the Engineer's estimate shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in fabricating and furnishing the signs, and fastening hardware, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

Full compensation for furnishing and installing protective overlay on signs shall be considered as included in the contract price paid per square foot for furnish sign of the various types and no separate payment will be made therefor.

10-1.94 CLEAN AND PAINT STRUCTURAL STEEL

New metal surfaces and connections to existing steel shall be cleaned and painted in conformance with the provisions in Section 59-2, "Painting Structural Steel, and Section 91, "Paint," of the Standard Specifications and these special provisions.
GENERAL

Proof of certification under the SSPC QP Certification Program must be submitted with your bid. Required certifications are as follows:

1. SSPC-QP 1
2. SSPC-QP 3, Enclosed Shop Facility or AISC Sophisticated Paint Endorsement Quality Program, P1-Enclosed

The existing paint systems consist of materials listed in "Existing Highway Facilities" of these special provisions.

Before performing any painting or paint removal, the Contractor shall submit to the Engineer, in conformance with the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications, 3 copies of a separate Painting Quality Work Plan (PQWP) for each item of work for which painting or paint removal is to be performed. As a minimum, each PQWP shall include the following:

1. The name of each Contractor or subcontractor to be used.
2. One copy each of all current ASTM and "SSPC: The Society for Protective Coatings" specifications or qualification procedures applicable to the painting or paint removal to be performed. These documents shall become the permanent property of the Department.
3. A copy of the coating manufacturer's guidelines and recommendations for surface preparation, painting, drying, curing, handling, shipping, and storage of painted structural steel, including testing methods and maximum allowable levels for soluble salts.
4. Proposed materials, methods, and equipment to be used.
5. Proof of each of any required certifications, SSPC-QP 1 and SSPC-QP 3.

5.1. In lieu of certification in conformance with the requirements in SSPC-QP 2 for this project, the Contractor may submit written documentation showing conformance with the requirements in Sections 4.2 through 4.6 of SSPC-QP 2, Category A.

6. Proposed methods to control environmental conditions in accordance with the manufacturer's recommendations and these special provisions.
7. Proposed methods to protect the coating during curing, shipping, handling, and storage.
8. Proposed rinse water collection plan.
9. A detailed paint repair plan for the repair of damaged areas.
11. Examples of proposed daily reports for all testing to be performed, including type of testing, location, lot size, time, weather conditions, test personnel, and results.

Before submitting the PQWP, a prepainting meeting between the Engineer, the Contractor, and a representative from each entity performing painting for this project shall be held to discuss the requirements for the PQWP.

The Engineer shall have 20 days to review the PQWP submittal after a complete plan has been received. No painting or paint removal shall be performed until the PQWP for that work is approved by the Engineer. Should the Engineer fail to complete the review within this time allowance and if, in the opinion of the Engineer, the Contractor's controlling operation is delayed or interfered with by reason of the delay in reviewing the PQWP, the delay will be considered a right of way delay in conformance with the provisions in Section 8-1.09, "Right of Way Delays," of the Standard Specifications.

The Engineer's approval of the Contractor's PQWP shall not relieve the Contractor of any responsibility under the contract for the successful completion of the work in conformity with the requirements of the plans and specifications.

The Contractor shall provide enclosures to permit cleaning and painting during inclement weather. Provisions shall be made to control atmospheric conditions inside the enclosures within specified limits during cleaning and painting operations, drying to solvent insolubility, and throughout the curing period in accordance with the manufacturer's recommendations and these special provisions. Full compensation for providing and maintaining such enclosures shall be considered as included in the prices paid for the various contract items of work requiring paint and no additional compensation will be allowed therefor.

Fresh, potable water with a maximum chloride content of 75 ppm and a maximum sulfate content of 200 ppm shall be used for water rinsing or pressure washing operations. No continuous recycling of rinse water will be permitted. If rinse water is collected into a tank and subsequent testing determines the collected water conforms to
the specified requirements, reuse may be permitted by the Engineer if no collected water is added to the tank after sample collection for determination of conformance to specified requirements.

CLEANING

New metal surfaces and areas of connections to existing steel, except where galvanized, shall be dry blast cleaned and dry spot blast cleaned, respectively, in conformance with the requirements in SSPC-SP 10, "Near White Blast Cleaning," of the "SSPC: The Society for Protective Coatings." Blast cleaning shall leave surfaces with a dense, uniform, angular anchor pattern of no less than 1.5 mils nor more than 3.5 mils as measured in conformance with the requirements in ASTM Designation: D 4417.

The areas of connections to existing steel to be dry spot blast cleaned shall consist of, as a minimum:

1. New and existing contact surfaces and existing member surfaces under bolt heads, nuts or washers of high-strength bolted connections,
2. Exposed bare surfaces of existing steel remaining after trimming, cutting, drilling or reaming, and
3. Areas of existing steel within a 4-inch radius measured in any direction from the point of application of heat for welding or flame cutting.

Mineral and slag abrasives used for blast cleaning steel surfaces shall conform to the requirements for Class A, Grade 2 to 3 abrasives contained in SSPC-AB 1, "Mineral and Slag Abrasives," of the "SSPC: The Society for Protective Coatings," and shall not contain hazardous material.

Steel abrasives used for blast cleaning steel surfaces shall comply with the requirements of SSPC-AB 3, "Ferrous Metallic Abrasive," of the "SSPC: The Society for Protective Coatings." If steel abrasive is recycled through shop or field abrasive blast cleaning units, the recycled abrasive shall conform to the requirements of SSPC-AB 2, "Specification for Cleanliness of Recycled Ferrous Metallic Abrasive," of the "SSPC: The Society for Protective Coatings."

A Certificate of Compliance conforming to the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications and a Material Safety Data Sheet shall be furnished before use for each shipment of blast cleaning material for existing steel.

Abrasive blast cleaned surfaces shall be tested by the Contractor for soluble salts using a Class A or B retrieval method as described in Technology Guide 15, "Field Methods for Retrieval and Analysis of Soluble Salts on Steel and Other Nonporous Substrates," of the "SSPC: The Society for Protective Coatings," and cleaned so the maximum level of soluble salts does not exceed the lesser of the coating manufacturer's written recommendations or 10 micrograms per square centimeter. Areas of abrasive blast cleaned steel shall be tested at the rate of 3 tests for the first 1,000 square feet prepared per day, and one test for each additional 1,000 square feet or portion thereof, at locations selected by the Engineer. When less than 1,000 square feet of surface area is prepared in a shift, at least 2 tests shall be performed. If levels of soluble salts exceed the maximum allowed by these special provisions, the entire area represented by the testing will be rejected. The Contractor shall perform additional cleaning and testing of rejected areas until soluble salt levels conform to these requirements.

Corners shall be chamfered to remove sharp edges.

Thermal cut edges (TCEs) to be painted shall be conditioned before blast cleaning by shallow grinding or other method approved by the Engineer to remove the thin, hardened layer of material resulting from resolidification during cooling.

Visually evident base metal surface irregularities and defects shall be removed in accordance with ASTM Designation: A 6 or AASHTO Designation: M 160 before blast cleaning steel. When material defects exposed by blast cleaning are removed, the blast profile shall be restored by either blast cleaning or by using mechanical tools in accordance with SSPC-SP 11, "Power Tool Cleaning to Bare Metal," of the "SSPC: The Society for Protective Coatings."

PAINTING

Blast cleaned surfaces shall receive a single undercoat consisting of an inorganic zinc rich primer conforming to the requirements in AASHTO Designation: M 300, Type I or Type II.

Inorganic zinc rich primer shall be selected from the Department's Pre-Qualified Products List.

Inorganic zinc rich primer shall be used within 12 hours of initial mixing.

The single undercoat of inorganic zinc rich primer shall be applied to the required dry film thickness in 2 or more applications within 8 hours of the start of blast cleaning. Abrasive blast cleaned steel shall not be exposed to relative humidity exceeding 85 percent before application of inorganic zinc coating.
The total dry film thickness of all applications of the inorganic zinc undercoat, including the surfaces of outside existing members within the grip under bolt heads, nuts and washers, shall be not less than 4 mils nor more than 8 mils, except that the total dry film thickness on each faying (contact) surface of high strength bolted connections shall be between one mil and the maximum allowable dry film thickness for Class B coatings as determined by certified testing in conformance with Appendix A of the "Specification for Structural Joints Using ASTM A325 or A490 Bolts" of the Research Council on Structural Connections (RCSC Specification). Unless otherwise stated, all inorganic zinc rich primer used on faying surfaces shall meet the slip coefficient requirements for a Class B coating on blast-cleaned steel, as specified in the RCSC Specification. The Contractor shall provide results of certified testing showing the maximum allowable dry film thickness for the Class B coating from the qualifying tests for the coating chosen, and shall maintain the coating thickness on actual faying surfaces of the structure at or below this maximum allowable coating thickness.

Areas where mudcracking occurs in the inorganic zinc coating shall be blast cleaned and repainted with inorganic zinc rich primer to the specified thickness.

Steel surfaces coated with Type II inorganic zinc rich primer shall be protected from conditions that may cause the coating film to dissolve. The Contractor, at the Contractor's expense, shall repair areas where the coating has dissolved by blast cleaning and repainting with inorganic zinc rich primer to the specified thickness.

Dry spray, or overspray, as defined in the Steel Structures Painting Manual, Volume I, "Good Painting Practice," of the "SSPC: The Society for Protective Coatings," shall be removed before application of subsequent coats or final acceptance. Removal of dry spray shall be by screening or other methods that minimize polishing of the inorganic zinc surface. The dry film thickness of the coating after removal of dry spray shall be in conformance with the provisions for applying the single undercoat, as specified herein.

For damaged areas of the undercoat, the following apply:

1. If the Engineer determines the damaged area is more than 2 percent of the total undercoated surface, the Contractor shall blast clean and repaint damaged areas with inorganic zinc to the specified thickness before erection.

2. If the Engineer determines the damaged area is 2 percent or less of the total undercoated surface, the Contractor may wire brush the damaged surfaces to remove loose or cracked coating and apply 2 coats of organic zinc-rich primer before erection.

The Contractor shall test the inorganic zinc undercoat before application of finish coats. The locations of the tests will be determined by the Engineer. The Contractor shall determine the sequence of the testing operations. The testing for adhesion and hardness shall be performed no sooner than 72 hours after application of the single undercoat of inorganic zinc coating. Satisfactory access shall be provided to allow the Engineer to determine the location of the tests.

The inorganic zinc coating shall pass the following tests:

1. The undercoat shall have a minimum adhesion to steel of 600 psi when measured using a self-aligning adhesion tester in conformance with the requirements in ASTM Designation: D 4541. The Engineer will select 3 locations per girder or 1,000 square feet of painted surface, whichever is less, for adhesion testing. If less than 1,000 square feet of steel is painted in a work shift, the Engineer will select 3 areas painted during the work shift for testing. If 2 or more of the locations tested fail to meet adhesion requirements, the entire area represented by the tests will be rejected. If one of the locations tested fails to meet adhesion requirements, an additional 3 locations shall be tested. Should any of the additional locations fail to meet adhesion requirements, the entire area represented by the tests will be rejected. The Contractor, at the Contractor's expense, shall repair the rejected area by blast cleaning and repainting with inorganic zinc rich primer to the specified thickness. Test locations for areas of inorganic zinc meeting adhesion testing requirements shall be repaired by application of organic zinc primer as specified in Section 91-1.04, "Materials," of the Standard Specifications to the specified minimum dry film thickness.

2. Areas where finish coats are to be applied shall be tested for soluble salts using a Class A or B retrieval method as described in Technology Guide 15, "Field Methods for Retrieval and Analysis of Soluble Salts on Steel and Other Nonporous Substrates," of the "SSPC: The Society for Protective Coatings," and cleaned so the maximum level of soluble salts does not exceed the lesser of the manufacturer's written recommendations or 10 micrograms per square centimeter. Areas of inorganic zinc undercoat shall be tested at the rate of 3 tests for the first 1,000 square feet to be painted per day and one test for each additional 1,000 square feet or portion thereof at locations selected by the Engineer. When less than 1,000 square feet of surface area is painted in a shift, at least 2 tests shall be performed. If levels of soluble salts exceed the maximum allowed by these special provisions, the entire area represented by the testing
will be rejected. The Contractor shall perform additional cleaning and testing of rejected areas until soluble salt levels conform to these requirements.

3. The inorganic zinc undercoat shall exhibit a solid, hard, and polished metal surface when firmly scraped with the knurled edge of a quarter. Inorganic zinc coating that is powdery, soft, or does not exhibit a polished metal surface, as determined by the Engineer, shall be repaired by the Contractor, at the Contractor's expense, by blast cleaning and repainting with inorganic zinc coating to the specified thickness.

Additional Requirements for Water Borne Inorganic Zinc Primers

1. The surface pH of the inorganic zinc undercoat shall be tested by wetting the surface with de-ionized water for a minimum of 15 minutes but no longer than 30 minutes and applying pH paper with a capability of measuring in increments of 0.5 pH units. At least 2 surface pH readings shall be taken for every 500 square feet or portion thereof. If less than 500 square feet of steel is coated in a single shift or day, at least 2 surface pH readings shall be taken for primer applied during that period. Application of finish coats will not be permitted until the surface pH is less than or equal to 7.

2. Dry to solvent insolubility for water borne inorganic zinc primers shall be determined in conformance with the requirements in ASTM Designation: D 4752, except that water shall be the solvent. The resistance rating shall be not less than 4. Areas of inorganic zinc undercoat shall be tested for solvent insolubility at the rate of one test per 500 square feet or portion thereof. Inorganic zinc undercoat represented by the tested area that does not meet the solvent insolubility requirements will be rejected. The Contractor, at the Contractor's expense, shall repair rejected areas by blast cleaning and repainting with inorganic zinc rich primer to the specified thickness.

Additional Requirements for Solvent Borne Inorganic Zinc Primers

1. Dry to solvent insolubility for solvent borne inorganic zinc primers shall be determined in conformance with the requirements in ASTM Designation: D 4752. The resistance rating shall be not less than 4. Areas of inorganic zinc undercoat shall be tested for solvent insolubility at the rate of one test per 500 square feet or portion thereof. Inorganic zinc undercoat represented by the tested area that does not meet the solvent insolubility requirements will be rejected. The Contractor, at the Contractor's expense, shall repair rejected areas by blast cleaning and repainting with inorganic zinc rich primer to the specified thickness.

2. Surface hardness of solvent borne inorganic zinc undercoat shall be a minimum 2H when measured in conformance with the requirements in ASTM Designation: D 3363. Areas of inorganic zinc undercoat shall be tested at the rate of one test per 500 square feet or portion thereof. Inorganic zinc undercoat that fails to meet the surface hardness requirements shall be repaired by the Contractor, at the Contractor's expense, by blast cleaning and repainting with inorganic zinc rich primer to the specified thickness.

The Contractor, at the Contractor's expense, shall retest all rejected areas of inorganic zinc undercoat after repairs have been completed.

Exposed areas of inorganic zinc undercoat shall receive a minimum of 2 finish coats of an exterior grade latex paint supplied by the manufacturer of the inorganic zinc rich primer.

Finish and primer coats shall conform to the following table:
All areas of inorganic zinc undercoat to receive finish coats shall be pressure rinsed in conformance with the requirements in Section 59-1.03, "Application," of the Standard Specifications and these special provisions. Areas of the coating removed by pressure rinsing shall be reapplied in conformance with Section 59-2.13, "Application of Zinc-Rich Primer," of the Standard Specifications and these special provisions. Except as approved by the Engineer, a minimum time of 72 hours shall be allowed between application of inorganic zinc coating and pressure rinsing.

The first finish coat shall be applied within 48 hours following the water rinsing.

The finish coat paint shall be formulated for application to inorganic zinc coating, shall meet the requirements for SSPC-Paint 24, "Latex Semi-Gloss Exterior Topcoat," of the "SSPC: The Society for Protective Coatings," and shall conform to the following:

1. No visible color change in the finish coats shall occur when tested for 800 hours in conformance with the requirements in ASTM Designation: D 4587, Test Cycle 2.
2. The vehicle shall be an acrylic or modified acrylic copolymer with a minimum of necessary additives.

The first finish coat shall be applied in 2 applications. The first application shall consist of a spray applied mist application. The second application shall be applied after the mist application has dried to a set to touch condition as determined by the procedure described in Section 7 of ASTM Designation: D 1640. The total dry film thickness of both applications of the first finish coat shall be not less than 2 mils.

Except as approved by the Engineer, a minimum drying time of 12 hours shall be allowed between finish coats.

The total dry film thickness of all applications of the second finish coat shall be not less than 2 mils.

The 2 finish coats shall be applied in 3 or more applications to a total dry film thickness of not less than 4 mils nor more than 8 mils.

The total dry film thickness of all applications of inorganic zinc undercoat and finish coat paint shall be not less than 8 mils nor more than 14 mils.

Cleaning and painting of existing contact surfaces of high strength bolted connections that contain rust, loose paint, or other foreign substances, except loose dirt and dust, will be considered as extra work as specified in Section 4-1.03D, "Extra Work," of the Standard Specifications. Cost of repair of damage to existing paint caused by the Contractor's operations shall be borne by the Contractor.

MEASUREMENT AND PAYMENT

Dry spot blast cleaning and undercoat painting of blast cleaned areas of existing surfaces will be measured by the square foot of spot blast cleaned areas, and will be paid for as spot blast clean and paint undercoat.

The contract price paid per square foot for spot blast clean and paint undercoat shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in dry spot blast cleaning and painting undercoat on the existing surfaces complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

The contract lump sum price paid for clean and paint structural steel shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in cleaning and painting the exposed surfaces of the new structural steel and finish coat on undercoated areas of existing metal, complete in place, including water rinsing, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.
10-1.95 CLEAN AND PAINT JOINT SEAL ASSEMBLIES, BEARINGS AND RESTRAINER UNITS

Prior to performing any painting, the Contractor shall submit to the Engineer, in conformance with the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications, 3 copies of a separate Painting Quality Work Plan (PQWP) for each item of work for which painting is to be performed. As a minimum, each PQWP shall include the following:

A. The name of each Contractor or subcontractor to be used.
B. One copy each of all current ASTM and "SSPC: The Society for Protective Coatings" specifications or qualification procedures applicable to the painting or paint removal to be performed. These documents shall become the permanent property of the Department.
C. A copy of the coating manufacturer's guidelines and recommendations for surface preparation, painting, drying, curing, handling, shipping, and storage of painted structural steel, including testing methods and maximum allowable levels for soluble salts.
D. Proposed methods and equipment to be used for paint application.
E. Proposed methods to control environmental conditions in accordance with the manufacturer's recommendations and these special provisions.
F. Proposed methods to protect the coating during curing, shipping, handling, and storage.
G. A detailed paint repair plan for the repair of damaged areas.

Certification in conformance with the requirements in SSPC-QP 1, SSPC-QP 2, and SSPC-QP 3 of the "SSPC: The Society for Protective Coatings" will not be required for cleaning and painting of joint seal assemblies and bearings.

The Engineer shall have 14 days to review the PQWP submittal after a complete plan has been received. No painting shall be performed until the PQWP for that work is approved by the Engineer. Should the Engineer fail to complete the review within this time allowance and if, in the opinion of the Engineer, the Contractor's controlling operation is delayed or interfered with by reason of the delay in reviewing the PQWP, the delay will be considered a right of way delay in conformance with the provisions in Section 8-1.09, "Right of Way Delays," of the Standard Specifications.

Fresh, potable water with a maximum chloride content of 75 ppm and a maximum sulfate content of 200 ppm shall be used for water rinsing or pressure washing operations. No continuous recycling of rinse water will be permitted. If rinse water is collected into a tank and subsequent testing determines the collected water conforms to the specified requirements, reuse may be permitted by the Engineer if no collected water is added to the tank after sample collection for determination of conformance to specified requirements.

Metal surfaces to be painted shall be dry blast cleaned in conformance with the requirements in SSPC-SP 10, "Near White Blast Cleaning," of the "SSPC: The Society for Protective Coatings." Blast cleaning shall leave surfaces with a dense, uniform, angular anchor pattern of not less than 1.5 mils nor more than 3.5 mils as measured in conformance with the requirements in ASTM Designation: D 4417.

Mineral and slag abrasives used for blast cleaning metal surfaces shall conform to the requirements for Class A, Grade 2 to 3 abrasives contained in SSPC-AB 1, "Mineral and Slag Abrasives," of the "SSPC: The Society for Protective Coatings," and shall not contain hazardous material.

Steel abrasives used for blast cleaning metal surfaces shall comply with the requirements of SSPC-AB 3, "Ferrous Metallic Abrasive," of the "SSPC: The Society for Protective Coatings." If steel abrasive is recycled through shop or field abrasive blast cleaning units, the recycled abrasive shall conform to the requirements of SSPC-AB 2, "Specification for Cleanliness of Recycled Ferrous Metallic Abrasive," of the "SSPC: The Society for Protective Coatings."

A Certificate of Compliance conforming to the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications and a Material Safety Data Sheet shall be furnished prior to use for each shipment of blast cleaning material.

Abrasive blast cleaned surfaces shall be tested by the Contractor for soluble salts using a Class A or B retrieval method as described in Technology Guide 15, "Field Methods for Retrieval and Analysis of Soluble Salts on Steel and Other Nonporous Substrates," of the "SSPC: The Society for Protective Coatings," and cleaned so the maximum level of soluble salts does not exceed the lesser of the coating manufacturer's written recommendations or 10 micrograms per square centimeter. Each joint seal assembly, bearing and restrainer unit shall be tested for soluble salts. If levels of soluble salts exceed the maximum allowed by these special provisions, the Contractor shall
perform additional cleaning and testing of blast cleaned surfaces until soluble salt levels conform to these requirements.

Corners shall be chamfered to remove sharp edges. Thermal cut edges (TCEs) to be painted shall be conditioned before blast cleaning by shallow grinding or other method approved by the Engineer to remove the thin, hardened layer of material resulting from resolidification during cooling.

Visually evident base metal surface irregularities and defects shall be removed in accordance with ASTM Designation: A 6 or AASHTO Designation: M 160 prior to blast cleaning steel. When material defects exposed by blast cleaning are removed, the blast profile shall be restored by either blast cleaning or by using mechanical tools in accordance with SSPC-SP 11, "Power Tool Cleaning to Bare Metal," of the "SSPC: The Society for Protective Coatings."

Blast cleaned surfaces shall receive a single undercoat consisting of an inorganic zinc coating conforming to the requirements in AASHTO Designation: M 300, Type I or Type II.

Inorganic zinc coating shall be selected from the qualified products list, which may be obtained from the Transportation Laboratory.

The color of the inorganic zinc coating shall match Federal Standard 595B, No. 36373.

Inorganic zinc coating shall be used within 12 hours of initial mixing.

Stainless steel surfaces of bearings shall be masked off completely prior to application of inorganic zinc coating.

The single coat of inorganic zinc coating shall be applied to the required dry film thickness in 2 or more applications within 8 hours of the start of blast cleaning. Abrasive blast cleaned steel shall not be exposed to relative humidity exceeding 85 percent prior to application of inorganic zinc.

The total dry film thickness of all applications of inorganic zinc, including the surfaces of outside existing members within the grip under bolt heads, nuts, and washers, shall be not less than 4 mils nor more than 8 mils, except that the total dry film thickness on each faying (contact) surface of high strength bolted connections shall be between one mil and the maximum allowable dry film thickness for Class B coatings as determined by certified testing in conformance with Appendix A of the "Specification for Structural Joints Using ASTM A325 or A490 Bolts" of the Research Council on Structural Connections (RCSC Specification). Unless otherwise stated, all inorganic zinc coatings used on faying surfaces shall meet the slip coefficient requirements for a Class B coating on blast-cleaned steel, as specified in the RCSC Specification. The Contractor shall provide results of certified testing showing the maximum allowable dry film thickness for the Class B coating from the qualifying tests for the coating chosen, and shall maintain the coating thickness on actual faying surfaces of the structure at or below this maximum allowable coating thickness.

Areas where mudcracking occurs in the inorganic zinc coating shall be blast cleaned and repainted with inorganic zinc coating to the specified thickness.

Metal surfaces coated with Type II inorganic zinc coating shall be protected from conditions that may cause the coating film to dissolve. The Contractor, at the Contractor's expense, shall repair areas where the coating has dissolved by blast cleaning and repainting with inorganic zinc coating to the specified thickness.

Dry spray, or overspray, as defined in the Steel Structures Painting Manual, Volume 1, "Good Painting Practice," of the "SSPC: The Society for Protective Coatings," shall be removed prior to application of subsequent coats or final acceptance. Removal of dry spray shall be by screening or other methods that minimize polishing of the inorganic zinc surface. The dry film thickness of the coating after removal of dry spray shall be in conformance with the provisions for applying the single undercoat, as specified herein.

The Contractor shall test the inorganic zinc coating at locations determined by the Engineer. The Contractor shall determine the sequence of the testing operations. The testing for adhesion and hardness shall be performed no sooner than 72 hours after application of the inorganic zinc coating. Satisfactory access shall be provided to allow the Engineer to determine the location of the tests.

The inorganic zinc coating shall pass the following tests:

A. The inorganic zinc coating shall have a minimum adhesion to steel of 600 psi when measured using a self-aligning adhesion tester in conformance with the requirements in ASTM Designation: D 4541. The Engineer shall select 2 locations per assembly, bearing, and restrainer unit for adhesion testing. If either of the locations tested fails to meet adhesion requirements, the assembly, bearing or restrainer unit will be rejected. The Contractor, at the Contractor's expense, shall repair the rejected item by blast cleaning and repainting with inorganic zinc to the specified thickness. Test locations for areas of inorganic zinc meeting adhesion testing requirements shall be repaired by application of organic zinc primer as specified in Section 91-1.04, "Materials," of the Standard Specifications to the specified minimum dry film thickness.
B. The inorganic zinc coating shall exhibit a solid, hard, and polished metal surface when firmly scraped with the knurled edge of a quarter. Inorganic zinc coating that is powdery, soft, or does not exhibit a polished metal surface shall be repaired by the Contractor, at the Contractor's expense, by blast cleaning and repainting with inorganic zinc coating to the specified thickness.

C. Dry to solvent insolubility for inorganic zinc primers shall be determined in conformance with the requirements in ASTM Designation: D 4752, except that water shall be the solvent used for testing of water borne inorganic zinc primers. The resistance rating shall be not less than 4. Each assembly, bearing and restrainer unit shall be tested for dry to solvent insolubility. Inorganic zinc coating that does not meet the solvent insolubility requirements shall be repaired by the Contractor, at the Contractor's expense, by blast cleaning and repainting with inorganic zinc coating to the specified thickness.

D. Surface hardness of inorganic zinc shall be a minimum 2H when measured in conformance with the requirements in ASTM Designation: D 3363. Each assembly, bearing and restrainer unit shall be tested for surface hardness. Inorganic zinc coating that fails to meet the surface hardness requirements shall be repaired by the Contractor, at the Contractor's expense, by blast cleaning and repainting with inorganic zinc coating to the specified thickness.

The Contractor, at the Contractor's expense, shall retest all rejected areas of inorganic zinc coating after repairs have been completed.

Full compensation for cleaning and painting of joint seal assemblies, bearings and restrainer units shall be considered as included in the contract unit price paid for joint seal assembly (MR 4”), bearing, and miscellaneous metal (restrainer) and no separate payment will be made therefor.

PREPARE AND PAINT CONCRETE SURFACES

This work shall consist of preparing and painting concrete surfaces, where shown on the plans, and in conformance with these special provisions.

Materials

The paint shall be a light-stable, alkali-resistant, acrylic latex or acrylic latex copolymer emulsion, commercially manufactured for use as an exterior concrete coating. The paint shall conform to the provisions in Section 91-4.05, "Paint: Acrylic Emulsion, Exterior White and Light and Medium Tints," of the Standard Specifications.

Referee Sample

The applied architectural treatment shall match the texture, color, and pattern of the referee sample available for inspection by bidders at the Department of Transportation- (District 8) located at 464 West Fourth Street, 10th floor, San Bernardino, CA 92401-1400 in the Landscape Architecture Department.

Test Panel

A color test panel shall conform to the provisions in "Architectural Surface (Textured Concrete)" text panel of these special provisions.

The test panel approved by the Engineer shall be used as the standard for comparison in determining acceptability of architectural texture and painting for concrete surfaces.

The Contractor shall submit to the Engineer, not less than 7 days before initial application of the concrete coating to the test panel, a copy of the manufacturer's recommendations and written application instructions.

Surface Preparation

New concrete surfaces to be painted shall be at least 28 days old before painting.

Concrete surfaces to be painted shall be prepared in conformance with the requirements of SSPC-SP 13/NACE No. 6, "Surface Preparation of Concrete," of the "SSPC: The Society of Protective Coatings." After concrete surface preparation is complete, the Contractor shall clean all concrete surfaces to be painted by pressure rinsing as defined in Section 59-1.03, "Application," of the Standard Specifications.

Painting Concrete

The coating shall be applied per the manufacturer's recommendations and in conformance with the requirements of SSPC-PA 7, "Applying Thin Film Coatings to Concrete," of the "SSPC: The Society of Protective Coatings."

Any damaged areas shall be repaired in the same manner as the original surface preparation and paint application.
Measurement and Payment

The contract price paid per square foot for prepare and paint concrete shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in preparing of and applying paint to concrete surfaces, complete in place, including construction of test panels and repairing damaged areas, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

Full compensation for preparing and painting concrete shall be considered as included in the contract price paid per square foot for Architectural Surface (Textured Concrete) and no separate payment will be made therefor.

10-1.96 PREPARE AND STAIN CONCRETE

This work shall consist of preparing and staining concrete surfaces where shown on the plans and in conformance with these special provisions.

Concrete stain shall be self priming water-borne opaque acrylic emulsion. Stain shall be commercially blended and manufactured for use on exterior vertical concrete surfaces. The completed architectural texture and stained concrete surfaces shall closely resemble the texture and color, of the referee sample located at the Department of Transportation- (District 8) located at 464 West Fourth Street, 10th floor, San Bernardino, CA 92401-1400 in the Landscape Architecture Department.

A color test panel shall conform to the provisions in "Architectural Surface (Textured Concrete)" text panel of these special provisions.

The test panel approved by the Engineer shall be used as the standard of comparison in determining acceptability of architectural texture and staining for concrete surfaces.

The Contractor shall submit a copy of the stain manufacturer's recommendations and written application instructions to the Engineer not less than 7 days before applying concrete stain to test panels.

Immediately before commencing work, the Contractor shall test concrete surfaces to be stained for acceptance of stain in conformance with the manufacturer's recommendations. Areas that resist accepting stain shall be cleaned as approved by the Engineer.

The Contractor shall apply the concrete stain in conformance with the manufacturer's recommendations and these special provisions. The stain shall be applied uniformly, working to avoid excessive rundown. The stain shall be worked into the concrete surface in circular motions with a nylon-bristled brush. Drips, puddles, or other irregularities shall be worked into the concrete.

After the last coat of stain has dried, the Contractor shall rinse stained surfaces with water and wet scrub surfaces with a stiff bristled nylon brush until the rinse water runs clear.

The Contractor shall protect adjacent surfaces during concrete staining operations.

Prepare and stain concrete will be measured by the square foot.

Prepare and stain concrete shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in preparing of and applying stain to concrete surfaces, complete in place, including construction of test panels, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.97 BALLAST

PART 1 - GENERAL

1.0 **Description.** This work consists of furnishing and placing ballast at specified locations shown on plans and to the lines provided by the Engineer.

PART 2 - PRODUCTS

2.0 **MATERIALS** The materials shall meet the following specifications:

2.01 **MATERIAL GRADING REQUIREMENTS**

A. Ballast gradation shall conform to AREMA Volume 1, Chapter 1, Section 2.4.4, Table 1-2-2, Standard No. 4A ballast unless otherwise noted.
1. Gradation test shall be determined in accordance to ASTM C136, utilizing square opening sieves conforming to ASTM E11.

 a. The percentage passing each sieve shall fall within the following limits:

<table>
<thead>
<tr>
<th>SIEVE SIZE</th>
<th>SIEVE OPENING</th>
<th>PERCENT PASSING BY WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 1/2 IN</td>
<td>2.50 IN</td>
<td>100</td>
</tr>
<tr>
<td>2.0 IN</td>
<td>2.0 IN</td>
<td>90-100</td>
</tr>
<tr>
<td>1 1/2 IN</td>
<td>1.50 IN</td>
<td>60-90</td>
</tr>
<tr>
<td>1.0 IN</td>
<td>1.0 IN</td>
<td>10-35</td>
</tr>
<tr>
<td>3/4 IN</td>
<td>0.75 IN</td>
<td>0-10</td>
</tr>
<tr>
<td>1/2 IN</td>
<td>0.50 IN</td>
<td>-</td>
</tr>
<tr>
<td>3/8 IN</td>
<td>0.375 IN</td>
<td>0-3</td>
</tr>
<tr>
<td>No. 4</td>
<td>0.187 IN</td>
<td>-</td>
</tr>
</tbody>
</table>

2.02 MATERIAL QUALITY REQUIREMENTS

 A. Ballast shall consist of crushed stone which is comprised of angular fragments resulting from crushing, by mechanical means, the following types of rocks quarried from undisturbed, consolidated deposits:

 1. Granite and similar, phanero-crystalline igneous rock, extrusive igneous rock, or massive metamorphic quartzite or similar rock.
 2. No crushed limestone, dolomites, or gravels shall be allowed.
 3. Furnish prepared ballast that is hard, strong, angular, durable particles of crushed rock containing no carbonates of slag and free from injurious amounts of deleterious substances and conforming to the following requirements of these Specifications.

PART 3 - EXECUTION

3.0 CONSTRUCTION METHODS

 1. Ballast shall only be installed over sub-ballast, which has been prepared in accordance with Section 2.5 Production and Handling in Chapter 1, Volume 1 of AREMA and approved by the Engineer.
 2. Place base ballast in lifts not more than 6 IN in thickness before compaction.

 a. Layers shall extend beyond the edge of the ties as shown on the Contract Drawings before compaction.
 b. Compact ballast thoroughly to form a stable section able to support the subsequent layers and loads.

 3. Compaction of base ballast shall be by means of vibratory compaction equipment specified in Division 1.

 a. Each lift of ballast within the initial layer shall be uniformly spread and compacted with not less than four passes of either a self-propelled, pneumatic-tired roller or vibratory compactor.
 b. Ballast surface that exhibits ruts or crowns is not acceptable and shall be re-graded.

PART 4

4.1 MEASUREMENT AND PAYMENT

 Furnishing and placement of ballast shall be measured in cubic yards within the neat lines of the typical sections, line, grades and slopes established.

 The contract price per cubic yard for railroad ballast shall include full compensation for furnishing unloading, hauling, compacting, distributing, testing, all labor, materials, tools, equipment, and incidental and for doing all the work involved in placing the ballast, complete in place, as shown on the plans, as specified in these special provisions, and as directed by the Engineer.
10-1.98 REINFORCED CONCRETE PIPE

Reinforced concrete pipe shall conform to the provisions in Section 65, "Reinforced Concrete Pipe," of the Standard Specifications and these special provisions.

GENERAL

Where embankment will not be placed over the top of the pipe, a relative compaction of not less than 85 percent shall be required below the pipe spring line for pipe installed using Method 1 backfill in trench, as shown on Standard Plan A62D. Where the pipe is to be placed under the traveled way, a relative compaction of not less than 90 percent shall be required unless the minimum distance between the top of the pipe and the pavement surface is the greater of 4 feet or one half of the outside diameter of the pipe.

Except as otherwise designated by classification on the plans or in the specifications, joints for culvert and drainage pipes shall conform to the plans or specifications for standard joints.

Timber bulkheads shall be constructed and placed across the ends of unconnected reinforced concrete pipe as shown on the plans. Wood for timber bulkheads shall be construction heart grade redwood at least 1 inch thick.

MATERIALS

The concrete for reinforced concrete pipe shall contain not less than 470 pounds of cementitious material per cubic yard and have a water–cementitious material ratio that does not exceed 0.40 by weight. Supplementary cementitious material is optional. Reinforcement shall have a minimum cover of 1 inch except that for pipe with a nominal diameter of 18 inches or less the minimum cover shall be 3/4 inch.

Special reinforced concrete pipe, having concrete cover over the steel reinforcement greater than the cover specified in AASHTO Designation: M 170, shall conform to the provisions in Section 65-1.02, "Materials," and Section 65-1.02A, "Circular Reinforced Concrete Pipe," of the Standard Specifications, except the width of crack produced by the D-load test specified in AASHTO Designation: M 170 shall be the width determined by the following formula:

\[
b = \frac{t - \frac{3}{8}d}{t - \frac{3}{8}d - C} \times 0.01 \text{ inch}
\]

Where:
- \(b\) = Width of crack to be produced in lieu of the 0.01-inch crack specified in AASHTO Designation: M 170
- \(t\) = Wall thickness of pipe, inches
- \(d\) = Effective depth of the section to be tested, feet
- \(C\) = Concrete cover over steel reinforcement in excess of cover specified in AASHTO Designation: M 170

Reinforced concrete pipe that is to be hydrostatically tested shall be strength tested by the 3-edge bearing method to a maximum D-load of 10 percent greater than the 0.01-inch cracking D-load specified in AASHTO Designation: M 170 or to the actual D-load required to produce a 0.01-inch crack, whichever is the lesser.

Special oval shaped reinforced concrete pipe, having concrete cover over the steel reinforcement greater than the cover specified in AASHTO Designation: M 207, shall conform to the provisions in Section 65-1.02, "Materials," and Section 65-1.02B, "Oval Shaped Reinforced Concrete Pipe," of the Standard Specifications, except the width of crack produced by the D-load test specified in AASHTO Designation: M 207 shall be the width determined by the following formula:

\[
b = \frac{t - \frac{3}{8}d}{t - \frac{3}{8}d - C} \times 0.01 \text{ inch}
\]

Where:
- \(b\) = Width of crack to be produced in lieu of the 0.01-inch crack specified in AASHTO Designation: M 207
- \(t\) = Wall thickness of pipe, inches
- \(d\) = Effective depth of the section to be tested, feet
- \(C\) = Concrete cover over steel reinforcement in excess of cover specified in AASHTO Designation: M 207
Oval shaped reinforced concrete pipe that is to be hydrostatically tested shall be strength tested by the 3-edge bearing method to a maximum D-load of 10 percent greater than the 0.01-inch cracking D-load specified in AASHTO Designation: M 207 or to the actual D-load required to produce a 0.01-inch crack, whichever is the lesser.

MEASUREMENT AND PAYMENT

Compensation for constructing and placing timber bulkheads shall be considered as included in the contract price paid per linear foot for the reinforced concrete pipe involved and no separate payment will be made therefor. The Department does not pay any additional cost for use of optional supplementary cementitious material. The Department does not pay any additional cost for excess concrete cover over steel reinforcement.

10-1.99 CORRUGATED METAL PIPE

Corrugated steel pipe culverts shall conform to the provisions in Section 66, "Corrugated Metal Pipe," of the Standard Specifications and these special provisions.

Attention is directed to "Earthwork" of these special provisions regarding structure backfill for pipe culverts. Asphaltic mastic coating or polymeric sheet coating substituted for bituminous coating shall be placed on the outside and inside surfaces of the pipe.

10-1.100 SLOTTED CORRUGATED STEEL PIPE

Slotted corrugated steel pipe must comply with Section 66-3.09, "Slotted Pipe," of the Standard Specifications and these special provisions.

MATERIALS

Concrete Backfill

Where plans show cement treated structure backfill use minor concrete for backfill or Class 3 concrete conforming to the provisions of Section 90, "Portland Cement Concrete," of the Standard Specifications, except that minor concrete shall contain not less than 525 pounds of cementitious material per cubic yard.

CONSTRUCTION

MEASUREMENT AND PAYMENT

The length of slotted corrugated steel pipe to be paid will be the slope length measured along the centerline of the pipe as designated by the Engineer. Slotted corrugated steel pipe cut to fit a structure will be the length of pipe necessary to be placed before cutting, measured in 2-foot increments. Slotted corrugated steel pipe placed in excess of the length designated will not be paid for.

The contract price paid per linear foot for the different sizes of slotted corrugated steel pipe includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all of the work involved in installing slotted corrugated steel pipe, complete in place, including structure excavation and cement treated or concrete backfill and connecting slotted corrugated steel pipe to new or existing facilities, including concrete collars, reinforcement, or other connecting devices, specified in the Standard Specifications and these special provisions, as shown on the plans, and as directed by the Engineer.

Timber bulkheads shall be constructed and placed across the ends of unconnected corrugated metal pipe as shown on the plans. Wood for timber bulkheads shall be construction heart grade redwood at least one inch thick. Full compensation for constructing and placing timber bulkheads shall be considered as included in the contract price paid per linear foot for the size of corrugated metal pipe involved and no separate payment will be made therefor.

Pipe reducers will be measured and paid for by the linear foot as the corrugated metal pipe of the larger diameter connected to the reducer.

10-1.101 OVERSIDE DRAIN

Steel entrance tapers, slip joints, metal pipe downdrain anchor assemblies, and steel pipe downdrains shall conform to the provisions in Section 69, "Overside Drains," of the Standard Specifications and these special provisions.

Steel entrance tapers and pipe downdrains shall be fabricated from zinc-coated steel sheet.

Hot mix asphalt overside drains shall conform to the provisions in Section 69, "Overside Drains," of the Standard Specifications.
10-1.102 MISCELLANEOUS FACILITIES
Alternative flared end sections, corrugated steel pipe riser, manhole shaft pipe reducer, and precast concrete pipe manhole, shall conform to the provisions in Section 70, "Miscellaneous Facilities," of the Standard Specifications and these special provisions.

10-1.103 DRAINAGE INLET MARKER
GENERAL

Summary
This work includes installing drainage inlet markers. Use only the type of drainage inlet marker shown on the project plans. If the project plans do not show a specific type, choose one type from the following list:

- Stamped concrete

Submittals
If you are using a prefabricated drainage inlet marker such as thermoplastic, metal medallion, or plastic medallion, submit a sample of marker at least 5 business days before installation.
If you are using a concrete stamp for the drainage inlet marker, submit a sample of the stamp at least 5 business days before concrete activities start.
Submit a Certificate of Compliance as specified in Section 6-1.07, "Certificates of Compliance" of the Standard Specifications for prefabricated drainage inlet marker.

MATERIALS
Thermoplastic drainage inlet marker must:
1. Be free of lead and chromium
2. Comply with the following:

<table>
<thead>
<tr>
<th>Property</th>
<th>Specifications</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness, inches</td>
<td>Measured</td>
<td>0.080-0.160</td>
</tr>
<tr>
<td>Legend color (non-reflective)</td>
<td>Observed</td>
<td>Blue or Green</td>
</tr>
<tr>
<td>Background color (non-reflective)</td>
<td>AASHTO M 249</td>
<td>White</td>
</tr>
<tr>
<td>Skid Resistance</td>
<td>ASTM E 303</td>
<td>60 BPN</td>
</tr>
</tbody>
</table>

Metal drainage inlet marker must:
1. Be commercial grade stainless steel, aluminum, brass, or bronze
2. Be stamped from sheet metal or cast
3. Comply with the following:

<table>
<thead>
<tr>
<th>Property</th>
<th>Specifications</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness of metal, inches</td>
<td>Measured</td>
<td>0.055-0.138</td>
</tr>
<tr>
<td>Height of marker, inches</td>
<td>Measured</td>
<td>0.055-0.138</td>
</tr>
<tr>
<td>Skid Resistance</td>
<td>ASTM E 303</td>
<td>60 BPN</td>
</tr>
</tbody>
</table>

4. If metal marker is colored, it must comply with the following:

<table>
<thead>
<tr>
<th>Property</th>
<th>Specifications</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legend color (non-reflective)</td>
<td>Observed</td>
<td>Blue or Green</td>
</tr>
<tr>
<td>Background color (non-reflective)</td>
<td>Observed</td>
<td>White or bare metal</td>
</tr>
</tbody>
</table>

Plastic drainage inlet marker must:
1. Contain ultraviolet inhibitors
2. Comply with the following:
<table>
<thead>
<tr>
<th>Property</th>
<th>Specifications</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness, inches</td>
<td>Measured</td>
<td>0.025-0.060</td>
</tr>
<tr>
<td>Thickness (with dome), inches</td>
<td>Measured</td>
<td>0.055-0.120</td>
</tr>
<tr>
<td>Legend color (non-reflective)</td>
<td>Observed</td>
<td>Blue or Green</td>
</tr>
<tr>
<td>Background color (non-reflective)</td>
<td>Observed</td>
<td>White</td>
</tr>
<tr>
<td>Weathering Resistance</td>
<td>ASTM D1435</td>
<td>1 year without yellowing, fogging, or pitting</td>
</tr>
</tbody>
</table>

CONSTRUCTION
Install prefabricated drainage inlet markers by:

1. Mechanically cleaning and preparing the surface
2. Attaching the prefabricated drainage inlet markers to the surface with adhesives, fasteners, or heat as recommended by the manufacturer

Install stamped concrete drainage inlet markers by:

1. Imprinting uncured concrete with an approved drainage inlet marker concrete stamp
2. Producing stamped concrete surfaces that are free from blemishes

MEASUREMENT AND PAYMENT
Drainage inlet marker is measured as units determined from actual count in place.
The contract price paid for drainage inlet marker includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in furnishing and installing drainage inlet markers, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.104 GRATED LINE DRAIN
This work shall consist of furnishing and installing precast grated line drain, with necessary fittings, coupling systems, frames, grates and associated items as shown on the plans and in conformance with these special provisions.
The interior surface of the grated line drain, below the level of the frame and grate and associated connections, shall be smooth. Grated line drain channel sections shall be manufactured of monolithic polymer concrete with no side extensions.
Monolithic polymer concrete shall be made from a composition of aggregate and polyester resin or vinylester resin and shall have the following properties when tested as follows:

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>ASTM TEST METHOD</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Strength, psi</td>
<td>C 307</td>
<td>1,450 min.</td>
</tr>
<tr>
<td>Compressive Strength, psi</td>
<td>C 579</td>
<td>11,600 min.</td>
</tr>
<tr>
<td>Bending Strength, psi</td>
<td>C 580</td>
<td>2,900 min.</td>
</tr>
<tr>
<td>Moisture Absorption, %</td>
<td>C 140</td>
<td>0.5 max.</td>
</tr>
<tr>
<td>Chemical Resistance</td>
<td>C 267</td>
<td>Pass</td>
</tr>
<tr>
<td>Freeze/Thaw, number of cycles w/o weight loss</td>
<td>C 666</td>
<td>1,600 min.</td>
</tr>
</tbody>
</table>

The manufacturer of the grated line drain shall furnish the Engineer a Certificate of Compliance in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications.
Grated line drain frames and grates shall be manufactured of ductile iron conforming to the provisions in Section 75-1.02, "Miscellaneous Iron and Steel," of the Standard Specifications. The frames and grates need not be galvanized or coated with asphalt paint. Bolts, nuts, frame anchors, and other connecting hardware shall conform to the provisions in Section 75-1.02, "Miscellaneous Iron and Steel," of the Standard Specifications.
Frames and grates, when installed in conformance with the manufacturer's recommendations and these special provisions, shall be classified as heavy duty 25,000 proof load when tested in accordance with Commercial Item Description A-A-60005 for "Frames, Covers, Gratings, Steps, Manhole, Sump and Catch Basin." Frames and grates shall be matchmarked in pairs before delivery to the work and grates shall fit into the frames without rocking.
Frames shall be secured to the surrounding concrete backfill with steel anchoring rods as shown on the plans. Other methods may be used to secure the frame to the concrete backfill or grated line drain wall provided that a minimum pullout resistance of 685 pounds per foot of length of grated line drain frame is maintained.

Grates and frames shall be one piece unless shown on the plans to be removable. Removable grates shall be held in place by locking devices that are tamper resistant. Locking devices shall not constrict the waterway area of the grated line drain and shall be fully replaceable. Removable grates shall provide a minimum repetitive pullout resistance of 340 pounds per foot of length after completion of 1,000 hours of salt spray testing in conformance with the requirements in ASTM Designation: B 117. When a combination of one piece frame and grate and removable grates are used, the locations of the removable grates shall be as shown on the plans.

Except for grates installed within designated pedestrian paths of travel, grates shall accept inflow of runoff through openings. The openings shall consist of a minimum of 60 percent of the total top surface area of the grate, with individual openings or slots having a dimension not greater than 2 inches measured in the direction of the grated line drain flow line. Grates installed within designated pedestrian paths of travel shall be certified as conforming to the requirements of the "Americans with Disabilities Act."

Grated line drains shall be installed in trenches excavated to the lines and grades established by the Engineer. The bottom of the trench shall be graded and prepared to provide a firm and uniform bearing throughout the entire length of the grated line drain.

Grated line drains shall be installed and jointed in conformance with the manufacturer's recommendations. Grated line drains shall be installed to the lines and grades with sections closely jointed and secured to ensure that no separation of the line drains occurs during backfilling.

The frame or grate of the grated line drain shall not extend above the level of the surrounding concrete backfill. Grated line drains shall be connected to new or existing drainage facilities as shown on the plans. Excavation and backfill shall conform to the provisions in Section 19-3, "Structure Excavation and Backfill," of the Standard Specifications.

Backfill for the grated line drains shall be either minor concrete or Class 3 concrete conforming to the provisions in Section 90, "Portland Cement Concrete," of the Standard Specifications. Minor concrete shall contain not less than 506 pounds of cementitious material per cubic yard.

Concrete backfill shall be placed in the trench as shown on the plans. Concrete backfill shall be placed against undisturbed material at the sides and bottom of the trench and in a manner that will prevent floating or shifting of the grated line drain and voids in, or segregation of, the concrete. Foreign material which falls into the trench, before or during placement of the concrete, shall be immediately removed. Where necessary, earth plugs shall be constructed and compacted at the ends of the planned concrete backfill to contain the concrete within the trench.

Concrete backfill shall be finished flush with the adjacent surfacing. The surface of the concrete shall be textured with a broom or burlap drag to produce a durable skid-resistant surface.

The length the grated line drain to be paid for will be the length measured by the linear foot along the pavement surface as designated by the Engineer. No payment will be made for grated line drain placed in excess of the designated length.

The contract price paid per linear foot for grated line drain shall include full compensation for furnishing all labor, materials (including frames and grates), tools, equipment, and incidentals, and for doing all the work involved in installing grated line drains, complete in place, including excavation and backfill, connecting grated line drains to new or existing facilities, concrete collars, reinforcement, and other connecting devices, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.105 WELDED STEEL PIPE CASING (BRIDGE)

Welded steel pipe casings through bridges and under approach slabs shall be of the size shown and shall conform to the provisions in Section 70, "Miscellaneous Facilities," of the Standard Specifications and these special provisions.

Unless otherwise shown on the project plans, casings shall be installed at each abutment, and casings shall be extended to the greater of: (1) 5 feet beyond the approach slab, (2) 5 feet beyond the end of the adjacent wingwall, or (3) 20 feet beyond the abutment.

WORKING DRAWINGS

Working drawings for temporary support of casing pipe at the abutments shall be submitted for approval in conformance with the provisions in Section 5-1.02, "Plans and Working Drawings" of the Standard Specifications.
MATERIALS

Casing pipe
Casing pipe shall be welded steel pipe conforming to the provisions in Section 70-1.02B, "Welded Steel Pipe," of the Standard Specifications, except that the pipe shall be treated in accordance with the following requirements, prior to shipping. Exterior surfaces of welded steel pipe shall be cleaned and coated in conformance with the requirements in ANSI/AWWA C213 or at the option of the Contractor, cleaned, primed, and coated in accordance with specifications of ANSI/AWWA C214.

Pipe wrapping tape
Wrapping tapes for pipe in contact with the ground shall be a pressure sensitive polyvinyl chloride or polyethylene tape having thickness of 50 mils, minimum.

Epoxy adhesive
Epoxy adhesive shall conform to the provisions in Section 95,"Epoxy" of the Standard Specifications and one of the following:

A. Section 95-2.01, "Binder (Adhesive), Epoxy Resin Base" for load bearing applications.
B. Section 95-2.04, "Rapid Set Epoxy Adhesive for Pavement Markers"
C. Section 95-2.05, "Standard Set Epoxy Adhesive for Pavement Markers"

CONSTRUCTION
If a blockout is provided in the bridge abutment wall for casing pipe, the space between the casing pipe and bridge abutment wall shall be filled with mortar conforming to the provisions in Section 51-1.135,"Mortar" of the Standard Specifications.

Openings for utilities through bridge superstructure concrete shall either be formed or shall consist of pipe sleeves.

Wrapping and coating pipe
Damaged coating on steel pipe casing in contact with earth shall be wrapped as follows:

A. Pipe to be wrapped shall be thoroughly cleaned and primed as recommended by the tape manufacturer.
B. Tapes shall be tightly applied with 1/2 uniform lap, free from wrinkles and voids to provide not less than a 100—mil thickness.
C. Field joints and fittings for wrapped pipe shall be covered by double wrapping 50—mil thick tape. Wrapping at joints shall extend a minimum of 6 inches over adjacent pipe coverings. Width of tape for wrapping fittings shall not exceed 2 inches. Adequate tension shall be applied so tape will conform closely to contours of joint.

Where a welded steel pipe casing passes through the abutment wall, the welded steel pipe casing shall be additionally wrapped with 2 layers of 15—pound asphalt-felt building paper, securely taped or wired in place.

MEASUREMENT AND PAYMENT
Measurement and payment for welded steel pipe casing (bridge) for each size listed in the Engineers Estimate shall conform to the provisions in Sections 70-1.04,"Measurement" and 70-1.05, "Payment" of the Standard Specifications.

Full compensation for furnishing and installing steel cover plates, mortar and building paper, and casing shall be considered as included in the contract prices paid per linear foot for the sizes of welded steel pipe casing (bridge) involved, and no additional compensation will be allowed therefor.

10-1.106 SLOPE PROTECTION
Slope protection shall be placed or constructed in conformance with the provisions in Section 72, "Slope Protection," of the Standard Specifications.
Rock slope protection fabric must be Class 8.

10-1.107 SLOPE PAVING
Slopes under the ends of bridges, where shown on the plans, shall be paved in conformance with the provisions in Section 72-6, "Slope Paving," of the Standard Specifications and these special provisions.
10-1.108 MISCELLANEOUS CONCRETE CONSTRUCTION

Minor concrete (miscellaneous construction), (channel lining) and (gutter) shall conform to the provisions in Section 73, "Concrete Curbs and Sidewalks," of the Standard Specifications and these special provisions.

Curb ramp detectable warning surface shall consist of raised truncated domes constructed or installed on curb ramps in conformance with the details shown on the plans and these special provisions. At the option of the Contractor, the detectable warning surface shall be prefabricated, cast-in-place, or stamped into the surface of the curb ramp. The color of the detectable warning surface shall be yellow conforming to Federal Standard 595B, Color No. 33538.

Prefabricated detectable warning surface shall be in conformance with the requirements established by the Department of General Services, Division of State Architect and be attached in conformance with the manufacturer's recommendations.

Cast-in-place and stamped detectable warning surfaces shall be painted in conformance with the provisions in Section 59-6, "Painting Concrete," of the Standard Specifications.

The finished surfaces of the detectable warning surface shall be free from blemishes.

Prior to constructing the cast-in-place or stamping the detectable warning surface, the Contractor shall demonstrate the ability to produce a detectable warning surface conforming to the details shown on the plans and these special provisions by constructing a 24" x 24" test panel.

The manufacturer shall provide a written 5-year warranty for prefabricated detectable warning surfaces, guaranteeing replacement when there is defect in the dome shape, color fastness, sound-on-cane acoustic quality, resilience, or attachment. The warranty period shall begin upon acceptance of the contract.

Full compensation for constructing or furnishing and installing curb ramp detectable warning surfaces shall be considered as included in the contract price paid per cubic yard for minor concrete (miscellaneous construction) and per linear foot for minor concrete (gutter) and no separate payment will be made therefor.

10-1.109 MISCELLANEOUS METAL (BRIDGE)

Miscellaneous metal (bridge) shall conform to the provisions for miscellaneous bridge metal in Section 75, "Miscellaneous Metal," of the Standard Specifications and these special provisions.

10-1.110 BRIDGE DECK DRAINAGE SYSTEM

Bridge deck drainage systems shall conform to the provisions for miscellaneous bridge metal in Section 75, "Miscellaneous Metal," of the Standard Specifications and these special provisions.

Self-tapping screws used for sleeve connections shall be hex-head stainless steel, installed in holes drilled to fit the self-tapping screws, conforming to the requirements of ASTM Designation: A 276, Type 304.

At the Contractor's option, fiberglass pipes and fittings with the same diameter and minimum bend radius as those shown on the plans may be substituted for welded steel pipe in deck drain systems.

Fiberglass pipe and fittings shall conform to the requirements in ASTM Designation: D 2996, and shall have a minimum short-term rupture strength of 30,000 psi. The adhesive type recommended by the manufacturer shall be used for joining pipe and fittings. Fiberglass pipe not enclosed in a box girder cell or encased in concrete shall be manufactured from ultraviolet-resistant resin pigmented with concrete-gray color, or be coated with a concrete-gray resin-rich exterior coating. Paint shall not be used. Fiberglass pipe treated with ultraviolet protection shall withstand a minimum of 2,500 hours of accelerated weathering when tested in conformance with the requirements in ASTM Designation: G 154. Lamps shall be UV-B (313 nm wavelength). The resting cycle shall be 4 hours of ultraviolet exposure at 140° F, and then 4 hours of condensate exposure at 120° F. After testing, the surface of the pipe shall exhibit no fiber exposure, crazing, or checking, and only a slight chalking or color change.

Support spacing for fiberglass pipe shall be the same as shown on the plans for welded steel pipe. Pipe supports shall have a width of not less than 1.5 inches.

A Certificate of Compliance for fiberglass pipe and fittings shall be furnished to the Engineer in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications. The Certificate of Compliance shall include all laboratory test results conforming to the provisions specified herein.

Couplings used to connect fiberglass pipe to steel shall be threaded or flanged. The sleeve connections shown on the plans shall not be used for fiberglass pipe.

If fiberglass pipe is substituted for welded steel pipe, the quantity of drainage piping will be computed on the basis of the dimensions and details shown on the plans, and no change in the quantities to be paid for will be made because of the use of PVC plastic pipe or fiberglass pipe.

Bridge deck drainage systems will be measured and paid for by the pound in the same manner specified for miscellaneous metal (bridge) in Section 75-1.06, "Measurement," and Section 75-1.07, "Payment," of the Standard Specifications.
10-1.111 MISCELLANEOUS METAL (RESTRAINER-CABLE TYPE)

Miscellaneous metal (restrainer-cable type) shall conform to the provisions for bridge joint restrainer units in Section 75-1.035, "Bridge Joint Restrainer Units," of the Standard Specifications and these special provisions.

New concrete adjacent to restrainers shall be placed prior to installing restrainers.

Loose dirt and dust shall be washed from existing contact surfaces of high strength bolted connections without disturbing the existing paint. Full compensation for washing loose dirt and dust from existing contact surfaces of high strength bolted connections shall be considered as included in the contract price paid for the item of work requiring the washing and no separate payment will be made therefor.

Cleaning and painting of existing contact surfaces of high strength bolted connections that contain rust, loose paint or other foreign substances, except loose dirt and dust, will be paid for as extra work as provided in Section 4-1.03D of the Standard Specifications. Damage to existing paint caused by the Contractor's operations shall be repaired by the Contractor at the Contractor's expense.

Miscellaneous metal (restrainer-cable type) will be measured and paid for by the pound as miscellaneous metal (restrainer) as specified in Sections 75-1.06, "Measurement," and 75-1.07, "Payment," of the Standard Specifications.

10-1.112 MISCELLANEOUS METAL (RESTRAINER-BAR TYPE)

Miscellaneous metal (restrainer-bar type) units, consisting of high strength bars, bearing plates, couplers, anchorage devices, and incidentals, shall conform to the details shown on the plans, the provisions in Section 75-1.035, "Bridge Joint Restrainer Units," of the Standard Specifications, and these special provisions.

Bar assemblies shall conform to the materials and sampling provisions for prestressing steel in Section 50, "Prestressing Concrete," of the Standard Specifications and the following:

A. The high strength bars shall conform to the requirements of ASTM Designation: A 722/A 722M, including all supplementary requirements.
B. All new metal surfaces of bar type restrainer units shall be cleaned and painted in conformance with the provisions in "Clean and Paint Restrainer Units (Bar Type)" of these special provisions.
C. Anchorage devices and couplers, conforming to the requirements specified herein, shall be of a type selected by the Contractor and shall include locking devices to prevent turning or loosening.
D. The anchorage device and coupler shall develop the specified minimum ultimate tensile strength of the steel bar.
E. The Contractor shall be responsible for determining the required lengths of the bar assemblies.
F. The bar assemblies shall be shipped as a complete unit including anchorage device and coupler.

Bearing plates shall conform to the requirements of ASTM Designation: A 36/A 36M.

New concrete adjacent to restrainers shall be placed prior to installing restrainers.

Elastomeric pads shall be bonded to bearing plates with adhesive conforming to the requirements in Federal Specification: MMM-A-121.

Miscellaneous metal (restrainer-bar type) will be measured and paid for by the pound in the same manner specified for miscellaneous metal (restrainer) in Sections 75-1.06, "Measurement," and 75-1.07, "Payment," of the Standard Specifications.

Full compensation for cleaning and painting of bar type restrainer units shall be considered as included in the contract price paid per pound for miscellaneous metal (restrainer-bar type) and no additional compensation will be allowed therefor.

10-1.113 CHAIN LINK FENCE

Chain link fence shall be Type CL-6 and Type CL-8 with extension arm and shall conform to the provisions in Section 80, "Fences," of the Standard Specifications and these special provisions.

Barbed wire supporting arms (extension arms) and shall extend upwards from the tops of the fence posts at an approximate angle of 45 degrees, and be fitted with clips or other suitable means for attaching 3 lines of barbed wire. The top outside wire shall be attached to the extension arm at a point approximately 12 inches above the top of the chain link fabric and 12 inches out from the fence line. The other wires shall be attached to the arm uniformly between the top of the fence and said top outside wire.

Barbed wire shall conform to the provisions in Section 80-3.01C, "Barbed Wire," of the Standard Specifications.

Barbed wire supporting arms (extension arms) shall extend upwards from the tops of the fence posts at an approximate angle of 45 degrees and shall be fitted with clips or other suitable means for attaching 3 lines of barbed
wire. The top outside wire shall be attached to the extension arm at a point approximately 12 inches above the top of the chain link fabric and 12 inches out from the fence line. The other wires shall be attached to the arm uniformly between the top of the fence and the top outside wire.

Barbed wire shall conform to the provisions in Section 80-3.01C, "Barbed Wire," of the Standard Specifications.

10-1.114 MONUMENTS

Survey monuments shall be constructed in conformance with the provisions in Section 81, "Monuments," of the Standard Specifications and these special provisions.

Concrete shall be Class 3 or minor concrete at the option of the Contractor.

The cast steel and gray cast iron frames and covers, including hardware, shall conform to the provisions in Section 55-2, "Materials," of the Standard Specifications.

10-1.115 METAL BEAM GUARD RAILING

Metal beam guard railing shall be constructed in conformance with the provisions in Section 83-1, "Railings," of the Standard Specifications and these special provisions.

Attention is directed to "Order of Work" of these special provisions.

Line posts shall be wood, steel, or plastic. Blocks shall be wood or plastic.

ALTERNATIVE IN-LINE TERMINAL SYSTEM

Alternative in-line terminal system shall be furnished and installed as shown on the plans and in conformance with these special provisions.

The allowable alternatives for an in-line terminal system shall consist of one of the following or a Department approved equal.

A. TERMINAL SYSTEM (TYPE SKT) - Terminal system (Type SKT) shall be a SKT 350 Sequential Kinking Terminal manufactured by Road Systems, Inc., located in Big Spring, Texas, and shall include items detailed for terminal system (Type SKT) shown on the plans. The SKT 350 Sequential Kinking Terminal can be obtained from the distributor, Universal Industrial Sales, P.O. Box 699, Pleasant Grove, UT 84062, telephone (801) 785-0505 or from the distributor, Gregory Highway Products, 4100 13th Street, S.W., Canton, OH 44708, telephone (330) 477-4800.

B. TERMINAL SYSTEM (TYPE ET) - Terminal system (Type ET) shall be an ET-2000 PLUS (4-tube system) extruder terminal as manufactured by Trinity Industries, Inc., and shall include items detailed for terminal system (Type ET) shown on the plans. The ET-2000 PLUS (4-tube system) extruder terminal can be obtained from the manufacturer, Trinity Industries, Inc., P.O. Box 99, 950 West 400S, Centerville, UT 84014, telephone (800) 772-7976.

C. TERMINAL SYSTEM (TYPE X-TENSION) - Terminal System (Type X-Tension) shall be a X-Tension Guard Rail End Terminal as manufactured by Barrier Systems, Inc., located in Vacaville, CA, and shall include items detailed for terminal system (Type X-Tension) in conformance with manufacturer's details and as shown on the plans. The X-Tension guard rail terminal system can be obtained from the distributor, Statewide Safety and Signs, Inc., 130 Grobric Court, Fairfield, CA 94533, telephone (800) 770-2644.

The Contractor shall provide the Engineer with a Certificate of Compliance from the manufacturer in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications. The Certificate of Compliance shall certify that the terminal systems furnished conform to the contract plans and specifications, conform to the prequalified design and material requirements, and were manufactured in conformance with the approved quality control program.

Terminal systems shall be installed in conformance with the manufacturer's installation instructions and these requirements. Each terminal system installed shall be identified by painting the type of terminal system in neat black letters and figures 2 inches high on the backside of the rail element between system posts numbers 4 and 5. Paint shall be metallic acrylic resin type spray paint. Prior to applying terminal system identification, the surface to receive terminal system identification shall be removed of all dirt, grease, oil, salt or other contaminants by washing the surface with detergent or other suitable cleaner. Rinse thoroughly with fresh water and allow to fully dry.

For terminal system (Type ET) the steel foundation tubes with soil plates attached shall be, at the Contractor's option, either driven, with or without pilot holes, or placed in drilled holes. Space around the steel foundation tubes shall be backfilled with selected earth, free of rock, placed in layers approximately 4 inches thick and each layer.
shall be moistened and thoroughly compacted. The wood terminal posts shall be inserted into the steel foundation tubes by hand and shall not be driven. Before the wood terminal posts are inserted, the inside surfaces of the steel foundation tubes to receive the wood posts shall be coated with a grease which will not melt or run at a temperature of 149°F or less. The edges of the wood terminal posts may be slightly rounded to facilitate insertion of the post into the steel foundation tubes.

For terminal system (Type SKT) the soil tubes shall be, at the Contractor's option, driven with or without pilot holes, or placed in drilled holes. Space around the steel foundation tubes shall be backfilled with selected earth, free of rock, placed in layers approximately 4 inches thick and each layer shall be moistened and thoroughly compacted. Wood posts shall be inserted into the steel foundation tubes by hand. Before the wood terminal posts are inserted, the inside surfaces of the steel foundation tubes to receive the wood posts shall be coated with a grease which will not melt or run at a temperature of 149°F or less. The edges of the wood posts may be slightly rounded to facilitate insertion of the post into the steel foundation tubes.

For terminal system (Type X-Tension), the steel bottom post and I-beam post shall be placed in drilled hole. The soil anchor and wood line posts shall be, at the Contractor's option, either driven or placed in drilled holes. Space around the wood bottom post, wood line posts and soil anchor shall be backfilled with selected earth, free of rock, placed in layers approximately 4 inches thick and each layer shall be moistened and thoroughly compacted. All blocks shall be wood.

Surplus excavated material remaining after the terminal system has been installed shall be disposed of in a uniform manner along the adjacent roadway where designated by the Engineer.

The contract unit price paid for alternative in-line terminal system shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in furnishing and installing alternative in-line terminal system, complete in place, including excavation, backfill and disposal of surplus material, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

ALTERNATIVE FLARED TERMINAL SYSTEM

Alternative flared terminal system shall be furnished and installed as shown on the plans and in conformance with these special provisions.

The allowable alternatives for a flared terminal system shall consist of one of the following or a Department approved equal.

A. TERMINAL SYSTEM (TYPE FLEAT) - Terminal system (Type FLEAT) shall be a Flared Energy Absorbing Terminal 350 manufactured by Road Systems, Inc., located in Big Spring, Texas, and shall include items detailed for terminal system (Type FLEAT) shown on the plans. The Flared Energy Absorbing Terminal 350 can be obtained from the distributor, Universal Industrial Sales, P.O. Box 699, Pleasant Grove, UT 84062, telephone (801) 785-0505 or from the distributor, Gregory Highway Products, 4100 13th Street, S.W., Canton, OH 44708, telephone (330) 477-4800.

B. TERMINAL SYSTEM (TYPE SRT) - Terminal system (Type SRT) shall be an SRT-350 Slotted Rail Terminal (8-post system) as manufactured by Trinity Industries, Inc., and shall include items detailed for terminal system (Type SRT) shown on the plans. The SRT-350 Slotted Rail Terminal (8-post system) can be obtained from the manufacturer, Trinity Industries, Inc., P.O. Box 99, 950 West 400S, Centerville, UT 84014, telephone (800) 772-7976.

C. TERMINAL SYSTEM (TYPE X-TENSION) - Terminal System (Type X-Tension) shall be a X-Tension Guard Rail End Terminal as manufactured by Barrier Systems, Inc., located in Vacaville, CA, and shall include items detailed for terminal system (Type X-Tension) in conformance with manufacturer's details and as shown on the plans. The X-Tension guard rail terminal system can be obtained from the distributor, Statewide Safety and Signs, Inc., 130 Grobric Court, Fairfield, CA 94533, telephone (800) 770-2644.

The Contractor shall provide the Engineer with a Certificate of Compliance from the manufacturer in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications. The Certificate of Compliance shall certify that the terminal systems furnished conform to the contract plans and specifications, conform to the prequalified design and material requirements, and were manufactured in conformance with the approved quality control program.

Terminal systems shall be installed in conformance with the manufacturer's installation instructions and these requirements. Each terminal system installed shall be identified by painting the type of terminal system in neat black letters and figures 2 inches high on the backside of the rail element between system posts numbers 4 and 5. Paint shall be metallic acrylic resin type spray paint. Prior to applying terminal system identification, the surface to
receive terminal system identification shall be removed of all dirt, grease, oil, salt or other contaminants by washing the surface with detergent or other suitable cleaner. Rinse thoroughly with fresh water and allow to fully dry.

For terminal system (Type SRT), the steel foundation tubes with soil plates attached shall be, at the Contractor's option, either driven, with or without pilot holes, or placed in drilled holes. Space around the steel foundation tubes shall be backfilled with selected earth, free of rock, placed in layers approximately 4 inches thick and each layer shall be moistened and thoroughly compacted. The wood terminal posts shall be inserted into the steel foundation tubes by hand and shall not be driven. Before the wood terminal posts are inserted, the inside surfaces of the steel foundation tubes to receive the wood posts shall be coated with a grease which will not melt or run at a temperature of 149°F or less. The edges of the wood terminal posts may be slightly rounded to facilitate insertion of the post into the steel foundation tubes.

For terminal system (Type FLEAT), the soil tubes shall be, at the Contractor's option, driven with or without pilot holes, or placed in drilled holes. Space around the steel foundation tubes shall be backfilled with selected earth, free of rock, placed in layers approximately 4 inches thick and each layer shall be moistened and thoroughly compacted. Wood posts shall be inserted into the steel foundation tubes by hand. Before the wood terminal posts are inserted, the inside surfaces of the steel foundation tubes to receive the wood posts shall be coated with a grease which will not melt or run at a temperature of 149°F or less. The edges of the wood posts may be slightly rounded to facilitate insertion of the post into the steel foundation tubes.

For terminal system (Type X-Tension), the steel bottom post and I-beam post shall be placed in drilled hole. The soil anchor and wood line posts shall be, at the contractor's option, either driven or placed in drilled holes. Space around the wood bottom post, wood line posts and soil anchor shall be backfilled with selected earth, free of rock, placed in layers approximately 4 inches thick and each layer shall be moistened and thoroughly compacted. All blocks shall be wood.

Surplus excavated material remaining after the terminal system has been installed shall be disposed of in a uniform manner along the adjacent roadway where designated by the Engineer.

The contract unit price paid for alternative flared terminal system shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in furnishing and installing alternative flared terminal system, complete in place, including excavation, backfill and disposal of surplus material, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.116 VEGETATION CONTROL (MINOR CONCRETE)

This work shall consist of furnishing and constructing vegetation control as specified in these special provisions, as shown on the plans and as directed by the Engineer.

MATERIALS

Minor Concrete

Concrete for vegetation control shall consist of a mixture of portland cement concrete, crumb rubber and concrete reinforcing fibers. Concrete shall conform to the provisions for minor concrete in Section 90, "Portland Cement Concrete," of the Standard Specifications and these special provisions. Components of the concrete for vegetation control shall be incorporated homogeneously at the concrete plant before delivery to the work site.

Reinforcing fibers for minor concrete shall consist of polypropylene fibers with an engineered sinusoidal contoured profile, manufactured specifically for use as concrete reinforcement. Reinforcing fiber shall consist of a blended ratio of 4 parts of coarse monofilament fibers with maximum individual fiber lengths of 2-inch ± 1/2-inch and 1 part of fine fibrillated polypropylene fibers of various lengths and thickness. Reinforcing fibers shall be of a commercial source, combined with the concrete in proportions as recommended by the manufacturer.

Grout

Grout for vegetation control shall conform to the provisions in Section 19-3.062, "Slurry Cement Backfill," of the Standard Specifications and these special provisions.

Not more than 188 pounds of cement shall be used for each cubic yard of material produced.

Aggregate for grout shall be commercial quality concrete sand.

Landscape Fabric

Landscape fabric shall be manufactured from thermally spun bonded polypropylene fabric and shall conform to the following:
Specification	Minimum Requirement
Grab Tensile Strength | 135 lbs
Grab Elongation | 70%
UV Resistance | 70% @ 150 hours
Weight | 3 ounces per square yard

Staples for landscape fabric shall be 2 inches in width, 6 inches in length and 11-gauge wire.

A copy of the manufacturer’s product sheet, together with instructions for installation, shall be furnished to the Engineer 5 business days before installation.

A Certificate of Compliance for the landscape fabric shall be furnished to the Engineer in conformance with the provisions in Section 6-1.07, “Certificates of Compliance,” of the Standard Specifications.

SITE PREPARATION

Clearing

Areas to receive vegetation control shall be cleared of trash and debris in conformance with Section 16, “Clearing and Grubbing,” of the Standard Specifications and these special provisions.

Vegetation shall be removed to the ground. Cleared trash, debris and removed vegetation shall be disposed of outside the highway right of way in conformance with Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

Earthwork

Earthwork shall conform to the provisions in Section 19, "Earthwork," of the Standard Specifications and these special provisions.

After clearing, areas to receive vegetation control shall be excavated. Where vegetation control abuts the existing surfacing, the edge of the existing surfacing shall be on a neat line or shall be cut on a neat line to a minimum depth of 0.17-foot before removing the surfacing. The area to receive vegetation control shall be excavated to maintain planned flow lines, slope gradient and contours of the project site.

After excavation, areas to receive vegetation control shall be graded to a smooth, uniform surface and compacted to a relative compaction of not less than 90 percent.

Attention is directed to "Material Containing Aerially Deposited Lead," of these special provisions regarding the handling and disposal of soil containing aerially deposited lead.

PLACEMENT

Landscape fabric shall be stapled to prevent shifting during concrete placement. Fabric shall lie flat, smooth, without bulges or wrinkles, and maintain uniform contact with the soil surface.

Grout shall be spread to completely fill voids as shown on the plans.

Minor concrete shall be struck off and compacted until a layer of mortar has been brought to the surface. Minor concrete shall receive a broom finish.

Two weakened plane joints shall be constructed in the minor concrete at each post location, perpendicular to the rail and in line with the edge of the grout. The joints shall be constructed to a minimum depth of one inch by scoring with a tool that will leave the corners rounded and ensure free movement of concrete at the joint.

The finished grade of vegetation control shall be uniform; maintaining planned flow lines, slope gradient and contours of the project site.

MEASUREMENT AND PAYMENT

Quantities of vegetation control (minor concrete) will be measured by the square yard computed from measurements of actual areas placed. Vegetation control (minor concrete) placed outside the dimensions shown on the plans will not be paid for.

The contract price paid per square yard for vegetation control (minor concrete) shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in constructing vegetation control (minor concrete), including clearing trash, debris and vegetation and excavation, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.117 PIPE HANDRAILING

Metal pipe handrailing shall conform to the provisions in Section 83-1, "Railings," of the Standard Specifications.
Resin capsule anchors shall conform to Section 75-1.03, "Miscellaneous Bridge Metal," of the Standard Specifications. Mortar for the mortar pad shown on the plans shall conform to Section 51-1.135, "Mortar," of the Standard Specifications.

Drilling and bonding threaded rods shall conform to the details shown on the plans, the provisions in Section 83-2.02D(1), "General," of the Standard Specifications, and these special provisions. Threaded rods shall conform to Section 75-1.03, "Miscellaneous Bridge Metal," of the Standard Specifications.

Full compensation for furnishing and installing resin capsule anchors, for furnishing threaded rods, base plates, and associated hardware, for constructing the mortar pad, and for drilling holes and bonding threaded rods, shall be considered as included in the contract price paid per linear foot for pipe handrailing, and no separate payment will be allowed therefor.

10-1.118 CONCRETE BARRIER

Concrete barriers shall conform to the provisions in Section 83-2, "Barriers," of the Standard Specifications and these special provisions.

If reinforcement is encountered during drilling before the specified depth is attained, the Engineer shall be notified. Unless the Engineer approves coring through the reinforcement, the hole will be rejected and the Contractor shall drill a new hole adjacent to the rejected hole to the depth shown on the plans.

10-1.119 TRANSITION RAILING (TYPE WB)

Transition railing (Type WB) shall be furnished and installed in conformance with details shown on the plans, the provisions in Section 83-2, "Barriers," of the Standard Specifications and these special provisions.

The 10-gage rail elements shall conform to the requirements of Class B, Type I thrie beam guard railing as shown in AASHTO Designation: M 180. End caps shall conform to the requirements of Class A, Type I thrie beam guard railing as shown in AASHTO Designation: M 180.

Surplus excavated material remaining after the transitional railing (Type WB) has been constructed shall be disposed of in a uniform manner along the adjacent roadway where designated by the Engineer.

The contract unit price paid for transition railing (Type WB) shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in furnishing and installing transition railing (Type WB), complete in place, including drilling holes for wood posts, driving posts, backfill, and disposal of surplus material, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.120 CRASH CUSHION (TYPE CAT)

Crash cushion (Type CAT) and crash cushion (Type CAT) backup shall be furnished and installed as shown on the plans and in conformance with these special provisions.

Crash cushion (Type CAT) shall be a CAT-350 Crash Cushion Attenuating Terminal as manufactured by Trinity Industries, Inc., and shall include all the items detailed for crash cushion (Type CAT) shown on the plans.

Crash cushion (Type CAT) backup shall consist of items detailed for crash cushion (Type CAT) backup shown on the plans and shall conform to the provisions in Section 83-1.02B, "Metal Beam Guard Railing," of the Standard Specifications.

Excluding the crash cushion (Type CAT) backup, arrangements have been made to ensure that any successful bidder can obtain the CAT-350 Crash Cushion Attenuating Terminal from the manufacturer, Trinity Industries, Inc., P.O. Box 99, 950 West 400S, Centerville, UT 84014, telephone (800) 772-7976. The price quoted by the manufacturer for the CAT-350 Crash Cushion Attenuating Terminal, FOB Centerville, Utah is $3,000.00, not including sales tax.

The above price will be firm for orders placed on or before October 1, 2012, provided delivery is accepted within 90 days after the order is placed.

The Contractor shall provide the Engineer with a Certificate of Compliance from the manufacturer in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications. The Certificate of Compliance shall certify that crash cushion (Type CAT) conforms with the contract plans and specifications, conforms to the prequalified design and material requirements, and was manufactured in conformance with the approved quality control program.

The crash cushion (Type CAT) shall be installed in conformance with the manufacturer's installation instructions and these requirements. The steel foundation tubes with soil plates attached, shall be, at the Contractor's option, either driven, with or without pilot holes, or placed in drilled holes. Space around the steel foundation tubes shall be backfilled with selected earth, free of rock, placed in layers approximately 4 inches thick and each layer shall be moistened and thoroughly compacted. Wood posts shall be inserted into the steel foundation tubes by hand. Before the wood posts are inserted, the inside surfaces of the steel foundation tubes to receive the wood posts shall
be coated with a grease which will not melt or run at a temperature of 149 °F or less. The edges of the wood posts may be slightly rounded to facilitate insertion of the post into the steel foundation tubes.

Surplus excavated material remaining after the crash cushion (Type CAT) and backup have been constructed shall be disposed of in a uniform manner along the adjacent roadway where designated by the Engineer.

Crash cushion (Type CAT) and crash cushion (Type CAT) backup will be measured as units determined from actual count in place in the completed work.

The contract unit prices paid for crash cushion (Type CAT) and for crash cushion (Type CAT) backup shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in furnishing and installing crash cushion (Type CAT) and crash cushion (Type CAT) backup, complete in place, including excavation, backfill, and disposal of surplus material, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.121 ALTERNATIVE CRASH CUSHION SYSTEM

Alternative crash cushion system shall be furnished and installed as shown on the plans and in conformance with these special provisions.

The allowable alternatives for a crash cushion system shall consist of one of the following that complies with the requirements of the National Cooperative Highway Research Program Report 350 at Test Level 3, or a Department approved equal.

(1) CRASH CUSHION SYSTEM (TYPE SCI-100GM) - Crash cushion (Type SCI-100GM) shall be manufactured by Work Area Protection Corporation, and shall include all the items detailed as shown on the manufacturer’s plans and installation instructions. The successful bidder can obtain crash cushion system SCI-100GM from the manufacturer, Work Area Protection Corporation, P. O. Box 4087, St Charles, Illinois 60174, Telephone 630-377-9100, Fax 630-377-9270.

(2) CRASH CUSHION (TYPE TAU-II) - Crash cushion (Type TAU-II) shall be manufactured by Barrier Systems Incorporated, 180 River Road, Rio Vista, California 94571, Telephone (888) 800-3691 and shall include all the items detailed for crash cushion (Type TAU-II) Model No. 30T100PBC as shown on the manufacturer's plans and installation instructions. The successful bidder can obtain crash cushion (Type TAU-II) from the distributor, Statewide Safety and Signs, 522 Lindon Lane, Nipomo, California 93444, Telephone 805-929-5070, FAX 805-929-5786.

(3) CRASH CUSHION (TYPE QUADGUARD) - Crash cushion system (TYPE QUADGUARD) shall be manufactured by Energy Absorption Systems, Inc. and shall include all items detailed as shown in the manufacturer's plans and installation instructions. The successful bidder can obtain from the following distributors the crash cushion (Type QUADGUARD) manufactured by Energy Absorption Systems, Inc., 35 East Wacker Drive, Chicago, Illinois 60601, Telephone (312) 467-6750:

The Contractor shall furnish the Engineer one copy of the manufacturer's plan and parts list for the crash cushion system to be installed.

The W-Beam connections to barrier shall conform to the provisions in Section 83 1, "Railings," of the Standard Specifications.

High strength bolts and nuts for W-Beam connections to barrier shall conform to the requirements in ASTM Designation: A 325 or A 325M and A 563 or A 563M, respectively.

The Contractor shall provide the Engineer with a Certificate of Compliance from the manufacturer in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications. The Certificate of Compliance shall certify that the crash cushion systems furnished conform to the contract plans and specifications, conform to the prequalified design and material requirements, and were manufactured in conformance with the approved quality control program.

Crash cushion systems shall be installed in conformance with the manufacturer's installation instructions.

The concrete pad, concrete backup, and concrete anchor shall conform to the provisions in Section 51, "Concrete Structures," and Section 52, "Reinforcement," of the Standard Specifications and these special provisions.
A Type P marker panel shall be attached to the front of the Quadguard system. The marker panel shall be firmly fastened to the Quadguard system with commercial quality hardware or by other methods approved by the Engineer.

Surplus excavated material remaining after the crash cushion system has been installed shall be disposed of in a uniform manner along the adjacent roadway where designated by the Engineer.

Alternative crash cushion system will be measured by the unit as determined from actual count in place in the completed work.

The contract unit price paid for alternative crash cushion system shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in furnishing and installing alternative crash cushion system, complete in place, including concrete pad and all transitions to metal beam guard railing or concrete barrier to be used with crash cushion system, excavation, backfill and disposal of surplus material, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.122 THERMOPLASTIC PAVEMENT MARKING

Thermoplastic pavement markings shall be applied in conformance with the provisions in Section 84, "Traffic Stripes and Pavement Markings," of the Standard Specifications and these special provisions.

For each batch of thermoplastic material for pavement markings, the Contractor shall submit to the Engineer:

1. Certificate of Compliance under Section 6-1.07, "Certificates of Compliance," of the Standard Specifications
2. Department's Materials Engineering and Testing Services notification letter stating that the material is approved for use
3. Material Safety Data Sheet

Thermoplastic material shall be free of lead and chromium, and shall conform to the requirements in State Specification PTH-02ALKYD.

Within 14 days of applying a thermoplastic pavement marking, the retroreflectivity of the pavement marking shall be a minimum of 250 millicandelas per square meter per lux for white, and 150 millicandelas per square meter per lux for yellow. The Contractor shall test the retroreflectivity under ASTM E 1710.

Thermoplastic pavement markings shall be free of runs, bubbles, craters, drag marks, stretch marks, and debris.

At the option of the Contractor, permanent pavement marking tape conforming to the provisions in "Prequalified and Tested Signing and Delineation Materials" of these special provisions may be placed instead of the thermoplastic pavement markings specified herein. Permanent tape, if used, shall be installed in conformance with the manufacturer's specifications.

If permanent tape is placed instead of thermoplastic pavement markings, the tape will be measured and paid for by the square foot as thermoplastic pavement marking.

10-1.123 THERMOPLASTIC TRAFFIC STRIPE (SPRAYABLE)

Sprayable thermoplastic traffic stripes (traffic lines) shall be applied in conformance with the provisions in Section 84, "Traffic Stripes and Pavement Markings," of the Standard Specifications and these special provisions.

Sprayable thermoplastic material shall be free of lead and chromium, and shall conform to the requirements in State Specification No. PTH-02SPRAY.

Within 14 days of applying a sprayable thermoplastic traffic stripe, the retroreflectivity of the traffic stripe shall be a minimum of 250 millicandelas per square meter per lux for white, and 150 millicandelas per square meter per lux for yellow. The Contractor shall test the retroreflectivity under ASTM E 1710.

At the option of the Contractor, permanent traffic striping and pavement marking tape conforming to the provisions in "Prequalified and Tested Signing and Delineation Materials" of these special provisions may be placed instead of the sprayable thermoplastic traffic stripes. Permanent tape, if used, shall be installed in conformance with the manufacturer's specifications.

Where striping joins existing striping, as shown on the plans, the Contractor shall begin and end the transition from the existing striping pattern into or from the new striping pattern a sufficient distance to ensure continuity of the striping pattern.

Sprayable thermoplastic material shall be applied to the pavement at a minimum thickness of 0.039-inch and a minimum rate of 0.13-lb/ft. The minimum application rate is based on a solid stripe of 4 inches in width.

Sprayable thermoplastic material shall be applied to the pavement at a temperature between 351° F and 401° F, unless a different temperature is recommended by the manufacturer.
Sprayable thermoplastic traffic stripes shall be free of runs, bubbles, craters, drag marks, stretch marks, and debris.

If permanent tape is placed instead of sprayable thermoplastic traffic stripes, the tape will be measured and paid for by the linear foot as thermoplastic traffic stripe (sprayable).

Sprayable thermoplastic traffic stripes will be measured by the linear foot along the line of the traffic stripes, without deductions for gaps in broken traffic stripes. A double traffic stripe, consisting of two 4-inch wide yellow stripes, will be measured as one traffic stripe.

The contract price paid per linear foot for thermoplastic traffic stripe (sprayable) shall include full compensation for furnishing all labor, materials, tools, equipment and incidentals, and for doing all the work involved in applying sprayable thermoplastic traffic stripes (regardless of the number, widths, and patterns of individual stripes involved in each traffic stripe) including establishing alignment for stripes, and layout work, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.124 PAINT TRAFFIC STRIPE AND PAVEMENT MARKING

Painted traffic stripes (traffic lines) and pavement markings shall be applied in conformance with the provisions in Section 84, "Traffic Stripes and Pavement Markings," of the Standard Specifications and these special provisions.

For each batch of paint for traffic stripes and pavement markings, the Contractor shall submit to the Engineer:

1. Certificate of Compliance under Section 6-1.07, "Certificates of Compliance," of the Standard Specifications
2. Department's Materials Engineering and Testing Services notification letter stating that the material is approved for use
3. Material Safety Data Sheet

Traffic stripe and pavement marking paint shall conform to the requirements in State Specification No. PTWB-01.

The color of the painted traffic stripes and pavement markings shall conform to the requirements in ASTM Designation: D 6628-01.

Within 14 days of applying a painted traffic stripe or painted pavement marking, the retroreflectivity of the traffic stripe or pavement marking shall be a minimum of 250 millicandelas per square meter per lux for white, and 150 millicandelas per square meter per lux for yellow. The Contractor shall test the retroreflectivity under ASTM E 1710.

At the option of the Contractor, permanent traffic striping and pavement marking tape conforming to the provisions in "Prequalified and Tested Signing and Delineation Materials" of these special provisions may be placed instead of painted traffic stripes and pavement markings. Permanent tape, if used, shall be placed in conformance with the manufacturer's specifications.

If permanent tape is placed instead of painted traffic stripes and pavement markings, the tape will be measured and paid for by the linear foot as paint traffic stripe and by the square foot as paint pavement marking of the number of coats designated in the Engineer's Estimate.

10-1.125 PAVEMENT MARKERS

Pavement markers shall be placed in conformance with the provisions in Section 85, "Pavement Markers," of the Standard Specifications and these special provisions.

Attention is directed to "Traffic Control System For Lane Closure" of these special provisions regarding the use of moving lane closures during placement of pavement markers with bituminous adhesive.

The Contractor shall furnish the Engineer certificates of compliance for the pavement markers in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications.

Retroreflective pavement markers shall be marked as abrasion resistant on the body of the markers.

SECTION 10-2 HIGHWAY PLANTING AND IRRIGATION SYSTEMS

10-2.01 GENERAL

The work performed in connection with highway planting and irrigation systems shall conform to the provisions in Section 20, "Erosion Control and Highway Planting," of the Standard Specifications and these special provisions.

When fluctuations of water pressure and water supply are encountered during normal working hours, plants shall be watered at other times, as often, and in sufficient amounts as conditions may require to keep the soil and plant roots moist during the life of the contract.
Full compensation for watering plants outside normal working hours shall be considered as included in the contract lump sum prices paid for highway planting and plant establishment work and no additional compensation will be allowed therefor.

PROGRESS INSPECTIONS

Progress inspections will be performed by the Engineer for completed highway planting and irrigation system work at designated stages during the life of the contract.

Progress inspections will not relieve the Contractor of responsibility for installation in conformance with the special provisions, plans and Standard Specifications. Work within an area shall not progress beyond each stage until the inspection has been completed, corrective work has been performed, and the work is approved, unless otherwise permitted by the Engineer.

The requirements for progress inspections will not preclude additional inspections of work by the Engineer at other times during the life of the contract.

The Contractor shall notify the Engineer, in writing, at least 4 working days prior to completion of the work for each stage of an area and shall allow a minimum of 3 working days for the inspection.

Progress inspections will be performed at the following stages of work:

A. During pressure testing of the pipelines on the supply side of control valves.
B. During testing of low voltage conductors.
C. Before planting begins and after completion of the work specified for planting in Section 20-4.03, "Preparing Planting Areas," of the Standard Specifications.
D. Before plant establishment work begins and after completion of the work specified for planting in Section 20-4.05, "Planting," of the Standard Specifications.
E. At intervals of one month during the plant establishment period.

COST BREAK-DOWN

The Contractor shall furnish the Engineer a cost break-down for the contract lump sum items of highway planting and irrigation system. Cost break-down tables shall be submitted to the Engineer for approval within 30 working days after the contract has been approved. Cost break-down tables will be approved, in writing, by the Engineer before any partial payment will be made for the applicable items of highway planting and irrigation system involved.

Attention is directed to "Time-Related Overhead" of these special provisions regarding compensation for time-related overhead.

Cost break-downs shall be completed and furnished in the format shown in the samples of the cost break-downs included in this section. Line item descriptions of work shown in the samples are the minimum to be submitted. Additional line item descriptions of work may be designated by the Contractor. If the Contractor elects to designate additional line item descriptions of work, the quantity, value and amount for those line items shall be completed in the same manner as for the unit descriptions shown in the samples. The line items and quantities given in the samples are to show the manner of preparing the cost break-downs to be furnished by the Contractor.

The Contractor shall determine the quantities required to complete the work shown on the plans. The quantities and their values shall be included in the cost break-downs submitted to the Engineer for approval. The Contractor shall be responsible for the accuracy of the quantities and values used in the cost break-downs submitted for approval.

The sum of the amounts for the line items of work listed in each cost break-down table for highway planting and for irrigation system work shall be equal to the contract lump sum price bid for Highway Planting and Irrigation System, respectively. Overhead and profit, except for time-related overhead, shall be included in each individual line item of work listed in a cost break-down table.

No adjustment in compensation will be made in the contract lump sum prices paid for highway planting and irrigation system due to differences between the quantities shown in the cost break-downs furnished by the Contractor and the quantities required to complete the work as shown on the plans and as specified in these special provisions.

Individual line item values in the approved cost break-down tables will be used to determine partial payments during the progress of the work and as the basis for calculating an adjustment in compensation for the contract lump sum items of highway planting and irrigation system due to changes in line items of work ordered by the Engineer. When the total of ordered changes to line items of work increases or decreases the lump sum price bid for either Highway Planting or Irrigation System by more than 25 percent, the adjustment in compensation for the applicable lump sum item will be determined in the same manner specified for increases and decreases in the total pay quantity of an item of work in Section 4-1.03B, "Increased or Decreased Quantities," of the Standard Specifications.
HIGHWAY PLANTING COST BREAK-DOWN

Contract No. 08-0M94U4

<table>
<thead>
<tr>
<th>UNIT DESCRIPTION</th>
<th>UNIT</th>
<th>APPROXIMATE QUANTITY</th>
<th>VALUE</th>
<th>AMOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLANT GROUP A</td>
<td>EA</td>
<td>400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROADSIDE CLEARING</td>
<td>LS</td>
<td>LUMP SUM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMMERCIAL FERTILIZER (GRANULAR)</td>
<td>LB</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOIL AMENDMENT</td>
<td>CY</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL ________________________
IRRIGATION SYSTEM COST BREAK-DOWN

Contract No. 08-0M94U4

<table>
<thead>
<tr>
<th>UNIT DESCRIPTION</th>
<th>UNIT</th>
<th>APPROXIMATE QUANTITY</th>
<th>VALUE</th>
<th>AMOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL AND NEUTRAL CONDUCTORS (ARMOR CLAD)</td>
<td>LS</td>
<td>LUMP SUM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHECK AND TEST EXISTING IRRIGATION FACILITIES</td>
<td>LS</td>
<td>LUMP SUM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REMOVE EXISTING IRRIGATION FACILITIES</td>
<td>LS</td>
<td>LUMP SUM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPRINKLER (TYPE C-2) BUBBLER</td>
<td>EA</td>
<td>400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1" PLASTIC PIPE (PR 40) (SUPPLY LINE)</td>
<td>FT</td>
<td>1809</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1/2" PLASTIC PIPE (PR 40) (SUPPLY LINE)</td>
<td>FT</td>
<td>3574</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2" PLASTIC PIPE (PR 40) (SUPPLY LINE)</td>
<td>FT</td>
<td>3551</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRRIGATION CONTROLLER ENCLOSURE CABINET</td>
<td>EA</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-SL2-4000 WEATHERMATIC SL-24 STA. CONTROLLER</td>
<td>EA</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIS-ETH-W ETHERNET INTERFACE MODULE-WEATHERMATIC-SYSTEM LINK</td>
<td>EA</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EICON MRX-24 STATION MAINTENANCE RECEIVER</td>
<td>EA</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EICON VRA PANCAKE ANTENNA IIS-CT/D8-IIS CONTROLLER FIELD ASSEMBLY-CALTRANS DISTRICT 8</td>
<td>EA</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97-ASR-SA000 AQUA-SAFE RAIN SENSOR ASSEMBLY</td>
<td>EA</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1/2" DATA INDUSTRIAL FLOW SENSOR</td>
<td>EA</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EICON MAINTENANCE REMOTE HANDHELD W/CARRYING CASE</td>
<td>EA</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2" WYE STRAINER</td>
<td>EA</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2" BALL VALVE</td>
<td>EA</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2" GATE VALVE</td>
<td>EA</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2" BACKFLOW PREVENTOR ASSEMBLY</td>
<td>EA</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2" BACKFLOW PREVENTOR ASSEMBLY ENCLOSURE</td>
<td>EA</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
UNIT DESCRIPTION | UNIT | APPROXIMATE QUANTITY | VALUE | AMOUNT |
--- | --- | --- | --- | --- |
2" ELECTRIC REMOTE CONTROL VALVE | EA | 3 | | |
2" ELECTRIC REMOTE CONTROL VALVE (MASTER) | EA | 2 | | |

TOTAL

10-2.02 EXISTING HIGHWAY PLANTING
In addition to the provisions in Section 20, "Erosion Control and Highway Planting," of the Standard Specifications, work performed in connection with existing highway planting shall conform to the provisions in "Existing Highway Facilities," of these special provisions.

MAINTAIN EXISTING PLANTED AREAS
Existing planted areas shall be maintained as directed by the Engineer. Maintaining existing planted areas will be paid for as extra work as provided in Section 4-1.03D, "Extra Work," of the Standard Specifications.

PRUNE EXISTING PLANTS
Existing plants shown on the plans to be pruned shall be pruned in conformance with the provisions in Section 20-4.055, "Pruning," of the Standard Specifications.
Pruning shall include removal of deadwood, suckers, and broken or bruised branches one inch or larger in diameter. Tree seal compounds shall not be used to cover pruning cuts.
Removed pruned materials shall be disposed of in conformance to the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications. At the Contractor's option, prunings may be reduced to chips. Chipped materials shall be spread within the highway right of way where designated by the Engineer.
The contract lump sum price paid for prune existing plants, except as otherwise provided, shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in pruning existing plants, complete in place, including removing and disposing of pruned materials, or chipping and spreading of chipped materials, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-2.03 EXISTING HIGHWAY IRRIGATION FACILITIES
The work performed in connection with the various existing highway irrigation system facilities shall conform to the provisions in "Existing Highway Facilities," of these special provisions.
Water shall be maintained in conformance with the provisions in Section 20-5.025, "Maintain Existing Water Supply," of the Standard Specifications.

CHECK AND TEST EXISTING IRRIGATION FACILITIES
Existing irrigation facilities that are to remain or to be relocated, and that are within those areas where clearing and grubbing or earthwork operations are to be performed, shall be checked for missing or damaged components and proper operation prior to performing clearing and grubbing or earthwork operations. Existing irrigation facilities outside of work areas that are affected by the construction work shall also be checked for proper operation.
A written list of existing irrigation system deficiencies shall be submitted to the Engineer within 5 working days after checking the existing facilities.
Deficiencies found during checking of the existing facilities shall be corrected as directed by the Engineer. Corrective work ordered by the Engineer will be paid for as extra work as provided in Section 4-1.03D, "Extra Work," of the Standard Specifications.

Contract No. 08-0M94U4
343
When existing irrigation facilities are checked, existing backflow preventers shall be tested for proper operation in conformance with the provisions in Section 20-5.03J, "Check and Test Backflow Preventers," of the Standard Specifications.

Existing backflow preventers shall be retested one year after the satisfactory completion of the previous test, and each year thereafter until the plant establishment period is completed. An additional test shall be provided not more than 10 days prior to acceptance of the contract.

Length of watering cycles for use of potable water from water meters for checking or testing existing irrigation facilities shall be as determined by the Engineer.

REMOVE EXISTING IRRIGATION FACILITIES

Existing irrigation facilities shall be removed, except for the existing irrigation systems irrigating all of the existing trees shall be preserved. Facilities to be removed that are more than 6 inches below finished grade, may be abandoned in place.

Immediately after disconnecting an existing irrigation facility to be removed or abandoned from an existing facility to remain, the remaining facility shall be capped or plugged, or shall be connected to a new or existing irrigation facility.

Facilities to be removed, shall be disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

10-2.04 HIGHWAY PLANTING

The work performed in connection with highway planting shall conform to the provisions in Section 20-4, "Highway Planting," of the Standard Specifications and these special provisions.

HIGHWAY PLANTING MATERIALS

Mulch

Basin mulch must conform to the provisions in "Mulch," of these special provisions.

Commercial Fertilizer (Granular)

Commercial fertilizer (granular) shall be a pelleted or granular form and shall fall within 20 percent of the following guaranteed chemical analysis:

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen</td>
<td>6</td>
</tr>
<tr>
<td>Phosphoric Acid</td>
<td>20</td>
</tr>
<tr>
<td>Water Soluble Potash</td>
<td>20</td>
</tr>
</tbody>
</table>

Commercial Fertilizer (Slow Release)

Commercial fertilizer (slow release) shall be a pelleted or granular form, shall be slow or controlled release with a nutrient release over an 8-month to 12-month period, and shall fall within the following guaranteed chemical analysis range:

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen</td>
<td>16-21</td>
</tr>
<tr>
<td>Phosphoric Acid</td>
<td>6-8</td>
</tr>
<tr>
<td>Water Soluble Potash</td>
<td>4-10</td>
</tr>
</tbody>
</table>

ROADSIDE CLEARING

Before preparing planting areas, gravel areas, decomposed granite areas, rock blanket areas, or commencing irrigation trenching operations for planting areas, trash and debris shall be removed from the entire highway right of way within the project limits as required under Construction Site Management of these special provisions.

The project area shall be cleared as specified herein:

A. Weeds shall be killed and removed within the entire highway right of way, within the project limits, except for existing planting areas to be maintained, and excluding median areas, new and existing pavement, curb, sidewalk and other surfaced areas.
After the initial roadside clearing is complete, additional roadside clearing work shall be performed as necessary to maintain the areas, as specified above, in a neat appearance until the start of the plant establishment period. This work shall include the following:

A. Trash and debris shall be removed.
B. Weed growth shall be killed before the weeds reach the seed stage of growth or exceed 6 inches in length, whichever occurs first, except for weeds in wild flower seeding areas to be mowed.

Weed Control

Weed control shall also conform to the following:

A. Stolon type weeds shall be killed with glyphosate.
B. Tumbleweeds shall be removed by hand pulling before the tumbleweeds reach a height of 6 inches.
C. Removed weeds and ground cover shall be disposed of outside the highway right of way in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

PESTICIDES

Pesticides used to control weeds shall conform to the provisions in Section 20-4.026, "Pesticides," of the Standard Specifications. Except as otherwise provided in these special provisions, pesticide use shall be limited to the following materials:

- Aminopyralid
- Diquat
- Dithiodipropionate (DTPP)
- Clopyralid MEA
- Fluazifop-P-Butyl
- Flumioxazin
- Glyphosate
- Imazapyr
- Isoxaben (Preemergent)
- Oryzalin (Preemergent)
- Oxyfluorfen (Non-odor type)
- Pendimethalin (Preemergent)
- Prodimine (Preemergent)
- Sethoxydim
- Melfluidide (Growth regulator)

A granular preemergent may be used when applied to areas that will be covered with mulch, excluding plant basins. Granular preemergent shall be limited to the following material:

- Oxadiazon

Granular preemergent shall be applied prior to the application of mulch. Mulch applications shall be completed in these areas on the same working day.

- Glyphosate shall be used to kill stolon type weeds.
- Prior to the application of preemergents, ground cover plants shall have been planted a minimum of 3 days and shall have been thoroughly watered.
- A minimum of 100 days shall elapse between applications of preemergents.
- Except for ground cover plants, preemergents shall not be applied within 18 inches of plants or within wild flower seeding areas.
- Growth regulators shall not be applied within 6 feet of trees, shrubs or vines.

If the Contractor elects to request the use of other pesticides on this project, the request shall be submitted, in writing, to the Engineer not less than 15 days prior to the intended use of the other pesticides. Except for the pesticides listed in these special provisions, no pesticides shall be used or applied without prior written approval of the Engineer.
Pesticides shall not be applied within the limits of the plant basins. Pesticides shall not be applied in a manner that allows the pesticides to come in contact with the foliage and woody parts of the plants.

PLANTING

Backfill material for plant holes must be a mixture of soil and soil amendment. The quantity of soil amendment shall be as shown on the Plant List. Thoroughly mix backfill material and uniformly distribute throughout the entire depth of the plant hole without clods and lumps.

Apply or place commercial fertilizer (granular) and at the time of planting and at the rates shown on the Plant List.

A granular preemergent must be applied to areas to be covered with mulch outside of plant basins.

Mulch placed in areas outside of plant basins shall be spread to a uniform depth.

Do not place mulch within 4 feet of the centerline of earthen drainage ditches, within 4 feet of the edge of paved ditches, and within 4 feet of the centerline of drainage flow lines.

Attention is directed to "Irrigation Systems Functional Test" of these special provisions regarding functional tests of the irrigation systems. Do not perform planting in an area until the functional test has been completed for the irrigation system serving that area.

PLANT ESTABLISHMENT WORK

The plant establishment period shall be Type 2 and shall not be less than 250 working days.

Attention is directed to "Relief From Maintenance and Responsibility" in these special provisions regarding relief from maintenance and protection.

Commercial fertilizer (slow release) shall be applied to trees, shrubs, vines and ground cover during the first week of March, June and September of each year. Commercial fertilizer shall be applied at the rates shown on the plans and shall be spread with a mechanical spreader wherever possible.

During the plant establishment period, the plants shall be watered utilizing the Remote Irrigation Control System (RICS) software program. A watering schedule shall be submitted to the Engineer for use during the plant establishment period.

Weeds within plant basins, including basin walls, shall be controlled by hand pulling.

Weeds within mulched areas and outside of plant basins shall be controlled by killing.

Weeds within mulched areas, rock blanket, decomposed granite and gravel areas shall be controlled by killing.

At the option of the Contractor, plants of a larger container size than those originally specified may be used for replacement plants during the first 125 working days of the plant establishment period.

After 125 working days of the plant establishment period have been completed, replacement of plants, except for ground cover plants, shall be 5-gallon size for one-gallon size plants; 15-gallon size for 5-gallon size plants; and other plant replacement plants shall be the same size as originally specified.

When ordered by the Engineer, one application of a preemergent pesticide conforming to the provisions in "Pesticides" of these special provisions, shall be applied between 40 working days and 50 working days prior to completion of the plant establishment period. This work will be paid for as extra work as provided in Section 4-1.03D, "Extra Work," of the Standard Specifications.

Wye strainers shall be cleaned at least 15 days prior to the completion of the plant establishment period.

The final inspection shall be performed in conformance with the provisions in Section 5-1.13, "Final Inspection," of the Standard Specifications and shall be completed a minimum of 20 working days before the estimated completion of the contract.

10-2.05 IRRIGATION SYSTEMS

Irrigation systems shall be furnished and installed in conformance with the provisions in Section 20-5, "Irrigation Systems," of the Standard Specifications, except materials containing asbestos fibers shall not be used.

Method A pressure testing shall conform to the provisions in Section 20-5.03H(1), "Method A", of the Standard Specifications, except leaks that develop in the tested portion of the system shall be located and repaired after each test period when a drop of more than 5 pounds per square inch is indicated by the pressure gage. After the leaks have been repaired, the one hour pressure test shall be repeated and additional repairs made until the drop in pressure is 5 pounds per square inch or less.

Only pipeline trenches and excavation pits for supply lines being supplied from one water service point shall be open at one time. After pressure testing is complete, trenches and pits excavated for pipe supply lines, being supplied from one water service point, shall be backfilled prior to commencing excavations for pipe supply lines being supplied from another water service point.
VALVE BOXES

Valve boxes shall conform to the provisions in Section 20-2.24, "Valve Boxes," of the Standard Specifications, except as otherwise provided herein.

Valve boxes shall be precast portland cement concrete.

Covers for concrete valve boxes shall be glass fiber reinforced plastic, plastic, concrete, cast iron or steel.

Valve boxes shall be identified on the top surface of the covers by labels containing the appropriate abbreviation for the irrigation facility contained in the valve box as shown on the plans. Valve boxes that contain remote control valves shall be identified by the appropriate letters and numbers (controller and station numbers). Labels for valve boxes shall conform to the provisions in Section 20-5.03F, "Valves and Valve Boxes," of the Standard Specifications.

Label material shall be plate plastic or polyurethane.

BALL VALVES

Ball valves shall be furnished and installed as shown on the plans and in conformance with these special provisions.

Ball valves shall be manufactured from Chlorinated Polyvinyl Chloride (CPVC) or polyvinyl chloride (PVC) and shall conform to the following:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Minimum Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-shock cold water working pressure</td>
<td></td>
</tr>
<tr>
<td>for 3/4-inch to 4-inch valves</td>
<td>235 psi</td>
</tr>
<tr>
<td>Non-shock cold water working pressure</td>
<td></td>
</tr>
<tr>
<td>for 6-inch valves</td>
<td>150 psi</td>
</tr>
<tr>
<td>Seats</td>
<td>PTFE (Teflon)</td>
</tr>
<tr>
<td>O-Ring Seals</td>
<td>EPDM or Viton</td>
</tr>
</tbody>
</table>

Ball valves shall be installed in a valve box.

GATE VALVES

Gate valves shall be as shown on the plans and in conformance with the provisions in Section 20-2.28, "Gate Valves," of the Standard Specifications and these special provisions.

Gate valves, smaller than 3 inches in size, shall be furnished with a cross-handle.

Gate valves, 3 inches and larger in size, shall be furnished with a square nut and 3 long shank keys that will operate the valve.

Gate valves, 3 inches and larger in size, shall be flanged type gate valves. Pipe flanges used to connect plastic or metal pipe to gate valves shall be plastic or metal.

Gate valves shall have a solid bronze or brass wedge.

ELECTRIC AUTOMATIC IRRIGATION COMPONENTS

Irrigation Controllers

A. Where direct burial conductors are to be connected to the terminals strip, the conductors shall be connected with the proper size open-end crimp-on wire terminals. No exposed wire shall extend beyond the crimp of the terminal and the wires shall be parallel on the terminal strip.

Attention is directed to the provisions in "Electric Service (Irrigation)" of these special provisions regarding electrical power for irrigation controllers and irrigation controller enclosure cabinets.

Electric Remote Control Valves

Electric remote control valves shall conform to the provisions in Section 20-2.23, "Control Valves," of the Standard Specifications and the following:

A. Valves shall be glass filled nylon.
B. Valves shall be straight pattern (side inlet) as shown on the plans.
Pull Boxes

Pull box installations shall conform to the provisions in Section 20-5.027I, "Conductors, Electrical Conduits and Pull Boxes," of the Standard Specifications.

Conductors

Low voltage, as used in this section "Conductors," shall mean 36 V or less and Conductors shall be a minimum no. 14 size.

Low voltage control and neutral conductors in pull boxes and valve boxes, at irrigation controller terminals, and at splices shall be marked as follows:

A. Conductor terminations and splices shall be marked with adhesive backed paper markers or adhesive cloth wrap-around markers, with clear, heat-shrinkable sleeves sealed over the markers.

Markers for the control conductors shall be identified with the appropriate number or letter designations of irrigation controllers and station numbers. Markers for neutral conductors shall be identified with the appropriate number or letter designations of the irrigation controllers.

The color of low voltage neutral and control conductor insulation, except for the striped portions, shall be homogeneous throughout the entire thickness of the insulation.

Insulation for conductors may be UL listed polyethylene conforming to UL44 test standards with a minimum insulation thickness of 41 mils for wire sizes 10AWG and smaller.

Type "C," Type "S," or Type "T" splices shall be used. Splices for low voltage control and neutral conductors shall conform to provisions in Section 86-2.09C, "Connectors and Terminals," 86-2.09D, "Splicing," and 86-2.09E, "Splice Insulation" of the Standard Specifications, except Type "S" splices shall be soldered.

REMOTE IRRIGATION CONTROL SYSTEM

The Remote Irrigation Control System (RICS) shall be manufactured by Weathermatic and shall consist of new irrigation controllers installed in the field. The irrigation controllers will communicate with the existing server located in the Department of Transportation's District 08 Office. Arrangements have been made to insure that any successful bidder can obtain the specified equipment from Aqua-flo Supply, 10 S. La Patera Lane, Unit 10, Goleta, Ca. 93117, Phone: (805) 967-2374. Prices quoted are guaranteed thru 12-30-12.

SERVER

The existing server is a Windows compatible computer where all data from the irrigation controllers are stored. The new irrigation controllers installed in the field shall communicate via the Department of Transportation's Fiber-Optic Communication System to the server.

The existing server at the Department of Transportation's District 08 Headquarters Office at 464 W. 4th St., San Bernardino, Ca. Phone (909) 383-4307.

Field Units

The field unit shall consist of an irrigation controller, with communication equipment installed in an irrigation controller enclosure cabinet. The irrigation controller enclosure cabinet shall conform to the provisions in "Irrigation Controller Enclosure Cabinet" of these special provisions.
THE WEATHERMATIC PRICES AND AUXILIARY EQUIPMENT ARE AS FOLLOWS:
IRRIGATION CONTROLLER ”24 STATION” AND AUXILIARY EQUIPMENT

<table>
<thead>
<tr>
<th>ITEM MODEL NUMBER</th>
<th>QUANTITY</th>
<th>QUOTED PRICE (EACH)</th>
<th>TOTAL PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-SL2–4000 Weathermatic SL-24 Sta. Controller</td>
<td>EA 2</td>
<td>$2,654.78</td>
<td>$5,310.00</td>
</tr>
<tr>
<td>IIS-ETH-W Ethernet Interface Module - Weathermatic - System Link</td>
<td>EA 2</td>
<td>$556.00</td>
<td>$1,112.00</td>
</tr>
<tr>
<td>EICON MRX-24 Station Maintenance Receiver</td>
<td>EA 2</td>
<td>$1,470.99</td>
<td>$2,942.00</td>
</tr>
<tr>
<td>EICON VRA PANCAKE ANTENNA</td>
<td>EA 2</td>
<td>$191.00</td>
<td>$382.00</td>
</tr>
<tr>
<td>IIS-CT/D8 - Controller Field Assembly - Caltrans District 8</td>
<td>EA 2</td>
<td>$1,495.00</td>
<td>$2,990.00</td>
</tr>
<tr>
<td>97-ASR-SA000 Aqua-Safe Rain Sensor Assembly</td>
<td>EA 2</td>
<td>$212.25</td>
<td>$425.00</td>
</tr>
<tr>
<td>EICON Maintenance Remote Handheld W/ Carrying Case</td>
<td>EA 2</td>
<td>$1,895.00</td>
<td>$3,790.00</td>
</tr>
<tr>
<td>1 1/2” Data Industrial Flow Sensor</td>
<td>EA 2</td>
<td>$465.00</td>
<td>$930.00</td>
</tr>
</tbody>
</table>

TOTAL CONTROLLER COMPONENT COST | $17,883.00

* Prices do not include sales tax.

The model number listed above will include a Weathermatic VAC Controller, Master Valve, Pump Start, Flow Sensor & Rain Sensor Modules, Ethernet Interface Module and Remote Valve Actuator Receiver.

TRAINING

Contractor shall arrange for training by the manufacturer of the field unit for Department of Transportation personnel. Contract numbers for the manufacturer of the field unit for Department of Transportation personnel are as given above. Training shall be completed 15 days before the end of the contract.

One complete set of operating manuals shall be provided to the Engineer and the material shall become the property of the State.

The State will provide space for the training.

MEASUREMENT AND PAYMENT

If at the time of installation quoted prices have changed, the State will take credit for any reduction in price, or pay the difference for any increase in price. The credit or payment will be taken on the first monthly progress payment made after the system is installed. The Contractor shall furnish the Engineer with a copy of the invoice for each item quoted.

FLOW SENSOR

Flow sensors shall be installed in a valve box as shown on the Standard Plans except that plastic pipe supply line shall be connected to the sensor in a straight pattern to a minimum length of 5 feet from the inlet and the outlet sides of each flow sensor without any fitting located within this distance except for the flow sensor mounted tee.

Flow sensor cable shall conform to SSP 20-620 “ARMOR-CLAD CONDUCTOR as specified in these Special Provisions and Standard Specifications.

ARMOR-CLAD CONDUCTORS

Armor-clad conductors shall be used in direct burial applications from pull boxes adjacent to irrigation controller to remote control valves and other irrigation facilities in conformance with the details shown on the plans and these special provisions.

Armor-clad conductors shall conform to the following:

A. Conductors shall be the proper size for the application, and shall be solid, uncoated copper with a conductor size not less than 90 percent of the AWG diameter required.
B. At the Contractor's option, conductor insulation coverings shall be either of the following:

1. Polyvinyl chloride (PVC) conforming to UL style, Type UF 60°C, 600 V. Average thickness of insulation shall be not less than 60 mils, with a minimum thickness of 54 mils, or
2. UL listed polyethylene conforming to UL44 test standards with a minimum insulation thickness of 41 mils for wire sizes 10AWG and smaller.

C. Armor shall be a minimum 0.005-inch thick by 0.50-inch wide Type 304 stainless steel tape that is helically wrapped over each conductor with a 33 percent minimum overlap.

D. Outer jacket for conductors shall be sunlight resistant PVC and shall conform to the Insulated Power Cable Engineer's Association (ICEA) S-61-402, NEMA Standard WC5, and UL Listing 1263. Nominal thickness of the outer jacket shall be 30 mils with a minimum thickness of 24 mils.

At the option of the Contractor, conductors conforming to the provisions in Section 20-2.31D, "Conductors," of the Standard Specifications may be used when the conductors are installed in an electrical conduit. Armor-clad conductors will be measured and paid for as control and neutral conductors.

IRRIGATION CONTROLLER ENCLOSURE CABINET

Irrigation controller enclosure cabinets shall be constructed and equipment installed in the cabinets in conformance with the details shown on the plans, the provisions of Section 86-3.04A, "Cabinet Construction," of the Standard Specifications, and these special provisions.

Electric service shall be installed in accordance with "Electric Service (Irrigation)" of these special provisions.

Irrigation controller enclosure cabinets shall be provided with cross ventilation, roof ventilation or a combination of both. The ventilation shall not compromise the weather resistance properties of the irrigation controller enclosure cabinets and shall be fabricated by the manufacturer.

The anchorage arrangement shall be inside the cabinet as shown on the plans. Dimensions of the cabinet shall be suitable for the equipment to be installed as shown on the plans and specified in these special provisions.

Irrigation controller enclosure cabinet dimensions for double irrigation controller shall be 60 inches (Height) x 36 inches (Width) x 12 inches (Depth).

Irrigation controller enclosure cabinets shall be fabricated of stainless steel.

Irrigation controller enclosure cabinet doors shall not be furnished with integral door locks. Irrigation controller enclosure cabinet door handles shall have provisions for padlocking in the latched position. Padlocks will be furnished by the Engineer.

Mounting panels shall be fabricated of stainless steel metal sheets with a minimum thickness of 0.157 inch. Inside of the doors shall have provisions for storage of the irrigation plans.

Solid-state automatic shut-off rain sensor units shall be installed for the irrigation controller enclosure cabinets in vandal resistant enclosures. Rain sensor units shall automatically interrupt the master remote control valves when approximately 1/8 inch of rain has fallen. The irrigation system shall automatically be enabled again when the accumulated rainfall evaporates from the rain sensor unit collection cup. Rain sensor units shall be rated 24 V (ac) to 30 V (ac). Static charge protection shall be included to protect against lightning damage.

Equipment, except for field wiring, shall be installed in the cabinet in a shop by the equipment manufacturer's representative or distributor prior to field installation.

IRRIGATION SYSTEMS FUNCTIONAL TEST

Functional tests for the remote irrigation controller system (RICS) and associated automatic irrigation systems shall conform to the provisions in Section 20-5.027J, "Testing," of the Standard Specifications and these special provisions.

Two functional tests shall be performed, one without and one with connection to the existing remote irrigation controller system server. Both tests shall consist of demonstrating to the Engineer, through one complete cycle of the irrigation controllers in the automatic mode, that the associated automatic components of the irrigation systems operate properly.

The Contractor shall notify the Engineer not less than 2 weeks prior to starting the functional tests for the remote irrigation control system.

The existing remote irrigation controller system server is located at 464 West 4th St., San Bernardino, CA 92401-1400.

Associated automatic components for both tests shall include, but not limited to, new and existing remote control valve actuator systems, booster pump systems, irrigation controllers, remote control valves, conductors, flow sensors, and rain sensors. Associated automatic components for the second test shall include, but not be limited to,
new and existing irrigation software programs, and the fiber optic communications between the irrigation controllers (field units) and the existing server, and flow alarms for high, low, zero, and maximum mainline flows.

The first test shall be performed prior to planting the plants and shall consist of testing the irrigation controllers and associated automatic irrigation systems without connection to the existing remote irrigation controller system server. Upon completion of a satisfactory functional test, and correction of the deficiencies, the plants to be planted in the areas watered by the irrigation system may be planted, provided the planting areas have been prepared as specified in these special provisions.

The second test shall be performed prior to the start of plant establishment and shall consist of testing the irrigation controllers (field units) and associated automatic irrigation systems with connection to the remote irrigation controller system server. As part of the second test, an existing remote irrigation controller system watering schedule shall be submitted for each irrigation controller (field unit) to the Engineer. The Engineer will enter the watering schedule into the irrigation software program, and a computer printout will be made available to the Contractor for verification. If the Engineer determines the submitted watering schedule is unacceptable, a revised watering schedule shall be submitted to the Engineer for approval within 5 working days. Also as part of the second test, the Contractor shall demonstrate to the Engineer that the existing remote irrigation controller system server detects and reports the high, low, zero, and maximum mainline flow alarms. Upon completion of a satisfactory test, including correction of deficiencies, the plant establishment period may begin, provided planting work as specified in these special provisions has been completed except for plant establishment work.

If existing and new automatic components of the irrigation systems, including existing remote irrigation controller system server components, fail a functional test, the components shall be repaired. Repairs shall be at the Contractor's expense, except for repairs to the existing server (personal computer, printer, mouse, keyboard, cables, and software) which will be paid for as extra work as provided in Section 4-1.03D of the Standard Specifications. Testing shall be repeated until satisfactory operation is obtained.

Repair or replacement of existing irrigation facilities due to unsatisfactory performance shall conform to the provisions in Section 20-5.025, "Maintain Existing Water Supply," of the Standard Specifications and "Existing Highway Irrigation Facilities" of these special provisions.

PIPE

Steel Pipe
Galvanized steel pipe supply lines installed between water meters and backflow preventer assemblies must be installed not less than 18 inches below finished grade, measured to the top of the pipe.

Plastic Pipe
Plastic pipe supply lines must be polyvinyl chloride (PVC) 1120 or 1220 pressure rated pipe with the minimum pressure rating (PR) shown on the plans.

Plastic pipe supply lines must have solvent cemented type joints. Primers must be used on the solvent cemented type joints.

Fittings for plastic pipe supply lines with a pressure rating (PR) of 315 must be Schedule 80.

THRUST BLOCK
Thrust blocks shall be installed in accordance with these special provisions. Thrust blocks shall be installed on the main supply line at all changes in direction and terminus run.

WATER METER (in Cities of Riverside, Grand Terrace and San Bernardino)
2" water meter (Type 1A) installation in the City of Riverside, 2" water meter (Type 1B) installation in the City of Grand Terrace, and 2" water meter (Type 1C) installation in the City of San Bernardino for the irrigation systems will be furnished and installed by the serving utility at the locations shown on the plans.

The City of Riverside Water department has established a fee of $16,700 for furnishing and installing a 2" water meter (Type 1A). If, at the time of installation, this fee has been changed, the State will take a credit for the reduction in the fee, or the State will pay the difference for the increase in the fee. The credit or payment will be taken or paid on the first monthly progress payment made after the meter is installed. The Contractor shall furnish the Engineer with a copy of the invoice for the installation fee.

The City of Grand Terrace Water Department has established a fee of $21,300 for furnishing and installing a 2" water meter. If, at the time of installation, this fee has been changed, the State will take a credit for the reduction in the fee, or the State will pay the difference for the increase in fee. The credit or payment will be taken or paid on the first monthly progress payment made after the meter is installed. The Contractor shall furnish the Engineer with a copy of the invoice for the installation fee.
The City of San Bernardino Water Department has established a fee of $10,000 for furnishing and installing a 2" water meter. If, at the time of installation, this fee has been changed, the State will take a credit for the reduction in the fee, or the State will pay the difference for the increase in fee. The credit or payment will be taken or paid on the first monthly progress payment made after the meter is installed. The Contractor shall furnish the Engineer with a copy of the invoice for the installation fee.

Attention is directed to Section 20-4.06, "Watering," of the Standard Specifications. The Contractor shall make the arrangements and pay for furnishing and applying water until the water meters have been installed by the serving utility.

The quantity of water meters will be measured by the unit as determined from actual count in place.

The contract unit price paid for 2" water meter (Type 1A) installation in the City of Riverside shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in furnishing and installing water meters, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

The contract unit price paid for 2" water meter (Type 1B) installation in the City of Grand Terrace shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in furnishing and installing water meters, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

The contract unit price paid for 2" water meter (Type 1C) installation in the City of San Bernardino shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in furnishing and installing water meters, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

WATER METER (in City of Colton)

Water meter (Type 2A) installation in the City of Colton for the irrigation systems will be furnished and installed by the contractor at the locations shown on the plans.

The Contractor shall make the arrangements and pay the costs and fees required by the City of Colton.

The City of Colton Water department has established a fee of $10,000 for a 2" water meter (Type 2A). If, at the time of installation, this fee has been changed, the State will take a credit for the reduction in the fee, or the State will pay the difference for the increase in the fee. The credit or payment will be taken or paid on the first monthly progress payment made after the meter is installed. The Contractor shall furnish the Engineer with a copy of the invoice for the fee.

Water meters shall be installed in accordance with the City of Colton's specifications.

Upon receipt of a written request from the Contractor, the Engineer will make arrangements with the serving utility to install the water meters. The State will pay the costs and fees charged by the serving utility for the installations.

Attention is directed to Section 20-4.06, "Watering," of the Standard Specifications. The Contractor shall make the arrangements for furnishing and applying water until the water meters have been installed by the serving utility.

The quantity of water meters will be measured by the unit as determined from actual count in place.

The contract unit price paid for 2" water meter (Type 2A) installation in the City of Colton shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in furnishing and installing water meters, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

BACKFLOW PREVENTER ASSEMBLIES

Backflow preventers shall conform to the provisions in Section 20-2.25, "Backflow Preventers," of the Standard Specifications and these special provisions.

Backflow preventers shall have current approval from the University of Southern California Foundation for Cross-Connection Control and Hydraulic Research (USC Foundation).

Before backflow preventer assembly installation, the Contractor shall provide the Engineer with the portion of the USC Foundation "List of Approved Backflow Prevention Assemblies" showing type of assembly, manufacturer's name, model number, edition of the manual under which the assembly was approved, approval date and the last renewal date.

The "List of Approved Backflow Prevention Assemblies" is available to Foundation Members. Membership information to join the USC Foundation is available at:

http://www.usc.edu/dept/fccchr/membership.html

Questions concerning the USC Foundation "List of Approved Backflow Prevention Assemblies" can be answered by calling the Foundation at toll free (866) 545-6340.
Pressure loss through the backflow preventers shall not exceed the following:

<table>
<thead>
<tr>
<th>BACKFLOW PREVENTER SIZE (Inches)</th>
<th>FLOW RATE (Gallons Per Minute)</th>
<th>PRESSURE LOSS (PSI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>80</td>
<td>12</td>
</tr>
</tbody>
</table>

Galvanized steel pipe supply lines installed between the water meters and backflow preventer assemblies shall be 3” in size.

BACKFLOW PREVENTER ASSEMBLY ENCLOSURE

Enclosures shall be fabricated of structural steel angles and flattened expanded metal and shall be installed over backflow preventer assemblies on a portland cement concrete pad as shown on the plans and in conformance with these special provisions.

- Expanded metal for sides, ends and top panels shall be fabricated from 9-gage minimum thickness, sheet steel. The flattened expanded metal openings shall be approximately 3/4-inch x 1-3/4-inch in size.
- Expanded metal panels shall be attached to the 3/16-inch thick steel angle frames by a series of welds, not less than 1/4-inch in length and spaced not more than 4-inches on center, along the edges of the enclosure.
- Lock-guard shall be made of a minimum thickness of 3/16-inch cold rolled steel.
- Padlocks will be furnished by the Engineer.
- Enclosures shall be galvanized, after fabrication, in conformance with the provisions in Section 75-1.05, "Galvanizing," of the Standard Specifications.
- Hold down bolt assemblies shall be galvanized and shall be installed when the portland cement concrete pad is still plastic. Nuts shall be hexagonal and washers shall be the lock type.
- Enclosures shall be painted by the manufacturer with one application of a commercial quality pre-treatment, vinyl wash primer and a minimum of one application of a commercial quality, exterior enamel for metal. The finish color shall be a tan to light brown closely matching Federal Standard No. 595B, Color No. 20450.
- All parts of the backflow preventer assembly enclosure, including hold down assemblies, may be constructed of stainless steel instead of standard steel materials specified above. Stainless steel enclosures shall conform to the provisions herein except galvanizing, priming and painting shall not be required. Stainless steel enclosures shall be powder coated a tan to light brown color closely matching Federal Standard 595B, Color No. 20450, by the manufacturer.
- Lock-guard for stainless steel enclosures shall be 12-gage stainless steel, Type 304.

TESTING NEW BACKFLOW PREVENTERS

New backflow preventers shall be tested for proper operation in conformance with the provisions in Section 20-5.03J, "Check and Test Backflow Preventers," of the Standard Specifications and these special provisions.

- Tests for new backflow preventers shall be satisfactorily completed after installation and before operation of the irrigation systems.
- New backflow preventers shall be retested one year after the satisfactory completion of the previous test, and each year thereafter until the plant establishment period is completed. An additional test shall be provided not more than 10 days prior to acceptance of the contract.

SPRINKLERS

Sprinklers shall conform to the type, pattern, material, and operating characteristics listed in the "Sprinkler Schedule" shown on the plans.

FINAL IRRIGATION SYSTEM CHECK

A final check of existing and new irrigation facilities shall be performed not more than 40 working days and not less than 30 working days prior to acceptance of the contract.

- The length of watering cycles using potable water measured by water meters for the final check of irrigation facilities will be determined by the Engineer.
- Remote control valves connected to existing and new irrigation controllers shall be checked for automatic performance when the controllers are in automatic mode.
- Unsatisfactory performance of irrigation facilities installed or modified by the Contractor shall be repaired and rechecked at the Contractor’s expense until satisfactory performance is obtained, as determined by the Engineer.
- Repair or replacement of existing irrigation facilities due to unsatisfactory performance shall conform to the provisions in "Existing Highway Irrigation Facilities" of these special provisions.
Nothing in this section "Final Irrigation System Check" shall relieve the Contractor of full responsibility for making good or repairing defective work or materials found before the formal written acceptance of the entire contract by the Director.

Full compensation for checking the irrigation systems prior to the acceptance of the contract shall be considered as included in the contract lump sum price paid for plant establishment work and no additional compensation will be allowed therefor.

SECTION 10-3. ELECTRICAL SYSTEMS

10-3.01 DESCRIPTION

Modify signal and lighting, modify lighting and sign illumination, modify closed circuit television system, modify changeable message sign system, modify ramp metering system, modify traffic monitoring station, modify wireless vehicle detection station, modify communication system, and maintaining existing traffic management system elements during construction shall conform to the provisions in Section 86, "Electrical Systems," of the Standard Specifications and these special provisions.

Lighting equipment is included in the following structures:

A. Colton-Loma Linda OH
B. Route 10/215 Separation
C. Santa Ana River Bridge

Communication conduit is included in the following structures:

A. Colton-Loma Linda OH
B. Santa Ana River Bridge
C. Route 10/215 Separation

10-3.02 COST BREAK-DOWN

Cost break-downs shall conform to the provisions in Section 86-1.03, "Cost Break-Down," of the Standard Specifications and these special provisions.

The Engineer shall be furnished a cost break-down for each contract lump sum item of work described in this Section 10-3.

The cost break-down shall be submitted to the Engineer for approval within 15 days after the contract has been approved. The cost break-down shall be approved, in writing, by the Engineer before any partial payment for the items of electrical work will be made.

The cost break-down shall include the following items in addition to those listed in the Standard Specifications:

A. Battery backup system's external cabinet and batteries
B. Light emitting diode signal modules
C. Ethernet switch
D. Fiber optic cable - each type
E. Splice vaults
F. Cat 5E cable
G. Ethernet extender
H. Closed circuit television assembly
J. Ethernet Fiber optic switch-various types
K. Light emitting diode pedestrian signal face modules
L. GPRS modem
M. Fiber optic conduit

10-3.03 MAINTAINING EXISTING AND TEMPORARY ELECTRICAL SYSTEMS

Traffic signal system shutdowns shall be limited to periods allowed for lane closures listed or specified in "Maintaining Traffic" of these special provisions.

10-3.04 MAINTAINING EXISTING TRAFFIC MANAGEMENT SYSTEM ELEMENTS DURING CONSTRUCTION

Traffic Management System (TMS) elements include, but are not limited to ramp metering (RM) system, communication system, traffic monitoring stations, video image vehicle detection system (VIVDS), microwave
vehicle detection system (MVDS), loop detection system, changeable message sign (CMS) system, extinguishable message sign (EMS) system, highway advisory radio (HAR) system, closed circuit television (CCTV) camera system, roadway weather information system (RWIS), visibility sensor, and fiber optic system.

Existing TMS elements, including detection systems, identified on the plans and located within the project limits shall remain in place and protected from damage. If the construction activities require existing TMS elements to be nonoperational or off line, and if temporary or portable TMS elements are not shown on the plans, the Contractor shall provide for temporary or portable TMS elements. The Contractor shall receive the Engineer's approval on the type of temporary or portable TMS elements and installation method.

Before work is performed, the Engineer, the Contractor, and the Department's Traffic Operations Electrical representatives shall jointly conduct a pre-construction operational status check of all existing TMS elements and each element's communication status with the Traffic Management Center (TMC), including existing TMS elements that are not shown on the plans and elements that may not be impacted by the Contractor's activities. The Department's Traffic Operations Electrical representatives will certify the TMS elements' location and status, and provide a copy of the certified list of the existing TMS elements within the project limits to the Contractor. The status list will include the operational, defined as having full functionality, and the nonoperational components.

The Contractor shall obtain written approval from the Engineer at least 72 hours before interrupting existing TMS elements' communication with the TMC that will result in the elements being nonoperational or off line. The Contractor shall notify the Engineer at least 72 hours before starting excavation activities.

Traffic monitoring stations and their associated communication systems, which were verified to be operational during the pre-construction operational status check, shall remain operational on freeway/highway mainline at all times, except:

1. For a duration of up to 15 days on any continuous segment of the freeway/highway longer than 3 miles
2. For a duration of up to 60 days on any continuous segment of the freeway/highway shorter than 3 miles

If the construction activities require existing detection systems to be nonoperational or off line for a longer time period or the spacing between traffic monitoring stations is more than the specified criteria above, and temporary or portable detection operations are not shown on the plans, the Contractor shall provide provisions for temporary or portable detection operations. The Contractor shall receive the Engineer's approval on the type of detection and installation before installing the temporary or portable detection.

If existing TMS elements shown on the plans or identified during the pre-construction operational status check, except traffic monitoring stations, are damaged or fail due to the Contractor's activity, where the elements are not fully functional, the Engineer shall be notified immediately. If the Contractor is notified by the Engineer that existing TMS elements have been damaged, have failed or are not fully functional due to the Contractor's activity, the damaged or failed TMS elements, excluding structure-related elements, shall be repaired or replaced, at the Contractor's expense, within 24 hours. For a structure-related element, the Contractor shall install temporary or portable TMS elements within 24 hours. For nonstructure-related, TMS elements, the Engineer may approve temporary or portable TMS elements for use during the construction activities.

If fiber optic cables are damaged due to the Contractor's activities, the Contractor shall install new fiber optic cables from an original splice point or termination to an original splice point or termination, unless otherwise authorized in writing by the Engineer. Fiber optic cable shall be spliced at the splice vaults if available. The amount of new fiber optic cable slack in splice vaults and the number of new fiber optic cable splices shall be equivalent to the amount of slack and number of splices existing before the damage or as directed by the Engineer. Fusion splicing will be required.

The Contractor shall demonstrate that repaired or replaced elements operate in a manner equal to or better than the replaced equipment or as directed by the Engineer. If the Contractor fails to perform required repairs or replacement work, as determined by the Engineer, the State may perform the repair or replacement work and the cost will be deducted from monies due to the Contractor.

A TMS element shall be considered nonoperational or off line for the duration of time that active communications with the TMC is disrupted, resulting in messages and commands not transmitted from or to the TMS element.

The Contractor shall provide provisions for replacing existing TMS elements within the project limits, including detection systems, that were not identified on the plans or during the pre-construction operational status check that became damaged due to the Contractor's activities.

If the pre-construction operational status check identified existing TMS elements, then the Contractor, the Engineer, and the Department's Traffic Operations Electrical representatives shall jointly conduct a post construction operational status check of all existing TMS elements and each element's communication status with the TMC. The Department's Traffic Operations Electrical representatives will certify the TMS elements' status and provide a copy of the certified list of the existing TMS elements within the project limits to the Contractor. The status list will
include the operational, defined as having full functionality, and the nonoperational components. TMS elements that cease to be functional between pre and post construction status checks shall be repaired at the Contractor's expense and as directed by the Engineer.

The Engineer will approve, in writing, the schedule for final replacement, the replacement methods and the replacement elements, including element types and installation methods before repair or replacement work is performed. The final TMS elements shall be new and of equal or better quality than the existing TMS elements.

PAYMENT

The contract lump sum price paid for maintaining existing traffic management system elements during construction shall include full compensation for furnishing all labor, materials, tools, equipment and incidentals, and for doing all the work involved in maintaining existing traffic management system elements as shown on the plans, specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

If no electrical work exists on the project and no TMS elements are identified within the project limits, the pre-construction operational status check will be paid for as extra work as provided in Section 4-1.03D, "Extra Work," of the Standard Specifications.

Furnishing and installing temporary or portable TMS elements that are not shown on the plans, but are required when an existing TMS element becomes nonoperational or off line due to construction activities, will be paid for as extra work as provided in Section 4-1.03D, "Extra Work," of the Standard Specifications.

Furnishing and installing temporary or portable TMS elements and replacing TMS elements that are not shown on the plans nor identified during the pre-construction operational status check and were damaged by construction activities will be paid for as extra work as provided in Section 4-1.03D, "Extra Work," of the Standard Specifications.

If the Contractor is required to submit provisions for the replacement of TMS elements that were not identified, the provisions will be paid for as extra work as provided in Section 4-1.03D, "Extra Work," of the Standard Specifications.

10-3.05 CAST-IN-DRILLED-HOLE CONCRETE PILE FOUNDATIONS

GENERAL

Summary

This work includes constructing cast-in-drilled-hole concrete pile foundations for traffic signal and lighting standards.

Comply with Section 86-2.03, "Foundations," of the Standard Specifications and "Piling" of these special provisions.

MATERIALS

Concrete must contain not less than 590 pounds of cementitious material per cubic yard.

CONSTRUCTION

For standards located in sidewalk areas, the pile foundation must be:

1. Placed to final sidewalk grade before the sidewalk is placed
2. Square for the top 4 inches

Use sleeve nuts on Type 1-A standards. The bottom of the base plate must be flush with finished grade.

PAYMENT

Payment for cast-in-drilled-hole concrete pile foundations shall conform to the provisions in Section 86-8, "Payment," of the Standard Specifications.

10-3.06 STANDARDS, STEEL PEDESTALS, AND POSTS

Standards, steel pedestals, and posts for traffic signal and lighting standards shall conform to the provisions in Section 86-2.04, "Standards, Steel Pedestals and Posts," of the Standard Specifications, "Steel Structures" of these special provisions, and the following requirements.

Steel bolts not designated on the plans as high-strength (HS) or stainless steel shall be for general applications and shall conform to the requirements in ASTM Designation: A 307.

Anchor bolts shall conform to the requirements in ASTM Designation: F 1554, Grade 36. High-strength (HS) anchor bolts shall conform to the requirements in ASTM Designation: F 1554, Grade 105.
Where the plans refer to the side tenon detail at the end of the signal mast arm, the applicable tip tenon detail may be substituted.

The sign mounting hardware shall be installed at the locations shown on the plans.

Non-illuminated street name signs shall be installed on signal mast arms using a minimum 3/4" x 0.020" round edge stainless steel strap and saddle bracket. The strap shall be wrapped at least twice around the mast arm, tightened, and secured with a 3/4" stainless strap seal. The sign panel shall be leveled and hardware securely tightened.

Handhole reinforcement rings for standards, steel pedestals, and posts shall be continuous around the handholes.

Type 1 standards shall be assembled and set with the handhole on the downstream side of the pole in relation to traffic or as shown on the plans.

10-3.07 CONDUIT

Conduit to be installed underground shall be Type 3, Schedule 80 unless otherwise specified.

The conduit in a foundation and between a foundation and the nearest pull box shall be Type 3, Schedule 80.

The conduit in the bridge structure shall be Type 1, except the conduit section that runs between the bridge and the nearest pull box shall be Type 2.

After conductors have been installed, the ends of conduits terminating in pull boxes, service equipment enclosures, and controller cabinets shall be sealed with an approved type of sealing compound.

At the option of the Contractor, the final 2 feet of conduit entering a pull box in a reinforced concrete structure may be Type 4.

10-3.08 (BLANK)

10-3.09 PULL BOX

GENERAL

Summary

This work includes installing a non-traffic-rated pull box as shown on the plans and as specified in these special provisions. Comply with Section 86-2.06, "Pull Boxes," of the Standard Specifications.

Submittals

Before shipping pull boxes to the jobsite, submit a list of materials, Contract number, pull box manufacturer, manufacturer's instructions for pull box installation, and your contact information to the Transportation Laboratory.

Submit reports for pull box from an NRTL-accredited lab to the Engineer.

Quality Control and Assurance

Pull boxes may be tested by the Department. Deliver pull boxes and covers to the Transportation Laboratory and allow 30 days for testing. When testing is complete, you will be notified. You must pick up the boxes and covers from the test site and deliver it to the job site.

Any failure of the pull box or the cover that renders the unit noncompliant with these specifications will be a cause for rejection. If the unit is rejected, you must allow 30 days for retesting. Retesting period starts when the replacement pull box is delivered to the test site. You must pay for all retesting costs. Delays resulting from submittal of noncompliant materials does not relieve you from executing the contract within the allotted time.

If the pull box submitted for testing does not comply with the specifications, remove the unit from the test site within 5 business days after notification that it is rejected. If the unit is not removed within that period, it may be shipped to you at your expense.

You must pay for all shipping, handling, and transportation costs related to the testing and retesting.

Functional Testing

The pull box and cover must be tested under ANSI/SCTE 77, "Specifications for Underground Enclosure Integrity."

Warranty

Provide a 2-year manufacturer replacement warranty for pull box and cover from the date of installation of the pull box and cover. All warranty documentation must be submitted to the Engineer before installation.

Replacement parts must be provided within 5 business days after receipt of failed pull box, cover, or both at no cost to the Department and must be delivered to the Department's Maintenance Electrical Shop at 175 Cluster Street, San Bernardino, CA 92408.
MATERIALS
The pull box and cover must comply with ANSI/SCTE 77, "Specifications for Underground Enclosure Integrity," for Tier 22 load rating and must be gray or brown in color.
Include recesses for a hanger if a transformer or other device must be placed in a pull box.
The bolts, nuts, and washers must be a captive bolt design.
The captive bolt design must be capable of withstanding a torque range of 55 to 60 ft-lb and a minimum pull out strength of 750 lb. Perform the test with the cover in place and the bolts torqued. The pull box and cover must not be damaged while performing the test to the minimum pull out strength.
Stainless steel hardware must have an 18 percent chromium content and an 8 percent nickel content.
Galvanize ferrous metal parts under Section 75-1.05, "Galvanizing."
Manufacturer's instructions must provide guidance on:
1. Quantity and size of entries that can be made without degrading the strength of the pull box below Tier 22 load rating
2. Where side entries cannot be made
3. Acceptable method to be used to create the entry
Tier 22 load rating must be labeled or stenciled by the manufacturer on the inside and outside of the pull box and on the underside of the cover.

CONSTRUCTION
Do not install pull box in curb ramps or driveways.
A pull box for a post or a pole standard must be located within 5 feet of the standard. Place a pull box adjacent to the back of the curb or edge of the shoulder. If this is impractical, place the pull box in a suitable, protected, and accessible location.

10-3.10 CONDUCTORS, CABLES, AND WIRING
Splices shall be insulated by "Method B."
Conductors and cables shall be secured to the projecting end of conduit in pull boxes to prevent pulling of cables.
Signal Interconnect Cable (SIC) shall be the 6-pair type.

10-3.11 SERVICE
Continuous welding of exterior seams in service equipment enclosures is not required.
Service equipment enclosures shall be the aluminum type.
Circuit breakers shall be plug-in type.
Circuits with Model 500 changeable message signs shall have service equipment enclosures which have main busses and terminal lugs rated for 100 A, minimum, and a No. 2 bare copper ground wire.
Each service shall be provided with up to 2 main circuit breakers which shall disconnect ungrounded service entrance conductors. Where the "Main" circuit breaker consists of 2 circuit breakers as shown on the plans or required in the special provisions, each of the circuit breakers shall have a minimum interrupting capacity of 10,000 A, rms.

ELECTRIC SERVICE (IRRIGATION)
Electric service (irrigation) shall be from the service points to the irrigation controllers (IC) and to the spaces provided in the irrigation controller enclosure cabinets (CEC) for irrigation controllers as shown on the plans.
Electric service (irrigation) shall be a metered 120/240 V(ac), single-phase service in a Type III service equipment enclosure.

10-3.12 CONTROLLER CABINETS
The Model 334L cabinets shall conform to the provisions in Section 86-3.01, "Controller Assemblies," of the Standard Specifications and these special provisions.
Cabinets shall be Model 334L and shall consist of a housing (B), a mounting cage 1, and the following listed equipment. The equipment shall conform to Chapter 6 of the Transportation Electrical Equipment Specifications (TEES).
1. Service panel No. 1
2. Power distribution assembly No. 3
3. Input file (I file)
4. CI harness
5. Controller and equipment shelves
6. Dual fan assembly with thermostatic control
7. Mechanical armature-type relays
8. Input panel

Prior to shipping to the project site, each Model 334L cabinet shall be submitted to the Transportation Laboratory for acceptance testing. The Engineer shall be notified when each Model 334L cabinet is ready for the functional test. The functional test will be conducted by State forces.

The following equipment shall be provided with each power distribution assembly:

1. Two duplex NEMA 5-15R controller receptacle (rear mount)
2. One 30 A, 1-pole, 120 V(ac) main circuit breaker
3. Three 15 A, 1-pole, 120 V(ac) circuit breaker
4. One duplex GFCI NEMA 15 A receptacle (front mount)

Three shelves shall be furnished as shown on the plans. Each shelf shall be attached to the tops of 2 supporting angles with 4 screws. Supporting angles shall extend from the front to the back rails. The front of the shelf shall abut the front member of the mounting cage. The shelves shall be arranged as shown on the plans. The angles shall be designed to support a minimum of 50 pounds each. The horizontal side of each angle shall be a minimum of 3 inches. The angles shall be vertically adjustable.

Three terminal blocks shall be furnished as shown on the plans. Terminal blocks shall conform to the requirements in Chapter 6 of the TEES, except that the screw size shall be 8-32.

A maintenance manual shall be furnished for all controller units, auxiliary equipment, vehicle detector sensor units, control units, and amplifiers. The maintenance and operation manuals may be combined into one manual. The maintenance manual or combined maintenance and operation manual shall be submitted at the time the controllers are delivered for testing or, if ordered by the Engineer, before purchasing. The maintenance manual shall include the following:

1. Specifications
2. Design characteristics
3. General operation theory
4. Function of all controls
5. Trouble shooting procedure (diagnostic routine)
6. Block circuit diagram
7. Geographical layout of components
8. Schematic diagrams
9. List of replaceable component parts with stock numbers

10.3.13 STATE-FURNISHED CONTROLLER ASSEMBLIES

The Model 170 and 2070 controller assemblies, excluding anchor bolts, will be State-furnished as provided under "Materials" of these special provisions.

The Contractor shall construct each controller cabinet foundation as shown on the plans for Model 332 and 334 cabinets (including furnishig and installing anchor bolts), shall install the controller cabinet on the foundation, and shall make field wiring connections to the terminal blocks in the controller cabinet.

A listing of field conductor terminations, in each State-furnished controller cabinet, will be furnished free of charge to the Contractor at the site of the work.

State forces will maintain controller assemblies. The Contractor's responsibility for controller assemblies shall be limited to conforming to the provisions in Section 6-1.02, "State-Furnished Materials," of the Standard Specifications.

10.3.14 VEHICLE SIGNAL FACES AND SIGNAL HEADS

Type SV-1-T mountings with 5 sections and SV-2-TD mountings shall be bolted to the standard through the upper pipe fitting in the same manner shown for bolting the terminal compartment.
10-3.15 LIGHT EMITTING DIODE SIGNAL MODULE

GENERAL

Summary
This work includes installing LED signal module. Comply with Section 86, "Electrical Systems," of the Standard Specifications.

Use LED signal module as the light source for the following traffic signal faces:

1. 12-inch section
2. 8-inch section
3. 12-inch arrow section
4. 12-inch programmed visibility (PV) section

Submittals
Before shipping LED signal modules to job site, submit the following to the Transportation Laboratory:

1. Delivery form including district number, EA, and contact information
2. List containing all LED signal module serial numbers anticipated for use
3. LED signal modules

Quality Control and Assurance
Module must be one listed on the Pre-Qualified Products List for LED traffic signals at:

http://www.dot.ca.gov/hq/esc/approved_products_list

The State will test LED signal module shipments as specified in ANSI/ASQ Z1.4. Testing will be completed within 30 days of delivery to the Transportation Laboratory. LED signal modules tested or submitted for testing must be representative of typical production units. LED and circular LED signal modules will be tested as specified in California Test 604. Arrow, U-turn, and bicycle LED signal modules will be tested as specified in California Test 3001. All parameters of the specification may be tested on the modules. LEDs must be spread evenly across the module. LED arrow indication must provide the minimum initial luminous intensity listed. Measurements will be performed at the rated operating voltage of 120 V(ac).

Delays resulting from submittal of non-compliant materials do not relieve you from executing the contract within the allotted time. Non-compliant materials will be rejected. You must resubmit new LED for retesting and pick up the failed units within 7 days of notification. You must provide new LED signal modules and allow a minimum of 30 days for the retest. You must pay for all shipping and handling costs related to testing and retesting. Delays resulting from resubmittal and retesting are your responsibility and no extra time will be allowed.

After testing, you must pick up the tested LED signal modules from the Transportation Laboratory and deliver to the job site.

Warranty
The manufacturer must provide a written warranty against defects in materials and workmanship for LED signal modules for a minimum period of 48 months after installation of LED signal modules. Replacement LED signal modules must be provided within 15 days after receipt of failed LED modules at your expense. The State pays for shipping the failed modules to you. All warranty documentation must be submitted to the Engineer before installation. Replacement LED signal modules must be delivered to State Maintenance Electrical Shop at 175 West Cluster Street, San Bernardino, CA 92401.

MATERIALS
Minimum power consumption for LED signal module must be 5 W.
LED signal module must have an operational lifecycle rating of 48 months. During the operational lifecycle, LED signal module must meet all parameters of this specification.
LED signal module must be designed for installation in the door frame of standard traffic signal housing.
LED signal module must:

1. Be 4 pounds maximum weight
2. Be manufactured for 12-inch circular, 8-inch circular, programmed visibility and arrow
3. Be from the same manufacturer
4. Be the same model for each size
5. Be sealed units with:
 5.1. 2 color-coded conductors for power connection, except for lane control LED signal modules use 3 color-coded conductors.
 5.2. Printed circuit board and power supply contained inside and complying with Chapter 1, Section 6 of TEES published by the Department.
 5.3. Lens that is:
 5.3.1. Integral to the units
 5.3.2. Convex or flat with a smooth outer surface
 5.3.3. Made of UV stabilized plastic or glass, and withstands UV exposure from direct sunlight for 48 months without exhibiting evidence of deterioration
 5.4. 1-piece EPDM gasket
6. Include 3-foot long conductors with quick disconnect terminals attached
7. Be sealed in door frames
8. Fit into existing traffic signal section housing and comply with ITE publication, Equipment and Material Standards, Chapter 2, "Vehicle Traffic Control Signal Heads"

Individual LEDs must be wired so catastrophic loss or failure of 1 LED will not result in loss of more than 5 percent of the signal module light output. Failure of an individual LED in a string must not result in loss of entire string or other indication.

No special tools for installation are allowed.

12-inch Arrow

Comply with Section 9.01 of ITE publication, Equipment and Material Standards, Chapter 2, "Vehicle Traffic Control Signal Heads" for arrow indications.

LED signal module must:
1. Be weather tight and connect directly to electrical wiring.
2. Be capable of optical unit replacement.
3. Be a single, self-contained device, ready for installation into traffic signal housing.
4. Have manufacturer's name, trademark, model number, serial number, lot number, month and year of manufacture, and required operating characteristics, including rated voltage, power consumption, and volt-ampere, permanently marked on the back of the module.
5. Have a symbol of module type and color. Symbol must be an inch in diameter. Color must be written out in 0.50-inch high letters next to the symbol.
6. Be AlInGaP technology for red and yellow indications and gallium nitride technology for green indications.
7. Be ultra bright type rated for 100,000 hours of continuous operation from -40 °C to +74 °C.
8. Have a maximum power consumption as follows:

<table>
<thead>
<tr>
<th>LED Signal Module Type</th>
<th>Power Consumption Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Power Consumption (Watts)</td>
</tr>
<tr>
<td></td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td>25 °C</td>
</tr>
<tr>
<td>12-inch circular</td>
<td>11</td>
</tr>
<tr>
<td>8-inch circular</td>
<td>8</td>
</tr>
<tr>
<td>12-inch arrow</td>
<td>9</td>
</tr>
<tr>
<td>Programmed Visibility</td>
<td>11</td>
</tr>
</tbody>
</table>

Lens may be tinted, or may use transparent film or materials with similar characteristics to enhance "ON/OFF" contrasts. Tinting or other materials to enhance "ON/OFF" contrast must not affect chromaticity and must be uniform across the face of the lens.

Contract No. 08-0M94U4

361
If polymeric lens is used, surface coating or chemical surface treatment must be applied for front surface abrasion resistance.

Power supply must be integral to the module.

Internal components must be adequately supported to withstand mechanical shock and vibration from high winds and other sources.

Lens and LED signal module material must comply with the ASTM specifications for that material.

Enclosures containing either the power supply or electronic components of LED signal module, except lenses, must be made of UL94VO flame-retardant material.

If a specific mounting orientation is required, the LED signal module must have prominent and permanent vertical markings for accurate indexing and orientation within the signal housing. Markings must include an up arrow, or the word "UP" or "TOP."

LED signal module must meet or exceed the following values when operating at 25 °C:

Minimum Initial Intensities for Circular Indications (cd)

<table>
<thead>
<tr>
<th>Angle (v, h)</th>
<th>8-inch</th>
<th>12-inch</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5, ±2.5</td>
<td>157</td>
<td>399</td>
</tr>
<tr>
<td>2.5, ±7.5</td>
<td>114</td>
<td>295</td>
</tr>
<tr>
<td>2.5, ±12.5</td>
<td>67</td>
<td>166</td>
</tr>
<tr>
<td>2.5, ±17.5</td>
<td>29</td>
<td>90</td>
</tr>
<tr>
<td>7.5, ±2.5</td>
<td>119</td>
<td>266</td>
</tr>
<tr>
<td>7.5, ±7.5</td>
<td>105</td>
<td>238</td>
</tr>
<tr>
<td>7.5, ±12.5</td>
<td>76</td>
<td>171</td>
</tr>
<tr>
<td>7.5, ±17.5</td>
<td>48</td>
<td>105</td>
</tr>
<tr>
<td>7.5, ±22.5</td>
<td>21</td>
<td>45</td>
</tr>
<tr>
<td>7.5, ±27.5</td>
<td>12</td>
<td>19</td>
</tr>
<tr>
<td>12.5, ±2.5</td>
<td>43</td>
<td>59</td>
</tr>
<tr>
<td>12.5, ±7.5</td>
<td>38</td>
<td>57</td>
</tr>
<tr>
<td>12.5, ±12.5</td>
<td>33</td>
<td>52</td>
</tr>
<tr>
<td>12.5, ±17.5</td>
<td>24</td>
<td>40</td>
</tr>
<tr>
<td>12.5, ±22.5</td>
<td>14</td>
<td>26</td>
</tr>
<tr>
<td>12.5, ±27.5</td>
<td>10</td>
<td>19</td>
</tr>
<tr>
<td>17.5, ±2.5</td>
<td>19</td>
<td>26</td>
</tr>
<tr>
<td>17.5, ±7.5</td>
<td>17</td>
<td>26</td>
</tr>
<tr>
<td>17.5, ±12.5</td>
<td>12</td>
<td>26</td>
</tr>
<tr>
<td>17.5, ±17.5</td>
<td>10</td>
<td>26</td>
</tr>
<tr>
<td>17.5, ±22.5</td>
<td>7</td>
<td>24</td>
</tr>
<tr>
<td>17.5, ±27.5</td>
<td>5</td>
<td>19</td>
</tr>
</tbody>
</table>

Minimum Luminance for Arrows, and PV Indications (FL)

<table>
<thead>
<tr>
<th>Arrow Indication</th>
<th>Red</th>
<th>Yellow</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,605</td>
<td></td>
<td>3,210</td>
<td>3,210</td>
</tr>
<tr>
<td>PV Indication (cd at 2.5°± 2.5°)</td>
<td>91</td>
<td>91</td>
<td>91</td>
</tr>
</tbody>
</table>

LED signal module must meet or exceed the following illumination values for 48 months when operating over a temperature range of -40 °C to + 74 °C. Yellow LED signal module must meet or exceed the following illumination values for 48 months, when operating at 25 °C:
Minimum Maintained Intensities for Circular Indications (cd)

<table>
<thead>
<tr>
<th>Angle (v,h)</th>
<th>8-inch</th>
<th>12-inch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Red</td>
<td>Red</td>
</tr>
<tr>
<td>2.5, ±2.5</td>
<td>133</td>
<td>339</td>
</tr>
<tr>
<td>2.5, ±7.5</td>
<td>97</td>
<td>251</td>
</tr>
<tr>
<td>2.5, ±12.5</td>
<td>57</td>
<td>141</td>
</tr>
<tr>
<td>2.5, ±17.5</td>
<td>25</td>
<td>77</td>
</tr>
<tr>
<td>7.5, ±2.5</td>
<td>101</td>
<td>226</td>
</tr>
<tr>
<td>7.5, ±7.5</td>
<td>89</td>
<td>202</td>
</tr>
<tr>
<td>7.5, ±12.5</td>
<td>65</td>
<td>145</td>
</tr>
<tr>
<td>7.5, ±17.5</td>
<td>41</td>
<td>89</td>
</tr>
<tr>
<td>7.5, ±22.5</td>
<td>18</td>
<td>38</td>
</tr>
<tr>
<td>7.5, ±27.5</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>12.5, ±2.5</td>
<td>37</td>
<td>50</td>
</tr>
<tr>
<td>12.5, ±7.5</td>
<td>32</td>
<td>48</td>
</tr>
<tr>
<td>12.5, ±12.5</td>
<td>28</td>
<td>44</td>
</tr>
<tr>
<td>12.5, ±17.5</td>
<td>20</td>
<td>34</td>
</tr>
<tr>
<td>12.5, ±22.5</td>
<td>12</td>
<td>22</td>
</tr>
<tr>
<td>12.5, ±27.5</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>17.5, ±2.5</td>
<td>16</td>
<td>22</td>
</tr>
<tr>
<td>17.5, ±7.5</td>
<td>14</td>
<td>22</td>
</tr>
<tr>
<td>17.5, ±12.5</td>
<td>10</td>
<td>22</td>
</tr>
<tr>
<td>17.5, ±17.5</td>
<td>9</td>
<td>22</td>
</tr>
<tr>
<td>17.5, ±22.5</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>17.5, ±27.5</td>
<td>4</td>
<td>16</td>
</tr>
</tbody>
</table>

Minimum Maintained Luminance for Arrow, and PV Indications (FL)

<table>
<thead>
<tr>
<th>Arrow Indication</th>
<th>Red</th>
<th>Yellow</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,610</td>
<td>3,210</td>
<td>3,210</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PV Indication (at 2.5°±2.5°)</th>
<th>Red</th>
<th>Yellow</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>91</td>
<td>91</td>
<td>91</td>
</tr>
</tbody>
</table>

LED signal module must comply with the following chromaticity requirements for 48 months when operating over a temperature range of -40 °C to +74 °C.

Chromaticity Standards (CIE Chart)

<table>
<thead>
<tr>
<th>Color</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>Y: not greater than 0.308, or less than 0.998 - x</td>
</tr>
<tr>
<td>Yellow</td>
<td>Y: not less than 0.411, nor less than 0.995 - x, nor greater than 0.452</td>
</tr>
<tr>
<td>Green</td>
<td>Y: not less than 0.506 - 0.519x, nor less than 0.150 + 1.068x, nor more than 0.730 - x</td>
</tr>
</tbody>
</table>

LED signal module must operate:

1. At a frequency of 60 ±3 Hz, over a voltage range from 95 to 135 V(ac), without perceptible flicker to the unaided eye. Fluctuations of line voltage must have no visible effect on luminous intensity of the indications. Rated voltage for measurements must be 120 V(ac).
2. Compatible with currently used controller assemblies, including solid state load switches, flashers, and conflict monitors. Comply with TEES Chapters 3 and 6. If a 20 mA alternating current or less is applied to the unit, the voltage read across the 2 leads must be 15 V(ac) or less.

Wiring and terminal block must comply with Section 13.02 of ITE publication, Equipment and Material Standards, Chapter 2, “Vehicle Traffic Control Signal Heads.” Electrical connection for each Type 1 LED signal module must be 2 secured, color-coded, 3-foot long, 600 V(ac), 20 AWG minimum stranded jacketed copper wires. Wires must comply with NEC, rated for service at +105 °C. LED signal module on-board circuitry must:
1. Include voltage surge protection to withstand high-repetition noise transients. The voltage surge protection must comply with NEMA Standard TS2, Section 2.1.6.
2. Comply with FCC, Title 47, SubPart B, Section 15 regulations for Class A emission limits for electronic noise.

LED signal module must provide a power factor of 0.90 or greater. Total harmonic distortion from current and voltage induced into an alternating current power line by LED signal module must not exceed 20 percent at an operating temperature of 25 °C. When power is applied to LED signal module, light emission must occur within 90 ms.

10-3.16 BATTERY BACKUP SYSTEM

GENERAL

Summary
This work includes installing battery backup system (BBS). Comply with Section 86, "Electrical Systems," of the Standard Specifications and TEES.
The State will furnish BBS components as listed in "Materials" of these special provisions.
You must furnish the external cabinet and batteries.

Submittals
Before shipping external cabinets to the jobsite, submit material list including contract number, cabinet serial numbers, and contact information to the Transportation Laboratory.
Submit a Certificate of Compliance for each external cabinet and batteries to the Engineer under Section 6-1.07, "Certificates of Compliance," of the Standard Specifications.

Quality Control and Assurance
The State may test the cabinets.

Functional Testing
After complete installation, BBS functional test must be performed. Test for 30 minutes of continuous, satisfactory operation with utility power turned off. Perform test in the presence of the Engineer.

Warranty
Batteries must be warranted by the manufacturer to operate within a temperature range of -25 °C to +60 °C for 2 years.
Batteries must have a written warranty against defects in materials and workmanship from the manufacturer prorated for a period of 60 months after installation. You must provide the Engineer with all warranty documentation before installation. Replacement batteries must be available within 5 business days after receipt of failed batteries at no cost to the State except the cost of shipping the failed batteries. Replacement batteries must be delivered to Caltrans Maintenance Electrical Shop at 175 West Cluster Street, San Bernardino, CA 92408.

MATERIALS
Batteries must:

1. Be deep cycle, sealed prismatic, lead-calcium-based, absorbed-glass mat and valve-regulated lead acid (AGM/VRLA) type
2. Have voltage rating of 12 V
3. Be group size 24
4. Be commercially available and stocked locally
5. Have a carrying handle
6. Be marked with date code, maximum recharge data, and recharge cycles
7. Have 2 top-mounted, threaded, stud posts that include all washers and nuts required for attaching 3/8-inch ring lugs of a State-furnished BBS battery harness
8. Include rubber insulating protective covers for protecting the lugs, posts, and wiring - red for positive terminal and black for negative terminal
9. Be new and fully-charged when furnished
10. Be free from damage or deformities
External cabinet must be one listed on the Pre-Qualified Products List at:

http://www.dot.ca.gov/hq/esc/approved_products_list/

External cabinet must be capable of housing:

1. 8 batteries
2. Inverter/charger unit
3. Power transfer relay
4. Manually-operated bypass switch
5. Required control panels
6. Wiring and harnesses

Dimensions and details for the external cabinet, for attaching the external cabinet to the Model 332 cabinet, and for wiring the State-furnished equipment is available in plan. The following details must comply with Section 86-3.04, "Controller Cabinets," of the Standard Specifications and TEES:

1. Door construction, including material, thickness, coating, and welds
2. Frame
3. Door seals
4. Continuous stainless steel piano hinge or 4 leaves with 2 bolts on each side of each leaf, used to connect the door to external cabinet
5. Padlock clasp or latch and lock mechanism

The external cabinet must be ventilated by using louvered vents, filter, and a thermostatically controlled fan. Fan must be AC-operated from the same line output as the Model 332 cabinet. A 2-position terminal block must be provided on the fan panel, along with 10 feet of connected hookup wire.

The external cabinet surface must be anodized aluminum. Anti-graffiti paint must not be used.

The external cabinet must include all bolts, washers, nuts, and cabinet-to-cabinet coupler fittings necessary for mounting it to the Model 332 cabinet.

Fasteners for the external cabinet must include:

1. 8 cabinet mounting bolts that are 18-8 stainless steel hex head, fully-threaded, and 3/8" – 16 x 1"
2. 2 washers per bolt designed for 3/8-inch bolt and are 18-8 stainless steel 1-inch OD round flat type
3. K-lock nut per bolt: K-lock washer that is 18-8 stainless steel and hex-nut

External cabinet to Model 332 cabinet couplings must include a conduit for power connections between the 2 cabinets. Couplings must include:

1. 2-inch nylon-insulated steel chase nipple, T & B 1947 or equivalent
2. 2-inch sealing, steel locknut, T & B 146SL or equivalent
3. 2-inch nylon-insulated steel bushing, T & B 1227 or equivalent

CONSTRUCTION

Mount external cabinet to either the left or right side of Model 332 cabinet. The typical side-mounting location of external cabinet is flush with the bottom of the Model 332 cabinet and approximately equidistant from the front and rear door edges.

MEASUREMENT AND PAYMENT

Full compensation for assembling and installing battery backup system is included in the contract lump sum price paid for modify signal and lighting, and no separate payment will be made thereafter.

10-3.17 LIGHT Emitting Diode PEDESTRIAN Signal face Modules

GENERAL

Summary

This work includes installing LED pedestrian signal face (PSF) module into standard Type A pedestrian signal housing. Comply with Section 86, "Electrical Systems," of the Standard Specifications.
Submittals
Before shipping LED PSF modules to job site, submit the following to the Transportation Laboratory:

1. Delivery form including district number, EA, and contact information
2. List containing all LED PSF module serial numbers anticipated for use
3. LED PSF modules
4. Manufacturer's name, trademark, model number, lot number, month and year of manufacture

Quality Control and Assurance
Module must be one listed on the Pre-Qualified Products List for LED traffic signals at:

http://www.dot.ca.gov/hq/esc/approved_products_list

The State will test LED PSF module shipments as specified in ANSI/ASQ Z1.4. Testing will be completed within 30 days of delivery to the Transportation Laboratory. LED PSF modules tested or submitted for testing must be representative of typical production units. LED PSF modules will be tested as specified in California Test 606. All parameters of the specification may be tested on the modules.

Delays resulting from submittal of non-compliant materials do not relieve you from executing the contract within the allotted time. Non-compliant materials will be rejected. You must resubmit new LED for retesting and pick up the failed units within 7 days of notification. You must provide new LED PSF modules and allow a minimum of 30 days for the retest. You must pay for all shipping and handling costs related to testing and retesting. Delays resulting from resubmittal and retesting are your responsibility and no extra time will be allowed.

After successful testing, you must pick up the tested LED PSF modules from the Transportation Laboratory and deliver to the job site.

Warranty
The manufacturer must provide a written warranty against defects in materials and workmanship for LED PSF modules for a minimum period of 48 months after installation of LED PSF modules. Replacement LED PSF modules must be provided within 15 days after receipt of failed LED PSF modules at your expense. The State pays for shipping the failed modules to you. All warranty documentation must be submitted to the Engineer before installation. Replacement LED PSF modules must be delivered to State Maintenance Electrical Shop at 175 West Cluster Street, San Bernardino, CA 92408.

MATERIALS
LED PSF module must:

1. Be from the same manufacturer.
2. Be installed in standard Type A pedestrian signal housing, "UPRAISED HAND" and "WALKING PERSON." Do not include reflectors.
3. Use LED as the light source.
4. Be designed to mount behind or replace face plates of standard Type A housing as specified in ITE publication, Equipment and Material Standards, Chapter 3, "Pedestrian Traffic Control Signal Indications" and the "California MUTCD."
5. Have a minimum power consumption of 10 W.
6. Use required color and be ultra bright type rated for 100,000 hours of continuous operation from -40 °C to +74 °C.
7. Be able to replace signal lamp optical units and pedestrian signal faces with both LED and incandescent light sources.
8. Fit into pedestrian signal section housings without modifications to the housing. The housing must comply with ITE publication, Equipment and Materials Standards, Chapter 3, "Pedestrian Traffic Control Signal Heads."
9. Be a single, self-contained device, not requiring on-site assembly for installation into standard Type A housing.
10. Have the following information permanently marked on the back of module:

10.1. Manufacturer’s name
10.2. Trademark
10.3. Model number
10.4. Serial number
10.5. Lot number
10.6. Month and year of manufacture
10.7. Required operating characteristics, as follows:

10.7.1. Rated voltage
10.7.2. Power consumption
10.7.3. Volt-ampere (VA)
10.7.4. Power factor

11. Have prominent and permanent vertical markings for accurate indexing and orientation within the signal housing if a specific mounting orientation is required. Markings must include an up arrow, or the word "UP" or "TOP." Marking must be a minimum of 1-inch diameter.

Circuit board and power supply must be contained inside the LED PSF modules. Circuit board must comply with Chapter 1, Section 6 of TEES published by the Department.

Individual LEDs must be wired so catastrophic loss or failure of 1 LED will not result in loss of more than 5 percent of the PSF module light output. Failure of an individual LED in a string must not result in the loss of entire string or other indication.

LEDs must be evenly distributed in each indication. Do not use outline forms.

No special tools for installation are allowed.

Installation of the LED PSF module into pedestrian signal face must require only removal of lenses, reflectors, lamps, and existing LED modules.

Power supply for LED PSF module must be integral to the module. Power supply for each symbol must be isolated to avoid turn-on conflict.

Assembly and manufacturing processes for LED PSF module must assure that all internal components are adequately supported to withstand mechanical shock and vibration from high winds and other sources.

Material used for LED PSF module must comply with ASTM D 3935.

Enclosures containing either the power supply or electronic components of LED PSF module, except lenses, must be made of UL94VO flame-retardant material.

Color of "UPRAISED HAND" symbol must be portland orange.

Color of "WALKING PERSON" symbol must be lunar white.

Each symbol must not be less than 10 inches high and 6.5 inches wide. Uniformity ratio of illuminated symbols must not exceed 4 to 1 between highest and lowest luminance areas. Symbols must comply with ITE publication, Equipment and Material Standards, Chapter 3, "Pedestrian Traffic Control Signal Indications," and the "California MUTCD."

LED PSF module must maintain an average luminance value over 48 months of continuous use in signal operation for a temperature range of -40 °C to +74 °C. In addition, LED PSF modules must meet or exceed the following luminance values upon initial testing at 25 °C.

<table>
<thead>
<tr>
<th>Luminance Values</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PSF module</td>
<td>Luminance</td>
</tr>
<tr>
<td>UPRAISED HAND</td>
<td>1.094 FL</td>
</tr>
<tr>
<td>WALKING PERSON</td>
<td>1.547 FL</td>
</tr>
</tbody>
</table>

Color output of LED PSF module must comply with chromaticity requirements in Section 5.3 of ITE publication, Equipment and Material Standards, Chapter 3, "Pedestrian Traffic Control Signal Indications."

Measured chromaticity coordinates of LED PSF module must comply with the following chromaticity requirements for 48 months when operating over a temperature range of -40 °C to +74 °C.

<table>
<thead>
<tr>
<th>Chromaticity Standards (CIE Chart)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>UPRAISED HAND (portland orange)</td>
<td>Not greater than 0.390, nor less than 0.331, nor less than 0.997-X</td>
</tr>
<tr>
<td>WALKING PERSON (lunar white)</td>
<td>X: not less than 0.280, nor greater than 0.320 Y: not less than 1.055X - 0.0128, nor greater than 1.055X + 0.0072</td>
</tr>
</tbody>
</table>
LED PSF module maximum power consumption must not exceed the following values:

<table>
<thead>
<tr>
<th>PSF module</th>
<th>Power Consumption at 24 °C</th>
<th>Power Consumption at 74 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPRAISED HAND</td>
<td>10.0 W</td>
<td>12.0 W</td>
</tr>
<tr>
<td>WALKING PERSON</td>
<td>9.0 W</td>
<td>12.0 W</td>
</tr>
</tbody>
</table>

Wiring and terminal block must comply with Section 13.02 of ITE publication, Equipment and Material Standards, Chapter 2, "Vehicle Traffic Control Signal Heads." The LED PSF module must be supplied with spade lugs and 3 secured, color-coded, 3-foot long, 600 V(ac), 20 AWG minimum stranded jacketed copper wires. Wires must comply with NEC, rated for service at +105 °C.

LED PSF module must operate:

1. At a frequency of 60 Hz ± 3 Hz over a voltage range from 95 V(ac) to 135 V(ac) without perceptible flicker to the unaided eye. Fluctuations of line voltage must have no visible effect on luminous intensity of the indications. Rated voltage for measurements must be 120 V(ac).
2. Compatible with currently used State controller assemblies including solid state load switches, flashers, and conflict monitors. Comply with TEES Chapters 3 and 6. If a 20 mA alternating current or less is applied to the unit, the voltage read across the 2 leads must be 15 V(ac) or less.

LED PSF module on-board circuitry must:

1. Include voltage surge protection to withstand high-repetition noise transients. The voltage surge protection must comply with NEMA Standard TS2, Section 2.1.6.
2. Comply with FCC, Title 47, SubPart B, Section 15 regulations for Class A emission limits for electronic noise.

LED PSF module must provide a power factor of 0.90 or greater.

Total harmonic distortion from current and voltage induced into an alternating current power line by LED PSF module must not exceed 20 percent at an operating temperature of 25 °C.

The LED PSF module circuitry must prevent perceptible light emission to the unaided eye when a voltage, 50 V(ac) or less is applied to the unit.

When power is applied to LED PSF module, light emission must occur within 90 ms.

The "UPRAISED HAND" and "WALKING PERSON" symbol indications must be electrically isolated from each other. Sharing a power supply or interconnect circuitry between the 2 indications is not allowed.

10-3.18 DETECTORS

Loop detector sensor units will be State-furnished in conformance with the provisions in "Materials" of these special provisions.

- Loop wire shall be Type 2.
- Loop detector lead-in cable shall be Type B.
- Slots shall be filled with hot-melt rubberized asphalt sealant.

For Type E detector loops, sides of the slot shall be vertical and the minimum radius of the slot entering and leaving the circular part of the loop shall be 1-1/2 inches. Slot width shall be a maximum of 5/8 inch. Loop wire for circular loops shall be Type 2. Slots of circular loops shall be filled with hot melt rubberized asphalt sealant.

10-3.19 MICROWAVE VEHICLE DETECTION SYSTEM - SIDE FIRE

This work consists of furnishing and installing a microwave vehicle detection system (MVDS).

MATERIALS LIST AND DRAWINGS

A list of materials which the Contractor proposes to install for the MVDS together with the drawings and other data shall be submitted to the Engineer in conformance with Section 86-1.04, "Equipment List and Drawings," of the Standard Specifications. Additionally, the following shall be provided before the completion of the contract:
1. **Certificate of Compliance** - A Certificate of Compliance for MVDS shall be furnished to the Engineer in conformance with the provisions in Section 6-1.07, “Certificates of Compliance,” of the Standard Specifications.

2. **Site Analysis Report** - Prior to MVDS installation the Contractor shall review each detection site and provide a written analysis recommending the optimum sensor placement for meeting the performance requirements of this special provision. The analysis shall be reviewed and approved by the MVDS manufacturer.

3. **Lane Configuration** - The documentation shall include a diagram that illustrates how the microwave beam is covering the traffic lanes as well as the corresponding MVDS connector pins or wire terminals that correspond to the respective lanes. The lanes shall be identified by direction (NB, SB, EB, WB), and in order, with lane one being the lane nearest to the center of the roadway.

4. **Mounting and Wiring Information** - The Contractor shall provide to the Engineer for approval one set of detailed diagrams showing wiring and service connections for each MVDS. The approved diagrams shall be covered separately on each side with clear self-adhesive plastic and placed in a heavy-duty plastic envelope. The envelope shall be attached securely to the inside of the cabinet door or at a location designated by the Engineer.

5. **Communication Protocol** - The MVDS communication protocol shall be open and shall be freely available for use in the public domain. The Contractor shall provide documentation that defines the complete MVDS communication protocol (e.g. message structure organization, data packet length, as well as all information necessary to make use of such messages).

6. **Remote Programming** - The Contractor shall provide all information and software necessary for operating the system from a remote Windows 2000/NT or newer based Personal Computer (PC). This information and software shall include at minimum the capability to calibrate, tune, align, and program the MVDS and shall be provided on a Windows 2000/NT or newer compatible compact disc (CD). The information shall be formatted so that the files can be matched with the equipment being calibrated or aligned. This documentation shall contain files that allow for replacement equipment to be loaded with the same configuration.

7. **MVDS Accuracy Analysis** - The Contractor shall be responsible for conducting MVDS Performance Testing and shall submit to the Engineer an MVDS accuracy analysis that conforms to requirements of these special provisions within 15 days of MVDS testing. The original video recordings as well as digital versatile disc (DVD) or CD copies of the video images covering the analysis periods shall be included.

8. **Acceptance Testing Documentation** - The Contractor shall provide a test plan, containing time and period of the testing, to be approved by the Engineer. The test plan shall be organized so that the Engineer will be able to perform acceptance testing using the documentation without assistance from the Contractor. The Contractor shall collect and submit the data to be certified by the Engineer. If required by the Engineer, the data shall be collected in the presence of the Engineer.

9. **Acceptance Testing Schedule** - The Contractor shall submit a testing schedule to the Engineer for approval 15 days prior to acceptance testing of the MVDS. If the testing period extends beyond the normal working shift or if the Contractor fails to provide the necessary material for the testing within one hour of the scheduled testing start time, the Engineer may cancel testing for the day.

10. **Training** - The Contractor shall provide a copy of the training material to the Engineer for approval 30 days prior to the training. The content of the training shall include instruction on how to align, program, adjust, calibrate and maintain the MVDS.

FUNCTIONAL REQUIREMENTS

MVDSs shall simultaneously provide vehicle detection data in the form of vehicle presence, volumes, counts, speed, classification, and occupancy for a minimum of 8 lanes of traffic with the performance requirements of these special provisions. MVDSs shall provide a separate zone per lane and detect vehicles as close as 9.8 feet and as far as 197 feet from the MVDS sensor. MVDSs shall monitor traffic lanes in the presence of barrier railings, guardrails and other obstacles.

MVDSs shall meet the following detection performance criteria when installed a minimum of 9.8 feet from the nearest lane and at a minimum height of 16.4 feet above the roadway detection zone:

1. Average 5 minute volumes for all lanes combined with better than 95 percent accuracy compared to vehicles observed in video images for the same period, for any 15 minute period selected by the Engineer.
2. Average 30 second volumes in every lane with better than 90 percent accuracy compared to vehicles observed in video images for the same period, for any 5 minute period selected by the Engineer.
3. Average 30 second speed in any lane with better than 95 percent accuracy, for any 5 minute period selected by the Engineer.
4. Average 5 minute occupancy for any lane with better than 85 percent accuracy, for any 15 minute period selected by the Engineer.
5. Count accuracy, when compared to vehicles observed in video images for the same period, shall be not less than 90 percent for any lane and not less than 95 percent for all lanes combined.
6. Average 15 minute classification according to used defined criteria with better than 90 percent accuracy compared to vehicles observed in video images for the same period. Vehicle Classification (or Length Classification) shall be provided for categories (small car, average car, mid size car, long car, extra-long car) that are user definable as either by length parameters (minimum length to maximum length for the category) or by a multiple of length of the average car.
7. The Contractor shall provide the criteria for speed and volume acceptance test for approval by the Engineer. The Contractor shall also provide speed and volume date for verification by the Engineer.

MVDS shall consist of a sensor unit and include all required mounting hardware, power supplies, line surge protectors, cables, connectors and wiring. The MVDS sensor shall include, as a minimum, a directional microwave transmitter, antenna, microwave receiver, a processor, memory and communication interface.

The MVDS shall have an EIA-RS232 or EIA-485 or Ethernet communication port that supports the National Transportation Communication for ITS Protocol (NTCIP). The MVDS communication protocol shall be non-proprietary and openly specified and available for use in the public domain. The MVDS shall be addressable and shall download count, speed, and occupancy data when polled by the traffic management center computer. Speed shall be configurable in English or Metric units. The MVDS shall support unit set-up from a serial console port on the MVDS unit. The console port protocol shall support sensor unit setup from a local Windows 2000/NT or newer compatible laptop or from a remote location with a desktop computer and standard phone modem.

When MVDS sensor contact outputs will be connected to Model 170E/2070 Controller to emulate inductive loops, then the following section will apply:

The MVDS sensors shall be connected to a microwave sensor interface card (MSIF) installed in the input file of a state-furnished Model 170E or Model 2070 controller cabinet. Each detection zone shall provide an optically isolated relay contact pair that follows the presence of vehicles in every traffic lane and sends signals to the controller with the accuracy stated in these special provisions. The MSIF shall have indications for power, communication, as well as the real time operation of each detection contact output.

MVDSs shall be user programmable in the field, via the MVDS unit console port, with a Windows 2000/NT or newer compatible laptop computer. The Contractor shall provide software, firmware and equipment to set-up, calibrate and operate the unit. MVDS software shall observe the vehicular traffic and automatically places detection lanes and set the sensor sensitivity. MVDSs shall be designed so that a trained State employee can configure and calibrate the MVDS in less than 15 minutes per lane once the MVDS sensor unit is installed.

TECHNICAL REQUIREMENTS

MVDSs shall be FCC certified under Part 15 for low-power, unlicensed, continuous radio transmitter operation. The MVDS shall comply with FCC regulations under all specified operating conditions and over the expected life of the MVDS.

MVDS sensor unit shall not exceed 9.8 inch x 9.8 inch x 14 inch in size and shall not weigh more than 11 pounds. The MVDS shall operate over a temperature range from –30 degrees C to +70 degrees C, with up to 95 percent relative humidity. The MVDS sensor enclosure shall be weatherproof with a NEMA 3R rating, and the sensor mounted and directed perpendicular to the flow of traffic lanes at the locations shown on the plans.

All electronic assemblies shall conform to the requirements detailed in Chapters 1 and 5 of the Transportation Electrical Equipment Specifications (TEES).

The MSIF shall be inserted into the controller input file slots using the edge connector to obtain limited 24 V(dc) power and to provide contact closure outputs. No rewiring to the Model 170E or Model 2070 cabinet shall be allowed. The MSIF shall conform to the requirements detailed in Chapter 1 as well as Sections 5.2.8, 5.2.8.1, 5.2.8.2, 5.4.1, 5.4.5, 5.4.5 and 5.4.6, 5.5.1, 5.5.5, and 5.5.6 of TEES.

MVDS sensors shall be wired with a connectorized cable harness. Cables shall run continuously (without splices) between the sensor and controller cabinet and terminate in labeled terminal blocks identified with the purpose served. The connector shall be a standard Mil Type and rated plug. The cable shall have the number of conductors specified by the MVDS manufacturer to support the number of detection zones depicted on the plans plus spares for two future zones with an overall shield and copper drain wire. Conductors shall be stranded copper equal to or exceeding the minimum strands and wire dimensions specified by the MVDS manufacturer for the wiring distance involved and covered with a minimum 12 mils polyvinyl chloride (PVC) insulation, rated for 300 V at 105 degrees C. The outer jacket shall be chrome PVC with minimum thickness of 53 mils and the outside diameter of the cable shall not exceed 3/4-inch. A minimum of 6.5-foot slack of MVDS cable shall be coiled at the
bottom of the controller cabinet. Slack in other cabinets shall be as shown on the plans or as directed by the Engineer.

MVDS sensor unit power supplies or transformers shall be vertically mounted on a standard DIN rack rail using standard mounting hardware. The Contractor shall wire the MVDS power conductors to DIN rail mounted terminal blocks in the controller cabinet as directed by the Engineer. The serial data communication output conductors shall be terminated at TB-0, and continue for a minimum of 9.8 feet to a DB9F connector for setup and diagnostic access. The contact pair output conductors shall be terminated at terminal block, TB-2. The ends of unused and spare conductors shall be coiled and taped to prevent accidental contact to other circuits. Conductors inside the cabinet shall be labeled for the functions as shown on the approved detailed diagrams.

The power supply or transformer shall meet or exceed the following minimum requirements:

<table>
<thead>
<tr>
<th>Power Supply/Transformer</th>
<th>Power Supply Transformer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Cord</td>
<td>Standard 120 V(ac), 3 prong cord, at least 40 inches in length (may be added by the Contractor)</td>
</tr>
<tr>
<td>Type</td>
<td>Switching mode type</td>
</tr>
<tr>
<td>Rated Power</td>
<td>Twice (2x) full system load</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>From –35 °C to +74 °C</td>
</tr>
<tr>
<td>Operating Humidity Range</td>
<td>From 5 to 95 percent</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>From 90 to 135 V(ac)</td>
</tr>
<tr>
<td>Input Frequency</td>
<td>60 Hz ± 1 Hz</td>
</tr>
<tr>
<td>Inrush Current</td>
<td>Cold start, 25 A (Max) at 115 V</td>
</tr>
<tr>
<td>Output Voltage</td>
<td>As required by the MVDS</td>
</tr>
<tr>
<td>Overload Protection</td>
<td>From 105 percent to 150 percent in output pulsing mode</td>
</tr>
<tr>
<td>Over Voltage Protection</td>
<td>From 115 percent to 135 percent of rated output voltage</td>
</tr>
<tr>
<td>Setup, Rise, Hold Up</td>
<td>800 ms, 50 ms, 15 ms at 115 V(ac)</td>
</tr>
<tr>
<td>Withstand Voltage</td>
<td>I/P-0/P: 3 kV, I/P-FG: 1.5 kV, for 60 s</td>
</tr>
<tr>
<td>Working Temperature</td>
<td>Not to exceed 70 °C at 30 percent load</td>
</tr>
<tr>
<td>Safety Standards</td>
<td>UL 1012, TUV EN60950, EN55022 Class B, EN61000-4-2, 3, 4, 5 and EN61000-3-2, 3</td>
</tr>
<tr>
<td>EMC Standards</td>
<td>N/A, UL 1585</td>
</tr>
</tbody>
</table>

Field terminated circuits shall include transient protection that complies with IEEE Standard 587-1980 Category C.

The MVDS shall automatically restore normal operation following a power failure within 3 minutes and not require manual intervention. The MVDS shall maintain the configuration and calibration information in non-volatile memory and retain the information while powered off for at least 90 days.

The MVDS shall be configurable for 30 second to 24-hour polling cycles and store vehicle count, speed, classification, and occupancy data in 10 second to not less than 15 minute intervals.

The MVDS shall be tested and in standard production for a minimum of 3 months. The Contractor shall not install any MVDS that is older than 6 months from the scheduled start date of the MVDS installation as indicated by date codes or serial numbers of electronic circuit assemblies.

The MVDS system and all supporting equipment shall be designed to operate continuously in an outdoor traffic monitoring and control environment. The Contractor shall provide a manufacturer's warranty stating that the manufacturing quality and electronic components shall support a Mean Time Between Failures of 10 years in this environment.

CONSTRUCTION

The Contractor shall assure that the MVDS will not cause harmful interference to radio communication in the area of the installation as required by FCC Part 15 requirements. The MVDS units shall be installed such that each unit operates independently and that MVDS units not interfere with other MVDS units or other equipment in the vicinity.

The Contractor is responsible for site visits and analysis of each proposed pole location to assure that the detector placement will comply with the manufacturer's published installation instructions, and the performance required in these special provisions. The Contractor shall confirm detector placement with the manufacturer before performing work at the MVDS location. When the manufacturer's analysis requires a change in the proposed pole
location, the Contractor shall arrange a meeting with the manufacturer and the Engineer to select a new pole location.

The Contractor shall not proceed with any MVDS installation without the Engineer's written approval of the pole location.

The Contractor shall be responsible for the compatibility of components and for making necessary calibration adjustment to deliver the performance required in these special provisions. The Contractor shall provide equipment required to setup, calibrate, verify performance and maintain the MVDS.

The Contractor shall provide programming software needed to support the MVDS. The software shall be installed in the appropriate equipment and used for the acceptance testing.

TESTING

Accuracy of the MVDS system shall be verified by comparing the MVDS vehicle counts to recorded video image counts for the same period. The video camera shall be located and oriented so that traffic is visible in all lanes. Video images shall be time stamped and analysis periods recorded to a DVD or CD media for viewing on a PC. The video field of view shall totally encompass the area in which vehicles are detected. The Contractor shall provide a means for synchronizing the test start and test ending times or provide software that displays time stamped MVDS data along with the video images of the moving vehicles. The Contractor shall provide the Engineer with the original recording medium and documentation that supports the accuracy analysis and make a copy of these materials for their own use.

The accuracy test shall take place during a complex traffic period as specified by the Engineer. The following video recording and analysis options that depend on the available traffic conditions are acceptable; however the heaviest expected traffic conditions should be used, if possible. The minimum recording period shall be 30 minutes when the recording includes congested traffic (vehicles traveling at less than 20 mph for five or more minutes in any lane). The minimum recording period shall be 45 minutes when the traffic flow exceeds 1500 vehicles per hour in any lane during the test period. The minimum recording period shall be 60 minutes when the flow is less than 1500 vehicles per hour in every lane. The analysis shall be based on a minimum of 100 detected vehicles in every lane and cover the same time period for all lanes. The time period within the selected video will be selected by the Engineer. The total vehicle count for every lane shall be used and include the first and last partial vehicles for each lane. Errors in the start and finish of the MVDS and manual counts are included in the performance criterion specified in these special provisions.

MVDS unit count shall be compared to vehicle counts under traffic conditions of the prior paragraph. Vehicles licensed for use on State roads shall be counted by the MVDS. The data accuracy shall be determined by the formula 100\{1-[(TC-MC)/TC]\} where TC= Traffic Count derived from the media recording, MC = MVDS reported count over the same period of time, and where the resulting fraction is expressed as an absolute value.

The accuracy of each MVDS unit shall be determined and documented so that each unit may be approved or rejected separately by the Engineer. Failure to submit the materials at the conclusion of testing invalidates the test. The recorded media serves as acceptance evidence and shall not be used for calibration. The calibration shall have been completed prior to testing and verification.

The Engineer will review the accuracy data findings and accept or reject the results within 15 days. Determination of vehicle anomalies or unusual occurrences will be decided by the Engineer. Data or counts that are not accepted by the Engineer shall be considered errors and count against the MVDS unit's calibration. If the Engineer finds that the MVDS does not meet performance requirements, the Contractor shall re-calibrate and re-test the unit and re-submit new test data within 10 days. Following three failed attempts, the Contractor shall replace the MVDS detector with a new unit.

In addition to the accuracy analysis performed by the Contractor, the Contractor shall provide equipment, software, documentation, support equipment, and any other materials, personnel and devices that may be required for acceptance testing by the Engineer. The Contractor shall notify the Engineer 15 days before the MVDS unit is ready for acceptance testing. Testing shall be scheduled to be accomplished before the end of the normal work shift.

TRAINING

The Contractor shall provide a minimum of 4 hours of training by a certified manufacturer's representative for up to 8 students selected by the Engineer. The content of the training shall include instruction on how to align, program, adjust, calibrate and maintain the MVDS. The Contractor shall provide materials and equipment for the training. The Contractor shall give the Engineer 15 days notice prior to the training. The time and location of the training shall be agreed upon by the Engineer and the Contractor. If no agreement can be reached, the Engineer shall determine the time and location.
PAYMENT

The contract lump sum price paid for microwave vehicle detection system shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in installing microwave vehicle detection system, complete in place, including initial site analysis, set-up and configuration of the system, calibration of the device performance, verification of detector accuracy, training of State personnel, testing, and re-testing of failed units, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

Full compensation for microwave vehicle detection system-side fire shall be considered as included in the contract lump sum price paid for maintain existing traffic management system elements during construction at various locations and no additional compensation will be allowed therefor.

10-3.20 GENERAL PACKET RADIO SYSTEM ASSEMBLY

SUMMARY

The General Packet Radio Service (GPRS) assembly shall consist of a GPRS modem, GPRS antenna and antenna cable. The equipment shall be installed as shown in the plans. The Contractor shall secure all components and cables to the rack or cabinet as necessary. The installed wireless cellular data communication assembly shall be compatible with the existing AT&T GPRS/EDGE (Enhanced Data rates for Global system for mobile communications Evolution) system currently being used. The Contractor shall provide software, antenna, cabling and GPRS modem for connection to the existing wireless telecommunications provider's GPRS system. The Contractor shall be responsible for compatibility and demonstrating compatibility.

FUNCTIONAL REQUIREMENTS

The high speed Ethernet GPRS modem shall be capable of connecting to a general packet radio system wireless data network shall be furnished and installed as shown on the plans. The modem shall be capable of providing high-speed connectivity as well as backup network connectivity including physical Serial and Ethernet connectivity for transmitting and receiving data from field controllers to the District 8 Transportation Management Center.

The Contractor shall provide SMA-M / TNC-F adaptor for SMA-F modem and TNC-M antenna connection.

The Contractor shall provide necessary power supplies, mounting hardware and wiring. The high speed Ethernet GPRS modem shall meet or exceed the following requirements:
<table>
<thead>
<tr>
<th>Description</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>Quad band 1900/850 MHz and 1800/900 MHz GSM HSDPA/UMTS</td>
</tr>
<tr>
<td>Transmit Frequency</td>
<td>From 1850 to 1910 MHz and from 824 to 849 MHz</td>
</tr>
<tr>
<td>Transmit Power Range At Antenna Port</td>
<td>1.0 W for 1900 MHz and 0.8 W for 850 MHz</td>
</tr>
<tr>
<td>Throughput</td>
<td>Up to 240 kbps, from 100 to 130 kbps typical</td>
</tr>
<tr>
<td>Receiver Frequency</td>
<td>From 1930 to 1990 MHz and from 869 to 894 MHz</td>
</tr>
<tr>
<td>Receiver Sensitivity</td>
<td>Typical –107 dBm</td>
</tr>
<tr>
<td>Network Protocols</td>
<td>MH UDP/IP, TCP/IP, DHCP, HTTP</td>
</tr>
<tr>
<td>Features</td>
<td>NAT, Port forwarding (minimum of 15 ports), VPN pass-through, DES, 3DES and up to 256-bit AES Encryption, IPsec with IKE/ISAKMP, Multiple tunnel support, SCEP for X.509 certificates, IP filtering, HTTP, Web management</td>
</tr>
<tr>
<td>Security</td>
<td>SSL, SSH v2, FIPS 197</td>
</tr>
<tr>
<td>Ethernet Interface</td>
<td>IEEE 802.3, 10/100Base-T, RJ-45 switch port, 10/100 Mbps (auto-sensing), Full or half duplex (auto-sensing)</td>
</tr>
<tr>
<td>Serial Interface</td>
<td>1 EIA-232 DB-9 F port, Up to 230 kbps, hardware and software flow control, full signal support for TX, RX, RTS, CTS, DTR, DSR and DCD, hardware and software flow control</td>
</tr>
<tr>
<td>RF Antenna Connector</td>
<td>50 Ω TNC Male</td>
</tr>
<tr>
<td>Regulatory Approvals / Certifications</td>
<td>UL 60950,CE, CSA 22.2 No. 60950, EN60950, FCC Part 15, Class A, AS/NZS CISPR 22, EN55024, EN55022, Class A, PTCRB, NAPRD.03, GCF-CC, R&TTE, EN 301 511, GSM GPRS/EDGE, HSDPA/UMTS</td>
</tr>
<tr>
<td>LED Indicators</td>
<td>TX/RX, Power, RSSI, Channel Acquired, Network, Link Status</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>From 9 to 30 V(dc)</td>
</tr>
<tr>
<td>Input Current</td>
<td>From 40 to 200 mA</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>From -22 to +140 °F</td>
</tr>
<tr>
<td>Max Weight</td>
<td>2.0 lbs</td>
</tr>
<tr>
<td>Max Size</td>
<td>5.0” (W) x 1.50”(H) x 8.0”(L)</td>
</tr>
</tbody>
</table>

ACTIVATION

The Contractor shall send all necessary activation information from the manufacturer to the Engineer in an electronic text format. With the information provided, the State will activate the modems after installation.

GPRS ANTENNA AND ANTENNA CABLE

The antenna shall be fixed mount design and use a waterproof acrylic foam adhesive to attach to the outside surface of the controller cabinet. The adhesive should be resistant to Jet Propellant Grade 4 (JP-4), acetone, methyl ethyl ketone, motor oil and gasoline. The antenna shall come with a separate coaxial cable with appropriate connectors at each end. Connect the antenna and the GPRS modem using the cable.

The antenna shall be compatible with the GPRS modem and the existing AT & T GPRS/EDGE system. The antenna shall not be more than 1¼-inches high and 4¼-inches in diameter and it shall operate in dual bands with frequency ranges from 824 to 896 MHz and from 1850 to 1915 MHz.

<table>
<thead>
<tr>
<th>Voltage Standing Wave Ratio (VSWR) at resonant point</th>
<th>1.5:1 or less</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Impedance</td>
<td>50 Ω</td>
</tr>
<tr>
<td>Gain</td>
<td>3 dB</td>
</tr>
<tr>
<td>Horizontal Radiation Pattern</td>
<td>Omni Directional</td>
</tr>
<tr>
<td>Polarization</td>
<td>Vertical</td>
</tr>
<tr>
<td>Maximum Power Input</td>
<td>125 W</td>
</tr>
</tbody>
</table>

Contract No. 08-0M94U4
374
WARRANTY

The GPRS modem shall have a 2-year warranty by the manufacturer. The warranty shall include hardware parts and labor needed for repair. The Contractor shall provide the Engineer with warranty documentation and the appropriate manufacturer contact information. The warranty period shall begin upon Contract Acceptance.

DELIVERY

The Contractor shall deliver the GPRS modem to the Engineer 10 days before the Contractor is scheduled to activate the MVDS system. After the SIM card is installed and tested in the modem, the modem shall be given back to the Contractor for installation in the ramp meter cabinets.

TESTING

Proper operation of the GPRS modem shall be demonstrated by successfully performing a loop back test at the installation site by the Contractor. The loop back test shall involve transmitting data from the Model 170 controller to the TMC computer and monitoring the resulting return data. For success, the test shall transmit 5 minutes continuously, every hour, for one full day. The Contractor shall be responsible for developing the test procedures with documentation that include required equipment, prior to testing. The Engineer will approve the test procedures and documentation before the Contractor performs the testing. The testing shall be observed by the Engineer and the final recorded results approved by the Engineer.

PAYMENT

Full compensation for general packet radio service assembly shall be considered as included in the contract lump sum price for maintain existing traffic management system elements during construction and no separate payment will be made therefor.

10-3.21 WIRELESS VEHICLE DETECTION SYSTEM

GENERAL

Summary

This work includes installing the wireless vehicle detection system (WVDS). Comply with Section 86, "Electrical Systems," of the Standard Specifications, Department Standard Plans and these Special Provisions.

The wireless vehicle detection system (WVDS) must install vehicle sensor nodes (VSN) in the roadway, wireless repeater(s) (RP), mounted on standards along the roadway shoulder; access point(s) (AP), mounted on a standard along the roadway shoulder as shown on the plans.

Each WVDS component must be new.

Each WVDS component must be manufactured by Sensys Networks, Inc., 2560 Ninth Street, Suite 219, Berkeley, CA 94710, telephone No. (510) 548-4620.

Arrangements have been made to ensure that the Contractor can obtain the WVDS components directly from the manufacturer. The price quoted by the manufacturer for each component is as follows, not including sales tax or shipping.

<table>
<thead>
<tr>
<th>Sensys Part Number</th>
<th>Description</th>
<th>1-9</th>
<th>10-49</th>
<th>50-99</th>
<th>100-149</th>
<th>150-299</th>
<th>300+</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP240-E</td>
<td>Access Point</td>
<td>$2,534</td>
<td>$2,504</td>
<td>$2,401</td>
<td>$2,268</td>
<td>$2,134</td>
<td>$1,963</td>
</tr>
<tr>
<td>AP240-E-48PS</td>
<td>POE Injector and Power Supply</td>
<td>$145</td>
<td>$143</td>
<td>$135</td>
<td>$128</td>
<td>$120</td>
<td>$110</td>
</tr>
<tr>
<td>RP240-BH-LL</td>
<td>Repeater</td>
<td>$1,205</td>
<td>$1,195</td>
<td>$1,145</td>
<td>$1,090</td>
<td>$1,020</td>
<td>$940</td>
</tr>
<tr>
<td>KIT-MTG-EXT</td>
<td>Extended Arm Mounting Kit</td>
<td>$160</td>
<td>$158</td>
<td>$150</td>
<td>$143</td>
<td>$135</td>
<td>$125</td>
</tr>
<tr>
<td>VSN240-F</td>
<td>Flush Mount Wireless Sensor</td>
<td>$457</td>
<td>$448</td>
<td>$425</td>
<td>$402</td>
<td>$379</td>
<td>$349</td>
</tr>
<tr>
<td>VSN240-EPX</td>
<td>Epoxy (sealant)</td>
<td>$68</td>
<td>$67</td>
<td>$64</td>
<td>$60</td>
<td>$57</td>
<td>$52</td>
</tr>
</tbody>
</table>

The above price will be firm for orders placed on or before December 31, 2012, provided delivery is accepted within 90 days after the order is placed.
Warranty

The Contractor must provide the manufacturer's written warranty against defects in material and workmanship for the WVDS, for a period of 24 months after installation. After final acceptance of the WVDS, all replacement assemblies covered under warranty must be provided within 10 days after receipt of failed units at no cost to the Department. All warranty documentation must be given to the Engineer prior to installation.

Standard updates to the software must be available from the supplier without charge to the State during the warranty period.

FUNCTIONAL CAPABILITIES

The WVDS system communications must be:

A. Wireless between the VSN and the AP,
B. Wireless between RP and AP,
C. Hardwired between AP and the Transportation Management Center (TMC). The communications link between the AP, RP, and VSN must conform to the following:

1. The wireless communications link must be FCC rules conformant. The communication protocol used must be open, and must be freely available for use in the public domain. The Contractor must provide a document that completely defines the unit's communication protocol (message structure organization, data packet length as well as information necessary to make use of such messages).
2. The VSN and RP must be reconfigurable by a user over the wireless interface. Reconfiguration must avoid interference from other users of the communications band. A minimum of 16 channels must be provided for this purpose per location.

After an AP is powered on, the associated VSN must respond within 100 seconds.

The WVDS system shall provide the following measurements per lane:

A. Vehicle count in a data collection interval, in units of vehicles
B. Percent occupancy in a data collection interval, in units of 0.05 percent
C. Vehicle speeds, when more than one VSN is installed in a lane:
 1. Per vehicle, in units of miles per hour (mph)
 2. Median speed in a data collection interval, in units of mph
 3. Mean speed in a data collection interval, in units of mph
 4. Distribution of vehicle speeds in a data collection interval; in bins of < 30 mph, 30 - 34 mph, 35 - 39 mph, 75 - 79 mph, and ≥ 80 mph; in units of vehicles
D. Vehicle Length, when more than one VSN is installed in a lane:
 1. Per vehicle, in units of 0.1-feet
 2. Distribution of vehicle lengths in a data collection interval; in bins of < 20.0 feet, 20.0-39.9 feet, 40.0-59.9 feet, and ≥ 60.0 feet; in units of vehicles

The time interval for data collection must be user-selectable at a minimum of 30-second intervals. The time interval for reporting must be user selectable from a list containing at minimum, 30 seconds, 1 minute, 5 minutes, 15 minutes, 1 hour and 24 hours.

Each VSN must have the following programmable event reporting parameters:

1. Transmit interval from a minimum value of 6 seconds.
2. Reporting latency from a minimum range of 6 to 30 seconds.
4. RF watchdog timer.
5. Synchronize event reporting to AP clock or to detection events.
6. Speed Trap: measurement/time interval between 2 consecutive VSN.

The WVDS must have the capability of outputting the state of each detector (1 or 0) in real time in sync with each vehicle passage event for the traffic. This data will be available electronically via the EIA-232 or EIA-485 or Ethernet communication port in a well documented format.
VEHICLE SENSOR NODE

Each vehicle sensor node (VSN) must consist of a magnetometer sensor, a microprocessor with firmware in non-volatile memory, a wireless transceiver and a battery within a single housing.

The VSN must automatically recalibrate in the event of a detector lock within 5 minutes.

Each VSN must be individually addressable with a unique identifier, and capable of transmitting to the AP. Each VSN must also be capable of receiving detector parameters, microprocessor firmware and other commands from the AP without loss of data.

Each VSN must have the following programmable detection parameters:

1. Onset sensitivity and delay
2. Off sensitivity
3. Holdover time
4. Adaptable orientation
5. Auto-recalibration timeout

SEALANT

The sealant for the installation of the wireless detector sensor units must be a self-leveling joint sealant and will be applied at a minimum temperature of 0 °C. The surface to be bonded must be free of debris, moisture and anything else that will interfere with the sealant bond.

Excess sealant must be removed from the roadway and disposed of outside the State highway right of way as provided in Section 7-1.13 of the Standard Specifications.

WIRELESS REPEATER

Each wireless repeater (RP) and its battery shall be housed in a NEMA 4 enclosure. The enclosure with RP and battery shall be 5 inches tall by 6 inches wide by 2.5 inches deep, with a maximum weight of 5 pounds.

The RP must operate continuously over a temperature range of –37ºC to +74ºC.

ACCESS POINT

Each access point (AP) must be housed in a NEMA 4X enclosure. The enclosure with AP shall be 5 inches tall by 6 inches wide by 2.5 inches deep, with a maximum weight of 5 pounds.

Each AP shall operate using Power over Ethernet, at a maximum of 1.5 W.

The AP must operate continuously over a temperature range of –37 °C to +74 °C.

Each AP must be capable of communicating with and collecting data from a minimum of 64 VSN, either directly or via RP.

Ethernet Interface:

A. 10/100 BaseT
B. Internet Protocol (IP) address via Dynamic Host Configuration Protocol (DHCP) or static IP
C. RJ-45 bulkhead connector

TCP / IP Support:

A. Protocols supported: Telnet, FTP, HTTP, PPP, PPTP
B. Capable of port forwarding

Power:

A. 9 V(dc) to 24 V(dc) separate or 36 V(dc) to 60 V(dc) input
B. Power over Ethernet (POE) injector with 110 V(ac) to 240 V(ac) 50 Hz-60 Hz or 12 V(dc) supply

The AP must be addressable and must download vehicle count, percent occupancy and speed (only when two sensors are used per lane) when polled by the FEPT. The console port protocol must support unit setup from a local Windows 2000/XP or newer compatible laptop or from a remote location with a desktop computer.
CONFIGURATION SOFTWARE

The WVDS must include the software and documentation necessary to configure the VSN, the RP, the AP and store and retrieve detection data.

INSTALLATION AND CALIBRATION

A. The Contractor must not proceed with the installation of any WVDS component without the written approval from the Engineer.

B. The Contractor must provide personnel skilled in the installation and calibration of WVDS components.

C. Before installation, the Contractor must demonstrate to the Engineer that each installed WVDS component will operate independently and does not interfere with WVDS components at another site or other equipment in the vicinity.

D. Before installation, the Contractor must demonstrate to the Engineer that each VSN will be installed within range of its corresponding AP, using RP as needed. All VSN assigned to either an RP or AP must be located with a ± 60-degree horizontal cone, measured from perpendicular. The maximum distances between a VSN and the AP are as follows:

<table>
<thead>
<tr>
<th>AP mounting height</th>
<th>Maximum distance from VSN to AP</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 feet</td>
<td>75 feet</td>
</tr>
<tr>
<td>18 feet</td>
<td>105 feet</td>
</tr>
<tr>
<td>24 feet</td>
<td>150 feet</td>
</tr>
</tbody>
</table>

E. The Contractor must test all VSNs and demonstrate to the Engineer proper operation and communication between the VSN and the AP and RP (if necessary) prior to the installation.

F. The Contractor must install each VSN in the roadway per manufacturer's recommendations and as shown on the plans. Holes cored in the pavement must be cleaned and thoroughly dried before installing VSN. Residue resulting from core drilling must not be permitted to flow across shoulders or lanes occupied by public traffic and must be removed from the pavement surface by vacuuming or other approved method before any reside flows off the pavement surface. The cored pavement must be backfilled per manufacturer's recommendations. The Contractor must remove any excess epoxy from the roadway without the use of solvents and dispose of as provided in Section 7-1.13, "Disposal of Material outside the Highway Right-of-Way," of the Standard Specifications.

H. The Contractor must install each AP and, if necessary, each RP, per manufacturer's recommendations and as shown on the plans and conforming to Section 86-2.04, "Standards, Steel Pedestals and Posts," of the Standard Specifications.

I. After installation of all components, the Contractor must re-configure and demonstrates successful communication between each VSN, the RP (if necessary) and the AP to the Engineer.

J. The Contractor must perform the following:

1. Installation and materials must conform to the requirements of the manufacturer and these special provisions. All equipment, cables and hardware must be part of an engineered system that is specifically designed by the manufacturer to fully inter-operate with all other system components. Mounting assemblies must be corrosive resistant. Connectors installed outside the cabinets and enclosures must be corrosive resistant, weatherproof and watertight. Exposed cables must be sunlight and weather resistant. Cables must be labeled with permanent cables labels at each end.

2. Verify the performance of each site and submit recorded medium and other materials to the Engineer at the conclusion of the performance test. The accuracy of each site must be determined and documented so that each site may be approved or rejected separately by the Engineer. Failure to submit the materials at the conclusion of testing invalidates the test. The recorded medium serves as acceptance evidence and must not be used for calibration. The calibration must be completed prior to testing and verification.

3. All software needed for the analysis must be provided by the Contractor.

ACCEPTANCE TESTING

The Contractor must notify the Engineer 15 working days before the location is ready for acceptance testing. Acceptance testing must be scheduled to be conducted in the presence of the Engineer during a normal workday.
The Contractor must demonstrate the operation of all WVDS units satisfying the functional requirements of these special provisions. The Engineer has the right to reject the WVDS if the demonstration fails.

The Contractor must also provide:

A. All equipment, documentation, materials and special tools required for acceptance testing, maintenance and operation of the system.

B. All software required to program, reconfigure and support the WVDS system and any components, installed in the appropriate equipment at the time of acceptance testing, and used for the acceptance test.

Accuracy of the WVDS system must be verified by comparing the WVDS vehicle counts to recorded video image counts for the same period. Accuracy testing must be done at 5 percent of the WVD locations as selected by the Engineer. Clearly visible, recorded video images for at least one peak period must be provided for all lanes that the WVDS was installed in. The recorded video images must show the viewed detection scene, detector operation, the vehicle traffic count and time-stamp to 1/100 of a second must be made available so that the data can be overlaid on the recorded video. The 6-hour analysis periods and associated time synced data must be transferred to a DVD for viewing on a PC. The video camera must be located and oriented so that traffic is visible in all lanes. The video field of view must totally encompass the area in which vehicles are detected. The Contractor must provide a means for synchronizing the test start and test ending times or provide software that displays time stamped WVDS data along with the video images of the moving vehicles. The Contractor must provide the Engineer with the original recording medium and documentation that supports the accuracy analysis and make a copy of these materials for their own use.

A. The accuracy test must start at a date and time specified by the Engineer. The following video recording and analysis options that depend on the available traffic conditions are acceptable; however, the heaviest expected traffic conditions should be used, if possible. The minimum analysis period must be 30 minutes when the recording includes congested traffic (vehicles traveling at less than 20 mph for 5 or more minutes in any lane). The minimum analysis period must be 45 minutes when the traffic flow exceeds 1500 vehicles per hour in any lane during the test period. The minimum analysis period must be 60 minutes when the flow is less than 1500 vehicles per hour in every lane. The analysis must be based on a minimum of 500 detected vehicles in every lane and cover the same time period for all lanes. The time periods within the selected video will be selected by the Engineer. The total vehicle count for every lane must be used and include the first and last partial vehicles for each lane. Errors in the start and finish of the WVDS and manual counts are included in the performance criterion specified in these special provisions. Each real vehicle in the video must be identified as either detected correctly (DC), missed, (M), or over counted (OC).

B. WVDS unit count must be compared to vehicle counts under traffic conditions of the prior paragraph. The data accuracy shall be determined by the formula:

\[\text{Accuracy (Absolute Value)} = 100 \times \frac{1 - (\text{TC} - \text{WC})}{\text{TC}} \]

where TC = Traffic Count derived from the media recording, and

WC = WVDS reported count over the same period of time.

C. Average overall accuracy must be greater than 95 percent across all lanes. Minimum accuracy for each time period shall be greater than 90 percent per lane.

The Engineer will review the results from the acceptance testing and accept or reject the results within 7 days. Determination of any vehicle anomalies or unusual occurrences will be decided by the Engineer. Data or counts that are not agreed upon by the Engineer must be considered errors and count against the unit's calibration. If the Engineer determines that the WVDS does not meet the performance requirements, the Contractor will have 7 days to re-calibrate and re-test the unit and re-submit new test data. Following 3 failed attempts, the Contractor must replace the WVDS system with a new unit.

Repair, replacement, and retesting of WVDS components due to failure or rejection must be at the Contractor's expense.

The Contractor must provide the manufacturer's written warranty against defects in material and workmanship for the WVDS, for a period of 24 months after acceptance. After final acceptance of the WVDS, all replacement assemblies covered under warranty must be provided within 10 days after receipt of failed units at no cost to the State, except the cost of shipping. All warranty documentation must be given to the Engineer prior to installation. All replacement assemblies of the failed WVDS shall be delivered to: 175 West Cluster Street, San Bernardino, CA 92408.
Standard updates to the software must be available from the supplier without charge to the State during the warranty period.

PAYMENT

The contract lump sum price paid for WVDS includes full compensation for furnishing all labor, materials, tools, equipment, warranty and incidentals, and for doing all the work involved in installing WVDS, complete in place, set-up and configuration of the system, calibration of the device performance, verification of detector accuracy, testing, and re-testing of failed units, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-3.22 HIGH MAST LIGHTING ASSEMBLY

The high mast lighting assembly shall include the foundation, pole, luminaire lowering device system, luminaires, aircraft obstruction lights, lightning rod and a control pedestal, as shown on the plans and in conformance with these special provisions.

GENERAL

Installation of the lowering device on each pole shall be made under the supervision of a trained representative of the lowering device manufacturer. Prior to acceptance of the contract, a trained representative of the lowering device manufacturer shall demonstrate that each high mast lighting assembly operates properly. The demonstration shall consist of a minimum of 3 complete cycles of raising and lowering the luminaire ring (complete with luminaires) the full length of the ring's travel, as designed, within one working day, prior to acceptance of the project.

All portions of the high mast lighting assembly shall have a minimum design wind velocity rating of 80 mph.

The lowering device system shall be submitted for inspection and testing. Inspection and testing shall be performed at a site in California approved by the Engineer. The lowering device system shall be demonstrated at the Contractor's expense. Notification shall be given to the Engineer at least 7 days prior to demonstration.

After the high mast lighting system is in operation, an instructional video tape (VHS), complete written instructions and a demonstration to State Maintenance personnel on the maintenance of the high mast lighting assembly, including leveling of the luminaire ring and the procedures for the safe raising and lowering of the luminaire ring, shall be provided.

Spare parts, part lists and the operating, maintenance and service instructions, packaged with or accompanying the equipment installed on the project, shall be delivered to the Engineer prior to acceptance of the project.

SUBMITTALS

Submittals for the high mast lighting assembly shall conform to the provisions in Section 86-1.04, "Equipment List and Drawings," of the Standard Specifications and these special provisions. Submittals shall be delivered to the Engineer at least 45 days prior to erection of the high mast lighting assembly. The Engineer shall be allowed 45 days for the review of submittals. Review areas will include structural, welding, electrical and other areas as determined by the Engineer.

A. Descriptive data, design working drawings, erection working drawings (including aiming directions for each luminaire if the luminaire has an asymmetrical light distribution), isolux diagram for each type of luminaire, calculations, and a list of the material used for the high mast lighting assembly shall be submitted to the Engineer. The material list shall be complete with the name of manufacturer, catalog number, size, capacity, finish, pertinent ratings and identification symbols used on the plans or in the special provisions for each unit.

B. Each submittal shall consist of 5 copies.

C. Plans and detailed drawings shall be not larger than 22" x 34".

D. Each separate item submitted shall bear a descriptive title and the State contract number.

Two copies of the submittals shall be forwarded to the Office of Structure Design. The Engineer shall be given a copy of the cover letter or other notification, and date that the copies were sent to the Office of Structure Design.

INSPECTION

The high mast light poles will be inspected at the fabrication site. The Engineer shall be notified when materials have been delivered to the fabrication site. After delivery, the Engineer shall be given at least 10 days notice before fabrication of the light poles commences.
If all or a portion of the high mast poles are fabricated more than 300 air line miles from both Sacramento and Los Angeles, additional shop inspection expenses will be sustained by the State. Whereas it is and will be impracticable and extremely difficult to ascertain and determine the actual increase in such expenses, it is agreed that payment to the Contractor for furnishing said High Mast Light Poles will be reduced by $2,500 for each fabrication site located more than 300 air line miles from both Sacramento and Los Angeles and an additional $2,500 ($5,000 total) for each fabrication site located more than 3,000 air line miles from both Sacramento and Los Angeles.

CONTROL PEDESTAL

A control pedestal shall be installed in conjunction with each high mast lighting pole as shown on the plans. Unless otherwise indicated, the control pedestal shall include the following control equipment:

A. Applicable circuit breakers (ratings as indicated on the plans) for:
 1. Main breaker
 2. Branch circuits (lighting)
 3. Motor and control
 4. Receptacle
 5. Photoelectric control

B. A remote control reversing switch for winch motor control.
C. Interlock apparatus (winch motor interlocked to the high mast lighting power cable connector).
D. Photoelectric control (Type V as specified for Service Equipment Enclosure, unless otherwise indicated).
E. Duplex receptacle (120 V(ac), GFCI protected).

Construction and installation of the control pedestal and circuit breakers shall conform to the provisions for a Type III service equipment enclosure in Section 86-2.11, "Service," of the Standard Specifications and to the plans. Electrical connections and terminations shall be behind dead front panels. Live connections shall not be exposed.

Unless otherwise shown, the pedestal shall be installed a minimum of 15 feet from the high mast lighting pole with doors opening away from the pole.

CORROSION RESISTANCE

Corrosion resistance shall be provided. Methods shall include the following:

A. Avoidance of contact between stainless steel and carbon steel, between different types of stainless steel (including welding material), and between aluminum and ferrous materials.
B. Utilizing continuous welding to eliminate crevices, which retain moisture.
C. Minimizing welding of stainless steel.
D. Use of adequate sections and suitable materials to limit stress related corrosion.

POLE

The pole shall conform to the provisions in Section 86-2.04, "Standards, Steel Pedestals and Posts," of the Standard Specifications, and these special provisions.

The pole shall include shaft, access hole, access hole cover, support plate and anchor base.

The shaft shall consist of sections of a round or multisided (16 sides) tapered steel tube with a uniform taper of approximately 0.14-inch per foot. Segments of multisided poles shall be convex and shall have a minimum bend radius of 4 inches. The pole shall be hot-dip galvanized after fabrication in conformance with the provisions in Section 75-1.05, "Galvanizing," of the Standard Specifications. Steel used in fabricating the pole shall be a weldable quality steel. No field welding shall be performed in the assembly of the pole.

The pole shall have a reinforced access hole to allow adequate clearance for maintaining and servicing the lowering device. Access hole reinforcement shall provide a bending strength equal to that of the pole without an opening. Other hardware inside the pole shall accommodate the lowering device.

The access door shall be hinged to the pole, open horizontally 180 degrees, and when in the open position shall not interfere with access to the interior of the pole.

Unless otherwise shown on the plans, the pole shall be installed with the access door towards the control pedestal.
The pole shall be erected plumb. The vertical axis of the erected pole shall be within 3 inches of the theoretical vertical axis when measured without the action of sunlight or wind.

The pole shall conform to the requirements of the latest edition and interim revisions of the AASHTO "Standard Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals." The maximum allowable wind deflection shall not exceed 14 percent of the pole height.

An embossed aluminum plate shall be attached with rivets to the outside of each pole approximately 2 inches above the access hole. The nameplate shall indicate the name of the pole manufacturer and the height of the pole.

A plastic laminated data sheet shall be secured on the inside of the access hole door. The data sheet shall include the names, addresses and telephone numbers of the manufacturers of the pole, luminaire lowering device and luminaires, and the design parameters, including wind velocity, luminaires (number, wattage, model number, weight, projected area and coefficient of drag), and the weight, projected area and coefficient of drag for the pole top lowering mechanism.

LUMINAIRE LOWERING DEVICE

The luminaire lowering device shall consist of a head frame, a luminaire ring and an internal power drive winch unit.

The maximum effective projected area of the total assembly at the top of the pole, exclusive of the luminaires, shall not exceed 5 square feet.

The weight of the head frame, luminaire ring and cover shall not exceed 750 pounds.

The head frame shall be hot rolled steel conforming to the requirements in ASTM Designation: A 36. The head frame shall be attached to the pole by means of a steel slipfitter and secured by a minimum of 4 stainless steel setscrews conforming to the requirements in ASTM Designation: F 880, Type 304. The head frame shall be hot-dip galvanized in conformance with the provisions in Section 75-1.05, "Galvanizing," of the Standard Specifications.

The head frame shall be fitted with at least 6 hoisting cable sheaves, of either galvanized or stainless steel, or aluminum, with a minimum 5-inch pitch diameter. The head frame shall be fitted with electrical power cable sheaves or rollers configured to provide a minimum bending radius as specified by the power cable manufacturer.

The hoisting cable sheaves and electrical power cable sheaves or rollers shall be fitted with suitable keepers to keep the cables in their tracks during pole erection and operation. The sheaves shall be supported by stainless steel shafts and shall be fitted with oil-impregnated sintered bronze bushings or roller bearings.

At least 3 hoisting cables shall be supplied. The cables shall be 3/16 inch, minimum diameter, 7 x 19 strand, stainless steel aircraft cable, manufactured in conformance with the requirements in Military Specification MIL-8320B.

The head frame shall be provided with a cover designed for that device and securely attached with stainless steel machine screws conforming to the requirements in ASTM Designation: F 593, Type 304 and self-locking nuts conforming to the chemical requirements of ASTM Designation: F 594, Type 304, or a stainless steel clamp band. The shape of the lowering device and cover shall be symmetrical about a vertical axis.

The head frame shall also include a minimum of 3 latches which support the luminaire ring when the lowering device is not in operation. Latching shall be accomplished by the alternate raising and lowering of the luminaire ring by the winch and hoisting assembly. When the luminaire ring is raised to the top of the pole, the ring shall automatically latch and be secure in a locked position. Automatic signaling devices shall be visible to indicate that each latch of the luminaire ring is safely locked in place.

No moving latch parts or springs shall be attached to the head frame. Moving parts of the latching mechanism shall be attached to the luminaire ring and serviceable from the ground.

The luminaire ring shall be fabricated of a 6" x 2" x 0.179" (7-gage), minimum, steel channel or a member of equal strength, with the appropriate number of 2-inch nominal steel tube or pipe mounting arms to accommodate the number of luminaires shown on the plans. The pipe shall conform to the requirements of ASTM Designation: A 53. The ring shall be galvanized in conformance with the provisions in Section 75-1.05, "Galvanizing," of the Standard Specifications.

Roller-contact, spring loaded, centering arms shall be provided which shall center the luminaire ring while ascending and descending the full length of designed travel on the pole. The arm system shall keep the ring concentric with the pole in winds up to 30 mph. The rollers for the centering arms shall be a water resistant, non-marking material. Axle shafts for arms and rollers shall be stainless steel conforming to the requirements in ASTM Designation: A 276, Type 304. The arms system shall not allow the pole to be inadvertently wedged between the rollers and the luminaire ring. Ultimate support of the luminaire ring shall not be lost by individual or total spring failure.

Provisions shall be made for leveling the luminaire ring while in the lowered position. The luminaire support ring shall be level upon installation and again before completion of the contract.
A prewired 600-V(ac) terminal block in a NEMA Type 3R enclosure and a weatherproof power receptacle shall be mounted on the luminaire ring raceway. When the luminaire ring is lowered to ground level, the receptacle shall enable the luminaires to be energized and tested.

An electrical cable of sufficient length to power the luminaire ring, and with appropriate electrical connections, shall be provided to test the luminaires while in the lowered position. A circuit breaker of the rating shown on the plans and an outlet box shall be provided in the pole base.

Electrical cords shall be attached to a weathertight wiring chamber through weathertight cable connections. The main power cord shall support its full weight when installed. A positive connection between cord segments shall be provided across cord joints to prevent stress on the joints.

Power cable shall be Type SO, rated for 600 V(ac) with the number and size of conductors as required. Luminaire ring distribution cord shall be Type ST with insulation suitable for 105 °C. Twist-lock receptacles (male and female) shall be provided and shall be rated at a minimum of 30 A, 480 V(ac).

The internal drive mechanism shall raise or lower the luminaire ring at an approximate speed of 11 feet per minute. The winch shall be furnished with 1/4 inch minimum diameter 7 x 19 strand stainless steel aircraft cable, conforming to the requirements in Military Specification MIL-8320B and of sufficient length to maintain at least 4 wraps around the drum with the luminaire ring in its fully lowered position. Winch cable shall wind uniformly.

The internal power drive winch unit shall include:

A. A heavy duty, totally enclosed, fan cooled, reversible universal type motor, rated at 372 W, minimum, for continuous duty, and provided with overcurrent protection.
B. An adjustable torque limiter with ball or roller bearings on all rotating shafts.
C. A remote control reversing switch (labeled "UP" and "DOWN") with minimum 20-foot cord.
D. Worm-gear driven winch.
E. Mounting frame.
F. Other equipment as necessary.

Internal power drive winch unit components shall be removable through the access hole for repair or replacement.

LUMINAIRES

Each luminaire shall consist of a housing, a reflector, a refractor or lens, a ballast, a lamp socket and a lamp. Housings shall be fabricated of aluminum. Housings that are painted shall withstand a 1000-hour salt spray test in conformance with the requirements in ASTM Designation: B 117. Metal component parts of the housing shall be fabricated from material at least equal in corrosion resistance and finish to the metal in the housing.

The optical system, consisting of the reflector, refractor or lens, lamp socket and lamp, shall be in a sealed chamber. Sealing shall be provided by a gasket between the reflector and refractor or lens, and a gasket between the reflector and lamp socket. The chamber shall have provision for filtered flow of air in and out of the chamber due to lamp heat. Filtering shall be accomplished by either a separate filter or a filtering gasket.

The adjustable component (refractor or reflector) controlling the orientation of the light distribution of asymmetrical luminaires shall be rotatable 360 degrees around a vertical axis.

Each luminaire shall be provided with a slipfitter for mounting on a 2-inch horizontal pipe tenon and shall be adjustable to plus or minus 3 degrees from the axis of the tenon.

The surface of each reflector shall be specular and shall be silvered glass or aluminum protected by either an anodized finish or a silicate film. The reflector shall be shaped so that a minimum of light is reflected through the arc tube of the lamp.

Each refractor or lens shall be made of heat resistant glass.

Each lamp socket shall be a porcelain enclosed mogul-multiple type. The shell shall contain integral lamp grips to assure electrical contact under conditions of normal vibrations. The socket shall be rated for 1,500 W, 600 V(ac), and 4,000 V(ac) pulse (400 W lamp), or 5,000 V(ac) pulse (1,000 W lamp).

Metal halide lamps shall be vertical burning, protected from undue vibration and prevented from backing out of the socket by a stainless steel clamp attached to the luminaire.

Each luminaire shall enclose a dual fuseholder and 2 fuses rated at 5 A at 480 V(ac). Each fuse shall be the standard midget ferrule type, with "Non-Time-Delay" feature, shall be ETL or UL listed, and shall be 13/32" x 1-1/2".

The minimum light distribution for each luminaire shall be as shown on the plans.
BALLASTS
The ballast for each high mast luminaire shall consist of components (core and coils, capacitors and starting aid, if required) mounted within a weatherproof housing, which integrally attaches to the top of a luminaire support bracket and lamp support assembly. The ballast shall be readily removable without removing the luminaire from the bracket arm.

Ballasts shall be electrically connected to the optical assembly by means of a prewired quick disconnect.

Ballasts shall be the regulator type.

METAL HALIDE LAMP BALLASTS
For metal halide luminaires, the lamp wattage regulation spread at any lamp voltage, from nominal through the life of the lamp, shall vary not more than 22 percent for 1,000-W lamps, for a ± 10 percent input voltage variation. The ballast starting line current shall be less than its operating current.

Other details of ballasts for metal halide luminaires shall be as specified by the luminaire manufacturer.

METAL HALIDE LAMPS
One thousand-watt metal halide lamps shall have an initial output of 100,000 lumens and an average rated life of 12,000 hours, based on 10 hours per start.

AIRCRAFT OBSTRUCTION LIGHT
The aircraft obstruction lights shall be the double light configuration type, using red light-emitting diode (LED) technology and shall meet the following specifications:

1. Comply with FAA Specification L-810
2. Include night vision goggles (NVG) Friendly and night vision (NVIS) technology
3. Omni-directional
4. Steady-burning
5. Weather resistant
6. Corrosion resistant
7. Shock and vibration resistant
8. Input power source: 120 - 277 V(ac)
9. Minimum operating temperature: -67 °F to 131 °F

All necessary adapters, mounting brackets and hardware shall be provided to ensure proper installation as shown on the plans, as specified in these special provisions and as recommended by the manufacturer.

LIGHTNING ROD
The lightning rod shall be 5/8” minimum diameter copper, with a nickel tip. All necessary adapters, mounting brackets and hardware shall be provided to ensure proper installation as shown on the plans, as specified in these special provisions and as recommended by the manufacturer.

10-3.23 LUMINAIREs
Ballasts shall be the lag regulator.

10-3.24 LIGHT EMITTING DIODE LUMINAIREs
GENERAL
Summary
This work includes installing Light Emitting Diode (LED) luminaires. Comply with Section 86, "Electrical Systems," of the Standard Specifications

Definitions
CALiPER: Commercially available LED product evaluation and reporting. A United States Department of Energy (US DOE) program for the testing and monitoring of commercially available LED luminaires and lights.

correlated color temperature: The absolute temperature in Kelvin of a blackbody whose chromaticity most nearly resembles that of the light source.
house side lumens: Lumens from a luminaire directed to light up areas between the fixture and the pole (e.g., sidewalks at intersection or areas off of the shoulders on freeways).

junction temperature: The temperature of the electronic junction of the LED device. The junction temperature is critical in determining photometric performance, estimating operational life, and preventing catastrophic failure of the LED.

L70: The extrapolated life in hours of the luminaire when the luminous output depreciates 30 percent from initial values.

LM-79: A test method from the Illumination Engineering Society of North America (IESNA) specifying test conditions, measurements, and report format for testing solid-state lighting devices including LED luminaires.

LM-80: A test method from the IESNA specifying test conditions, measurements, and report format for testing and estimating the long term performance of LEDs for general lighting purposes.

National Voluntary Laboratory Accreditation Program (NVLAP): A US DOE program that accredits independent testing laboratories to qualify.

power factor: Ratio of the real power component to the complex power component.

street side lumens: Lumens from a luminaire directed to light up areas between the fixture and the roadway (e.g., traveled ways, freeway lanes).

surge protection device (SPD): A subsystem or component that can protect the unit against short duration voltage and current surges.

total harmonic distortion: The ratio of the root-mean-square (rms) value of the sum of the squared individual harmonic amplitudes to the rms value of the fundamental frequency of a complex waveform.

International Electrotechnical Commission (IEC): The organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

Submittals

Submit a sample luminaire to the Transportation Laboratory for testing after the manufacturer's testing is completed. Include the manufacturer's testing data.

Product submittals must include the following:

1. LED luminaire checklist.
2. Product specification sheets, including:
 2.1. Maximum power in watts.
 2.2. Maximum designed junction temperature.
 2.3. Heat sink area in square inches.
 2.4. Designed junction to ambient thermal resistance calculation with thermal resistance components clearly defined.
 2.5. L70 in hours when extrapolated for the average nighttime operating temperature.
3. IES LM-79 and IES LM-80 compliant test reports from a CALiPER-qualified or NVLAP-approved testing laboratory for the specific model submitted.
5. Initial and depreciated isofootcandle diagrams showing the specified minimum illuminance for that particular application. The diagrams must be calibrated to feet and show a 40 by 40 foot grid. The diagrams must be calibrated to the mounting height specified for that particular application. The depreciated isofootcandle diagrams must be calculated at the minimum operational life.
7. Test report showing mechanical vibration test results as tested under California Test 611 or equal.
8. Datasheets from the LED manufacturer that include information on life expectancy based on junction temperature.
9. Datasheets from power supply manufacturer that include life expectancy information.

Quality Control and Assurance

General

Production quality assurance must be performed by the luminaire manufacturer and must include statistically-controlled routine tests to ensure minimum performance levels of the modules built to comply with this specification and a documented process for resolving problems. The manufacturer must keep the process and test results documentation on file for a minimum of 7 years.

Contract No. 08-0M94U4
385
The Department may perform random sample testing on the shipments. Testing will be completed within 30 days after delivery to the Transportation Laboratory. Luminaires will be tested under California Test 678 and as specified. All parameters of the specification may be tested on the shipment sample. When testing is complete, you will be notified. You must pick up the equipment from the test site and deliver to the job site.

One sample luminaire must be fitted with a thermistor or thermo-couple temperature sensor. A temperature sensor must be mounted on the LED solder pad as close to the LED as possible. Another temperature sensor must be mounted on the power supply case. Light bar or modular systems must have 1 sensor for each module mounted as close to the center of the module. Other configurations must have at least 5 sensors per luminaire. Contact the Transportation Laboratory for advice on sensor location. Thermocouples must be either Type K or C. Thermistors must be a negative temperature coefficient type with a nominal resistance of 20 kΩ. The appropriate thermocouple wire must be used. The leads must be a minimum of 6 ft. Documentation must accompany the test unit that details the type of sensor used.

The sample luminaires must be energized for a minimum of 24 hours, at 100 percent on-time duty cycle, at a temperature of +70 °F before performing any testing.

The luminaire lighting performance must be depreciated for the minimum operating life by using the LED manufacturer's data or the data from the LM-80 test report, whichever results in a higher lumen depreciation.

Failure of the luminaire that renders the unit noncompliant with the specification will be cause for rejection. If a unit is rejected, you must allow 30 days for retesting. Retesting period starts when the replacement luminaire is delivered to test site. You must pay for all retesting costs. Delays resulting from submittal of noncompliant materials do not relieve you from executing the Contract within the allotted time.

If a luminaire submitted for testing does not comply with the specifications, remove the unit from the Transportation Laboratory within 5 business days after notification that it is rejected. If the unit is not removed within that period, it may be shipped to you at your expense.

You must pay for all shipping, handling, and transportation costs related to testing and retesting.

Warranty

Provide a 7-year replacement warranty from the manufacturer of the luminaires from the date of installation against any defects or failures. Replacement luminaires must be provided within 10 days after receipt of the failed luminaire at no cost to the Department. All warranty documentation must be submitted to the Engineer before installation. Replacement luminaires must be delivered to the Department Maintenance Electrical Shop at 175 West Cluster Street, San Bernardino, CA 92408.

MATERIALS

General

The luminaire includes an assembly that uses LEDs as the light source. The assembly includes a housing, an LED array, and an electronic driver (i.e., power supply). The luminaire must comply with the following requirements:

1. UL listed under UL 1598 for luminaires in wet locations or an equivalent standard from a recognized testing laboratory
2. Have a minimum operational life of 63,000 hours
3. Expected to operate at an average operating time of 11.5 hours per night
4. Designed to operate at an average nighttime operating temperature of 70 °F
5. Have an operating temperature range from -40 to +130 °F.
6. Defined by the following application:

<table>
<thead>
<tr>
<th>Application</th>
<th>Typically Replaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roadway 1</td>
<td>200 Watt HPS mounted at 34 ft</td>
</tr>
<tr>
<td>Roadway 2</td>
<td>310 Watt HPS mounted at 40 ft</td>
</tr>
<tr>
<td>Roadway 3</td>
<td>310 Watt HPS mounted at 40 ft with back side control</td>
</tr>
<tr>
<td>Roadway 4</td>
<td>400 Watt HPS mounted at 40 ft</td>
</tr>
</tbody>
</table>

The individual LEDs must be connected such that a catastrophic loss or a failure of 1 LED will not result in the loss of more than 20 percent of the luminous output of the luminaire.
Luminaire Identification

Each luminaire must have the following identification permanently marked inside the unit and outside of its packaging box:

1. Manufacturer's name
2. Trademark
3. Model number
4. Serial number
5. Date of manufacture (month-year)
6. Lot number
7. Project/Contract number
8. Rated voltage
9. Rated wattage
10. Rated power in VA

Electrical

The luminaire must operate from a 60 ± 3 Hz AC power line over a minimum voltage range of 95 to 250 V(ac). The fluctuations of line voltage must have no visible effect on the luminous output. The standard operating voltages are 120 and 240 V(ac). The power factor of the luminaire must be 0.90 or greater. Total harmonic distortion, current and voltage, induced into an AC power line by a luminaire must not exceed 20 percent. The maximum power consumption allowed for the luminaire depends on the application and is as shown in the following table:

<table>
<thead>
<tr>
<th>Application</th>
<th>Maximum Wattage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roadway 1</td>
<td>165</td>
</tr>
<tr>
<td>Roadway 2</td>
<td>235</td>
</tr>
<tr>
<td>Roadway 3</td>
<td>235</td>
</tr>
<tr>
<td>Roadway 4</td>
<td>300</td>
</tr>
</tbody>
</table>

Surge Suppression and Electromagnetic Interference

The luminaire on-board circuitry must include an SPD to withstand high repetition noise transients because of utility line switching, nearby lightning strikes, and other interference. The SPD must protect the luminaire from damage and failure for transient voltages and currents as defined in ANSI/IEEE C64.41.2 (Tables 1 and 4) for Location Category C-High. SPD must comply with UL 1449 depending on the components used in the design. SPD performance must be tested under ANSI/IEEE C62.45 based on ANSI/IEEE C62.41.2 definitions for standard and optional waveforms for Location Category C-High.

The luminaires and associated on-board circuitry must comply with the Class A emission limits provided in FCC title 47, subpart B, section 15 regulations concerning the emission of electronic noise.

Compatibility

The luminaire must be operationally compatible with currently used lighting control systems and photoelectric controls.

Photometric Requirements

The luminaire must maintain a minimum illuminance level throughout the minimum operating life. The L70 of the luminaire must be the minimum operating life or greater. The measurements must be calibrated to standard photopic calibrations. The minimum maintained illuminance values, measured at a point, are as shown in the following table:
<table>
<thead>
<tr>
<th>Application</th>
<th>Mounting Height (ft)</th>
<th>Minimum Maintained Illuminance (fc)</th>
<th>Light Pattern Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roadway 1</td>
<td>34</td>
<td>0.15</td>
<td>Pattern defined by ellipse with equation:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[\frac{x^2}{(82)^2} + \frac{(y - 20)^2}{(52)^2} = 1]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>where:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x = direction is longitudinal to the roadway</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>y = direction is transverse to the roadway and the luminaire is offset from the center of the pattern by 20 feet to the "house side" of the pattern.</td>
</tr>
<tr>
<td>Roadway 2</td>
<td>40</td>
<td>0.2</td>
<td>Pattern defined by ellipse with equation:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[\frac{x^2}{(82)^2} + \frac{(y - 20)^2}{(52)^2} = 1]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>where:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x = direction is longitudinal to the roadway</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>y = direction is transverse to the roadway and the luminaire is offset from the center of the pattern by 20 feet to the "house side" of the pattern.</td>
</tr>
<tr>
<td>Roadway 3</td>
<td>40</td>
<td>0.2</td>
<td>Pattern defined by ellipse with equation:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[\frac{x^2}{(92)^2} + \frac{(y - 23)^2}{(55)^2} = 1]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>for y ≥ 0 (street side)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>where:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x = direction is longitudinal to the roadway</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>y = direction is transverse to the roadway and the luminaire is offset from the center of the pattern by 23 feet to the "house side" of the pattern.</td>
</tr>
<tr>
<td>Roadway 4</td>
<td>40</td>
<td>0.2</td>
<td>Pattern defined by ellipse with equation:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[\frac{x^2}{(92)^2} + \frac{(y - 23)^2}{(55)^2} = 1]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>where:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x = direction is longitudinal to the roadway</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>y = direction is transverse to the roadway and the luminaire is offset from the center of the pattern by 23 feet to the "house side" of the pattern.</td>
</tr>
</tbody>
</table>

The luminaire must have a correlated color temperature range of 3,500 to 6,500 K. The color rendering index must be 65 or greater.

The luminaire must not allow more than:

1. 10 percent of the rated lumens to project above 80 degrees from vertical
2. 2.5 percent of the rated lumens to project above 90 degrees from vertical

Thermal Management

The thermal management of the heat generated by the LEDs must be of a sufficient capacity to assure proper operation of the luminaire over the minimum operation life. The LED maximum junction temperature for the minimum operation life must not exceed 221 °F.
The junction-to-ambient thermal resistance must be 95 °F per watt or less. Thermal management must be passive by design. The use of fans or other mechanical devices is not allowed. The heat sink material must be aluminum or other material of equal or lower thermal resistance.

The luminaire must contain circuitry that will automatically reduce the power to the LEDs to a level that will insure the maximum junction temperature is not exceeded, when the ambient outside air temperature is 100 °F or greater.

Physical and Mechanical Requirements

The luminaire must be a single, self-contained device, not requiring on-site assembly for installation. The power supply for the luminaire is integral to the unit. The maximum weight of the luminaire must not exceed 35 lb. The maximum effective projected area when viewed from either side or either end must be 1.4 sq ft. The housing must be light to medium gray color within the Federal-Standard-595 range of 26250 to 26500 for semi-gloss sheen.

The housing must be fabricated from materials designed to withstand a 3,000-hour salt spray test under ASTM B 117. All aluminum used in housings and brackets must be of a marine grade alloy with less than 0.2 percent copper. All exposed aluminum must be anodized.

Each refractor or lens must be made from UV-inhibited high impact plastic (e.g., acrylic or polycarbonate) or heat- and impact-resistant glass, and resistant to scratching. Polymeric materials of enclosures containing either the power supply or electronic components of the luminaire must be made of UL94VO flame retardant materials. The lenses of the luminaire are excluded from this requirement. Paint or powder coating of the housing must comply with section 86. A chromate conversion undercoating must be used underneath a thermoplastic polyester powder coat.

Each housing must be provided with a slip fitter capable of mounting on a 2-inch pipe tenon. This slip fitter must fit on mast arms with outside diameters from 1-5/8 to 2-3/8 inches. The slip fitter must be capable of being adjusted a minimum of ±5 degrees from the axis of the tenon and a minimum of five steps: +5, +2.5, 0, -2.5, -5. The clamping brackets of the slip fitter must not bottom out on the housing bosses when adjusted within the designed angular range. No part of the slip fitter mounting brackets on the luminaires must develop a permanent set in excess of 1/32 inch when the two or four, 3/8-inch diameter cap screws used for mounting are tightened to 10 ft-lb. Two sets of cap screws may be supplied to allow the slip fitter to be mounted on the pipe tenon in the acceptable range without the cap screws bottoming out in the threaded holes. The cap screws and the clamping brackets must be made of corrosion resistant materials or treated to prevent galvanic reactions, and be compatible with the luminaire housing and the mast-arm.

The assembly and manufacturing process for the LED luminaire must be designed to assure internal components are adequately supported to withstand mechanical shock and vibration from high winds and other sources. When tested under California Test 611, the luminaire to be mounted horizontally on the mast arm must be capable of withstanding the following cyclic loading for a minimum of 2 million cycles without failure of any luminaire parts:

<table>
<thead>
<tr>
<th>Plane</th>
<th>Power Supply</th>
<th>Minimum Peak Acceleration Level (G = acceleration due to gravity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical</td>
<td>Installed</td>
<td>3.0 G peak-to-peak sinusoidal loading (same as 1.5 G peak)</td>
</tr>
<tr>
<td>Horizontal*</td>
<td>Installed</td>
<td>1.5 G peak-to-peak sinusoidal loading (same as 0.75 G peak)</td>
</tr>
</tbody>
</table>

*Perpendicular to direction of mast arm

The housing must be designed to prevent the buildup of water on top of the housing. Exposed heat sink fins must be oriented to allow the water to freely run-off of the luminaire and carry dust and other accumulated debris away from the unit. The optical assembly of the luminaire must be protected against dust and moisture intrusion to at least NEMA rating IP66. The power supply enclosure must be protected to at least NEMA rating IP43.

Each mounted luminaire must be furnished with a photoelectric unit receptacle and a rain tight shorting cap must be provided and installed. The receptacle must comply with Section 86-6.07B, "Types," of the Standard Specifications.

Each luminaire must be furnished with a weather tight, 2 position circular connector. The connector must be compatible with MIL-DTL-26482, Series 1, with a shell size 8, and 2 position sockets in the standard orientation. The connector must satisfy level of protection against dust and moisture ingress to at least NEMA rating IP66 in the mated state. A weather tight connector cap conforming to at least NEMA rating IP66 must be installed. The dimming control leads from the PEU control wires must be installed into the connector. The grey lead must be in position 1 and the violet lead must be in position 2.
When the components are mounted on a down-opening door, the door must be hinged and secured to the luminaire housing separately from the refractor or flat lens frame. The door must be secured to the housing so to prevent its accidental opening. A safety cable must mechanically connect the door to the housing. Field wires connected to the luminaire must terminate on a barrier type terminal block secured to the housing. The terminal screws must be captive and equipped with wire grips for conductors up to No. 6. Each terminal position must be clearly identified.

The power supply must be rated for outdoor operation and have at least NEMA rating IP65. The power supply must be rated for a minimum operational life equal to the minimum operational life of the luminaire, or greater.

The power supply case's temperature must have a self-rise of 77 °F or less above ambient temperature in free air with no additional heat sinks.

The power supply must have two leads to accept standard 0-10 V(dc). Dimming control must be compatible with IEC 60929. If the control leads are open or the analog control signal is lost, the circuit must default to 100 percent power.

Conductors and terminals must be identified.

10-3.25 INTERNALLY ILLUMINATED SIGNS—LIGHT EMITTING DIODE

GENERAL

Summary

This work includes installing LED "METER ON" in Type A modified pedestrian signal. Comply with Section 86 of the Standard Specifications.

Submittals

Before shipping LED signal modules to job site, submit the following to the Transportation Laboratory:

1. Delivery form including district number, EA, and contact information
2. List containing all LED signal module serial numbers anticipated for use
3. LED signal modules

Quality Assurance Testing

Module must be one listed on the Pre-Qualified Products List for LED traffic signals at:

http://www.dot.ca.gov/hq/esc/approved_products_list

The Department will test LED signal module shipments per Normal Sampling Plan ANSI/ASQC Z1.4, Tables for Inspection by Attributes. Testing will be completed within 30 days of delivery to the Transportation Laboratory. LED signal modules tested or submitted for testing must be representative of typical production units. LED and circular LED signal modules will be tested as specified in California Test 604. Arrow, U-turn, and bicycle LED signal modules will be tested as specified in California Test 3001. All parameters of the specification may be tested on the modules. LEDs must be spread evenly across the module. LED arrow indication must provide the minimum initial luminous intensity listed. Measurements will be performed at the rated operating voltage of 120 V(ac).

Delays resulting from submittal of non-compliant materials do not relieve you from executing the contract within the allotted time. Non-compliant materials will be rejected. You must resubmit new LED for retesting and pick up the failed units within one week of notification. You must provide new LED signal modules and allow a minimum of 30 days for the retest. You must pay for all shipping and handling costs related to testing and retesting. Delays resulting from resubmittal and retesting are your responsibility and no extra time will be allowed.

After testing, you must pick up the tested LED signal modules from the Transportation Laboratory and deliver to the job site.

Warranty

You must provide the manufacturer's written warranty against defects in materials and workmanship for LED signal modules for a minimum period of 48 months after installation of LED signal modules. Replacement LED signal modules must be provided within 15 days after receipt of failed LED modules at no cost to the Department, except the cost of shipping the failed modules. All warranty documentation must be submitted to the Engineer before installation. Replacement LED signal modules must be delivered to Department Maintenance Electrical Shop at Caltrans Electrical Maintenance Yard, 175 West Cluster Street, San Bernardino, CA 92408.
MATERIALS

LED Meter on module must:

1. Be weather tight and connect directly to electrical wiring.
2. Be capable of optical unit replacement.
3. Have manufacturer's name, trademark, model number, serial number, lot number, month and year of manufacture, and required operating characteristics, including rated voltage, power consumption, and volt-ampere, permanently marked on the back of the module.
4. Be AlInGaP technology
5. Be ultra bright type rated for 100,000 hours of continuous operation from -40 to +74 °C
6. Each module must provide an average luminous intensity of at least 1,547 foot-lambert throughout the useful life over the operating temperature range.
7. The uniformity ratio of an illuminated symbol must not exceed 4 to 1 between the highest luminance area and the lowest luminance area in the module.
8. The color output of the module must conform to the requirements of Section 5.3 in the ITE Publication: Equipment and Material Standards, Chapter 3 (Pedestrian Traffic Control Signal Indications).
9. 'Meter On' must be lunar white with measured chromatical coordinates of LED module operating over a temperature range of -40 to +74 °C as follows:
 x: not less than 0.270, nor greater than 0.330
 y: not less than 1.055(x) - 0.0128, nor greater than 1.055(x) +0.0072

Lunar white color must be in conformance with the provisions in Section 86-4.06. Pedestrian Signal Faces," of the Standard Specifications.

10. Use LED as the light source.
11. Use required color and be ultra bright type rated for 100,000 hours of continuous operation from -40 to +74 °C.
12. Fit into Type A pedestrian signal modified so that the reflector must be a single chamber.
13. Be a single, self-contained device, not requiring on-site assembly for installation into standard Type A housing.
14. Module Identification
 a. Each module must have the manufacturer's name, trademark, model number, serial number, date of manufacture (month-year), and lot number as identification permanently marked on the back of the module.
 b. The following operating characteristics must be permanently marked on the back of the module: rated voltage and rated power in Watts and Volt-Ampere.

15. Maximum power consumption requirements for the LED modules are as follows (in Watts):

<table>
<thead>
<tr>
<th></th>
<th>25 °C</th>
<th>74 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Meter On"</td>
<td>15.0</td>
<td>17.0</td>
</tr>
</tbody>
</table>

LED Meter on module must have an operational lifecycle rating of 48 months. During the operational lifecycle, LED signal module must meet all parameters of this specification.

Individual LEDs must be wired such that a catastrophic loss or failure of one LED will result in loss of not more than 5 percent of the module light output. Failure of an individual LED in a string must not result in the loss of entire string or other indication.

No special tools for installation are allowed.

Wiring and terminal block must comply with Section 13.02 of ITE publication, Equipment and Material Standards, Chapter 2, "Vehicle Traffic Control Signal Heads." The LED module must be supplied with spade lugs and 3 secured, color-coded, 3-foot long, 600 V, 20 AWG minimum stranded jacketed copper wires. Wires must comply with NEC, rated for service at +105 °C.

LED Meter on module must operate:

1. At a frequency of 60 ± 3 Hz, over a voltage range from 95 to 135 V(ac), without perceptible flicker to the unaided eye. Fluctuations of line voltage must have no visible effect on luminous intensity of the indications. Rated voltage for measurements must be 120 V(ac).
2. Compatible with currently used State controller assemblies, including solid state load switches, flashers, and conflict monitors. Comply with TEES Chapters 3 and 6. If a 20 mA alternating current or less is applied to the unit, the voltage read across the 2 leads must be 15 V(ac) or less.

LED Meter on module on-board circuitry must:

1. Include voltage surge protection to withstand high-repetition noise transients. The voltage surge protection must comply with NEMA Standard TS2, Section 2.1.6.
2. Comply with FCC, Title 47, SubPart B, Section 15 regulations for Class A emission limits for electronic noise.

LED signal module must provide a power factor of 0.90 or greater.

Total harmonic distortion from current and voltage induced into an alternating current power line by LED signal module must not exceed 20 percent at an operating temperature of 25 °C.

When power is applied to LED signal module, light emission must occur within 90 ms.

Power supply must be integral to the module.

Internal components must be adequately supported to withstand mechanical shock and vibration from high winds and other sources.

Lens and LED signal module material must comply with the ASTM specifications for that material.

Enclosures containing either the power supply or electronic components of LED signal module, except lenses, must be made of UL94VO flame-retardant material.

If a specific mounting orientation is required, the LED signal module must have prominent and permanent vertical markings for accurate indexing and orientation within the signal housing. Markings must include an up arrow, or the word "UP" or "TOP."

Lenses must be 3/16 inch, minimum thickness, clear acrylic or polycarbonate plastic or 1/8 inch nominal thickness glass fiber reinforced plastic, with molded, one piece, neoprene gasket. Message lettering for "METER" must be "Series C," 4-1/2 inches high, with uniform 1/2 inch stroke, and for "ON" must be "Series C," 6 inches high, with uniform one inch stroke. Letters must be clear, transparent or translucent, with black opaque background silk screened on to the second surface of the lens.

10-3.26 PHOTOELECTRIC CONTROLS

Contactors shall be the mechanical armature type.

10-3.27 MODEL 500 CHANGEABLE MESSAGE SIGN SYSTEM

Model 500 changeable message sign (CMS) systems consist of a Model 500 changeable message sign, a Model 170E controller assembly in a completely wired Model 334LC cabinet and the required wiring and auxiliary equipment required to control the CMS shown on the plans and in conformance with these special provisions.

The Model 500 changeable message signs, wiring harness and Model 170E controller assembly including controller unit and completely wired cabinet, but without anchor bolts, will be State-furnished in conformance with the provisions in "Materials" of these special provisions.

Model 500 changeable message sign system components will conform to the requirements in "Specifications for Changeable Message Sign System," issued by the State of California, Department of Transportation, and to the addenda thereto current at the time of project advertising. Model 170E controller assemblies will conform to the requirements in "Traffic Signal Control Equipment Specifications," issued by the State of California, Department of Transportation, and to the addenda thereto current at the time of project advertising.

Attention is directed to "Sign Structures" of these special provisions.

The sign assembly shall be installed on the sign structure. The controller cabinet foundation shall be constructed as shown on the plans for Model 334 cabinets (including furnishing and installing anchor bolts), the controller cabinet shall be installed on the foundation, and the field wiring connections shall be made to the terminal blocks in the sign assembly and in the controller cabinet.

Field conductors No. 12 and smaller shall terminate with spade terminals. Field conductors No. 10 and larger shall terminate in spade or ring terminals.

A listing of field conductor terminations, in each State-furnished changeable message sign and controller cabinet, will be furnished free of charge to the Contractor at the site of the work.

The location of the foundation for each controller cabinet will be determined by the Engineer. Distance between the cabinet and the CMS structure shall be less than 250 feet.

State forces will maintain the sign assemblies. The Contractor's responsibility shall be limited to conformance with the provisions in Section 6-1.02, "State-Furnished Materials," of the Standard Specifications.
10-3.28 MODIFY COMMUNICATION SYSTEM

GENERAL
Modify communication system includes installing the following equipment and performing testing as shown on the plans, in conformance with the these special provisions and Section 86 "Electrical Systems" of the Standard Specifications:

Until the temporary fiber optic communication system is installed and approved by the Engineer, the existing fiber optic trunk line (Type B and C fiber optic cables) shall not be out of service for more than 8 consecutive hours and as directed by the Engineer.

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiber Optic Conduit</td>
</tr>
<tr>
<td>Innerduct</td>
</tr>
<tr>
<td>Fiber Optic Splice Vault</td>
</tr>
<tr>
<td>Tracer Wire</td>
</tr>
<tr>
<td>Fiber Optic Trench Delineators</td>
</tr>
<tr>
<td>Underground Warning Tape</td>
</tr>
<tr>
<td>Sealing Plugs</td>
</tr>
<tr>
<td>Fiber Optic Labeling</td>
</tr>
<tr>
<td>Fiber Optic Outside Plant Cable</td>
</tr>
<tr>
<td>Fiber Optic Cable Splices</td>
</tr>
<tr>
<td>Fiber Optic Splice Closure</td>
</tr>
<tr>
<td>Fiber Optic Splice Trays</td>
</tr>
<tr>
<td>Distribution Interconnect Package</td>
</tr>
<tr>
<td>Fiber Optic Jumpers and Pigtails</td>
</tr>
<tr>
<td>Connectors</td>
</tr>
<tr>
<td>Couplers</td>
</tr>
<tr>
<td>Interconnect and Termination Unit</td>
</tr>
<tr>
<td>Fiber Distribution Unit</td>
</tr>
<tr>
<td>Category 5E Cable</td>
</tr>
<tr>
<td>Element Fiber Optic Switch</td>
</tr>
<tr>
<td>LAN Extender</td>
</tr>
<tr>
<td>Ethernet Switch</td>
</tr>
<tr>
<td>Ethernet to Serial Converter</td>
</tr>
<tr>
<td>Modify Communication Hub</td>
</tr>
<tr>
<td>Modify Traffic Operations System Cabinet</td>
</tr>
<tr>
<td>Modify Transportation Management Center</td>
</tr>
<tr>
<td>Fiber Optic Testing</td>
</tr>
<tr>
<td>System Testing and Documentation</td>
</tr>
</tbody>
</table>

DEFINITIONS

Breakout: The cable "breakout" is produced by (1) removing the jacket just beyond the last tie-wrap point, (2) exposing 3 to 6 feet of the cable buffers, aramid strength yarn and central fiberglass strength member, and (3) cutting the aramid yarn, central strength member and the buffer tubes to expose the individual glass fibers for splicing or connection to the appropriate device.

Connector: A mechanical device used to provide a means for attaching to and decoupling from a transmitter, receiver, or another fiber (such as on a patch panel).

Connectorized: The termination point of a fiber after connectors have been affixed.

Connector Module Housing (CMH): A patch panel used in the FDU to terminate singlemode or multimode fibers with most common connector types. It may include a jumper storage shelf and a hinged door.

Couplers: Devices which mate two fiber optic connectors to facilitate the transition of optical light signals from one connector into another. They are normally located within FDFs and ITUs mounted in panels. They may also be used unmounted, to join two simplex fiber runs.

Fiber Distribution Unit (FDU): An enclosure or rack mountable unit containing both a Connector Module Housing (CMH) and a Splice Module Housing (SMH) enclosure. The units CMH and SMH may be integrated by a partition.
Interconnect/Termination Unit (ITU): A patch panel used to terminate fibers with most common connector types. It may include a jumper storage shelf and a hinge door.

Jumper: A short fiber optic cable that has connectors installed on both ends, and is used for connection within a FDU.

Launch Cable: A cable used to aid in the testing of fiber optic cables when using an OTDR. This cable helps to minimize the effects of the OTDR's launch pulse on measurement uncertainty.

Light Source: A portable fiber optic test equipment that, in conjunction with a power meter, is used to perform end-to-end attenuation testing. It contains a stabilized light source operating at the designed wavelength of the system under test. It also couples light from the source into the fiber to be received at the far end by the receiver.

Link: A passive section of the system, the ends of which are connectorized. A link may include splices and couplers. For example, a video data link may be from a F/O transmitter to a video multiplexer (MUX).

Optical Time Domain Reflectometer (OTDR): A fiber optic test equipment similar in appearance to an oscilloscope that is used to measure the total amount of power loss between two points and over the corresponding distance. It provides a visual and printed display of the relative location of system components such as fiber sections, splices and connectors as well as the losses that are attributed to each component and or defects in the fiber, splices and connectors.

Patchcord: A short jumper used to join two Connector Module Housing (CMH) couplers, and or a CMH and an active optical electronic device.

Pigtail: A short length of fiber optic cable permanently connectorized on only one end to a source, detector, or other fiber optic device. All pigtails shall be tight buffer cable.

Power Meter: A portable fiber optic test equipment that, when coupled with a light source, is used to perform end-to-end attenuation testing. It contains a detector that is sensitive to light at the designed wavelength of the system under test. Its display indicates the amount of power injected by the light source that arrives at the receiving end of the link.

Ping: For testing purposes, a "ping" is defined as a computer network administration utility used to test whether a particular host is reachable across an internet protocol (IP) network. The IP addressable equipment shall be "pinged" a minimum of 5 consecutive instances for each test.

Segment: A section of F/O cable that is not connected to any active device and may or may not have splices per the design.

Splice: The permanent joining of fiber ends to identical or similar fibers.

Splice Enclosure: An environmentally sealed container used to organize and protect splice trays. The container allows splitting or routing of fiber cables from and to multiple locations.

Splice Module Housing (SMH): Stores splice trays as well as pigtails and short cable lengths.

Splice Tray: A container used to organize and protect spliced fibers.

Splice Vault: An underground container used to house excess cable and splice enclosures.

System Performance Margin: A calculation of the overall "End to End" permissible attenuation from the fiber optic transmitter (source) to the fiber optic receiver (detector). The system performance margin should be at least 6 dB. This includes the difference between the active component link loss budget, the passive cable attenuation (total fiber loss) and the total connector/splice loss.

Tight Buffer Cable: Type of non-breakout cable construction where each glass fiber is tightly buffered (directly coated) with a protective thermoplastic coating to 900 µm with the exception of the protective thermoplastic coating. The tight buffer cable shall meet all the characteristics of the fiber in the fiber optic outside plant cable specified elsewhere in these specifications.

Glossary

F/O: Fiber optic.

FOC: Fiber optic cable.

FOIP: Fiber optic inside plant cable.

FOP: Fiber optic outside plant cable.

FOTP: Fiber optic test procedure(s) as defined by EIA/TIA standards.

WARRANTY

All equipment shall be warranted against defects and any failure, which may occur through normal use for a minimum of three (3) years from the date of contract acceptance.
FIBER OPTIC CONDUIT

Fiber optic conduit is defined as conduit that will contain innerduct or fiber optic cable, as shown on the plans. Furnishing and installing fiber optic conduit shall conform to the provisions of section “Conduit” of these special provisions and the following.

All fiber optic conduits to be installed underground shall be Type 3 Schedule 80 except as specified herein.

Minimum conduit bend radius shall be 10 times trade diameter of the conduit.

Direct coupling of Type 1 to Type 3 fiber optic conduit will be permitted at underground locations by means of an industry standard rigid non-metallic conduit coupling. The coupling shall be the type for joining threaded conduit to solvent welded conduit.

Conduit trenches in or adjacent to paved shoulders shall be backfilled within 3 calendar days.

Conduit trenches in and across traffic lanes shall be backfilled during the same work period the trench is excavated except that the top 6” of asphalt shall be placed within 3 calendar days.

Immediately prior to installing cables and innerduct, conduit shall be blown out with compressed air until all foreign material is removed.

After fiber optic cables and innerduct have been installed, the ends of conduits and innerduct shall be sealed with an approved type of conduit sealing plug.

INNERDUCT

Innerduct shall be installed wherever fiber optic cable is installed in conduit, except conduit housing Type D fiber optic cable. Wherever 4-inch conduit is required, four 3/4 inch innerducts shall be installed unless otherwise specified.

Copper cable shall not be mixed with F/O cable within the same innerduct.

Innerduct consists of an extruded flexible tubing or fabric mesh pouch, smooth corrugated or ribbed high density polyethylene (HDPE) installed inside conduit. The fiber optic cable shall be installed in the tubing. Innerduct within a conduit run shall be continuous without splices or joints. Unless otherwise shown on the plans, innerduct for this project shall be nominal 3/4 inch inside diameter, with wall thickness of 0.0906 inch ± 0.003 inch, and shall meet the following requirements:

1. Polyethylene for innerduct shall have a density of 59.6187 ±0.3121 lb/in3 (ASTM Designation: D 1505) and shall conform to the applicable requirements of ASTM Designation: D 3485, D 3035, D 2239, D 2447, and the applicable requirements of NEMA TC7 and TC2. Tensile yield strength shall be 3300 psi minimum in accordance with the requirements in ASTM Designation: D 638 retain English units

2. Different innerducts within the same conduits shall be different colors and the colors chosen shall be consistent with the required cables throughout the project. See the table below:

<table>
<thead>
<tr>
<th>Color</th>
<th>Fiber optic cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>Type A (24)</td>
</tr>
<tr>
<td>Orange</td>
<td>Type B (60)</td>
</tr>
<tr>
<td>Yellow</td>
<td>Type C (48)</td>
</tr>
<tr>
<td>Blue</td>
<td>Type E (144)</td>
</tr>
<tr>
<td>White</td>
<td>Empty</td>
</tr>
</tbody>
</table>

Pull tapes for future use shall be installed in the empty innerducts.

The innerduct shall be shipped on reels marked with the manufacturer, the contract number, and the size and length of the innerduct. The product on reels shall be covered with aluminized material to protect colors from UV deterioration during shipment and storage.

After cables, conductors or innerduct have been installed, the ends of innerducts shall be sealed with an approved type of sealing plugs.

A manufacturer recommended lubricant shall be applied between the innerducts and the conduit during installation to reduce friction.

Installation procedures shall conform to the procedures specified by the innerduct manufacturer. If the innerduct is installed using mechanical assistance, a dynamometer shall be used to record installation tension and a tension-limiting device shall be used to prevent exceeding the maximum pulling tension during installation. The tension shall be set to the manufacturer’s maximum limit. The maximum pulling tension shall be recorded for each innerduct run. The innerduct shall not be stressed beyond the maximum bending radius allowed by either the innerduct or fiber optic cable manufacturer.
Immediately prior to installing cables, innerducts shall be blown out with compressed air until all foreign material is removed. After cables have been installed, the ends of innerducts shall be sealed with an approved type of rubber conduit plug. Each innerduct shall be one continuous unit within a conduit run.

FIBER OPTIC SPLICE VAULT

Rectangular Splice Vault
Fiber optic splice vaults shall have minimum inside clearance of 3 feet (W) x 5 feet (L) x 5 feet (D). Covers shall be 2 piece torsion assisted sections. Cover marking shall be "CALTRANS FIBER OPTICS" on each cover section. Each cover section shall have inset lifting pull slots. Cover hold down bolts or cap screws and nuts shall be of brass, stainless steel, or other non-corroding metal material. Covers shall be hot dipped galvanized steel. Fiber optic splice vaults and covers shall be rated for AASHTO HS 20-44 loads and installed as detailed and where shown on the plans. A concrete encasement shall be poured around the splice vault as shown on the plans. Concrete placed around and under traffic splice vaults as shown on the plans shall contain a minimum of 20.3 lbs of portland cement per cubic foot. Hangers shall be made of a non-corroding material and be free of any sharp edges. A separate hanger shall be provided for each type of fiber optic cable and be securely fastened to the sidewall with the slack fiber optic cable neatly coiled in a figure-eight configuration. A minimum of two "U shaped" knockouts are required on each side of the vault and shall be configured to allow for future removal of the vault without disturbing the existing conduits.

Fiber Optic Splice Vault-Round
Dimensions of round traffic fiber optic splice vaults shall be as shown on the plans. Fiber optic splice vault covers shall be rated for AASHTO HS 20-44 loading and shall be installed at the locations and in the manner shown on the plans. A concrete encasement ring shall be poured around and under the splice vault. Concrete place shall be minor concrete and shall contain not less than 20.3 lbs of portland cement per cubic foot. Hangers shall be made of a non-corroding material and be free of any sharp edges. A separate hanger shall be provided for each type of fiber optic cable and be securely fastened to the sidewall of the vault allowing the slack fiber optic cable to be neatly coiled in a circular configuration. Pulling eyes shall be installed as necessary to accommodate pulling of cables. The round fiber optic vaults shall be installed at grade level in paved areas.

TRACER WIRE
Tracer wire shall be provided and placed in 4" conduits containing fiber optic cable and as shown on the plans. Tracer wire shall be a No. 12, minimum, solid copper conductor with yellow or orange Type TW, THW, RHW, or USE insulation. The tracer wire shall form a mechanically and electrically continuous line throughout the length of the trench. A minimum of 3' of slack shall be extended into each fiber optic pull box and splice vault from each direction. The wires shall be carefully placed so as not to be damaged by backfilling operations. Tracer wire may be spliced at intervals of not less than 500' and in pull boxes. Splices shall conform to Section 86-2.09, "Wiring," of the Standard Specifications.

FIBER OPTIC TRENCH DELINEATOR
Fiber optic trench delineators (flexible posts) shall conform to the provisions in Section 82, "Markers and Delineators," of the Standard Specifications and these special provisions. Delineators on flexible posts shall conform to the provisions in "Prequalified and Tested Signing and Delineation Materials" of these special provisions. Flexible posts shall be made from a flexible white plastic which shall be resistant to impact, ultraviolet light, ozone, and hydrocarbons. Flexible posts shall resist stiffening with age and shall be free of burns, discoloration, contamination, and other objectionable marks or defects which affect appearance or serviceability. Non-reflective sheeting for flexible target plates shall be the non-reflective sheeting designated for channelizers, markers, and delineators conforming to the requirements in ASTM Designation: D 4956-95 and in conformance with the provisions in "Prequalified and Tested Signing and Delineation Materials" of these special provisions.
The following information shall be added to each post by an adhesive sticker which shall be resistant to ultraviolet light, ozone, and hydrocarbons.

UNDERGROUND
FIBER OPTIC
CABLE
IN THIS AREA
W
A
R
N
I
N
G
BEFORE EXCAVATING OR
IN AN EMERGENCY
CALL
CALTRANS, SAN BERNARDINO, CA

Flexible posts shall be installed every 500 feet or at any point that the fiber optic conduit changes direction. The flexible post shall be installed directly above fiber optic conduit (in the same trench) offset enough to not hit the underground warning tape. Posts shall not be placed in front of pull boxes.

If fiber optic conduit is installed under a paved shoulder, the flexible posts shall be installed in the dirt shoulder, immediately adjacent to the paved shoulder. The message on the post shall indicate (in feet) the distance it is offset from the fiber optic conduit.

The flexible post may be installed by placing it into the trench prior to backfilling and compacting, or by placing it into an 18-inch steel anchor sleeve that is driven into the ground prior to installing the flexible post. The flexible post and anchor shall have locking tabs that prevent removal of the flexible post from the anchor sleeve.

The top of the flexible post (fiber optic trench delineator) shall be set at a height of 48 inches above ground level.

Flexible posts shall extend a minimum of 18 inches below the ground.

UNDERGROUND WARNING TAPE

Underground warning tape must be furnished, installed and placed in the trench over fiber optic conduit, as shown on in the plans.

The warning tape shall have the following:

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>PARAMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness</td>
<td>not be less than 4 mil thick</td>
</tr>
<tr>
<td>Width</td>
<td>4 inch</td>
</tr>
<tr>
<td>Material</td>
<td>pigmented polyolefin film</td>
</tr>
<tr>
<td>Tensile strength</td>
<td>minimum of 2800 psi</td>
</tr>
<tr>
<td>Elongation</td>
<td>minimum of 500 percent elongation before breakage</td>
</tr>
<tr>
<td>Printed Text height</td>
<td>0.75-inch</td>
</tr>
<tr>
<td>Message background color</td>
<td>bright orange color background</td>
</tr>
<tr>
<td>Message statement</td>
<td>CAUTION: BURIED FIBER OPTIC CABLE - CALTRANS</td>
</tr>
<tr>
<td>Message spacing intervals</td>
<td>approximately 30 inch</td>
</tr>
</tbody>
</table>

The printed warning must not be removed by the normal handling and burial of the tape and must be rated to last the service life of the tape.

The construction of the warning tape must be such that it will not delaminate when it is wet. It must be resistant to insects, acid, alkaline and other corrosive elements in the soil.

Warning tape shall be manufactured by Condux International, Inc.; Allen System, Inc.; Reef Industries, Inc. or equal.
SEALING PLUGS

Except as otherwise noted, all conduits containing fiber optic cables and innerducts shall have their ends sealed with commercial preformed sealing plugs which prevent the passage of gas, dust and water into these conduits and their included innerducts. Sealing plugs shall be installed within each splice vault, fiber optic pull box, or cabinet.

Sealing plugs shall be removable and reusable. Plugs sealing innerducts, conductor or cable shall be the split type that permits installation or removal without removing conductors or cables.

Sealing plugs shall seal the conduit and all innerducts simultaneously with one self contained assembly having an adjustable resilient filler of polyurethane elastomer clamped between backing ends and compressed with stainless steel hardware. Sealing plugs shall be capable of withstanding a pressure of 5 psi.

Sealing plugs shall seal each innerduct individually with appropriate sizes and configuration to accommodate either empty ducts or those containing fiber optic cable. To provide suitable sealing between the varying size cables and the plugs, split polyurethane elastomer adapting sleeves, used singularly or in multiples, shall be inserted within the body of the plugs.

A sealing plug that seals an empty conduit or innerduct shall have an eye or other type of capturing device (on the side of the plug that enters the conduit) to attach onto the pull tape, so the pull tape will be easily accessible when the plug is removed.

FIBER OPTIC LABELING

Abbreviation

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUB</td>
<td>HUB.X</td>
</tr>
<tr>
<td>VAULT</td>
<td>VXX.X</td>
</tr>
<tr>
<td>CAMERA</td>
<td>CXX.X</td>
</tr>
<tr>
<td>TOS</td>
<td>TXX.X</td>
</tr>
<tr>
<td>PULL BOX</td>
<td>FXX.X</td>
</tr>
<tr>
<td>VDS</td>
<td>IXX.X</td>
</tr>
<tr>
<td>RAMP METER</td>
<td>RXX.X</td>
</tr>
</tbody>
</table>

The X's denote the post miles of the above elements.

Pigtails

<table>
<thead>
<tr>
<th>Cable Type</th>
<th>From</th>
<th>To</th>
<th>Fiber No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>-XXX.X</td>
<td>-XXX.X</td>
<td>-XX</td>
</tr>
</tbody>
</table>

A label shall be placed on each pigtail near the connector showing the point of origin of the link and the termination of the link. A label with the fiber number being spliced shall be placed on the end of the pigtail near the splice.

Example labeling: C-HUB.A-C44.5-10.

Splice Vaults

<table>
<thead>
<tr>
<th>Cable Type</th>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>-XXX.X</td>
<td>-XXX.X</td>
</tr>
</tbody>
</table>

A label shall be placed on Type A, B, C, and D cables as they enter and exit each splice vault. A label shall be placed on the cable inside the closed circuit television, traffic signal controller and ramp meter controller cabinet.

Example labeling: C-HUB.A-HUB.C
Example labeling: D-C044.5-V044.8

Jumpers

<table>
<thead>
<tr>
<th>Equipment From</th>
<th>Equipment To</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID No. by</td>
<td>ID No. by</td>
</tr>
</tbody>
</table>

Both ends shall be labeled near the connector. The label shall be the same on both ends and denote where the ends of the jumper are plugged into.
Splice Trays
A label shall be placed on each splice tray explaining the splices in the tray.

FIBER OPTIC OUTSIDE PLANT CABLE
Each fiber optic outside plant cable (FOOP) for this project shall be all dielectric, gel filled or water-blocking material, duct type, with loose buffer tubes and shall conform to these special provisions. Cables shall be 48 and 144 singlemode (SM) with dual-window (1310 nm and 1550 nm) fibers.

The optical fibers shall be contained within loose buffer tubes. The loose buffer tubes shall be stranded around an all dielectric central member. Aramid yarn or fiberglass shall be used as a primary strength member, and a polyethylene outside jacket shall provide for overall protection.

All fiber optic (F/O) cable on this project shall be from the same manufacturer, who is regularly engaged in the production of this material. The cable shall be qualified as compliant with Rural Utilities Service (RUS) Chapter XVII, Title 7, Section 1755.900.

<table>
<thead>
<tr>
<th>CABLE TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>48 SMFO</td>
</tr>
<tr>
<td>E</td>
<td>144 SMFO</td>
</tr>
</tbody>
</table>

Fiber Characteristics
Each optical fiber shall be glass and consist of a doped silica core surrounded by concentric silica cladding. All fibers in the buffer tube shall be usable fibers, and shall be sufficiently free of surface imperfections and occlusions to meet the optical, mechanical, and environmental requirements of these specifications. The required fiber grade shall reflect the maximum individual fiber attenuation, to guarantee the required performance of each and every fiber in the cable.

The coating shall be a dual layered, UV cured acrylate and shall be mechanically or chemically strippable without damaging the fiber.

The cable shall comply with the optical and mechanical requirements over an operating temperature range of -40 to +70 °C. The cable shall be tested in accordance with EIA-455-3A (FOTP-3), "Procedure to Measure Temperature Cycling Effects on Optical Fiber, Optical Cable, and Other Passive Fiber Optic Components." The change in attenuation at extreme operational temperatures (-40 to +70 °C) for singlemode fiber shall not be greater than 0.20 dB/km, with 80 percent of the measured values no greater than 0.10 dB/km. The singlemode fiber measurement is made at 1550 nm.

For all fibers the attenuation specification shall be a maximum attenuation for each fiber over the entire operating temperature range of the cable.

Singlemode fibers within the finished cable shall meet the requirements in the following table:
Fiber Characteristics Table

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Singlemode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Step Index</td>
</tr>
<tr>
<td>Core diameter</td>
<td>8.3 µm (nominal)</td>
</tr>
<tr>
<td>Cladding diameter</td>
<td>125 ±1.0 µm</td>
</tr>
<tr>
<td>Core to Cladding Offset</td>
<td>≤0.8 µm</td>
</tr>
<tr>
<td>Coating Diameter</td>
<td>250 ±15 µm</td>
</tr>
<tr>
<td>Cladding Non-circularity defined as:</td>
<td>[1-(Min cladding Dia ÷ Max cladding Dia)] x 100</td>
</tr>
<tr>
<td>Proof/Tensile Test</td>
<td>345 MPa, Min</td>
</tr>
<tr>
<td>At 1310 nm</td>
<td>≤0.4 dB/km</td>
</tr>
<tr>
<td>At 1550 nm</td>
<td>≤0.3 dB/km</td>
</tr>
<tr>
<td>Attenuation at the Water Peak</td>
<td>≤2.1 dB/km At 1383 ± 3 nm</td>
</tr>
<tr>
<td>Chromatic Dispersion:</td>
<td></td>
</tr>
<tr>
<td>Zero Dispersion Wavelength</td>
<td>From 1301.5 to 1321.5 nm</td>
</tr>
<tr>
<td>Zero Dispersion Slope</td>
<td>≤0.092 ps/(nm²*km)</td>
</tr>
<tr>
<td>Maximum Dispersion:</td>
<td>≤3.3 ps/(nm*km) for 1285 – 1330 nm</td>
</tr>
<tr>
<td></td>
<td><18 ps/(nm*km) for 1550 nm</td>
</tr>
<tr>
<td>Cut-Off Wavelength</td>
<td><1260 nm</td>
</tr>
<tr>
<td>Mode Field Diameter (Petermann II)</td>
<td>9.3 ± 0.5 µm at 1300 nm</td>
</tr>
<tr>
<td></td>
<td>10.5 ± 1.0 µm at 1550 nm</td>
</tr>
</tbody>
</table>

Color Coding

In buffer tubes containing multiple fibers, each fiber shall be distinguishable from others in the same tube by means of color coding according to the following:

<table>
<thead>
<tr>
<th>1. Blue (BL)</th>
<th>7. Red (RD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Orange (OR)</td>
<td>8. Black (BK)</td>
</tr>
<tr>
<td>3. Green (GR)</td>
<td>9. Yellow (YL)</td>
</tr>
<tr>
<td>5. Slate (SL)</td>
<td>11. Rose (RS)</td>
</tr>
<tr>
<td>6. White (WT)</td>
<td>12. Aqua (AQ)</td>
</tr>
</tbody>
</table>

Buffer tubes containing fibers shall also be color coded with distinct and recognizable colors according to the same table listed above for fibers.

These colors shall be targeted in accordance with the Munsell color shades and shall meet EIA/TIA-598 “Color Coding of Fiber Optic Cables.”

The color formulation shall be compatible with the fiber coating and the buffer tube filling compound, and be heat stable. It shall not fade or smear or be susceptible to migration and it shall not affect the transmission characteristics of the optical fibers and shall not cause fibers to stick together.

The fiber optic cable samples of 10 feet length with part numbers, original catalogue and documents from manufactures shall be submitted to the Engineer.

Cable Construction

The fiber optic cable shall consist of, but not be limited to, the following components:

1. Buffer tubes
2. Central member
3. Filler rods
4. Stranding
5. Core and cable flooding
6. Tensile strength member
7. Ripcord
8. Outer jacket
1. **Buffer Tubes**

 Clearance shall be provided in the loose buffer tubes between the fibers and the inside of the tube to allow for expansion without constraining the fiber. The fibers shall be loose or suspended within the tubes. The fibers shall not adhere to the inside of the buffer tube. Each buffer tube shall contain a maximum of 12 fibers.

 The loose buffer tubes shall be extruded from a material having a coefficient of friction sufficiently low to allow free movement of the fibers. The material shall be tough and abrasion resistant to provide mechanical and environmental protection of the fibers, yet designed to permit safe intentional "scoring" and breakout, without damaging or degrading the internal fibers.

 Buffer tube shall contain a water swellable yarn or a filling compound that shall be an absorbent polymer, which fills voids and swells to block the ingress of water. The filling compound shall be non-toxic and dermatologically safe to exposed skin. It shall be chemically and mechanically compatible with all cable components, non-nutritive to fungus, non-hygroscopic and electrically non-conductive. The filling compound shall be free from dirt and foreign matter and shall be readily removable with conventional nontoxic solvents.

 Buffer tubes shall be stranded around a central member by a method, such as the reverse oscillation stranding process, that will prevent stress on the fibers when the cable jacket is placed under strain.

2. **Central Member**

 The central member which functions as an anti-buckling element shall be a glass reinforced plastic rod with similar expansion and contraction characteristics as the optical fibers and buffer tubes. A linear overcoat of low-density polyethylene shall be applied to the central member to achieve the optimum diameter and to ensure proper spacing between buffer tubes during stranding.

3. **Filler Rods**

 Filler rods may be included in the cable to maintain the symmetry of the cable cross-section. Filler rods shall be solid medium or high-density polyethylene. The diameter of filler rods shall be the same as the outer diameter of the buffer tubes.

4. **Stranding**

 Completed buffer tubes shall be stranded around the overcoated central member using stranding methods, lay lengths and positioning such that the cable shall meet mechanical, environmental and performance specifications. A polyester binding shall be applied over the stranded buffer tubes to hold them in place. Binders shall be applied using tension sufficient to secure the buffer tubes to the central member without crushing the buffer tubes. The binders shall be non-hygroscopic, non-wicking (or rendered so by the flooding compound), and dielectric with low shrinkage.

5. **Core and Cable Flooding**

 The cable core interstices shall contain a water blocking material, to prevent water ingress and migration. The water blocking material shall be an absorbent polymer, which fills voids and swells to block the ingress of water. The flooding compound or material shall be homogeneous, non-hygroscopic, electrically non-conductive, and non-nutritive to fungus. The compound or material shall also be nontoxic, dermatologically safe and compatible with all other cable components.

6. **Tensile Strength Member**

 Tensile strength shall be provided by high tensile strength aramid yarns or fiberglass which shall be helically stranded evenly around the cable core and shall not adhere to other cable components.

7. **Ripcord**

 The cable shall contain at least one ripcord under the jacket for easy sheath removal.

8. **Outer Jacket**

 The jacket shall be free of holes, splits, and blisters and shall be medium or high-density polyethylene (PE), or medium density cross-linked polyethylene with minimum nominal jacket thickness of 0.040 ± 0.003 in. Jacketing material shall be applied directly over the tensile strength members and water blocking material and shall not adhere to the aramid strength material. The polyethylene shall contain carbon black to provide ultraviolet light protection and shall not promote the growth of fungus.

 The jacket or sheath shall be marked with the manufacturer's name, the words "Optical Cable", the number of fibers, "SM", year of manufacture, and sequential measurement markings every meter. The actual length of the cable shall be exactly or not greater than 1 percent of the length marking. The marking shall be in a contrasting color to the cable jacket. The height of the marking shall be 100 ± 10 mil.
General Cable Performance Specifications

The fiber optic cable shall withstand water penetration when tested with a 3 feet static head or equivalent continuous pressure applied at one end of 3 feet length of filled cable for one hour. No water shall leak through the open cable end. Testing shall be done in accordance with ANSI/EIA-455-82 (FOTP-82), "Fluid Penetration Test for Fluid-Blocked Fiber Optic Cable."

A representative sample of cable shall be tested in accordance with ANSI/EIA/TIA-455-81A, "Compound Flow (Drip) Test for Filled Fiber Optic Cable." The test sample shall be prepared in accordance with Method A. No preconditioning period shall be conducted. The cable shall exhibit no flow (drip or leak) at 70 °C as defined in the test method.

Crush resistance of the finished fiber optic cables shall be 220 N/mm applied uniformly over the length of the cable without showing evidence of cracking or splitting when tested in accordance with EIA-455-41 (FOTP-41), "Compressive Loading Resistance of Fiber Optic Cables". The average increase in attenuation for the fibers shall be ≤0.10 dB at 1550 nm (singlemode) for a cable subjected to this load. The cable shall not exhibit any measurable increase in attenuation after removal of load. Testing shall be in accordance with EIA-455-41 (FOTP-41), except that the load shall be applied at the rate from 0.10 to 0.75 in per minute and maintained for 10 minutes.

The cable shall withstand 25 cycles of mechanical flexing at a rate of 30 ± 1 cycles/minute. The average increase in attenuation for the fibers shall be ≤0.20 dB at 1550 nm (singlemode) at the completion of the test. Outer cable jacket cracking or splitting observed under 10x magnification shall constitute failure. The test shall be conducted in accordance with EIA-455-104 (FOTP-104), "Fiber Optic Cable Cyclic Flexing Test," with the sheave diameter a maximum of 20 times the outside diameter of the cable. The cable shall be tested in accordance with Test Conditions I and II of (FOTP-104).

The cable shall withstand 20 impact cycles. Impact testing shall be conducted in accordance with TIA/EIA-455-25B (FOTP-25) "Impact Testing of Fiber Optic Cables and Cable Assemblies." The average increase in attenuation for the fibers shall be <0.20 dB at 1550 nm for singlemode fiber. The cable shall not exhibit evidence of cracking or splitting.

The finished cable shall withstand a tensile load of 610 lbs without exhibiting an average increase in attenuation of greater than 0.20 dB (singlemode). The test shall be conducted in accordance with EIA-455-33 (FOTP-33), "Fiber Optic Cable Tensile Loading and Bending Test." The load shall be applied for one-half hour in Test Condition II of the EIA-455-33 (FOTP-33) procedure.

Packaging and Shipping Requirements

The completed cable shall be packaged for shipment on reels. The cable shall be wrapped in a weather and temperature resistant covering. Both ends of the cable shall be sealed to prevent the ingress of moisture.

Each end of the cable shall be securely fastened to the reel to prevent the cable from coming loose during transit. 10 feet of cable length on each end of the cable shall be accessible for testing.

Each cable reel shall have a durable weatherproof label or tag showing the manufacturer's name, the cable type, the actual length of cable on the reel, the Contractor's name, the contract number, and the reel number. A shipping record shall also be included in a weatherproof envelope showing the above information and also include the date of manufacture, cable characteristics (size, attenuation, bandwidth, etc.), factory test results, cable identification number and any other pertinent information. The waterproof envelope shall be only removed by the Engineer upon delivery to the job site for testing.

The minimum hub diameter of the reel shall be at least thirty times the diameter of the cable. The fiber optic cable shall be in one continuous length per reel with no factory splices in the fiber. Each reel shall be marked to indicate the direction the reel should be rolled to prevent loosening of the cable.

Installation procedures and technical support information shall be furnished at the time of delivery.

Cable Installation

Installation procedures shall be in conformance with the procedures specified by the cable manufacturer for the specific cable being installed. The Contractor shall submit to the Engineer the manufacturer's recommended procedures for pulling fiber optic cable at least 20 working days prior to installing cable. Mechanical aids may be used provided that a tension measuring device, and a breakaway swivel are placed in tension to the end of the cable. The tension in the cable shall not exceed 500 lb-force or the manufacturer's recommended pulling tension, whichever is less.

During cable installation, the bend radius shall be maintained at a minimum of twenty times the outside diameter. The cable grips for installing the fiber optic cable shall have a ball bearing swivel to prevent the cable from twisting during installation. The final installed bend radius of the fiber optic cable shall be no less than ten times the outside diameter of the cable.
Fiber optic cable shall be installed using a cable pulling lubricant recommended by the FO cable and the innerduct manufacturer. The Contractor's personnel shall be stationed at each splice vault and pull box through which the cable is to be pulled to lubricate and prevent kinking or other damage.

Fiber optic cable shall be installed without splices except where specifically allowed on the plans. If splice locations are not shown on the plans, splicing shall be limited to one cable splice every 3.7 mile. Any midspan access splice or FDU termination shall involve only those fibers being spliced as shown on the plans. Cable splices shall be located in splice closures, installed in splice vaults shown on the plans. A minimum of 120 feet of slack shall be provided for each fiber optic cable at each splice vault. Slack shall be divided equally on each side of the F/O splice closure.

Unless shown or provided otherwise, only fiber optic cable shall be installed in each innerduct. Pulling a separate fiber optic cable into a spare duct to replace damaged fiber will not be allowed.

At the Contractor's option, the fiber may be installed using the air blown method. If integral innerduct is used, the duct splice points or any temporary splices of innerduct used for installation must withstand a static air pressure of 110 lb/in².

The fiber installation equipment must incorporate a mechanical drive unit or pusher, which feeds cable into the pressurized innerduct to provide a sufficient push force on the cable, which is coupled with the drag force created by the high-speed airflow. The unit must be equipped with controls to regulate the flow rate of compressed air entering the duct and any hydraulic or pneumatic pressure applied to the cable. It must accommodate longitudinally ribbed, or smooth wall ducts from nominal 0.63 to 2.0 inches inner diameter. Mid assist or cascading of equipment must be for the installation of long cable runs. The equipment must incorporate safety shutoff valves to disable the system in the event of sudden changes in pneumatic or hydraulic pressure.

The equipment must not require the use of a piston or any other air-capturing device to impose a pulling force at the front end of the cable, which also significantly restricts the free flow of air through the inner duct. It must incorporate the use of a counting device to determine the speed of the cable during installation and the length of the cable installed.

FIBER OPTIC CABLE SPLICES

Fiber optic cable splices shall be done either in splice vaults or cabinets as shown on the plans. All splices in splice vaults shall be done in splice trays, housed in splice closures. All splices in the cabinets shall be done in splice trays housed in ITU’s or FDU’s.

Unless otherwise specified, fiber splices shall be the fusion type. The mean splice loss shall not exceed 0.07 dB per splice. The mean splice loss shall be obtained by measuring the loss through the splice in both directions and then averaging the resultant values. A test of a splice in a pigtail shall have a minimum 1000 foot single mode launch cable attached to the fiber being tested. The splice loss test values shall be tabulated in computer spreadsheet format and provided to the Engineer for approval.

All splices shall be protected with a metal reinforced thermal shrink sleeve.

The mid-span access method shall be used to access the individual fibers in a cable for splicing to another cable as shown on the plans. Cable manufacturers recommended procedures and approved tools shall be used when performing a mid-span access. Only the fibers to be spliced may be cut. All measures shall be taken to avoid damaging buffer tubes and individual fibers not being used in the mid-span access.

The individual fibers shall be looped one full turn within the splice tray to avoid micro bending. A 2 in minimum bend radius shall be maintained during installation and after final assembly in the optical fiber splice tray. Each bare fiber shall be individually restrained in a splice tray. The optical fibers in buffer tubes and the placement of the bare optical fibers in the splice tray shall be such that there is no discernable tensile force on the optical fiber.

The Contractor will be allowed to splice a total of 2 fibers to repair any damage done during mid-span access splicing without penalty. The Contractor will be assessed a penalty of $300.00 for each additional and unplanned splice. Any single fiber may not have more than 3 unplanned splices. If any fiber requires more than 3 unplanned splices, the entire length of fiber optic cable must be replaced at the Contractor's expense.

FIBER OPTIC SPLICE ENCLOSURE

The fiber optic field splices shall be enclosed in a splice enclosure which shall be complete with splice organizer trays, brackets, clips, cable ties, seals and sealant, as needed. The splice closure shall be suitable for a direct burial or pull box application. Manufacturer's installation instructions shall be supplied to the Engineer prior to the installation of any splice closures. Location of the splice enclosures shall be where a splice is required as shown on the plans, designated by the Engineer, or described in these special provisions.
The splice enclosure shall conform to the following specifications:

1. Non-filled thermoplastic case.
2. Rodent proof, waterproof, re-enterable and moisture proof.
3. Expandable from 2 cables per end to 8 cables per end by using adapter plates.
4. Cable entry ports shall accommodate 0.40-inch to 1-inch diameter cables.
5. Multiple grounding straps.
6. Accommodate up to 8 splice trays.
7. Suitable for “butt” or “through” cable entry configurations.
8. Place no stress on finished splices within the splice trays.
9. Splice enclosures shall be attached by bolted suitable hangers to the sidewall of the splice vault.

The splice enclosure shall be bolted to the sidewall of the splice vault.

The Contractor shall verify the quality of each splice prior to sealing the splice enclosure. The splice enclosure shall not be sealed until link testing is performed and is approved by the Engineer.

All materials in the enclosures shall be nonreactive and shall not support galvanic cell action. The outer enclosure shall be compatible with the other enclosure components, the inner enclosure, splice trays, and cables.

The end plate shall consist of two sections and shall have capacity for two fiber optic trunk communication cables and 2 fiber optic branch cables.

The outer enclosure shall protect the splices from mechanical damage, provide strain relief for the cable, and shall be resistant to salt corrosion.

The outer enclosure shall be waterproof, re-enterable and shall be sealed with a gasket. The outer enclosure shall be flash-tested at 14.9 psi.

The inner enclosure shall be of metallic construction, shall be compatible with the outer enclosure and the splice trays and shall allow access to and removal of individual splice trays.

The Contractor shall install the fiber splice enclosure in the splice vaults where splicing is required. The fiber optic splice enclosures shall be securely fastened or bolted to the side wall of the splice vault using standard hardware found in communication manholes.

The Contractor shall provide all mounting hardware required to securely mount the enclosures to the splice vault. Each splice enclosure shall be filled to capacity with splice trays.

The fiber splice enclosure shall be mounted horizontally in a manner that allows the cables to enter at the end of the enclosure. Not less than 27 feet of each cable shall be coiled in the vault to allow the fiber splice enclosure to be removed for future splicing.

The unprotected fibers exposed for splicing within the enclosure shall be protected from mechanical damage using the fiber support tube or tubes and shall be secured within the fiber splice enclosure.

The enclosure shall be sealed using a procedure recommended by the manufacturer that will provide a waterproof environment for the splices. Encapsulant shall be injected between the inner and outer enclosures.

Care shall be taken at the cable entry points to ensure a tight salt resistant and waterproof seal is made which will not leak upon aging. It is acceptable to have multiple pigtails enter the fiber splice enclosure through one hole as long as all spaces between the cables are adequately sealed.

FIBER OPTIC SPLICE TRAYS

Fiber optic splice trays shall accommodate fusion splices and shall allow for a minimum bend radius of 1.8 inches. Individual fibers must be looped one full turn within the splice tray to allow for future splicing. No stress is to be applied on the fiber when it is located in its final position. Buffer tubes must be secured near the entrance of the splice tray to reduce the chance that an inadvertent tug on the pigtail will damage the fiber. The splice tray cover shall be transparent.

Splice trays in the splice enclosure shall conform to the following:

1. Accommodate up to 24 fusion splices.
2. Place no stress on completed within the tray.
3. Stackable with a snap-on hinge cover.
4. Buffer tubes securable with channel straps.
5. Must be able to accommodate a fusion splice with the addition of an alternative splice holder.
6. Must be labeled after splicing is completed.

Only one single splice tray may be secured by a bolt through the center of the tray in the fiber termination unit. Multiple trays must be securely held in place as per the manufacturer's recommendation.

The splice trays shall be compatible with the inner enclosure and shall be constructed of rigid plastic or metal.
Adequate splice trays shall be provided to splice all fibers of the largest fiber optic cable, plus 12 pigtails. Upon completion of the splices, the splice trays shall be secured to the inner enclosure.

DISTRIBUTION INTERCONNECT PACKAGE

Distribution involves connecting the fibers to the active electronic components. The distribution equipment consists of FDUs or ITUs with connector panels, couplers, splice trays, fiber optic pigtails and cable assemblies with connectors. The distribution interconnect package shall be assembled and tested by a company who is regularly engaged in the assembly of these packages. Attention is directed to "Fiber Optic Testing" elsewhere in these special provisions. All distribution components shall be products of the same manufacturers, who are regularly engaged in the production of these components, and the respective manufacturers shall have quality assurance programs.

Distribution Breakout

The jacketed cable shall be lashed with tie wraps to the rack prior to entering the FDU or ITU. The cable shall also be tie-wrapped to the inside of the FDU or ITU near the point of entry. The glass fibers shall not be damaged during cutting and removal of the buffer tubes.

The jacketed area and bare fibers shall be cleaned to remove the moisture blocking gel. The transition from the buffer tube to the bundle of jacketed fibers shall be treated by an accepted procedure for sleeve tubing, shrink tube and silicone blocking of the transition to prevent future gel leak. A subsequent transition shall then be made, with flexible tubing, to isolate the fiber bundles of each buffer tube to serve as a transition from the bundle to the separation point and to protect the individual coated fibers. The last transition point (bundle to single fiber) shall consist of inserting the individual fibers into 26 AWG clear teflon tubing, to protect the fiber as it is routed toward the splice tray and to allow clear color identification of fibers for proper distribution. The final transition from bundle to individual fiber tube shall be secured with an adhesive heat shrink sleeve.

All fibers terminating in a cabinet or rack shall be properly terminated inside a FDU or ITU.

FIBER OPTIC JUMPERS AND PIGTAILS

Jumpers and pigtails shall be products of the same manufacturer. The cable used for jumpers and pigtails shall be made of fiber meeting the performance requirements of these special provisions for the F/O cable being connected.

Jumpers

1. Jumpers may be of simplex or duplex design. Duplex jumpers shall be of duplex round cable construction.
2. All jumpers shall be at least 6 feet in length, sufficient to avoid stress and orderly routing.
3. The outer jacket of duplex jumpers shall be colored yellow.
4. The two inner simplex jackets shall be color coded white and slate, respectively, to provide easy visual identification for polarity.

Pigtails

1. Pigtails shall be of simplex (one fiber) or duplex (two fibers) construction, in 900 µm tight buffer form, surrounded by aramid for strength, with a PVC jacket with manufacturer identification information and have nominal outer jacket diameter as 0.12-inch. Singlemode cable jackets shall be yellow in color.
2. Duplex pigtails shall be of duplex round cable construction, and shall not have zipcord (siamese) construction.
3. The two inner simplex jackets shall be color coded white and slate, respectively, to provide easy visual identification for polarity.
4. All pigtails shall be factory terminated and at least 3 feet in length.

CONNECTORS

SC Connectors

SC type connectors shall meet the requirements of EIA/TIA-568A except as specified below. Indoor SC connector body housings shall be either nickel plated zinc or glass reinforced polymer construction. Outdoor SC connector body housings shall be of polymer construction.

All fiber optic connectors shall have a 0.1 inch diameter, Zirconia Ceramic, SC connector ferrule with a PC (Physical Contact) pre-radius tip.

The SC connector operating temperature range shall be -40 to +70 °C. Insertion loss shall not exceed 0.4 dB for singlemode and the return reflection loss on connectors shall be at least 50 dB. Connection durability shall be less than a 0.2 dB change per 500 mating cycles per EIA-455-21A (FOTP-21).
All terminations shall provide a minimum 50 lb-force pullout strength. Factory test results shall be documented and submitted to the Engineer prior to installing any of the connectors. Singlemode connectors shall have a blue color on the shroud and a white color on the boot in accordance with the Munsell color shades specified elsewhere, that renders them easily identifiable.

Field terminations shall be limited to splicing of adjoining cable ends and cables to SC pigtailed.

ST Connectors

ST type connectors shall meet the requirements of EIA/TIA-568A except as specified below. ST connector body housings shall be of polymer construction.

All fiber optic connectors shall have a 0.1 inch diameter, Zirconia Ceramic, ST connector ferrule with a PC (Physical Contact) pre-radius tip.

The ST connector operating temperature range shall be -40 to +70 °C. Insertion loss shall not exceed 0.5 dB, for either singlemode, and the return reflection loss on singlemode connectors shall be at least 40 dB. Connection durability shall be less than a 0.2 dB change per 500 mating cycles per EIA-455-21A (FOTP-21). All terminations shall provide a minimum 50 lb-force pullout strength. Factory test results shall be documented and submitted to the Engineer prior to installing any of the connectors. Singlemode connectors shall have a blue color on the shroud and a white color on the boot in accordance with the Munsell color shades specified elsewhere, that renders them easily identifiable.

Field terminations shall be limited to splicing of adjoining cable ends and/or cables to ST pigtailed.

COUPLERS

SC Couplers

The SC couplers shall be made of polymer construction that is consistent with the material forming the associated SC connector body. The design mechanism for mounting the couplers to the ITU connector panel may be achievable using metal clips or fasteners but shall coincide with the ITU panel punch-outs.

All coupler sleeves shall be of the cylinder split ceramic or cloverleaf design.

The temperature operating range for couplers shall be the same as that specified for the SC connectors.

ST Couplers

The ST couplers shall be made of polymer construction that is consistent with the material forming the associated ST connector body. The design mechanism for mounting the couplers to the ITU connector panel may be achievable using metal clips or fasteners but shall coincide with the ITU panel punch-outs.

All coupler sleeves shall be of the cylinder split ceramic or cloverleaf design.

The temperature operating range for couplers shall be the same as that specified for the ST connectors.

INTERCONNECT AND TERMINATION UNIT

The Contractor shall furnish and install all related equipment to interface the rack mount interconnect and termination unit (ITU) to the incoming fiber optic communications cable and the patchcord fiber optic cable.

The ITU shall be a modular enclosure that provides interconnect capability of one multi-fiber cable to a minimum of 12 single fiber optic cable.

The ITU shall be environmentally sealed and contain grommets at the cable entrances to prevent any ingress of dirt or moisture. Strain relief shall be provided for the fiber optic cable.

The ITU shall contain a splice tray, connector panel and the appropriate number of pigtailed which will be fusion spliced to the incoming fiber cable.

Each fiber shall be fusion spliced to a pigtail with a factory installed and polished SC connector. Each pigtail shall be labeled and secured onto cable as described elsewhere in these special provisions. Brackets shall be provided to spool the incoming fiber optic cable to minimum of 3 turns before separating out individual fibers to the connector panel.

Interconnect and termination unit (ITU) shall be packaged in a rack unit with dimensions of 17 inch (W) x 1.8 inch (H) x 11 inch (D) having metal housing slide-out shelf. The ITU shall contain grommets at cable entrances and provide strain relief for the fiber cable. The ITU shall accommodate 12 singlemode fibers having SC type connector feed through adapters and 12 interconnection points or 12 splices. The components of the passive interconnect package shall be installed in the ITU.

The ITU shall be a metal enclosure with a hinged door. The door shall have a latch or thumbscrew to hold the door in the closed position. An opening shall be provided on the back side of the incoming fiber optic communications cable. Connector panels (for up to 12 SC connectors) shall be provided inside the enclosure. Strain relief shall be provided for the incoming fiber optic cable. A guard shall be provided to protect the patchcord fiber optic cables plugged into this enclosure.
FIBER DISTRIBUTION UNIT

Fiber distribution unit (FDU) shall be ANSI/EIA-310 standard mount type as shown on the plans. The Contractor shall furnish and install all components to terminate the incoming fiber optic communication cables.

The fiber distribution unit (FDU) shall include the following:

1. A patch panel to terminate the appropriate number of singlemode fibers with SC (or ST) type connector feed through couplers.
2. Splice trays.
3. Storage for splice trays.
4. A slide out metal drawer for the storage of spare jumpers.

<table>
<thead>
<tr>
<th>FDU Type</th>
<th>Accommodates Termination of</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>48 SMFO fibers</td>
</tr>
<tr>
<td>E</td>
<td>144 SMFO fibers</td>
</tr>
</tbody>
</table>

The Contractor shall furnish and install all components to terminate the incoming fiber optic communication cables.

Strain relief shall be provided for the incoming fiber optic cable. Cable accesses shall have rubber grommets or similar material to prevent the cable from coming in contact with bare metal. All fibers shall be terminated and individually identified in the FDU and on the patch panel.

The patch panel shall be hinged or have coupler plates to provide easy access and maintenance. Brackets shall be provided to spool the incoming fiber a minimum of two turns, each turn shall not be less than 12 inch, before separating out individual fibers to the splice tray.

The FDU shall be 19-inch rack mountable.

The FDU in a field cabinet shall not exceed 4 inch in height and 15 inch in depth.

The front and back covers of the FDU shall be retractable or removable to facilitate internal installation.

NETWORK TO SERIAL ADAPTER CARD

The Contractor shall configure and test all cards prior to acceptance. The Engineer will provide the IP addresses to the Contractor.

Minimum Specifications

1. Hardware (See TEES, Chapter 2, Section 5, drawing A2-7 for required specifications)

 1.1. Designed for Model 170 controller equipment
 1.2. Model 400 modem card compatible form factor

2. Software

 2.1. Universal IP address assignment Static IP, DHCP, Auto-IP
 2.2. Secure web user interface (HTTP/HTTPS) with context sensitive
 2.3. Telnet command line interface
 2.4. Modem emulation and port logging
 2.5. TCP/UDP forwarding characteristics: bytes, idle time, data pattern
 2.6. User-configurable TCP/UDP Socket ID

3. Ethernet Interface

 3.1. Connector: RJ-45
 3.2. Physical layer: 10/100Base-T
 3.3. Data rate: 10/100 Mbps (auto-sensing)
 3.4. Mode: Full or half duplex (auto-sensing)
 3.5. Status LED's (Ethernet):

 3.5.1. Network Link Status
 3.5.2. Network Activity
 3.5.3. Serial
3.5.4. Data Out (TXD)
3.5.5. Data In (RXD)
3.5.6. Data Carrier Detect (DCD)
3.5.7. Ready to Send (RTS)

4. Power Requirements

4.1. 12 V (dc) at 100 mA maximum

5. Environmental

5.1. Storage temperature: From -50 to 125 °C
5.2. Operating temperature: From -40 to 85 °C
5.3. Relative humidity: From 5 to 90 percent (non-condensing)
5.4. Altitude: 12,000 feet

6. Regulatory Approvals

6.1. UL (Underwriters Laboratory)
6.2. UR (Underwriters Registered)

Certificate of Compliance

The Contractor shall provide the Engineer with a Certificate of Compliance from the manufacturer in accordance with NEMA TS1/2 Environmental Requirements for Traffic Control Equipment.

CATEGORY 5E CABLE

Category 5E cable shall be the unshielded, non-gel filled type, and shall meet the requirements of TIA/EIA 568B.2, Category 5E Cable, and the following:

The cable shall contain 8 conductors, each of which shall be No. 24, minimum, solid bare copper conductors. Each conductor shall be insulated with polyolefin, polyethylene, polyvinyl chloride or fluorinated ethylene propylene material. Conductors shall be in twisted pairs. Color coding shall distinguish each pair: blue, blue/white; brown, brown/white; green, green/white; orange, orange/white.

The cable jacket shall be rated for a minimum of 300 V and 60 °C and shall be polyvinyl chloride, polyethylene, polyolefin or fluorinated ethylene propylene. The jacket shall be black, gray, or blue. The jacket shall be marked as required by NEMA. The jacket shall be marked at not more than every three foot interval with the cable identification: manufacturer’s name, product identification, number of conductors and conductor size, and voltage and temperature ratings. Cable length markings may be sequentially alternated with the cable identification markings at not more than every three-foot interval.

The finished outside diameter of the cable shall not exceed 1/2”.

Installation

The cable run between components shall be continuous without splices. A minimum of three feet of slack shall be provided at each pull box, junction box or vault, and a minimum of 10 feet at each cabinet. The ends of the category 5E cable shall be terminated with appropriate RJ-type connectors as necessary to connect the equipment shown on the plans, or shall be terminated with crimped and soldered spade type terminals at terminal blocks.

ELEMENT FIBER OPTIC SWITCH

The element fiber optic switch (EFOS) shall be complete with all cables, conductors, and hardware as required to make the system completely operational. Location and mounting of the equipment shall be as shown on the plans, as directed by the Engineer and in compliance with the manufacturer's installation instructions.

The EFOS shall have minimum six 10/100 BASE-TX Ethernet electrical ports and two singlemode 100Base-FX Ethernet optical ports with two fiber optic connections each.

The EFOS shall have one DB9 RS-232 console port.
Power Requirements
1. Input Voltage: 12 V(dc)

Operational Parameters
1. Ethernet Electrical Ports Configuration:
 1.1. 10/100Base-TX
 1.2. RJ-45 female connector
 1.3. Automatic and user-selectable speed setting
 1.4. Automatic and user-selectable half/full duplex setting
 1.5. Port aggregation with VLAN support
 1.6. Port Mirroring

2. Ethernet Optical Ports Configuration:
 2.1. 100Base-FX/1000Base-LH
 2.2. Minimum Optical Power: 13 dB SM 100FX
 2.4. Port aggregation with VLAN support
 2.5. Port Mirroring

3. Management and Control Function:
 3.1. HTTP/Web Browse
 3.2. Telnet for remote management
 3.3. TFTP for remote firmware upgrades
 3.4. SNMP for network management
 3.5. RS-232 console connection for local management
 3.6. Packet Filtering & Port Security
 3.7. Remote Network Monitoring (RMON)

4. Protocols Supported:
 4.1. Institute of Electrical and Electronics Engineers (IEEE) 802.3
 4.2. IEEE 802.3u
 4.3. IEEE 802.3x Flow Control
 4.4. IEEE 802.1Q Virtual Local Area Network (VLAN) Tagging
 4.5. IEEE 802.1D Spanning Tree Protocol (STP, RSTP, MSTP)
 4.6. IEEE802.1p Quality of Service (QoS)
 4.7. IEEE 802.3u 100 BASE-T
 4.8. 100 BASE-FX

Environmental Requirements
The EFOS shall be environmentally hardened to meet National Manufacturer Association (NEMA) TS-1/TS-2 standards and CALTRANS specifications for Traffic Control Equipment and shall be designed to operate in the following environmental conditions:

1. From -10 to +60 °C operating temperature range
2. From 10 to 95 percent relative humidity, non-condensing

Installation
The installation of the switch shall be according to the plans, the manufacturer's instructions, and adjusted per field conditions with the Engineers approval.

The EFOS shall be the DIN rail mountable type and installed in the Model 334 controller cabinet. The placement of the switch shall allow provisions for cable installation and maintenance.
Certificate of Compliance

The Contractor shall provide the Engineer with a Certificate of Compliance from the manufacturer in accordance with NEMA TS1/2 Environmental Requirements for Traffic Control Equipment.

ETHERNET EXTENDER

The Ethernet extender (EE) shall provide a secure one (1) Mbps point-to-point Ethernet connection up to 5250 ft over network cable. It shall have dual Ethernet ports for flexible network connections. The EE shall include everything needed to quickly deploy one high-speed point-to-point Ethernet link over extended distances to deliver data to remotely located standalone networked devices. The EE shall be compact, industrial grade and designed for outdoor applications. The EE shall utilize existing phone lines or any network-grade twisted pair cable and only require one twisted pair to operate. The EE shall come ready to plug and play at default line rate of 1 Mbps. The Ethernet port of each EE shall be connected to the network equipment on both sides of the link. When both Ethernet extenders are connected to the power source, the link shall be established automatically on power up.

The EE shall meet the following or better requirements:

Standards

1. 802.3 Ethernet (10Base-T);
2. 802.3u Fast Ethernet (100Base-TX);
3. 802.3x Flow Control.
4. Ethernet over VDSL

Ethernet Port Features

1. 2 X 10/100 Mbps auto-sensing full or half-duplex RJ-45 Ethernet uplink port;
2. Supports Auto MDIX;
3. Supports flow control for full-duplex operation;
4. Supports back pressure for half-duplex operation.
5. VDSL: Telephone line, 24 AWG, 1 pair wire or larger

LEDs

1. 1 - Power
2. 1 - Link
3. 1 - E1 (Ethernet Link #1)
4. 1 - E2 (Ethernet Link #2)
5. VDSL: Err, Lnk, Loc, Rmt

Switching Features

1. Switching Method: Store-and-Forward
2. MAC Address Table: 8K addresses
3. Dual auto-sensing 10/100 Mbps Ethernet ports with Auto MDIX

Power Requirements

1. External Switching Power Adapter
2. Input: 100 - 240 V(ac), 50/60 Hz
3. Output: 5 V(dc), 1 A

Operating Temperature

1. -4 °F to 158 °F

Humidity

1. 10 percent to 90 percent, non-condensing
Agency Compliance

1. FCC Part 15 Class B, CE

The Contractor shall furnish, install, configure and test the EE as shown on the project plans.

Certificate of Compliance

The EE and associated firmware, software, hardware, protocol, and other features shall be fully and completely compatible with the existing Ethernet switch currently in use.

The Contractor shall demonstrate the compatibility to the Engineer by actual installation demonstration or by other means approved by the Engineer.

Installation

The installation of the EE shall be according to the plans, the manufacturer's instructions, and adjusted per field conditions with the Engineers approval.

The EE shall be installed in the controller cabinet as shown on the plans. The placement of the EE shall allow provision for cable installation and maintenance.

ETHERNET SWITCH

The Ethernet switch (ES) shall provide a minimum of five ports, 10/100BaseTX, for connection of the various equipment as shown on the plans.

Each Ethernet Switch shall be functionally tested for fifteen minutes and shall be error free without any loss of data.

Prototype equipment will not be acceptable. Only equipment previously marketed and sold for at least six months prior to the advertising date will be acceptable.

All manuals, software and warranty forms shall be submitted with the ES for acceptance.

All ES equipment shall be warranted against defects and any failure that may occur through normal use for a minimum of five years from the date of contract acceptance.

The Contractor shall furnish, install, configure and test the ES as shown on the project plans.

The ES shall meet or exceed the following requirements:
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standards Compliance</td>
<td>IEEE 802.3, IEEE 802.3u, IEEE 802.3x</td>
</tr>
<tr>
<td>Protocol</td>
<td>CSMA/CD</td>
</tr>
<tr>
<td>Switch Architecture</td>
<td>Store and Forward</td>
</tr>
<tr>
<td>Transfer Rate</td>
<td>14,880 pps for Ethernet Port</td>
</tr>
<tr>
<td></td>
<td>148,800 pps for Fast Ethernet Port</td>
</tr>
<tr>
<td>Port Attributes</td>
<td>Auto-MDI/MDI-X Crossover Detection</td>
</tr>
<tr>
<td></td>
<td>Up to 200 Mbps full duplex bandwidth at each port Address Learning and Aging, and Data Flow Control for enhanced transmission reliability</td>
</tr>
<tr>
<td>Memory Buffer</td>
<td>512 kb</td>
</tr>
<tr>
<td>LED</td>
<td>Unit: Master, Power, Power 1, Power 2</td>
</tr>
<tr>
<td></td>
<td>Port: Link/Activity, Full-Duplex/Collision</td>
</tr>
<tr>
<td>Network Cable</td>
<td>100 BaseTX:2-pair UTP/STP Cat 5 cable EIA/TIA-568 100 Ω (100 m)</td>
</tr>
<tr>
<td>Back Plane</td>
<td>1.0 Gbps</td>
</tr>
<tr>
<td>Packet Throughput Ability</td>
<td>0.74 Mpps at 64 bytes (5TX)</td>
</tr>
<tr>
<td>Power Supply</td>
<td>Input Voltage: 120 V(ac)</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>3 W Max</td>
</tr>
<tr>
<td>Mechanical</td>
<td>Casting: IP30 Metal Case</td>
</tr>
<tr>
<td></td>
<td>Nominal Dimensions: 2.3" (W) x 5.5" (H) x 4.5" (D)</td>
</tr>
<tr>
<td></td>
<td>Installation: DIN-Rail/Wall Mountable</td>
</tr>
<tr>
<td>Operation Temperature</td>
<td>From -40 to 85 °C Min range</td>
</tr>
<tr>
<td>Operation Humidity</td>
<td>From 5 to 95 percent, non-condensing</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>From -40 to 85 °C</td>
</tr>
<tr>
<td>EMI</td>
<td>FCC Class A</td>
</tr>
<tr>
<td></td>
<td>CE EN61000-4-2/EN61000-4-3/EN61000-4-4/EN61000-4-5/EN61000-4-6</td>
</tr>
<tr>
<td>Stability Testing</td>
<td>Shock: IEC60068-2-27</td>
</tr>
<tr>
<td></td>
<td>Free Fall: IEC60068-2-32</td>
</tr>
<tr>
<td></td>
<td>Vibration: IEC60068-2-6</td>
</tr>
</tbody>
</table>

ETHERNET TO SERIAL CONVERTER

The unit shall convert EIA-232 Serial communications to and from 10Base-T Ethernet communications and provide data rates up to 57.6 kbps. The unit shall support full EIA-232 handshaking (DCD, RTS, CTS, DTR and DSR). LEDs shall be provided on the front panel for all five control signals and Sync, Activity, Power and Link. Power options shall be 12 V(dc) and 115/230 V(ac). The electrical connectors shall be DB-9F and terminal blocks, and the 10Base-T connector shall be the RJ-45F type. A web-based user interface shall be provided to view and be able to change network settings. The Ethernet to serial converter units shall allow for an operating temperature range from -40 to 176 °F and a storage temperature range from -40 to 194 °F. The units shall be stand-alone units installed on a rack-mounted shelf.

MODIFY COMMUNICATION HUB

Modify communication Hub shall consist of:

1. Installing fiber optic jumpers and cables of various types.
2. Installing the following equipment into existing 19-inch racks as per the plans and these special provisions:

<table>
<thead>
<tr>
<th>Hub B Qty</th>
<th>Hub C Qty</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Video Multiplexer</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>HUB Fiber Optic Switch</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>TCVR-CH</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Port Server</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>CAT 5E Cable</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>RS-232 Cable</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>Fiber Optic Jumper</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>Coaxial Cable</td>
</tr>
</tbody>
</table>

Contract No. 08-0M94U4

412
The CAT 5E cable, RS-232 cable, distribution interconnect package, fiber optic cable assemblies and pigtails are described elsewhere in these special provisions.

VIDEO MULTIPLEXER

The Video Multiplexer and the video demultiplexer system components shall be from the same manufacturer and shall be fully compatible and interoperable with each other.

The multiplexer shall be capable of providing optical transmission (multiplexing) of up to 16 channels of RS-250C baseband video via an 8-bit linear pulse code modulation digitally-encoded multiplexer, from the communications hub to the Transportation Management Center. All equipment shall have an ambient operating temperature range of 0 to +60 °C and shall be directly mountable within the existing IFS Model R3 19-Inch Card Cage Unit.

The video multiplexer shall not require any user adjustments to facilitate installation or operation. It shall accept an NTSC baseband video signal at any of the 16 video inputs and convert them to a digitized format that is time division multiplexed with the other digitally-encoded video input signals, to produce an aggregate digital bit stream that is applied to the integral optical transmitter.

The video multiplexer unit shall not utilize video compression techniques and shall introduce zero latency to each of the 16 transmitted video channels, in addition to the following:

1. Operating Wavelength: 1300 nm, single mode
2. Optical Emitter: Laser Diode
3. Optical Connector Type: Type SC
4. Operating Power: 115 V(ac)

LED status indicators shall be provided on the video multiplexer unit for ascertaining the status of the following parameters:

1. Video sync presence for each video input channel
2. Operating Power

Installation

The video multiplexer system shall be installed at the communication hub as shown on plans and specified in these special provisions. The Contractor shall:

1. Connect the correct optical pigtail or patch cord to the optical connector on the transmitters, as well as the correct video interface cables to the multiplexer inputs and multiplexer outputs as specified by the equipment manufacturer.
2. Coordinate the physical space required by the Video multiplexer with the space allocated with any other equipment.
3. Connect the video multiplexer power supply to one of the 120 V(ac), 60 Hz power receptacles reserved for communication equipment in the Hub. The fiber optic path for each video link shall be tested and verified in accordance with the contract prior to installing the video multiplexer.
4. Neatly install all drop cables together, route them along the same path and neatly secure them to the support rails in the equipment racks. No cable shall be installed with a bend radius less than the manufacturer's minimum recommended bending radius.

HUB FIBER OPTIC SWITCH

The HUB Fiber Optic Switch (HFOS) shall be the rack mount type, complete with all cables, conductors, and hardware as required to make the system completely operational. Location and mounting of the equipment shall be as shown on the plans, as directed by the Engineer and in compliance with the manufacturer's installation instructions.

The HFOS shall have minimum of four 10/100 BASE-TX Ethernet Electrical Ports and 8 Ethernet single-mode 100Base-FX Ethernet Optical Ports and four 1000Base-Long Haul (LH) Ethernet Optical Ports with two fiber optic connections per port.

The HFOS shall have one DB9 RS-232 Console Port.
Operational Parameters

Ethernet Electrical Ports Configuration

1. 10/100Base-TX
2. RJ-45 female connector
3. Automatic and user-selectable speed setting
4. Automatic and user-selectable half or full duplex setting
5. Port aggregation with VLAN support
6. Port Mirroring

Ethernet Optical Ports Configuration:

1. 100Base-FX/1000Base-LH
2. Minimum Optical Power: 13dB SM 100FX and 10dB SM 1000LH
3. Port aggregation with VLAN support
4. Port Mirroring

Management and Control Function

1. HTPP/Web Browse
2. Telnet for remote management
3. TFTP for remote firmware upgrades
4. SNMP for network management
5. RS-232 console connection for local management
6. Packet Filtering & Port Security
7. Remote Network Monitoring (RMON)

Protocols Supported

1. Institute of Electrical and Electronics Engineers (IEEE) 802.3
2. IEEE 802.3u
3. IEEE 802.3x Flow Control
4. IEEE 802.1Q Virtual Local Area Network (VLAN) Tagging
5. IEEE 802.1D Spanning Tree Protocol (STP, RSTP, MSTP)
6. IEEE802.1p Quality of Service (QoS)

Layer-3 Routing

1. Static routing, RIP (v1, v2), OSPF (v2) and BGP (v4, including graceful restart)
2. IGMP (v1, v2 and v3) and IGMP snooping
3. PIM-SM, PIM-DM and DVMRP
4. Generic UDP relay (including DHCP Relay)
5. TCP/IP stack
6. ARP Resilience
7. VRRP (v2) Layer-3 Routing (IPv6) IP Routing
8. Static routing, RIP (ng), OSPF (v3) and Multiprotocol Extensions for BGP Multicast
10. Generic UDP relay (including DHCP Relay)
11. TCP/IP stack

Operating Power

The Field Ethernet Switch shall have redundant power supply connections and shall be designed to the following power requirements:

1. 100 - 240 V(ac)
2. 50 - 60 Hz
3. 15 W minimum power consumption
Physical Characteristics
The switch shall have overall dimensions to fit in a standard EIA 19-inch rack.

Status Indicators
The switch shall provide the listed status indicating LED's for monitoring proper system operation.

1. Power
2. Link
3. Fiber port status
4. Speed

Environmental requirements
The HFOS shall be environmentally hardened to meet National Manufacturer Association (NEMA) TS-1/TS-2 standards and CALTRANS specifications for Traffic Control Equipment and shall be designed to operate in the following environmental conditions:

1. -10 °C to +60 °C operating temperature range
2. -10 °C to +85 °C storing temperature range
3. 10 to 95 percent relative humidity, non-condensing

Switch Mounting Bracket and Hardware
The HFOS shall be installed in a standard EIA 19-inch rack. The placement of the switch shall allow provisions for cable installation and maintenance and shall be in compliance with the manufacturer installation manual.

Certificate of Compliance
The Contractor shall provide the Engineer with a Certificate of Compliance from the manufacturer in accordance with NEMA TS1/2 Environmental Requirements for Traffic Control Equipment.

PORT SERVER
The Port Server shall be a rack mounted device compatible with the existing port server, model Digi port server TS 8/16, and shall provide RS-232/422/485 serial-to-Ethernet connectivity. The port server shall meet the following requirements:

Physical Characteristics

1. Weight: Less than 8 lb
2. Size: 13”(wide) x 1.6” (high) x 6.6” (long)
3. Status LED: Link, Power

Environmental

1. Operating Temperature Ranges: From 0 °C to +55 °C (32 °F to 130 °F)
2. Humidity: From 5 percent to 95 percent, non-condensing.

Power Requirements
1. Input power: 100 - 250 V(ac), 50/60 Hz
2. Power Consumption: 12 W

Application Interfaces

1. Serial
 a. Ports: 16 RJ-45 (switch selectable)
 b. Throughput: Up to 230 Kbps
 c. Signal Support: TXD, RXD, RTS, CTS, DTR, DSR and DCD
2. Ethernet
 a. Physical Layer: 10/100Base-T
 b. Data Rate: 10/100 Mbps
 c. Mode: Full or Half duplex

Application Support

1. HTTP/HTTPS, CLI, Port Authority-Remote management diagnostics and auto-discovery tool
2. Protocols supported: UDP/TCP, DHCP/RARP/ARP-Ping for IP Address assignment, PPP (PAP & CHAP), Extended Telnet RFC 2217, Telnet, Reverse Telnet, R-login, Auto-connect

Safety
UL60950; CAN/CSA C22.2 No. 60950; EN60950 Emissions / Immunity: FCC Part 15, Subpart B, Class A; EN55022, Class A; EN55024; EN61000-3-2.

Mounting Bracket and Hardware
The Port Server shall be installed in a standard EIA 19" rack. The placement of the switch shall allow provisions for cable installation and maintenance and shall be in compliance with the manufacturer installation manual.

Certificate of Compliance
The Contractor shall provide the Engineer with a Certificate of Compliance from the manufacturer in accordance with NEMA TS1/2 Environmental Requirements for Traffic Control Equipment.

COMMUNICATION HUB CAMERA TRANSCEIVER
The Communication Hub Camera Transceiver (TCVR-CH) shall conform to the requirements of TCVRs specified for CCTV camera assemblies with the following differences:

 The TCVR-CH (video receiver) shall be fully compatible and interoperable with the existing International Fiber System (IFS) Model VT 4730 WDM0-R3.

 The TCVR-CH shall transmit RS 232 data for the auxiliary control unit (ACU) at each camera site and shall receive NTSC video from the CCTV camera assembly.

 The TCVR-CH video receiving and data-transmitting format used in the communications hub shall be compatible with the TCVR video transmission and data receiving format used by the TCVRs at each of the camera junction boxes.

 The TCVR-CH shall be packaged as one rack unit (1 RU x 19") insertable module or shall be individual rack modules such as a receiver, transmitter and wavelength division multiplexer to combine both data and video onto one optical fiber.

 The TCVR-CH shall be mounted in one rack unit (1 RU x 19") insertable, and have the operating temperature range between 0 °C to 50 °C, minimum.

MODIFY TRAFFIC OPERATIONS SYSTEM CABINET
Modify Traffic Operations System (TOS) cabinet shall consist of:

1. Installing fiber optic jumpers and cables of various types.
2. Installing the following equipment at the TOS cabinet as per the plans and these special provisions:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>TOS Fiber Optic Switch</td>
</tr>
<tr>
<td>20</td>
<td>Fiber Optic Jumper</td>
</tr>
<tr>
<td>1</td>
<td>Fiber Distribution Unit (FDU)</td>
</tr>
</tbody>
</table>

The Contractor shall make all related fiber optic connections as shown on the plans.
Fiber optic cable splices shall be installed as shown on the plans.
The distribution interconnect package, fiber optic cable assemblies and pigtails are described elsewhere in these special provisions.
TOS FIBER OPTIC SWITCH

The TOS Fiber Optic Switch (TFOS) shall be the rack mount type, complete with all cables, conductors, and hardware as required to make the system completely operational. Location and mounting of the equipment shall be as shown on the plans, as directed by the Engineer and in compliance with the manufacturer's installation requirements.

The TFOS shall have a minimum of eight 10/100 Base-TX Ethernet Electrical Ports, 12 single-mode 100Base-FX Ethernet Optical Ports with two fiber optic connections per port. The TFOS shall have one DB9 EIA-232 Console Port.

Operational Parameters

1. Ethernet Electrical Ports Configuration
 a. 10/100Base-TX
 b. RJ-45 female connector
 c. Automatic and user-selectable speed setting
 d. Automatic and user-selectable half/full duplex setting
 e. Port aggregation with VLAN support
 f. Port Mirroring

2. Ethernet Optical Ports Configuration
 a. 100Base-FX/1000Base-LH
 b. Minimum Optical Power: 13dB SM 100FX
 c. Minimum Distance: 8 miles for SM 100FX
 d. Port aggregation with VLAN support
 e. Port Mirroring

3. Management and Control Function
 a. HTTP/Web Browse
 b. Telnet for remote management
 c. TFTP for remote firmware upgrades
 d. SNMP for network management
 e. RS-232 console connection for local management
 f. Packet Filtering & Port Security
 g. Remote Network Monitoring (RMON)

4. Protocols Supported
 a. Institute of Electrical and Electronics Engineers (IEEE) 802.3
 b. IEEE 802.3u
 c. IEEE 802.3x Flow Control
 d. IEEE 802.1Q Virtual Local Area Network (VLAN) Tagging
 e. IEEE 802.1D Spanning Tree Protocol (STP, RSTP, MSTP)
 f. IEEE802.1p Quality of Service (QoS)

5. Layer-3 Routing
 a. Static routing, RIP (v1, v2), OSPF (v2) and BGP (v4, including graceful restart)
 b. IGMP (v1, v2 and v3) and IGMP snooping
 c. PIM-SM, PIM-DM and DVMRP
 d. Generic UDP relay (including DHCP Relay)
 e. TCP/IP stack
 f. ARP Resilience
 g. VRRP (v2) Layer-3 Routing (IPv6) IP Routing
 h. Static routing, RIP (ng), OSPF (v3) and Multiprotocol Extensions for BGP Multicast
 i. PIM-SM 2, PIM-DM 2 Network Protocol
j. Generic UDP relay (including DHCP Relay)
k. TCP/IP stack

Operating Power
The TFOS shall have redundant power supply connections and shall be designed to the following power requirements:

1. 100 - 240 V(ac)
2. 50 - 60 Hz
3. 15 W minimum power consumption

Status Indicators
The switch shall provide the listed status indicating LED's for monitoring proper system operation:

1. Power
2. Link
3. Fiber port status
4. Speed

Environmental Requirements
The TFOS shall be environmentally hardened and shall be designed to operate in the following environmental conditions:

1. -10 to +60 °C operating temperature range
2. -10 to +85 °C storing temperature range
3. 10 to 95 percent relative humidity, non-condensing

Installation
The installation of the TFOS shall be according to the plans, the manufacturer's instructions, and adjusted per field conditions with the Engineers approval.

Mounting Bracket and Hardware
The TFOS shall be installed in a standard EIA 19-inch rack. The placement of the switch shall allow provisions for cable installation and maintenance and shall be in compliance with the manufacturer installation manual.

Certificate of Compliance
The Contractor shall provide the Engineer with a Certificate of Compliance from the manufacturer in accordance with NEMA TS1/2 Environmental Requirements for Traffic Control Equipment.

MODIFY TRANSPORTATION MANAGEMENT CENTER
Modify transportation management center (TMC) shall consist of:

1. Installing fiber optic jumpers and cables of various types.
2. Installing the following equipment into the existing 19” racks as per the plans and these special provisions:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Port Server</td>
</tr>
<tr>
<td>10</td>
<td>Video Demultiplexer</td>
</tr>
<tr>
<td>1</td>
<td>Video Distribution Amplifier</td>
</tr>
<tr>
<td>10</td>
<td>Video Encoder</td>
</tr>
<tr>
<td>5</td>
<td>Multiple Outlet Power Strip</td>
</tr>
<tr>
<td>2</td>
<td>Counter Port Server</td>
</tr>
<tr>
<td>20</td>
<td>Fiber Optic Jumper</td>
</tr>
<tr>
<td>20</td>
<td>Coaxial Cable</td>
</tr>
<tr>
<td>20</td>
<td>CAT 5E Cable</td>
</tr>
<tr>
<td>20</td>
<td>RS-232 Cable</td>
</tr>
</tbody>
</table>
The distribution interconnect package, fiber optic cable assemblies and pigtails are described elsewhere in these special provisions.

VIDEO ENCODER

The Video Encoder shall provide video inputs for each of the video DEMUX unit’s outputs. Each shall have serial RS485 output for Pan Tilt Zoom (PTZ) control and a gigabit Ethernet output for encoded video. The unit shall mount in a standard 19” rack and provide up to 18 inputs per 1U chassis.

Minimum Specifications (Video Encoder)

1. **Video Compression:** H.264 (MPEG-4 Part 10/VAC) and Motion JPEG
2. **Resolutions:** 176x120 to 720x576
3. **Frame Rate:** 30/25 (NTSC/PAL) fps in all resolutions
4. **Video Streaming:** Multi-Stream H.264 and Motion JPEG: 3 simultaneous, individually configured streams in maximum resolution at 30/25 fps; more streams if identical or limited in frame rate/resolution; Controllable frame rate and bandwidth VBR/CBR H.264
5. **Image Settings:** Compression, color, brightness, contrast Rotation: 90°, 180°, 270° Aspect ratio correction Mirroring of images Text and image overlay Privacy mask Enhanced deinterface filter
6. **Pan/Tilt/Zoom:** Wide range of analog PTZ cameras and supported 100 presets/camera, guard tour, PTZ control queue
7. **Security (Network):** Password protection, IP address filtering, HTTPS encryption, IEEE 802.1X network access control, digest authentication, user access log
8. **Supported Network Protocols:** IPv4/v6, HTTP, HTTPS, Qos layer 3 DiffServ, FTP, SMTP, Bonjour, UPnP, SNMPv1/v2c/v3(MIB-II), DNS, DynDNS, RTP, RTSP, RDP, TCP, UDP, IGMP, RTCP, ICMP, DHCP, ARP, SOCKS
9. **Intelligent Video:** Video motion detection, active tampering alarm
10. **Alarm Triggers:** Intelligent video, external inputs, video loss
11. **Alarm Events:** File upload via FTP, HTTP and email Notification via email, HTTP and TCP PTZ preset External output activation
12. **Video Buffer:** 64 NB pre- and post-alarm
13. **Connectors:** 6 analog composite video BNC input, NTSC/PAL auto-Sensing, 1000BaseT Ethernet Terminal block for up to 12 configurable external inputs/outputs and up to 6 RS-485 half duplex, depending on the rack cabinet
14. **Operating Conditions:** 0 - 45 °C (32 - 113 °F) humidity 20-80 percent, relative humidity, non-condensing
15. **Approvals:** EN 55022 Class B, EN 61000-3-2, EN 61000-3-3, EN 55024, EN 61000-6-1, EN 61000-6-2, FCC Part 15 Subpart B Class B, ICES-003 Class B, VCCI Class B, C’trick AS/NZS CISPR 22, EN 60950-1
Minimum Specifications (Rack Cabinet)

1. Expansion Slots: 3 slots for video encoder cards
2. Casing: Metal casing for standalone or rack mounting
3. Power: 100 - 240 V(ac)
4. Connectors: Ethernet 10BASE-T/100BASE-TX/1000BASE-T RJ-45 (Gigabit Ethernet), 3 terminal blocks
 4 alarm inputs, 4 outputs, RS-485/422 half-duplex
5. Approvals: EN 55022 Class B, EN 61000-3-2, EN 61000-3-3,
 EN 55024, EN 61000-6-1, EN 61000-6-2, FCC Part 15 Subpart B Class B, VCCI Class B, AS/NZ CISPR 22, ICES-003, ITE, UL, cUL, EN 60950-1,
 CB-certificate, KTL

VIDEO DISTRIBUTION AMPLIFIER

The Video Distribution Amplifier shall distribute video inputs to at least three video outputs for each input.

Minimum Specifications

1. Number of Inputs: 8 independent channels 1 Vpp/75 Ω on BNC connectors
2. Output: 3 independent channels (1 Vpp/75 Ω on BNC connectors)
3. Max. Output Level: 3.3 Vpp
4. Bandwidth (-3db): 500 MHz
5. Diff. Gain: 0.03 percent
6. Diff. Phase: 0.03 Degrees
7. K-Factor: <0.05 percent
8. S/N Ratio: 70 dB
9. Crosstalk (all hostile): -53 dB
10. Controls: EQ: 0 to 11 dB at 50 MHz
11. Coupling: DC Power
12. Source: 100 - 240 V(ac), 50/60 Hz, 7 VA
13. Dimensions: 19" x 7" x 1 UW, D, H, rack mountable
14. Weight: 2.5 kg (5.5 lb), approximately
15. Accessories: Power cord, rack "ears"

COUNTER PORT SERVER

The Counter Port Server shall be compatible with the existing Port Server (Digi Port Server TS1) and shall provide RS-232/422/485 serial-to-Ethernet connectivity. The port server shall meet the following requirements:

Physical characteristics

1. Weight: Less than 70 grams
2. Size: .25 in (wide) x 3.33 in (high) x 0.95 in (long)
3. Status LEDs: Link, Power

Environmental

1. Operating Temperature Ranges: From 0 to +55 °C (32 to 130 °F)
2. Humidity: From 5 to 95 percent, non-condensing

Power Requirements

1. Input power: 100 - 250 V(ac), 50/60 Hz
2. Power Consumption: 12 W

Contract No. 08-0M94U4

420
Application interfaces

1. Serial:
 a. Ports: 1
 b. Throughput: Up to 230 Kbps
 c. Signal Support: TXD, RXD, RTS, CTS, DTR, DSR and DCD

2. Ethernet:
 a. Physical Layer: 10/100Base-T
 b. Data Rate: 10/100 Mbps
 c. Mode: Full or Half duplex

Application Support

1. HTTP/HTTPS, CLI, Port Authority-Remote management diagnostics and auto-discovery tool
2. Protocols supported: UDP/TCP, DHCP/RARP/ARP-Ping for IP Address assignment, PPP (PAP & CHAP), Extended Telnet RFC 2217, Telnet, Reverse Telnet, R-login, Auto-connect

Safety
UL60950; CAN/CSA C22.2 No. 60950; EN60950 Emissions / Immunity: FCC Part 15, Subpart B, Class A; EN55022, Class A; EN55024; EN61000-3-2

Certificate of Compliance
The Contractor shall provide the Engineer with a Certificate of Compliance from the manufacturer in accordance with NEMA TS1/2 Environmental Requirements for Traffic Control Equipment.

MULTIPLE OUTLET POWER STRIP
A Multiple Outlet Power Strip shall be furnished and installed in the existing racks as shown on the plans.

Minimum Specifications
Mounting: 19” rack mount
No. of outlets: 6 or greater
Electrical Rating: 15 A, 125 V(ac), 60 Hz
Circuit Breaker: 12 A, 125 V(ac)
Max Surge Current: >6500 A
Max Energy Dissipation: >210 J
Modes of Surge Protection: Hot-to-Neutral
Clamping Response Time: Less than one nanosecond
Modes of Noise Protection: Transverse and Common
Noise Attenuation: 20 to 40 dB
Noise Frequency Range: 150 kHz - 100 MHz
Type of Cordset: SJT 14/3

VIDEO DEMULTIPLEXER
The demultiplexer shall be capable of providing optical reception (demultiplexing) of up to 16 channels of RS-250C baseband video via 8-bit linear pulse code modulation digital-decoding, from the communications hub to the demultiplexer unit located within the Transportation Management Center.

All equipment shall have an ambient operating temperature range of 0 to +60 °C and shall be directly mountable within the existing IFS Model R3 19-Inch Card Cage Unit.

The video demultiplexer unit shall not utilize video compression techniques and shall introduce zero latency to each of the 16 received video channels, and shall not require any user adjustments to facilitate installation or operation.

1. Operating Wavelength: 1300 nm, single mode
2. Optical Detector: PIN Photodiode
3. Optical Connector Type: Type SC
4. Operating Power: 115 V(ac)

LED status indicators shall be provided on the video demultiplexer unit for ascertaining the status of the following parameters:

1. Video sync presence for each video output channel
2. Optical Carrier Detect/Link-Lock
3. Operating Power

The 16-channel video multiplexer and demultiplexer units shall provide the following video transmission performance end-to-end with an optical path loss of 18 dB between the two units:

1. Video Signal-to-Noise Ratio: 60 dB, at a maximum optical path loss of 18 dB
2. Video Bandwidth: 5 Hz. to 6.5 MHz
3. Differential Gain: <2 percent
4. Differential Phase: <0.7 degrees
5. Tilt: <1 percent

Installation

The video demultiplexer system shall be installed at the TMC as shown on plans and specified in these special provisions. The Contractor shall:

1. Connect the correct optical pigtail or patch cord to the optical connector on the transmitters and receivers, as well as the correct video interface cables to the demodulator inputs and demodulator outputs as specified by the equipment manufacturer.
2. Coordinate the physical space required by the Video demodulator with the space allocated with any other equipment.
3. Connect the video demodulator power supply to one of the 120 V(ac), 60 Hz power receptacles reserved for communication equipment in the TMC. The fiber optic path for each video link shall be tested and verified in accordance with the contract prior to installing the video demodulator.
4. Neatly install all drop cables together, route them along the same path and neatly secure them to the support rails in the equipment racks. No cable shall be installed with a bend radius less than the manufacturer's minimum recommended bending radius.

FIBER OPTIC TESTING

Testing shall include the tests on elements of the passive fiber optic components:

1. At the factory
2. After delivery to the project site but prior to installation
3. After installation but prior to connection to any other portion of the system
4. During final system testing

Documentation of all test results shall be provided to the Engineer within 2 working days after the test involved. A minimum of 20 working days prior to arrival of the cable at the site, the Contractor shall provide detailed test procedures for all field-testing for the Engineer's review and approval. The procedures shall include the tests involved and how the tests are to be conducted. Included in the test procedures shall be the model, manufacturer, configuration, calibration and alignment procedures for all proposed test equipment.

Factory Testing

The Contractor must provide the documentation from the original manufacturer for the factory testing and of compliance with the fiber specifications as listed in the Fiber Characteristics Table. Before shipment but while on the shipping reel, 100 percent of all fibers shall be tested for attenuation. Test results shall be recorded and dated. Copies of the results shall be:

1. Maintained on file by the manufacturer with a file identification number for a minimum of seven years
2. Attached to the cable reel in a waterproof pouch
3. The Contractor shall provide copy to the Engineer.
Copies of the test results shall also be filed with the copy accompanying the shipping reel in a separate weatherproof envelope.

Testing of Existing Fiber Optic Cables

Before any fiber optic work is started, 100 percent of all of the existing fibers shall be tested with an OTDR and power meter. Test results shall be recorded in Section 1 of Appendix A.

After Cable Installation

Index matching gel shall not be allowed in connectors during testing.

After the fiber optic cable has been pulled but before breakout and termination, 100 percent of all the fibers shall be tested with an OTDR for attenuation. Test results shall be recorded, dated, compared and filed with the previous copies of these tests.

Copies of traces and test results shall be submitted to the Engineer. If the OTDR test results are unsatisfactory, the fiber optic cable segment will be unacceptable. The unsatisfactory segment of cable shall be replaced with a new segment, without additional splices, at the Contractor's expense.

The new segment of cable shall then be tested to demonstrate acceptability. Copies of the test results shall be submitted to the Engineer.

Attenuation tests shall be performed with an OTDR capable of recording and displaying anomalies of 0.02 dB as a minimum. Singlemode fibers (SM) shall be tested at 1310 nm and 1550 nm. Attenuation readings for each direction shall be recorded on the cable data sheet.

The OTDR shall have a printer capable of producing a verifying test trace with fiber identification as shown in Appendix A "Cable Verification Work Sheet," numerical loss values, the date and the operator's name. It shall also have recording capability that has associated software to do comparisons and reproductions on 8.5 inch x 11 inch paper, via a personal computer.

Test traces shall be given to the Engineer within 72 hours of the completion of the test.

Outdoor Splices

At the conclusion of all outdoor splices at one location, and before they are enclosed and sealed, all splices shall be tested with the OTDR, in both directions. Splices in singlemode segments shall be tested at 1310 nm and at 1550 nm. Individual fusion splice losses shall not exceed 0.07 dB.

Measurement results shall be recorded, dated, validated by the OTDR trace printout and filed with the records of the respective cable runs. Copies of traces and test results shall be submitted to the Engineer within seven days after the test.

If the OTDR test results are unsatisfactory, the splice shall be unacceptable. The unsatisfactory splice shall be replaced at the Contractor's expense. The new splice shall then be tested to demonstrate acceptability. Copies of the test results shall be submitted to the Engineer.

Attenuation tests shall be performed with an OTDR capable of recording and displaying anomalies of 0.02 dB as a minimum.

Distribution Interconnect Package Testing and Documentation

All the components of the passive interconnect package (FDUs, ITUs, pigtails, jumpers, couplers and splice trays) shall be from a manufacturer who is regularly engaged in the production of the fiber optic components described.

In developing the distribution interconnect package, each SC, ST or SC-ST hybrid termination (pigtail or jumper) shall be tested for insertion attenuation loss with the use of an optical power meter and source.

In addition, all singlemode terminations shall be tested for return reflection loss. These values shall meet the loss requirements specified earlier and shall be recorded on a tag attached to the pigtail or jumper. The quality control sheets from the manufacturer shall be given to the Engineer before the installation of the pigtails and jumpers.

The final test results shall be recorded, along with previous individual component values, on a special form assigned to each FDF. The Contractor shall obtain a completed form dated and signed by the Manufacturer's Quality Control supervisor. One copy of this form will be attached in a plastic envelope to the assembled FDF unit. The Contractor shall separately submit copies of the form to the Engineer, and shall be also be maintained on file by the manufacturer or supplier.
System Verification At Completion

1. **OTDR Test:**

 a. Once the passive cabling system has been installed and is ready for activation, 100 percent of the fibers shall be tested with the OTDR for attenuation.

 b. Test results shall be recorded in Section 2 of Appendix A, dated, compared and filed with previous copies. Copies of traces and test results shall be submitted to the Engineer.

 c. If the OTDR test results are unsatisfactory the fiber shall be replaced at the Contractor's expense.

 d. The new fiber shall then be tested to demonstrate acceptability.

 e. Copies of the test results shall be submitted to the Engineer.

2. **System Cable Verification Worksheet**

 a. The "Cable Verification Worksheet" shown in Appendix A shall be completed for each fiber in the fiber optic system, using the data gathered throughout the installation process.

 b. The completed worksheets shall be submitted to the Engineer for approval.

3. **Power Meter and Light Source Test**

 a. At the conclusion of the final OTDR testing, 100 percent of all fibers shall be tested end to end with a power meter and light source, in accordance with EIA Optical Test Procedure 171 and in the same wavelengths specified for the OTDR tests.

 b. These tests shall be conducted in both directions.

 c. Test results shall be recorded on the Cable Verification Worksheet, Section 2 of Appendix A.

4. **Test Failures**

 a. If the link loss measured from the power meter and light source exceeds the losses of Section 1, Appendix A, plus the new segment splice losses or the actual location of the fiber ends does not agree with the expected location of the fiber ends (as would occur with a broken fiber), the fiber optic link will not be accepted. The unsatisfactory segments of cable or splices shall be replaced with a new segment of cable or splice at the Contractor's expense. The OTDR testing, power meter and light source testing and Cable Verification Worksheet shall be completed for the repaired link to determine acceptability. Copies of the test results shall be submitted to the Engineer. The removal and replacement of a segment of cable shall be interpreted as the removal and replacement of a single contiguous length of cable connecting two splices and two connectors. The removal of a small section containing the failure and therefore introducing new unplanned splices will not be allowed.

 b. If during any of these system verification tests, the results prove to be unsatisfactory, the fiber optic cable will not be accepted. The unsatisfactory segments of cable shall be replaced with a new segment of cable at the Contractor's expense. The new segment of cable shall undergo the same testing procedure to determine acceptability. Copies of the test results shall be submitted to the Engineer. The removal and replacement of a segment of cable shall be interpreted as the removal and replacement of a single contiguous length of cable connecting two splices, two connectors, or a splice and a connector. The removal of only the small section containing the failure and therefore introducing new unplanned splices will not be allowed.
APPENDIX A

Cable Verification Worksheet
End-to-End Attenuation (Power Meter and Light Source) Testing and OTDR Testing

Contract No. ____________ Contractor: ____________ ____________
Operator: _______________ Date: ______________
Link Number: ___________ Fiber Number: ____________
Test Wavelength (Circle one): 1310 nm 1550 nm
Expected Location of fiber ends: End 1: ___________ End 2: ___________

Section 1:
Location of Fiber Ends:
End 1: __________________ End 2: ________________

1. OTDR Test Results:
A. Forward Loss: __________ dB
B. Reverse Loss: __________ dB
C. Average Loss [(1A + 1B)/2]: __________ dB
2. Power Meter and Light Source Test Results:
A. Forward Loss: __________ dB
B. Reverse Loss: __________ dB
C. Average Loss [2A + 2B)/2]: __________ dB

Section 2:
Location of Fiber Ends:
End 1: __________________ End 2: ________________

1. OTDR Test Results:
A. Forward Loss: __________ dB
B. Reverse Loss: __________ dB
C. Average Loss [(1A + 1B)/2]: __________ dB
2. Power Meter and Light Source Test Results:
A. Forward Loss: __________ dB
B. Reverse Loss: __________ dB
C. Average Loss [2A + 2B)/2]: __________ dB

New Segment
3. Calculated Fiber Loss
A. Length of the segment (from OTDR): _________ km
B. Allowed loss per km of fiber: _________ dB/km
C. Total Allowed Loss of fiber (3A * 3B): _________ dB
4. Calculated Splice Loss:
A. Number of Splices in the segment: _________
B. Allowed Link Loss per Splice: 0.07 dB
C. Total Allowed Loss due to Splices (4A * 4B): _________ dB

To Be Completed by Caltrans:
Resident Engineer's Signature: __________________
Cable Link Accepted: ____________________________
SYSTEM TESTING AND DOCUMENTATION

This work includes performing system testing and furnishing documentation as per the plans, these special provisions and as directed by the Engineer. The system testing shall consist of performing the following tests, validate the operational performance of systems and furnish documentation:

<table>
<thead>
<tr>
<th>Description of Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Inspection</td>
</tr>
<tr>
<td>Acceptance Testing</td>
</tr>
<tr>
<td>Functional Testing</td>
</tr>
<tr>
<td>TOS Equipment Connectivity Testing</td>
</tr>
<tr>
<td>Field Element Connectivity Testing</td>
</tr>
<tr>
<td>Final Acceptance</td>
</tr>
</tbody>
</table>

The system testing and documentation shall cover connectivity testing for TOS and field elements, physical inspection, pre-installation testing, system testing, fiber optic cable testing, final acceptance testing and system documentation that is required to validate the operational performance of the vehicle detection systems, closed circuit television systems, fiber optic communication system and ramp metering systems, as shown on the plans and described elsewhere in these special provisions.

The Contractor shall submit a copy of each document to the Engineer for approval. The Engineer shall review and either approve, or reject the document within 10 working days. If the Engineer rejects the document, the Contractor shall submit a revised document within 10 working days for review and approval by the Engineer.

Unless specified elsewhere, the Contractor shall provide to the Engineer five printed copies of each document approved by the Engineer and as specified in these special provisions. Each copy of each document shall be printed on 8.5 x 11 inch paper and bound in three-ring hard-covered binders complete with dividers.

For testing purposes, a “ping” is used as: a computer network administration utility used to test whether a particular host is reachable across an internet protocol (IP) network. The IP addressable equipment shall be “pinged” a minimum of 5 consecutive instances for each test.

The Contractor shall arrange to have a technician, qualified to work on the communication equipment and employed by the communication equipment manufacturer, present at the time the equipment is turned on.

Prototype equipment is not acceptable. All equipment shall be current standard production units and shall have been in use for a minimum of 6 months. Rebuilt or reconditioned equipment will not be allowed.

All rack mounted equipment and card cage assemblies shall have metal filler plates to cover any unused channel slots or card slots.

PHYSICAL INSPECTION

The Contractor shall provide documentation to prove delivery of all material, equipment, cable and documentation. If any material or documentation is outstanding or have been replaced under pre-acceptance warranty a physical inspection and documentation shall be provided for this material. The physical inspection shall consist of inspecting all installed material to ensure workmanship satisfies the specified requirements.

ACCEPTANCE TESTING

The acceptance testing includes the preparation of an acceptance test plan, conducting acceptance tests and subsequent retests, and documentation of the results.

Final acceptance tests shall be conducted after the site test results have been reviewed and accepted by the Engineer. These tests include the complete system in normal operations.

Installation documentation and test results shall be provided for all material, equipment and cable prior to submission of the acceptance test plan and commencement of acceptance tests. This documentation shall be in accordance with the Contract and shall include the following as appropriate:

1. Model and part number for all material.
2. Test equipment model number, serial number, settings, and date of last calibration.
3. All strap and switch settings.
4. Record of all adjustments and levels.
5. Alignment measurements.
7. All factory, laboratory and site test results.
The Contractor shall submit a copy of the acceptance test plan to the Engineer for approval prior to commencement of acceptance testing. The acceptance test plan shall address the full testing requirements of the specifications. The acceptance test plan shall detail all tests to be performed, the test results which are expected and the test schedule. The acceptance test plan will include the following major test and acceptance categories:

1. Physical inspection
2. Functional tests
3. Performance tests

On approval by the Engineer, the Contractor shall submit five copies of the acceptance test plan to the Engineer. The Contractor shall test the communication system according to the approved acceptance test plan and shall provide all test equipment, labor and ancillary items required to perform the testing. The test equipment shall be certified to be calibrated to the manufacturers' specifications. The model and part numbers and date of last calibration of all test equipment shall be included with the test results.

Acceptance testing shall not commence until all material required by these special provisions and plans are delivered, installed, aligned, all production test and site test documentation and results have been approved by the Engineer.

All acceptance test results shall be fully documented and such documentation provided as a condition of acceptance.

FUNCTIONAL TESTING

Functional testing shall be performed on material after delivery to the site. Functional tests shall be performed in accordance with an approved test plan. Material or equipment which fails to meet requirements shall be repaired or replaced and tests shall be repeated until satisfactory. Functional test results, including results of failed tests or re-tests, shall be submitted and delivered with material and equipment delivered to the site.

Full performance tests shall be performed on not less than 5 percent or at least one unit of material selected at random from the delivered material and equipment. Full performance tests shall be performed in accordance with a test plan developed by the Contractor and approved by the Engineer.

TOS EQUIPMENT CONNECTIVITY TESTING

The Contractor shall verify the performance of the communication equipment (TOS fiber optic switch). All applicable network addresses and settings will be supplied to the Contractor. The acceptance testing for each modified TOS cabinet shall consist of the following steps:

1. The TOS fiber optic switch shall be "pinged" from the TMC. To constitute a successful "ping", there must be a response from the target IP Address.
2. The TOS fiber optic switch shall be turned OFF. A "ping" from the TMC shall then be sent and the TOS fiber optic switch shall not be responsive.
3. The TOS fiber optic switch shall then be turned ON. A "ping" from the TMC shall be sent and the TOS fiber optic switch shall be successful.

FIELD ELEMENT CONNECTIVITY TESTING

The Contractor shall verify the performance of the communication equipment (element fiber optic switch and network to serial adapter). All applicable network addresses and settings will be supplied to the Contractor. The acceptance testing for each element cabinet shall consist of the following steps:

1. The element fiber optic switch and network to serial adapter shall be "pinged" from the TMC. To constitute a successful "ping", there must be a response from the target IP address.
2. The element fiber optic switch and network to serial adapter shall be turned OFF. A "ping" from the TMC shall then be sent and the element fiber optic switch and network to serial adapter shall not be responsive.
3. The element fiber optic switch and network to serial adapter shall then be turned ON. A "ping" from the TMC shall be sent and the element fiber optic switch and network to serial adapter shall be successful.

FINAL ACCEPTANCE

The system will not be accepted until all of the following conditions have been met as follows:

1. Physical, functional and full performance acceptance tests have been completed and the results are approved by the Engineer.
2. All documentation has been completed and submitted to the Engineer.
3. All connections that were changed to perform acceptance tests are restored and tested.

Upon completion of acceptance tests, the Contractor shall connect all equipment to form a fully operational system.

10-3.29 WIRELESS ETHERNET RADIO

DESCRIPTION

The Wireless Ethernet Radio (WER) Assembly shall include the WER radios, WER antennas and WER interconnect wiring.

WER RADIO

The Wireless Ethernet Radio (WER) shall provide a wireless serial EIA-232 and Ethernet communication link to stand-alone field elements. The WER shall act as an EIA-232 and Ethernet gateway.

Carrier Detect (CD) or Clear to Send (CTS) signal shall be asserted 0.1s ± 0.01s prior to data being transmitted and shall be de-asserted 0.1s ± 0.01s after the last byte sequence is transmitted.

WER radio minimum requirements:

1. Frequency of Operation: 902 – 928 MHz
2. Spread Spectrum: Frequency Hopping and DTS
3. Hopping Channels: 50/Pattern
4. Error Detection: 32 bit CRC, ARQ
5. RF Data Rate: 345 kbps and 1.384 Mbps upgradable to 1.9 Mbps
6. Ports: 1 EIA-232/EIA-485/EIA-422, 1 EIA-232 Serial Port, 1 Ethernet, 1 USB
7. Serial Baud Rate: 300 baud to 921 kbaud
8. Receiver Sensitivity: -97 dBm at 1.384 Mbps and -105 dBm at 345 kbps
9. Data Encryption: 128 bit AES upgradeable to optional 256 bit AES
10. RF-Power: 100 mW to 1 W (20-30 dBm) programmable in 1 dB steps
11. System Gain: 135 dB system gain w/unity again antenna
12. Serial Ports: Two EIA-232: RxD, TxD, RTS, CTS, DCD, DSR, DTR; EIA-422: Tx+, Tx-, Rx+, Rx-; EIA-485: 4 wire/2 wire
14. Sleep Mode: Supported on EIA-232 and Remote Wake up
15. USB: USB to Serial routing USB interface USB Console USB to Ethernet routing Wireless USB to Ethernet Routing
16. Antenna Connector: Reverse Polarity TNC Male
17. Size: 3.75 inches x 2.25 inches x 1.75 inches
18. Ethernet: RJ-45, 10/100 BaseT IEEE 802.3
19. Network Protocols: FTP, Serial over IP, Multicast TCP, UDP, ARP, DHCP, HTTP, SNMP Serial to IP conversion, Quality of Service, Firewalling Features and Port blocking
20. Management: Local Serial Port Console, Telnet, HTTP, HTTPS
21. Diagnostics: Battery voltage, Temperature, RSSI Remote diagnostics
22. Operating Modes: Point-to-Point, Point-to-Multipoint, Store Forward Repeater, Peer-to-Peer
23. Ethernet Interface: RJ-45, 10/100BaseT, IEEE 802.3 Ethernet compliant auto-sense, auto-negotiate
24. Operating Temperature: 40 to +85 °C
25. Input Voltage: 10-28 V(dc); 115-230 V(ac)
WER ANTENNA - OMNI DIRECTIONAL

The WER Omni Directional Antenna shall be compatible with the WER.

Antenna minimum requirements:

1. Form Factor: 25” maximum height
2. Beam Width: Omni Directional
3. Frequency: 902 - 928 MHz
4. VSWR: 1.5:1 or Less
5. Power: 150 Watts maximum
6. Gain: 8db-Meg
7. Impedance: 50 ohm
8. Connector: N-type Female
9. Environmental: -40 to +70 °C

WER ANTENNA-DIRECTIONAL

The WER Directional Antenna (DA) shall be compatible with the WER.

Antenna minimum requirements:

1. Bandwidth: >70 MHz auto-negotiate
2. Beam Width: 65° Horizontal / 55° Vertical
3. Polarization: Vertical / Horizontal
4. Radiation: Directional
5. Frequency: 902 - 928 MHz
6. VSWR: 1.5:1 or Less
7. Power: 300 Watts maximum
8. Gain: 6 dBd
9. Lightning Protection: DC Ground
10. Wind Velocity: >100 MPH
11. Impedance: 50 ohm
12. Feed Connection: Reverse Polarity TNC (N-Female)
13. Maximum Length: 41.5"
14. Mounting: For both Polarizations
15. Environmental: -40 to +70 °C

Certificate of Compliance

The Contractor shall provide the Engineer with a Certificate of Compliance from the manufacturer in accordance with NEMA TS1/2 Environmental Requirements for Traffic Control Equipment.

WER INTERCONNECT WIRING

The WER interconnect wiring consists of the coaxial and CAT 5E cables and shall be installed as shown on the plans, as specified in these special provisions and as recommended by the manufacturer.

All connectors shall be in accordance with the manufacturer's recommendation. All connectors installed outside the enclosure shall be weather proof and watertight. Weatherproofing and water sealing shall be included, provided and installed.

Specifications of all cable assemblies, including connectors with strain relief backshells, shall be submitted to the Engineer as part of the shop drawings for review and approval.

Interconnect cabling and wiring shall run continuous from the source to destination without splices.

Three feet of slack shall be provided for equipment movement. All cabling shall be secured and protected from physical damage.

All interconnect wiring and connectors shall meet or exceed all necessary standards with regards to voltage, current and environmental ratings.

The Contractor shall be responsible for all testing and documentation required to establish approval and acceptance of the production, installation and operation of these materials and equipment.

The Contractor shall test all cables for continuity and shorts or grounds. Tests on cables with connectors attached (connectorized) shall be performed after installation.
The Contractor shall carry out system integration testing to ensure that the interfaces and all interconnect wiring and cabling perform to the specified standards when used in operation with all other devices installed under the contract.

The Contractor shall configure interconnect wiring and cabling at all locations shown on the project plans.

Coaxial cable

The antenna coaxial cables to be used for 5.7 GHz and 900 MHz RF connections shall be of 50 ohms impedance, low loss, flexible, rugged and UV resistant, and shall have greater than 90 dB RF shielding. The coaxial cable shall have a minimum bend radius of 1". Attenuation for 900 MHz shall not exceed 15 dB /100 m. Attenuation for 5.7 GHz shall not exceed 40 dB /100 m.

PAYMENT

Full compensation for wireless Ethernet radio assembly shall be considered as included in the lump sum price for maintaining existing traffic management system elements during construction at various locations and no additional compensation will be allowed therefor.

10-3.30 MODIFY WIRELESS VEHICLE DETECTOR SYSTEM

GENERAL

Summary

Modify wireless vehicle detector system (WVDS) consists of removing the existing vehicle sensor nodes (VSN) and installing new VSN in the roadway as shown on the plans and as described in these special provisions. The removal of existing VSN and disposal of the same are described elsewhere in these special provisions. Comply with Section 86, "Electrical Systems," of the Standard Specifications, Standard Plans and these Special Provisions.

The new VSNs must be compatible to the existing Access Point (AP) and Repeater Point (RP) mounted on a standard along the roadway shoulder and as shown on the plans.

VSN and epoxy (sealant) must be manufactured by Sensys Networks, Inc., 2560 Ninth Street, Suite 219, Berkeley, CA 94709, telephone No. (510) 548-4620.

VSN and epoxy (sealant) must be new and conform to the manufacturer's recommendations. The date of manufacture, as shown by date codes or serial numbers of electronic circuit assemblies, must not be more than 6 months from the scheduled start date of this installation.

Arrangements have been made to ensure that the Contractor can obtain these components directly from the manufacturer. The price quoted by the manufacturer for each component is as follows, not including sales tax or shipping.

<table>
<thead>
<tr>
<th>Quotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity based Unit Prices</td>
</tr>
<tr>
<td>Part</td>
</tr>
<tr>
<td>VSN 240-F</td>
</tr>
<tr>
<td>VSN 240-EPX</td>
</tr>
<tr>
<td>VSN 240-CS</td>
</tr>
</tbody>
</table>

The above price will be firm for orders placed on or before December 31, 2012, provided delivery is accepted within 90 days after the order is placed.

Warranty

Provide a 2-year replacement warranty form manufacturer for the VSN effective from the date of installation against any defects or failures. After final acceptance of the VSN, all replacement assemblies covered under warranty must be provided within 10 days after receipt of failed units at no cost to the Department. All warranty documentation must be submitted to the Engineer prior to installation.

Provide a 2-year manufacturer replacement warranty for the APS effective from the date of installation against any defects or failures. All warranty documentation must be submitted to the Engineer before installation.
MATERIAL

Configuration
Each VSN must have the following programmable event reporting parameters:

1. Transmit interval from a minimum value of 6 seconds
2. Reporting latency from a minimum range of 6 to 30 seconds
3. Presence and Pulse modes
4. RF watchdog timer
5. Synchronize event reporting to AP clock or to detection events
6. Speed Trap: measurement/time interval between 2 consecutive VSN

Communication
The WVDS system communications must be:

A. Wireless between the VSN and the AP.
B. Wireless between RP and AP.

The communications link between the AP, RP, and VSN must conform to the following:

1. The wireless communications link must be FCC-approved.
2. The AP, RP and VSN must be reconfigurable by a user over the wireless interface. Reconfiguration must avoid interference from other users of the communications band. A minimum of 16 channels must be provided for this purpose per location.
3. The link budget must be 93 dB or greater.

After an AP is powered on, the associated VSN must respond within 100 seconds.

Vehicle Sensor Nodes
Each VSN must consist of a magnetometer sensor, a microprocessor with firmware in non-volatile memory, a wireless transceiver and a battery within a single housing; and 2-piece molded plastic shell.

The magnetometer sensor must detect the presence of a vehicle by a change in the vertical component of the earth's magnetic field within the detection zone corresponding to a 6-foot by 6-foot Type A inductive loop, with the VSN at the center. Each VSN must continuously report the presence of the vehicle until the vehicle leaves the detection zone, whereupon the VSN must report the absence of presence within 5 ± 1 millisecond.

The VSN must automatically recalibrate in the event of a detector lock within 5 minutes.

Each VSN must be individually addressable with a unique identifier, and capable of transmitting its data to the AP. Each VSN must also be capable of receiving detector parameters, microprocessor firmware and other commands from the AP without loss of data.

Each VSN must have the following programmable detection parameters:

1. Onset sensitivity and delay
2. Off sensitivity
3. Holdover time
4. Adaptable orientation
5. Auto-recalibration timeout

The housing must be fully encapsulated to provide a minimum of 8 years of operation, over a temperature range of -35 to 165 degrees F. The housing must be capable of being installed in a cylindrical hole that is no larger than 4 inches in diameter and 3 inches deep.

Sealant
The sealant for the installation of the wireless detector sensor units in concrete must be a self-leveling joint sealant and will be applied at a minimum temperature of 32 degrees F. The surface to be bonded must be free of debris, moisture and anything else that will interfere with the sealant bond.

Excess sealant must be removed from the roadway and disposed of outside the State highway right of way as provided in Section 7-1.13 of the Standard Specifications.
CONSTRUCTION

Pre-construction Site Analysis

A. The Contractor must ensure that the installed VSN will not cause harmful interference to radio communication in the vicinity as required by FCC Part 15 requirements.
B. The Contractor must ensure that each VSN will be installed such that each operates independently and does not interfere with WVDS components at another site or other equipment in the vicinity.
C. The Contractor must ensure that each VSN will be installed within range of its corresponding AP, using RP as needed. All VSN assigned to either a RP or AP must be located with a ± 60-degree horizontal cone, measured from perpendicular. The maximum distances between a VSN and the AP are as follows:

<table>
<thead>
<tr>
<th>AP mounting height</th>
<th>Maximum distance from VSN to AP</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 feet</td>
<td>150 feet</td>
</tr>
</tbody>
</table>

Installation and Calibration

A. The Contractor must not proceed with the installation of any VSN without the written approval from the Engineer of the Pre-construction Site Analysis.
B. The Contractor must provide personnel skilled in the installation and calibration of VSN.
C. The Contractor must configure and demonstrate successful communication between each VSN, the RP (if necessary) and the AP to the Engineer prior to the installation of any component.
D. The Contractor must install each VSN in the roadway per manufacturer's recommendations and as shown on the plans. Holes cored in the pavement must be cleaned and thoroughly dried before installing VSN. Residue resulting from core drilling must not be permitted to flow across shoulders or lanes occupied by public traffic and must be removed from the pavement surface by vacuuming or other approved method before any residue flows off the pavement surface. Residue from core drilling must be disposed of as provided in Section 7-1.13, "Disposal of Material outside the Highway Right of Way," of the Standard Specifications. The cored pavement must be back-filled per manufacturer's recommendations. The Contractor must remove any excess epoxy from the roadway without the use of solvents and dispose of as provided in Section 7-1.13, "Disposal of Material outside the Highway Right of Way," of the Standard Specifications.
E. After installation of all components, the Contractor must re-configure and demonstrate successful communication between each VSN, the RP (if necessary) and the AP to the Engineer.
F. The Contractor is responsible for and must perform the following:

1. Installation and materials must conform to the requirements of the manufacturer and these special provisions. All equipment, cables and hardware must be part of an engineered system that is specifically designed by the manufacturer to fully inter-operate with all other system components. Mounting assemblies must be corrosive-resistant. Connectors installed outside the cabinets and enclosures must be corrosive-resistant, weatherproof and watertight. Exposed cables must be sunlight- and weather-resistant. Cables must be labeled with permanent cable labels at each end.
2. Verify the performance of each site and submit recorded medium and other materials to the Engineer at the conclusion of the performance test. The accuracy of each site must be determined and documented so that each site may be approved or rejected separately by the Engineer. Failure to submit the materials at the conclusion of testing invalidates the test. The recorded medium serves as acceptance evidence and must not be used for calibration. The calibration must have been completed prior to testing and verification.
3. All software needed for the analysis must be provided by the Contractor.

Acceptance Testing

The Contractor must notify the Engineer 15 working days before the location is ready for acceptance testing. Acceptance testing must be scheduled to be accomplished before the end of the normal work shift (M-F 0800 to 1600). The Contractor must demonstrate the operation of all WVDS units satisfying the functional requirements of these special provisions. The Engineer has the right to reject the VSN if the demonstration fails.

The Contractor must also provide:

1. All equipment, documentation, materials and special tools required for acceptance testing of the system.
2. All software required to program, reconfigure and support the WVDS system and any components, installed in the appropriate equipment at the time of acceptance testing, and used for the acceptance test.

Accuracy of the WVDS system must be verified by comparing the WVDS vehicle counts to recorded video image counts for the same period. Accuracy testing must be done at 5 percent or one (whichever is greater) of the WVDS locations as selected by the Engineer. Clearly-visible, recorded video images for at least one peak period must be provided for all lanes that the WVDS was installed in. The recorded video images must show the viewed detection scene, detectors operation, the vehicle traffic count and time-stamp to 1/100 of a second must be made available so that the data can be overlaid on the recorded video. The 6-hour analysis periods and associated time synced data must be transferred to a USB portable mass storage device, 16 GB minimum, for viewing on a PC. The video camera must be located and oriented so that traffic is visible in all lanes. Video images must be time-stamped and analysis periods recorded to a USB portable mass storage device, 16 GB minimum, for viewing on a computer. The video field of view must totally encompass the area in which vehicles are detected. The Contractor must provide a means for synchronizing the test start and test ending times or provide software that displays time stamped WVDS data along with the video images of the moving vehicles. The Contractor must provide the Engineer with the original recording medium and documentation that supports the accuracy analysis and make a copy of these materials for their own use.

1. The accuracy test must start at a date and time specified by the Engineer. The following video recording and analysis options that depend on the available traffic conditions are acceptable; however, the heaviest expected traffic conditions should be used, if possible. The minimum analysis period must be 30 minutes when the recording includes congested traffic (vehicles traveling at less than 20 mph for five or more minutes in any lane). The minimum analysis period must be 45 minutes when the traffic flow exceeds 1500 vehicles per hour in any lane during the test period. The minimum analysis period must be 60 minutes when the flow is less than 1500 vehicles per hour in every lane. The analysis must be based on a minimum of 500 detected vehicles in every lane and cover the same time period for all lanes. The time periods within the selected video will be selected by the Engineer. The total vehicle count for every lane must be used and include the first and last partial vehicles for each lane. Errors in the start and finish of the WVDS and manual counts are included in the performance criterion specified in these special provisions. Each real vehicle in the video should be identified as either detected correctly (DC), missed, (M), or over counted (OC).

2. WVDS unit count must be compared to vehicle counts under traffic conditions of the prior paragraph. The data accuracy must be determined by the formula:

\[
\text{Accuracy (Absolute Value)} = 100\{(1 - \text{TC/WC})/\text{TC}\}
\]

where TC = Traffic Count derived from the media recording, and

WC = WVDS reported count over the same period of time.

3. Average overall accuracy must be greater than 95 percent across all lanes. Minimum accuracy for each time period must be greater than 90 percent per lane.

The Engineer will review the results from the acceptance testing and accept or reject the results within 7 days. Determination of any vehicle anomalies or unusual occurrences will be decided by the Engineer. Data or counts that are not agreed upon by the Engineer must be considered errors and count against the unit's calibration. If the Engineer determines that the VSN does not meet the performance requirements, the Contractor will have seven days to re-calibrate and re-test the unit and re-submit new test data. Following three failed attempts, the Contractor must replace the VSN with a new unit.

Replacement, and retesting of VSN due to failure or rejection must be at the Contractor's expense.

PAYMENT

The contract lump sum price paid for modify wireless vehicle detector system must include full compensation for furnishing all labor, materials, tools, equipment, warranty and incidentals, and for doing all the work involved in removing and disposing existing VSN and installing new VSN, complete in place, including site analysis, set-up and configuration of the system, calibration of the device performance, verification of detector accuracy, testing, and re-testing of failed units, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.
10-3.31 CLOSED CIRCUIT TELEVISION SYSTEMS

GENERAL

Closed circuit television (CCTV) systems work includes furnishing and installing the cabinet, camera assembly, CCTV pole and performing acceptance testing as per the plans, these special provisions, Section 86 "Electrical Systems," of the Standard Specifications, and the following:

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camera Pole System</td>
</tr>
<tr>
<td>Cabinet Assembly</td>
</tr>
<tr>
<td>Camera Assembly</td>
</tr>
<tr>
<td>Camera Transceiver</td>
</tr>
<tr>
<td>Hybrid Camera Cable and Connectors</td>
</tr>
<tr>
<td>Acceptance Testing</td>
</tr>
</tbody>
</table>

The CCTV system shall conform to all rules and regulations of the Federal Communications Commission.

The CCTV system shall be installed as a complete and operational system.

The Contractor shall be responsible for providing any mounting adapter and bracket required for installation of the CCTV system. All materials furnished, assembled, fabricated or installed under this item shall be new, corrosion resistant and in strict accordance with the details shown on the plans and in the specifications.

CAMERA POLE SYSTEM

The camera pole sheet steel shall have a minimum yield of 48,000 psi. Modifications for hand hole, connector bracket and strain relief shall be made as shown on the plans.

The camera pole system shall include all necessary mounting hardware and wiring, foundation and anchor bolts and other equipment, as shown on the plans and specified in these special provisions.

CABINET ASSEMBLY

Each cabinet assembly shall consist of the following:

1. Cabinet Enclosure
2. Power Distribution Assembly
3. Interconnect and Termination Unit

Cabinet Enclosure

Each cabinet enclosure shall be constructed as per Section 86-3.04A, "Cabinet Construction," of the Standard Specifications for aluminum material and with dimensions as shown on the plan sheets. This enclosure shall house the CCTV equipment, and mounting cage as shown on the plans.

The cabinet enclosure shall include the housing and mounting cage as shown on the plans.

Power Distribution Assembly

The power distribution assembly shall consist of the following:

1. One 15 A, 120 V, single pole main breaker
2. Four standard 120 V receptacles
3. One duplex, 3 prong, NEMA Type 5-15R grounded utility type outlet
4. One multiple outlet strip with the following specifications:
 b. High Frequency Noise Suppression: Up to 80 dB from 50 kHz to 1,000 MHz.
 c. High Voltage Transient Spike Suppression: Up to 36,000 A spikes.
 d. Cord: 6 foot with grounded 3-prong plug.
 e. Diagnostic circuitry and lamps indicating:
 i. LINE OK
 ii. LINE FAULT
 iii. PROTECTION PRESENT
The power distribution assembly shall meet the following requirements:

1. Maximum Energy Absorption: 720 J
2. Transient Response Time: instantaneous (0.1 ns)
3. Rated Current and Load Handling: 15 Amperes Max (1,800 W), 15 A per socket (1,800 W) Rated Voltage: 120 V(ac), 50/60 Hz
4. Meet UL 1449, UL 1283 and UL 497A specifications

Interconnect and Termination Unit

The Contractor shall furnish and install all related equipment to interface the rack mount interconnect and termination unit (ITU) to the incoming fiber optic communications cable and the patchcord fiber optic cable.

The ITU shall be a modular enclosure that provides interconnect capability of one multi-fiber cable to a minimum of 12 single fiber cable. The ITU shall be environmentally sealed and contain grommets at the cable entrances to prevent any ingress of dirt or moisture. Strain relief shall be provided for the fiber optic cable. The ITU shall contain a splice tray, connector panel and the appropriate number of pigtails which will be fusion spliced to the incoming fiber cable. Each fiber shall be fusion spliced to a pigtai with a factory installed and polished SC connector. Each pigtail shall be labeled and secured onto cable as described elsewhere in these special provisions. Brackets shall be provided to spool the incoming fiber optic cable to minimum of 3 turns before separating out individual fibers to the connector panel.

The ITU shall be packaged in a rack unit with approximate dimensions of 17" (W) x 2" (H) x 12" (D) and have a metal housing slide-out shelf. The ITU shall contain grommets at cable entrances and provide strain relief for the fiber cable. The ITU shall accommodate 12 singlemode fibers having SC type connector feed through adapters and 12 interconnection points or 12 splices. The components of the passive interconnect package shall be installed in the ITU.

The ITU shall be a metal enclosure with a hinged door. The door shall have a latch or thumbscrew to hold the door in the closed position. An opening shall be provided on the back side of the incoming fiber optic communications cable. Connector panels (for up to 12 SC connectors) shall be provided inside the enclosure. Strain relief shall be provided for the incoming fiber optic cable. A guard shall be provided to protect the patchcord fiber optic cables plugged into this enclosure.

CAMERA ASSEMBLY

The camera assembly shall consist of:

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camera Module</td>
</tr>
<tr>
<td>Environmental Enclosure</td>
</tr>
<tr>
<td>Video Encoder unit</td>
</tr>
</tbody>
</table>

The camera assembly units shall be fully assembled, pressurized and tested at the original manufacturing facility and shipped as a complete unit, ready for installation.

Camera Module

1. Image Sensor: Progressive Scan CCD
2. Image Size: Diagonal (1/3" type)
3. Image Resolution: 1280 (H); 720 (V)
4. Picture Elements (total): 1348 (H) x 976 (V)
5. Video Output: 16 Bit Digital YUV: 4.2.0
6. Day/Night Operation: Adjustable (Auto, Color and Mono Modes) via removable IR cut filter
7. Maximum Lens Aperture: f/1.6 (wide) to f/2.8 (telescopic)
8. Optical Zoom Range: 18X, 4.7 mm to 84.6 mm with X4 Digital zoom from web browser
9. Optical Zoom Speed: Two speeds, from approximately 3.5 to 5 seconds full range
10. Horizontal Angle of View: Optical: From 55.2 to 3.2 degrees
11. Minimum Focus Distance: 0.01 m (wide); 1.0 m (telescopic)
12. Auto Focus: Selectable Auto/Manual; Minimum Scene Illumination for Reliable Auto Focus shall be no more than 50 percent video output.
13. Manual Shutter: Selectable shutter speeds shall be from 1/30 to 1/10,000.
14. Auto Iris: Selectable auto/manual; Iris shall automatically adjust to compensate for changes in scene illumination to maintain constant video level output within sensitivity specifications.
15. Sensitivity: Scene Illumination; F1.6 at 50 percent video
16. 1.8 Lux (0.18 fc) at 1/30 shutter, color mode
17. 0.1 Lux (0.01 fc) at 1/30 shutter, mono mode

Environmental Enclosure
The environmental enclosure shall be a corrosion resistant and tamperproof sealed and pressurized housing with 5 psi dry nitrogen with Schrader purge fitting and 20 psi relief valve for each camera. The size of the housing shall be 3.5 in diameter or smaller.

The camera housing shall include a loss of pressure sensor that will trigger an alarm message that will be inserted in the video output signal when the pressure drops below 0.5 psi.

The enclosure shall be constructed from 6061-T6 standard aluminum tubing with a wall thickness of 0.25 ± 0.03 inch. Internal components shall be mounted to a rail assembly. A copper plated spring-steel ring shall be used to ensure electrical bonding of the rail assembly and components to the camera housing. The housing exterior shall be finished by pre-treatment with conversion coating and baked enamel paint. The camera enclosure shall be designed to withstand the effects of sand, dust, and hose-directed water.

The internal humidity of the housing shall be less than 10 percent, when sealed and pressurized. Desiccant packs shall be securely placed inside the housing to absorb any residual moisture and maintain internal humidity at 10 percent or less.

A sun shield shall be provided to shield the entire housing from direct sunlight.

The camera assembly shall meet the following requirements:

1. Pan and Tilt Drive Unit Requirements:
 1.1. Must be capable of continuous rotation in either direction.
 1.2. Tilt movement shall be 130 degrees, from +40 to – 90 degrees unobstructed.
 1.3. Pan Speed (Operator Control) shall be variable from 0.1 °/s to 40 °/s
 1.4. Pan Speed (Preset Control) shall be greater than 100 °/s
 1.5. Tilt Speed (Operator Control): Variable from 0.1 °/s to 20 °/s
 1.6. Tilt Speed (Preset Control): 40 °/s
 1.7. The 64 Pan and Tilt preset positions shall be repeatable within ± 0.5 °

2. Power Requirements:
 2.1. Operating voltage shall be from 108 V(ac) to 132 V(ac), 120 V(ac) nominal, 50/60 Hz (± 3.0 Hz).
 2.2. Power consumption shall not exceed a total of 95 Watts.
 2.3. Camera/receiver/P&T driver (pan and tilt in motion) power not to exceed 40 W.
 2.4. Power for the heater (heater on) shall not exceed 6 Watts.

3. Environmental Specifications
 The environmental enclosure shall meet the minimum standard requirements as set forth in Section 2 of the NEMA Standard Publication No. TS2 for temperature, vibration, shock, external icing, corrosion protection and the following:
 3.1. Water Spray: Per IEC 60529+A1, 1999, Para 14.2.6, Solid water stream delivered thru 12.5 mm nozzle at 25 gallons/minute at 9 ft for 3 minutes
 3.2. Humidity: From 0 to 100 percent N.C per MIL-E-5400T, paragraphs 3.2.24.4

4. Mechanical Specifications:
 4.1. The weight shall not exceed 28 lb.
 4.2. The dimensions shall not exceed 17" (height) by 11" (width).

5. Mounting Specifications
 Four mounting holes shall be from 0.39 to 0.43 inches in diameter and match the bolt pattern as detailed in the plans.
6. Main Interface Connector
The main interface connector shall be equivalent to an Amphenol 206036-3 with back shell 206070-1 and mating connector equivalent to an Amphenol 206037-11 with clamp 206070-1.

Video Encoder Unit
The CCTV assembly system shall fully integrate within the H.264/MJPEG encoding component with functions as specified below:

1. Video Encoding: H.264 (Main Profile/Level 3.1) and MJPEG standards.
2. Video Streams: Two independently configurable streams; (2) H.264 streams or (1) H.264 and (1) MJPEG or (1) H.264 or MJPEG and 1 NTSC.
3. Video Stream Configuration Properties (Stream Settings):
 - 3.1. Video Stream 1: H.264
 - 3.2. Video Stream 2: H.264 or MJPEG
4. Image Resolution: 720p, D1, VGA, CIF
5. Streaming Mode: CBR or VBR
6. Image Settings: (GOP (M, N)), Quality Value
7. Frame Rate: 30, 15, 7, 4, 2, 1
8. Connection Types: Uni-cast, multi-unicast or multi-cast
9. Data Rate: Adjustable from 64 k to 8 Mb/s
 CCTV assembly Video Latency: <150 ms
10. Network Protocol Layers: RTP, RTSP, UDP, TCP, IP, HTTP, IGMPv2, ICMP, ARP as a minimum

Operational parameters of the video encoder unit shall meet the following:

1. Functional Capabilities:
 - 1.1. Provide an integrated network Internet Protocol (IP) camera providing 720p/30 video with H.264/MJPEG compression and encoding for providing video images transported over standard Ethernet infrastructures.
 - 1.2. Integrate an HDTV standards 720p resolution at 30 frames/s day/night camera with integral 18x motorized zoom optics, an H.264/MJPEG ASIC based encoding engine and network communication circuitry Automatic and user-selectable speed setting
 - 1.3. Support for uni-cast and multi-cast connections, using RTP/RTSP network layers
 - 1.4. Provide an integral web HTTP server allowing password protected administration/configuration capabilities along with full camera and positioning system control and viewing functions.
 - 1.5. Provide a software development kit (SDK) for allowing any 3rd party developers all necessary tools for integrating the camera assembly system into the users control system environment.
 - 1.6. Provide hybrid capability delivering both Ethernet and analog composite video and EIA-422 serial connections for external system connections and control.
 - 1.7. The positioning drive system shall provide speed capability from 0.1 to 80 degrees per second, with a 0.25-degree repeatability, 360 degree continuous pan rotation, and from +90 to –90 degree tilt range as a minimum.
 - 1.8. Include an advanced ID generation capability for indications of viewing direction, compass setting, azimuth/elevation position, location descriptors and user defined image/logo.
 - 1.9. Be designed conforming to NEMA TS2 requirements for power, shock and vibration as well as IP66 and IP67 environmental standards.

2. Communication and Camera Addressing Protocol:
 - 2.1. Serial data communications ports conforming to EIA/TIA-232 and EIA/TIA-422.
 - 2.2. Configurable to support NTCIP 1205 v01.08 - NTCIP Objects for CCTV Camera Control.
 - 2.3. Via the CCTV protocol, the user shall be able to obtain camera position information including tilt angles, pan positions and zoom levels. The information shall be supplied as from zero degree to 359 degrees azimuth and from –95 degree to +95 degree elevation.
 - 2.4. Cohu and Javelin protocols or equivalent.
 - 2.5. TCP/IP 100 Base T Fast Ethernet data communication port.
Upon receipt of any given command, the camera positioning system shall not take longer than 1.0 second to respond.

All programmable functions shall be stored in non-volatile memory and shall not be lost if a power failure occurs. System configurations such as video privacy zones, preset text and sector ID shall be able to be stored in a computer file and a camera personality can be cloned or uploaded into a camera in the event that a camera replacement is necessary.

The communications transmission interface shall be terminated with appropriate connector. If required a converter shall be supplied to transform EIA-422 to EIA-232.

3. Backward Compatibility with MpM-100/104/105 Master Controller:

3.1. Address Selection: Same on Camera Positioning System.
3.2. Camera Power ON/OFF: Camera turns on/off.
3.3. Auto / Manual Iris Select: Same on Camera Positioning System.
3.4. Fast / Slow: Provides two speeds for zoom.
3.6. BLUE: Increases blue level.
3.7. RED: Increases red level.
3.8. ZOOM: Same on Camera Positioning System.
3.9. FOCUS: Focus Control if in Manual focus mode, no effect if in auto focus mode.
3.10. IRIS: Iris Control if in Manual iris, no effect if in auto iris.
3.11. PAN / TILT: Controls Pan and Tilt direction. Speed of pan and tilt is determined by Fast / Slow mode selection and by optical zoom position of lens, so that the narrower the field of view the slower the pan and tilt speed. In the fast mode, the pan speed shall be adjusted to provide approximately 1 1/2 to 2 1/2 fields of view per second. In the slow mode the pan speed shall be adjusted to provide approximately 1/2 to 1 field of view per second. The tilt speed shall be adjusted to remain proportional to the pan speed.

4. Presets:
Allows Presets 1 through 10 to be set or recalled. Selecting presets 1-10 shall control presets 33 through 42 stored in Camera Positioning System.

5. Character Generator Specifications:

5.1. ID Characters are white with a black border.
5.2. A maximum of six lines of user programmable alphanumeric text can be displayed, plus two fixed display lines for low-pressure indicator and Privacy Zones.
5.3. Text shall only be displayed in uppercase characters.
5.4. Camera ID shall be up to 2 lines, each up to 24 characters long. If both lines are programmed Line 1 of Camera ID shall always appear above Line 2 of Camera ID regardless of top or bottom selection.
5.5. Preset ID: 1 line with up to 24 characters long, user programmable for each of the 64 preset positions. When a preset position is recalled the corresponding preset ID shall be displayed. The preset ID shall remain displayed until a pan, tilt, zoom, manual focus, auto focus select, or another preset command is received.
5.6. Low Pressure Indicator: 1 line, "Low Pressure", messages shall be displayed in "blinking" or "non-blinking" mode and be displayed when activated by low internal pressure. Adjustable set points by altitude shall be provided via the serial port to activate low-pressure. Message shall be enabled or disabled.
5.7. Temperature Indicator shall be 1 line, in degrees C and numeric messages shall be displayed in "blinking" or "non-blinking" mode. Message shall be enabled or disabled.
5.8. Sector Message: Up to 16 sectors in 360 degrees may be defined with up to 24 characters long.
5.9. Message shall be programmable via the EIA-422 serial communications.
5.10. Message positioning shall be accomplished by padding left side of message with spaces.
5.11. Messages can be positioned at either the top or the bottom of display. Blank lines are not displayed. Any programmed line being displayed shall fill in toward the top if top positioning is selected or toward the bottom if bottom position is selected.
6. Privacy Zones:
 Video blanking for up to 8 Privacy zones shall be provided. The video shall be blanked out for privacy of 1 line; numeric messages can also be displayed. Message shall be displayed in "blinking" or "non-blinking" mode and be enabled or disabled. Privacy Zones shall be programmed via the EIA-422 serial communications.

7. Maintenance Functions:
 7.1. Querying of camera parameters via the Ethernet connection.
 7.2. The camera parameters consists of:
 7.2.1. Serial Number
 7.2.2. Software Revision
 7.2.3. Assembly Date
 7.2.4. Camera Model Number
 7.3. Internal temperature and pressure monitoring and reporting
 7.4. Remote software upload and updates via Ethernet
 7.5. Camera device auto discovery of IP address
 7.6. Camera system auto re-connect
 7.7. Camera system reset
 7.8. Save and restore camera system start-up configuration

8. IP Management:
 8.1. IP Configuration: DHCP or Static IP address entry.
 8.2. Net mask address entry
 8.3. Gateway address entry
 8.4. Domain name entry
 8.5. DNS server entry

9. Tour Sequencing Requirements:
 9.1. Eight - tour sequence may be defined.
 9.2. Programming of the tour sequences shall be accomplished by the selection of a preset position (by number), and then selection a dwell time. The presets can be used in any order, and the same preset may be used more than once as long as the total number of preset positions used does not exceed 32.
 9.3. The dwell time defines the length of time paused at each preset position. It can be from 1 second to 60 seconds. The dwell time is can be changed individually for all stops on the tour.
 9.4. If the appropriate preset ID is programmed, it shall be displayed for each preset position used on the tour.
 9.5. The tour shall stop upon receipt of a pan command.
 9.6. All programmable functions shall be stored in non-volatile memory.

CAMERA TRANSCEIVER
 The Contractor shall furnish and install a camera transceiver (TCVR) at the camera site to interface with the CCTV camera assembly, and with the fiber optic cable.
 The TCVR shall operate on one single mode fiber.
 The TCVR shall support high quality, simultaneous two-way transmission of camera control data and one-way transmission of camera video over one single mode fiber. The TCVR shall receive EIA-232 data for the CCTV assembly and shall transmit NTSC video from the CCTV camera assembly.
 The TCVR video transmission and data-receiving format used in the camera junction box shall be compatible with the TCVR video receiving and data-transmitting format used in the communications hub structure.
 The TCVR may be packaged as one surface mountable module or may be individual components such as a receiver, transmitter and wavelength division multiplexer to combine both data and video onto one single mode fiber.
 Supply voltage shall be 120 V(ac) ± 10 percent, 60 Hz. Lower voltage units will be acceptable if a UL listed power conversion module is used to adapt from the 120 V(ac) source.
 Power required shall be 50 W maximum.
 Mounting shall be to a flat wall surface.
Operating temperature range shall be from -40 to +162 °F minimum range.

Video transmitter section shall meet the following requirements:

<table>
<thead>
<tr>
<th>Input Level:</th>
<th>1 V(p-p) (NTSC composite)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal-to-Noise ratio</td>
<td>50 dB Min</td>
</tr>
<tr>
<td>at minimum receiver input:</td>
<td></td>
</tr>
<tr>
<td>Differential phase (From 10</td>
<td>3 degrees Max</td>
</tr>
<tr>
<td>to 90 percent APL):</td>
<td></td>
</tr>
<tr>
<td>Differential gain (From 10</td>
<td>3 percent Max</td>
</tr>
<tr>
<td>to 90 percent APL):</td>
<td></td>
</tr>
<tr>
<td>Frequency Response:</td>
<td>From 100 kHz to 5.5 MHz:</td>
</tr>
<tr>
<td></td>
<td>±0.30 dB Max</td>
</tr>
<tr>
<td></td>
<td>From 5.5 MHz to 8 MHz:</td>
</tr>
<tr>
<td></td>
<td>±0.6 dB Max</td>
</tr>
</tbody>
</table>

1. EIA-232 receiver section shall meet the following requirements:
 1.1. Data rate: From DC to 9.6 kbps Min
 1.2. Bit error rate: 10^{-9} Max

2. Optical shall meet the following requirements:
 2.1. Operating wavelength: 1300 nm or 1550 nm
 2.2. Launch power: -14 dBm Min
 2.3. Sensitivity (receiver): -28 dBm Max
 2.4. Loss budget: 14 dB Min
 2.5. Fiber compatibility: 8.3/125 µm singlemode

3. EIA-232 receiver shall meet the following requirements:
 3.1. Operating wavelength: 1300 nm or 1550 nm
 3.2. Loss budget: 20 dB
 3.3. Fiber compatibility: 8.3/125 µm singlemode

4. Connectors shall meet the following requirements:
 4.1. Video input: BNC
 4.2. EIA-232: DE-9, DA-15 or DB-25
 4.3. Optical: Type SC

The TCVR units shall be tested prior to installation to ensure proper operation with the camera control transmitter.

The Contractor shall confirm the operation of the TCVR, after installation, using test equipment which emulates all the functions of the camera control transmitter, and shall document all results and keep test equipment in operation until witnessed and approved by the Engineer.

The Contractor shall confirm equipment placement with the Engineer before installing any equipment.

After installing all TCVR units and the communication system, the Contractor shall demonstrate operation of the camera control system and assign all system parameters using the camera control system located at the communication hub that the CCTV is assigned to.

The camera control system functions shall be tested on all TCVR units and shall operate all remote control functions, for example pan and tilt, zoom in and out, focus near and far, set up, and recall up to eight preset positions per remote TCVR address. The response of the camera control system shall appear to be instantaneous.

The Contractor shall demonstrate the camera control system to show that it can access all TCVR units.

The Contractor shall be responsible for all testing and documentation required for proper installation and operation of the camera transceivers, materials and equipment. The following identifies the specific quality control requirements for both the TCVR and TCVR-CH (Communication Hub). The TCVR-CH is described elsewhere.

Prior to installation, all transceivers shall be tested. The Contractor shall input a standard level video test signal into the TCVR at the camera site and adjust the optical power output of the TCVR to receive a mid-range optical power level for the TCVR-CH located at the communication hub needed to produce the required video receiver output level.

The TCVR-CH's video output shall then be connected to a monitor for viewing with the level adjusted to the mid-range of any output settings. The Contractor shall then qualitatively assess the monitor output. Video shall be of high quality with good color and no image ghosting. The signal-to-noise ratio and signal-to-low frequency noise
ratio shall be measured and recorded. No optical attenuation devices shall be used to reduce optical signals to required operating range. All indicators shall be verified to function correctly.

ACCEPTANCE TESTING

Upon installation of the CCTV system in the field, the Contractor shall perform the following tests locally in the presence of the Engineer, with a Contractor provided camera controller. The camera controller can be a laptop computer with the latest version of the vendor supplied camera control software and be compatible with the CCTV system.

1. Iris Auto//Manual Operation:

 1.1. With IRIS Auto/Manual switch in Manual, open Iris and verify that the video image lightens.
 1.2. Close the Iris and verify that the video image darkens.
 1.3. Open the Iris to lighten the image and then switch IRIS Auto/Manual switch to auto. Verify that the camera iris closes to produce the original video image.
 1.4. Close the Iris to darken the image and then switch IRIS Auto/Manual switch to auto. Verify that the camera iris opens to produce the original video image.

2. Focus Auto/Manual Operation:

 2.1. With Focus Auto/Manual switch in Manual, demonstrate that the camera can focus on objects both near and far in the field of view.
 2.2. Focus near, then switch FOCUS Auto/Manual switch to auto and demonstrate that the camera focus adjusts automatically to bring the image back in focus.
 2.3. Focus far, then switch FOCUS Auto/Manual switch to auto and demonstrate that the camera focus adjusts automatically to bring the image back in focus.

3. Zoom Telephoto//Wide Operation:

 3.1. With the IRIS and FOCUS Auto/Manual switches in Auto the Contractor shall demonstrate that the auto IRIS & FOCUS adjustments operate with a focused picture present in the video image and that the picture zooms in and out.
 3.2. With IRIS and FOCUS Auto/Manual switch in Manual and operating the Zoom from wide angle to Telephoto the Contractor shall demonstrate that all IRIS and FOCUS adjustments do not operate as if in Auto and that picture still zooms in and out.
 3.3. Demonstrate that the Digital zoom functions through 10 times the focal length.

4. Tilt Operation

 The Contractor shall demonstrate that with Iris and Focus in Auto, and Zoom in wide mode that the camera has free movement with a minimum range from +30 to –80 degrees elevation range travel.

5. Pan Right/Left Operation

 The Contractor shall demonstrate that with Iris and Focus in Auto, and Zoom in wide mode and with the camera tilted range from +30 to -80 degrees the camera shall rotate with free movement, with a minimum of 360° pan travel range.

6. Camera Preset Operation:

 6.1. Using camera control software the Contractor shall demonstrate that the camera system shall execute a minimum of 6 various preset positions employing various degrees of zoom, pan and tilt. The camera must move freely from on preset position to the next. The camera system shall not take more than 4 seconds to go to a preset position. Once in the pre-set position the camera shall not move unless directed by another command.
 6.2. The camera control software shall automatically and continuously test all 6 preset positions in succession for a minimum of one hour.
7. ID Generation
Using camera ID Generator and vendor supplied camera control software the Contractor shall demonstrate the insertion of 20 text characters into the video image.

8. Performance:

8.1. Streaming outputs: 720 x 480 at 15 FPS, 176 x 144 at 6 FPS, and a 320 x 240-JPEG image.
8.2. A thermal monitor may be enabled to maintain the processor within the published specification.
8.3. The video output stream generated from the test archive file shall be continuous/seamless and without error/glitches when played back.

HYBRID CAMERA CABLE AND CONNECTORS
The hybrid camera cable (HCC) shall be applicable to the Camera Station. The hybrid camera cable (HCC) shall consist of one RG-59/U type analog video coaxial cable, one 6-No. 22 AWG conductor group, one 8-No. 26 AWG conductor group and a two twist pair 4-No. 26 AWG conductor group in a common outer jacket. The hybrid camera cable cross section is shown on the plans.

Electrical Requirements
The coaxial cable shall conform to:

<table>
<thead>
<tr>
<th>Electrical</th>
<th>Coaxial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitance (picofarads/ft nominal)</td>
<td>17.3</td>
</tr>
<tr>
<td>Impedance (ohms-nominal)</td>
<td>75</td>
</tr>
<tr>
<td>Velocity of propagation (nominal)</td>
<td>78 percent</td>
</tr>
<tr>
<td>Nominal Diameter (inch)</td>
<td>0.242</td>
</tr>
<tr>
<td>Insulation Rating</td>
<td>300 V</td>
</tr>
</tbody>
</table>

The cable attenuation at 20 °C shall measure at maximum as:

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Nominal dB/100 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.30</td>
</tr>
<tr>
<td>10</td>
<td>0.90</td>
</tr>
<tr>
<td>50</td>
<td>2.10</td>
</tr>
</tbody>
</table>

The coaxial cable physical measurements:

<table>
<thead>
<tr>
<th>Component</th>
<th>Nominal OD (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper center conductor</td>
<td>0.040</td>
</tr>
<tr>
<td>Foam polyethylene dielectric</td>
<td>0.180</td>
</tr>
<tr>
<td>Sealed APA tape with 0.06-inch overlap</td>
<td>0.216</td>
</tr>
<tr>
<td>Woven aluminum braid</td>
<td>0.241</td>
</tr>
<tr>
<td>PVC outer jacket</td>
<td>0.297</td>
</tr>
</tbody>
</table>

(APA = Aluminum polyolefin and aluminum with adhesive)

The 6-No. 22 AWG shall be stranded 7 x 30, tinned copper insulated with 0.009” nominal wall of S-R PVC and a nominal OD of 0.048”. The 6 conductors shall be color coded as follows:

1. Black
2. Red
3. Green
4. White
5. Blue
6. Yellow
The 8-No. 26 AWG shall be stranded 7 x 34, tinned copper insulated with 0.009\" nominal wall of S-R PVC and a nominal OD of 0.037\". The 8 conductors shall be color coded as follows:

1. Brown
2. Blue
3. Orange
4. Yellow
5. Purple
6. Gray
7. White with Black Stripe
8. Red with Green Stripe

The 4-No. 26 AWG in 2 twisted pairs shall be stranded 7 x 34, tinned copper insulated with 0.009\" nominal wall of S-R PVC and a nominal OD of 0.037\". The 4 conductors shall be color coded as follows:

Pair No. 1:

1. Black
2. White

Pair No. 2:

1. Red
2. Green

The HCC shall also have a 36 AWG tinned copper braid with 90 percent coverage, an O/A binder of 0.001\" polyester 25 percent overlap, and an outer jacket conforming to: color to match Fed-Std-595 color No. 24091, material 0.032\" dark gray UV resistant PVC to 0.425\" OD and must pass the VW-1 vertical flame test. Fillers shall be used as required to form a uniform round cable. The insulation rating of the overall cable jacket shall be 300 V.

The manufacture identification shall be surface printed in white ink every foot along the length of the cable.

The HCC shall be continuous from the camera unit to the controller cabinet without splicing, unless shown on the plan or approved by the Engineer. The maximum length of HCC is 750 feet.

At the camera unit, the HCC shall be terminated with cable connectors on both ends. Connector AMP 206036-3 with a full set crimp contact pins and strain relief back shell, AMP 206070-1 shall be installed on the cable end toward the transceiver, see plans for HCC breakout cable detail. Connector AMP 206037-1 with a full set crimp contact sockets and strain relief back shell, AMP 206070-1 shall be installed on the cable end toward the camera unit. All connector contact shall be constructed with brass contact body material and with stainless steel spring that are sub-plated with 0.000050-inch nickel and plated with 0.000030-inch gold. Contact size shall be 16. AMP No. 305183 contact extraction tool shall be used to replace contact. AMP hand tool assembly 58495-1 with die assembly 58495-2 shall be used to place contacts on to each conductor. No other tool, unless approved by the Engineer will be used for this work.

Inspection and Testing Cable and Connectors

Testing of HCC and connectors shall be performed in accordance with provisions in Section 86-2.14B, “Field Testing,” of the Standard Specifications and these special provisions. Any cable lengths found to have faults shall be replaced and retested. The Contractor shall dispose of the removed faulty cable. The cable termination shall be randomly inspected for contact crimping quality control. Any contact found not crimped with the correct crimping tool and is defect shall be rejected. The Contractor shall redo the termination until all defects are corrected.

Prior to the beginning of work, the coaxial cable length of HCC shall be tested for attenuation and faults to ensure compliance with specifications contained herein using a time domain reflectometer (TDR). For the purpose of these special provisions, one or more of the following defines a fault in a long length of cable:

1. Return loss measurements indicating that attenuation exceeds 3 dB in the band from 5 MHz to 30 MHz in a portion of cable less than 10 feet long.
2. A return loss measurement indicating that there is a short in the cable.
3. A return loss measurement indicating a cut or open circuit in the cable.
4. A visual inspection that reveals exposure of or damage to the cable shielding.
INTERFACE CABLES

All interface cables when required to interface with other equipment as shown on the plan shall be minimum of 6 feet in length. All interface cables shall be commercially made high quality type with appropriate connectors on the cable ends as shown on the plans.

Network Straight Through Data Cable

The network straight through data cable shall be made of Ethernet twisted pair cable (ETPC) and terminated with an 8-conductor, 8P8C modular plug on both ends. ETPC shall consist of 4 unshielded twisted pair (UTP) No. 24 AWG stranded copper conductors insulated with high-density polyethylene (PE). The insulated conductors shall be tightly twisted into individual pairs and jacketed with PE or PVC.

Video Patch Cable

The video patch cable shall be RG-59/U coaxial cable terminated at both end with BNC connectors. The coaxial cable shall conform to:

<table>
<thead>
<tr>
<th>Component</th>
<th>Nominal OD (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper center conductor</td>
<td>0.040</td>
</tr>
<tr>
<td>Foam polyethylene dielectric</td>
<td>0.146</td>
</tr>
<tr>
<td>Sealed APA tape with 0.06-inch overlap</td>
<td>0.216</td>
</tr>
<tr>
<td>Bare copper braid</td>
<td>0.241</td>
</tr>
<tr>
<td>PVC outer jacket</td>
<td>0.297</td>
</tr>
</tbody>
</table>

The coaxial cable physical measurements:

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Nominal dB/ 100 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.30</td>
</tr>
<tr>
<td>10</td>
<td>0.90</td>
</tr>
<tr>
<td>50</td>
<td>2.1</td>
</tr>
</tbody>
</table>

The cable attenuation at 20 °C shall measure at maximum as:

EIA-232 Data Patch Cable

The EIA-232 data patch cable shall meet EIA-232 standard. The data cable shall have multiple No. 20 AWG conductors with (UL) Type CM shielded or AWM 2464 80C 300 Volts – C (UL). One end of data cable shall be terminated with a DE9 female connector. All contact socket pins shall be gold plated. The contact pin assignment is shown on the plans. The other end of the data cable shall be either terminated with an 8P8C modular plug or not terminated. When there is no connector required on the other end of cable, each conductor's insulation shall be stripped 1/4” long from the end of cable and the bare conductor shall be tinned with solder.

10-3.32 REMOVING, REINSTALLING OR SALVAGING ELECTRICAL EQUIPMENT

Haul electrical materials and equipment to be salvaged to the Caltrans Maintenance Station at 175 West Cluster Street, San Bernardino, CA 92408 and stockpile.

Provide the equipment, as necessary, to safely unload and stockpile the material. Notify the Engineer a minimum of 2 business days prior to hauling materials and equipment to be salvaged.
VEHICLE SENSOR NODES (VSN) REMOVAL

VSNs must be removed per procedure recommended by manufacturer and conform to these special provisions. VSNs use Lithium Thionyl Chloride (LTC) batteries. LTC batteries may be extremely hazardous if not handled properly. Improper handling of the VSN may result in leakage of batteries or release of battery contents, explosion or fire. Care must be taken to insure that the VSN casing is not punctured or crushed. Any VSN damaged must be returned to the manufacturer Sensys Networks, Inc. at 2560 Ninth Street, Berkeley, CA 94710 for disposal.

Remove VSNs as shown on the plans and return damaged VSNs (not salvaged) to the manufacturer for disposal.

For proper use and handling of batteries in the vehicle sensor nodes:

1. VSNs must not be crushed or punctured
2. VSNs must not be exposed to excessive heating
3. VSNs must not be exposed to water

VSNs Without Plastic Sensor Caps

Remove the sensors from the road as shown on the plans.
Core a 5-inches diameter hole around the sensors to a depth of approximately 2-1/2 inches.
Free the sensor and epoxy plug at the bottom of the hole, remove the sensor and epoxy plug and clean loose dirt or debris.
Fill the holes resulting from the removal of sensors with equivalent material.

10-3.33 DISPOSING OF ELECTRICAL EQUIPMENT

Fluorescent light ballasts which contain polychlorinated biphenyls (PCBs) shall be disposed of in conformance with the California Department of Toxic Substances Control (DTSC) Regulations set forth in Title 22, Division 4.5, Chapter 42, of the California Code of Regulations.

Ballasts and transformers that contain polychlorinated biphenyl (PCB) are designated as extremely hazardous wastes and fluorescent tubing and mercury lamps are designated as hazardous wastes under Title 22, Division 4.5, Chapter 11, Article 4.1 and Article 5, of the California Code of Regulations.

The State assumes generator responsibility for these wastes. The Engineer will prepare the Hazardous Waste Manifest for Shipment. Ballasts shall be packaged and transported to a hazardous waste disposal facility. The Contractor shall package and transport fluorescent lights to an appropriately permitted facility.

PAYMENT

Full compensation for hauling, stockpiling, and disposing of transformers, fluorescent tubing and mercury lamps and non-leaking fluorescent light ballasts shall be considered as included in the contract price paid for the various items of work and no additional compensation will be allowed therefor.

10-3.34 PAYMENT

The contract lump sum price or prices paid for signal and lighting shall include highway lighting at intersections in connection with signals only.

Other roadway lighting on the project shall be considered as included in the contract lump sum price paid for lighting and sign illumination.

The contract lump sum price paid for modify changeable message sign system, shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals and for doing all the work involved in, modify changeable message sign system, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer

The contract lump sum price paid for modify communication system, shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals and for doing all the work involved in modify communication system, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

The contract lump sum price paid for modify vehicle detection system, shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals and for doing all the work involved in, modify vehicle detection system, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

The contract lump sum price paid for remove existing wireless vehicle detection system includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in hauling, stockpiling, and disposing of VSNs containing LTC batteries, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.
Full compensation for hauling and stockpiling electrical materials shall be considered as included in the contract price paid for the item requiring the material to be salvaged and no additional compensation will be allowed therefor.

If any of the fabrication sites for the materials listed are located more than 300 air line miles from both Sacramento and Los Angeles, additional shop inspection expenses will be sustained by the State. Whereas it is and will be impractical and difficult to determine the actual increase in these expenses, it is agreed that payment to the Contractor for furnishing these listed materials from each fabrication site located more than 300 air line miles from both Sacramento and Los Angeles will be reduced $2,000:

1. Service equipment enclosures
2. Closed circuit television cabinets furnished by the Contractor
3. Model 334 cabinet furnished by the Contractor

SECTION 11. (BLANK)

SECTION 12. (BLANK)

SECTION 13. RAILROAD RELATIONS AND INSURANCE REQUIREMENTS

13-1.01 RAILROAD RELATIONS AND INSURANCE

GENERAL

The term "Railroad" shall mean the Union Pacific Railroad Company.

It is expected that the Railroad will cooperate with the Contractor to the end that the work may be handled in an efficient manner. However, except for the additional compensation provided for hereinafter for delays in completion of specific unit of work to be performed by the Railroad, and except as provided in Public Contracts Code Section 7102, the Contractor shall have no claim for damages, extension of time, or extra compensation in the event his work is held up by railroad train operations or other work performed by the Railroad.

The Contractor must understand the Contractor's right to enter the Railroad's property is subject to the absolute right of the Railroad to cause the Contractor's work on the Railroad's property to cease if, in the opinion of the Railroad, the Contractor's activities create a hazard to the Railroad's property, employees, and operations.

The Contractor acknowledges its receipt from the State of a copy of the Contractor's Right of Entry Agreement that has been executed by the Railroad and the State. The Contractor agrees to execute and deliver to the Railroad the Contractor's Endorsement that is attached hereto as Appendix 1 and to provide to the State and/or the Railroad all insurance policies, binders, certificates or endorsements that are set forth in Exhibits B and C of the Caltrans Right of Entry Agreement.

13-1.02 RAILROAD REQUIREMENTS

The Contractor shall provide to Kenneth Tom, Railroad's Senior Manager, Industry and Public Projects, 2015 South Willow Avenue, Bloomington, California 92316, and the Engineer, in writing, the advance notice requirements set forth in Section 1 of Exhibit B of the Caltrans Right of Entry Agreement before performing any work on, or adjacent to the property or tracks of the Railroad.

The Contractor shall cooperate with the Railroad where work is over or under the tracks, or within the limits of the Railroad property to expedite the work and avoid interference with the operation of railroad equipment.

The Contractor shall comply with the rules and regulations of the Railroad or the instructions of its representatives in relation to protecting the tracks and property of the Railroad and the traffic moving on such tracks, as well as the wires, signals and other property of the Railroad, its tenants or licensees, at and in the vicinity of the work during the period of construction. The responsibility of the Contractor for safe conduct and adequate policing and supervision of its work at the job site shall not be lessened or otherwise affected by the presence at the work site of the Railroad representatives, or by the Contractor's compliance with any requests or recommendations made by the Railroad representatives.
The Contractor shall perform work so as not to endanger or interfere with the safe operation of the tracks and property of the Railroad and traffic moving on such tracks, as well as wires, signals and other property of the Railroad, its tenants or licensees, at or in the vicinity of the work.

The Contractor shall take protective measures to keep the Railroad facilities, including track ballast, free of sand or debris resulting from his operations. Damage to the Railroad facilities resulting from the Contractor's operations will be repaired or replaced by the Railroad and the cost of such repairs or replacement shall be deducted from the Contractor's progress and final pay estimates.

The Contractor shall contact the Railroad's "Call Before You Dig" at least forty-eight (48) hours prior to commencing work, at 1-800-336-9193 during normal business hours (7:00 a.m. to 9:00 p.m. Central Time, Monday through Friday, except holidays – also a 24-hour, 7-day number for emergency calls) to determine location of fiber optics. If a telecommunications system is buried anywhere on or near the Railroad property, the Contractor will coordinate with the Railroad and the Telecommunication Company(ies) to arrange for relocation or other protection of the system prior to beginning any work on or near Railroad property.

The Contractor shall not pile or store any materials nor park any equipment closer than 25'-0" to the centerline of the nearest track, unless directed by the Railroad's representative.

The Contractor shall also abide by the following temporary clearances during the course of construction:

3.66 meter (12'-0") horizontally from centerline of track
6.40 meter (21'-0") vertically above top of rail

The temporary vertical construction clearance above provided will not be permitted until authorized by the Public Utilities Commission. It is anticipated that authorization will be received not later than fifteen (15) days after the approval of the contract. In the event authorization is not received by the time specified, and, if in the opinion of the Engineer, the Contractor's operations are delayed or interfered with by reason of authorization not being received by the said time, the Licensee will compensate the Contractor for such delay to the extent provided in Section 8-1.09, "Right of Way Delays," of the Standard Specifications and not otherwise.

Walkways with railing shall be constructed by the Contractor over open excavation areas when in close proximity of tracks, and railings shall not be closer than 2.60-meter (8'-6") horizontally from centerline of the nearest track, if tangent, or 2.90-meter (9'-6") if curved.

Infringement on the above temporary construction clearances by the Contractor's operations shall be submitted to the Railroad by the Engineer, and shall not be undertaken until approved by the Railroad, and until the Engineer has obtained any necessary authorization from any governmental body or bodies having jurisdiction thereover. No extension of time or extra compensation will be allowed in the event the Contractor's work is delayed pending Railroad approval and governmental authorization.

When the temporary vertical clearance is less than 6.86-meter (22'-6") above top of rail, the Railroad shall have the option of installing tell-tales or other protective devices the Railroad deems necessary for protection of the Railroad trainmen or rail traffic.

Four (4) sets of plans, in 279mm x 432mm (11" x 17") format, and two (2) sets of calculations showing details of construction affecting the Railroad's tracks and property not included in the contract plans, including but not limited to shoring and falsework, shall be submitted to the Engineer for review prior to submittal to the Railroad for final approval. Falsework shall comply with the Railroad guidelines. Demolition of existing structures shall comply with the Railroad guidelines. Shoring shall be designed in accordance with the Railroad's shoring requirement of Drawing No. 106613 and guidelines for shoring and falsework, latest edition, issued by the Railroad's Office of Chief Engineer. Shoring and falsework plans and calculations shall be prepared and signed by a professional engineer registered in California. This work shall not be undertaken until such time as the Railroad has given such approval, review by the Railroad may take up to six (6) weeks after receipt of necessary information.

The Contractor shall notify the Engineer in writing, at least twenty-five (25) calendar days but not more than forty (40) days in advance of the starting date of installing temporary work with less than permanent clearance at each structure site. The Contractor shall not be permitted to proceed with work across railroad tracks until this
requirement has been met. No extension of time or extra compensation will be allowed if the Contractor's work is delayed due to failure to comply with the requirements in this paragraph.

Blasting will be permitted only when approved by the Railroad.

The Contractor shall, upon completion of the work covered by this Contract to be performed by the Contractor upon the premises or over or beneath the tracks of the Railroad, promptly remove from the premises of the Railroad, the Contractor's tools, implements and other materials, whether brought upon said premises and cause said premises to be left in a clean and presentable condition.

Under track pipeline installations shall be constructed in accordance with the Railroad's current standards which may be obtained from the Railroad. The general guidelines are as follows:

Edges of jacking or boring pit excavations shall be a minimum of 6.10-meter (20 feet) from the centerline of the nearest track.

If the pipe to be installed under the track is 100mm (4 inches) in diameter or less, the top of the pipe shall be at least 42 inches below base of rail.

If the pipe diameter is greater than 100-meter (4 inches) in diameter, it shall be encased and the top of the steel pipe casing shall be at least 1.60-meter (66 inches) below base of rail.

Installation of pipe or conduit under the Railroad's tracks shall be done by dry bore and jack method.

Hydraulic jacking or boring will not be permitted.

Safety of personnel, property, rail operations and the public is of paramount importance. As reinforcement and in furtherance of overall safety measures to be observed by the Contractor (and not by way of limitation), the following special safety rules shall be followed:

(a) The Contractor shall keep the job site free from safety and health hazards and ensure that its employees are competent and adequately trained in all safety and health aspects of the job. The Contractor shall have proper first aid supplies available on the job site so that prompt first aid services can be provided to any person that may be injured on the job site. The Contractor shall promptly notify the Railroad of any U.S. Occupational Safety and Health Administration reportable injuries occurring to any person that may arise during the work performed on the job site. The Contractor shall have a non-delegable duty to control its employees while they are on the job site or any other property of the Railroad to be certain they do not use, be under the influence of, or have in their possession any alcoholic beverage, drug, narcotic or other substance that may inhibit the safe performance of work by the employee.

(b) The employees of the Contractor shall be suitably dressed to perform their duties safely and in a manner that will not interfere with their vision, hearing or free use of their hands or feet. Only waist length shirts with sleeves and trousers that cover the entire leg are to be worn. If flare-legged trousers are worn, the trouser bottoms must be tied to prevent catching. The employees should wear sturdy and protective work boots and at least the following protective equipment:

(1) Protective head gear that meets American National Standard-Z89.1-latest revision. It is suggested that all hardhats be affixed with the Contractor's or the subcontractor's company logo or name.

(2) Eye protection that meets American National Standard for occupational and educational eye and face protection, Z87.1-latest revision. Additional eye protection must be provided to meet specific job situations such as welding, grinding, burning, etc.; and

(3) Hearing protection which affords enough attenuation to give protection from noise levels that will be occurring on the job site.

(c) All heavy equipment provided or leased by the Contractor shall be equipped with audible back-up warning devices. If in the opinion of the Railroad Representative any of the Contractor's or the
subcontractor’s equipment is unsafe for use on the Railroad’s right-of-way, the Contractor, at the request of the Railroad representative, shall remove such equipment from the Railroad’s right-of-way.

13-1.03 PROTECTION OF RAILROAD FACILITIES

Upon the advance notification provided to the Railroad as set forth in Section 1 of Exhibit B of the Contractor’s Right of Entry Agreement, the Railroad representatives, conductors, flagmen or watchmen will be provided by the Railroad to protect its facilities, property and movements of its trains or engines. Notice shall be made to the Railroad's Manager of Track Maintenance at (909) 685-2469. At the time of notification, the Contractor shall provide the Railroad with a schedule of dates that flagging services will be needed, as well as times, if outside normal working hours. Subsequent deviation from the schedule shall require ten (10) working days’ advance notice from the first affected date. The Railroad will furnish such personnel or other protective devices:

(a) When equipment is standing or being operated within 25 feet, measured horizontally, from centerline of any track on which trains may operate, or when any erection or construction activities are in progress within such limits, regardless of elevation above or below track.

(b) For any excavation below elevation of track subgrade if, in the opinion of the Railroad’s representative, track or other Railroad facilities may be subject to settlement or movement.

(c) During any clearing, grubbing, grading or blasting in proximity to the Railroad which, in the opinion of the Railroad’s representative, may endanger the Railroad facilities or operations.

(d) During any of the Contractor’s operations when, in the opinion of the Railroad’s representatives, the Railroad facilities, including, but not limited to, tracks, buildings, signals, wire lines or pipe lines, may be endangered.

The cost of flagging and inspection provided by the Railroad during the period of constructing that portion of the project located on or near the Railroad property, as deemed necessary for the protection of the Railroad’s facilities and trains, will be borne by the State. The Railroad has indicated that its estimated flagging rate will be around One Thousand One Hundred Dollars ($1,100.00) per day and that the State has estimated a total of one hundred (100) days of flagging. The State shall pay the Railroad for all actual flagging costs incurred by the Railroad under this Project.

13-1.04 WORK BY RAILROAD

The following work by the Railroad will be performed by Railroad forces and is not a part of the work under this Contract.

(a) The Railroad will perform preliminary engineering and inspection (if any) and flagging as specified in Section 1.05 "Railroad Flagger Services," of these special provisions.

(b) Temporary crossings at grade over tracks of Railroad for the purpose of hauling earth, rock, paving or other materials will not be permitted. If the Contractor, for the purpose of constructing highway-railway grade separation structures, including construction ramps thereto, desires to move equipment or materials across Railroad’s tracks, the Contractor shall first obtain permission from Railroad via the State Engineer. Should Railroad approve the temporary crossing, State shall execute a Service Contract with Railroad for Railroad to construct the temporary crossing. Under the Service Contract, the Contractor shall bear the cost of the crossing surface, warning devices and other components that might be required. Notwithstanding State's Service Contract with Railroad, the Contractor is required to execute Railroad’s form of Contractor’s Haul Road Crossing Agreement. Railroad, at State’s expense, shall provide flagmen to control movements of vehicles across the temporary crossing. State and its Contractor shall prevent the use of such temporary crossing by unauthorized persons and vehicles.

(c) Operate, maintain, renew and/or relocate any and all existing railroad track or tracks, wires, pipelines and other facilities of like character upon, over or under the surface of said right-of-way;

(d) Construct, operate, maintain, renew and/or relocate upon said right-of-way, without limitation, such facilities as the UPRR may from time to time deem appropriate, provided such facilities do not materially interfere with the STATE's construction of the Project;
(e) UPRR will furnish all labor, materials, tools, and equipment for railroad work required for the construction of the Project, such railroad work and the estimated cost thereof being as shown on Exhibit XX attached hereto and made a part hereof. In the event construction on the Project has not commenced within six (6) months following the Effective Date, UPRR may, in its sole and absolute discretion, revise the cost estimates set forth in said Exhibit XX. In such event, the revised cost estimates will become a part of this Agreement as though originally set forth herein. Any item of work incidental to the items listed on Exhibit XX not specifically mentioned therein may be included as a part of this Agreement upon written approval of STATE, which approval will not be unreasonably withheld. Construction of the Project must include the following railroad work by UPRR:

(1) Procurement of materials, equipment and supplies necessary for the railroad work;
(2) Preliminary engineering, design, and contract preparation;
(3) Furnishing of flagging services during construction of the Project as required and set forth in further detail on Exhibit C;
(4) Furnishing engineering and inspection as required in connection with the construction of the Project;
(5) Providing a contract project coordinator, at STATE's expense, to serve as a project manager for the Project;
(6) Providing a structural coordinator, at STATE's expense, to monitor any construction activities;
(7) Construction and Removal of the Ice Deck Siding #2 and Shoo-flies, including line-overs for Ice Deck Siding #2;
(8) Removal of UPRR Main Track associated with the Grand Terrace bridge removal;
(9) Providing survey control for all track work; and
(10) Providing review, at STATE's expense, of plans and specifications for any falsework, shoring, and demolition that may be subsequently submitted to UPRR by STATE or its contractor for approval.

13-1.05 WORK BY STATE

In consideration of the covenants of UPRR set forth herein and the faithful performance thereof, STATE agrees as follows:

(a) STATE must make any and all arrangements, in compliance with UPRR's Utility Policies, for the installation or relocation of wire lines, pipe lines and other facilities owned by private persons, companies, corporations, political subdivisions or public utilities other than UPRR which may be necessary for the construction of the Project.
(b) STATE must construct the Structure as shown on the attached Exhibit A and do all work ("STATE's Work") provided for in the plans and specifications for the Project, except railroad work that will be performed by UPRR hereunder. STATE must furnish all labor, materials, tools and equipment for the performance of STATE's Work. The principal elements of STATE's Work are as follows:
 (1) Preliminary and final Engineering;
 (2) Remove and dispose of the Existing Structure at Grand Terrace.
 (3) Design and construction of the Colton-Loma Linda Structure;
 (4) All necessary grading for the shoofly track and realigned Ice Deck Siding #2, including backfill of excavations and restoration of disturbed vegetation on UPRR's right-of-way;
 (5) Providing suitable drainage, both temporary and permanent;
 (6) Performance of necessary engineering, grading and staking for the Structure;

(c) Job site cleanup including removal of all construction materials, concrete debris, surplus soil, refuse, contaminated soils, asphalt debris, litter and other waste materials to the satisfaction of UPRR;

13-1.06 DELAYS DUE TO WORK BY RAILROAD.

If delays due to work by the Railroad occur, and the Contractor sustains loss which, in the opinion of the Engineer, could not have been avoided by the judicious handling of forces, equipment and plant, the amount of said loss shall be determined as provided in Section 8-1.09, "Right of Way Delays," of the Standard Specifications.

If a delay due to work by the Railroad occurs, an extension of time determined pursuant to the provisions in Section 8-1.07, "Liquidated Damages," of the Standard Specifications will be granted.
The provisions of Section 13-1, "Relations with Railroad Company," and the provisions of Section 13-2, "Railroad Protective Insurance," of these special provisions shall inure directly to the benefit of the Railroad.

13-2.01 RAILROAD PROTECTIVE INSURANCE

In addition to any other form of insurance or bonds required under the terms of the contract and specifications, the Contractor will be required to carry insurance of the kinds and in the amounts hereinafter specified.

Such insurance shall be approved by the Railroad before any work is performed on the Railroad's property and shall be carried until all work required to be performed on or adjacent to the Railroad's property under the terms of the contract is satisfactorily completed as determined by the Engineer, and thereafter until all tools, equipment and materials have been removed from the Railroad's property and such property is left in a clean and presentable condition.

Full compensation for all premiums which the Contractor is required to pay on all the insurance described hereinafter shall be considered as included in the prices paid for the various items of work to be performed under the contract, and no additional allowance will be made thereof or for additional premiums which may be required by extensions of the policies of insurance.

The following insurance coverage will be required:

A. Commercial General Liability insurance. Commercial general liability (CGL) with a limit of not less than $5,000,000 each occurrence and an aggregate limit of not less than $10,000,000. CGL insurance must be written on ISO occurrence form CG 00 01 12 04 (or a substitute form providing equivalent coverage).

The policy must also contain the following endorsement, which must be stated on the certificate of insurance: Contractual Liability Railroads ISO form CG 24 17 10 01 (or a substitute form providing equivalent coverage) showing "Union Pacific Railroad Company Property" as the Designated Job Site.

B. Business Automobile Coverage insurance. Business auto coverage written on ISO form CA 00 01 (or a substitute form providing equivalent liability coverage) with a combined single limit of not less $5,000,000 for each accident.

The policy must contain the following endorsements, which must be stated on the certificate of insurance:

Coverage For Certain Operations In Connection With Railroads ISO form CA 20 70 10 01 (or a substitute form providing equivalent coverage) showing "Union Pacific Property" as the Designated Job Site.

Motor Carrier Act Endorsement - Hazardous materials clean up (MCS-90) if required by law.

C. Workers' Compensation and Employers' Liability insurance. Coverage must include but not be limited to:

Contractor's statutory liability under the workers' compensation laws of the State of California.

Employers' Liability (Part B) with limits of at least $500,000 each accident, $500,000 disease policy limit $500,000 each employee.

If Contractor is self-insured, evidence of state approval and excess workers compensation coverage must be provided. Coverage must include liability arising out of the U. S. Longshoremen's and Harbor Workers’ Act, the Jones Act, and the Outer Continental Shelf Land Act, if applicable.

The policy must contain the following endorsement, which must be stated on the certificate of insurance:

Alternate Employer endorsement ISO form WC 00 03 01 A (or a substitute form providing equivalent coverage) showing Railroad in the schedule as the alternate employer (or a substitute form providing equivalent coverage).

D. Railroad Protective Liability insurance. Contractor must maintain Railroad Protective Liability insurance written on ISO occurrence form CG 00 35 12 04 (or a substitute form providing equivalent coverage) on behalf of Railroad as named insured, with a limit of not less than $2,000,000 per occurrence and an
aggregate of $6,000,000. A binder stating the policy is in place must be submitted to Railroad before the work may be commenced and until the original policy is forwarded to Railroad.

E. **Umbrella or Excess** insurance. If Contractor utilizes umbrella or excess policies, these policies must "follow form" and afford no less coverage than the primary policy.

F. **Pollution Liability** insurance. Pollution liability coverage must be written on ISO form Pollution Liability Coverage Form Designated Sites CG 00 39 12 04 (or a substitute form providing equivalent liability coverage), with limits of at least $5,000,000 per occurrence and an aggregate limit of $10,000,000.

If the scope of work as defined in this Agreement includes the disposal of any hazardous or non-hazardous materials from the job site, Contractor must furnish to Railroad evidence of pollution legal liability insurance maintained by the disposal site operator for losses arising from the insured facility accepting the materials, with coverage in minimum amounts of $1,000,000 per loss, and an annual aggregate of $2,000,000.

Other Requirements

G. All policy(ies) required above (except worker's compensation and employers liability) must include Railroad as "Additional Insured" using ISO Additional Insured Endorsements CG 20 26, and CA 20 48 (or substitute forms providing equivalent coverage). The coverage provided to Railroad as additional insured shall, to the extent provided under ISO Additional Insured Endorsement CG 20 26, and CA 20 48 provide coverage for Railroad's negligence whether sole or partial, active or passive, and shall not be limited by Contractor's liability under the indemnity provisions of this Agreement.

H. Punitive damages exclusion, if any, must be deleted (and the deletion indicated on the certificate of insurance), unless the law governing this Agreement prohibits all punitive damages that might arise under this Agreement.

I. Contractor waives all rights of recovery, and its insurers also waive all rights of subrogation of damages against Railroad and its agents, officers, directors and employees. This waiver must be stated on the certificate of insurance.

J. Prior to commencing the work, Contractor shall furnish Railroad with a certificate(s) of insurance, executed by a duly authorized representative of each insurer, showing compliance with the insurance requirements in this Agreement.

K. All insurance policies must be written by a reputable insurance company acceptable to Railroad or with a current Best's Insurance Guide Rating of A- and Class VII or better, and authorized to do business in the State of California.

L. The fact that insurance is obtained by Contractor or by Railroad on behalf of Contractor will not be deemed to release or diminish the liability of Contractor, including, without limitation, liability under the indemnity provisions of this Agreement. Damages recoverable by Railroad from Contractor or any third party will not be limited by the amount of the required insurance coverage.
APPENDIX 1

CONTRACTOR'S ENDORSEMENT

A. As a condition to entering upon the Railroad's right-of-way to perform Work pursuant to this agreement, State's contractor, _______________________________ _________________________________ (Name of Contractor) whose address is __________________________________ __, (Contractor's Mailing Address)

(hereinafter "Contractor"), agrees to comply with and be bound by all the terms and provisions of the attached Caltrans Right of Entry Agreement that was signed by Union Pacific Railroad Company ("Railroad") and the State of California, Department of Transportation ("State") relating to the Work to be performed and the insurance requirements set forth in Exhibits B and C of the Right of Entry Agreement. The Contractor further acknowledges and agrees that the reference to Cal. Gov. Code §14662.5 in Sections 5.b) and 8.b) of Exhibit B to the Right of Entry Agreement does not apply to the Contractor and in no way limits the indemnities set forth in those provisions, to which the Contractor agrees to be bound.

B. Before the Contractor commences any Work, the Contractor will provide the Railroad with (i) a binder of insurance for the Railroad Protective Liability Insurance described in Section 13-2 of the Contract Special Provisions, hereto attached, and the original policy, or a certified duplicate original policy when available, and (ii) a certificate issued by its insurance carrier providing the other insurance coverage and endorsements required pursuant to Section 13-2 of the Contract Special Provisions.

C. All insurance correspondence, binders or originals shall be directed to:

Union Pacific Railroad Company
Attn: Real Estate Department
1400 Douglas Street, MS 1690
Omaha, Nebraska 68179-1690
Attn.: Senior Manager - Contracts
Folder No. 2702-64

D. Please note that fiber optic cable may be buried on the Railroad's property. Prior to commencing any work, the Contractor agrees to contact the Railroad's Telecommunications Operation Center as provided in Section 5 of Exhibit B of the Right of Entry Agreement to determine if any fiber optic cable is located on the Railroad's property on or near the location where the work is to be performed. If there is, the Contractor must comply with the terms and conditions of Section 5 of Exhibit B before commencing any work on the Railroad's property.

E. The Contractor agrees to also provide to the Railroad's Manager-Track Maintenance at (402) 501-3774, the advance notice required in Section 1 of Exhibit B of the Right of Entry Agreement prior to working on the Railroad's property in order for the Railroad to coordinate the Contractor's work with the Railroad's operations and to make arrangements for flagging protection (if applicable).

This endorsement shall be completed and sent to the person named in Paragraph C above.

(Name of Contractor)
By__________________________
Printed Name:__________________
Title:__________________________

Contract No. 08-0M94U4
453
PART 1 – GENERAL

13-1.01 DESCRIPTION

This project includes construction work within the Right-of-Way and/or properties of the Union Pacific Railroad Company "UPRR" and adjacent to tracks, wire lines and other facilities. This section describes the special requirements for coordination with UPRR when work by the Contractor will be performed upon, over or under the UPRR Right-of-Way or may impact current or future UPRR operations. The Contractor will coordinate with UPRR while performing the work outlined in this Contract, and shall afford the same cooperation with UPRR as it does with the Agency. All submittals and work shall be completed in accordance with UPRR Guidelines and AREMA recommendations as modified by these minimum special requirements or as directed in writing by the UPRR Designated Representative.

For purposes of this project, the UPRR Designated Representative shall be the person or persons designated by the UPRR Manager of Industry and Public Projects to handle specific tasks related to the project.

13-1.02 DEFINITION OF AGENCY AND CONTRACTOR

As used in these UPRR requirements, the term "Agency" shall mean the State of California, by and through its Department of Transportation.

As used in these UPRR requirements, the term "Contractor" shall mean the contractor or contractors hired by the Agency to perform any project work on any portion of UPRR's property. The Contractor shall be responsible for the Contractor's subcontractors and the Contractor's and subcontractor's respective officers, agents and employees, and others acting under its or their authority. Nothing in this section is intended to create rights in third parties or third party beneficiaries.

13-1.03 UPRR CONTACTS

The primary UPRR point of contact for this project is:

Kenneth Tom
Manager, Industry and Public Projects
Union Pacific Railroad Company
2015 South Willow Avenue
Bloomington, California 92316
Phone: (909) 685-2288
Fax: (909) 685-2289
E-mail: ktom@up.com

For UPRR flagging services and track work, contact:

Frank Beard
Manager of Track Maintenance
Union Pacific Railroad Company
19100 Slover Avenue.
Bloomington, CA 92316
Phone: (909) 685-2612
13-1.04 REQUEST FOR INFORMATION / CLARIFICATION

All Requests for Information ("RFI") involving work within any UPRR Right-Of-Way shall be in accordance with the procedures listed elsewhere in these bid documents. All RFIs shall be submitted to the Engineer of Record. The Engineer of Record will submit the RFI to the UPRR Designated Representative for review and approval for corresponding to work within the UPRR Right-Of-Way. The Contractor shall allow four (4) weeks for the review and approval process by UPRR.

13-1.05 PLANS / SPECIFICATIONS

The plans and specifications for this project, affecting the UPRR, are subject to the written approval by the UPRR and changes in the plans may be required after award of the Contract. Such changes are subject to the approval of the Agency and the UPRR.

13-2.01 UTILITIES AND FIBER OPTIC

All installations shall be constructed in accordance with current AREMA recommendations and UPRR specifications and requirements. UPRR general guidelines and the required application forms for utility installations can be found on the UPRR website at www.uprr.com.

13-3.01 GENERAL

A. Contractor shall perform all work in compliance with all applicable UPRR and FRA rules and regulations. Contractor shall arrange and conduct all work in such manner and at such times as shall not endanger or interfere with the safe operation of the tracks and property of UPRR and the traffic moving on such tracks, or the wires, signals and other property of UPRR, its tenants or licensees, at or in the vicinity of the work. UPRR shall be reimbursed by Contractor or Agency for train delay costs and lost revenue claims due to any delays or interruption of train operations resulting from Contractor's construction work or other activities.

B. Construction activities will be permitted within 12 feet of the centerline of operational tracks only if absolutely necessary and UPRR's Designated Representative grants approval. Construction activities within 12 feet of the operational track(s) must allow the tracks to stay operational.

C. Track protection is required for all work equipment (including rubber tired equipment) operating within 25 feet from nearest rail.

D. The Contractor is also advised that new railroad facilities within the project may be built by UPRR and that certain Contractor's activities cannot proceed until that work is completed. The Contractor shall be aware of the limits of responsibilities and allow sufficient time in the schedule for that work to be accomplished and shall coordinate its efforts with the UPRR.

13-3.02 RAILROAD OPERATIONS

A. The Contractor shall be advised that trains and/or equipment are expected on any track, at any time, in either direction. Contractor shall become familiar with the train schedules in this location and structure its bid assuming intermittent track windows in this period, as defined in Paragraph B below.

B. All railroad tracks within and adjacent to the Contract Site are active, and rail traffic over these facilities shall be maintained throughout the Project. Activities may include both through moves and switching moves to local customers. Railroad traffic and operations will occur continuously throughout the day and night on these tracks and shall be maintained at all times as defined herein. The Contractor shall coordinate and schedule the work so that construction activities do not interfere with railroad operations.

C. Work windows for this Contract shall be coordinated with the Agency's and the UPRR's Designated Representatives. Types of work windows include Conditional Work Windows and Absolute Work Windows, as defined below:
1. Conditional Work Window: A Conditional Work Window is a period of time that railroad operations have priority over construction activities. When construction activities may occur on and adjacent to the railroad tracks within 25 feet of the nearest track, a UPRR flag person will be required. At the direction of the UPRR flag person, upon approach of a train, and when trains are present on the tracks, the tracks must be cleared (i.e., no construction equipment, materials or personnel within 25 feet, or as directed by the UPRR Designated Representative, from the tracks). Conditional Work Windows are available for the Project.

2. Absolute Work Window: An Absolute Work Window is a period of time that construction activities are given priority over railroad operations. During this time frame the designated railroad track(s) will be inactive for train movements and may be fouled by the Contractor. At the end of an Absolute Work Window the railroad tracks and/or signals must be completely operational for train operations and all UPRR, Public Utilities Commission (PUC) and Federal Railroad Administration (FRA) requirements, codes and regulations for operational tracks must be complied with. In the situation where the operating tracks and/or signals have been affected, the UPRR will perform inspections of the work prior to placing that track back into service. UPRR flag persons will be required for construction activities requiring an Absolute Work Window. Absolute Work Windows will not generally be granted. Any request will require a detailed explanation for UPRR review.

13-3.03 RIGHT OF ENTRY, ADVANCE NOTICE AND WORK STOPPAGES

A. Prior to beginning any work on or over the property of, or affecting the facilities of, the UPRR, the Contractor shall execute the Contractor's Endorsement that is a part of the Right of Entry Agreement to be signed by UPRR and Agency. There is a fee for processing of the agreement. This cost shall be borne by the Contractor. Contractor shall submit a copy of the executed agreement and the insurance policies, binders, certificates and endorsements set forth therein to the Agency prior to commencing work on UPRR property. The right of entry agreement shall specify working time frames, flagging and inspection requirements, and any other items specified by the UPRR.

B. The Contractor shall give the advance notice to the UPRR as required in the Right of Entry Agreement before commencing work in connection with construction upon or over UPRR's Right-of-Way and shall observe UPRR's rules and regulations with respect thereto.

C. All work upon UPRR's Right-of-Way shall be done at such times and in such manner so as not to interfere with or endanger the operations of UPRR. Whenever work may affect the operations or safety of trains, the method of doing such work shall first be submitted to UPRR's Designated Representative for approval, but such approval shall not relieve the Contractor from liability. Any work to be performed by the Contractor, which requires flagging and/or inspection service, shall be deferred until the flagging protection required by UPRR is available at the job site. See Section 3.18 for railroad flagging requirements.

D. The Contractor shall make requests in writing for both Absolute and Conditional Work Windows, at least two weeks in advance of any work. The written request must include:

1. Exactly what the work entails.
2. The days and hours that work will be performed.
3. The exact location of work, and proximity to the tracks.
4. The type of window requested and the amount of time requested.
5. The designated contact person.

The Contractor shall provide a written confirmation notice to the UPRR at least 48 hours before commencing work in connection with approved work windows when work will be performed within 25 feet of any track center line. All work shall be performed in accordance with previously approved work plans.

E. Should a condition arising from, or in connection with the work, require that immediate and unusual provisions be made to protect operations and property of UPRR, the Contractor shall make such provisions. If in the judgment of UPRR's Designated Representative such provisions are insufficient, the UPRR's Designated Representative may require or provide such provisions as deemed necessary. In any event, such provisions shall be at the Contractor's expense and without cost to the UPRR. UPRR or the Agency
shall have the right to order Contractor to temporarily cease operations in the event of an emergency or, if in the opinion of the UPRR's Designated Representative, the Contractor's operations could endanger UPRR's operations. In the event such an order is given, Contractor shall immediately notify the Agency of the order.

13-3.04 INSURANCE

Contractor shall not begin work upon or over UPRR's Right-of-Way until UPRR has been furnished the insurance policies, binders, certificates and endorsements required by the Right-of-Entry Agreement and UPRR's Designated Representative has advised the Agency that such insurance is in accordance with the Agreement. The required insurance shall be kept in full force and effect during the performance of work and thereafter until Contractor removes all tools, equipment, and material from UPRR's property and cleans the premises in a manner reasonably satisfactory to UPRR.

13-3.05 RAILROAD SAFETY ORIENTATION

All personnel employed by the Contractor and all subcontractors must complete the UPRR course "Orientation for Contractor's Safety", and be registered prior to working on UPRR property. This orientation is available at www.contractororientation.com. This course is required to be completed annually.

13-3.06 COOPERATION

UPRR will cooperate with Contractor so that work may be conducted in an efficient manner, and will cooperate with Contractor in enabling use of UPRR's right-of-way in performing the work.

13-3.07 MINIMUM CONSTRUCTION CLEARANCES FOR FALSEWORK AND OTHER TEMPORARY STRUCTURES

The Contractor shall abide by the following minimum temporary clearances during the course of construction:

- 12' – 0” horizontal from centerline of track
- 21' – 0” vertically above top of rail.

For construction clearance less than listed above, local Operating Unit review and approval is required.

13-3.08 APPROVAL OF REDUCED CLEARANCES

A. The minimum track clearances to be maintained by the Contractor during construction are specified in Section 3.07 herein.

B. Any proposed infringement on the specified minimum clearances due to the Contractor's operations shall be submitted to UPRR's Designated Representative through the Agency at least 30 days in advance of the work and shall not be undertaken until approved in writing by the UPRR's Designated Representative.

C. No work shall commence until the Contractor receives in writing assurance from UPRR's Designated Representative that arrangements have been made for flagging service, as may be necessary and receives permission from UPRR's Designated Representative to proceed with the work.

13-3.09 CONSTRUCTION AND AS-BUILT SUBMITTALS

A. Submittals are required for construction materials and procedures as outlined below. The submittals shall include all review comments from the Agency and the Engineer of Record. All design submittals shall be stamped and signed by a Professional Engineer registered in the State of California.

B. The tables below provide UPRR's minimum submittal requirements for the construction items noted. Submittal requirements are in addition to those specified elsewhere in these bid documents. The minimum
review times indicated below represent UPRR's requirements only. The Contractor shall allow additional time for the Agency's review time as stated elsewhere in these bid documents.

C. Submittals shall be made by the Agency to the UPRR Manager of Industry and Public Projects unless otherwise directed by the Railroad. Items in Table 1 shall be submitted for both railroad overpass and underpass projects, as applicable. Items in Table 2 shall be submitted for railroad underpass projects only.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>SETS REQD.</th>
<th>UPRR’s Minimum Review Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Shoring design and details</td>
<td>4</td>
<td>4 weeks</td>
</tr>
<tr>
<td>2</td>
<td>Falsework design and details</td>
<td>4</td>
<td>4 weeks</td>
</tr>
<tr>
<td>3</td>
<td>Drainage design provisions</td>
<td>4</td>
<td>4 weeks</td>
</tr>
<tr>
<td>4</td>
<td>Erection diagrams and sequence</td>
<td>4</td>
<td>4 weeks</td>
</tr>
<tr>
<td>5</td>
<td>Demolition diagram and sequence</td>
<td>4</td>
<td>4 weeks</td>
</tr>
</tbody>
</table>

Prior to or during construction of railroad underpass structures, the UPRR requires the review of drawings, reports, test data and material data sheets to determine compliance with the specifications. Product information for items noted in Table 2 be submitted to UPRR's Designated Representative through the Agency for their own review and approval of the material. The signed submittal and the Agency's review comments will be reviewed by UPRR or their consultant. If a consultant performs the reviews, the consultant may reply directly to the Agency or its Designated Representative after consultation with UPRR. Review of the submittals will not be conducted until after review by the Agency or its Designated Representative. Review of the submittal items will require a minimum of four (4) weeks after receipt from the Agency.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>SETS REQD.</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Shop drawings</td>
<td>4</td>
<td>Steel and Concrete members</td>
</tr>
<tr>
<td>2</td>
<td>Bearings</td>
<td>4</td>
<td>For entire structures</td>
</tr>
<tr>
<td>3</td>
<td>Concrete Mix Designs</td>
<td>4</td>
<td>For entire structures</td>
</tr>
<tr>
<td>4</td>
<td>Rebar & Strand certifications</td>
<td>4</td>
<td>For superstructure only</td>
</tr>
<tr>
<td>5</td>
<td>28 day concrete strength</td>
<td>4</td>
<td>For superstructure only</td>
</tr>
<tr>
<td>6</td>
<td>Waterproofing material certifications and installation procedure</td>
<td>4</td>
<td>Waterproofing & protective boards</td>
</tr>
<tr>
<td>7</td>
<td>Structural steel certifications</td>
<td>4</td>
<td>All fracture critical members & other members requiring improved notch toughness</td>
</tr>
<tr>
<td>8</td>
<td>Fabrication and Test reports</td>
<td>4</td>
<td>All fracture critical members & other members requiring improved notch toughness</td>
</tr>
<tr>
<td>9</td>
<td>Welding Procedures and Welder Certification</td>
<td>4</td>
<td>AWS requirements</td>
</tr>
<tr>
<td>10</td>
<td>Foundation Construction Reports</td>
<td>4</td>
<td>Pile driving, drilled shaft construction, bearing pressure test reports for spread footings</td>
</tr>
<tr>
<td>11</td>
<td>Compaction testing reports for backfill at abutments</td>
<td>4</td>
<td>Must meet 95% maximum dry density, Modified Proctor ASTM D1557</td>
</tr>
</tbody>
</table>

D. As-Built Records shall be submitted to the UPRR within 60 days of completion of the structures. These records shall consist of the following items:

Overpass Projects

1. Electronic files of all structure design drawings with as-constructed modifications shown, in Microstation J or Acrobat .PDF format.
2. Hard copies of all structure design drawings with as-constructed modifications shown.

Underpass Projects

1. Electronic files of all structure design drawings with as-constructed modifications shown, in Microstation J or Acrobat .PDF format.
2. Hard copies of all structure design drawings with as-constructed modifications shown.
3. Final approved copies of shop drawings for concrete and steel members.
4. Foundation Construction Reports
5. Compaction testing reports for backfill at abutments

13-3.10 APPROVAL OF DETAILS

The details of the construction affecting the UPRR tracks and property not already included in the Contract Plans shall be submitted to UPRR's Designated Representative through the Agency for UPRR's review and written approval before such work is undertaken. Review and approval of these submittals will require a minimum of four (4) weeks in addition to the Agency's review time as stated elsewhere in these bid documents.

13-3.11 MAINTENANCE OF RAILROAD FACILITIES

A. The Contractor shall be required to maintain all ditches and drainage structures free of silt or other obstructions which may result from Contractor's operations; to promptly repair eroded areas within UPRR's right of way and to repair any other damage to the property of UPRR, or its tenants.

B. All such maintenance and repair of damages due to the Contractor's operations shall be done at the Contractor's expense.

C. The Contractor must submit a proposed method of erosion control and have the method reviewed by the UPRR prior to beginning any grading on the Project Site. Erosion control methods must comply with all applicable local, state and federal regulations.

13-3.12 SITE INSPECTIONS BY UPRR's DESIGNATED REPRESENTATIVE

A. In addition to the office reviews of construction submittals, site inspections may be performed by UPRR's Designated Representative at significant points during construction, including but not limited to the following:

1. Preconstruction meetings.
2. Pile driving, drilling of caissons or drilled shafts.
3. Reinforcement and concrete placement for railroad bridge substructure and/or superstructure.
4. Erection of precast concrete or steel bridge superstructure.
5. Placement of waterproofing (prior to placing ballast on bridge deck).
6. Completion of the bridge structure.

B. Site inspection is not limited to the milestone events listed above. Site visits to check progress of the work may be performed at any time throughout the construction as deemed necessary by UPRR.

C. A detailed construction schedule, including the proposed temporary horizontal and vertical clearances and construction sequence for all work to be performed, shall be provided to the Agency for submittal to UPRR's Designated Representative for review prior to commencement of work. This schedule shall also include the anticipated dates when the above listed events will occur. This schedule shall be updated for the above listed events as necessary, but at least monthly so that site visits may be scheduled.
13-3.13 UPRR REPRESENTATIVES

A. UPRR representatives, conductors, flag person or watch person will be provided by UPRR at expense of the Agency or Contractor (as stated elsewhere in these bid documents) to protect UPRR facilities, property and movements of its trains or engines. In general, UPRR will furnish such personnel or other protective services as follows:

1. When any part of any equipment is standing or being operated within 25 feet, measured horizontally, from centerline of any track on which trains may operate, or when any object is off the ground and any dimension thereof could extend inside the 25 foot limit, or when any erection or construction activities are in progress within such limits, regardless of elevation above or below track.

2. For any excavation below elevation of track subgrade if, in the opinion of UPRR's Designated Representative, track or other UPRR facilities may be subject to settlement or movement.

3. During any clearing, grubbing, excavation or grading in proximity to UPRR facilities, which, in the opinion of UPRR's Designated Representative, may endanger UPRR facilities or operations.

4. During any contractor's operations when, in the opinion of UPRR's Designated Representative, UPRR facilities, including, but not limited to, tracks, buildings, signals, wire lines, or pipe lines, may be endangered.

5. The Contractor shall arrange with the UPRR Designated Representative to provide the adequate number of flag persons to accomplish the work.

13-3.14 WALKWAYS REQUIRED

Along the outer side of each exterior track of multiple operated track, and on each side of single operated track, an unobstructed continuous space suitable for trainman's use in walking along trains, extending to a line not less than twelve feet (12') from centerline of track, shall be maintained. Any temporary impediments to walkways and track drainage encroachments or obstructions allowed during work hours while UPRR's flagman service is provided shall be removed before the close of each work day. Walkways with railings shall be constructed by Contractor over open excavation areas when in close proximity of track, and railings shall not be closer than 8' – 6" horizontally from centerline of tangent track or 9' – 6" horizontally from centerline of curved track.

13-3.15 COMMUNICATIONS AND SIGNAL LINES

If required, UPRR will rearrange its communications and signal lines, its grade crossing warning devices, train signals and tracks, and facilities that are in use and maintained by UPRR's forces in connection with its operation at expense of the Agency. This work by UPRR will be done by its own forces and it is not a part of the Work under this Contract.

13-3.16 TRAFFIC CONTROL

Contractor's operations that control traffic across or around UPRR facilities shall be coordinated with and approved by the UPRR's Designated Representative.

13-3.17 CONSTRUCTION EXCAVATIONS

A. The Contractor shall be required to take special precaution and care in connection with excavating and shoring. Excavations for construction of footings, piers, columns, walls or other facilities that require shoring shall comply with requirements of OSHA, AREMA and UPRR "Guidelines for Temporary Shoring”.

B. The Contractor shall contact UPRR's "Call Before Your Dig” at least 48 hours prior to commencing work at 1-800-336-9193 during normal business hours (6:30 a.m. to 8:00 p.m. central time, Monday through Friday, except holidays - also a 24 hour, 7 day a week number for emergency calls) to determine location of fiber optics. If a telecommunication system is buried anywhere on or near UPRR property, the Contractor
will co-ordinate with UPRR and the Telecommunication Company(ies) to arrange for relocation or other protection of the system prior to beginning any work on or near UPRR property.

13-3.18 RAILROAD FLAGGING

Performance of any work by the Contractor in which person(s) or equipment will be within twenty-five (25) feet of any track, or will be near enough to any track that any equipment extension (such as, but not limited to, a crane boom) will reach within twenty-five (25) feet of any track, may require railroad flagging services or other protective measures. Contractor shall give the advance notice to the UPRR as required in the "Caltrans Right of Entry Agreement" before commencing any such work, so that the UPRR may determine the need for flagging or other protective measures to ensure the safety of the railroad's operations. Contractor shall comply with all other requirements regarding flagging services covered by the "Caltrans Right of Entry Agreement". Any costs associated with failure to abide by these requirements will be borne by the Contractor.

13-3.19 CLEANING OF RIGHT-OF-WAY

Contractor shall, upon completion of the work to be performed by Contractor upon the premises, over or beneath the tracks of UPRR, promptly remove from the Right-of-Way of UPRR all of Contractor's tools, implements, and other materials whether brought upon the Right-of-Way by Contractor or any subcontractors, employee or agent of Contractor or of any subcontractor, and leave the Right-of-Way in a clean and presentable condition to satisfaction of UPRR.
STATE'S
RIGHT OF ENTRY AGREEMENT

THIS AGREEMENT is made and entered into as of ________________, 20__, by and between UNION PACIFIC RAILROAD COMPANY, a Delaware corporation (hereinafter "Railroad") and STATE OF CALIFORNIA, DEPARTMENT OF TRANSPORTATION (hereinafter "Licensee").

IT IS MUTUALLY AGREED BY AND BETWEEN THE PARTIES HERETO AS FOLLOWS:

ARTICLE 1 - DEFINITION OF LICENSEE

For purposes of this Agreement, all references in this Agreement to Licensee shall include Licensee's contractors, subcontractors, officers, agents and employees, and others acting under its or their authority.

ARTICLE 2 - RIGHT GRANTED; PURPOSE

Railroad hereby grants to Licensee the right, during the term hereinafter stated and upon and subject to each and all of the terms, provisions and conditions herein contained, to enter upon and have ingress to and egress from the portion of Railroad's property located at or near Milepost 540.43 & 540.46, on Railroad's Yuma Subdivision located near Colton, San Bernardino County, California, for the purpose of performing work relating to the construction, reconstruction, use, maintenance, and repair of a freeway grade separation overpass for State Route 99 (the "Work"), in the general location shown on the print, marked Exhibit A, attached hereto and hereby made a part hereof. The right herein granted to Licensee is limited to those portions of Railroad's property specifically described herein, or designated by the Railroad representative named in Article 4.

ARTICLE 3 - TERMS AND CONDITIONS CONTAINED IN EXHIBITS B, C, D AND E

The terms and conditions contained in Exhibit B, Exhibit C, Exhibit D and Exhibit E, attached hereto, are hereby made a part of this Agreement.

ARTICLE 4 - ALL EXPENSES TO BE BORNE
BY LICENSEE; RAILROAD REPRESENTATIVE

A. Licensee shall bear any and all costs and expenses associated with any work performed by Licensee, or any costs or expenses incurred by Railroad relating to this Agreement.

B. Licensee shall coordinate all of its work with the following Railroad representative or his or her duly authorized representative (the "Railroad Representative"):

Kenneth Tom
Manager, Industry and Public Projects
Union Pacific Railroad Company
2015 South Willow Avenue
Bloomington, California 92316
Phone: (909) 685-2288
Fax: (909) 685-2289
E-mail: ktom@up.com

C. Licensee, at its own expense, shall adequately police and supervise all Work to be performed by Licensee and shall ensure that such Work is performed in a safe manner as set forth in Section 7 of Exhibit B. The responsibility of Licensee for safe conduct and adequate policing and supervision of Licensee's work shall not be lessened or otherwise affected by Railroad's approval of the plans and specifications involving the Work, or by Railroad's collaboration in performance of any of the Work, or by the presence at the work site of a Railroad Representative, or by compliance by Licensee with any requests or recommendations made by the Railroad Representative.

Contract No. 08-0M94U4
462
ARTICLE 5 - TERM; TERMINATION

A. The grant of right herein made to Licensee shall commence on the date of this Agreement, and continue until March 18th, 2016 unless sooner terminated as herein provided, or at such time as Licensee has completed its Work on Railroad's property, whichever is earlier. Licensee agrees to notify the Railroad Representative in writing when it has completed its Work on Railroad's property.

B. Railroad may terminate this Agreement if it reasonably determines in good faith that Licensee has failed to comply with any of the material terms and conditions of this Agreement and has not cured such failure within ten (10) days after receiving notice (oral or written) from Railroad describing such failure in reasonable detail.

ARTICLE 6 - INSURANCE - CONTRACTOR ENDORSEMENT

A. Licensee is self-insured. Licensee shall provide Railroad defense and indemnification at least equal to the defense, indemnification and insurance provisions (including the endorsements) contained in Exhibit C. Nothing herein shall be deemed to insure Railroad against its sole negligence or willful misconduct.

B. In the event any of the Work to be done upon the property of Railroad is to be done by a contractor or subcontractor of Licensee, said contractor or subcontractor may have the benefit of the license herein granted, while performing work for Licensee, provided such contractor or subcontractor agrees to be subject to and bound by the terms and conditions of this Agreement by: (1) executing an endorsement to this Agreement in the form set forth in Contractor's Endorsement marked Exhibit E, attached hereto, (2) providing to Railroad the insurance policies, certificates, binders, and/or endorsements described in Exhibit C, and (3) providing to Railroad the insurance endorsements required under Section 12 of Exhibit B of this Agreement.

C. All insurance correspondence, certificates, endorsements, binders or originals shall be sent to:

Union Pacific Railroad Company
Senior Manager Contracts
1400 Douglas Street, MS 1690
Omaha, NE 68179-1690
Folder No. 2702-64

ARTICLE 7 - CHOICE OF FORUM

Unless otherwise preempted by applicable federal laws, rules or regulations, this Agreement shall be governed, construed and enforced in accordance with the laws of the State of California. Litigation arising out of or connected with this Agreement may be instituted and maintained in the courts of the State of California only, and the parties consent to jurisdiction over their person and over the subject matter of any such litigation, in those courts, and consent to service of process issued by such courts.

ARTICLE 8 - REMOVAL OF CONTRACTOR/SUBCONTRACTOR EMPLOYEE

At the request of Railroad, Licensee shall remove from Railroad property any contractor, subcontractor, officer, agent and/or employee of Licensee who fails to conform to the instructions of the Railroad Representative in connection with the Work on Railroad's property, and any right of Licensee shall be suspended until such removal has occurred. Licensee shall indemnify Railroad against any claims arising from the removal of any such contractor, subcontractor, officer, agent and/or employee from Railroad property.

ARTICLE 9 - ADMINISTRATIVE FEE

Upon the execution and delivery of this Agreement, Licensee shall pay to Railroad Five Hundred Dollars ($500.00) as reimbursement for clerical, administrative and handling expenses in connection with the processing of this Agreement.
ARTICLE 10 - SPECIAL PROVISIONS

A. No additional vehicular crossings (including temporary haul roads) or pedestrian crossings over Railroad's trackage shall be installed or used by Licensee without the prior written permission of Railroad.

B. Explosives or other highly flammable substances shall not be stored on Railroad property without the prior written approval of the Railroad Representative.

C. The parties agree that this agreement is not, and is not intended to be, a construction contract for purposes of Cal. Civ. Code § 2782(a). Accordingly, to the maximum extent permitted by law, the provisions of Cal. Civ. Code § 2782(a), as interpreted by the California courts in Southern Pacific Transportation Co. v. Sandyland Protective Association, 224 Cal.App.3d 1494, 274 Cal.Rptr. 626 (1990), and in other past and future cases, shall not apply to this Agreement.

IN WITNESS WHEREOF, the parties hereto have executed this Agreement in duplicate as of the date first herein written.

UNION PACIFIC RAILROAD COMPANY

By: ________________________________
Title: ______________________________

STATE OF CALIFORNIA,
DEPARTMENT OF TRANSPORTATION

By: ________________________________
Title: ______________________________
EXHIBIT B
TO
STATE'S RIGHT OF ENTRY AGREEMENT

Section 1. NOTICE OF COMMENCEMENT OF WORK - FLAGGING.

a. Licensee agrees to notify the Railroad Representative at least ten (10) working days in advance of Licensee commencing its Work and at least ten (10) working days in advance of proposed performance of any Work by Licensee in which any person or equipment will be within twenty-five (25) feet of any track, or will be near enough to any track that any equipment extension (such as, but not limited to, a crane boom) will reach to within twenty-five (25) feet of any track. No Work of any kind shall be performed, and no person, equipment, machinery, tool(s), material(s), vehicle(s), or thing(s) shall be located, operated, placed, or stored within twenty-five (25) feet of any of Railroad's track(s) at any time, for any reason, unless and until a Railroad flagman is provided to watch for trains. Upon receipt of such 10-day notice, the Railroad Representative will determine and inform Licensee whether a flagman need be present and whether Licensee need implement any special protective or safety measures. If flagging or other special protective or safety measures are performed by Railroad, such services will be provided at Licensee's expense with the understanding that if Railroad provides any flagging or other services, Licensee shall not be relieved of any of its responsibilities or liabilities set forth herein. Licensee shall promptly pay to Railroad all charges connected with such services within 30 days after presentation of a bill therefor.

b. The rate of pay per hour for each flagman will be the prevailing hourly rate in effect for an eight hour day for the class of persons used during regularly assigned hours and overtime in accordance with Labor Agreements and Schedules in effect at the time the Work is performed. In addition to the cost of such labor, a composite charge for vacation, holiday, health & welfare, supplemental sickness, Railroad Retirement & UC, supplemental pension, Employee's Liability & Property Damage and Administration will be included, computed on actual payroll. The composite charge will be the prevailing composite charge in effect at the time the work is performed. One and one-half times the current hourly rate is paid for overtime, Saturdays and Sundays and two and one-half times current hourly rate for holidays. Wage rates are subject to change, at any time, by law or by agreement between Railroad and its employees, and may be retroactive as a result of negotiations or a ruling of an authorized governmental agency. Additional charges on labor are also subject to change. If the wage rate or additional charges are changed, Licensee shall pay on the basis of the new rates and charges.

c. Reimbursement to Railroad will be required covering the full eight hour day during which any flagman is furnished, unless the flagman can be assigned to other Railroad work during a portion of such day, in which event reimbursement will not be required for the portion of the day during which the flagman is engaged in other Railroad work. Reimbursement will also be required for any day not actually worked by the flagman following the flagman's assignment to work on the project for which Railroad is required to pay the flagman and which could not reasonably be avoided by Railroad by assignment of such flagman to other work, even though the Licensee may not be working during such time. When it becomes necessary for Railroad to bulletin and assign an employee to a flagging position in compliance with union collective bargaining agreements, Licensee must provide Railroad a minimum of five (5) days notice prior to the cessation of the need for a flagman. If five (5) days notice of cessation is not given, Licensee will still be required to pay flagging charges for the five (5) day notice period required by union agreement to be given to the employee, even though flagging is not required for that period. An additional ten (10) days-notice must then be given to Railroad if flagging services are needed again after such five (5) day cessation notice has been given to Railroad.

Section 2. LIMITATION AND SUBORDINATION OF RIGHTS GRANTED

a. The foregoing grant of right is subject and subordinate to the prior and continuing right and obligation of Railroad to use and maintain its entire property including the right and power of Railroad to construct, maintain, repair, renew, use, operate, change, modify or relocate railroad tracks, roadways, signal, communication, fiber optics, or other wirelines, pipelines and other facilities upon, along or across any or
all parts of its property, all or any of which may be reasonably done at any time or times by Railroad without liability to Licensee or to any other party for compensation or damages.

b. The foregoing grant is also subject to all outstanding superior rights (including those in favor of licensees and lessees of Railroad's property, and others) and the right of Railroad to renew and extend the same, and is made without covenant of title or for quiet enjoyment.

Section 3. NO INTERFERECE WITH OPERATION OF RAILROAD AND ITS TENANTS

a. Licensee shall conduct its operations so as not to interfere with the continuous and uninterrupted use and operation of the railroad tracks and property of Railroad, including, without limitation, the operations of Railroad's lessees, licensees or others, unless specifically authorized in advance by the Railroad Representative. Nothing shall be done or permitted to be done by Licensee at any time that would in any manner impair the safety of such operations. When not in use, Licensee's machinery and materials shall be kept at least fifty (50) feet from the centerline of Railroad's nearest track, and there shall be no vehicular crossings of Railroad's tracks except at existing open public crossings.

b. Operations of Railroad and work performed by Railroad personnel and delays in the work to be performed by Licensee caused by such railroad operations and work are expected by Licensee, and Licensee agrees that Railroad shall have no liability to Licensee, or any other person or entity for any such delays. Licensee shall coordinate its activities with those of Railroad and third parties so as to avoid interference with railroad operations. The safe operation of Railroad train movements and other activities by Railroad takes precedence over any work to be performed by Licensee.

Section 4. LIENS.

Licensee shall pay in full all persons who perform labor or provide materials for the work to be performed by Licensee. Licensee shall not create, permit or suffer any mechanic's or materialmen's liens of any kind or nature to be created or enforced against any property of Railroad for any such work performed. Licensee shall indemnify and hold harmless Railroad from and against any and all liens, claims, demands, costs or expenses of whatsoever nature in any way connected with or growing out of such work done, labor performed, or materials furnished.

Section 5. PROTECTION OF FIBER OPTIC CABLE SYSTEMS.

a. Fiber optic cable systems may be buried on Railroad's property. Protection of the fiber optic cable systems is of extreme importance since any break could disrupt service to users resulting in business interruption and loss of revenue and profits. Licensee shall telephone Railroad during normal business hours (7:00 a.m. to 9:00 p.m. Central Time, Monday through Friday, except holidays) at 1-800-336-9193 (also a 24-hour, 7-day number for emergency calls) to determine if fiber optic cable is buried anywhere on Railroad's property to be used by Licensee. If it is, Licensee shall telephone the telecommunications company(ies) involved, arrange for a cable locator, make arrangements for relocation or other protection of the fiber optic cable, and shall commence no work on the right of way until all such protection or relocation has been accomplished.

b. In addition to other indemnity provisions in this Agreement, Licensee shall, pursuant to Cal. Gov. Code §14662.5, indemnify and hold Railroad harmless from and against all costs, liability and expense whatsoever (including, without limitation, attorneys' fees, court costs and expenses) arising out of any act or omission of Licensee, its contractor, agents and/or employees, that proximately causes or contributes to (1) any damage to or destruction of any telecommunications system on Railroad's property, and/or (2) any injury to or death of any person employed by or on behalf of any telecommunications company, and/or its contractors, agents and/or employees, on Railroad's property. Licensee shall not have or seek recourse against Railroad for any claim or cause of action for alleged loss of profits or revenue or loss of service or other consequential damage to a telecommunication company using Railroad's property or a customer or user of services of the fiber optic cable on Railroad's property.
Section 6. PERMITS - COMPLIANCE WITH LAWS.

In the prosecution of the work covered by this Agreement, Licensee shall secure any and all necessary permits and shall comply with all applicable federal, state and local laws, regulations and enactments affecting the work, including, without limitation, all applicable Federal Railroad Administration regulations.

Section 7. SAFETY.

a. Safety of personnel, property, rail operations and the public is of paramount importance in the prosecution of the work performed by Licensee. Licensee shall be responsible for initiating, maintaining and supervising all safety, operations and programs in connection with the work. Licensee shall at a minimum comply with Railroad's safety standards listed in Exhibit D, hereto attached, to ensure uniformity with the safety standards followed by Railroad's own forces. As a part of Licensee's safety responsibilities, Licensee shall notify Railroad if Licensee determines that any of Railroad's safety standards are contrary to good safety practices. Licensee shall furnish copies of Exhibit D to each of its employees before they enter the job site.

b. Without limitation of the provisions of paragraph A above, Licensee shall keep the job site free from safety and health hazards and ensure that its employees are competent and adequately trained in all safety and health aspects of the job.

c. Licensee shall have proper first aid supplies available on the job site so that prompt first aid services may be provided to any person injured on the job site. Licensee shall promptly notify Railroad of any U.S. Occupational Safety and Health Administration reportable injuries. Licensee shall have a nondelegable duty to control its employees while they are on the job site or any other property of Railroad, and to be certain they do not use, be under the influence of, or have in their possession any alcoholic beverage, drug or other substance that may inhibit the safe performance of any work.

d. If and when requested by Railroad, Licensee shall deliver to Railroad a copy of Railroad's safety plan for conducting the work (the "Safety Plan"). Railroad shall have the right, but not the obligation, to require Licensee to correct any deficiencies in the Safety Plan. The terms of this Agreement shall control if there are any inconsistencies between this Agreement and the Safety Plan.

Section 8. INDEMNITY.

a. To the extent not prohibited by Cal. Gov. Code §14662.5, Licensee shall indemnify, defend and hold harmless Railroad, its affiliates, and its and their officers, agents and employees ("Indemnified Parties") from and against any and all loss, damage, injury, liability, claim, demand, cost or expense (including, without limitation, attorney's, consultant's and expert's fees, and court costs), fine or penalty (collectively, "Loss") incurred by any person (including, without limitation, any Indemnified Party, Licensee, or any employee of Licensee or of any Indemnified Party) arising out of or in any manner connected with (i) any Work performed by Licensee, or (ii) any act or omission of Licensee, its officers, agents or employees, or (iii) any breach of this agreement by Licensee.

b. To the extent not prohibited by Cal. Gov. Code §14662.5, the right to indemnity under this Section 8 shall accrue upon occurrence of the event giving rise to the Loss, and shall apply regardless of any negligence or strict liability of any Indemnified Party, except where the Loss is caused by the sole active negligence or willful misconduct of an Indemnified Party as established by the final judgment of a court of competent jurisdiction. The sole active negligence or willful misconduct of any Indemnified Party shall not bar the recovery of any other Indemnified Party.

c. To the extent not prohibited by Cal. Gov. Code §14662.5, Licensee expressly and specifically assumes potential liability under this Section 8 for claims or actions brought by Licensee's own employees. Licensee waives any immunity it may have under worker's compensation or industrial insurance acts to indemnify Railroad under this Section 8. Licensee acknowledges that this waiver was mutually negotiated by the parties hereto.
d. To the extent not prohibited by Cal. Gov. Code §14662.5, no court or jury findings in any employee's suit pursuant to any worker's compensation act or the Federal Employer's Liability Act against a party to this Agreement may be relied upon or used by Licensee in any attempt to assert liability against Railroad.

e. The provisions of this Section 8 shall survive the completion of any Work performed by Licensee or the termination or expiration of this Agreement. To the extent not prohibited by Cal. Gov. Code §14662.5, in no event shall this Section 8 or any other provision of this Agreement be deemed to limit any liability Licensee may have to any Indemnified Party by statute or under common law.

Section 9. RESTORATION OF PROPERTY.

In the event Railroad authorizes Licensee to take down any fence of Railroad or in any manner move or disturb any of the other property of Railroad in connection with the Work to be performed by Licensee, then in that event Licensee shall, as soon as possible and at Licensee's sole expense, restore such fence and other property to the same condition as the same were in before such fence was taken down or such other property was moved or disturbed. Licensee shall remove all of Licensee's tools, equipment and materials from Railroad's property promptly upon completion of the Work, restoring Railroad's property to the same state and condition as when Licensee entered thereon.

Section 10. WAIVER OF DEFAULT.

Waiver by Railroad of any breach or default of any condition, covenant or agreement herein contained to be kept, observed and performed by Licensee shall in no way impair the right of Railroad to avail itself of any remedy for any subsequent breach or default.

Section 11. MODIFICATION - ENTIRE AGREEMENT.

No modification of this Agreement shall be effective unless made in writing and signed by Licensee and Railroad. This Agreement and the exhibits attached hereto and made a part hereof constitute the entire understanding between Licensee and Railroad and cancel and supersede any prior negotiations, understandings or agreements, whether written or oral, with respect to the work to be performed by Licensee.

Section 12. ASSIGNMENT - SUBCONTRACTING.

Contractor shall not assign or subcontract this Agreement, or any interest therein, without the written consent of the Railroad. Contractor shall be responsible for the acts and omissions of all subcontractors. Before Contractor commences any work, the Contractor shall, except to the extent prohibited by law; (1) require each of its subcontractors to include the Contractor as "Additional Insured" in the subcontractor's Commercial General Liability policy and Business Automobile policies with respect to all liabilities arising out of the subcontractor's performance of work on behalf of the Contractor by endorsing these policies with ISO Additional Insured Endorsements CG 20 26, and CA 20 48 (or substitute forms providing equivalent coverage; (2) require each of its subcontractors to endorse their Commercial General Liability Policy with "Contractual Liability Railroads" ISO Form CG 24 17 10 01 (or a substitute form providing equivalent coverage) for the job site; and (3) require each of its subcontractors to endorse their Business Automobile Policy with "Coverage For Certain Operations In Connection With Railroads" ISO Form CA 20 70 10 01 (or a substitute form providing equivalent coverage) for the job site.
EXHIBIT C
TO
STATE'S
RIGHT OF ENTRY AGREEMENT

INSURANCE PROVISIONS

Contractor shall, at its sole cost and expense, procure and maintain during the course of the Project and until all Project work on Railroad's property has been completed and Contractor has removed all equipment and materials from Railroad's property and has cleaned and restored Railroad's property to Railroad's satisfaction, the following insurance coverage:

A. **Commercial General Liability** insurance. Commercial general liability (CGL) with a limit of not less than $5,000,000 each occurrence and an aggregate limit of not less than $10,000,000. CGL insurance must be written on ISO occurrence form CG 00 01 12 04 (or a substitute form providing equivalent coverage).

The policy must also contain the following endorsement, which must be stated on the certificate of insurance:
- Contractual Liability Railroads ISO form CG 24 17 10 01 (or a substitute form providing equivalent coverage) showing "Union Pacific Railroad Company Property" as the Designated Job Site.
- Designated Construction Project(s) General Aggregate Limit ISO Form CG 25 03 03 97 (or a substitute form providing equivalent coverage) showing the project on the form schedule.

B. **Business Automobile Coverage** insurance. Business auto coverage written on ISO form CA 00 01 (or a substitute form providing equivalent liability coverage) with a combined single limit of not less than $5,000,000 for each accident.

The policy must contain the following endorsements, which must be stated on the certificate of insurance:
- Coverage For Certain Operations In Connection With Railroads ISO form CA 20 70 10 01 (or a substitute form providing equivalent coverage) showing "Union Pacific Property" as the Designated Job Site.
- Motor Carrier Act Endorsement - Hazardous materials clean up (MCS-90) if required by law.

C. **Workers' Compensation and Employers' Liability** insurance. Coverage must include but not be limited to:

- Contractor's statutory liability under the workers' compensation laws of the State of California.
- Employers' Liability (Part B) with limits of at least $500,000 each accident, $500,000 disease policy limit $500,000 each employee.

If Contractor is self-insured, evidence of state approval and excess workers compensation coverage must be provided. Coverage must include liability arising out of the U. S. Longshoremens and Harbor Workers' Act, the Jones Act, and the Outer Continental Shelf Land Act, if applicable.

The policy must contain the following endorsement, which must be stated on the certificate of insurance:
- Alternate Employer endorsement ISO form WC 00 03 01 A (or a substitute form providing equivalent coverage) showing Railroad in the schedule as the alternate employer (or a substitute form providing equivalent coverage).

D. **Railroad Protective Liability** insurance. Contractor must maintain Railroad Protective Liability insurance written on ISO occurrence form CG 00 35 12 04 (or a substitute form providing equivalent coverage) on behalf of Railroad as named insured, with a limit of not less than $2,000,000 per occurrence and an aggregate of $6,000,000. A binder stating the policy is in place must be submitted to Railroad before the work may be commenced and until the original policy is forwarded to Railroad.

E. **Umbrella or Excess** insurance. If Contractor utilizes umbrella or excess policies, these policies must "follow form" and afford no less coverage than the primary policy.
F. **Pollution Liability** insurance. Pollution liability coverage must be written on ISO form Pollution Liability Coverage Form Designated Sites CG 00 39 12 04 (or a substitute form providing equivalent liability coverage), with limits of at least $5,000,000 per occurrence and an aggregate limit of $10,000,000.

If the scope of work as defined in this Agreement includes the disposal of any hazardous or non-hazardous materials from the job site, Contractor must furnish to Railroad evidence of pollution legal liability insurance maintained by the disposal site operator for losses arising from the insured facility accepting the materials, with coverage in minimum amounts of $1,000,000 per loss, and an annual aggregate of $2,000,000.

Other Requirements

G. All policy(ies) required above (except worker's compensation and employers liability) must include Railroad as "Additional Insured" using ISO Additional Insured Endorsements CG 20 26, and CA 20 48 (or substitute forms providing equivalent coverage). The coverage provided to Railroad as additional insured shall, to the extent provided under ISO Additional Insured Endorsement CG 20 26, and CA 20 48 provide coverage for Railroad's negligence whether sole or partial, active or passive, and shall not be limited by Contractor's liability under the indemnity provisions of this Agreement.

H. Punitive damages exclusion, if any, must be deleted (and the deletion indicated on the certificate of insurance), unless the law governing this Agreement prohibits all punitive damages that might arise under this Agreement.

I. Contractor waives all rights of recovery, and its insurers also waive all rights of subrogation of damages against Railroad and its agents, officers, directors and employees. This waiver must be stated on the certificate of insurance.

J. Prior to commencing the work, Contractor shall furnish Railroad with a certificate(s) of insurance, executed by a duly authorized representative of each insurer, showing compliance with the insurance requirements in this Agreement.

K. All insurance policies must be written by a reputable insurance company acceptable to Railroad or with a current Best's Insurance Guide Rating of A- and Class VII or better, and authorized to do business in the State of California.

L. The fact that insurance is obtained by Contractor or by Railroad on behalf of Contractor will not be deemed to release or diminish the liability of Contractor, including, without limitation, liability under the indemnity provisions of this Agreement. Damages recoverable by Railroad from Contractor or any third party will not be limited by the amount of the required insurance coverage.
EXHIBIT D
TO
STATE'S RIGHT OF ENTRY AGREEMENT

MINIMUM SAFETY REQUIREMENTS

The term "employees" as used herein refer to all employees of Licensee as well as all employees of any subcontractor or agent of Licensee.

I. Clothing

A. All employees of Licensee will be suitably dressed to perform their duties safely and in a manner that will not interfere with their vision, hearing, or free use of their hands or feet.

Specifically, Licensee's employees must wear:

(i) Waist-length shirts with sleeves.
(ii) Trousers that cover the entire leg. If flare-legged trousers are worn, the trouser bottoms must be tied to prevent catching.
(iii) Footwear that covers their ankles and has a defined heel. Employees working on bridges are required to wear safety-toed footwear that conforms to the American National Standards Institute (ANSI) and FRA footwear requirements.

B. Employees shall not wear boots (other than work boots), sandals, canvas-type shoes, or other shoes that have thin soles or heels that are higher than normal.

C. Employees must not wear loose or ragged clothing, neckties, finger rings, or other loose jewelry while operating or working on machinery.

II. Personal Protective Equipment

Licensee shall require its employees to wear personal protective equipment as specified by Railroad rules, regulations, or recommended or requested by the Railroad Representative.

(i) Hard hat that meets the American National Standard (ANSI) Z89.1 – latest revision. Hard hats should be affixed with Licensee’s company logo or name.
(ii) Eye protection that meets American National Standard (ANSI) for occupational and educational eye and face protection, Z87.1 – latest revision. Additional eye protection must be provided to meet specific job situations such as welding, grinding, etc.
(iii) Hearing protection, which affords enough attenuation to give protection from noise levels that will be occurring on the job site. Hearing protection, in the form of plugs or muffs, must be worn when employees are within:

100 feet of a locomotive or roadway/work equipment
15 feet of power operated tools
150 feet of jet blowers or pile drivers
150 feet of retarders in use (when within 10 feet, employees must wear dual ear protection – plugs and muffs)

(iv) Other types of personal protective equipment, such as respirators, fall protection equipment, and face shields, must be worn as recommended or requested by the Railroad Representative.
III. On Track Safety

Licensee is responsible for compliance with the Federal Railroad Administration's Roadway Worker Protection regulations – 49 CFR 214, Subpart C and Railroad's On-Track Safety Rules. Under 49 CFR 214, Subpart C, railroad contractors are responsible for the training of their employees on such regulations. In addition to the instructions contained in Roadway Worker Protection regulations, all employees must:

(i) Maintain a distance of twenty-five (25) feet to any track unless the Railroad Representative is present to authorize movements.
(ii) Wear an orange, reflectorized workwear approved by the Railroad Representative.
(iii) Participate in a job briefing that will specify the type of On-Track Safety for the type of work being performed. Licensee must take special note of limits of track authority, which tracks may or may not be fouled, and clearing the track. Licensee will also receive special instructions relating to the work zone around machines and minimum distances between machines while working or traveling.

IV. Equipment

A. It is the responsibility of Licensee to ensure that all equipment is in a safe condition to operate. If, in the opinion of the Railroad Representative, any of Licensee's equipment is unsafe for use, Licensee shall remove such equipment from the Railroad's property. In addition, Licensee must ensure that the operators of all equipment are properly trained and competent in the safe operation of the equipment. In addition, operators must be:

Familiar and comply with Railroad's rules on lockout/tagout of equipment.
Trained in and comply with the applicable operating rules if operating any hy-rail equipment on-track.
Trained in and comply with the applicable air brake rules if operating any equipment that moves rail cars or any other railbound equipment.

B. All self-propelled equipment must be equipped with a first-aid kit, fire extinguisher, and audible back-up warning device.

C. Unless otherwise authorized by the Railroad Representative, all equipment must be parked a minimum of twenty-five (25) feet from any track. Before leaving any equipment unattended, the operator must stop the engine and properly secure the equipment against movement.

D. Cranes must be equipped with three orange cones that will be used to mark the working area of the crane and the minimum clearances to overhead powerlines.

V. General Safety Requirements

A. Licensee shall ensure that all waste is properly disposed of in accordance with applicable federal and state regulations.

B. Licensee shall ensure that all employees participate in and comply with a job briefing conducted by the Railroad Representative, if applicable. During this briefing, the Railroad Representative will specify safe work procedures, (including On-Track Safety) and the potential hazards of the job. If any employee has any questions or concerns about the work, the employee must voice them during the job briefing. Additional job briefings will be conducted during the work as conditions, work procedures, or personnel change.

C. All track work performed by Licensee meets the minimum safety requirements established by the Federal Railroad Administration's Track Safety Standards 49 CFR 213.

D. All employees comply with the following safety procedures when working around any railroad track:

(i) Always be on the alert for moving equipment. Employees must always expect movement on any track, at any time, in either direction.
(ii) Do not step or walk on the top of the rail, frog, switches, guard rails, or other track components.
(iii) In passing around the ends of standing cars, engines, roadway machines or work equipment, leave at least 20 feet between yourself and the end of the equipment. Do not go between pieces of equipment of the opening is less than one car length (50 feet).
(iv) Avoid walking or standing on a track unless so authorized by the employee in charge.
(v) Before stepping over or crossing tracks, look in both directions first.
(vi) Do not sit on, lie under, or cross between cars except as required in the performance of your duties and only when track and equipment have been protected against movement.

E. All employees must comply with all federal and state regulations concerning workplace safety.
EXHIBIT E
TO
STATE’S RIGHT OF ENTRY AGREEMENT
CONTRACTOR’S ENDORSEMENT

A. As a condition to entering upon the Railroad’s right-of-way to perform Work pursuant to this agreement, State's contractor, __

(Name of Contractor)

whose address is __

(Contractor’s Mailing Address)

(hereinafter "Contractor"), agrees to comply with and be bound by all the terms and provisions of the attached Caltrans Right of Entry Agreement that was signed by Union Pacific Railroad Company ("Railroad") and the State of California, Department of Transportation ("State") relating to the Work to be performed in connection with State's Project No. 0800000506 (EA OM940) covering work in San Bernardino County, California and the insurance requirements set forth in Exhibit C of the Right of Entry Agreement. The Contractor further acknowledges and agrees that the reference to Cal. Gov. Code §14662.5 in Sections 5.b) and 8.b) of Exhibit B to the Right of Entry Agreement does not apply to the Contractor and in no way limits the indemnities set forth in those provisions, to which the Contractor agrees to be bound.

B. Before the Contractor commences any Work, the Contractor will provide the Railroad with (i) a binder of insurance for the Railroad Protective Liability Insurance described in Section 13-2 of the Contract Special Provisions, hereto attached, and the original policy, or a certified duplicate original policy when available, and (ii) a certificate issued by its insurance carrier providing the other insurance coverage and endorsements required pursuant to Section 13-2 of the Contract Special Provisions.

C. All insurance correspondence, binders or originals shall be directed to:

Union Pacific Railroad Company
Senior Manager Contracts
1400 Douglas Street, MS 1690
Omaha, NE 68179-1690
Folder No. 2702-64

D. Please note that fiber optic cable may be buried on the Railroad's property. Prior to commencing any work, the Contractor agrees to contact the Railroad's Telecommunications Operation Center as provided in Section 5 of Exhibit B of the Right of Entry Agreement to determine if any fiber optic cable is located on the Railroad's property on or near the location where the work is to be performed. If there is, the Contractor must comply with the terms and conditions of Section 5 of Exhibit B before commencing any work on the Railroad's property.

E. The Contractor agrees to also provide to the Railroad's Manager-Track Maintenance at [Insert phone number] the advance notice required in Section 1 of Exhibit B of the Right of Entry Agreement prior to working on the Railroad's property in order for the Railroad to coordinate the Contractor's work with the Railroad's operations and to make arrangements for flagging protection (if applicable).
This endorsement shall be completed and sent to the person named in Paragraph C above.

(Name of Contractor)

By________________________________

Title:______________________________

Date:_____________________________
EXHIBIT "C"
TO
THE BNSF C&M AGREEMENT

CONTRACTOR REQUIREMENTS

1.01 General:

• 1.01.01 The Contractor must cooperate with BNSF RAILWAY COMPANY, hereinafter referred to as "Railway" where work is over or under on or adjacent to Railway property and/or right-of-way, hereafter referred to as "Railway Property", during the State of California’s Department of Transportation’s (STATE) widening of the existing I-215 to accommodate HOV lanes by replacing the existing crossing at separated grades to be known as the I-215 Underpass and designated as C&M Agreement for I-215 Underpass Widening Project, Colton, CA, DOT# 026469N, LS 7602, MP 5.92, San Bernardino Subdivision.

• 1.01.02 The Contractor must execute and deliver to the Railway duplicate copies of the Exhibit "C-1" Agreement, in the form attached hereto, obligating the Contractor to provide and maintain in full force and effect the insurance called for under Section 3 of said Exhibit "C-1". Questions regarding procurement of the Railroad Protective Liability Insurance should be directed to Rosa Martinez at Marsh, USA, 214-303-8519.

• 1.01.03 The Contractor must plan, schedule and conduct all work activities so as not to interfere with the movement of any trains on Railway Property. The Railway and STATE mutually agree that no construction activities at anytime, or future maintenance of the Structure that would interfere with BNSF’s operations will be permitted during the fourth quarter of each calendar year. Emergency work will be permitted only upon prior notification to BNSF’s Network Operations Center (telephone number: 800 832-5452). The parties hereto mutually understand and agree that trains cannot be subjected to delay during this time period.

• 1.01.04 The Contractor’s right to enter Railway's Property is subject to the absolute right of Railway to cause the Contractor's work on Railway's Property to cease if, in the opinion of Railway, Contractor's activities create a hazard to Railway's Property, employees, and/or operations. Railway will have the right to stop construction work on the Project if any of the following events take place: (i) Contractor (or any of its subcontractors) performs the Project work in a manner contrary to the plans and specifications approved by Railway; (ii) Contractor (or any of its subcontractors), in Railway’s opinion, prosecutes the Project work in a manner which is hazardous to Railway Property, facilities or the safe and expeditious movement of railroad traffic; (iii) the insurance described in the attached Exhibit C-1 is canceled during the course of the Project; or (iv) Contractor fails to pay Railway for the Temporary Construction License or the Easement. The work stoppage will continue until all necessary actions are taken by Contractor or its subcontractor to rectify the situation to the satisfaction of Railway’s Division Engineer or until additional insurance has been delivered to and accepted by Railway. In the event of a breach of (i) this Agreement, (ii) the Temporary Construction License, or (iii) the Easement, Railway may immediately terminate the Temporary Construction License or the Easement. Any such work stoppage under this provision will not give rise to any liability on the part of Railway. Railway’s right to stop the work is in addition to any other rights Railway may have including, but not limited to, actions or suits for damages or lost profits. In the event that Railway desires to stop construction work on the Project, Railway agrees to immediately notify the following individual in writing:

Sumner Baker,
850 Via Lata, Suite 100,
Colton CA 92324
(909) 825-5822
(951) 232-3828-cell
Sumner_Baker@dot.ca.gov

• 1.01.05 The Contractor is responsible for determining and complying with all Federal, State and Local Governmental laws and regulations, including, but not limited to environmental laws and regulations (including
but not limited to the Resource Conservation and Recovery Act, as amended; the Clean Water Act, the Oil Pollution Act, the Hazardous Materials Transportation Act, CERCLA), and health and safety laws and regulations. The Contractor hereby indemnifies, defends and holds harmless Railway for, from and against all fines or penalties imposed or assessed by Federal, State and Local Governmental Agencies against the Railway which arise out of Contractor’s work under this Agreement.

1.01.06 The Contractor must notify STATE (Sumner Baker - (909) 825-5822) and Railway’s Manager Public Projects, telephone number 909-386-4472 at least thirty (30) calendar days before commencing any work on Railway Property. Contractor’s notification to Railway must refer to Railway’s file BF10002954.

1.01.07 For any bridge demolition and/or falsework above any tracks or any excavations located with any part of the excavations located within, whichever is greater, twenty-five (25) feet of the nearest track or intersecting a slope from the plane of the top of rail on a 2 horizontal to 1 vertical slope beginning at eleven (11) feet from centerline of the nearest track, both measured perpendicular to center line of track, the Contractor must furnish the Railway five sets of working drawings showing details of construction affecting Railway Property and tracks. The working drawing must include the proposed method of installation and removal of falsework, shoring or cribbing, not included in the contract plans and two sets of structural calculations of any falsework, shoring or cribbing. For all excavation and shoring submittal plans, the current “BNSF-UPRR Guidelines for Temporary Shoring” must be used for determining the design loading conditions to be used in shoring design, and all calculations and submittals must be in accordance with the current “BNSF-UPRR Guidelines for Temporary Shoring”. All submittal drawings and calculations must be stamped by a registered professional engineer licensed to practice in the state the project is located. All calculations must take into consideration railway surcharge loading and must be designed to meet American Railway Engineering and Maintenance-of-Way Association (previously known as American Railway Engineering Association) Coopers E-80 live loading standard. All drawings and calculations must be stamped by a registered professional engineer licensed to practice in the state the project is located. The Contractor must not begin work until notified by the Railway that plans have been approved. The Contractor will be required to use lifting devices such as, cranes and/or winches to place or to remove any falsework over Railway’s tracks. In no case will the Contractor be relieved of responsibility for results obtained by the implementation of said approved plans.

1.01.08 Subject to the movement of Railway’s trains, Railway will cooperate with the Contractor such that the work may be handled and performed in an efficient manner. The Contractor will have no claim whatsoever for any type of damages or for extra or additional compensation in the event his work is delayed by the Railway.

1.01.09 Work by Railway

1.01.09(a) Procurement of materials, equipment and supplies necessary for the railroad work;

1.01.09(b) Preliminary engineering, design, and contract preparation;

1.01.09(c) Furnishing of flagging services during construction of the Project as required and set forth in further detail in Section 1.05;

1.01.09(d) Furnishing engineering and inspection as required in connection with the construction of the Project;

1.01.09(e) Providing a contract project coordinator, at STATE’s expense, to serve as a project manager for the Project;

1.01.09(f) Providing a structural coordinator, at STATE’s expense, to monitor any construction activities;

1.01.09(g) Construction and Removal of the Main Track and Shooflies, including line-overs for Main Track #2;

1.01.09(h) Signal work, including relocation of the hot box detector at MP 6.02;

1.01.09(i) Providing survey control for all track work; and

1.01.09(j) Providing review, at STATE’s expense, of plans and specifications for any falsework, shoring, and demolition that may be subsequently submitted to BNSF by STATE or its contractor for approval.
1.01.10 Work by STATE

STATE must construct the Structure as shown in the Plans and do all work ("STATE’s Work") provided for in the plans and specifications for the Project, except railroad work that will be performed by BNSF hereunder. STATE must furnish all labor, materials, tools and equipment for the performance of STATE’s Work. The principal elements of STATE’s Work are as follows:

1.01.10(a) Preliminary and final Engineering;
1.01.10(b) Removal the Existing Structure, Construction of the Shoo-fly Structure, and Construction of the widened three (3) single-track Structures;
1.01.10(c) Design and construction of the Structure;
1.01.10(d) All necessary grading and paving for shoofly tracks and realigned Main Track #2, including backfill of excavations and restoration of disturbed vegetation on BNSF’s right-of-way;
1.01.10(e) Providing suitable drainage, both temporary and permanent;
1.01.10(f) Placement of 12 inches of sub ballast and the initial eight (8) inches of crushed rock ballast on all track roadbeds for the shooflies and for the permanent replacement of the main tracks;
1.01.10(g) Placement of a waterproof membrane on the deck of the Structure, and after the placement of such waterproofing membrane, placement of a layer of crushed rock ballast (not to exceed six (6) inches in thickness) on the deck of the Structure;
1.01.10(h) Performance of necessary engineering, grading and staking for the Structure;
1.01.10(i) Construction of all permanent and temporary retaining walls, as required;
1.01.10(j) Providing of pedestrian and/or trespasser control during construction;
1.01.10(k) Installation of a gate in the fence along the boundary of BNSF’s right of way in order to provide BNSF with permanent access for maintenance purposes; and
1.01.10(l) Job site cleanup including removal of all construction materials, concrete debris, surplus soil, refuse, contaminated soils, asphalt debris, litter and other waste materials to the satisfaction of BNSF;

1.02 Contractor Safety Orientation

1.02.01 No employee of the Contractor, its subcontractors, agents or invitees may enter Railway Property without first having completed Railway’s Engineering Contractor Safety Orientation, found on the web site www.contractororientation.com. The Contractor must ensure that each of its employees, subcontractors, agents or invitees completes Railway’s Engineering Contractor Safety Orientation through internet sessions before any work is performed on the Project. Additionally, the Contractor must ensure that each and every one of its employees, subcontractors, agents or invitees possesses a card certifying completion of the Railway Contractor Safety Orientation before entering Railway Property. The Contractor is responsible for the cost of the Railway Contractor Safety Orientation annually. Further clarification can be found on the web site or from the Railway’s Representative.

1.03 Railway Requirements

1.03.01 The Contractor must take protective measures as are necessary to keep railway facilities, including track ballast, free of sand, debris, and other foreign objects and materials resulting from his operations. Any damage to railway facilities resulting from Contractor's operations will be repaired or replaced by Railway and the cost of such repairs or replacement must be paid for by the Agency.

1.03.02 The Contractor must notify the Railway's Division Engineer at 909-386-4504 and provide blasting plans to the Railway for review seven (7) calendar days prior to conducting any blasting operations adjacent to or on Railway's Property.

1.03.03 The Contractor must abide by the following temporary clearances during construction:

- 15'-0" Horizontally from centerline of nearest track
- 21'-6" Vertically above top of rail
- 27'-0" Vertically above top of rail for electric wires carrying less than 750 volts
- 28'-0" Vertically above top of rail for electric wires carrying 750 volts to 15,000 volts
- 30'-0" Vertically above top of rail for electric wires carrying 15,000 volts to 20,000 volts
- 34'-0" Vertically above top of rail for electric wires carrying more than 20,000 volts

1.03.04 Upon completion of construction, the following clearances shall be maintained:
 - 25’ Horizontally from centerline of nearest track
 - 23’ 6" Vertically above top of rail

1.03.05 Any infringement within State statutory clearances due to the Contractor's operations must be submitted to the Railway and to the STATE and must not be undertaken until approved in writing by the Railway, and until the STATE has obtained any necessary authorization from the State Regulatory Authority for the infringement. No extra compensation will be allowed in the event the Contractor's work is delayed pending Railway approval, and/or the State Regulatory Authority's approval.

1.03.06 In the case of impaired vertical clearance above top of rail, Railway will have the option of installing tell-tales or other protective devices Railway deems necessary for protection of Railway operations. The cost of tell-tales or protective devices will be borne by the Agency.

1.03.07 The details of construction affecting the Railway's Property and tracks not included in the contract plans must be submitted to the Railway by STATE for approval before work is undertaken and this work must not be undertaken until approved by the Railway.

1.03.08 At other than public road crossings, the Contractor must not move any equipment or materials across Railway's tracks until permission has been obtained from the Railway. The Contractor must obtain a “Temporary Construction Crossing Agreement” from the Railway prior to moving his equipment or materials across the Railways tracks. The temporary crossing must be gated and locked at all times when not required for use by the Contractor. The temporary crossing for use of the Contractor will be constructed and, at the completion of the project, removed at the expense of the Contractor.

1.03.09 Discharge, release or spill on the Railway Property of any hazardous substances, oil, petroleum, constituents, pollutants, contaminants, or any hazardous waste is prohibited and Contractor must immediately notify the Railway's Resource Operations Center at 1(800) 832-5452, of any discharge, release or spills in excess of a reportable quantity. Contractor must not allow Railway Property to become a treatment, storage or transfer facility as those terms are defined in the Resource Conservation and Recovery Act or any state analogue.

1.03.10 The Contractor upon completion of the work covered by this contract, must promptly remove from the Railway's Property all of Contractor's tools, equipment, implements and other materials, whether brought upon said property by said Contractor or any Subcontractor, employee or agent of Contractor or of any Subcontractor, and must cause Railway's Property to be left in a condition acceptable to the Railway's representative.

1.04 Contractor Roadway Worker on Track Safety Program and Safety Action Plan:

1.04.01 Each Contractor that will perform work within 25 feet of the centerline of a track must develop and implement a Roadway Worker Protection/On Track Safety Program and work with Railway Project Representative to develop an on track safety strategy as described in the guidelines listed in the on track safety portion of the Safety Orientation. This Program must provide Railway Roadway Worker protection/on track training for all employees of the Contractor, its subcontractors, agents or invitees. This training is reinforced at the job site through job safety briefings. Additionally, each Contractor must develop and implement the Safety Action Plan, as provided for on the web site www.contractororientation.com, which will be made available to Railway prior to commencement of any work on Railway Property. During the performance of work, the Contractor must audit its work activities. The Contractor must designate an on-site Project Supervisor who will serve as the contact person for the Railway and who will maintain a copy of the Safety Action Plan, safety audits, and Material Safety Datasheets (MSDS), at the job site.

1.04.02 Contractor shall have a background investigation performed on all of its employees, subcontractors and agents who will be performing any services for Railway under this Agreement which are determined by Railway in its sole discretion a) to be on Railway’s Property, or b) that require access to Railway Critical Infrastructure, Railway Critical Information Systems, Railway's Employees, Hazardous Materials on
Railway’s Property or is being transported by or otherwise in the custody of Railway, or Freight in Transit involving Railway.

The required background screening shall at a minimum meet the rail industry background screening criteria defined by the e-RAILSAFE Program as outlined at http://www.e-railsafe.com, in addition to any other applicable regulatory requirements.

Contractor shall obtain written consent from all its employees, subcontractors or agents screened in compliance with the e-RAILSAFE Program to participate in the Program on their behalf and to release completed background information to Railway's designee. Contractor shall be subject to periodic audit to ensure compliance.

Contractor subject to the e-RAILSAFE Program hereunder shall not permit any of its employees, subcontractors or agents to perform services hereunder who are not first approved under e-RAILSAFE Program standards. Railway shall have the right to deny entry onto its premises or access as described in this section above to any of Contractor's employees, subcontractors or agents who do not display the authorized identification badge issued by a background screening service meeting the standards set forth in the e-RAILSAFE Program, or who in Railway's opinion, which may not be unreasonable, may pose a threat to the safety or security of Railway's operations, assets or personnel.

Contractors shall be responsible for ensuring that its employees, subcontractors and agents are United States citizens or legally working in the United States under a lawful and appropriate work VISA or other work authorization.

1.05 Railway Flagger Services:

• 1.05.01 The Contractor must give Railway’s Roadmaster (telephone 909-386-4061) a minimum of thirty (30) calendar days advance notice when flagging services will be required so that the Roadmaster can make appropriate arrangements (i.e., bulletin the flagger’s position). If flagging services are scheduled in advance by the Contractor and it is subsequently determined by the parties hereto that such services are no longer necessary, the Contractor must give the Roadmaster five (5) working days advance notice so that appropriate arrangements can be made to abolish the position pursuant to union requirements.

• 1.05.02 Unless determined otherwise by Railway’s Project Representative, Railway flagger will be required and furnished when Contractor’s work activities are located over, under and/or within twenty-five (25) feet measured horizontally from centerline of the nearest track and when cranes or similar equipment positioned beyond 25-feet from the track centerline could foul the track in the event of tip over or other catastrophic occurrence, but not limited thereto for the following conditions:

 • 1.05.02a When, upon inspection by Railway’s Representative, other conditions warrant.
 • 1.05.02b When any excavation is performed below the bottom of tie elevation, if, in the opinion of Railway's representative, track or other Railway facilities may be subject to movement or settlement.
 • 1.05.02c When work in any way interferes with the safe operation of trains at timetable speeds.
 • 1.05.02d When any hazard is presented to Railway track, communications, signal, electrical, or other facilities either due to persons, material, equipment or blasting in the vicinity.
 • 1.05.02e Special permission must be obtained from the Railway before moving heavy or cumbersome objects or equipment which might result in making the track impassable.
 • 1.05.03 Flagging services will be performed by qualified Railway flaggers.
• **1.05.03a** Flagging crew generally consists of one employee. However, additional personnel may be required to protect Railway Property and operations, if deemed necessary by the Railways Representative.

• **1.05.03b** Each time a flagger is called, the minimum period for billing will be the eight (8) hour basic day.

• **1.05.03c** The cost of flagger services provided by the Railway will be borne by STATE. The estimated cost for one (1) flagger is approximately between $800.00-$1,600.00 for an eight (8) hour basic day with time and one-half or double time for overtime, rest days and holidays. The estimated cost for each flagger includes vacation allowance, paid holidays, Railway and unemployment insurance, public liability and property damage insurance, health and welfare benefits, vehicle, transportation, meals, lodging, radio, equipment, supervision and other costs incidental to performing flagging services. Negotiations for Railway labor or collective bargaining agreements and rate changes authorized by appropriate Federal authorities may increase actual or estimated flagging rates. THE FLAGGING RATE IN EFFECT AT THE TIME OF PERFORMANCE BY THE CONTRACTOR HEREUNDER WILL BE USED TO CALCULATE THE ACTUAL COSTS OF FLAGGING PURSUANT TO THIS PARAGRAPH.

• **1.05.03d** The average train traffic on this route is 62 freight trains per 24-hour period at a timetable speed 50 MPH and 22 passenger trains at a timetable speed of 60 MPH.

1.06 Contractor General Safety Requirements

• **1.06.01** Work in the proximity of railway track(s) is potentially hazardous where movement of trains and equipment can occur at any time and in any direction. All work performed by contractors within 25 feet of any track must be in compliance with FRA Roadway Worker Protection Regulations.

• **1.06.02** Before beginning any task on Railway Property, a thorough job safety briefing must be conducted with all personnel involved with the task and repeated when the personnel or task changes. If the task is within 25 feet of any track, the job briefing must include the Railway’s flagger, as applicable, and include the procedures the Contractor will use to protect its employees, subcontractors, agents or invitees from moving any equipment adjacent to or across any Railway track(s).

• **1.06.03** Workers must not work within 25 feet of the centerline of any track without an on-track safety strategy approved by the Railway’s Project Representative. When authority is provided, every contractor employee must know: (1) who the Railway flagger is, and how to contact the flagger, (2) limits of the authority, (3) the method of communication to stop and resume work, and (4) location of the designated places of safety. Persons or equipment entering flag/work limits that were not previously job briefed, must notify the flagger immediately, and be given a job briefing when working within 25 feet of the center line of track.

• **1.06.04** When Contractor employees are required to work on the Railway Property after normal working hours or on weekends, the Railway’s representative in charge of the project must be notified. A minimum of two employees must be present at all times.

• **1.06.05** Any employees, agents or invitees of Contractor or its subcontractors under suspicion of being under the influence of drugs or alcohol, or in the possession of same, will be removed from the Railway's Property and subsequently released to the custody of a representative of Contractor management. Future access to the Railway's Property by that employee will be denied.

• **1.06.06** Any damage to Railway Property, or any hazard noticed on passing trains must be reported immediately to the Railway’s representative in charge of the project. Any vehicle or machine which may come in contact with track, signal equipment, or structure (bridge) and could result in a train derailment must be reported immediately to the Railway representative in charge of the project and to the Railway's Resource Operations Center at 1(800) 832-5452. Local emergency numbers are to be obtained from the Railway representative in charge of the project prior to the start of any work and must be posted at the job site.

• **1.06.07** For safety reasons, all persons are prohibited from having pocket knives, firearms or other deadly weapons in their possession while working on Railway's Property.
1.06.08 All personnel protective equipment (PPE) used on Railway Property must meet applicable OSHA and ANSI specifications. Current Railway personnel protective equipment requirements are listed on the web site, www.contractororientation.com, however, a partial list of the requirements include: a) safety glasses with permanently affixed side shields (no yellow lenses); b) hard hats; c) safety shoe with: hardened toes, above-the-ankle lace-up and a defined heel; and d) high visibility retro-reflective work wear. The Railway’s representative in charge of the project is to be contacted regarding local specifications for meeting requirements relating to hi-visibility work wear. Hearing protection, fall protection, gloves, and respirators must be worn as required by State and Federal regulations. (NOTE – Should there be a discrepancy between the information contained on the web site and the information in this paragraph, the web site will govern.)

1.06.09 THE CONTRACTOR MUST NOT PILE OR STORE ANY MATERIALS, MACHINERY OR EQUIPMENT CLOSER THAN 25'-0" TO THE CENTER LINE OF THE NEAREST RAILWAY TRACK. MATERIALS, MACHINERY OR EQUIPMENT MUST NOT BE STORED OR LEFT WITHIN 250 FEET OF ANY HIGHWAY/RAIL AT-GRADE CROSSINGS OR TEMPORARY CONSTRUCTION CROSSING, WHERE STORAGE OF THE SAME WILL OBSTRUCT THE VIEW OF A TRAIN APPROACHING THE CROSSING. PRIOR TO BEGINNING WORK, THE CONTRACTOR MUST ESTABLISH A STORAGE AREA WITH CONCURRENCE OF THE RAILWAY’S REPRESENTATIVE.

1.06.10 Machines or vehicles must not be left unattended with the engine running. Parked machines or equipment must be in gear with brakes set and if equipped with blade, pan or bucket, they must be lowered to the ground. All machinery and equipment left unattended on Railway’s Property must be left inoperable and secured against movement. (See internet Engineering Contractor Safety Orientation program for more detailed specifications)

1.06.11 Workers must not create and leave any conditions at the work site that would interfere with water drainage. Any work performed over water must meet all Federal, State and Local regulations.

1.06.12 All power line wires must be considered dangerous and of high voltage unless informed to the contrary by proper authority. For all power lines the minimum clearance between the lines and any part of the equipment or load must be; 200 KV or below - 15 feet; 200 to 350 KV - 20 feet; 350 to 500 KV - 25 feet; 500 to 750 KV - 35 feet; and 750 to 1000 KV - 45 feet. If capacity of the line is not known, a minimum clearance of 45 feet must be maintained. A person must be designated to observe clearance of the equipment and give a timely warning for all operations where it is difficult for an operator to maintain the desired clearance by visual means.

1.07 Excavation:

1.07.01 Before excavating, the Contractor must determine whether any underground pipe lines, electric wires, or cables, including fiber optic cable systems are present and located within the Project work area. The Contractor must determine whether excavation on Railway’s Property could cause damage to buried cables resulting in delay to Railway traffic and disruption of service to users. Delays and disruptions to service may cause business interruptions involving loss of revenue and profits. Before commencing excavation, the Contractor must contact BNSF’s Field Engineering Representative (909-386-4079). All underground and overhead wires will be considered HIGH VOLTAGE and dangerous until verified with the company having ownership of the line. It is the Contractor’s responsibility to notify any other companies that have underground utilities in the area and arrange for the location of all underground utilities before excavating.

1.07.02 The Contractor must cease all work and notify the Railway immediately before continuing excavation in the area if obstructions are encountered which do not appear on drawings. If the obstruction is a utility and the owner of the utility can be identified, then the Contractor must also notify the owner immediately. If there is any doubt about the location of underground cables or lines of any kind, no work must be performed until the exact location has been determined. There will be no exceptions to these instructions.

1.07.03 All excavations must be conducted in compliance with applicable OSHA regulations and, regardless of depth, must be shored where there is any danger to tracks, structures or personnel.

1.07.04 Any excavations, holes or trenches on the Railway’s Property must be covered, guarded and/or protected when not being worked on. When leaving work site areas at night and over weekends, the areas must
be secured and left in a condition that will ensure that Railway employees and other personnel who may be working or passing through the area are protected from all hazards. All excavations must be back filled as soon as possible.

1.08 Hazardous Waste, Substances and Material Reporting:

- **1.08.01** If Contractor discovers any hazardous waste, hazardous substance, petroleum or other deleterious material, including but not limited to any non-containerized commodity or material, on or adjacent to Railway's Property, in or near any surface water, swamp, wetlands or waterways, while performing any work under this Agreement, Contractor must immediately: (a) notify the Railway's Resource Operations Center at 1(800) 832-5452, of such discovery; (b) take safeguards necessary to protect its employees, subcontractors, agents and/or third parties; and (c) exercise due care with respect to the release, including the taking of any appropriate measure to minimize the impact of such release.

1.09 Personal Injury Reporting

- **1.09.01** The Railway is required to report certain injuries as a part of compliance with Federal Railroad Administration (FRA) reporting requirements. Any personal injury sustained by an employee of the Contractor, subcontractor or Contractor's invitees while on the Railway's Property must be reported immediately (by phone mail if unable to contact in person) to the Railway's representative in charge of the project. The Non-Employee Personal Injury Data Collection Form contained herein is to be completed and sent by Fax to the Railway at 1(817) 352-7595 and to the Railway's Project Representative no later than the close of shift on the date of the injury.
NON-EMPLOYEE PERSONAL INJURY DATA COLLECTION

(If injuries are in connection with rail equipment accident/incident, highway rail grade crossing accident or automobile accident, ensure that appropriate information is obtained, forms completed and that data entry personnel are aware that injuries relate to that specific event.)

Injured Person Type:

- [] Passenger on train (C)
- [] Non-employee (N)
 (i.e., emp of another railroad, or, non-BNSF emp involved in vehicle accident, including company vehicles)
- [] Contractor/safety sensitive
- [] Contractor/non-safety sensitive (G)
- [] Volunteer/safety sensitive (H)
- [] Volunteer/other non-safety sensitive (I)
- [] Non-trespasser (D) - to include highway users involved in highway rail grade crossing accidents who did not go around or through gates
- [] Trespasser (E) - to include highway users involved in highway rail grade crossing accidents who went around or through gates
- [] Non-trespasser (J) - Off railroad property

If train involved, Train ID:

__

Transmit attached information to Accident/Incident Reporting Center by:
Fax 1-817-352-7595 or by Phone 1-800-697-6736 or email to: Accident-Reporting.Center@BNSF.com

Officer Providing Information:

(Name) (Employee No.) (Phone #)

REPORT PREPARED TO COMPLY WITH FEDERAL ACCIDENT REPORTING REQUIREMENTS AND PROTECTED FROM DISCLOSURE PURSUANT TO 49 U.S.C. 20903 AND 83 U.S.C. 490
NON-EMPLOYEE PERSONAL INJURY DATA COLLECTION

INFORMATION REQUIRED TO BE COLLECTED PURSUANT TO FEDERAL REGULATION. IT SHOULD BE USED FOR COMPLIANCE WITH FEDERAL REGULATIONS ONLY AND IT IS NOT INTENDED TO PRESUME ACCEPTANCE OF RESPONSIBILITY OR LIABILITY.

 County: ___________________________ 5. Temperature: _______ 6. Weather: ______________(if non BNSF location)
 Mile Post / Line Segment: ___________________________

5. Driver’s License No (and state) or other ID: ___________________________ SSN (required): ___________________________

6. Name (last, first, mi): __

7. Address: ___________________________ City: ___________ St: ___________ Zip: ___________

8. Date of Birth: ___________________________ and/or Age: ___________ Gender: _______
 Phone Number: ___________________________ Employer: ___________________________

 (i.e., Laceration, etc.) (i.e., Hand, etc.)

11. Description of Accident (To include location, action, result, etc.): ___________________________

12. Treatment:
 [] First Aid Only
 [] Required Medical Treatment
 [] Other Medical Treatment

13. Dr. Name: ___________________________ Date: ___________

14. Dr. Address:
 Street: ___________________________ City: ___________ St: ___________ Zip: ___________

15. Hospital Name: ___________________________

16. Hospital Address:
 Street: ___________________________ City: ___________ St: ___________ Zip: ___________

17. Diagnosis: ___________________________

REPORT PREPARED TO COMPLY WITH FEDERAL ACCIDENT REPORTING REQUIREMENTS AND PROTECTED FROM DISCLOSURE PURSUANT TO 49 U.S.C. 20903 AND 83 U.S.C. 490
The undersigned (hereinafter called, the "Contractor"), has entered into a contract (the "Contract") dated __________, 2012, with State of California Department of Transportation (STATE) for the performance of certain work in connection with the following project: I-215 Highgrove Underpass Widening Project, Colton, CA, DOT# 026469N, LS 7602, MP 5.92, San Bernardino Subdivision. Performance of such work will necessarily require contractor to enter BNSF RAILWAY COMPANY ("Railway") right of way and property ("Railway Property"). The Contract provides that no work will be commenced within Railway Property until the Contractor employed in connection with said work for STATE (i) executes and delivers to Railway an Agreement in the form hereof, and (ii) provides insurance of the coverage and limits specified in such Agreement and Section 3 herein. If this Agreement is executed by a party who is not the Owner, General Partner, President or Vice President of Contractor, Contractor must furnish evidence to Railway certifying that the signatory is empowered to execute this Agreement on behalf of Contractor.

Accordingly, in consideration of Railway granting permission to Contractor to enter upon Railway Property and as an inducement for such entry, Contractor, effective on the date of the Contract, has agreed and does hereby agree with Railway as follows:

Section 1. RELEASE OF LIABILITY AND INDEMNITY

Contractor hereby waives, releases, indemnifies, defends and holds harmless Railway for all judgments, awards, claims, demands, and expenses (including attorneys’ fees), for injury or death to all persons, including Railway’s and Contractor’s officers and employees, and for loss and damage to property belonging to any person, arising in any manner from Contractor’s or any of Contractor’s subcontractors’ acts or omissions or any work performed on or about Railway’s Property or right-of-way. THE LIABILITY ASSUMED BY CONTRACTOR WILL NOT BE AFFECTED BY THE FACT, IF IT IS A FACT, THAT THE DESTRUCTION, DAMAGE, DEATH, OR INJURY WAS OCCASIONED BY OR CONTRIBUTED TO BY THE NEGLIGENCE OF RAILWAY, ITS AGENTS, SERVANTS, EMPLOYEES OR OTHERWISE, EXCEPT TO THE EXTENT THAT SUCH CLAIMS ARE PROXIMATELY CAUSED BY THE WILLFUL MISCONDUCT OR SOLE NEGLIGENCE OF RAILWAY.

THE INDEMNIFICATION OBLIGATION ASSUMED BY CONTRACTOR INCLUDES ANY CLAIMS, SUITS OR JUDGMENTS BROUGHT AGAINST RAILWAY UNDER THE FEDERAL EMPLOYEE’S LIABILITY ACT, INCLUDING CLAIMS FOR STRICT LIABILITY UNDER THE SAFETY APPLIANCE ACT OR THE LOCOMOTIVE INSPECTION ACT, WHenever SO CLAIMED.

Contractor further agrees, at its expense, in the name and on behalf of Railway, that it will adjust and settle all claims made against Railway, and will, at Railway’s discretion, appear and defend any suits or actions of law or in equity brought against Railway on any claim or cause of action arising or growing out of or in any manner connected with any liability assumed by Contractor under this Agreement for which Railway is liable or is alleged to
be liable. *Railway* will give notice to Contractor, in writing, of the receipt or dependency of such claims and thereupon Contractor must proceed to adjust and handle to a conclusion such claims, and in the event of a suit being brought against *Railway*, *Railway* may forward summons and complaint or other process in connection therewith to Contractor, and Contractor, at *Railway’s* discretion, must defend, adjust, or settle such suits and protect, indemnify, and save harmless *Railway* from and against all damages, judgments, decrees, attorney’s fees, costs, and expenses growing out of or resulting from or incident to any such claims or suits.

In addition to any other provision of this Agreement, in the event that all or any portion of this Article shall be deemed to be inapplicable for any reason, including without limitation as a result of a decision of an applicable court, legislative enactment or regulatory order, the parties agree that this Article shall be interpreted as requiring Contractor to indemnify *Railway* to the fullest extent permitted by applicable law. THROUGH THIS AGREEMENT THE PARTIES EXPRESSLY INTEND FOR CONTRACTOR TO INDEMNIFY RAILWAY FOR RAILWAY’S ACTS OF NEGLIGENCE.

It is mutually understood and agreed that the assumption of liabilities and indemnification provided for in this Agreement survive any termination of this Agreement.

Section 2. TERM

This Agreement is effective from the date of the Contract until (i) the completion of the project set forth herein, and (ii) full and complete payment to *Railway* of any and all sums or other amounts owing and due hereunder.

Section 3. INSURANCE

Contractor shall, at its sole cost and expense, procure and maintain during the life of this Agreement the following insurance coverage:

A. Commercial General Liability insurance. This insurance shall contain broad form contractual liability with a combined single limit of a minimum of $5,000,000 each occurrence and an aggregate limit of at least $10,000,000 but in no event less than the amount otherwise carried by the Contractor. Coverage must be purchased on a post 2004 ISO occurrence form or equivalent and include coverage for, but not limit to the following:

- Bodily Injury and Property Damage
- Personal Injury and Advertising Injury
- Fire legal liability
- Products and completed operations

This policy shall also contain the following endorsements, which shall be indicated on the certificate of insurance:

- The definition of insured contract shall be amended to remove any exclusion or other limitation for any work being done within 50 feet of railroad property.
- Waver of subrogation in favor of and acceptable to *Railway*.
- Additional insured endorsement in favor of and acceptable to *Railway*.
- Separation of insureds.
- The policy shall be primary and non-contributing with respect to any insurance carried by *Railway*.

It is agreed that the workers’ compensation and employers’ liability related exclusions in the Commercial General Liability insurance policy(s) required herein are intended to apply to employees of the policy holder and shall not apply to *Railway* employees.

No other endorsements limiting coverage as respects obligations under this Agreement may be included on the policy with regard to the work being performed under this agreement.
B. Business Automobile Insurance. This insurance shall contain a combined single limit of at least $1,000,000 per occurrence, and include coverage for, but not limited to the following:

- Bodily injury and property damage
- Any and all vehicles owned, used or hired

The policy shall also contain the following endorsements or language, which shall be indicated on the certificate of insurance:

- Waiver of subrogation in favor of and acceptable to Railway.
- Additional insured endorsement in favor of and acceptable to Railway.
- Separation of insureds.
- The policy shall be primary and non-contributing with respect to any insurance carried by Railway.

C. Workers Compensation and Employers Liability insurance including coverage for, but not limited to:

- Contractor’s statutory liability under the worker’s compensation laws of the state(s) in which the work is to be performed. If optional under State law, the insurance must cover all employees anyway.
- Employers’ Liability (Part B) with limits of at least $500,000 each accident, $500,000 by disease policy limit, $500,000 by disease each employee.

This policy shall also contain the following endorsements or language, which shall be indicated on the certificate of insurance:

- Waiver of subrogation in favor of and acceptable to Railway.

D. Railroad Protective Liability insurance naming only the Railway as the Insured with coverage of at least $5,000,000 per occurrence and $10,000,000 in the aggregate. The policy Must be issued on a standard ISO form CG 00 35 12 04 and include the following:

- Endorsed to include the Pollution Exclusion Amendment
- Endorsed to include the Limited Seepage and Pollution Endorsement.
- Endorsed to remove any exclusion for punitive damages.
- No other endorsements restricting coverage may be added.
- The original policy must be provided to the Railway prior to performing any work or services under this Agreement
- Definition of "Physical Damage to Property" shall be endorsed to read: "means direct and accidental loss of or damage to all property owned by any named insured and all property in any named insured’ care, custody, and control arising out of the acts or omissions of the contractor named on the Declarations.

In lieu of providing a Railroad Protective Liability Policy, Licensee may participate (if available) in Railway’s Blanket Railroad Protective Liability Insurance Policy.

Other Requirements:

Where allowable by law, all policies (applying to coverage listed above) shall contain no exclusion for punitive damages.

Contractor agrees to waive its right of recovery against Railway for all claims and suits against Railway. In addition, its insurers, through the terms of the policy or policy endorsement, waive their right of subrogation against Railway for all claims and suits. Contractor further waives its right of recovery, and its insurers also waive their right of subrogation against Railway for loss of its owned or leased property or property under Contractor’s care, custody, or control.

Allocated Loss Expense shall be in addition to all policy limits for coverages referenced above.
Contractor is not allowed to self-insure without the prior written consent of Railway. If granted by Railway, self-insured retention or other financial responsibility for claims shall be covered directly by Contractor in lieu of insurance. Any and all Railway liabilities that would otherwise, in accordance with the provisions of this Agreement, be covered by Contractor’s insurance will be covered as if Contractor elected not to include a deductible, self-insured retention or other financial responsibility for claims.

Prior to commencing the Work, Contractor shall furnish to Railway an acceptable certificate(s) of insurance from an authorized representative evidencing the required coverage(s), endorsements, and amendments. The certificate should be directed to the following addresses:

BNSF Railway Company
c/o CertFocus
P.O. Box 140528
Kansas City, MO 64114
Toll Free: 877-576-2378
Fax number: 817-840-7487
Email: BNSF@certfocus.com
www.certfocus.com

Contractor shall notify Railway in writing at least 30 days prior to any cancellation, non-renewal, substitution, or material alteration.

Any insurance policy must be written by a reputable insurance company acceptable to Railway or with a current Best’s Guide Rating of A- and Class VII or better, and authorized to do business in the state(s) in which the service is to be provide.

If coverage is purchased on a "claims made" basis, Contractor hereby agrees to maintain coverage in force for a minimum of three years after expiration, cancellation or termination of this contract. Annually, Contractor agrees to provide evidence of such coverage as required hereunder.

Contractor represents that this Agreement has been thoroughly reviewed by Contractor’s insurance agent(s)/broker(s), who have been instructed by Contractor to procure the insurance coverage required by this Agreement.

Not more frequently than once every five years, Railway may reasonably modify the required insurance coverage to reflect then-current risk management practices in the railroad industry and underwriting practices in the insurance industry.

If any portion of the operation is to be subcontracted by Contractor, Contractor shall require that the subcontractor shall provide and maintain the insurance coverage(s) set forth herein, naming Railway as an additional insured, and shall require that the subcontractor shall release, defend, and indemnify Railway to the same extent and under the same terms and conditions as Contractor is required to release, defend, and indemnify Railway herein.

Failure to provide evidence as required by this section shall entitle, but not require, Railway to terminate this Agreement immediately. Acceptance of a certificate that does not comply with this section shall not operate as a waiver of Contractor's obligations hereunder.

The fact that insurance (including, without limitation, self-insurance) is obtained by Contractor shall not be deemed to release or diminish the liability of Contractor including, without limitation, liability under the indemnity provisions of this Agreement. Damages recoverable by Railway shall not be limited by the amount of the required insurance coverage.

In the event of a claim or lawsuit involving Railway arising out of this agreement, Contractor will make available any required policy covering such claim or lawsuit.

These insurance provisions are intended to be a separate and distinct obligation on the part of the Contractor. Therefore, these provisions shall be enforceable and Contractor shall be bound thereby regardless of whether or not indemnity provisions are determined to be enforceable in the jurisdiction in which the work covered hereunder is performed.
For purposes of this section, **Railway** means "Burlington Northern Santa Fe LLC", "BNSF RAILWAY COMPANY" and the subsidiaries, successors, assigns and affiliates of each.

Section 4. EXHIBIT "C" CONTRACTOR REQUIREMENTS

The Contractor must observe and comply with all provisions, obligations, requirements and limitations contained in the Contract, and the Contractor Requirements set forth on Exhibit "C" attached to the Contract and this Agreement, including, but not be limited to, payment of all costs incurred for any damages to Railway roadbed, tracks, and/or appurtenances thereto, resulting from use, occupancy, or presence of its employees, representatives, or agents or subcontractors on or about the construction site.

Section 5. TRAIN DELAY

Contractor is responsible for and hereby indemnifies and holds harmless Railway (including its affiliated railway companies, and its tenants) for, from and against all damages arising from any unscheduled delay to a freight or passenger train which affects Railway's ability to fully utilize its equipment and to meet customer service and contract obligations. Contractor will be billed, as further provided below, for the economic losses arising from loss of use of equipment, contractual loss of incentive pay and bonuses and contractual penalties resulting from train delays, whether caused by Contractor, or subcontractors, or by the Railway performing work under this Agreement. Railway agrees that it will not perform any act to unnecessarily cause train delay.

For loss of use of equipment, Contractor will be billed the current freight train hour rate per train as determined from Railway's records. Any disruption to train traffic may cause delays to multiple trains at the same time for the same period.

Additionally, the parties acknowledge that passenger, U.S. mail trains and certain other grain, intermodal, coal and freight trains operate under incentive/penalty contracts between Railway and its customer(s). Under these arrangements, if Railway does not meet its contract service commitments, Railway may suffer loss of performance or incentive pay and/or be subject to penalty payments. Contractor is responsible for any train performance and incentive penalties or other contractual economic losses actually incurred by Railway which are attributable to a train delay caused by Contractor or its subcontractors.

The contractual relationship between Railway and its customers is proprietary and confidential. In the event of a train delay covered by this Agreement, Railway will share information relevant to any train delay to the extent consistent with Railway confidentiality obligations. Damages for train delay are currently $382.20 per hour per incident. **THE RATE THEN IN EFFECT AT THE TIME OF PERFORMANCE BY THE CONTRACTOR HEREUNDER WILL BE USED TO CALCULATE THE ACTUAL COSTS OF TRAIN DELAY PURSUANT TO THIS AGREEMENT.**

Contractor and its subcontractors must give Railway's representative (BNSF Project Engineer, 909-386-4079) eight (8) weeks advance notice of the times and dates for proposed work windows. Railway and Contractor will establish mutually agreeable work windows for the project. Railway has the right at any time to revise or change the work windows due to train operations or service obligations. Railway will not be responsible for any additional costs or expenses resulting from a change in work windows. Additional costs or expenses resulting from a change in work windows shall be accounted for in Contractor’s expenses for the project.

Contractor and subcontractors must plan, schedule, coordinate and conduct all Contractor's work so as to not cause any delays to any trains.
Kindly acknowledge receipt of this letter by signing and returning to the Railway two original copies of this letter, which, upon execution by Railway, will constitute an Agreement between us.

Contractor

By: ______________________________

Printed Name: ____________________

Title: ______________________________

Accepted and effective this ________ day of 2012.

Contact Person: ____________________

Address: __________________________

City: ______________________________

State: _______ Zip: ________________

Fax: ______________________________

Phone: ____________________________

E-mail: ____________________________

BNSF Railway Company

By: ______________________________

Name: ____________________________

Manager Public Projects

Contract No. 08-0M94U4

491
AMENDMENTS TO THE STANDARD SPECIFICATIONS
DATED MAY 2006
Global revisions are changes to contract documents not specific to a section of the Standard Specifications. In each contract document at each occurrence, interpret the following terms as shown:

<table>
<thead>
<tr>
<th>Term</th>
<th>Interpretation</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>HMA</td>
<td>1. Where AC means asphalt concrete 2. Except where existing AC is described</td>
</tr>
<tr>
<td>Asphalt concrete</td>
<td>Hot mix asphalt</td>
<td>Except where existing asphalt concrete is described</td>
</tr>
<tr>
<td>Class 1 concrete</td>
<td>Concrete containing not less than 675 pounds of cementitious material per cubic yard</td>
<td>--</td>
</tr>
<tr>
<td>Class 2 concrete</td>
<td>Concrete containing not less than 590 pounds of cementitious material per cubic yard</td>
<td>--</td>
</tr>
<tr>
<td>Class 3 concrete</td>
<td>Concrete containing not less than 505 pounds of cementitious material per cubic yard</td>
<td>--</td>
</tr>
<tr>
<td>Class 4 concrete</td>
<td>Concrete containing not less than 420 pounds of cementitious material per cubic yard</td>
<td>--</td>
</tr>
<tr>
<td>Clause providing an option to use either a class concrete or minor concrete</td>
<td>Use minor concrete</td>
<td>--</td>
</tr>
<tr>
<td>Clause referring to a delay as a right-of-way delay</td>
<td>Delay under Section 8-1.09, "Delays"</td>
<td>--</td>
</tr>
<tr>
<td>Contact joint</td>
<td>Construction joint</td>
<td>--</td>
</tr>
<tr>
<td>Controlling operation</td>
<td>Controlling activity</td>
<td>--</td>
</tr>
<tr>
<td>Engineer's Estimate</td>
<td>Verified Bid Item List</td>
<td>--</td>
</tr>
<tr>
<td>Engineering fabrics</td>
<td>Geosynthetics</td>
<td>--</td>
</tr>
<tr>
<td>Notice to Contractors</td>
<td>Notice to Bidders</td>
<td>--</td>
</tr>
<tr>
<td>Partial payments</td>
<td>Progress payments</td>
<td>Except in Section 9-1.07D, "Mobilization"</td>
</tr>
<tr>
<td>PCC pavement</td>
<td>Concrete pavement</td>
<td>Except where existing PCC pavement is described</td>
</tr>
<tr>
<td>Portland cement concrete pavement</td>
<td>Concrete pavement</td>
<td>Except where existing Portland cement concrete pavement is described</td>
</tr>
<tr>
<td>Project information</td>
<td>Supplemental project information</td>
<td>Except in "Contract Project Information Signs"</td>
</tr>
<tr>
<td>Reference to a working day or non–working day under Section 8-1.06, "Time of Completion"</td>
<td>Working day as defined in Section 1-4.02, "Glossary"</td>
<td>--</td>
</tr>
<tr>
<td>Section 9-1.015</td>
<td>Section 9-1.01C</td>
<td>--</td>
</tr>
<tr>
<td>Section 86, "Signal, Lighting and Electrical Systems"</td>
<td>Section 86, "Electrical Systems"</td>
<td>--</td>
</tr>
<tr>
<td>Section 86-2.08, "Conductors"</td>
<td>Section 86-2.08, "Conductors and Cables"</td>
<td>--</td>
</tr>
<tr>
<td>Section 86-5.01A(5), "Installation Details"</td>
<td>Section 86-5.01A(4)</td>
<td>--</td>
</tr>
</tbody>
</table>
Table

<table>
<thead>
<tr>
<th>Section 86-6.05, "Sign Lighting Fixtures—Mercury"</th>
<th>Section 86-6.05, "Induction Sign Lighting Fixtures"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time extension due to an unanticipated event not caused by either party or an issue involving a third party under Section 8-1.07, "Liquidated Damages"</td>
<td>Non-working day</td>
</tr>
<tr>
<td>Time extension due to an act of the Engineer or of the Department not contemplated by the contract</td>
<td>Time adjustment under Section 8-1.09B, "Time Adjustments"</td>
</tr>
<tr>
<td>Weakened plane joint</td>
<td>Contraction joint</td>
</tr>
</tbody>
</table>

SECTION 1 DEFINITIONS AND TERMS

(issued 06-20-12)

Replace Section 1 with:

SECTION 1 GENERAL

1-1 GENERAL

1-1.01 GENERAL

Section 1 includes general rules of interpretation.

The Department is gradually standardizing the style and language of the specifications. The new style and language includes:

1. Use of:

 1.1. Imperative mood
 1.2. Introductory modifiers
 1.3. Conditional clauses

2. Elimination of:

 2.1. Language variations
 2.2. Definitions for industry-standard terms
 2.3. Redundant specifications
 2.4. Needless cross-references

The use of this new style does not change the meaning of a specification not yet using this style.

Sections 1 through 9 include general specifications applicable to every contract unless specified as applicable under certain conditions.

Sections 10 through 15 include specifications for general construction applicable to every contract unless specified as applicable under certain conditions.

The specifications are written to the Bidder before award and the Contractor after. Before award, interpret sentences written in the imperative mood as starting with "The Bidder must" and interpret "you" as "the Bidder" and "your" as "the Bidder's." After award, interpret sentences written in the imperative mood as starting with "The Contractor must" and interpret "you" as "the Contractor" and "your" as "the Contractor's."

Omission of "a," "an," and "the" is intentional. These articles have been omitted in some specifications for streamlining purposes.

Unless an object or activity is specified to be less than the total, the quantity or amount is all of the object or activity.

A plural term includes the singular.

All items in a list apply unless the items are specified as choices.
Headings are included for the purposes of organization and referencing. Inclusion of a heading with no related content, "Reserved," or "Not Used" does not indicate that no specification exists for that subject; applicable specifications may be covered in a general or referenced specification.

1-2 REFERENCES

1-2.01 REFERENCES

Where Standard Specifications refer to the special provisions to describe the work, interpret the reference as a reference to the Bid Item List, the special provisions, or both.

Interpret a reference to a section of the Standard Specifications as a reference to the Standard Specifications as revised by any amendment, special provision, or both.

A reference within parentheses to a law or regulation is included in the contract for convenience only and is not a comprehensive listing of related laws and regulations. Lack of a reference does not indicate no related laws or regulations exist.

Where the version of a referenced document is not specified, use the current version in effect on the date of Notice to Bidders.

A reference to a subsection includes the section's general specifications of which the subsection is a part.

A code not specified as a Federal code is a California code.
1-3 ABBREVIATIONS AND MEASUREMENT UNITS

1-3.01 ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAN</td>
<td>American Association of Nurserymen</td>
</tr>
<tr>
<td>AASHTO</td>
<td>American Association of State Highway and Transportation Officials</td>
</tr>
<tr>
<td>AISC</td>
<td>American Institute of Steel Construction</td>
</tr>
<tr>
<td>AISI</td>
<td>American Iron and Steel Institute</td>
</tr>
<tr>
<td>AMA</td>
<td>archaeological monitoring area</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>APHA</td>
<td>American Public Health Association</td>
</tr>
<tr>
<td>API</td>
<td>American Petroleum Institute</td>
</tr>
<tr>
<td>AREMA</td>
<td>American Railway Engineering and Maintenance-of-Way Association</td>
</tr>
<tr>
<td>ASME</td>
<td>American Society of Mechanical Engineers</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>AWG</td>
<td>American Wire Gage</td>
</tr>
<tr>
<td>AWPA</td>
<td>American Wood-Preservers’ Association</td>
</tr>
<tr>
<td>AWS</td>
<td>American Welding Society</td>
</tr>
<tr>
<td>AWWA</td>
<td>American Water Works Association</td>
</tr>
<tr>
<td>CIH</td>
<td>Certified Industrial Hygienist</td>
</tr>
<tr>
<td>DBE</td>
<td>Disadvantaged Business Enterprise</td>
</tr>
<tr>
<td>DVBE</td>
<td>Disabled Veteran Business Enterprise</td>
</tr>
<tr>
<td>EIA</td>
<td>Electronic Industries Alliance</td>
</tr>
<tr>
<td>ESA</td>
<td>environmentally sensitive area</td>
</tr>
<tr>
<td>ETL</td>
<td>Electrical Testing Laboratories</td>
</tr>
<tr>
<td>(F)</td>
<td>final pay item</td>
</tr>
<tr>
<td>FHWA</td>
<td>Federal Highway Administration</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>ITE</td>
<td>Institute of Transportation Engineers</td>
</tr>
<tr>
<td>NEC</td>
<td>National Electrical Code</td>
</tr>
<tr>
<td>NETA</td>
<td>National Electrical Testing Association, Inc.</td>
</tr>
<tr>
<td>NEMA</td>
<td>National Electrical Manufacturers Association</td>
</tr>
<tr>
<td>PLAC</td>
<td>permit, license, agreement, certification, or any combination of these</td>
</tr>
<tr>
<td>RFI</td>
<td>request for information</td>
</tr>
<tr>
<td>SSPC</td>
<td>The Society for Protective Coatings</td>
</tr>
<tr>
<td>TIA</td>
<td>time impact analysis</td>
</tr>
<tr>
<td>UL</td>
<td>Underwriters' Laboratories Inc.</td>
</tr>
</tbody>
</table>
1-3.02 MEASUREMENT UNITS

<table>
<thead>
<tr>
<th>Measurement Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbols as used in the specifications</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>ACRE</td>
</tr>
<tr>
<td>CF</td>
</tr>
<tr>
<td>CY</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>g</td>
</tr>
<tr>
<td>ksi</td>
</tr>
<tr>
<td>GAL</td>
</tr>
<tr>
<td>h</td>
</tr>
<tr>
<td>LB</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>LF</td>
</tr>
<tr>
<td>LNMI</td>
</tr>
<tr>
<td>MFBM</td>
</tr>
<tr>
<td>MI</td>
</tr>
<tr>
<td>MSYD</td>
</tr>
<tr>
<td>Ω</td>
</tr>
<tr>
<td>pcf</td>
</tr>
<tr>
<td>s</td>
</tr>
<tr>
<td>STA</td>
</tr>
<tr>
<td>SQFT</td>
</tr>
<tr>
<td>SQYD</td>
</tr>
<tr>
<td>TAB</td>
</tr>
<tr>
<td>ton</td>
</tr>
<tr>
<td>V</td>
</tr>
<tr>
<td>W</td>
</tr>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

1-4 DEFINITIONS

1-4.01 GENERAL
Interpret terms as defined in the contract documents. A construction-industry term not defined in the contract documents has the meaning defined in Means Illustrated Construction Dictionary, Condensed Version, Second Edition.

1-4.02 GLOSSARY
- **aerially deposited lead**: Lead primarily from vehicle emissions deposited within unpaved areas or formerly unpaved areas.
- **archaeological monitoring area**: Area within, near, or straddling the project limits where access is allowed, but work is subject to archaeological monitoring.
- **archaeological resources**: Remains of past human activity, including historic and prehistoric material (e.g., tools and tool fragments, hearth and food remains, structural remains, and human remains).
- **acceptance**: Formal written acceptance by the Director of an entire contract that has been completed in all respects in accordance with the plans and specifications and any modifications to them previously approved.
- **base**: Layer of specified material of planned thickness placed immediately below the pavement or surfacing.
- **basement material**: Material in excavation or embankments underlying the lowest layer of subbase, base, pavement, surfacing, or other specified layer to be placed.
- **bid item**: Specific work unit for which the bidder provides a price.
- **Bid Item List**: List of bid items and the associated quantities.
- **Bid Item List, verified**: Bid Item List with verified prices. The Contract Proposal of Low Bidder at the Department's Web site is the verified Bid Item List.
bridge: Structure, with a bridge number, that carries a utility facility, or railroad, highway, pedestrian or other traffic, over a water course or over or under or around any obstruction.

building-construction contract: Contract that has "building construction" on the cover of the Notice to Bidders and Special Provisions.

business day: Day on the calendar except Saturday or holiday.

Certified Industrial Hygienist: Industrial hygienist certified in comprehensive practice by the American Board of Industrial Hygiene.

culvert: Structure, other than a bridge, that provides an opening under a roadway for drainage or other purposes.

day: 24 consecutive hours running from midnight to midnight; calendar day.

deduction: Amount of money permanently taken from progress payment and final payment. Deductions are not retentions under Pub Cont Code § 7107.

Department: Department of Transportation as defined in St & Hwy Code § 20 and authorized in St & Hwy Code § 90; its authorized representatives.

detour: Temporary route for traffic around a closed road part. A passageway through a job site is not a detour.

Director: Department's Director.

Disabled Veteran Business Enterprise: Business certified as a DVBE by the Office of Small Business and DVBE Services, Department of General Services.

divided highway: Highway with separated traveled ways for traffic, generally in opposite directions.

Engineer: Department's Chief Engineer acting either directly or through properly authorized agents; the agents acting within the scope of the particular duties delegated to them.

environmentally sensitive area: Area within, near, or straddling the project limits where access is prohibited or limited to protect environmental resources.

Federal-aid contract: Contract that has a Federal-aid project number on the cover of the Notice to Bidders and Special Provisions.

fixed costs: Labor, material, or equipment cost directly incurred by the Contractor as a result of performing or supplying a particular bid item that remains constant regardless of the item's quantity.

frontage road: Local street or road auxiliary to and located generally on the side of an arterial highway for service to abutting property and adjacent areas and for control of access.

grading plane: Basement material surface on which the lowest layer of subbase, base, pavement, surfacing, or other specified layer is placed.

highway: Whole right of way or area that is reserved for and secured for use in constructing the roadway and its appurtenances.

holiday:
1. Every Sunday
2. January 1st, New Year's Day
3. 3rd Monday in January, Birthday of Martin Luther King, Jr.
4. February 12th, Lincoln's Birthday
5. 3rd Monday in February, Washington's Birthday
6. March 31st, Cesar Chavez Day
7. Last Monday in May, Memorial Day
8. July 4th, Independence Day
9. 1st Monday in September, Labor Day
10. 2nd Monday in October, Columbus Day
11. November 11th, Veterans Day
12. 4th Thursday in November, Thanksgiving Day
13. Day after Thanksgiving Day
14. December 25th, Christmas Day
If January 1st, February 12th, March 31st, July 4th, November 11th, or December 25th falls on a Sunday, the
Monday following is a holiday. If November 11th falls on a Saturday, the preceding Friday is a holiday.
Interpret "legal holiday" as "holiday."

idle equipment: Equipment:
1. On the job site at the start of a delay
2. Idled because of the delay
3. Not operated during the delay

informal-bid contract: Contract that has "Informal Bid Authorized by Pub Cont Code §10122" on the cover
of the Notice to Bidders and Special Provisions.

Information Handout: Supplemental project information furnished to bidders as a handout.

laboratory: Laboratory authorized by the Department to test materials.

liquidated damages: Amount prescribed in the specifications, pursuant to the authority of Pub Cont Code §
10226, to be paid to the State or to be deducted for each day's delay in completing the whole or any
specified portion of the work beyond the time allowed in the specifications.

listed species: Any species listed as threatened or endangered under (1) Federal Endangered Species Act of
1973, 16 USC §1531 et seq., (2) California Endangered Species Act, Fish & Game Code §§ 2050–2115.5,
(3) or both.

material shortage: Shortage of raw or produced material that is area-wide and caused by an unusual market
condition, except if any of the following occurs:

1. Shortage relates to a produced, nonstandard material
2. Supplier's and the Contractor's priority for filling an order differs
3. Event outside the U.S. for a material produced outside the U.S.

median: Portion of a divided highway separating the traveled ways for traffic in opposite directions including
inside shoulders.

mobilization: Preparatory work that must be performed or costs incurred before starting work on the various
items on the job site (Pub Cont Code § 10104).

Notice to Bidders: Document that provides a general work description, bidder and bid specifications, and the
time and location the Department receives bids.

paleontological resources: Fossils and the deposits they are found in. Fossils are evidence of ancient life
preserved in sediments and rock. Examples of paleontological resources are remains of (1) animals, (2)
animal tracks, (3) plants, and (4) other organisms. Archaeological resources are not paleontological and
fossils found within an archaeological resource are generally considered archaeological resources, not
paleontological resources.

pavement: Uppermost layer of material placed on the traveled way or shoulders. This term is used
interchangeably with surfacing.

permitted biological activities: Monitoring, surveying, or other practices that require a take permit and project
specific permission from U.S. Fish and Wildlife Service or NOAA Fisheries or a take permit or
Memorandum of Understanding with Department of Fish and Game.

plans: Official project plans and Standard Plans, profiles, typical cross sections, working drawings and
supplemental drawings, or reproductions thereof, approved by the Engineer, which show the location,
character, dimensions and details of the work to be performed. These documents are to be considered as a
part of the plans.

In the above definition, the following terms are defined as follows:

- **Standard Plans:** Standard Plans issued by the Department.
- **project plans:** Specific details and dimensions peculiar to the work supplemented by the Standard Plans
 insofar as the same may apply.

protective radius: Minimum distance between construction activities and regulated species.

regulated species: Any species protected by one or any combination of the following:

2. California Endangered Species Act, Fish & Game Code §§2050–2115.5
3. Fish & Game Code §§1600–1616
6. Other law or regulation that governs activities that affect species or their habitats.
roadbed: Area between the intersection of the upper surface of the roadway and the side slopes or curb lines. The roadbed rises in elevation as each increment or layer of subbase, base, surfacing or pavement is placed. Where the medians are so wide as to include areas of undisturbed land, a divided highway is considered as including 2 separate roadbeds.

roadway: Highway portion included between the outside lines of sidewalks, or curbs, slopes, ditches, channels, waterways, and including all the appertaining structures, and other features necessary to proper drainage and protection.

routine biological activities: Biological monitoring, surveying, or other activity that does not require a take permit from the U.S. Fish and Wildlife Service or NOAA Fisheries or a take permit or Memorandum of Understanding with Department of Fish and Game.

service-approved biologist: Biologist whose activities must be approved by a state or federal agency as provided in PLACs.

shoulder: Roadway portion contiguous with the traveled way for accommodation of stopped vehicles, for emergency use, and for lateral support of base and surface courses.

small tool: Tool or piece of equipment not listed in Labor Surcharge and Equipment Rental Rates that has a replacement value of $500 or less.

special provisions: Specific clauses setting forth conditions or requirements peculiar to the work and supplementary to these Standard Specifications. The Department's publication titled "Labor Surcharge And Equipment Rental Rates" is part of the special provisions.

specifications: Directions, provisions, and requirements contained in these Standard Specifications, Amendments to the Standard Specifications, and the special provisions. Where the term "these specifications" or "these Standard Specifications" is used in this book, it means the provisions set forth in this book.

State: State of California, including its agencies, departments, or divisions, whose conduct or action is related to the work.

Structure Design: Offices of Structure Design of the Department.

subbase: Layer of specified material of planned thickness between a base and the basement material.

subgrade: Roadbed portion on which pavement, surfacing, base, subbase, or a layer of any other material is placed.

substructure: Bridge portions below the bridge seats, tops of piers, haunches of rigid frames, or below the spring lines of arches. Backwalls and parapets of abutments and wingwalls of bridges are portions of the substructure.

superstructure: Bridge portion except the bridge substructure.

supplemental project information: Information relevant to the project, specified as supplemental project information, and made available to bidders.

surfacing: Uppermost layer of material placed on the traveled way, or shoulders. This term is used interchangeably with pavement.

take: Legal definition regarding harm to listed species as defined in 16 USC §1532 and Fish & Game Code § 86.

take permit: Permit granted by the US Fish and Wildlife Service or by the NOAA Fisheries that allows take of federal listed species under 16 USC §1539 or by the Department of Fish & Game that allows take of state listed species under to Fish & Game Code § 2081.

traffic lane: Portion of a traveled way for the movement of a single line of vehicles.

traveled way: Portion of the roadway for the movement of vehicles, exclusive of shoulders.

total bid: Sum of the item totals as verified by the Department; original contract price.

withhold: Money temporarily or permanently taken from progress payment. Withholds are not retentions under Pub Cont Code § 7107.

work: All the work specified, indicated, shown or contemplated in the contract to construct the improvement, including all alterations, amendments, or extensions to it made by contract change order or other written orders of the Engineer.

working day: Time measure unit for work progress. A working day is any day except:

1. Saturdays and holidays
2. A day when you cannot perform work on the controlling activity for at least 50 percent of the day with at least 50 percent of the normal labor and equipment due to any of the following:

 2.1. Adverse weather-related conditions that cause you to dismiss the crew
 2.2. Maintaining traffic under the contract
2.3. The Engineer's direction to suspend the controlling activities for reasons unrelated to your performance

2.4. An unanticipated event not caused by either party such as:

2.4.1. Act of God (Pub Cont Code § 7105)
2.4.2. Act of a public enemy
2.4.3. Epidemic
2.4.4. Fire
2.4.5. Flood
2.4.6. Governor-declared state of emergency
2.4.7. Landslide
2.4.8. Quarantine restriction

2.5. An issue involving a third-party, including:

2.5.1. Industry or area-wide labor strike
2.5.2. Material shortage
2.5.3. Freight embargo
2.5.4. Jurisdictional requirement of a law enforcement agency
2.5.5. Workforce labor dispute of a utility or non-highway facility owner resulting in a utility or non-highway facility reconstruction not described and not solely for the Contractor's convenience
1-5 DISTRICTS

District Composition and Office Addresses

<table>
<thead>
<tr>
<th>District</th>
<th>Counties</th>
<th>Location Address</th>
<th>Mailing Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Del Norte (DN), Humboldt (Hum), Lake (Lak), Mendocino (Men)</td>
<td>1656 UNION ST EUREKA, CA</td>
<td>PO BOX 3700 EUREKA CA 95502</td>
</tr>
<tr>
<td>2</td>
<td>Lassen (Las), Modoc (Mod), Plumas (Plu), Shasta (Sha), Siskiyou (Sis), Tehama (Teh), Trinity (Tri)</td>
<td>1657 RIVERSIDE DR REDDING, CA</td>
<td>PO BOX 496073 REDDING CA 96049-6073</td>
</tr>
<tr>
<td>3</td>
<td>Butte (But), Colusa (Col), El Dorado (ED), Glenn (Gle), Nevada (Nev), Placer (Pla), Sacramento (Sac), Sierra (Sie), Sutter (Sut), Yolo (Yol), Yuba (Yub)</td>
<td>703 B ST MARYSVILLE, CA</td>
<td>703 B ST MARYSVILLE CA 95901</td>
</tr>
<tr>
<td>4</td>
<td>Alameda (Ala), Contra Costa (CC), Marin (Mrm), Napa (Nap), San Francisco (SF), San Mateo (SM), Santa Clara (SCI), Solano (Sol), Sonoma (Son)</td>
<td>111 GRAND AVE OAKLAND, CA</td>
<td>PO BOX 23660 OAKLAND CA 94623-0660</td>
</tr>
<tr>
<td>5</td>
<td>Monterey (Mon), San Benito (SBt), San Luis Obispo (SLO), Santa Barbara (SB), Santa Cruz (SCr)</td>
<td>50 HIGUERA ST SAN LUIS OBIPO, CA</td>
<td>50 HIGUERA ST SAN LUIS OBIPO CA 93401-5415</td>
</tr>
<tr>
<td>6</td>
<td>Fresno (Fre), Kern (Ker), Kings (Kin), Madera (Mad), Tulare (Tul)</td>
<td>1352 W. OLIVE AVE FRESNO, CA</td>
<td>PO BOX 12616 FRESNO CA 93728-2616</td>
</tr>
<tr>
<td>7</td>
<td>Los Angeles (LA), Ventura (Ven)</td>
<td>100 S. MAIN ST LOS ANGELES</td>
<td>100 S MAIN ST LOS ANGELES CA 90012</td>
</tr>
<tr>
<td>8</td>
<td>Riverside (Riv), San Bernardino (SBd)</td>
<td>464 W 4TH ST SAN BERNARDINO, CA</td>
<td>464 W 4TH ST SAN BERNARDINO CA 92401-1400</td>
</tr>
<tr>
<td>9</td>
<td>Inyo (Iny), Mono (Mno)</td>
<td>500 S MAIN ST BISHOP, CA</td>
<td>500 S MAIN ST BISHOP CA 93514-3423</td>
</tr>
<tr>
<td>10</td>
<td>Alpine (Alp), Amador (Ama), Calaveras (Cal), Mariposa (Mpa), Merced (Mer), San Joaquin (SJ), Stanislaus (Sta), Tuolumne (Tuo)</td>
<td>1976 E CHARTER WAY STOCKTON, CA</td>
<td>PO BOX 2048 STOCKTON CA 95201</td>
</tr>
<tr>
<td>11</td>
<td>Imperial (Imp), San Diego (SD)</td>
<td>4050 TAYLOR ST SAN DIEGO, CA</td>
<td>4050 TAYLOR ST SAN DIEGO CA 92110-2737</td>
</tr>
<tr>
<td>12</td>
<td>Orange (Ora)</td>
<td>3347 MICHELSON DR STE 100 IRVINE, CA</td>
<td>3347 MICHELSON DR STE 100 IRVINE CA 92612-0661</td>
</tr>
</tbody>
</table>

A project with work in District 1, 2, or 3 is a North Region project. For Districts 1, 2, and 3, interpret each reference to the district office as the North Region office. The North Region office address is the District 3 address.
1-6 WEB SITES, ADDRESSES, AND TELEPHONE NUMBERS

<table>
<thead>
<tr>
<th>Agency, Department Unit, or Reference</th>
<th>Web Site</th>
<th>Address</th>
<th>Telephone No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bidders’ Exchange</td>
<td>www.dot.ca.gov/hq/esc/oe/bidex</td>
<td>MSC 26 BIDDERS' EXCHANGE DEPARTMENT OF TRANSPORTATION 1727 30TH ST SACRAMENTO CA 95816-7005</td>
<td>(916) 227-6259</td>
</tr>
<tr>
<td>Department</td>
<td>www.dot.ca.gov</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of General Services, Office of Small Business and DVBE Services</td>
<td>www.pd.dgs.ca.gov/smbus/default.htm</td>
<td>OFFICE OF SMALL BUSINESS AND DVBE SERVICES DEPARTMENT OF GENERAL SERVICES 707 3RD ST WEST SACRAMENTO CA 95605-2811</td>
<td>(800) 559-5529 (916) 375-4940</td>
</tr>
<tr>
<td>Department of Industrial Relations</td>
<td>www.dir.ca.gov</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Industrial Relations, Division of Apprenticeship Standards</td>
<td></td>
<td>455 GOLDEN GATE AVENUE SAN FRANCISCO, CA 94102</td>
<td></td>
</tr>
<tr>
<td>Division of Accounting, Office of External Accounts Payable</td>
<td>http://www.dot.ca.gov/hq/asc/oap/payments/contact.htm#conpets1</td>
<td>MAJOR CONSTRUCTION PAYMENT AND INFORMATION UNIT OFFICE OF EXTERNAL ACCOUNTS PAYABLE DIVISION OF ACCOUNTING DEPARTMENT OF TRANSPORTATION P.O. BOX 168043 SACRAMENTO, CA 95816-8043</td>
<td>(916) 227-9013</td>
</tr>
<tr>
<td>Office Engineer</td>
<td></td>
<td>MSC 43 OFFICE ENGINEER DEPARTMENT OF TRANSPORTATION 1727 30TH ST SACRAMENTO CA 95816-7005</td>
<td></td>
</tr>
<tr>
<td>Office Engineer–All Projects Currently Advertised</td>
<td>http://www.dot.ca.gov/hq/esc/oe/weekly_ads/all_advertised.php</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offices of Structure Design, Documents Unit</td>
<td></td>
<td>MSC 9-4/4I DOCUMENTS UNIT OFFICES OF STRUCTURE DESIGN DEPARTMENT OF TRANSPORTATION 1801 30TH ST SACRAMENTO CA 95816-7006</td>
<td>(916) 227-0716</td>
</tr>
<tr>
<td>Publication Distribution Unit</td>
<td></td>
<td>PUBLICATION UNIT DEPARTMENT OF TRANSPORTATION 1900 ROYAL OAKS DRIVE SACRAMENTO CA 95815-3800</td>
<td></td>
</tr>
</tbody>
</table>
SECTION 2 PROPOSAL REQUIREMENTS AND CONDITIONS

(Issued 01-20-12)

Replace Section 2 with:

SECTION 2 BIDDING

2-1.01 **GENERAL**

Section 2, "Bidding," includes specifications related to bid eligibility and the bidding process.

2-1.02 **BID INELIGIBILITY**

A firm that has provided architectural or engineering services to the Department for this contract before bid submittal for this contract is prohibited from any of the following:

1. Submit a bid
2. Subcontract for a part of the work
3. Supply materials

2-1.03 **BID DOCUMENTS**

2-1.03A **General**

Standard Specifications and Standard Plans may be viewed at the Department's Web site and may be purchased at the Publication Distribution Unit.

Special provisions, Amendments to the Standard Specifications, and project plans may be viewed at the Bidders' Exchange. To obtain bid books, submit a request to the Bidders' Exchange. For an informal-bid contract, you may also obtain special provisions, Amendments to the Standard Specifications, and project plans at the Bidders' Exchange.

2-1.03B **Supplemental Project Information**

Logs of test borings attached to the project plans are supplemental project information. The Department makes other supplemental information available as specified in the special provisions.

If an Information Handout or cross sections are available:

1. You may view them at the Office Engineer–All Projects Currently Advertised Web site
2. For an informal-bid contract, you may obtain them at the Bidders' Exchange street address

If rock cores are available for inspection, you may view them by sending a request to Coreroom@dot.ca.gov. If other supplemental project information is available for inspection, you may view it by phoning in a request. Make your request at least 7 days before viewing. Include in your request:

1. District-County-Route
2. Contract number
3. Viewing date
4. Contact information, including telephone number.
For rock cores, also include the bridge number in your request.
If bridge as-built drawings are available:

1. For a project in District 1 through 6 or 10, you may request them from the Office of Structure Maintenance and Investigations, fax (916) 227-8357
2. For a project in District 7, 8, 9, 11, or 12, you may request them from the Office of Structure Maintenance and Investigations, fax (916) 227-8357, and they are available at the Office of Structure Maintenance and Investigations, Los Angeles, CA, telephone (213) 897-0877

As-built drawings may not show existing dimensions and conditions. Where new construction dimensions are dependent on existing bridge dimensions, verify the field dimensions and adjust dimensions of the work to fit existing conditions.

2-1.04–2-1.10 RESERVED

2-1.11 JOB SITE AND DOCUMENT EXAMINATION
Examine the job site and bid documents.
Bid submission is your acknowledgment that you have examined the job site and bid documents and are satisfied with:

1. General and local conditions to be encountered
2. Character, quality, and scope of work to be performed
3. Quantities of materials to be furnished
4. Character, quality, and quantity of surface and subsurface materials or obstacles
5. Requirements of the contract

2-1.12 BID DOCUMENT COMPLETION
2-1.12A General
Complete forms in the Bid book.
Except for the bid item number and the percentage of each item subcontracted, do not fax submittals.

2-1.12B Bid Item List and Bid Comparison
Submit a bid based on the work item quantities the Department shows in the Bid Item List.
For a lump sum based bid, the Department compares bids based on the total price.
For a unit price based bid, the Department compares bids based on the sum of the item totals.
For a cost plus time based bid, the Department compares bids based on the sum of the item totals and the total bid for time. If your bid for time exceeds the number of working days described in the Notice to Bidders, your bid is nonresponsive.

2-1.12C Subcontractor List
In the Subcontractor List, list each subcontractor to perform work in an amount in excess of 1/2 of 1 percent of the total bid or $10,000, whichever is greater (Pub Cont Code § 4100 et seq.)
The Subcontractor List must show the name, address, and work portions to be performed by each subcontractor listed. Show work portion by bid item number, description, and percentage of each bid item subcontracted.
On the Subcontractor List you may either submit each subcontracted bid item number and corresponding percentage with your bid or fax these numbers and percentages to (916) 227-6282 within 24 hours after bid opening. Failure to do so results in a nonresponsive bid.

2-1.13 BIDDER'S SECURITY
Submit your bid with one of the following forms of bidder's security equal to at least 10 percent of the bid:

1. Cash
2. Cashier's check
3. Certified check
4. Bidder's bond signed by a surety insurer who is licensed in California
Make checks and bonds payable to the Department of Transportation. If using a bidder’s bond, you may use the form in the Bid book. If you do not use the form in the Bid book, use a form containing the same information.

2-1.14 BID SUBMITAL

Submit your bid:

1. Under sealed cover
2. Marked as a bid
3. Identifying the contract number and the bid opening date

If an agent other than the authorized corporation officer or a partnership member signs the bid, file a Power of Attorney with the Department either before opening bids or with the bid. Otherwise, the bid may be nonresponsive.

2-1.15 BID WITHDRAWAL

An authorized agent may withdraw a bid before the bid opening date and time by submitting a written bid withdrawal request at the location where the bid was submitted. Withdrawing a bid does not prevent you from submitting a new bid.

After the bid opening time, you cannot withdraw a bid.

2-1.16 BID OPENING

The Department publicly opens and reads bids at the time and place described in the Notice to Bidders.

2-1.17 BID REJECTION

The Department may reject:

1. All bids
2. A nonresponsive bid

2-1.18 BID RELIEF

The Department may grant bid relief under Pub Cont Code § 5100 et seq. Submit any request for bid relief to the Office Engineer. For Relief of Bid Request form, go to:

http://www.dot.ca.gov/hq/esc/oe/contractor_info/relief.pdf

2-1.19 SUBMITTAL FAILURE HISTORY

The Department considers a bidder's past failure to submit documents required after bid opening in determining a bidder's responsibility.

2-1.20 BID RIGGING

Section 2-1.20, "Bid Rigging," applies to a Federal-aid contract. The U.S. Department of Transportation (DOT) provides a toll-free hotline to report bid rigging activities. Use the hotline to report bid rigging, bidder collusion, and other fraudulent activities. The hotline number is (800) 424-9071. The service is available Monday through Friday between 11:00 a.m. and 8:00 p.m. and is confidential and anonymous. The hotline is part of the DOT’s effort to identify and investigate highway construction contract fraud and abuse and is operated under the direction of the DOT Inspector General.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECTION 3 AWARD AND EXECUTION OF CONTRACT

(Issued 07-27-12)
Replace Section 3 with:

SECTION 3 CONTRACT AWARD AND EXECUTION

3-1.01 SCOPE

Section 3, “Contract Award and Execution,” includes specifications related to contract award and execution.

3-1.02 CONTRACT AWARD

Submit any bid protest to the Office Engineer.

If the Department awards the contract, the award is made to the lowest responsible bidder within the number of days shown in the following table:

<table>
<thead>
<tr>
<th>Contract Award Period</th>
<th>Days (after bid opening)</th>
<th>Project Estimated Cost shown in the Notice to Bidders</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30</td>
<td>&lt; $200 million</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>≥ $200 million</td>
</tr>
</tbody>
</table>

The Department may extend the specified award period if the bidder agrees.

3-1.03 CONTRACT BONDS (PUB CONT CODE §§ 10221 AND 10222)

The successful bidder must furnish:

1. Payment bond to secure the claim payments of laborers, workers, mechanics, or materialmen providing goods, labor, or services under the contract. This bond must be equal to at least 100 percent of the total bid.
2. Performance bond to guarantee the faithful performance of the contract. This bond must be equal to at least 50 percent of the total bid.

The Department furnishes the successful bidder with the bond forms.

3-1.04 CONTRACTOR LICENSE

For a Federal-aid contract, the Bidder must be properly licensed (Pub Cont Code § 10164) from contract award through contract acceptance.

For a non-Federal-aid contract:

1. The Bidder must be properly licensed from bid opening through contract acceptance (Bus & Prof Code § 7028.15)
2. Joint venture bidders must obtain a joint venture license before contract award (Bus & Prof Code § 7029.1)

3-1.05 INSURANCE POLICIES

The successful bidder must submit:

1. Copy of its commercial general liability policy and its excess policy or binder until such time as a policy is available, including the declarations page, applicable endorsements, riders, and other modifications in effect at the time of contract execution. Standard ISO form No. CG 0001 or similar exclusions are allowed if not inconsistent with Section 7-1.12, "Indemnification and Insurance." Allowance of additional exclusions is at the discretion of the Department.
2. Certificate of insurance showing all other required coverages. Certificates of insurance, as evidence of required insurance for the auto liability and any other required policy, shall set forth deductible amounts applicable to each policy and all exclusions that are added by endorsement to each policy. The evidence of insurance shall provide that no cancellation, lapse, or reduction of coverage will occur without 10 days prior written notice to the Department.
3. A declaration under the penalty of perjury by a CPA certifying the accountant has applied GAAP guidelines confirming the successful bidder has sufficient funds and resources to cover any self-insured retentions if the self-insured retention is over $50,000.

If the successful bidder uses any form of self-insurance for workers compensation in lieu of an insurance policy, it shall submit a certificate of consent to self-insure under Labor Code § 3700.
3-1.06 FORM FHWA-1273

For a federal-aid contract, form FHWA-1273 is included with the Contract form in the documents sent to the successful bidder for execution. Comply with its provisions. Interpret the training and promotion section as specified in section 7-1.50A.

3-1.07–3-1.08 RESERVED

3-1.09 CONTRACT EXECUTION

The successful bidder must sign the contract and return it, including the attached form FHWA-1273, to the Office Engineer along with:

1. Contract bonds
2. Documents identified in Section 3-1.05, "Insurance Policies"

For an informal-bid contract, the Office Engineer must receive these documents before the 5th business day after the bidder receives the contract. For all other contracts, the Office Engineer must receive these documents before the 10th business day after the bidder receives the contract.

The bidder's security may be forfeited for failure to execute the contract within the time specified (Pub Cont Code §§ 10181, 10182, and 10183).

The following is a copy of the Contract form:
STATE OF CALIFORNIA
DEPARTMENT OF TRANSPORTATION

CONTRACT

DES-CE-0103A (REV 03/2010)

STATE OF CALIFORNIA
DEPARTMENT OF TRANSPORTATION
CONTRACT NO.

This contract is entered into between the State of California's Department of Transportation and the Contractor named below:

CONTRACTOR'S NAME

The parties agree to comply with the terms of the following exhibits that are by this reference made a part of this contract:

Exhibit A - Bid book dated
Exhibit B - Notice to Bidders and Special Provisions dated
Exhibit C - Project Plans approved
Exhibit D - Standard Specifications dated
Exhibit E - Standard Plans dated
Exhibit F - Addenda

Exhibits A, B, C, and F are those exhibits identified with the same contract number as this contract.

This contract has been executed by the following parties:

CONTRACTOR

('CONTRACTOR'S NAME (if other than an individual, state whether a corporation, partnership, etc.)

BY: (Authorized Signature) DATED SIGNED (Do not type)

PRINTED NAME AND TITLE OF PERSON SIGNING

FEDERAL EMPLOYER IDENTIFICATION NUMBER LICENSE NUMBER

DEPARTMENT OF TRANSPORTATION

BY: (Authorized Signature) DATED SIGNED (Do not type)

PRINTED NAME AND TITLE OF PERSON SIGNING

This contract has been certified as complying with the State Contract Act:

BY: (Authorized Signature) DATED SIGNED (Do not type)

PRINTED NAME AND TITLE OF PERSON SIGNING

ADA Notice For individuals with sensory disabilities, this document is available in alternate formats. For information call (916) 654-6410 or TDD (916) 654-3990 or write Records and Forms Management, 1120 N Street, MS 69, Sacramento, CA 95814.

Contract No. 08-0M94U4
17 of 290
3-1.10 BIDDERS’ SECURITIES
The Department keeps the securities of the 1st, 2nd, and 3rd low bidders until the contract has been executed. The other bidders' securities, other than bidders' bonds, are returned upon determination of the 1st, 2nd, and 3rd low bidders, and their bidders' bonds are of no further effect (Pub Cont Code § 10184).

SECTION 4 SCOPE OF WORK
(Issued 06-05-09)

Add to Section 4-1.01:
Nothing in the specifications voids the Contractor's public safety responsibilities.

Add:

4-1.015 PROJECT DESCRIPTION
Construct the work described in the special provisions and on project plans and by the bid items. The special provisions, project plans, and bid item descriptions set forth the specifications that apply.

Replace Section 4-1.03 with:

4-1.03 CHANGES

4-1.03A General
The Department may make changes within the scope of work and add extra work. The Engineer describes the changes and extra work, the payment basis, and any time adjustment in a Contract Change Order.
A Contract Change Order is approved when the Department signs the Contract Change Order. Submit detailed cost data for a payment adjustment for:

1. Request for a payment adjustment for a bid item
2. Payment adjustment resulting from a change of more than 25 percent in the bid item's quantity if requested

If ordered, start the work before receipt of an approved Contract Change Order. You may protest a Contract Change Order.

4-1.03B Increased or Decreased Quantities
The Department adjusts payment for changed quantities and eliminated items under Section 9-1.05, "Changed Quantity Payment Adjustments."

4-1.03C Changes in Character of Work
The Department adjusts payment for an item if:

1. An ordered plan or specification change materially changes the character of a work item from that on which the bid price was based
2. The unit cost of the changed item differs when compared to the unit cost of that item under the original plans and specifications
3. No approved Contract Change Order addresses the payment

The Department adjusts the payment under Section 9-1.06, "Work-Character Changes."

4-1.03D Extra Work
The Department classes new and unforeseen work as extra work if the Engineer determines that the work is not covered by any of the various items for which there is a bid price or by combinations of those items. If portions of this work are covered by some of the various items for which there is a bid price or combinations of those items, the
remaining portion of the work will be classed as extra work. Extra work also includes work specifically designated as extra work in the plans or specifications.

Add:

4-1.035 VALUE ENGINEERING

4-1.035A General
Reserved

4-1.035B Value Engineering Change Proposal
You may submit a VECP to reduce any of the following:

1. Total cost of construction
2. Construction activity duration
3. Traffic congestion

Before preparing a VECP, meet with the Engineer to discuss:

1. Proposal concept
2. Permit issues
3. Impact on other projects
4. Project impacts, including traffic, schedule, and later stages
5. Peer reviews
6. Overall proposal merits
7. Review times required by the Department and other agencies

The VECP must not impair the project's essential functions or characteristics, such as:

1. Service life
2. Operation economy
3. Maintenance ease
4. Desired appearance
5. Design and safety

The VECP must include:

1. Description of the contract specifications and drawing details for performing the work and the proposed changes.
2. Itemization of contract specifications and drawing details that would be changed.
3. Detailed cost estimate for performing the work under the existing contract and under the proposed change. Determine the estimates under Section 9-1.03, "Force Account Payment."
4. Deadline for the Engineer to decide on the changes.
5. Bid items affected and resulting quantity changes.

The Department is not required to consider a VECP. If a VECP is similar to a change in the plans or specifications being considered by the Department at the time the proposal is submitted or if the proposal is based on or similar to drawings or specifications adopted by the Department before Contract award, the Department does not accept the VECP and may make these changes without VECP payments.

Until the Department approves a change order incorporating the VECP or parts of it, continue to perform the work under the contract. If the Department does not approve a change order before the deadline stated in the VECP or other date you subsequently stated in writing, the VECP is rejected. The Department does not adjust time or payment for a rejected VECP.

The Department decides whether to accept a VECP and the estimated net construction-cost savings from adopting the VECP or parts of it.

The Department may require you to accept a share of the investigation cost as a condition of reviewing a VECP. After written acceptance, the Department considers the VECP and deducts the agreed cost.

If the Department accepts the VECP or parts of it, the Department issues a change order that:
1. Incorporates changes in the contract necessary to implement the VECP or the parts adopted
2. Includes the Department's acceptance conditions
3. States the estimated net construction-cost savings resulting from the VECP
4. Obligates the Department to pay you 50 percent of the estimated net savings

In determining the estimated net construction-cost savings, the Department excludes your VECP preparation cost and the Department's VECP investigation cost, including parts paid by you.

If a VECP providing for a reduction in working days is accepted by the Department, 50 percent of the reduction is deducted from contract time.

If a VECP providing for a reduction in traffic congestion or avoiding traffic congestion is accepted by the Department, the Department pays 60 percent of the estimated net savings in construction costs attributable to the VECP. Submit detailed traffic handling comparisons between the existing contract and the proposed change, including estimates of the traffic volumes and congestion.

The Department may apply an accepted VECP for general use on other contracts.

If an accepted VECP is adopted for general use, the Department pays only the contractor who first submitted the VECP and only to the contracts awarded to that contractor before the submission of the accepted VECP.

If the Department does not adopt a general-use VECP, an identical or similar submitted proposal is eligible for acceptance.

### 4-1.035C Value Analysis Workshop

Section 4-1.035C, "Value Analysis Workshop," applies to a non-building-work contract with a total bid of over $5 million.

You may request a value analysis workshop by submitting a request after contract approval.

The Department offers a value analysis workshop to:

1. Identify value enhancing opportunities
2. Consider changes to the contract that will reduce the total cost of construction, construction activity duration, or traffic congestion without impairing the essential functions specified for a VECP in Section 4-1.035B, "Value Engineering Change Proposal."

If the request is authorized, you and the Engineer:

1. Schedule a value analysis workshop
2. Select a facilitator and workshop site
3. Agree to other workshop administrative details

The workshop must be conducted under the methods described in the Department's Value Analysis Team Guide available at:

http://www.dot.ca.gov/hq/oppd/value/

The facilitator must be a certified value specialist as recognized by the Society of American Value Engineers. The Department reimburses you for 1/2 of the workshop cost. The workshop cost is the sum of the workshop-facilitator cost and the workshop-site cost. The Department determines the workshop cost based on the facilitator and workshop-site invoice prices minus any available or offered discounts. The Department does not pay you for any other associated costs.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECTION 5 CONTROL OF WORK

(issued 06-01-11)
Add:

5-1.005 GENERAL

Failure to comply with any specification part is a waiver of your right to an adjustment of time and payment related to that part.

After contract approval, submit documents and direct questions to the Engineer. Orders, approvals, authorizations, and requests to the Contractor are by the Engineer.

The Engineer furnishes the following in writing:

1. Approvals
2. Authorizations
3. Certifications
4. Decisions
5. Notifications
6. Orders
7. Responses

The Contractor must furnish the following in writing:

1. Assignments
2. Notifications
3. Proposals
4. Reports
5. Requests, including RFIs, sequentially numbered
6. Subcontracts
7. Test results

The Department rejects a form if it has any error or any omission. Convert foreign language documents to English. Use contract administration forms available at the Department's Web site.

If the last day for submitting a document falls on a Saturday or holiday, it may be submitted on the next business day with the same effect as if it had been submitted on the day specified.

Add to 5-1.01:

Failure to enforce a contract provision does not waive enforcement of any contract provision.

Add:

5-1.011 PROTESTS

You may protest an Engineer's decision by submitting an RFI under Section 5-1.145, "Requests for Information."

Add:

5-1.012 PARTNERING

5-1.012A General

The Department strives to work cooperatively with all contractors; partnering is our way of doing business. The Department encourages project partnering among the project team, made up of significant contributors from the Department and the Contractor, and their invited stakeholders.

For a project with a total bid greater than $1 million, professionally facilitated project partnering is encouraged.

For a project with a total bid greater than $10 million, professionally facilitated project partnering is required.

In implementing project partnering, you and the Engineer manage the contract by:

1. Using early and regular communication with involved parties
2. Establishing and maintaining a relationship of shared trust, equity, and commitment
3. Identifying, quantifying, and supporting attainment of mutual goals
4. Developing strategies for using risk management concepts
5. Implementing timely communication and decision making
6. Resolving potential problems at the lowest possible level to avoid negative impacts
7. Holding periodic partnering meetings and workshops as appropriate to maintain partnering relationships and benefits throughout the life of the project
8. Establishing periodic joint evaluations of the partnering process and attainment of mutual goals

Partnering does not void any contract part.

The Department's "Field Guide to Partnering on Caltrans Construction Projects" current at the time of bid is available to the project team as reference. This guide provides structure, context, and clarity to the partnering process requirements. This guide is available at the Department's Partnering Program website:

http://www.dot.ca.gov/hq/construc/partnering.html

In implementing project partnering, the project team must:

1. Create a partnering charter that includes:
 1.1. Mutual goals, including core project goals and may also include project-specific goals and mutually supported individual goals.
 1.2. Partnering maintenance and close-out plan.
 1.3. Dispute resolution plan that includes a dispute resolution ladder and may also include use of facilitated dispute resolution sessions.
 1.4. Team commitment statement and signatures.
2. Participate in monthly partnering evaluation surveys to measure progress on mutual goals and may also measure short-term key issues as they arise.
3. Evaluate the partnering facilitator on Forms CEM-5501 and CEM-5502. The Engineer provides the evaluation forms to the project team and collects the results. The Department makes evaluation results available upon request. Facilitator evaluations must be completed:
 3.1. At the end of the initial partnering workshop on Form CEM-5501.
 3.2. At the end of the project close-out partnering workshop on Form CEM-5502.
4. Conduct a project close-out partnering workshop.

5-1.012B Partnering Facilitator, Workshops, and Monthly Evaluation Surveys

The Engineer sends you a written invitation to enter into a partnering relationship after contract approval. Respond within 15 days to accept the invitation and request the initial and additional partnering workshops. After the Engineer receives the request, you and the Engineer cooperatively:

1. Select a partnering facilitator that offers the service of a monthly partnering evaluation survey with a 5-point rating and agrees to follow the Department's "Partnering Facilitator Standards and Expectations" available at the Department's Partnering Program website
2. Schedule initial partnering workshop
3. Determine initial workshop site and duration
4. Agree to other workshop administrative details

Additional partnering workshops and sessions are encouraged throughout the life of the project as determined necessary by you and the Engineer, recommended quarterly.

5-1.012C Training in Partnering Skills Development

For a project with a total bid of $25 million or greater, training in partnering skills development is required. For a project with a total bid between $10 million and $25 million, training in partnering skills is optional. You and the Engineer cooperatively schedule the training session and select a professional trainer, training site, and 1 to 4 topics from the following list to be covered in the training:
Before the initial partnering workshop, the trainer conducts a 1-day training session in partnering skills development for the Contractor's and the Engineer's representatives. This training session must be a separate session from the initial partnering workshop and must be conducted locally. The training session must be consistent with the partnering principles under the Department's "Field Guide to Partnering on Caltrans Construction Projects."

Send at least 2 representatives to the training session. One of these must be your assigned representative as specified in Section 5-1.06, "Superintendence," of the Standard Specifications.

5-1.012D Payment

The Department pays you for:

1. 1/2 of partnering workshops and sessions based on facilitator and workshop site cost
2. 1/2 of monthly partnering evaluation survey service cost
3. Partnering skills development trainer and training site cost

The Department determines the costs based on invoice prices minus any available or offered discounts. The Department does not pay markups on these costs.

The Department does not pay for wages, travel expenses, or other costs associated with the partnering workshops and sessions, monthly partnering evaluation surveys, and training in partnering skills development.

Add:

5-1.015 RECORDS

5-1.015A General
Reserved

5-1.015B Record Retention

Retain project records from bid preparation through:

1. Final payment
2. Resolution of claims, if any

For at least 3 years after the later of these, retain cost records, including records of:

1. Bid preparation
2. Overhead
3. Payrolls
4. Payments to suppliers and subcontractors
5. Cost accounting

Maintain the records in an organized way in the original format, electronic and hard copy, conducive to professional review and audit.

5-1.015C Record Inspection, Copying, and Auditing

Make your records available for inspection, copying, and auditing by State representatives for the same time frame specified under Section 5-1.015B, "Record Retention." The records of subcontractors and suppliers must be made available for inspection, copying, and auditing by State representatives for the same period. Before contract acceptance, the State representative notifies the Contractor, subcontractor, or supplier 5 business days before inspection, copying, or auditing.

If an audit is to start more than 30 days after contract acceptance, the State representative notifies the Contractor, subcontractor, or supplier when the audit is to start.

5-1.015D Cost Accounting Records

Maintain cost accounting records for the project distinguishing between the following work cost categories:

1. Work performed based on bid item prices
2. Work performed by change order other than extra work. Distinguish this work by:
 2.1. Bid item prices
 2.2. Force account
 2.3. Agreed price
3. Extra work. Distinguish extra work by:
 3.1. Bid item prices
 3.2. Force account
 3.3. Agreed price
 3.4. Specialist billing
4. Work performed under potential claim records
5. Overhead
6. Subcontractors, suppliers, owner-operators, and professional services

Cost accounting records must include:

1. Final cost code lists and definitions
2. Itemization of the materials used and corresponding vendor's invoice copies
3. Direct cost of labor
4. Equipment rental charges
5. Workers' certified payrolls
6. Equipment:
 6.1. Size
 6.2. Type
 6.3. Identification number
 6.4. Hours operated

5-1.015E Extra Work Bills

Maintain separate records for costs of work performed by change order.
Within 7 days after performing the work, submit extra work bills using the Department's Internet extra work billing system.

The Contractor submitting and the Engineer approving an extra work bill using the Internet force account work billing system is the same as each party signing the bill.

The Department provides billing system:
1. Training within 30 days of your written request
2. Accounts and user identification to your assigned representatives after a representative has received training

Each representative must maintain a unique password.

Replace Section 5-1.04 with:

5-1.04 CONTRACT COMPONENTS
A component in one contract part applies as if appearing in each. The parts are complementary and describe and provide for a complete work.

If a discrepancy exists:

1. The governing ranking of contract parts in descending order is:
 1.1. Special provisions
 1.2. Project plans
 1.3. Revised Standard Plans
 1.4. Standard Plans
 1.5. Amendments to the Standard Specifications
 1.6. Standard Specifications
 1.7. Supplemental project information
2. Written numbers and notes on a drawing govern over graphics
3. A detail drawing governs over a general drawing
4. A detail specification governs over a general specification
5. A specification in a section governs over a specification referenced by that section

If a discrepancy is found or confusion arises, request correction or clarification.

Add:

5-1.055 SUBCONTRACTING
5-1.055A General
No subcontract releases you from the contract or relieves you of your responsibility for a subcontractor's work.
If you violate Pub Cont Code § 4100 et seq., the Department may exercise the remedies provided under Pub Cont Code § 4110. The Department may refer the violation to the Contractors State License Board as provided under Pub Cont Code § 4111.
Except for a building-construction non-federal-aid contract, perform work equaling at least 30 percent of the value of the original total bid with your employees and with equipment owned or rented by you, with or without operators.
Each subcontract must comply with the contract.
The Department encourages you to include a dispute resolution process in each subcontract.
Each subcontractor must have an active and valid State contractor's license with a classification appropriate for the work to be performed (Bus & Prof Code, § 7000 et seq.).
Submit copies of subcontracts upon request.
Before subcontracted work starts, submit a Subcontracting Request form.
Do not use a debarred contractor; a current list of debarred contractors is available at the Department of Industrial Relations' Web site.
Upon request, immediately remove and not again use a subcontractor who fails to prosecute the work satisfactorily.

Replace Section 5-1.07 with:

5-1.07 LINES AND GRADES
The Engineer places stakes and marks under Chapter 12, "Construction Surveys," of the Department's Surveys Manual.
Submit your request for Department-furnished stakes:

1. On a Request for Construction Stakes form. Ensure:
 1.1. Requested staking area is ready for stakes
 1.2. You use the stakes in a reasonable time

2. A reasonable time before starting an activity using the stakes

Establish priorities for stakes and note priorities on the request.
Preserve stakes and marks placed by the Engineer. If the stakes or marks are destroyed, the Engineer replaces them at the Engineer's earliest convenience and deducts the cost.

Replace Section 5-1.10 with:

5-1.10 EQUIPMENT

Clearly stencil or stamp at a clearly visible location on each piece of equipment except hand tools an identifying number and:

1. On compacting equipment, its make, model number, and empty gross weight that is either the producer's rated weight or the scale weight
2. On meters and on the load-receiving element and indicators of each scale, the make, model, serial number, and producer's rated capacity

Submit a list:

1. Describing each piece of equipment
2. Showing its identifying number

Upon request, submit producer's information that designates portable vehicle scale capacities.
For proportioning materials, use measuring devices, material plant controllers, and undersupports complying with Section 9-1.01B, "Weighing Equipment and Procedures."

Measuring devices must be tested and approved under California Test 109 in the Department's presence by any of the following:

1. County Sealer of Weights and Measures
2. Scale Service Agency
3. Division of Measurement Standards Official

The indicator over-travel must be at least 1/3 of the loading travel. The indicators must be enclosed against moisture and dust.

Group measuring system dials such that the smallest increment for each indicator can be read from the location at which proportioning is controlled.

Replace Section 5-1.116 with:

5-1.116 DIFFERING SITE CONDITIONS (23 CFR 635.109)

5-1.116A Contractor's Notification
Promptly notify the Engineer if you find either of the following:

1. Physical conditions differing materially from either of the following:
 1.1. Contract documents
 1.2. Job site examination

2. Physical conditions of an unusual nature, differing materially from those ordinarily encountered and generally recognized as inherent in the work provided for in the contract
Include details explaining the information you relied on and the material differences you discovered.
If you fail to notify the Engineer promptly, you waive the differing site condition claim for the period between your discovery of the differing site condition and your notification to the Engineer.
If you disturb the site after discovery and before the Engineer's investigation, you waive the differing site condition claim.

5-1.116B Engineer's Investigation and Decision
Upon your notification, the Engineer investigates job site conditions and:

1. Notifies you whether to resume affected work
2. Decides whether the condition differs materially and is cause for an adjustment of time, payment, or both

You may protest the Engineer's decision.

Replace Section 5-1.14 with:

5-1.14 COST REDUCTION INCENTIVE
Comply with Section 4-1.035B, "Value Engineering Change Proposal."

Add:

5-1.145 REQUESTS FOR INFORMATION
Submit an RFI upon recognition of any event or question of fact arising under the Contract. The Engineer responds to the RFI within 5 days. Proceed with the work unless otherwise ordered. You may protest the Engineer's response by:

1. Submitting an Initial Potential Claim Record within 5 days after receipt of the Engineer's response
2. Complying with Section 5-1.146, "Potential Claims and Dispute Resolution"

Add:

5-1.146 POTENTIAL CLAIMS AND DISPUTE RESOLUTION
5-1.146A General
Minimize and mitigate impacts of potentially claimed work or event. For each potential claim, assign an identification number determined by chronological sequencing and the 1st date of the potential claim. Use the identification number for each potential claim on the:

1. Initial Potential Claim Record
2. Supplemental Potential Claim Record
3. Full and Final Potential Claim Record

Failure to comply with this procedure is:

1. Waiver of the potential claim and a waiver of the right to a corresponding claim for the disputed work in the administrative claim procedure
2. Bar to arbitration (Pub Cont Code § 10240.2)

5-1.146B Initial Potential Claim Record
Submit an Initial Potential Claim Record within 5 days of the Engineer's response to the RFI or within 5 days from the date when a dispute arises due to an act or failure to act by the Engineer. The Initial Potential Claim Record establishes the claim nature and circumstances. The claim nature and circumstances must remain consistent.
The Engineer responds within 5 days of the date of the Initial Potential Claim Record. Proceed with the potentially claimed work unless ordered.
Within 20 days of a request, provide access to the project records determined necessary by the Engineer to evaluate the potential claim.
5-1.146C Supplemental Potential Claim Record

Within 15 days of submitting the Initial Potential Claim Record, submit a Supplemental Potential Claim Record including:

1. Complete nature and circumstances causing the potential claim or event
2. Contract specifications supporting the basis of a claim
3. Estimated claim cost and an itemized breakdown of individual costs stating how the estimate was determined
4. TIA

The Engineer evaluates the Supplemental Potential Claim Record and furnishes you a response within 20 days of submittal. If the estimated cost or effect on the scheduled completion date changes, update the Supplemental Potential Claim Record information as soon as the change is recognized and submit this information.

5-1.146D Full and Final Potential Claim Record

Notify the Engineer within 10 days of the completion date of the potentially claimed work. The Engineer approves this completion date or notifies you of a revised date.

Within 30 days of the completion of the potentially claimed work, submit a Full and Final Potential Claim Record including:

1. A detailed factual account of the events causing the potential claim, including:
 1.1. Necessary dates
 1.2. Locations
 1.3. Work items affected by the potential claim

2. The Contract documents supporting the potential claim and a statement of the reasons these parts support entitlement

3. If a payment adjustment is requested, an itemized cost breakdown. Segregate costs into the following categories:
 3.1. Labor, including:
 3.1.1. Individuals
 3.1.2. Classifications
 3.1.3. Regular and overtime hours worked
 3.1.4. Dates worked
 3.2. Materials, including:
 3.2.1. Invoices
 3.2.2. Purchase orders
 3.2.3. Location of materials either stored or incorporated into the work
 3.2.4. Dates materials were transported to the job site or incorporated into the work
 3.3. Equipment, including:
 3.3.1. Detailed descriptions, including make, model, and serial number
 3.3.2. Hours of use
 3.3.3. Dates of use
 3.3.4. Equipment rates at the rental rate listed in Labor Surcharge and Equipment Rental Rates in effect when the affected work related to the claim was performed

4. If a time adjustment is requested:
 4.1. Dates for the requested time.
 4.2. Reasons for a time adjustment.
 4.3. Contract documentation supporting the requested time adjustment.
4.4. TIA. The TIA must demonstrate entitlement to a time adjustment.

5. Identification and copies of your documents and copies of communications supporting the potential claim, including certified payrolls, bills, cancelled checks, job cost reports, payment records, and rental agreements

6. Relevant information, references, and arguments that support the potential claim

The Department does not consider a Full and Final Potential Claim Record that does not have the same nature, circumstances, and basis of claim as those specified on the Initial Potential Claim Record and Supplemental Potential Claim Record.

The Engineer evaluates the information presented in the Full and Final Potential Claim Record and furnishes you a response within 30 days of its receipt unless the Full and Final Potential Claim Record is submitted after Contract acceptance; in which case, a response may not be furnished. The Engineer's receipt of the Full and Final Potential Claim Record must be evidenced by postal return receipt or the Engineer's written receipt if delivered by hand.

5-1.146E Dispute Resolution
Comply with Section 5-1.15, "Dispute Resolution."

Add:

5-1.15 DISPUTE RESOLUTION

5-1.15A General
Section 5-1.15, "Dispute Resolution," applies to a contract with 100 or more working days.
The dispute resolution process is not a substitute for the submitting an RFI or a potential claim record.

5-1.15B Dispute Resolution Advisor
Section 5-1.15B, "Dispute Resolution Advisor," applies to a contract with a total bid from $3 million to $10 million.
A dispute resolution advisor, hereinafter referred to as "DRA," is chosen by the Department and the Contractor to assist in the resolution of disputes.
The DRA shall be established by the Department and the Contractor within 30 days of contract approval.
The Department and the Contractor shall each propose 3 potential DRA candidates. Each potential candidate shall provide the Department and the Contractor with their disclosure statement. The disclosure statement shall include a resume of the potential candidate's experience and a declaration statement describing past, present, anticipated, and planned relationships with all parties involved in this contract.
The Department and the Contractor shall select one of the 6 nominees to be the DRA. If the Department and the Contractor cannot agree on one candidate, the Department and the Contractor shall each choose one of the 3 nominated by the other. The final selection of the DRA will be decided by a coin toss between the two candidates.
The Department and the Contractor shall complete and adhere to the Dispute Resolution Advisor Agreement. No DRA meeting shall take place until the Dispute Resolution Advisor Agreement has been signed by all parties, unless all parties agree to sign it at the first meeting.
If DRA needs outside technical services, technical services shall be preapproved by both the Department and the Contractor.
DRA recommendations are nonbinding.
The Contractor shall not use the DRA for disputes between subcontractors or suppliers that have no grounds for a lawsuit against the Department.
DRA replacement is selected in the same manner as the original selection. The appointment of a replacement DRA will begin promptly upon determination of the need for replacement. The Dispute Resolution Advisor Agreement shall be amended to reflect the change of the DRA.
Failure of the Contractor to participate in selecting DRA will result in the withhold of 25 percent of the estimated value of all work performed during each estimate period that the Contractor fails to comply. DRA withhold will begin upon payment on the next monthly progress payment following the date that the Contractor has provided assistance in choosing the DRA and no interest will be due the Contractor.
The State and the Contractor shall bear the costs and expenses of the DRA equally.
The DRA shall be compensated at an agreed rate of $1,500 per day for time spent per meeting either at the start of the project or for a dispute. A member serving on more than one State DRA or Dispute Resolution Board, regardless the number of meetings per day shall not be paid more than the agreed rate per day. The agreed rate shall
be considered full compensation for on-site time, travel expenses, transportation, lodging, time for travel, and incidentals for each day or portion thereof that the DRA is at an authorized DRA meeting.

No additional compensation will be made for time spent by the DRA to review and research activities outside the official DRA meetings unless that time, such as time spent evaluating and preparing recommendations on specific issues presented to the DRA, has been specifically agreed to in advance by the State and Contractor. Time away from the project that has been specifically agreed to in advance by the Department and the Contractor will be compensated at an agreed rate of $150 per hour. The agreed amount of $150 per hour shall include all incidentals including expenses for telephone, fax, and computer services.

The State will provide conference facilities for DRA meetings at no cost to the Contractor.

The Contractor shall make direct payments to the DRA for participation in authorized meetings and approved hourly rate charges from invoices submitted.

The State will reimburse the Contractor for the State's share of the costs.

There will be no markups applied to expenses associated with the DRA, either by the DRA or by the Contractor when requesting payment of the State's share of DRA expenses. Regardless of the DRA recommendation, neither party will be entitled to reimbursement of DRA costs from the other party.

The Contractor shall submit extra work bills and include invoices with original supporting documents for reimbursement of the State's share.

The cost of technical services will be borne equally by the State and Contractor. There will be no markups for these costs.

A copy of the "Dispute Resolution Advisor Agreement" to be executed by the Contractor, State and the DRA is as follows:
DISPUTE RESOLUTION ADVISOR AGREEMENT

__

(Contract Identification)

Contract No. _______________________

THIS DISPUTE RESOLUTION ADVISOR AGREEMENT, hereinafter called "AGREEMENT", made and entered into this __________ day of _______________ __, _____, between the State of California, acting through the California Department of Transportation and the Director of Transportation, hereinafter called the "STATE," __________________________ hereinafter called the "CONTRACTOR," and __________________________, the Dispute Resolution Advisor, hereinafter called the "DRA."

WITNESSETH, that

WHEREAS, the STATE and the CONTRACTOR, hereinafter called the "parties," are now engaged in the construction on the State Highway project referenced above; and

WHEREAS, the Standard Specifications for the above referenced contract provides for the establishment and operation of the DRA to assist in resolving disputes; and

WHEREAS, the DRA is composed of one person, chosen by the CONTRACTOR and the STATE;

NOW THEREFORE, in consideration of the terms, conditions, covenants, and performance contained herein, or attached and incorporated and made a part hereof, the STATE, the CONTRACTOR, and the DRA hereto agree as follows:

SECTION I DESCRIPTION OF WORK

To assist in the timely resolution of disputes between the parties, the contract provides for the establishment and the operation of the DRA. The DRA is to fairly and impartially consider disputes placed before it and provide recommendations for resolution of these disputes to the parties. The DRA shall provide recommendations based on the facts related to the dispute, the contract and applicable laws and regulations. The DRA shall perform the services necessary to participate in the DRA’s actions as designated in Section III, Scope of Work.

SECTION II DRA QUALIFICATIONS

The DRA shall be knowledgeable in the type of construction and contract documents anticipated by the contract and shall have completed training through the Dispute Review Board Foundation. In addition, it is desirable for the DRA to have served on several State Dispute Resolution Boards (DRB).

No DRA shall have prior direct involvement in this contract. No DRA shall have a financial interest in this contract or parties thereto, including but not limited to the CONTRACTOR, subcontractors, suppliers, consultants, and legal and business services, within a period 6 months prior to award and during this contract. Exceptions to above are compensation for services on this or other DRAs and DRBs or retirement payments or pensions received from a party that are not tied to, dependent on or affected by the net worth of the party.

The DRA shall fully disclose all direct or indirect professional or personal relationships with all key members of the contract.

SECTION III SCOPE OF WORK

The Scope of Work of the DRA includes, but is not limited to, the following:

A. PROCEDURES

The DRA shall meet with the parties at the start of the project to establish procedures that will govern the conduct of its business and reporting procedures in conformance with the requirements of the contract and the terms of this AGREEMENT. The DRA established procedures shall only be implemented upon approval by the parties. Subsequent meetings shall be held only to hear disputes between the parties.

The DRA shall not meet with, or discuss contract issues with individual parties.

Contract No. 08-0M94U4

31 of 290
The State shall provide the DRA with the contract and all written correspondence regarding the dispute between the parties and, if available, the Contractor's supplemental potential claim record, and the Engineer's response to the supplemental potential claim record.

The parties shall not call the DRA who served on this contract as a witness in arbitration proceedings, which may arise from this contract.

The DRA shall have no claim against the STATE or the CONTRACTOR, or both, from claimed harm arising out of the parties' evaluations of the DRA's opinions.

B. DISPUTE MEETING

The term "dispute meeting" as used in this subsection shall refer to both the informal and traditional dispute meeting processes, unless otherwise noted.

If the CONTRACTOR requests a dispute meeting with the DRA, the Contractor must simultaneously notify the STATE. Upon being notified of the need for a dispute meeting, the DRA shall review and consider the dispute. The DRA shall determine the time and location of the dispute meeting with due consideration for the needs and preferences of the parties, while recognizing the importance of a speedy resolution to the dispute.

Dispute meetings shall be conducted at any location that would be convenient and provide required facilities and access to necessary documentation.

Only the STATE's Area Construction Engineer, Resident Engineer, and Structure Representative and the CONTRACTOR's or subcontractor's, Superintendent or Project Manager may present information at a dispute meeting. There shall be no participation of persons who are not directly involved in the contract or who do not have direct knowledge of the dispute. The exception to this is technical services, as described below:

The DRA, with approval of the parties, may obtain technical services necessary to adequately review the disputes presented, including audit, geotechnical, schedule analysis and other services. The parties' technical staff may supply those services as appropriate. The cost of technical services, as agreed to by the parties, shall be borne equally by the two parties as specified in an approved contract change order. The CONTRACTOR shall not be entitled to markups for the payments made for these services.

At the dispute meeting the DRA may ask questions, seek clarification, and request further clarification of data presented by either of the parties as may be necessary to assist in making a fully informed recommendation. However, the DRA shall refrain from expressing opinions on the merits of statements on matters under dispute during the parties' presentations. Each party will be given ample time to fully present its position, make rebuttals, provide relevant documents, and respond to DRA questions and requests.

There shall be no testimony under oath or cross-examination, during DRA dispute meetings. There shall be no reporting of the procedures by a shorthand reporter or by electronic means. Documents and verbal statements shall be received by the DRA in conformance with the rules and regulations established at the first meeting between the DRA and parties. These established rules and regulations need not comply with prescribed legal laws of evidence.

Failure to attend a dispute meeting by either of the parties shall be conclusively considered by the DRA as indication that the non-attending party considers all written documents and correspondence submitted as their entire and complete argument. The claimant shall discuss the dispute, followed by the other party. Each party shall then be allowed one or more rebuttals at the meeting until all aspects of the dispute are thoroughly covered.

1. TRADITIONAL DISPUTE MEETING:

The following procedure shall be used for the traditional dispute meeting:

a. Within 5 days after receiving the STATE's written response to the CONTRACTOR's supplemental potential claim record, the CONTRACTOR shall refer the dispute to the DRA, if the CONTRACTOR wishes to further pursue the dispute. The CONTRACTOR shall make the referral in writing to the DRA, simultaneously copied to the STATE. The written dispute referral shall describe the disputed matter in individual discrete segments, so that it will be clear to both parties and the DRA what discrete elements of the dispute have been resolved, and which remain unresolved, and shall include an estimate of the cost of the affected work and impacts, if any, on project completion.

b. The parties shall each be afforded an opportunity to be present and to be heard by the DRA, and to offer evidence. Either party furnishing written evidence or documentation to the DRA must furnish copies of such information to the other party a minimum of 10 days prior to the date the DRA is scheduled to convene the meeting for the dispute. Either party shall produce such additional evidence as the DRA may deem necessary to reach an understanding and a determination of the dispute. The party furnishing additional evidence shall furnish copies of such additional evidence to the other party
at the same time the evidence is provided to the DRA. The DRA shall not consider evidence not furnished in conformance with the terms specified herein.

c. Upon receipt by the DRA of a written referral of a dispute, the DRA shall convene to review and consider the dispute. The dispute meeting shall be held no later than 25 days after receipt of the written referral unless otherwise agreed to by all parties.

d. The DRA shall furnish a written report to both parties. The DRA may request clarifying information of either party within 5 days after the DRA dispute meeting. Requested information shall be submitted to the DRA within 5 days of the DRA request. The DRA shall complete its report and submit it to the parties within 10 days of the DRA dispute meeting, except that time extensions may be granted at the request of the DRA with the written concurrence of both parties. The report shall summarize the facts considered, the contract language, law or regulation viewed by the DRA as pertinent to the dispute, and the DRA's interpretation and philosophy in arriving at its conclusions and recommendations and, if appropriate, recommends guidelines for determining compensation. The DRA's written opinion shall stand on its own, without attachments or appendices.

e. Within 10 days after receiving the DRA's report, both parties shall respond to the DRA in writing signifying that the dispute is either resolved or remains unresolved. Failure to provide the written response within the time specified, or a written rejection of the DRA's recommendation or response to a request for reconsideration presented in the report by either party, shall conclusively indicate that the party(s) failing to respond accepts the DRA recommendation. Immediately after responses have been received from both parties, the DRA shall provide copies of both responses to the parties simultaneously. Either party may request clarification of elements of the DRA's report from the DRA prior to responding to the report. The DRA shall consider any clarification request only if submitted within 5 days of receipt of the DRA's report, and if submitted simultaneously in writing to both the DRA and the other party. Each party may submit only one request for clarification for any individual DRA report. The DRA shall respond, in writing, to requests for clarification within 5 days of receipt of such requests.

f. Either party may seek a reconsideration of the DRA's recommendation. The DRA shall only grant reconsideration based upon submission of new evidence and if the request is submitted within the 10 day time limit specified for response to the DRA's written report. Each party may submit only one request for reconsideration regarding an individual DRA recommendation.

g. If the parties are able to settle their dispute with the aid of the DRA's report, the STATE and CONTRACTOR shall promptly accept and implement the settlement of the parties. If the parties cannot agree on compensation within 30 days of the acceptance by both parties of the settlement, either party may request the DRA to make a recommendation regarding compensation.

2. INFORMAL DISPUTE MEETING

An informal dispute meeting shall be convened, only if, the parties and the DRA agree that this dispute resolution process is appropriate to settle the dispute.

The following procedure shall be used for the informal dispute meeting:

a. The parties shall furnish the DRA with one copy of pertinent documents requested by the DRA that are or may become necessary for the DRA to perform its function. The party furnishing documents shall furnish such documents to the other party at the same time the document is provided to the DRA.

b. After the dispute meeting has concluded, the DRA shall deliberate in private the same day, until a response to the parties is reached or as otherwise agreed to by the parties.

c. The DRA then verbally delivers its recommendation with findings to the parties.

d. After the recommendation is presented, the parties may ask for clarifications.

e. Occasionally the DRA, on complex issues, may be unable to formulate a recommendation based on the information given at a dispute meeting. However, the DRA may provide the parties with advice on strengths and weaknesses of their prospective positions, in the hope of the parties reaching settlement.

f. If the parties are able to settle their dispute with the aid of the DRA's opinion, the STATE and CONTRACTOR shall promptly accept and implement the settlement of the parties.

g. The DRA will not be bound by its oral recommendation in the event that a dispute is later heard by the DRA in a traditional dispute meeting.

Unless the dispute is settled, use of the informal dispute meeting does not relieve the parties of their responsibilities under Section 5-1.15B, "Dispute Resolution Advisor," of the Standard Specifications or Subsection, "Traditional Dispute Meeting," of this AGREEMENT. There will be no extension of time allowed for the process to permit the use of the informal dispute meeting, unless otherwise agreed to by the parties.
SECTION IV TIME FOR BEGINNING AND COMPLETION

Once established, the DRA shall be in operation until the day the Director accepts the contract. The DRA shall not begin work under the terms of this AGREEMENT until authorized in writing by the STATE or as agreed to by the parties.

SECTION V PAYMENT

The DRA shall be compensated at an agreed rate of $1,500 per day for time spent per meeting, either at the start of the project or for a dispute. A member serving on more than one State DRA or DRB, regardless the number of meetings per day, shall not be paid more than the agreed rate per day. The agreed rate shall be considered full compensation for onsite time, travel expenses, transportation, lodging, time for travel and incidentals for each day, or portion thereof that the DRA is at an authorized DRA meeting. No additional compensation will be made for time spent by the DRA to review and research activities outside the official DRA meetings unless that time, (such as time spent evaluating and preparing recommendations on specific issues presented to the DRA), has been specifically agreed to in advance by the parties. Time away from the project, which has been specifically agreed to in advance by the parties, will be compensated at an agreed rate of $150 per hour. The agreed amount of $150 per hour shall include all incidentals including expenses for telephone, fax, and computer services. The State will provide administrative services such as conference facilities to the DRA.

A. PAYMENT PROCESSING

The CONTRACTOR shall make direct payments to the DRA for their participation in authorized meetings and approved hourly rate charges, from invoices submitted by the DRA, and technical services.

The DRA may submit invoices to the CONTRACTOR for partial payment for work performed and services rendered for their participation in authorized meetings not more often than once per month during the progress of the work. The invoices shall be in a format approved by the parties and accompanied by a general description of activities performed during that billing period. Payment for hourly fees, at the agreed rate, shall not be paid to the DRA until the amount and extent of those fees are approved by the STATE and CONTRACTOR.

B. INSPECTION OF COSTS RECORDS

The DRA and the CONTRACTOR shall keep available for inspection by representatives of the STATE and the United States, for a period of 3 years after final payment, the cost records and accounts pertaining to this AGREEMENT. If any litigation, claim, or audit arising out of, in connection with, or related to this contract is initiated before the expiration of the 3-year period, the cost records and accounts shall be retained until such litigation, claim, or audit involving the records is completed.

SECTION VI ASSIGNMENT OF TASKS OF WORK

The DRA shall not assign the work of this AGREEMENT.

SECTION VII TERMINATION OF DRA

The DRA may resign after providing not less than 15 days written notice of the resignation to the STATE and CONTRACTOR. The DRA may be terminated, by either party, for failing to fully comply at all times with all required employment or financial disclosure conditions of DRA membership in conformance with the terms of the contract and this AGREEMENT. Each party shall document the need for replacement and substantiate the replacement request in writing to the other party and the DRA.

SECTION VIII LEGAL RELATIONS

The parties hereto mutually understand and agree that the DRA in the performance of duties is acting in the capacity of an independent agent and not as an employee of either party.

No party to this AGREEMENT shall bear a greater responsibility for damages or personal injury than is normally provided by Federal or State of California Law.

Notwithstanding the provisions of this contract that require the CONTRACTOR to indemnify and hold harmless the STATE, the parties shall jointly indemnify and hold harmless the DRA from and against all claims, damages, losses, and expenses, including but not limited to attorney's fees, arising out of and resulting from the findings and recommendations of the DRA.
SECTION IX CONFIDENTIALITY

The parties hereto mutually understand and agree that all documents and records provided by the parties in reference to issues brought before the DRA, which documents and records are marked "Confidential - for use by the DRA only," shall be kept in confidence and used only for the purpose of resolution of subject disputes, and for assisting in development of DRA findings and recommendations; that such documents and records will not be utilized or revealed to others, except to officials of the parties who are authorized to act on the subject disputes, for any purposes, during the life of this AGREEMENT. Upon termination of this AGREEMENT, said confidential documents and records, and all copies thereof, shall be returned to the parties who furnished them to the DRA. However, the parties understand that such documents may be subsequently discoverable and admissible in court or arbitration proceedings unless a protective order has been obtained by the party seeking further confidentiality.

SECTION X DISPUTES

Disputes between the parties arising out of the work or other terms of this AGREEMENT that cannot be resolved by negotiation and mutual concurrence between the parties or through the administrative process provided in the contract shall be resolved by arbitration as provided in Section 9-1.10, "Arbitration," of the Standard Specifications. Disputes between the DRA and the parties that cannot be resolved by negotiation and mutual concurrence shall be resolved in the appropriate forum.

SECTION XI VENUE, APPLICABLE LAW, AND PERSONAL JURISDICTION

In the event that any party, including the DRA, deems it necessary to institute arbitration proceedings to enforce any right or obligation under this AGREEMENT, the parties hereto agree that such action shall be initiated in the Office of Administrative Hearings of the State of California. The parties hereto agree that all questions shall be resolved by arbitration by application of California law and that the parties to such arbitration shall have the right of appeal from such decisions to the Superior Court in conformance with the laws of the State of California. Venue for the arbitration shall be Sacramento or any other location as agreed to by the parties.

SECTION XII FEDERAL REVIEW AND REQUIREMENTS

On Federal-Aid contracts, the Federal Highway Administration shall have the right to review the work of the DRA in progress, except for private meetings or deliberations of the DRA.

Other Federal requirements in this agreement shall only apply to Federal-Aid contracts.

SECTION XIII CERTIFICATION OF CONTRACTOR, DRA, AND STATE

IN WITNESS WHEREOF, the parties hereto have executed this AGREEMENT as of the day and year first above written.

DRA

By: ____________________________
Title: ____________________________

CONTRACTOR

By: ____________________________
Title: ____________________________

CALIFORNIA DEPARTMENT
OF TRANSPORTATION

By: ____________________________
Title: ____________________________

5-1.15C Dispute Resolution Board

Section 5-1.15C, "Dispute Resolution Board," applies to a contract with a total bid of over $10 million.
The Dispute Resolution Board, hereinafter referred to as "DRB," is a three member board established by the
Department and Contractor to assist in the resolution of disputes.

The DRB shall be established by the Department and the Contractor within 45 days after contract approval.
The DRB shall consist of one member selected by the Department and approved by the Contractor, one member
selected by the Contractor and approved by the Department, and a third member selected by the first 2 members and
approved by both the Department and the Contractor.

The Department and Contractor shall provide the other written notification for approval of the name of their
DRB nominee along with the nominee's disclosure statement.

Disclosure statements shall include a resume of the nominee's experience and a declaration statement describing
past, present, anticipated, and planned relationships with all parties involved in this contract. Objections to
nominees shall be based on a specific breach or violation of nominee responsibilities or on nominee qualifications.
The Department or the Contractor may, on a one-time basis, object to the other's nominee without specifying a
reason and this person shall not be selected for the DRB. Another person shall then be nominated within 15 days.

The 2 DRB members shall proceed with the selection of the third DRB member immediately after receiving
written notification from the Department of their selection. The 2 DRB members shall provide their
recommendation simultaneously to the parties within 15 days. The third member shall provide disclosure statement
to the first 2 DRB members, to the Department, and the Contractor. The professional experience of the third DRB
member shall complement that of the first 2 DRB members. The third DRB member shall be subject to mutual
approval of the Department and the Contractor. If the 2 DRB members cannot agree on the third nominee, they
shall submit a list of nominees to the Department and the Contractor for final selection and approval.

If the Department and the Contractor cannot agree on the third DRB member, or if the first 2 DRB members are
unable to agree upon a recommendation, the Department and the Contractor shall select 6 names from the current
list of arbitrators certified by the Public Works Contract Arbitration Committee created by Article 7.2 of the State
Contract Act. The 2 DRB members shall then select one of the 6 names by a blind draw.

The 3 DRB members shall appoint one member as a chairperson to provide leadership for the DRB's activities.
The chairperson shall be approved by the Department and the Contractor. In the event of an impasse, the third DRB
member shall become the chairperson.

The Department and Contractor shall complete and adhere to the Dispute Resolution Board Agreement. No
DRB meeting shall take place until the Dispute Resolution Board Agreement has been signed by all parties, unless
all parties agree to sign it at the first meeting.

If the DRB needs outside technical services, technical services shall be preapproved by both the Department
and the Contractor.

DRB recommendations are nonbinding.

The Contractor shall not use the DRB for disputes between the subcontractors or suppliers that have no grounds
for a lawsuit against the Department.

DRB member replacements are selected in the same manner as the original selection. The appointment of a
replacement DRB member will begin promptly upon determination of the need for replacement. The Dispute
Resolution Board Agreement shall be amended to reflect the change in the DRB.

Failure of the Contractor to participate in establishing the DRB will result in the withholding of 25 percent of
the estimated value of all work performed during each estimate period that the Contractor fails to comply. DRB
withholds will be released for payment on the next monthly progress payment following the date that the Contractor
has provided assistance in establishing the DRB and no interest will be due the Contractor.

The Department and the Contractor shall bear the costs and expenses of the DRB equally.

Each DRB member shall be compensated at an agreed rate of $1,500 per day for time spent per meeting either
at the start of the project, for scheduled progress, or dispute meetings. A member serving on more than one
Department DRB or Dispute Resolution Advisor (DRA), regardless of the number of meetings per day shall not be
paid more than the agreed rate per day. The agreed rate shall be considered full compensation for on-site time,
travel expenses, transportation, lodging, time for travel, and incidentals for each day or portion thereof that the DRB
member is at an authorized DRB meeting.

No additional compensation will be made for time spent by DRB members in review and research activities
outside the official DRB meetings unless that time, such as time spent evaluating and preparing recommendations on
specific issues presented to the DRB, has been specifically agreed to in advance by the Department and Contractor.
Time away from the project, which has been specifically agreed to in advance by the Department and Contractor,
will be compensated at an agreed rate of $150 per hour. The agreed amount of $150 per hour shall include all
incidentals including expenses for telephone, fax, and computer services.

The Department will provide conference facilities for DRB meetings at no cost to the Contractor.
The Contractor shall make direct payments to each DRB member for their participation in authorized meetings and approved hourly rate charges from invoices submitted by each DRB member.

The Department will reimburse the Contractor for the Department's share of the costs.

There will be no markups applied to expenses connected with the DRB, either by the DRB members or by the Contractor when requesting payment of the Department's share of DRB expenses. Regardless of the DRB recommendation, neither party shall be entitled to reimbursement of DRB costs from the other party.

The Contractor shall submit extra work bills and include evidence of every payment to each DRB member in the form of a cancelled check or bank statement within 30 days of payment.

The cost of technical services requested by the DRB will be borne equally by the State and Contractor. There will be no markups for these costs.

A copy of the "Dispute Resolution Board Agreement" to be executed by the Department, Contractor, and the 3 DRB members after approval of the contract follows:
DISPUTE RESOLUTION BOARD AGREEMENT

(Contract Identification)

Contract No. ___________________

THIS DISPUTE RESOLUTION BOARD AGREEMENT, hereinafter called "AGREEMENT", made and entered into this __________ day of _______________ __, _____, between the State of California, acting through the California Department of Transportation and the Director of Transportation, hereinafter called the "STATE," ________________________ hereinafter called the "CONTRACTOR," and the Dispute Resolution Board, hereinafter called the "DRB" consisting of the following members:

___,
(DRB Member)

___,
(DRB Member)

and __
(DRB Chairperson)

WITNESSETH, that

WHEREAS, the STATE and the CONTRACTOR, hereinafter called the "parties," are now engaged in the construction on the State Highway project referenced above; and

WHEREAS, the Standard Specifications for the above referenced contract provides for the establishment and operation of the DRB to assist in resolving disputes; and

WHEREAS, the DRB is composed of three members, one selected by the STATE, one selected by the CONTRACTOR, and the third member selected by the other two members and approved by the parties; and

NOW THEREFORE, in consideration of the terms, conditions, covenants, and performance contained herein, or attached and incorporated and made a part hereof, the STATE, the CONTRACTOR, and the DRB members hereto agree as follows:

SECTION I DESCRIPTION OF WORK

To assist in the timely resolution of disputes between the parties, the contract provides for the establishment and the operation of the DRB. The DRB is to fairly and impartially consider disputes placed before it and provide recommendations for resolution of these disputes to the parties. The DRB shall provide recommendations based on the facts related to the dispute, the contract and applicable laws and regulations. The DRB shall perform the services necessary to participate in the DRB's actions as designated in Section III, Scope of Work.

SECTION II DRB QUALIFICATIONS

DRB members shall be knowledgeable in the type of construction and contract documents anticipated by the contract and shall have completed training through the Dispute Review Board Foundation.

No DRB member shall have prior direct involvement in this contract. No DRB member shall have a financial interest in this contract or parties thereto, including but not limited to the CONTRACTOR, subcontractors, suppliers, consultants, and legal and business services, within a period 6 months prior to award and during this contract. Exceptions to above are compensation for services on this or other DRBs and DRAs or retirement payments or pensions received from a party that are not tied to, dependent on or affected by the net worth of the party.

DRB members shall fully disclose all direct or indirect professional or personal relationships with all key members of the contract.
SECTION III SCOPE OF WORK

The scope of work of the DRB includes, but is not limited to, the following:

A. PROCEDURES

The DRB shall establish procedures that will govern the conduct of its business and reporting procedures in conformance with the requirements of the contract and the terms of this AGREEMENT. The DRB established procedures shall only be implemented upon approval of the parties.

The DRB Chairperson shall schedule progress and dispute meetings and any other DRB activities.

The parties shall not call on any of the DRB members, who served on this contract, as a witness in arbitration proceedings, which may arise from this contract.

DRB members shall have no claim against the STATE or the CONTRACTOR, or both, from claimed harm arising out of the parties’ evaluations of the DRB's opinions.

During progress or dispute meetings, DRB members shall refrain from expressing opinions on the merits of statements on matters under dispute or potential dispute. Opinions of DRB members expressed in private sessions shall be kept strictly confidential. Individual DRB members shall not meet with, or discuss contract issues with individual parties. Discussions regarding the project between the DRB members and the parties shall be in the presence of all three members and both parties. Individual DRB members shall not undertake independent investigations of any kind pertaining to disputes or potential disputes, except with the knowledge of both parties and as expressly directed by the DRB Chairperson.

B. PROGRESS MEETINGS

DRB members shall visit the project site and meet with representatives of the parties to keep abreast of construction activities and to develop familiarity with the work in progress. Scheduled progress meetings shall be held at or near the project site. The DRB shall meet at least once at the start of the project, and at least once every 4 months thereafter. The frequency, exact time, and duration of additional site visits and progress meetings shall be as recommended by the DRB and approved by the parties consistent with the construction activities or matters under consideration and dispute. Scheduled progress meetings may be waived, if the parties are in agreement, when the only work remaining is plant establishment work. Each meeting shall consist of a round table discussion and a field inspection of the work being performed on the contract, if necessary. Each meeting shall be attended by representatives of both parties. The agenda shall generally be as follows:

1. Meeting opened by the DRB Chairperson.
2. Remarks by the STATE's representative.
3. A description by the CONTRACTOR's representative of work accomplished since the last meeting; the current schedule status of the work; and a forecast for the coming period.
4. An outline by the STATE's representative of the status of the work as the STATE views it.
5. An outline by the CONTRACTOR's representative of potential problems and a description of proposed solutions.
6. A brief description by the CONTRACTOR's and the STATE's representative of potential claims and disputes that have surfaced since the last meeting.
7. A summary by the STATE's representative, the CONTRACTOR's representative, or the DRB of the status of past potential claims and disputes.

The STATE's representative will prepare minutes of all progress meetings and circulate them for revision and approval by all concerned within 10 days of the meeting.

C. DISPUTE MEETING

The term "dispute meeting" as used in this subsection shall refer to both the informal and traditional dispute meeting processes, unless otherwise noted.

Either the STATE or the CONTRACTOR may request a dispute meeting with the DRB. The requesting party shall simultaneously notify the other party of each dispute meeting request. Upon being notified of the need for a dispute meeting, the DRB shall review and consider the dispute. The DRB shall determine the time and location of the dispute meeting with due consideration for the needs and preferences of the parties, while recognizing the importance of a speedy resolution to the dispute.

Dispute meetings shall be conducted at any location that would be convenient and provide required facilities and access to necessary documentation.

No DRB dispute meeting shall take place later than 30 days prior to acceptance of the contract.
Only the STATE's Area Construction Engineer, Resident Engineer, and Structure Representative and the CONTRACTOR's or subcontractor's, Superintendent or Project Manager may present information at a dispute meeting. There shall be no participation of persons who are not directly involved in the contract or who do not have direct knowledge of the dispute. The exception to this is technical services, as described below:

The DRB, with approval of the parties, may obtain technical services necessary to adequately review the disputes presented, including audit, geotechnical, schedule analysis and other services. The parties' technical staff may supply those services as appropriate. The cost of technical services, as agreed to by the parties, shall be borne equally by the two parties as specified in an approved contract change order. The CONTRACTOR shall not be entitled to markups for the payments made for these services.

At the dispute meeting the DRB may ask questions, seek clarification, and request further clarification of data presented by either of the parties as may be necessary to assist in making a fully informed recommendation. However, the DRB shall refrain from expressing opinions on the merits of statements on matters under dispute during the parties' presentations. The claimant shall discuss the dispute, followed by the other party. Each party shall then be allowed one or more rebuttals at the meeting until all aspects of the dispute are thoroughly covered. Each party will be given ample time to fully present its position, make rebuttals, provide relevant documents, and respond to DRB questions and requests.

There shall be no testimony under oath or cross-examination, during DRB dispute meetings. There shall be no reporting of the procedures by a shorthand reporter or by electronic means. Documents and verbal statements shall be received by the DRB in conformance with the procedures established at the first meeting between the DRB and the parties. These established procedures need not comply with prescribed legal laws of evidence.

Failure to attend a dispute meeting by either of the parties shall be conclusively considered by the DRB as indication that the non-attending party considers all written documents and correspondence submitted as their entire and complete argument.

After dispute meetings are concluded, the DRB shall meet in private and reach a conclusion supported by two or more members. Private sessions of the DRB may be held at a location other than the job site or by electronic conferencing as deemed appropriate, in order to expedite the process.

The DRB shall make every effort to reach a unanimous decision.

1. TRADITIONAL DISPUTE MEETING:

The following procedure shall be used for the traditional dispute meeting:

a. Within 21 days after receiving the STATE's written response to the CONTRACTOR's supplemental potential claim record, the CONTRACTOR shall refer the dispute to the DRB if the CONTRACTOR wishes to further pursue the dispute. The CONTRACTOR shall make the referral in writing to the DRB, simultaneously copied to the STATE. The written dispute referral shall describe the disputed matter in individual discrete segments, so that it will be clear to both parties and the DRB what discrete elements of the dispute have been resolved, and which remain unresolved, and shall include an estimate of the cost of the affected work and impacts, if any, on project completion.

b. The parties shall each be afforded an opportunity to be present and to be heard by the DRB, and to offer evidence. Either party furnishing written evidence or documentation to the DRB must furnish copies of such information to the other party a minimum of 15 days prior to the date the DRB is scheduled to convene the meeting for the dispute. Either party shall produce such additional evidence as the DRB may deem necessary to reach an understanding and a determination of the dispute. The party furnishing additional evidence shall furnish copies of such additional evidence to the other party at the same time the evidence is provided to the DRB. The DRB shall not consider evidence not furnished in conformance with the terms specified herein.

c. Upon receipt by the DRB of a written referral of a dispute, the DRB shall convene to review and consider the dispute. The dispute meeting shall be held no earlier than 30 days and no later than 60 days after receipt of the written referral unless otherwise agreed to by all parties.

d. The DRB may request clarifying information of either party within 10 days after the dispute meeting. Requested information shall be submitted to the DRB within 10 days of the DRB request.

e. The DRB shall furnish a written report to the parties with its conclusion(s) and recommendation(s). The DRB shall complete its report, including minority opinion, if any, and submit it to the parties within 30 days of the dispute meeting, except that time extensions may be granted at the request of the DRB with the written concurrence of the parties. The report shall summarize the facts considered, the contract language, law or regulation viewed by the DRB as pertinent to the dispute, and the DRB's interpretation and reasoning in arriving at its conclusion(s) and recommendation(s) and, if appropriate, recommends.
guidelines for determining compensation. The DRB's written opinion shall stand on its own, without attachments or appendices. The DRB Chairperson shall furnish a copy of the written recommendation report to the DRB Coordinator, Division of Construction, MS 44, P.O. Box 942874, Sacramento, CA 94274.

f. Within 30 days after receiving the DRB's report, the parties shall respond to the DRB in writing signifying that the dispute is either resolved or remains unresolved. Failure to provide the written response within the time specified, or a written rejection of the DRB's recommendation or a written response requesting the DRB reconsider their recommendation, shall conclusively indicate that the party(s) failing to respond accepts the DRB recommendation. Immediately after responses have been received from both parties, the DRB shall provide copies of both responses to the parties simultaneously. Either party may request clarification of elements of the DRB's report from the DRB prior to responding to the report. The DRB shall consider any clarification request only if submitted within 10 days of receipt of the DRB's report, and if submitted simultaneously in writing to both the DRB and the other party. Each party may submit only one request for clarification for any individual DRB report. The DRB shall respond, in writing, to requests for clarification within 10 days of receipt of such requests.

g. Either party may seek a reconsideration of the DRB's recommendation. The DRB shall only grant reconsideration based upon submission of new evidence and if the request is submitted within the 30 day time limit specified for response to the DRB's written report. Each party may submit only one request for reconsideration regarding an individual DRB recommendation.

h. If the parties are able to settle their dispute with the aid of the DRB's report, the STATE and the CONTRACTOR shall promptly accept and implement the settlement of the parties. If the parties cannot agree on compensation within 60 days of the acceptance by both parties of the settlement, either party may request the DRB to make a recommendation regarding compensation.

2. INFORMAL DISPUTE MEETING

An informal dispute meeting shall be convened, only if, the parties and the DRB agree that this dispute resolution process is appropriate to settle the dispute.

The following procedure shall be used for the informal dispute meeting:

a. The parties shall furnish the DRB with one copy of pertinent documents requested by the DRB that are or may become necessary for the DRB to perform its function. The party furnishing documents shall furnish such documents to the other party at the same time the document is provided to the DRB.

b. After the dispute meeting has concluded, the DRB members shall deliberate in private the same day until a response to the parties is reached or as otherwise agreed to by the parties.

c. The DRB then verbally delivers its recommendation with findings, including minority opinion, if any, to the parties.

d. After the recommendation is presented, the parties may ask for clarifications.

e. Occasionally the DRB may be unable to formulate a recommendation based on the information given at a dispute meeting. However, the DRB may provide the parties with advice on strengths and weaknesses of their prospective positions, in the hope of the parties reaching settlement.

f. If the parties are able to settle their dispute with the aid of the DRB's opinion, the STATE and the CONTRACTOR shall promptly accept and implement the settlement of the parties.

g. The DRB will not be bound by its verbal recommendation in the event that a dispute is later heard by the DRB in a traditional dispute meeting.

Unless the dispute is settled, use of the informal dispute meeting does not relieve the parties of their responsibilities under Section 5-1.15C, "Dispute Resolution Board," of the Standard Specifications or subsection, "Traditional Dispute Meeting," of this AGREEMENT. There will be no extension of time allowed for the process to permit the use of the informal dispute meeting, unless otherwise agreed to by the parties.

SECTION IV TIME FOR BEGINNING AND COMPLETION

DRB members shall not begin work under the terms of this AGREEMENT, until authorized in writing by the STATE or as agreed to by the parties. Once established, the DRB shall be in operation until the Director accepts the contract. If the contract is terminated in accordance with Section 8-1.08, "Termination of Control," of the Standard Specifications, the DRB will be dissolved.
SECTION V PAYMENT

Each DRB member shall be compensated at an agreed rate of $1,500 per day for time spent per meeting, either at start of project, or a scheduled progress or a dispute meeting. A member serving on more than one State DRB or DRA, regardless of the number of meetings per day, shall not be paid more than the agreed rate per day. The agreed rate shall be considered full compensation for on site time, travel expenses, transportation, lodging, time for travel and incidentals for each day, or portion thereof that the DRB member is at an authorized DRB meeting. No additional compensation will be made for time spent by DRB member to review and research activities outside the official DRB meetings unless that time, such as time spent evaluating and preparing recommendations on specific issues presented to the DRB, has been specifically agreed to in advance by the parties. Time away from the project, which has been specifically agreed to in advance by the parties, will be compensated at an agreed rate of $150 per hour. The agreed amount of $150 per hour shall include all incidentals including expenses for telephone, fax, and computer services. The State will provide administrative services such as conference facilities to the DRB.

A. PAYMENT PROCESSING

The CONTRACTOR shall make direct payments to each DRB member for their participation in authorized meetings and approved hourly rate charges, from invoices submitted by each DRB member, and technical services.

DRB members may submit invoices to the CONTRACTOR for partial payment for work performed and services rendered for their participation in authorized meetings not more often than once per month during the progress of the work. The invoices shall be in a format approved by the parties and accompanied by a general description of activities performed during that billing period. Payment for hourly fees, at the agreed rate, shall not be paid to a DRB member until the amount and extent of those fees are approved by the STATE and the CONTRACTOR.

B. INSPECTION OF COSTS RECORDS

DRB members and the CONTRACTOR shall keep available for inspection by representatives of the STATE and the United States federal government, for a period of 3 years after final payment, the cost records and accounts pertaining to this AGREEMENT. If any litigation, claim, or audit arising out of, in connection with, or related to this contract is initiated before the expiration of the 3-year period, the cost records and accounts shall be retained until such litigation, claim, or audit involving the records is completed.

SECTION VI ASSIGNMENT OF TASKS OF WORK

DRB members shall not assign the work of this AGREEMENT.

SECTION VII TERMINATION OF A DRB MEMBER

DRB members may resign after providing not less than 15 days written notice of their resignation to the STATE and the CONTRACTOR. A DRB member may be terminated, by either party, for failing to comply at all times with all required employment or financial disclosure conditions of DRB membership in conformance with the terms of the contract and this AGREEMENT.

Service of a DRB member may be terminated at any time with not less than 15 days notice as follows:

A. The State may terminate service of the State appointed member.
B. The Contractor may terminate service of the Contractor appointed member.
C. Upon the written recommendation of the State and Contractor appointed members for the removal of the third member.
D. Upon resignation of a member.

When a member of the DRB is replaced, the replacement member shall be appointed in the same manner as the replaced member was appointed. The appointment of a replacement DRB member will begin promptly upon determination of the need for replacement and shall be completed within 15 days. Changes in either of the DRB members chosen by the 2 parties will not require re-selection of the third member, unless both parties agree to such re-selection in writing. The Dispute Resolution Board Agreement shall be amended to reflect the change of a DRB member.

Each party shall document the need for replacement and substantiate the replacement request in writing to the other party and DRB members.
SECTION VIII LEGAL RELATIONS

The parties hereto mutually understand and agree that each DRB member in the performance of duties is acting in the capacity of an independent agent and not as an employee of either party.

No party to this AGREEMENT shall bear a greater responsibility for damages or personal injury than is normally provided by Federal or State of California Law.

Notwithstanding the provisions of this contract that require the CONTRACTOR to indemnify and hold harmless the STATE, the parties shall jointly indemnify and hold harmless the DRB members from and against all claims, damages, losses, and expenses, including but not limited to attorney's fees, arising out of and resulting from the findings and recommendations of the DRB.

SECTION IX CONFIDENTIALITY

The parties hereto mutually understand and agree that all documents and records provided by the parties in reference to issues brought before the DRB, which documents and records are marked "Confidential - for use by the DRB only," shall be kept in confidence and used only for the purpose of resolution of subject disputes, and for assisting in development of DRB findings and recommendations; that such documents and records will not be utilized or revealed to others, except to officials of the parties who are authorized to act on the subject disputes, for any purposes, during the life of this AGREEMENT. Upon termination of this AGREEMENT, said confidential documents and records, and all copies thereof, shall be returned to the parties who furnished them to the DRB. However, the parties understand that such documents may be subsequently discoverable and admissible in court or arbitration proceedings unless a protective order has been obtained by the party seeking further confidentiality.

SECTION X DISPUTES

Disputes between the parties arising out of the work or other terms of this AGREEMENT, which cannot be resolved by negotiation and mutual concurrence between the parties, or through the administrative process provided in the contract, shall be resolved by arbitration as provided in Section 9-1.10, "Arbitration," of the Standard Specifications. Disputes between the DRB and either party, which cannot be resolved by negotiation and mutual concurrence, shall be resolved in the appropriate forum.

SECTION XI VENUE, APPLICABLE LAW, AND PERSONAL JURISDICTION

In the event that any party deems it necessary to institute arbitration proceedings to enforce any right or obligation under this AGREEMENT, the parties hereto agree that such action shall be initiated in the Office of Administrative Hearings of the State of California. The parties hereto agree that all questions shall be resolved by arbitration by application of California law and that the parties to such arbitration shall have the right of appeal from such decisions to the Superior Court in conformance with the laws of the State of California. Venue for the arbitration shall be Sacramento or any other location as agreed to by the parties.

SECTION XII FEDERAL REVIEW AND REQUIREMENTS

On Federal-Aid contracts, the Federal Highway Administration shall have the right to review the work of the DRB in progress, except for private meetings or deliberations of the DRB that do not become part of the project records.

Other Federal requirements in this agreement shall only apply to Federal-Aid contracts.

SECTION XIII CERTIFICATION OF CONTRACTOR, DRB, AND STATE

IN WITNESS WHEREOF, the parties hereto have executed this AGREEMENT as of the day and year first above written.

DRB MEMBER

By: ____________________________________

Title: ___________________________________

DRB MEMBER

By: ____________________________________

Title: ___________________________________
DRB CHAIRPERSON

By: ________________________________

Title: ______________________________

CONTRACTOR

By: ________________________________

Title: ______________________________

CALIFORNIA DEPARTMENT
OF TRANSPORTATION

By: ________________________________

By: ________________________________

Title: ______________________________

Title: ______________________________
Add:

5-1.16–5-17 (BLANK)

Add:

5-1.18 PROPERTY AND FACILITY PRESERVATION

5-1.18A General

Preserve property and facilities, including:

1. Adjacent property
2. Department's instrumentation
3. ESAs
4. Lands administered by other agencies
5. Railroads and railroad equipment
6. Roadside vegetation not to be removed
7. Utilities
8. Waterways

Immediately report damage to the Engineer.
If you cause damage, you are responsible.
Install sheet piling, cribbing, bulkheads, shores, or other supports necessary to support existing facilities or support material carrying the facilities.
Dispose of temporary facilities when they are no longer needed.
If you damage plants not to be removed:

1. Dispose of them outside the right of way unless the Engineer allows you to reduce them to chips and spread the chips within the highway at locations designated by the Engineer
2. Replace them

Replace plants with plants of the same species.
Replace trees with 24-inch-box trees.
Replace shrubs with No. 15 container shrubs.
Replace ground cover plants with plants from flats. Replace Carpobrutus ground cover plants with plants from cuttings. Plant ground cover plants 1 foot on center.
If a plant establishment period is specified, replace plants before the start of the plant establishment period; otherwise, replace plants at least 30 days before Contract acceptance.
Water each plant immediately after planting and saturate the backfill soil around and below the roots or ball of earth around the roots of each plant. Water as necessary to maintain plants in a healthy condition until Contract acceptance.
The Department may make a temporary repair to restore service to a damaged facility.
If working on or adjacent to railroad property, do not interfere with railroad operations.
For an excavation on or affecting railroad property, submit work plans showing the system to be used to protect railroad facilities. Allow 65 days for the Engineer's review of the plans. Do not perform work based on the plans until the Engineer notifies you they are accepted.

5-1.18B Nonhighway Facilities (Including Utilities)

The Department may rearrange a nonhighway facility during the Contract. Rearrangement of a nonhighway facility includes installation, relocation, alteration, or removal of the facility. The Department may authorize facility owners and their agents to enter the highway to perform rearrangement work for their facilities or to make connections or repairs to their property. Coordinate activities to avoid delays.
Notify the Engineer at least 3 business days before you contact the regional notification center under Govt Code § 4216 et seq. Failure to contact the notification center prohibits excavation.
Before starting work that could damage or interfere with underground infrastructure, locate the infrastructure described in the Contract, including laterals and other appurtenances, and determine the presence of other underground infrastructure inferred from visible facilities such as buildings, meters, or junction boxes.
Notify the Engineer if the infrastructure described in the Contract cannot be found. If after giving the notice, you find the infrastructure in a substantially different location than described, finding the infrastructure is paid for as extra work as specified in Section 4-1.03D, "Extra Work."

Underground infrastructure described in the Contract may be in different locations than described, and additional infrastructure may exist.

Upon discovering an underground main or trunk line not described in the Contract, immediately notify the Engineer and the infrastructure owner. The Engineer orders the locating and protecting of the infrastructure. The locating and protecting is paid for as extra work as specified in Section 4-1.03D, "Extra Work." If ordered, repair infrastructure damage. If the damage is not due to your negligence, the repair is paid for as extra work as specified in Section 4-1.03D, "Extra Work."

If necessary underground infrastructure rearrangement is not described in the Contract, the Engineer may order you to perform the work. The rearrangement is paid for as extra work as specified in Section 4-1.03D, "Extra Work."

If you want infrastructure rearrangement different from that described in the Contract:

1. Notify the Engineer
2. Make an arrangement with the infrastructure owner
3. Obtain authorization for the rearrangement
4. The Department does not adjust time or payment for rearrangement different from the Contract
5. Pay the infrastructure owner any additional cost

Immediately notify the Engineer of a delay due to the presence of main line underground infrastructure not described in the Contract or in a substantially different location or due to rearrangement different from the Contract. The Department pays for one of these delays in the same manner as specified for a right of way delay in Section 8-1.09, "Right of Way Delays."

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECTION 6 CONTROL OF MATERIALS
(Issued 05-01-09)

Replace Section 6-1.05 with:

6-1.05 SPECIFIC BRAND OR TRADE NAME AND SUBSTITUTION
A reference to a specific brand or trade name establishes a quality standard and is not intended to limit competition. You may use a product that is equal to or better than the specified brand or trade name if approved.
Submit a substitution request within a time period that:

1. Follows Contract award
2. Allows 30 days for review
3. Causes no delay

Include substantiating data with the substitution request that proves the substitution:

1. Is of equal or better quality and suitability
2. Causes no delay in product delivery and installation

Add:

6-1.075 GUARANTEE
Guarantee the work remains free from substantial defects for 1 year after contract acceptance except for work parts for which you were relieved of maintenance and protection. Guarantee each of these relieved work parts for 1 year after the relief date.

The guarantee excludes damage or displacement caused by an event outside your control including:

1. Normal wear and tear
2. Improper operation
3. Insufficient maintenance
4. Abuse
5. Unauthorized change
6. Act of God

During the guarantee period, repair or replace each work portion having a substantial defect.
The Department does not pay for corrective work.
During corrective work activities, provide insurance coverage specified for coverage before contract acceptance.
The contract bonds must be in full force and effect until the later of:
1. Expiration of guarantee period
2. Completion of corrective work

If a warranty specification conflicts with Section 6-1.075, "Guarantee," comply with the warranty specification.
During the guarantee period, the Engineer monitors the completed work. If the Engineer finds work having a substantial defect, the Engineer lists work parts and furnishes you the list.
Within 10 days of receipt of the list, submit for authorization a detailed plan for correcting the work. Include a schedule that includes:
1. Start and completion dates
2. List of labor, equipment, materials, and any special services you plan to use
3. Work related to the corrective work, including traffic control and temporary and permanent pavement markings

The Engineer notifies you when the plan is authorized. Start corrective work and related work within 15 days of notice.
If the Engineer determines corrective work is urgently required to prevent injury or property damage:
1. The Engineer furnishes you a request to start emergency repair work and a list of parts requiring corrective work
2. Mobilize within 24 hours and start work
3. Submit a corrective work plan within 5 days of starting emergency repair work

If you fail to perform work as specified, the Department may perform the work and bill you.

In Section 6-1.08 delete the 2nd paragraph.

Add:

6-1.085 BUY AMERICA (23 CFR 635.410)
For a Federal-aid contract, furnish steel and iron materials to be incorporated into the work that are produced in the United States except:
1. Foreign pig iron and processed, pelletized, and reduced iron ore may be used in the domestic production of the steel and iron materials [60 Fed Reg 15478 (03/24/1995)]
2. If the total combined cost of the materials does not exceed the greater of 0.1 percent of the total bid or $2,500, material produced outside the United States may be used

Production includes:
1. Processing steel and iron materials, including smelting or other processes that alter the physical form or shape (such as rolling, extruding, machining, bending, grinding, and drilling) or chemical composition
2. Coating application, including epoxy coating, galvanizing, and painting, that protects or enhances the value of steel and iron materials
For steel and iron materials to be incorporated into the work, submit a Certificate of Compliance under Section 6-1.07, "Certificates of Compliance," of the Standard Specifications that certifies all production processes occurred in the United States except for the above exceptions.

Add:

6-1.087 BUY AMERICA (PUB RES CODE § 42703(d))

Furnish crumb rubber to be incorporated into the work that is produced in the United States and is derived from waste tires taken from vehicles owned and operated in the United States.

For crumb rubber to be incorporated into the work, submit a Certificate of Compliance under Section 6-1.07, "Certificates of Compliance," of the Standard Specifications that certifies only crumb rubber manufactured in the United States and derived from waste tires taken from vehicles owned and operated in the United States is used.

In Section 6-2.01 delete the 4th paragraph.

In Section 6-2.01 replace the 7th paragraph with:

Upon the Contractor's written request, the Department tests materials from an untested local source. If satisfactory material from that source is used in the work, the Department does not charge the Contractor for the tests; otherwise, the Department deducts the test cost.

In Section 6-2.01 delete the 8th paragraph.

In Section 6-2.02 delete the 3rd paragraph.

In Section 6-2.02 in the 7th paragraph, replace the 2nd sentence with:

The Department deducts the charges for the removed material.

In Section 6-2.03 in the 3rd paragraph, replace the 5th sentence with:

No allowance or additional compensation will be made for lost time or for delay in completing the work due to moving the Contractor's plant from the designated mandatory source to the alternative mandatory source, other than a time adjustment as specified in Section 8-1.09, "Delays."

In Section 6-3.01 delete the 4th paragraph.

In Section 6-3.01 in the 6th paragraph, delete the 1st sentence.

In Section 6-3.01 add:

As used in Section 6-3.01, "Testing." tests are tests to assure the quality and to determine the acceptability of the work.

The Department deducts costs of testing work found to be noncompliant.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECTION 7 LEGAL RELATIONS AND RESPONSIBILITY

(Issued 07-27-12)
Replace Section 7-1.01 with:

7-1.01 LAWS TO BE OBSERVED

Comply with laws, regulations, orders, decrees, and PLACs applicable to the project. Indemnify and defend the State against any claim or liability arising from the violation of a law, regulation, order, decree, or PLAC by you or your employees. Immediately report to the Engineer in writing a discrepancy or inconsistency between the contract and a law, regulation, order, decree, or PLAC.

In Section 7-1.01A replace the 1st clause with:

Work on the job site must comply with Labor Code §§ 1727 and 1770-1815 and 8 CA Code of Regs § 16000 et seq. Work includes roadside production and processing of materials.

In Section 7-1.01A(2) in the 1st paragraph, replace item 3 with:

3. Upon becoming aware of the subcontractor’s failure to pay the specified prevailing rate of wages to the subcontractor’s workers, the Contractor must diligently take corrective action to stop or rectify the failure, including withholding sufficient funds due the subcontractor for work performed on the public works project.

In Section 7-1.01A(2), replace the 2nd paragraph with:

Pursuant to Section 1775 of the Labor Code, the Division of Labor Standards Enforcement must notify the Contractor on a public works project within 15 days of the receipt by the Division of Labor Standards Enforcement of a complaint of the failure of a subcontractor on that public works project to pay workers the general prevailing rate of per diem wages. If the Division of Labor Standards Enforcement determines that employees of a subcontractor were not paid the general prevailing rate of per diem wages and if the Department did not withhold sufficient money under the contract to pay those employees the balance of wages owed under the general prevailing rate of per diem wages, the Contractor must withhold an amount of moneys due the subcontractor sufficient to pay those employees the general prevailing rate of per diem wages if requested by the Division of Labor Standards Enforcement. The Contractor must pay any money withheld from and owed to a subcontractor upon receipt of notification by the Division of Labor Standards Enforcement that the wage complaint has been resolved. If notice of the resolution of the wage complaint has not been received by the Contractor within 180 days of the filing of a valid notice of completion or acceptance of the public works project, whichever occurs later, the Contractor must pay all moneys withheld from the subcontractor to the Department. The Department withholds these moneys pending the final decision of an enforcement action.

In Section 7-1.01A(2) replace 7th paragraph with:

Changes in general prevailing wage determinations apply to the contract when the Director of Industrial Relations has issued them at least 10 days before advertisement (Labor Code § 1773.6 and 8 CA Code of Regs 16204).

In Section 7-1.01A(3) replace the 2nd paragraph with:

The Department withholds the penalties specified in subdivision (g) of Labor Code § 1776 for noncompliance with the requirements in Section 1776.

In Section 7-1.01A(3) replace the 4th paragraph with:

The Department withholds for delinquent or inadequate payroll records (Labor Code § 1771.5). If the Contractor has not submitted an adequate payroll record by the month's 15th day for the period ending on or before the 1st of that month, the Department withholds 10 percent of the monthly progress estimate, exclusive of mobilization. The Department does not withhold more than $10,000 or less than $1,000.

In Section 7-1.01A(3) delete the 5th paragraph.
Replace Section 7-1.01A(6) with:

7-1.01A(6) (Blank)

Replace Section 7-1.01A(7) with:

7-1.01A(7) (Blank)

Replace Section 7-1.01F with:

7-1.01F Environmental Stewardship
Comply with Section 14.

Replace Section 7-1.01I with:

7-1.01I (Blank)

In Section 7-1.02 in the 2nd paragraph, replace the 4th sentence with:

Trucks used to haul treated base, portland cement concrete, or hot mix asphalt shall enter onto the base to dump at the nearest practical entry point ahead of spreading equipment.

In Section 7-1.02 between the 4th and 5th paragraphs, add:

Loads imposed on existing, new, or partially completed structures shall not exceed the load carrying capacity of the structure or any portion of the structure as determined by AASHTO LRFD with interims and California Amendments, Design Strength Limit State II. The compressive strength of concrete (f'_c) to be used in computing the load carrying capacity shall be the smaller of the following:

1. Actual compressive strength at the time of loading
2. Value of f'_c shown on the plans for that portion of the structure or 2.5 times the value of f_c (extreme fiber compressive stress in concrete at service loads) shown on the plans for portions of the structure where no f'_c is shown

Replace Section 7-1.04 with:

7-1.04 PERMITS, LICENSES, AGREEMENTS, AND CERTIFICATIONS

7-1.04A General
Comply with PLACs. The Department makes PLAC changes under Section 4-1.03, "Changes."

7-1.04B Before Award
To make a change to a PLAC made available to you before award, submit the proposed change. The Department sends the proposed change to the appropriate authority for consideration.

7-1.04C After Award
Confirm with the Engineer which after-award PLACs are obtained by the Department and which are obtained by the Contractor.

To make a change to an after-award PLAC obtained by the Department, submit the proposed change. The Department sends the proposed change to the appropriate authority for consideration.

Obtain those PLACs to be issued to you and pay fees and costs associated with obtaining them. Submit copies of Contractor-obtained after-award PLACs for review.

In Section 7-1.06 in the 1st paragraph, add:

The Contractor's Injury and Illness Prevention Program shall be submitted to the Engineer. The program shall address the use of personal and company issued electronic devices during work. The use of entertainment and personal communication devices in the work zone shall not be allowed. Workers may use a communication device for business purposes in the work area, at a location where their safety and the safety of other workers and the traveling public is not compromised.
Replace Section 7-1.07 with:

7-1.07 Lead Compliance Plan

Section 7-1.07 applies if a bid item for a lead compliance plan is included in the Contract.

Prepare a work plan to prevent or minimize worker exposure to lead while managing and handling earth materials, paint system debris, traffic stripe residue, and pavement marking residue containing lead. Regulations containing specific Cal/OSHA requirements when working with lead include 8 CA Code of Regs § 1532.1.

The plan must contain the items listed in 8 CA Code of Regs § 1532.1(e)(2)(B). Before submittal, a CIH must sign and seal the plan. Submit the plan at least 7 days before starting any activity that presents the potential for lead exposure. The Engineer notifies you of the acceptability of the plan within 4 business days of receipt.

Before starting any activity that presents the potential for lead exposure to employees who have no prior training, including State employees, provide a safety training program to these employees that complies with 8 CA Code of Regs § 1532.1 and your lead compliance program.

Submit copies of air monitoring or job site inspection reports made by or under the direction of the CIH under 8 CA Code of Regs § 1532.1 within 10 days after the date of monitoring or inspection.

Supply personal protective equipment, training, and washing facilities required by your lead compliance plan for 5 State employees.

The contract lump sum price paid for lead compliance plan includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in preparing and implementing the plan as specified in this section.

Replace Section 7-1.08 with:

7-1.08 PUBLIC CONVENIENCE

Compliance with the provisions of this section does not relieve you of your responsibility for public safety.

Construction activities must not inconvenience the public or abutting property owners. Schedule and conduct work to avoid unnecessary inconvenience to the public and abutting property owners. Avoid undue delay in construction activities to reduce the public's exposure to construction.

Where possible, route traffic on new or existing paved surfaces.

Maintain convenient access to driveways, houses, and buildings. When the abutting property owner's access across the right of way line is to be eliminated or replaced under the contract, the existing access must not be closed until the replacement access facilities are usable. Construct temporary approaches to crossings and intersecting highways.

Provide a reasonably smooth and even surface for use by traffic at all time during excavation of roadways and construction of embankments. Before other grading activities, place fill at culverts and bridges to allow traffic to cross. If ordered, excavate roadway cuts in layers and construct embankments in partial widths at a time alternating construction from one side to the other and routing traffic over the side opposite the one under construction. Install or construct culverts on only 1/2 the width of the traveled way at a time; keep the traveled way portion being used by traffic open and unobstructed until the opposite side of the traveled way is ready for use by traffic.

Upon completion of rough grading or placing any subsequent layer, bring the surface of the roadbed to a smooth and even condition, free of humps and depressions and satisfactory for the use of the public.

After subgrade preparation for a specified layer of material has been completed, repair any damage to the roadbed or completed subgrade, including damage due to use by the public.

While subgrade and paving activities are underway, allow the public to use the shoulders. If half-width paving methods are used, allow the public to use the side of the roadbed opposite the one under construction. If enough width is available, keep open a passageway wide enough to accommodate at least 2 lanes of traffic at locations where subgrade and paving activities are underway. Shape shoulders or reshape subgrade as necessary to accommodate traffic during subgrade preparation and paving activities.

Apply water or dust palliative for the prevention or alleviation of dust nuisance.

Install signs, lights, flares, temporary railing (Type K), barricades and other facilities to direct traffic. Furnish flaggers whenever necessary to direct the movement of the public through or around the work.

You will be required to pay the cost of replacing or repairing all facilities installed under extra work for the convenience or direction or warning of the public which are lost while in your custody, or are damaged by your operations to such an extent as to require replacement or repair.

The Engineer may order or consent to your request to open a completed section of surfacing, pavement, or structure roadway surface for public use. You will not be compensated for any delay to your construction activities caused by the public. This does not relieve you from any other contractual responsibility.
Replace Section 7-1.09 with:

7-1.09 PUBLIC SAFETY

You are responsible to provide for public safety.

Do not construct a temporary facility that interferes with the safe passage of traffic.

Control dust resulting from the work, inside and outside the right-of-way.

Move workers, equipment, and materials without endangering traffic.

Whenever your operations create a condition hazardous to the public, furnish, erect and maintain those fences, temporary railing, barricades, lights, signs, and other devices and take any other necessary protective measures to prevent damage or injury to the public.

Any fences, temporary railing, barricades, lights, signs, or other devices furnished, erected and maintained by you are in addition to those for which payment is provided elsewhere in the specifications.

Provide flaggers whenever necessary to ensure that the public is given safe guidance through the work zone.

Except as ordered, at locations where traffic is being routed through construction under one-way controls, move your equipment in compliance with the one-way controls.

Use of signs, lights, flags, or other protective devices must conform with the California MUTCD and as ordered. Signs, lights, flags or other protective devices must not obscure the visibility of, nor conflict in intent, meaning and function of either existing signs, lights and traffic control devices or any construction area signs or traffic control devices.

Keep existing traffic signals and highway lighting in operation. Other entities perform routine maintenance of these facilities during the work.

Cover signs that direct traffic to a closed area. Providing, maintaining, and removing the covers on construction area signs is paid as extra work under Section 4-1.03D, "Extra Work."

Install temporary illumination in a manner which the illumination and the illumination equipment does not interfere with public safety. The installation of general roadway illumination does not relieve you from furnishing and maintaining any protective devices.

Equipment must enter and leave the highway via existing ramps and crossovers and must move in the direction of public traffic. All movements of workmen and construction equipment on or across lanes open to public traffic must be performed in a manner that will not endanger the public. Your vehicles or other mobile equipment leaving an open traffic lane to enter the construction area, must slow down gradually in advance of the location of the turnoff to give traffic following an opportunity to slow down. When leaving a work area and entering a roadway carrying public traffic, your vehicles and equipment must yield to public traffic.

Immediately remove hauling spillage from roadway lanes or shoulders open to traffic. When hauling on roadways, trim loads and remove material from shelf areas to minimize spillage.

Notify the Engineer not less than 25 days and not more than 125 days before the anticipated start of an activity that will change the vertical or horizontal clearance available to public traffic, including shoulders.

If vertical clearance is temporarily reduced to 15.5 feet or less, place low clearance warning signs in accordance with the California MUTCD and as ordered. Signs must comply with the dimensions, color, and legend requirements of the California MUTCD and these specifications except that the signs must have black letters and numbers on an orange retroreflective background. W12-2P signs must be illuminated so that the signs are clearly visible.

Pave or provide full width continuous and cleared wood walks for pedestrian openings through falsework. Protect pedestrians from falling objects and curing water for concrete. Extend overhead protection for pedestrians not less than 4 feet beyond the edge of the bridge deck. Illuminate all pedestrian openings through falsework. Temporary pedestrian facilities must comply with the American with Disabilities Act of 1990 (ADA).

Do not store vehicles, material, or equipment in a way that:

1. Creates a hazard to the public
2. Obstructs traffic control devices

Do not install or place temporary facilities used to perform the work which interfere with the free and safe passage of public traffic.

Temporary facilities which could be a hazard to public safety if improperly designed shall comply with design requirements specified in the contract for those facilities or, if none are specified, with standard design criteria or codes appropriate for the facility involved. Working drawings and design calculations for the temporary facilities shall be prepared and signed by an engineer who is registered as a Civil Engineer in the State of California and shall be submitted to the Engineer for approval pursuant to Section 5-1.02, "Plans and Working Drawings."
submittals shall designate thereon the standard design criteria or codes used. Installation of the temporary facilities shall not start until the Engineer has reviewed and approved the drawings.

If you appear to be neglectful or negligent in furnishing warning devices and taking protective measures, the Engineer may direct your attention to the existence of a hazard and the necessary warning devices must be furnished and installed and protective measures taken by you. If the Engineer points out the inadequacy of warning devices and protective measures, that action on the part of the Engineer does not relieve you from your responsibility for public safety or abrogate the obligation to furnish and pay for these devices and measures.

Install temporary railing (Type K) or other approved protection system under the following conditions:

1. Excavations: Where the near edge of the excavation is within 15 feet from the edge of an open traffic lane
2. Temporarily Unprotected Permanent Obstacles: When the work includes the installation of a fixed obstacle together with a protective system, such as a sign structure together with protective railing, and you elect to install the obstacle before installing the protective system; or you, for your convenience and as authorized, remove a portion of an existing protective railing at an obstacle and do not replace such railing completely the same day
3. Storage Areas: When material or equipment is stored within 15 feet of the edge of an open traffic lane and the storage is not otherwise prohibited by the provisions of these Standard Specifications and the special provisions
4. Height Differentials: When construction operations create a height differential greater than 0.15 feet within 15 feet of the edge of traffic lane

Temporary railing (Type K) does not need to be installed where excavations within 15 feet from edge of an open traffic lane are:

1. Covered with steel plates or concrete covers of adequate thickness to prevent accidental entry by traffic or the public
2. In side slopes, where the downhill slope is 4:1 (horizontal:vertical) or less unless a naturally occurring condition
3. Protected by existing barrier or railing

Offset the approach end of temporary railing (Type K) a minimum of 15 feet from the edge of an open traffic lane. Install the temporary railing on a skew toward the edge of the traffic lane of not more than one foot transversely to 10 feet longitudinally with respect to the edge of the traffic lane. If the 15-foot minimum offset cannot be achieved, the temporary railing must be installed on the 10 to 1 skew to obtain the maximum available offset between the approach end of the railing and the edge of the traffic lane, and an array of temporary crash cushion modules must be installed at the approach end of the temporary railing.

Secure in place temporary railing (Type K) before starting work for which the temporary railing is required.

Where 2 or more lanes in the same direction are adjacent to the area where the work is being performed, including shoulders, the adjacent lane must be closed under any of the following conditions:

1. Work is off the traveled way but within 6 feet of the edge of traveled way, and approach speed is greater than 45 miles per hour
2. Work is off the traveled way but within 3 feet of the edge of traveled way, and approach speed is less than 45 miles per hour

Closure of the adjacent traffic lane is not required when:

1. Performing work behind a barrier
2. Paving, grinding, or grooving
3. Installing, maintaining, or removing traffic control devices except temporary railing (Type K)

Do not reduce an open traffic lane width to less than 10 feet. When traffic cones or delineators are used for temporary edge delineation, the line of cones or delineators is considered the edge of the traveled way.

If a traffic lane is closed with channelizers for excavation work, move the devices to the adjacent edge of the traveled way when not excavating. Space the devices the same as specified for the lane closure.

Do not move or temporarily suspend anything over a traffic lane open to the public unless the public is protected.
Replace Section 7-1.11 with:

7-1.11 PRESERVATION OF PROPERTY

Comply with Section 5-1.18, "Property and Facility Preservation."

Replace Section 7-1.12 with:

7-1.12 INDEMNIFICATION AND INSURANCE

The Contractor's obligations regarding indemnification of the State of California and the requirements for insurance shall conform to the provisions in Section 3-1.05, "Insurance Policies," and Sections 7-1.12A, "Indemnification," and 7-1.12B, "Insurance," of this Section 7-1.12.

7-1.12A Indemnification

The Contractor shall defend, indemnify, and save harmless the State, including its officers, employees, and agents (excluding agents who are design professionals) from any and all claims, demands, causes of action, damages, costs, expenses, actual attorneys' fees, losses or liabilities, in law or in equity (Section 7-1.12A Claims) arising out of or in connection with the Contractor's performance of this contract for:

1. Bodily injury including, but not limited to, bodily injury, sickness or disease, emotional injury or death to persons, including, but not limited to, the public, any employees or agents of the Contractor, the State, or any other contractor; and
2. Damage to property of anyone including loss of use thereof; caused or alleged to be caused in whole or in part by any negligent or otherwise legally actionable act or omission of the Contractor or anyone directly or indirectly employed by the Contractor or anyone for whose acts the Contractor may be liable.

Except as otherwise provided by law, these requirements apply regardless of the existence or degree of fault of the State. The Contractor is not obligated to indemnify the State for Claims arising from conduct delineated in Civil Code Section 2782 and to Claims arising from any defective or substandard condition of the highway that existed at or before the start of work, unless this condition has been changed by the work or the scope of the work requires the Contractor to maintain existing highway facilities and the Claim arises from the Contractor's failure to maintain. The Contractor's defense and indemnity obligation shall extend to Claims arising after the work is completed and accepted if the Claims are directly related to alleged acts or omissions by the Contractor that occurred during the course of the work. State inspection is not a waiver of full compliance with these requirements.

The Contractor's obligation to defend and indemnify shall not be excused because of the Contractor's inability to evaluate liability or because the Contractor evaluates liability and determine that the Contractor is not liable. The Contractor shall respond within 30 days to the tender of any Claim for defense and indemnity by the State, unless this time has been extended by the State. If the Contractor fails to accept or reject a tender of defense and indemnity within 30 days, in addition to any other remedy authorized by law, the Department may withhold such funds the State reasonably considers necessary for its defense and indemnity until disposition has been made of the Claim or until the Contractor accepts or rejects the tender of defense, whichever occurs first.

With respect to third-party claims against the Contractor, the Contractor waives all rights of any type to express or implied indemnity against the State, its officers, employees, or agents (excluding agents who are design professionals).

Nothing in the Contract is intended to establish a standard of care owed to any member of the public or to extend to the public the status of a third-party beneficiary for any of these indemnification specifications.

7-1.12B Insurance

7-1.12B(1) General

Nothing in the contract is intended to establish a standard of care owed to any member of the public or to extend to the public the status of a third-party beneficiary for any of these insurance specifications.

7-1.12B(2) Casualty Insurance

The Contractor shall procure and maintain insurance on all of its operations with companies acceptable to the State as follows:

1. The Contractor shall keep all insurance in full force and effect from the beginning of the work through contract acceptance.
2. All insurance shall be with an insurance company with a rating from A.M. Best Financial Strength Rating of A- or better and a Financial Size Category of VII or better.

3. The Contractor shall maintain completed operations coverage with a carrier acceptable to the State through the expiration of the patent deficiency in construction statute of repose set forth in Code of Civil Procedure Section 337.15.

7-1.12B(3) Workers’ Compensation and Employer’s Liability Insurance

In accordance with Labor Code Section 1860, the Contractor shall secure the payment of worker’s compensation in accordance with Labor Code Section 3700.

In accordance with Labor Code Section 1861, the Contractor shall submit to the Department the following certification before performing the work:

I am aware of the provisions of Section 3700 of the Labor Code which require every employer to be insured against liability for workers’ compensation or to undertake self-insurance in accordance with the provisions of that code, and I will comply with such provisions before commencing the performance of the work of this contract.

Contract execution constitutes certification submittal.

The Contractor shall provide Employer's Liability Insurance in amounts not less than:

1. $1,000,000 for each accident for bodily injury by accident
2. $1,000,000 policy limit for bodily injury by disease
3. $1,000,000 for each employee for bodily injury by disease

If there is an exposure of injury to the Contractor's employees under the U.S. Longshoremen's and Harbor Workers' Compensation Act, the Jones Act, or under laws, regulations, or statutes applicable to maritime employees, coverage shall be included for such injuries or claims.

7-1.12B(4) Liability Insurance

7-1.12B(4)(a) General

The Contractor shall carry General Liability and Umbrella or Excess Liability Insurance covering all operations by or on behalf of the Contractor providing insurance for bodily injury liability and property damage liability for the following limits and including coverage for:

1. Premises, operations, and mobile equipment
2. Products and completed operations
3. Broad form property damage (including completed operations)
4. Explosion, collapse, and underground hazards
5. Personal injury
6. Contractual liability

7-1.12B(4)(b) Liability Limits/Additional Insureds

The limits of liability shall be at least the amounts shown in the following table:

<table>
<thead>
<tr>
<th>Total Bid</th>
<th>For Each Occurrence¹</th>
<th>Aggregate for Products/Completed Operation</th>
<th>General Aggregate²</th>
<th>Umbrella or Excess Liability³</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤$1,000,000</td>
<td>$1,000,000</td>
<td>$2,000,000</td>
<td>$2,000,000</td>
<td>$5,000,000</td>
</tr>
<tr>
<td>>$1,000,000</td>
<td>≤$10,000,000</td>
<td>$1,000,000</td>
<td>$2,000,000</td>
<td>$2,000,000</td>
</tr>
<tr>
<td>>$10,000,000</td>
<td>≤$25,000,000</td>
<td>$2,000,000</td>
<td>$2,000,000</td>
<td>$4,000,000</td>
</tr>
<tr>
<td>>$25,000,000</td>
<td>>$25,000,000</td>
<td>$2,000,000</td>
<td>$4,000,000</td>
<td>$25,000,000</td>
</tr>
</tbody>
</table>

1. Combined single limit for bodily injury and property damage.
2. This limit shall apply separately to the Contractor's work under this contract.
3. The umbrella or excess policy shall contain a clause stating that it takes effect (drops down) in the event the primary limits are impaired or exhausted.
The Contractor shall not require certified Small Business subcontractors to carry Liability Insurance that exceeds the limits in the table above. Notwithstanding the limits specified herein, at the option of the Contractor, the liability insurance limits for certified Small Business subcontractors of any tier may be less than those limits specified in the table. For Small Business subcontracts, "Total Bid" shall be interpreted as the amount of subcontracted work to a certified Small Business.

The State, including its officers, directors, agents (excluding agents who are design professionals), and employees, shall be named as additional insureds under the General Liability and Umbrella Liability Policies with respect to liability arising out of or connected with work or operations performed by or on behalf of the Contractor under this contract. Coverage for such additional insureds does not extend to liability:

1. Arising from any defective or substandard condition of the roadway which existed at or before the time the Contractor started work, unless such condition has been changed by the work or the scope of the work requires the Contractor to maintain existing roadway facilities and the claim arises from the Contractor's failure to maintain;
2. For claims occurring after the work is completed and accepted unless these claims are directly related to alleged acts or omissions of the Contractor that occurred during the course of the work; or
3. To the extent prohibited by Insurance Code Section 11580.04

Additional insured coverage shall be provided by a policy provision or by an endorsement providing coverage at least as broad as Additional Insured (Form B) endorsement form CG 2010, as published by the Insurance Services Office (ISO), or other form designated by the Department.

7-1.12B(4)(c) Contractor's Insurance Policy is Primary

The policy shall stipulate that the insurance afforded the additional insureds applies as primary insurance. Any other insurance or self-insurance maintained by the State is excess only and shall not be called upon to contribute with this insurance.

7-1.12B(5) Automobile Liability Insurance

The Contractor shall carry automobile liability insurance, including coverage for all owned, hired, and nonowned automobiles. The primary limits of liability shall be not less than $1,000,000 combined single limit each accident for bodily injury and property damage. The umbrella or excess liability coverage required under Section 7-1.12B(4)(b) also applies to automobile liability.

7-1.12B(6) Policy Forms, Endorsements, and Certificates

The Contractor shall provide its General Liability Insurance under Commercial General Liability policy form No. CG0001 as published by the Insurance Services Office (ISO) or under a policy form at least as broad as policy form No. CG0001.

7-1.12B(7) Deductibles

The State may expressly allow deductible clauses, which it does not consider excessive, overly broad, or harmful to the interests of the State. Regardless of the allowance of exclusions or deductions by the State, the Contractor is responsible for any deductible amount and shall warrant that the coverage provided to the State is in accordance with Section 7-1.12B, "Insurance."

7-1.12B(8) Enforcement

The Department may assure the Contractor's compliance with its insurance obligations. Ten days before an insurance policy lapses or is canceled during the contract period, the Contractor shall submit to the Department evidence of renewal or replacement of the policy.

If the Contractor fails to maintain any required insurance coverage, the Department may maintain this coverage and withhold or charge the expense to the Contractor or terminate the Contractor's control of the work in accordance with Section 8-1.08, "Termination of Control."

The Contractor is not relieved of its duties and responsibilities to indemnify, defend, and hold harmless the State, its officers, agents, and employees by the Department's acceptance of insurance policies and certificates.

Minimum insurance coverage amounts do not relieve the Contractor for liability in excess of such coverage, nor do they preclude the State from taking other actions available to it, including the withholding of funds under this contract.
7-1.12B(9) Self-Insurance

Self-insurance programs and self-insured retentions in insurance policies are subject to separate annual review and approval by the State.

If the contractor uses a self-insurance program or self-insured retention, the contractor shall provide the State with the same protection from liability and defense of suits as would be afforded by first-dollar insurance. Execution of the contract is the contractor's acknowledgement that the contractor will be bound by all laws as if the contractor were an insurer as defined under Insurance Code Section 23 and that the self-insurance program or self-insured retention shall operate as insurance as defined under Insurance Code Section 22.

Replace Section 7-1.125 with:

7-1.125 Legal Actions Against the Department

If legal action is brought against the Department over compliance with a State or Federal law, rule, or regulation applicable to highway work, then:

1. If the Department, in complying with a court order, prohibits you from performing work, the resulting delay is a suspension related to your performance, unless the Department terminates the contract.
2. If a court order other than an order to show cause or the final judgment in the action prohibits the Department from requiring you to perform work, the Department may delete the prohibited work or terminate the contract.

In Section 7-1.13 delete the 5th and 6th paragraphs.
REQUIRED CONTRACT PROVISIONS
FEDERAL-AID CONSTRUCTION CONTRACTS

I. GENERAL

1. Form FHWA-1273 must be physically incorporated in each construction contract funded under Title 23 (excluding emergency contracts solely intended for debris removal). The contractor (or subcontractor) must insert this form in each subcontract and further require its inclusion in all lower tier subcontracts (excluding purchase orders, rental agreements and other agreements for supplies or services). The applicable requirements of Form FHWA-1273 are incorporated by reference for work done under any purchase order, rental agreement or agreement for other services. The prime contractor shall be responsible for compliance by any subcontractor, lower-tier subcontractor or service provider.

Form FHWA-1273 must be included in all Federal-aid design-build contracts, in all subcontracts and in lower tier subcontracts (excluding subcontracts for design services, purchase orders, rental agreements and other agreements for supplies or services). The design-builder shall be responsible for compliance by any subcontractor, lower-tier subcontractor or service provider.

Contracting agencies may reference Form FHWA-1273 in bid proposal or request for proposal documents; however, the Form FHWA-1273 must be physically incorporated (not referenced) in all contracts, subcontracts and lower-tier subcontracts (excluding purchase orders, rental agreements and other agreements for supplies or services related to a construction contract).

2. Subject to the applicability criteria noted in the following sections, these contract provisions shall apply to all work performed on the contract by the contractor's own organization and with the assistance of workers under the contractor's immediate supervision and to all work performed on the contract by piecework, station work, or by subcontract.

3. A breach of any of the stipulations contained in these Required Contract Provisions may be sufficient grounds for withholding of progress payments, withholding of final payment, termination of the contract, suspension / debarment or any other action determined to be appropriate by the contracting agency and FHWA.

4. Selection of Labor: During the performance of this contract, the contractor shall not use convict labor for any purpose within the limits of a construction project on a Federal-aid highway unless it is labor performed by convicts who are on parole, supervised release, or probation. The term Federal-aid highway does not include roadways functionally classified as local roads or rural minor collectors.

II. NONDISCRIMINATION

The provisions of this section related to 23 CFR Part 230 are applicable to all Federal-aid construction contracts and to all related construction subcontracts of $10,000 or more. The provisions of 23 CFR Part 230 are not applicable to material supply, engineering, or architectural service contracts.

In addition, the contractor and all subcontractors must comply with the following policies: Executive Order 11246, 41 CFR 60, 29 CFR 1625-1627, Title 23 USC Section 140, the Rehabilitation Act of 1973, as amended (29 USC 794), Title VI of the Civil Rights Act of 1964, as amended, and related regulations including 49 CFR Parts 21, 26 and 27; and 23 CFR Parts 200, 230, and 633.

The contractor and all subcontractors must comply with: the requirements of the Equal Opportunity Clause in 41 CFR 60-1.4(b) and, for all construction contracts exceeding $10,000, the Standard Federal Equal Employment Opportunity Construction Contract Specifications in 41 CFR 60-4.3.

Note: The U.S. Department of Labor has exclusive authority to determine compliance with Executive Order 11246 and the policies of the Secretary of Labor including 41 CFR 60, and 29 CFR 1625-1627. The contracting agency and the FHWA have the authority and the responsibility to ensure compliance with Title 23 USC Section 140, the Rehabilitation Act of 1973, as amended (29 USC 794), and Title VI of the Civil Rights Act of 1964, as amended, and related regulations including 49 CFR Parts 21, 26 and 27; and 23 CFR Parts 200, 230, and 633.

The following provision is adopted from 23 CFR 230, Appendix A, with appropriate revisions to conform to the U.S. Department of Labor (US DOL) and FHWA requirements.

1. Equal Employment Opportunity: Equal employment opportunity (EEO) requirements not to discriminate and to take affirmative action to assure equal opportunity as set forth under laws, executive orders, rules, regulations (28 CFR 35, 29 CFR 1630, 29 CFR 1625-1627, 41 CFR 60 and 49 CFR 27) and orders of the Secretary of Labor as modified by the provisions prescribed herein, and imposed pursuant to 23 U.S.C. 140 shall constitute the EEO and specific affirmative action standards for the contractor's project activities under
this contract. The provisions of the Americans with Disabilities Act of 1990 (42 U.S.C. 12101 et seq.) set forth under 28 CFR 35 and 28 CFR 1630 are incorporated by reference in this contract. In the execution of this contract, the contractor agrees to comply with the following minimum specific requirement activities of EEO:

a. The contractor will work with the contracting agency and the Federal Government to ensure that it has made every good faith effort to provide equal opportunity with respect to all of its terms and conditions of employment and in their review of activities under the contract.

b. The contractor will accept as its operating policy the following statement:

"It is the policy of this Company to assure that applicants are employed, and that employees are treated during employment, without regard to their race, religion, sex, color, national origin, age or disability. Such action shall include employment, upgrading, demotion, or transfer; recruitment or recruitment advertising; layoff or termination; rates of pay or other forms of compensation; and selection for training, including apprenticeship, pre-apprenticeship, and/or on-the-job training."

2. EEO Officer: The contractor will designate and make known to the contracting officers an EEO Officer who will have the responsibility for and must be capable of effectively administering and promoting an active EEO program and who must be assigned adequate authority and responsibility to do so.

3. Dissemination of Policy: All members of the contractor's staff who are authorized to hire, supervise, promote, and discharge employees, or who recommend such action, or who are substantially involved in such action, will be made fully cognizant of, and will implement, the contractor's EEO policy and contractual responsibilities to provide EEO in each grade and classification of employment. To ensure that the above agreement will be met, the following actions will be taken as a minimum:

a. Periodic meetings of supervisory and personnel office employees will be conducted before the start of work and then not less often than once every six months, at which time the contractor's EEO policy and its implementation will be reviewed and explained. The meetings will be conducted by the EEO Officer.

b. All new supervisory or personnel office employees will be given a thorough indoctrination by the EEO Officer, covering all major aspects of the contractor's EEO obligations within thirty days following their reporting for duty with the contractor.

c. All personnel who are engaged in direct recruitment for the project will be instructed by the EEO Officer in the contractor's procedures for locating and hiring minorities and women.

d. Notices and posters setting forth the contractor's EEO policy will be placed in areas readily accessible to employees, applicants for employment and potential employees.

e. The contractor's EEO policy and the procedures to implement such policy will be brought to the attention of employees by means of meetings, employee handbooks, or other appropriate means.

4. Recruitment: When advertising for employees, the contractor will include in all advertisements for employees the notation: "An Equal Opportunity Employer." All such advertisements will be placed in publications having a large circulation among minorities and women in the area from which the project work force would normally be derived.

a. The contractor will, unless precluded by a valid bargaining agreement, conduct systematic and direct recruitment through public and private employee referral sources likely to yield qualified minorities and women. To meet this requirement, the contractor will identify sources of potential minority group employees, and establish with such identified sources procedures whereby minority and women applicants may be referred to the contractor for employment consideration.

b. In the event the contractor has a valid bargaining agreement providing for exclusive hiring hall referrals, the contractor is expected to observe the provisions of that agreement to the extent that the system meets the contractor's compliance with EEO contract provisions. Where implementation of such an agreement has the effect of discriminating against minorities or women, or obligates the contractor to do the same, such implementation violates Federal non-discrimination provisions.

c. The contractor will encourage its present employees to refer minorities and women as applicants for employment. Information and procedures with regard to referring such applicants will be discussed with employees.

5. Personnel Actions: Wages, working conditions, and employee benefits shall be established and administered, and personnel actions of every type, including hiring, upgrading, promotion, transfer, demotion, layoff, and termination, shall be taken without regard to race, color, religion, sex, national origin, age or disability. The following procedures shall be followed:

a. The contractor will conduct periodic inspections of project sites to insure that working conditions and employee facilities do not indicate discriminatory treatment of project site personnel.

b. The contractor will periodically evaluate the spread of wages paid within each classification to determine any evidence of discriminatory wage practices.

c. The contractor will periodically review selected personnel actions in depth to determine whether there is evidence of discrimination. Where evidence is found, the contractor will promptly take corrective action. If the review indicates that the discrimination may extend beyond the actions reviewed, such corrective action shall include all affected persons.

d. The contractor will promptly investigate all complaints of alleged discrimination made to the contractor in connection with its obligations under this contract, will attempt to resolve such complaints, and will take appropriate corrective action within a reasonable time. If the investigation indicates that the discrimination may affect persons other than the complainant, such corrective action shall include such other persons. Upon completion of each investigation, the contractor will inform every complainant of all of their avenues of appeal.

6. Training and Promotion:

a. The contractor will assist in locating, qualifying, and increasing the skills of minorities and women who are
applicants for employment or current employees. Such efforts should be aimed at developing full journey level status employees in the type of trade or job classification involved.

b. Consistent with the contractor's work force requirements and as permissible under Federal and State regulations, the contractor shall make full use of training programs, i.e., apprenticeship, and on-the-job training programs for the geographical area of contract performance. In the event a special provision for training is provided under this contract, this subparagraph will be superseded as indicated in the special provision. The contracting agency may reserve training positions for persons who receive welfare assistance in accordance with 23 U.S.C. 140(a).

c. The contractor will advise employees and applicants for employment of available training programs and entrance requirements for each.

d. The contractor will periodically review the training and promotion potential of employees who are minorities and women and will encourage eligible employees to apply for such training and promotion.

7. Unions: If the contractor relies in whole or in part upon unions as a source of employees, the contractor will use good faith efforts to obtain the cooperation of such unions to increase opportunities for minorities and women. Actions by the contractor, either directly or through a contractor's association acting as agent, will include the procedures set forth below:

a. The contractor will use good faith efforts to develop, in cooperation with the unions, joint training programs aimed toward qualifying more minorities and women for membership in the unions and increasing the skills of minorities and women so that they may qualify for higher paying employment.

b. The contractor will use good faith efforts to incorporate an EEO clause into each union agreement to the extent that such union will be contractually bound to refer applicants without regard to their race, color, religion, sex, national origin, age or disability.

c. The contractor is to obtain information as to the referral practices and policies of the labor union except that to the extent such information is within the exclusive possession of the labor union and such labor union refuses to furnish such information to the contractor, the contractor shall so certify to the contracting agency and shall set forth what efforts have been made to obtain such information.

d. In the event the union is unable to provide the contractor with a reasonable flow of referrals within the time limit set forth in the collective bargaining agreement, the contractor will, through independent recruitment efforts, fill the employment vacancies without regard to race, color, religion, sex, national origin, age or disability; making full efforts to obtain qualified and/or qualified minorities and women. The failure of a union to provide sufficient referrals (even though it is obligated to provide exclusive referrals under the terms of a collective bargaining agreement) does not relieve the contractor from the requirements of this paragraph. In the event the union referral practice prevents the contractor from meeting the obligations pursuant to Executive Order 11246, as amended, and these special provisions, such contractor shall immediately notify the contracting agency.

8. Reasonable Accommodation for Applicants / Employees with Disabilities: The contractor must be familiar with the requirements for and comply with the Americans with Disabilities Act and all rules and regulations established there under. Employers must provide reasonable accommodation in all employment activities unless to do so would cause an undue hardship.

9. Selection of Subcontractors, Procurement of Materials and Leasing of Equipment: The contractor shall not discriminate on the grounds of race, color, religion, sex, national origin, age or disability in the selection and retention of subcontractors, including procurement of materials and leases of equipment. The contractor shall take all necessary and reasonable steps to ensure nondiscrimination in the administration of this contract.

a. The contractor shall notify all potential subcontractors and suppliers and lessors of their EEO obligations under this contract.

b. The contractor will use good faith efforts to ensure subcontractor compliance with their EEO obligations.

10. Assurance Required by 49 CFR 26.13(b):

a. The requirements of 49 CFR Part 26 and the State DOT's U.S. DOT-approved DBE program are incorporated by reference.

b. The contractor or subcontractor shall not discriminate on the basis of race, color, or national origin, or sex in the performance of this contract. The contractor shall carry out applicable requirements of 49 CFR Part 26 in the award and administration of DOT-assisted contracts. Failure by the contractor to carry out these requirements is a material breach of this contract, which may result in the termination of this contract or such other remedy as the contracting agency deems appropriate.

11. Records and Reports: The contractor shall keep such records as necessary to document compliance with the EEO requirements. Such records shall be retained for a period of three years following the date of the final payment to the contractor for all contract work and shall be available at reasonable times and places for inspection by authorized representatives of the contracting agency and the FHWA.

a. The records kept by the contractor shall document the following:

(1) The number and work hours of minority and non-minority group members and women employed in each work classification on the project;

(2) The progress and efforts being made in cooperation with unions, when applicable, to increase employment opportunities for minorities and women; and

(3) The progress and efforts being made in locating, hiring, training, qualifying, and upgrading minorities and women.

b. The contractors and subcontractors will submit an annual report to the contracting agency each July for the duration of the project, indicating the number of minority, women, and non-minority group employees currently engaged in each work classification required by the contract work. This information is to be reported on Form FHWA-1391. The staffing data should represent the project work force on board in all or any part of the last payroll period preceding the end of July. If on-the-job training is being required by special provision, the contractor
will be required to collect and report training data. The employment data should reflect the work force on board during all or any part of the last payroll period preceding the end of July.

III. NONSEGREGATED FACILITIES

This provision is applicable to all Federal-aid construction contracts and to all related construction subcontracts of $10,000 or more.

The contractor must ensure that facilities provided for employees are provided in such a manner that segregation on the basis of race, color, religion, sex, or national origin cannot result. The contractor may neither require such segregated use by written or oral policies nor tolerate such use by employee custom. The contractor’s obligation extends further to ensure that its employees are not assigned to perform their services at any location, under the contractor’s control, where the facilities are segregated. The term “facilities” includes waiting rooms, work areas, restaurants and other eating areas, time clocks, restrooms, washrooms, locker rooms, and other storage or dressing areas, parking lots, drinking fountains, recreation or entertainment areas, transportation, and housing provided for employees. The contractor shall provide separate or single-user restrooms and necessary dressing or sleeping areas to assure privacy between sexes.

IV. DAVIS-BACON AND RELATED ACT PROVISIONS

This section is applicable to all Federal-aid construction projects exceeding $2,000 and to all related subcontracts and lower-tier subcontracts (regardless of subcontract size). The requirements apply to all projects located within the right-of-way of a roadway that is functionally classified as Federal-aid highway. This excludes roadways functionally classified as local roads or rural minor collectors, which are exempt. Contracting agencies may elect to apply these requirements to other projects.

The following provisions are from the U.S. Department of Labor regulations in 29 CFR 5.5 “Contract provisions and related matters” with minor revisions to conform to the FHWA-1273 format and FHWA program requirements.

1. Minimum wages

a. All laborers and mechanics employed or working upon the site of the work, will be paid unconditionally and not less often than once a week, and without subsequent deduction or rebate on any account (except such payroll deductions as are permitted by regulations issued by the Secretary of Labor under the Copeland Act (29 CFR part 3)), the full amount of wages and bona fide fringe benefits (or cash equivalents thereof) due at time of payment computed at rates not less than those contained in the wage determination of the Secretary of Labor which is attached hereto and made a part hereof, regardless of any contractual relationship which may be alleged to exist between the contractor and such laborers and mechanics.

Contributions made or costs reasonably anticipated for bona fide fringe benefits under section 1(b)(2) of the Davis-Bacon Act on behalf of laborers or mechanics are considered wages paid to such laborers or mechanics, subject to the provisions of paragraph 1.d. of this section; also, regular contributions made or costs incurred for more than a weekly period (but not less often than quarterly) under plans, funds, or programs which cover the particular weekly period, are deemed to be constructively made or incurred during such weekly period. Such laborers and mechanics shall be paid the appropriate wage rate and fringe benefits on the wage determination for the classification of work actually performed, without regard to skill, except as provided in 29 CFR 5.5(a)(4). Laborers or mechanics performing work in more than one classification may be compensated at the rate specified for each classification for the time actually worked therein: Provided, That the employer’s payroll records accurately set forth the time spent in each classification in which work is performed. The wage determination (including any additional classification and wage rates conform under paragraph 1.b. of this section) and the Davis-Bacon poster (WH-1321) shall be posted at all times by the contractor and its subcontractors at the site of the work in a prominent and accessible place where it can be easily seen by the workers.

b.(1) The contracting officer shall require that any class of laborers or mechanics, including helpers, which is not listed in the wage determination and which is to be employed under the contract shall be classified in conformance with the wage determination. The contracting officer shall approve an additional classification and wage rate and fringe benefits therefore only when the following criteria have been met:

(i) The work to be performed by the classification requested is not performed by a classification in the wage determination;

(ii) The classification is utilized in the area by the construction industry;

(iii) The proposed wage rate, including any bona fide fringe benefits, bears a reasonable relationship to the wage rates contained in the wage determination.

(2) If the contractor and the laborers and mechanics to be employed in the classification (if known), or their representatives, and the contracting officer agree on the classification and wage rate (including the amount designated for fringe benefits where appropriate), a report of the action taken shall be sent by the contracting officer to the Administrator of the Wage and Hour Division, Employment Standards Administration, U.S. Department of Labor, Washington, DC 20210. The Administrator, or an authorized representative, will approve, modify, or disapprove every additional classification action within 30 days of receipt and so advise the contracting officer or will notify the contracting officer within the 30-day period that additional time is necessary.

(3) In the event the contractor, the laborers or mechanics to be employed in the classification or their representatives, and the contracting officer do not agree on the proposed classification and wage rate (including the amount designated for fringe benefits where appropriate), the contracting officer shall refer the questions, including the views of all interested parties and the recommendation of the contracting officer, to the Wage and Hour Administrator for determination. The Wage and Hour Administrator, or an authorized representative, will issue a determination within 30 days of receipt and so advise the contracting officer or
will notify the contracting officer within the 30-day period that additional time is necessary.

(4) The wage rate (including fringe benefits where appropriate) determined pursuant to paragraphs 1.b.(2) or 1.b.(3) of this section, shall be paid to all workers performing work in the classification under this contract from the first day on which work is performed in the classification.

c. Whenever the minimum wage rate prescribed in the contract for a class of laborers or mechanics includes a fringe benefit which is not expressed as an hourly rate, the contractor shall either pay the benefit as stated in the wage determination or shall pay another bona fide fringe benefit or an hourly cash equivalent thereof.

d. If the contractor does not make payments to a trustee or other third person, the contractor may consider as part of the wages of any laborer or mechanic the amount of any costs reasonably anticipated in providing bona fide fringe benefits under a plan or program. Provided, That the Secretary of Labor has found, upon the written request of the contractor, that the applicable standards of the Davis-Bacon Act have been met. The Secretary of Labor may require the contractor to set aside in a separate account assets for the meeting of obligations under the plan or program.

2. Withholding

The contracting agency shall upon its own action or upon written request of an authorized representative of the Department of Labor, withhold or cause to be withheld from the contractor under this contract, or any other Federal contract with the same prime contractor, or any other federally-assisted contract subject to Davis-Bacon prevailing wage requirements, which is held by the same prime contractor, so much of the accrued payments or advances as may be considered necessary to pay laborers and mechanics, including apprentices, trainees, and helpers, employed by the contractor or any subcontractor the full amount of wages required by the contract. In the event of failure to pay any laborer or mechanic, including any apprentice, trainee, or helper, employed or working on the site of the work, all or part of the wages required by the contract, the contracting agency may, after written notice to the contractor, take such action as may be necessary to cause the suspension of any further payment, advance, or guarantee of funds until such violations have ceased.

3. Payrolls and basic records

a. Payrolls and basic records relating thereto shall be maintained by the contractor during the course of the work and preserved for a period of three years thereafter for all laborers and mechanics working at the site of the work. Such records shall contain the name, address, and social security number of each such worker, his or her correct classification, hourly rates of wages paid (including rates of contributions or costs anticipated for bona fide fringe benefits or cash equivalents thereof of the types described in section 1(b)(2)(B) of the Davis-Bacon Act), daily and weekly number of hours worked, deductions made and actual wages paid. Whenever the Secretary of Labor has found under 29 CFR 5.5(a)(1)(v) that the wages of any laborer or mechanic include the amount of any costs reasonably anticipated in providing benefits under a plan or program described in section 1(b)(2)(B) of the Davis-Bacon Act, the contractor shall maintain records which show that the commitment to provide such benefits is enforceable, that the plan or program is financially responsible, and that the plan or program has been communicated in writing to the laborers or mechanics affected, and records which show the costs anticipated or the actual cost incurred in providing such benefits. Contractors employing apprentices or trainees under approved programs shall maintain written evidence of the registration of apprenticeship programs and certification of trainee programs, the registration of the apprentices and trainees, and the ratios and wage rates prescribed in the applicable programs.

b.(1) The contractor shall submit weekly for each week in which any contract work is performed a copy of all payrolls to the contracting agency. The payrolls submitted shall set out accurately and completely all of the information required to be maintained under 29 CFR 5.5(a)(3)(i), except that full social security numbers and home addresses shall not be included on weekly transmittals. Instead the payrolls shall only need to include an individually identifying number for each employee (e.g., the last four digits of the employee’s social security number). The required weekly payroll information may be submitted in any form desired. Optional Form WH-347P is available for this purpose from the Wage and Hour Division Web site at http://www.dol.gov/esa/whd/forms/wh347instr.htm or its successor site. The prime contractor is responsible for the submission of copies of payrolls by all subcontractors. Contractors and subcontractors shall maintain the full social security number and current address of each covered worker, and shall provide them upon request to the contracting agency for transmission to the State DOT, the FHWA or the Wage and Hour Division of the Department of Labor for purposes of an investigation or audit of compliance with prevailing wage requirements. It is not a violation of this section for a prime contractor to require a subcontractor to provide addresses and social security numbers to the prime contractor for its own records, without weekly submission to the contracting agency.

(2) Each payroll submitted shall be accompanied by a “Statement of Compliance,” signed by the contractor or subcontractor or his or her agent who pays or supervises the payment of the persons employed under the contract and shall certify the following:

(i) That the payroll for the payroll period contains the information required to be provided under §5.5 (a)(3)(ii) of Regulations, 29 CFR part 5, the appropriate information is being maintained under §5.5 (a)(3)(ii) of Regulations, 29 CFR part 5, and that such information is correct and complete;

(ii) That each laborer or mechanic (including each helper, apprentice, and trainee) employed on the contract during the payroll period has been paid the full weekly wages earned, without rebate, either directly or indirectly, and that no deductions have been made either directly or indirectly from the full wages earned, other than permissible deductions as set forth in Regulations, 29 CFR part 3;

(iii) That each laborer or mechanic has been paid not less than the applicable wage rates and fringe benefits or cash equivalents for the classification of work performed, as specified in the applicable wage determination incorporated into the contract.
(3) The weekly submission of a properly executed certification set forth on the reverse side of Optional Form WH–347 shall satisfy the requirement for submission of the "Statement of Compliance" required by paragraph 3.b.(2) of this section.

(4) The falsification of any of the above certifications may subject the contractor or subcontractor to civil or criminal prosecution under section 1001 of title 18 and section 231 of title 31 of the United States Code.

c. The contractor or subcontractor shall make the records required under paragraph 3.a. of this section available for inspection, copying, or transcription by authorized representatives of the contracting agency, the FHWA, or the Department of Labor, and shall permit such representatives to interview employees during working hours on the job. If the contractor or subcontractor fails to submit the required records or to make them available, the FHWA may, after written notice to the contractor, the contracting agency, or the State DOT, take such action as may be necessary to cause the suspension of any further payment, advance, or guarantee of funds. Furthermore, failure to submit the required records upon request or to make such records available may be grounds for debarment action pursuant to 29 CFR 5.12.

4. Apprentices and trainees

a. Apprentices (programs of the USDOL).

Apprentices will be permitted to work at less than the predetermined rate for the work they performed when they are employed pursuant to and individually registered in a bona fide apprenticeship program registered with the U.S. Department of Labor, Employment and Training Administration, Office of Apprenticeship Training, Employer and Labor Services, or with a State Apprenticeship Agency recognized by the Office, or if a person is employed in his or her first 90 days of probationary employment as an apprentice in such an apprenticeship program, who is not individually registered in the program, but who has been certified by the Office of Apprenticeship Training, Employer and Labor Services or a State Apprenticeship Agency (where appropriate) to be eligible for probationary employment as an apprentice.

The allowable ratio of apprentices to journeymen on the job site in any craft classification shall not be greater than the ratio permitted to the contractor as to the entire work force under the registered program. Any worker listed on a payroll at an apprentice wage rate, who is not registered or otherwise employed as stated above, shall be paid at least the applicable wage rate on the wage determination for the classification of work actually performed. In addition, any apprentice performing work on the job site in excess of the ratio permitted under the registered program shall be paid not less than the applicable wage rate on the wage determination for the work actually performed. Where a contractor is performing construction on a project in a locality other than that in which its program is registered, the ratios and wage rates (expressed in percentages of the journeyman's hourly rate) specified in the contractor's or subcontractor's registered program shall be observed.

Every apprentice must be paid at not less than the rate specified in the registered program for the apprentice's level of progress, expressed as a percentage of the journeyman hourly rate specified in the applicable wage determination. Apprentices shall be paid fringe benefits in accordance with the provisions of the apprenticeship program. If the apprenticeship program does not specify fringe benefits, apprentices must be paid the full amount of fringe benefits listed on the wage determination for the applicable classification. If the Administrator determines that a different practice prevails for the applicable apprenticeship classification, fringes shall be paid in accordance with that determination.

In the event the Office of Apprenticeship Training, Employer and Labor Services, or a State Apprenticeship Agency recognized by the Office, withdraws approval of an apprenticeship program, the contractor will no longer be permitted to utilize apprentices at less than the applicable predetermined rate for the work performed until an acceptable program is approved.

b. Trainees (programs of the USDOL).

Except as provided in 29 CFR 5.16, trainees will not be permitted to work at less than the predetermined rate for the work performed unless they are employed pursuant to and individually registered in a program which has received prior approval, evidenced by formal certification by the U.S. Department of Labor, Employment and Training Administration.

The ratio of trainees to journeymen on the job site shall not be greater than permitted under the plan approved by the Employment and Training Administration.

Every trainee must be paid at not less than the rate specified in the approved program for the trainee's level of progress, expressed as a percentage of the journeyman hourly rate specified in the applicable wage determination. Trainees shall be paid fringe benefits in accordance with the provisions of the trainee program. If the trainee program does not mention fringe benefits, trainees shall be paid the full amount of fringe benefits listed on the wage determination unless the Administrator of the Wage and Hour Division determines that there is an apprenticeship program associated with the corresponding journeyman wage rate on the wage determination which provides for less than full fringe benefits for apprentices. Any employee listed on the payroll at a trainee rate who is not registered and participating in a training plan approved by the Employment and Training Administration shall be paid not less than the applicable wage rate on the wage determination for the classification of work actually performed. In addition, any trainee performing work on the job site in excess of the ratio permitted under the registered program shall be paid not less than the applicable wage rate on the wage determination for the work actually performed.

In the event the Employment and Training Administration withdraws approval of a training program, the contractor will no longer be permitted to utilize trainees at less than the applicable predetermined rate for the work performed until an acceptable program is approved.

c. Equal employment opportunity. The utilization of apprentices, trainees and journeymen under this part shall be in conformity with the equal employment opportunity requirements of Executive Order 11246, as amended, and 29 CFR part 30.
d. Apprentices and Trainees (programs of the U.S. DOT).

Apprentices and trainees working under apprenticeship and skill training programs which have been certified by the Secretary of Transportation as promoting EEO in connection with Federal-aid highway construction programs are not subject to the requirements of paragraph 4 of this Section IV. The straight time hourly wage rates for apprentices and trainees under such programs will be established by the particular programs. The ratio of apprentices and trainees to journeymen shall not be greater than permitted by the terms of the particular program.

5. Compliance with Copeland Act requirements. The contractor shall comply with the requirements of 29 CFR part 3, which are incorporated by reference in this contract.

6. Subcontracts. The contractor or subcontractor shall insert Form FHWA-1273 in any subcontracts and also require the subcontractors to include Form FHWA-1273 in any lower tier subcontracts. The prime contractor shall be responsible for the compliance by any subcontractor or lower tier subcontractor with all the contract clauses in 29 CFR 5.6.

7. Contract termination: debarment. A breach of the contract clauses in 29 CFR 5.5 may be grounds for termination of the contract, and for debarment as a contractor and a subcontractor as provided in 29 CFR 5.12.

8. Compliance with Davis-Bacon and Related Acts requirements. All rulings and interpretations of the Davis-Bacon and Related Acts contained in 29 CFR parts 1, 3, and 5 are herein incorporated by reference in this contract.

9. Disputes concerning labor standards. Disputes arising out of the labor standards provisions of this contract shall not be subject to the general disputes clause of this contract. Such disputes shall be resolved in accordance with the procedures of the Department of Labor set forth in 29 CFR parts 5, 6, and 7. Disputes within the meaning of this clause include disputes between the contractor (or any of its subcontractors) and the contracting agency, the U.S. Department of Labor, or the employees or their representatives.

10. Certification of eligibility.

a. By entering into this contract, the contractor certifies that neither it (nor he or she) nor any person or firm who has an interest in the contractor's firm is a person or firm ineligible to be awarded Government contracts by virtue of section 3(a) of the Davis-Bacon Act or 29 CFR 5.12(a)(1).

b. No part of this contract shall be subcontracted to any person or firm ineligible for award of a Government contract by virtue of section 3(a) of the Davis-Bacon Act or 29 CFR 5.12(a)(1).

V. CONTRACT WORK HOURS AND SAFETY STANDARDS ACT

The following clauses apply to any Federal-aid construction contract in an amount in excess of $100,000 and subject to the overtime provisions of the Contract Work Hours and Safety Standards Act. These clauses shall be inserted in addition to the clauses required by 29 CFR 5.5(a) or 29 CFR 4.6. As used in this paragraph, the terms laborer and mechanic include watchmen and guards.

1. Overtime requirements. No contractor or subcontractor contracting for any part of the contract work which may require or involve the employment of laborers or mechanics shall require or permit any such laborer or mechanic in any workweek in which he or she is employed on such work to work in excess of forty hours in such workweek unless such laborer or mechanic receives compensation at a rate not less than one and one-half times the basic rate of pay for all hours worked in excess of forty hours in such workweek.

2. Violation; liability for unpaid wages; liquidated damages. In the event of any violation of the clause set forth in paragraph (1) of this section, the contractor and any subcontractor responsible therefor shall be liable for the unpaid wages. In addition, such contractor and subcontractor shall be liable to the United States (in the case of work done under contract for the District of Columbia or a territory, to such District or to such territory), for liquidated damages. Such liquidated damages shall be computed with respect to each individual laborer or mechanic, including watchmen and guards, employed in violation of the clause set forth in paragraph (1) of this section, in the sum of $10 for each calendar day on which such individual was required or permitted to work in excess of the standard workweek of forty hours without payment of the overtime wages required by the clause set forth in paragraph (1) of this section.

3. Withholding for unpaid wages and liquidated damages. The FHWA or the contracting agency shall upon its own action or upon written request of an authorized representative of the Department of Labor withhold or cause to be withheld, from any moneys payable on account of work performed by the contractor or subcontractor under any such contract or any other Federal contract with the same prime contractor, or any other federally-assisted contract subject to the Contract Work Hours and Safety Standards Act, which is held by the same prime contractor, such sums as may be determined to be necessary to satisfy any liabilities of such contractor or subcontractor for unpaid wages and liquidated damages as provided in the clause set forth in paragraph (2) of this section.

4. Subcontracts. The contractor or subcontractor shall insert in any subcontracts the clauses set forth in paragraph (1) through (4) of this section and also a clause requiring the subcontractors to include these clauses in any lower tier subcontracts. The prime contractor shall be responsible for compliance by any subcontractor or lower tier subcontractor with the clauses set forth in paragraphs (1) through (4) of this section.
VI. SUBLETTING OR Assigning THE CONTRACT

This provision is applicable to all Federal-aid construction contracts on the National Highway System.

1. The contractor shall perform with its own organization contract work amounting to not less than 30 percent (or a greater percentage if specified elsewhere in the contract) of the total original contract price, excluding any specialty items designated by the contracting agency. Specialty items may be performed by subcontract and the amount of any such specialty items performed may be deducted from the total original contract price before computing the amount of work required to be performed by the contractor’s own organization (23 CFR 635.118).

 a. The term “perform work with its own organization” refers to workers employed or leased by the prime contractor, and equipment owned or rented by the prime contractor, with or without operators. Such term does not include employees or equipment of a subcontractor or lower tier subcontractor, agents of the prime contractor, or any other assignees. The term may include payments for the costs of hiring leased employees from an employee leasing firm meeting all relevant Federal and State regulatory requirements. Leased employees may only be included in this term if the prime contractor meets all of the following conditions:

 (1) the prime contractor maintains control over the supervision of the day-to-day activities of the leased employees;

 (2) the prime contractor remains responsible for the quality of the work of the leased employees;

 (3) the prime contractor retains all power to accept or exclude individual employees from work on the project; and

 (4) the prime contractor remains ultimately responsible for the payment of predetermined minimum wages, the submission of payrolls, statements of compliance and all other Federal regulatory requirements.

 b. "Specialty Items" shall be construed to be limited to work that requires highly specialized knowledge, abilities, or equipment not ordinarily available in the type of contracting organizations qualified and expected to bid or propose on the contract as a whole and in general are to be limited to minor components of the overall contract.

2. The contract amount upon which the requirements set forth in paragraph (1) of Section VI is computed includes the cost of material and manufactured products which are to be purchased or produced by the contractor under the contract provisions.

3. The contractor shall furnish (a) a competent superintendent or supervisor who is employed by the firm, has full authority to direct performance of the work in accordance with the contract requirements, and is in charge of all construction operations (regardless of who performs the work) and (b) such other of its own organizational resources (supervision, management, and engineering services) as the contracting officer determines is necessary to assure the performance of the contract.

4. No portion of the contract shall be sublet, assigned or otherwise disposed of except with the written consent of the contracting officer, or authorized representative, and such consent when given shall not be construed to relieve the contractor of any responsibility for the fulfillment of the contract. Written consent will be given only after the contracting agency has assured that each subcontract is evidenced in writing and that it contains all pertinent provisions and requirements of the prime contract.

5. The 30% self-performance requirement of paragraph (1) is not applicable to design-build contracts; however, contracting agencies may establish their own self-performance requirements.

VII. SAFETY: ACCIDENT PREVENTION

This provision is applicable to all Federal-aid construction contracts and to all related subcontracts.

1. In the performance of this contract the contractor shall comply with all applicable Federal, State, and local laws governing safety, health, and sanitation (23 CFR 635). The contractor shall provide all safeguards, safety devices and protective equipment and take any other needed actions as it determines, or as the contracting officer may determine, to be reasonably necessary to protect the life and health of employees on the job and the safety of the public and to protect property in connection with the performance of the work covered by the contract.

2. If it is a condition of this contract, and shall be made a condition of each subcontract, which the contractor enters into pursuant to this contract, that the contractor and any subcontractor shall not permit any employee, in performance of the contract, to work in surroundings or under conditions which are unsanitary, hazardous or dangerous to his/her health or safety, as determined under construction safety and health standards (29 CFR 1926) promulgated by the Secretary of Labor, in accordance with Section 107 of the Contract Work Hours and Safety Standards Act (40 U.S.C. 3704).

3. Pursuant to 29 CFR 1926.3, it is a condition of this contract that the Secretary of Labor or authorized representative thereof, shall have right of entry to any site of contract performance to inspect or investigate the matter of compliance with the construction safety and health standards and to carry out the duties of the Secretary under Section 107 of the Contract Work Hours and Safety Standards Act (40 U.S.C. 3704).

VIII. FALSE STATEMENTS CONCERNING HIGHWAY PROJECTS

This provision is applicable to all Federal-aid construction contracts and to all related subcontracts.

In order to assure high quality and durable construction in conformity with approved plans and specifications and a high degree of reliability on statements and representations made by engineers, contractors, suppliers, and workers on Federal-aid highway projects, it is essential that all persons concerned with the project perform their functions as carefully, thoroughly, and honestly as possible. Willful falsification, distortion, or misrepresentation with respect to any facts related to the project is a violation of Federal law. To prevent any misunderstanding regarding the seriousness of these and similar acts, Form FHWA-1022 shall be posted on each Federal-aid highway project (23 CFR 635) in one or more places where it is readily available to all persons concerned with the project.

18 U.S.C. 1020 reads as follows:
"Whoever, being an officer, agent, or employee of the United States, or of any State or Territory, or whoever, whether a person, association, firm, or corporation, knowingly makes any false statement, false representation, or false report as to the character, quality, quantity, or cost of any material used or to be used, or the quantity or quality of the work performed or to be performed, or the cost thereof in connection with the submission of plans, maps, specifications, contracts, or costs of construction on any highway or related project submitted for approval to the Secretary of Transportation; or

Whoever knowingly makes any false statement, false representation, false report or false claim with respect to the character, quality, quantity, or cost of any work performed or to be performed, or materials furnished or to be furnished, in connection with the construction of any highway or related project approved by the Secretary of Transportation; or

Whoever knowingly makes any false statement or false representation as to material fact in any statement, certificate, or report submitted pursuant to provisions of the Federal-aid Roads Act approved July 1, 1916, (38 Stat. 355), as amended and supplemented:

Shall be fined under this title or imprisoned not more than 5 years or both."

IX. IMPLEMENTATION OF CLEAN AIR ACT AND FEDERAL WATER POLLUTION CONTROL ACT

This provision is applicable to all Federal-aid construction contracts and to all related subcontracts.

By submission of this bid/proposal or the execution of this contract, or subcontract, as appropriate, the bidder, proposer, Federal-aid construction contractor, or subcontractor, as appropriate, will be deemed to have stipulated as follows:

1. That any person who is or will be utilized in the performance of this contract is not prohibited from receiving an award due to a violation of Section 506 of the Clean Water Act or Section 305 of the Clean Air Act.

2. That the contractor agrees to include or cause to be included the requirements of paragraph (1) of this Section X in every subcontract, and further agrees to take such action as the contracting agency may direct as a means of enforcing such requirements.

X. CERTIFICATION REGARDING DEBARMENT, SUSPENSION, INELIGIBILITY AND VOLUNTARY EXCLUSION

This provision is applicable to all Federal-aid construction contracts, design-build contracts, subcontracts, lower-tier subcontracts, purchase orders, lease agreements, consultant contracts or any other covered transaction requiring FHWA approval or that is estimated to cost $25,000 or more — as defined in 2 CFR Parts 180 and 1200.

1. Instructions for Certification – First Tier Participants:

a. By signing and submitting this proposal, the prospective first tier participant is providing the certification set out below.

b. The inability of a person to provide the certification set out below will not necessarily result in denial of participation in this covered transaction. The prospective first tier participant shall submit an explanation of why it cannot provide the certification set out below. The certification or explanation will be considered in connection with the department or agency’s determination whether to enter into this transaction. However, failure of the prospective first tier participant to furnish a certification or an explanation shall disqualify such a person from participation in this transaction.

c. The certification in this clause is a material representation of fact upon which reliance was placed when the contracting agency determined to enter into this transaction. If it is later determined that the prospective participant knowingly rendered an erroneous certification, in addition to other remedies available to the Federal Government, the contracting agency may terminate this transaction for cause of default.

d. The prospective first tier participant shall provide immediate written notice to the contracting agency to whom this proposal is submitted if any time the prospective first tier participant learns that its certification was erroneous when submitted or has become erroneous by reason of changed circumstances.

e. The terms “covered transaction,” “debarred,” “suspended,” “ineligible,” “participant,” “person,” “principal,” and “voluntarily excluded,” as used in this clause, are defined in 2 CFR Parts 180 and 1200. “First Tier Covered Transactions” refers to any covered transaction between a grantee or subgrantee of Federal funds and a participant (such as the prime or general contract). “Lower Tier Covered Transactions” refers to any covered transaction under a First Tier Covered Transaction (such as subcontracts). “First Tier Participant” refers to the participant who has entered into a covered transaction with a grantee or subgrantee of Federal funds (such as the prime or general contractor). “Lower Tier Participant” refers any participant who has entered into a covered transaction with a First Tier Participant or other Lower Tier Participants (such as subcontractors and suppliers).

1. The prospective first tier participant agrees by submitting this proposal that, should the proposed covered transaction be entered into, it shall not knowingly enter into any lower tier covered transaction with a person who is debarred, suspended, declared ineligible, or voluntarily excluded from participation in this covered transaction, unless authorized by the department or agency entering into this transaction.

g. The prospective first tier participant further agrees by submitting this proposal that it will include the clause titled “Certification Regarding Debarment, Suspension, Ineligibility and Voluntary Exclusion Lower Tier Covered Transactions,” provided by the department or contracting agency, entering into this covered transaction, without modification. In all lower tier covered transactions and in all solicitations for lower tier covered transactions exceeding the $25,000 threshold.

h. A participant in a covered transaction may rely upon a certification of a prospective participant in a lower tier covered transaction that is not debarred, suspended, ineligible, or voluntarily excluded from the covered transaction, unless it knows that the certification is erroneous. A participant is responsible for ensuring that its principals are not suspended, debarred, or otherwise ineligible to participate in covered transactions. To verify the eligibility of its principals, as well as the eligibility of any lower tier prospective participants, each participant may, but is not required to, check the Excluded Parties List System website (https://www.epis.gov), which is compiled by the General Services Administration.
i. Nothing contained in the foregoing shall be construed to require the establishment of a system of records in order to render in good faith the certification required by this clause. The knowledge and information of the prospective participant is not required to exceed that which is normally possessed by a prudent person in the ordinary course of business dealings.

j. Except for transactions authorized under paragraph (f) of these instructions, if a participant in a covered transaction knowingly enters into a lower tier covered transaction with a person who is suspended, debarred, ineligible, or voluntarily excluded from participation in this transaction, in addition to other remedies available to the Federal Government, the department or agency may terminate this transaction for cause or default.

* * * * *

2. Certification Regarding Debarment, Suspension, Ineligibility and Voluntary Exclusion – First Tier Participants:

a. The prospective first tier participant certifies to the best of its knowledge and belief, that it and its principals:

(1) Are not presently debarred, suspended, proposed for debarment, declared ineligible, or voluntarily excluded from participating in covered transactions by any Federal department or agency;

(2) Have not within a three-year period preceding this proposal been convicted of or had a civil judgment rendered against them for commission of fraud or a criminal offense in connection with obtaining, attempting to obtain, or performing a public (Federal, State or local) transaction or contract under a public transaction; violation of Federal or State antitrust statutes or commission of embezzlement, theft, forgery, bribery, falsification or destruction of records, making false statements, or receiving stolen property;

(3) Are not presently indicted for or otherwise criminally or civilly charged by a governmental entity (Federal, State or local) with commission of any of the offenses enumerated in paragraph (a)(2) of this certification; and

(4) Have not within a three-year period preceding this application/proposal had one or more public transactions (Federal, State or local) terminated for cause or default.

b. Where the prospective participant is unable to certify to any of the statements in this certification, such prospective participant shall attach an explanation to this proposal.

2. Instructions for Certification - Lower Tier Participants:

(Applicable to all subcontracts, purchase orders and other lower tier transactions requiring prior FHWA approval or estimated to cost $25,000 or more - 2 CFR Parts 180 and 1200)

a. By signing and submitting this proposal, the prospective lower tier is providing the certification set out below.

b. The certification in this clause is a material representation of fact upon which reliance was placed when this transaction was entered into. If it is later determined that the prospective lower tier participant knowingly rendered an erroneous certification, in addition to other remedies available to the Federal Government, the department, or agency with which this transaction originated may pursue available remedies, including suspension and/or debarment.

c. The prospective lower tier participant shall provide immediate written notice to the person to whom this proposal is submitted if at any time the prospective lower tier participant learns that its certification was erroneous by reason of changed circumstances.

d. The terms "covered transaction," "debarred," "suspended," "ineligible," "participant," "person," "principal," and "voluntarily excluded," as used in this clause, are defined in 2 CFR Parts 180 and 1200. You may contact the person to which this proposal is submitted for assistance in obtaining a copy of those regulations. "First Tier Covered Transactions" refers to any covered transaction between a grantee or subgrantee of Federal funds and a participant (such as the prime or general contractor). "Lower Tier Covered Transactions" refers to any covered transaction under a First Tier Covered Transaction (such as subcontracts). "First Tier Participant" refers to the participant who has entered into a covered transaction with a grantee or subgrantee of Federal funds (such as the prime or general contractor). "Lower Tier Participant" refers any participant who has entered into a covered transaction with a First Tier Participant or other Lower Tier Participants (such as subcontractors and suppliers).

e. The prospective lower tier participant agrees by submitting this proposal that, should the proposed covered transaction be entered into, it shall not knowingly enter into any lower tier covered transaction with a person who is debarred, suspended, declared ineligible, or voluntarily excluded from participation in this covered transaction, unless authorized by the department or agency with which this transaction originated.

f. The prospective lower tier participant further agrees by submitting this proposal that it will include this clause titled "Certification Regarding Debarment, Suspension, Ineligibility and Voluntary Exclusion-Lower Tier Covered Transaction," without modification, in all lower tier covered transactions and in all solicitations for lower tier covered transactions exceeding the $25,000 threshold.

g. A participant in a covered transaction may rely upon a certification of a prospective participant in a lower tier covered transaction that is not debarred, suspended, ineligible, or voluntarily excluded from the covered transaction, unless it knows that the certification is erroneous. A participant is responsible for ensuring that its principals are not suspended, debarred, or otherwise ineligible to participate in covered transactions. To verify the eligibility of its principals, as well as the eligibility of any lower tier prospective participants, each participant may, but is not required to, check the Excluded Parties List System website (https://www.epis.gov), which is compiled by the General Services Administration.

h. Nothing contained in the foregoing shall be construed to require establishment of a system of records in order to render in good faith the certification required by this clause. The knowledge and information of participant is not required to exceed that which is normally possessed by a prudent person in the ordinary course of business dealings.

i. Except for transactions authorized under paragraph (e) of these instructions, if a participant in a covered transaction knowingly enters into a lower tier covered transaction with a person who is suspended, debarred, ineligible, or voluntarily excluded from participation in this transaction, in addition to other remedies available to the Federal Government, the
department or agency with which this transaction originated may pursue available remedies, including suspension and/or debarment.

* * * * *

Certification Regarding Debarment, Suspension, Ineligibility and Voluntary Exclusion--Lower Tier Participants:

1. The prospective lower tier participant certifies, by submission of this proposal, that neither it nor its principals is presently debarred, suspended, proposed for debarment, declared ineligible, or voluntarily excluded from participating in covered transactions by any Federal department or agency.

2. Where the prospective lower tier participant is unable to certify to any of the statements in this certification, such prospective participant shall attach an explanation to this proposal.

* * * * *

XI. CERTIFICATION REGARDING USE OF CONTRACT FUNDS FOR LOBBYING

This provision is applicable to all Federal-aid construction contracts and to all related subcontracts which exceed $100,000 (49 CFR 20).

1. The prospective participant certifies, by signing and submitting this bid or proposal, to the best of his or her knowledge and belief, that:

 a. No Federal appropriated funds have been paid or will be paid, by or on behalf of the undersigned, to any person for influencing or attempting to influence an officer or employee of any Federal agency, a Member of Congress, an officer or employee of Congress, or an employee of a Member of Congress in connection with the awarding of any Federal contract, the making of any Federal grant, the making of any Federal loan, the entering into of any cooperative agreement, and the extension, continuation, renewal, amendment, or modification of any Federal contract, grant, loan, or cooperative agreement.

 b. If any funds other than Federal appropriated funds have been paid or will be paid to any person for influencing or attempting to influence an officer or employee of any Federal agency, a Member of Congress, an officer or employee of Congress, or an employee of a Member of Congress in connection with this Federal contract, grant, loan, or cooperative agreement, the undersigned shall complete and submit Standard Form-LLL, "Disclosure Form to Report Lobbying," in accordance with its instructions.

2. This certification is a material representation of fact upon which reliance was placed when this transaction was made or entered into. Submission of this certification is a prerequisite for making or entering into this transaction imposed by 31 U.S.C. 1352. Any person who fails to file the required certification shall be subject to a civil penalty of not less than $10,000 and not more than $100,000 for each such failure.

3. The prospective participant also agrees by submitting its bid or proposal that the participant shall require that the language of this certification be included in all lower tier subcontracts, which exceed $100,000 and that all such recipients shall certify and disclose accordingly.
7-1.50C Female and Minority Goals

To comply with Section II, "Nondiscrimination," of "Required Contract Provisions Federal-Aid Construction Contracts," the Department is including in Section 7-1.50C, "Female and Minority Goals," female and minority utilization goals for Federal-aid construction contracts and subcontracts that exceed $10,000.

The nationwide goal for female utilization is 6.9 percent.

The goals for minority utilization [45 Fed Reg 65984 (10/3/1980)] are as follows:

<table>
<thead>
<tr>
<th>Economic Area</th>
<th>Goal (Percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>174 Redding CA:</td>
<td>6.8</td>
</tr>
<tr>
<td>Non-SMSA Counties:</td>
<td></td>
</tr>
<tr>
<td>CA Lassen; CA Modoc; CA Plumas; CA Shasta; CA Siskiyou; CA Tehama</td>
<td></td>
</tr>
<tr>
<td>175 Eureka, CA</td>
<td>6.6</td>
</tr>
<tr>
<td>Non-SMSA Counties:</td>
<td></td>
</tr>
<tr>
<td>CA Del Norte; CA Humboldt; CA Trinity</td>
<td></td>
</tr>
<tr>
<td>176 San Francisco-Oakland-San Jose, CA:</td>
<td></td>
</tr>
<tr>
<td>SMSA Counties:</td>
<td></td>
</tr>
<tr>
<td>7120 Salinas-Seaside-Monterey, CA</td>
<td>28.9</td>
</tr>
<tr>
<td>CA Monterey</td>
<td></td>
</tr>
<tr>
<td>7360 San Francisco-Oakland</td>
<td>25.6</td>
</tr>
<tr>
<td>CA Alameda; CA Contra Costa; CA Marin; CA San Francisco; CA San Mateo</td>
<td></td>
</tr>
<tr>
<td>7400 San Jose, CA</td>
<td></td>
</tr>
<tr>
<td>CA Santa Clara, CA</td>
<td>19.6</td>
</tr>
<tr>
<td>7485 Santa Cruz, CA</td>
<td></td>
</tr>
<tr>
<td>CA Santa Cruz</td>
<td>14.9</td>
</tr>
<tr>
<td>7500 Santa Rosa</td>
<td></td>
</tr>
<tr>
<td>CA Sonoma</td>
<td>9.1</td>
</tr>
<tr>
<td>8720 Vallejo-Fairfield-Napa, CA</td>
<td></td>
</tr>
<tr>
<td>CA Napa; CA Solano</td>
<td>17.1</td>
</tr>
<tr>
<td>Non-SMSA Counties:</td>
<td></td>
</tr>
<tr>
<td>CA Lake; CA Mendocino; CA San Benito</td>
<td>23.2</td>
</tr>
<tr>
<td>177 Sacramento, CA:</td>
<td>16.1</td>
</tr>
<tr>
<td>SMSA Counties:</td>
<td></td>
</tr>
<tr>
<td>6920 Sacramento, CA</td>
<td></td>
</tr>
<tr>
<td>CA Placer; CA Sacramento; CA Yolo</td>
<td></td>
</tr>
<tr>
<td>Non-SMSA Counties</td>
<td>14.3</td>
</tr>
<tr>
<td>CA Butte; CA Colusa; CA El Dorado; CA Glenn; CA Nevada; CA Sierra; CA Sutter; CA Yuba</td>
<td></td>
</tr>
<tr>
<td>178 Stockton-Modesto, CA:</td>
<td>12.3</td>
</tr>
<tr>
<td>SMSA Counties:</td>
<td></td>
</tr>
<tr>
<td>5170 Modesto, CA</td>
<td></td>
</tr>
<tr>
<td>CA Stanislaus</td>
<td></td>
</tr>
<tr>
<td>8120 Stockton, CA</td>
<td>24.3</td>
</tr>
<tr>
<td>CA San Joaquin</td>
<td></td>
</tr>
<tr>
<td>Non-SMSA Counties</td>
<td></td>
</tr>
<tr>
<td>CA Alpine; CA Amador; CA Calaveras; CA Mariposa; CA Merced; CA Toulumne</td>
<td>19.8</td>
</tr>
<tr>
<td>179 Fresno-Bakersfield, CA</td>
<td>19.1</td>
</tr>
<tr>
<td>SMSA Counties:</td>
<td></td>
</tr>
<tr>
<td>0680 Bakersfield, CA</td>
<td></td>
</tr>
<tr>
<td>CA Kern</td>
<td></td>
</tr>
<tr>
<td>2840 Fresno, CA</td>
<td>26.1</td>
</tr>
<tr>
<td>CA Fresno</td>
<td></td>
</tr>
<tr>
<td>Non-SMSA Counties:</td>
<td></td>
</tr>
<tr>
<td>CA Kings; CA Madera; CA Tulare</td>
<td>23.6</td>
</tr>
<tr>
<td>180 Los Angeles, CA:</td>
<td></td>
</tr>
<tr>
<td>SMSA Counties:</td>
<td></td>
</tr>
</tbody>
</table>
For each July during which work is performed under the contract, you and each non-material-supplier subcontractor with a subcontract of $10,000 or more must complete Form FHWA PR-1391 (Appendix C to 23 CFR 230). Submit the forms by August 15.

7-1.50D Training

Section 7-1.50D, "Training," applies if a number of trainees or apprentices is specified in the special provisions. As part of your equal opportunity affirmative action program, provide on-the-job training to develop full journeymen in the types of trades or job classifications involved.

You have primary responsibility for meeting this training requirement.

If you subcontract a contract part, determine how many trainees or apprentices are to be trained by the subcontractor.

Include these training requirements in your subcontract.

Distribute the number of apprentices or trainees among the work classifications on the basis of your needs and the availability of journeymen in the various classifications within a reasonable recruitment area.

Before starting work, submit to the Department:

1. Number of apprentices or trainees to be trained for each classification
2. Training program to be used
3. Training starting date for each classification

Obtain the Department's approval for this submitted information before you start work. The Department credits you for each apprentice or trainee you employ on the work who is currently enrolled or becomes enrolled in an approved program.

The primary objective of Section 7-1.50D, "Training," is to train and upgrade minorities and women toward journeymen status. Make every effort to enroll minority and women apprentices or trainees, such as conducting systematic and direct recruitment through public and private sources likely to yield minority and women apprentices or trainees, to the extent they are available within a reasonable recruitment area. Show that you have made the efforts. In making these efforts, do not discriminate against any applicant for training.

Do not employ as an apprentice or trainee an employee:

1. In any classification in which the employee has successfully completed a training course leading to journeyman status or in which the employee has been employed as a journeyman
2. Who is not registered in a program approved by the US Department of Labor, Bureau of Apprenticeship and Training

Ask the employee if the employee has successfully completed a training course leading to journeyman status or has been employed as a journeyman. Your records must show the employee's answers to the questions.
In your training program, establish the minimum length and training type for each classification. The Department and FHWA approves a program if one of the following is met:

1. It is calculated to:

 1.1. Meet the your equal employment opportunity responsibilities
 1.2. Qualify the average apprentice or trainee for journeyman status in the classification involved by the end of the training period

2. It is registered with the U.S. Department of Labor, Bureau of Apprenticeship and Training and it is administered in a way consistent with the equal employment responsibilities of federal-aid highway construction contracts

Obtain the State's approval for your training program before you start work involving the classification covered by the program.

Provide training in the construction crafts, not in clerk-typist or secretarial-type positions. Training is allowed in lower level management positions such as office engineers, estimators, and timekeepers if the training is oriented toward construction applications. Training is allowed in the laborer classification if significant and meaningful training is provided and approved by the division office. Off-site training is allowed if the training is an integral part of an approved training program and does not make up a significant part of the overall training.

The Department reimburses you 80 cents per hour of training given an employee on this contract under an approved training program:

1. For on-site training
2. For off-site training if the apprentice or trainee is currently employed on a federal-aid project and you do at least one of the following:

 2.1. Contribute to the cost of the training
 2.2. Provide the instruction to the apprentice or trainee
 2.3. Pay the apprentice's or trainee's wages during the off-site training period

3. If you comply with Section 7-1.50D, "Training"

Each apprentice or trainee must:

1. Begin training on the project as soon as feasible after the start of work involving the apprentice's or trainee's skill
2. Remain on the project as long as training opportunities exist in the apprentice's or trainee's work classification or until the apprentice or trainee has completed the training program

Furnish the apprentice or trainee:

1. Copy of the program you will comply with in providing the training
2. Certification showing the type and length of training satisfactorily completed

Maintain records and submit reports documenting your performance under Section 7-1.50D, "Training."

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECTION 8 PROSECUTION AND PROGRESS

(Issued 06-05-09)
Replace Section 8 with:

SECTION 8  PROSECUTION AND PROGRESS

8-1.01 (BLANK)

8-1.02 ASSIGNMENT

No third-party agreement relieves you or your surety of your responsibility to complete the work. Do not sell, transfer, or otherwise dispose of any contract part without prior written consent from the Department.

If you assign the right to receive contract payments, the Department accepts the assignment upon the Engineer's receipt of a notice. Assigned payments remain subject to deductions and withholds described in the contract. The Department may use withheld payments for work completion whether payments are assigned or not.

8-1.025 PRECONSTRUCTION CONFERENCE

Attend a preconstruction conference with key personnel, including your assigned representative, at a time and location determined by the Engineer. Submit documents as required before the preconstruction conference. You may begin work before the preconstruction conference.

Be prepared to discuss the following topics and documents:

<table>
<thead>
<tr>
<th>Topics</th>
<th>Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential claim and dispute resolution</td>
<td>Potential claim forms</td>
</tr>
<tr>
<td>Contractor's representation</td>
<td>Assignment of Contractor's representative</td>
</tr>
<tr>
<td>DBE and DVBE</td>
<td>Final utilization reports</td>
</tr>
<tr>
<td>Equipment</td>
<td>Equipment list</td>
</tr>
<tr>
<td>Labor compliance and equal employment</td>
<td>Job site posters and benefit and payroll</td>
</tr>
<tr>
<td>opportunity</td>
<td>reports</td>
</tr>
<tr>
<td>Material inspection</td>
<td>Notice of Materials to be Used</td>
</tr>
<tr>
<td>Materials on hand</td>
<td>Request for Payment for Materials on Hand</td>
</tr>
<tr>
<td>Measurements</td>
<td>--</td>
</tr>
<tr>
<td>Partnering</td>
<td>Field Guide to Partnering on Caltrans</td>
</tr>
<tr>
<td>Quality control</td>
<td>Construction Projects</td>
</tr>
<tr>
<td>Safety</td>
<td>Injury and Illness Prevention Program and</td>
</tr>
<tr>
<td></td>
<td>job site posters</td>
</tr>
<tr>
<td>Schedule</td>
<td>Baseline schedule and Weekly Statement of</td>
</tr>
<tr>
<td></td>
<td>Working Days</td>
</tr>
<tr>
<td>Subcontracting</td>
<td>Subcontracting Request</td>
</tr>
<tr>
<td>Surveying</td>
<td>Survey Request</td>
</tr>
<tr>
<td>Traffic control</td>
<td>Traffic contingency plan and traffic control</td>
</tr>
<tr>
<td>Utility work</td>
<td>--</td>
</tr>
<tr>
<td>Weight limitations</td>
<td>--</td>
</tr>
<tr>
<td>Water pollution control</td>
<td>SWPPP or WPCP</td>
</tr>
<tr>
<td>Work restrictions</td>
<td>PLACs</td>
</tr>
<tr>
<td>Working drawings</td>
<td>--</td>
</tr>
</tbody>
</table>

8-1.03 BEGINNING OF WORK

Begin work within 15 days after receiving notice that the contract has been approved by the Attorney General or the attorney appointed and authorized to represent the Department. Submit a written notice 72 hours before beginning work. If the project has more than one location of work, submit a separate notice for each location.

You may begin work before receiving the notice of contract approval if you:

1. Deliver the signed contract, bonds, and evidence of insurance to the Department
2. Submit 72-hour notice
3. Obtain an encroachment permit from the Department
4. Are authorized by the Department to begin
5. Perform work at your own risk
6. Perform work under the contract

The Engineer does not count working days for days worked before contract approval.

If the contract is approved, work already performed that complies with the contract is authorized.

If the contract does not get approved, leave the job site in a neat condition. If a facility has been changed, restore it to its former or equivalent condition at your expense.
The Department does not adjust time for beginning before the approval date.

8-1.04 PROGRESS SCHEDULE

8-1.04A General

Reserved

8-1.04B Critical Path Method Schedule

The following definitions apply to critical path method schedules:

activity: Task, event, or other project element on a schedule that contributes to completing the project. Activities have a description, start date, finish date, duration, and one or more logic ties.

baseline schedule: The initial schedule showing the original work plan beginning on the date of contract approval. This schedule shows no completed work to date and no negative float or negative lag to any activity.

controlling activity: Construction activity that extends the scheduled completion date if delayed.

critical path: Longest continuous chain of activities for the project that has the least amount of total float of all chains. In general, a delay on the critical path extends the scheduled completion date.

critical path method (CPM): Network based planning technique using activity durations and relationships between activities to calculate a schedule for the entire project.

revised schedule: Schedule that incorporates a proposed or past change to logic or activity durations.

scheduled completion date: Planned project completion date shown on the current schedule.

updated schedule: Current schedule developed from the accepted baseline and any subsequent accepted updated or revised schedules through regular monthly review to incorporate actual past progress.

Before or at the preconstruction conference, submit a CPM baseline schedule.

Submit a monthly updated schedule that includes the status of work completed to date and the work yet to be performed as planned.

On each schedule, show:

1. Planned and actual start and completion date of each work activity, including applicable:
   1.1. Submittal development
   1.2. Submittal review and approval
   1.3. Material procurement
   1.4. Contract milestones and constraints
   1.5. Equipment and plant setup
   1.6. Interfaces with outside entities
   1.7. Erection and removal of falsework and shoring
   1.8. Test periods
   1.9. Major traffic stage change
   1.10. Final cleanup

2. Order that you propose to prosecute the work
3. Logical links between the time-scaled work activities
4. All controlling activities
5. Legible description of each activity
6. At least one predecessor and one successor to each activity, except for project start and project end milestones
7. Duration of not less than one working day for each activity
8. Start milestone date as the contract approval date

You may include changes on updated schedules that do not alter the critical path or extend the schedule completion date compared to the current schedule. Changes may include:

1. Adding or deleting activities
2. Changing activity constraints
3. Changing durations
4. Changing logic
If any proposed change in planned work results in altering the critical path or extending the scheduled completion date, submit a revised schedule within 15 days of the proposed change.

For each schedule submittal:

1. Submit a plotted original, time-scaled network diagram on a sheet of at least 8.5" x 11" with a title block and timeline.
2. If a computer program is used to make the schedule, submit a read-only compact disc or diskette containing the schedule data. Label the compact disc or diskette with:
   2.1. Contract number
   2.2. CPM schedule number and date produced
   2.3. File name

If there is no contract item for progress schedule (critical path method), full compensation for this work is included in the contract prices paid for the items of work involved, and no additional compensation will be allowed therefor.

8-1.05 TEMPORARY SUSPENSION OF WORK

8-1.05A General

The Engineer may suspend work wholly or in part due to any of the following:

1. Conditions are unsuitable for work progress.
2. You fail to do any of the following:
   2.1. Fulfill the Engineer's orders.
   2.2. Fulfill a contract part.
   2.3. Perform weather-dependent work when conditions are favorable so that weather-related unsuitable conditions are avoided or do not occur.

Upon the Engineer's written order of suspension, suspend work immediately. Provide for public safety and a smooth and unobstructed passageway through the work zone during the suspension as specified in Sections 7-1.08, "Public Convenience," and 7-1.09, "Public Safety." Resume work when ordered.

8-1.05B Suspensions Unrelated to Contractor Performance

For a suspension unrelated to your performance, providing for a smooth and unobstructed passageway through the work during the suspension will be paid for as extra work as specified in Section 4-1.03D, "Extra Work."

The days during a suspension unrelated to your performance are non-working days.

8-1.05C Suspensions Related to Contractor Performance

For a suspension related to your performance, the Department may provide for a smooth and unobstructed passageway through the work during the suspension and deduct the cost from payments.

The days during a suspension related to your performance are working days.

8-1.06 TIME OF COMPLETION

The time to complete the work is specified in the special provisions.

The Engineer issues a Weekly Statement of Working Days by the end of the following week unless the contract is suspended for reasons unrelated to your performance.

The Weekly Statement of Working Days shows:

1. Working days and non–working days during the reporting week
2. Time adjustments
3. Work completion date computations, including working days remaining
4. Controlling activities

You may protest a Weekly Statement of Working Days.
8-1.07 LIQUIDATED DAMAGES

8-1.07A General

The Department specifies liquidated damages (Pub Cont Code § 10226). Liquidated damages, if any, accrue starting on the 1st day after the expiration of the working days through the day of contract acceptance except as specified in Sections 8-1.07B, "Failure to Complete Work Parts within Specified Times," and 8-1.07C, "Failure to Complete Work Parts by Specified Dates."

The Department withholds liquidated damages before the accrual date if the anticipated liquidated damages may exceed the value of the remaining work.

Liquidated damages for all work, except plant establishment, are:

<table>
<thead>
<tr>
<th>Total Bid From over</th>
<th>To</th>
<th>Liquidated Damages per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0</td>
<td>$50,000</td>
<td>$1,200</td>
</tr>
<tr>
<td>$50,000</td>
<td>$120,000</td>
<td>$1,500</td>
</tr>
<tr>
<td>$120,000</td>
<td>$1,000,000</td>
<td>$1,900</td>
</tr>
<tr>
<td>$1,000,000</td>
<td>$5,000,000</td>
<td>$3,000</td>
</tr>
<tr>
<td>$5,000,000</td>
<td>$10,000,000</td>
<td>$5,400</td>
</tr>
<tr>
<td>$10,000,000</td>
<td>$30,000,000</td>
<td>$8,300</td>
</tr>
<tr>
<td>$30,000,000</td>
<td>$100,000,000</td>
<td>$10,500</td>
</tr>
<tr>
<td>$100,000,000</td>
<td>$250,000,000</td>
<td>$28,500</td>
</tr>
</tbody>
</table>

If all work, except plant establishment, is complete and the total number of working days has expired, liquidated damages are $950 per day.

8-1.07B Failure to Complete Work Parts within Specified Times

The Department may deduct specified damages from payments for each day in completing a work part beyond the time specified for completing the work part.

Damages for untimely completion of work parts may not be equal to the daily amount specified as liquidated damages for the project as a whole, but the Department does not simultaneously assess damages for untimely completion of work parts and for the whole work.

Damages accrue starting the 1st day after a work part exceeds the specified time through the day the specified work part is complete.

8-1.07C Failure to Complete Work Parts by Specified Dates

The Department may deduct specified damages from payments for each day in completing a work part beyond the specified completion date for the work part.

Damages for untimely work part completion may not be equal to the daily amount specified as liquidated damages for the project as a whole, but the Department does not simultaneously assess damages for untimely work part completion and the whole work.

Damages accrue starting the 1st day after an unmet completion date through the day the work part is complete.

8-1.07D Director Days

If the work is not completed within the working days, the Director may grant director days if it serves the State's best interest.

By granting director days, the Director adds working days to the contract. The Director may either grant enough days to eliminate the liquidated damages or fewer. In the latter case, the Department deducts liquidated damages for the remaining overrun in contract time. The Director may deduct the Department's engineering, inspection, and overhead costs incurred during the period of extension granted as director days.

8-1.08 TERMINATION OF CONTROL

The Department may terminate your control of the work for failure to do any of the following (Pub Cont Code § 10253):

1. Supply an adequate workforce
2. Supply material as described
3. Pay subcontractors (Pub Cont Code §10262)
4. Prosecute the work as described in the contract

The Department may also terminate your control for failure to maintain insurance coverage.
For a Federal-aid contract, the Department may terminate your control of the work for failure to include "Required Contract Provisions, Federal-Aid Construction Contracts" in subcontracts.

The Department gives you and your surety notice at least 5 days before terminating control. The notice describes the failures and the time allowed to remedy the failures. If failures are not remedied within the time provided, the Department takes control of the work.

The Department may complete the work if the Department terminates your control or you abandon the project (Pub Cont Code § 10255). The Department determines the unpaid balance under Pub Cont Code § 10258 and the contract.

At any time before final payment of all claims, the Department may convert a termination of control to a termination of contract.

8-1.09 DELAYS

8-1.09A General
An excusable delay is a delay of a controlling activity beyond your control, not foreseeable when the work began such as:

1. Change in the work
2. Department action that is not part of the contract
3. Presence of an underground utility main not described in the contract or in a location different from that specified
4. Described facility reconstruction not reconstructed as described, by the utility owner by the date specified, unless the reconstruction is solely for your convenience
5. Department's failure to obtain timely access to the right-of-way
6. Department's failure to perform an action in the time specified

A critical delay is a delay that extends the schedule completion date.
To request a delay-related time or payment adjustment, submit an RFI.

8-1.09B Time Adjustments
For an excusable critical delay, the Department may make a time adjustment. The Engineer uses information from the schedule to evaluate requests for time adjustments.

If requesting an adjustment, submit a revised schedule showing the delay's effect on the controlling activity. If the delay has:

1. Occurred, submit records of dates and what work was performed during the delayed activity
2. Not occurred, submit the expected dates or duration of the delayed activity

If the Engineer requests, update the schedule to the last working day before the start of the delay.

8-1.09C Payment Adjustments
The Department may make a payment adjustment for an excusable delay that affects your costs.

Only losses for idle equipment, idle workers, and equipment moving or transporting are eligible for delay-related payment adjustments.

The Engineer determines payment for idle time of equipment in the same manner as determinations are made for equipment used in the performance of force account work under Section 9-1.03, "Force Account," with the following exceptions:

1. Delay factor in the Labor Surcharge and Equipment Rental Rates applies to each equipment rental rate.
2. Daily number of payable hours equals the normal working hours during the delay, not to exceed 8 hours per day.
3. Delay days exclude non–working days.
4. Markups are not added.

The Engineer determines payment adjustment for idle workers under Section 9-1.03B, "Labor," but does not add markups.
The Engineer includes costs due to necessary extra equipment moving or transporting.

8-1.10 (BLANK)

8-1.11 TERMINATION OF CONTRACT

8-1.11A General

The Director may terminate the contract if it serves the State's best interest. The Department issues you a written notice, implements the termination, and pays you.

8-1.11B Relief from Responsibility for Work

On receiving a termination notice:

1. Stop work
2. Notify subcontractors and suppliers of the contract termination and stop contract-related work
3. Perform the Engineer-ordered work to secure the job site for termination
4. Remove equipment
5. If authorized, settle termination-related claims and liabilities involving subcontractors and suppliers; assign to the Department the rights, titles, or interests held by you with respect to these parties

8-1.11C Responsibility for Materials

On receiving a termination notice, protect unused material until:

1. You submit an inventory of materials already produced, purchased, or ordered but not yet used; include the location of the material.
2. The Engineer identifies materials that will be retained by the Department. Submit bills of sales or other records of material title.
3. The Engineer confirms that unused materials paid by progress payment and materials furnished by the State have been delivered and stored as ordered.
4. Titles are transferred for materials purchased by the Department.

Dispose of materials that will not be retained by the Department.

8-1.11D Contract Acceptance after Termination

The Engineer recommends contract acceptance after determining completion of:

1. Contract work ordered to be completed before termination
2. Other work ordered to secure the project before termination
3. Material delivery and title transfer

The Department pays you under Section 9-1.08, "Payment After Contract Acceptance."

8-1.11E Payment Adjustment for Termination

If the Department issues a termination notice, the Engineer determines payment for termination based on the following:

1. Direct cost for the work:

   1.1. Including mobilization, demobilization, securing the job site for termination, and losses from the sale of materials
   1.2. Not including the cost of materials you keep, profit realized from the sale of materials, the cost of material damaged by an occurrence as defined in Section 7-1.165, "Damage by Storm, Flood, Tsunami or Earthquake," and other credits.

2. Cost of remedial work, as estimated by the Engineer, is not reimbursed.
3. Allowance for profit not to exceed 4 percent of the cost of the work. Prove a likelihood of having made a profit had the contract not been terminated.
4. Material handling costs for material returned to the vendor or disposed of as ordered.
5. Costs in determining the payment adjustment due to the termination, excluding attorney fees and litigation costs.

Termination of the contract does not relieve the surety of its obligation for any just claims arising out of the work performed.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECTION 9 MEASUREMENT AND PAYMENT
(Issued 03-11-10)

Replace Section 9 with:

SECTION 9 MEASUREMENT AND PAYMENT

9-1.01 MEASUREMENT OF QUANTITIES

9-1.01A General

The Department determines bid item quantities under U.S. customary units.

9-1.01B Weighing Equipment and Procedures

9-1.01B(1) General

The Engineer measures material quantities for payment with devices that comply with:

1. 4 CA Code of Regs § 4000 et seq.
2. Bus & Prof Code § 12001 et seq.

To determine the material payment quantities, use measuring devices that have been sealed by the Department of Food and Agriculture's Division of Measurement Standards or its designated representative.

If a device is not type approved by the Division of Measurement Standards, type approve it under California Test 109.

Notify the Engineer at least 1 business day in advance of equipment testing.

Use material plant controllers having elements affecting the data accuracy and delivery that have been sealed by the Engineer. Make these elements available to the Engineer for inspection. If the elements are adequate for use, the Engineer seals them. If security seal manipulation occurs, stop material production. Do not resume production until the Engineer reinspects and reseals the device.

The Engineer measures material paid for by weight on Contractor-furnished sealed scales regularly inspected by the Department of Food and Agriculture's Division of Measurement Standards or its designated representative.

Obtain authorization of portable vehicle scale installations before sealing.

Proportioning scales must comply with Section 5-1.10, "Equipment."

9-1.01B(2) Equipment

Each scale must be long enough to fit an entire vehicle or a combination vehicle on the scale deck. The Department allows you to weigh a combination vehicle separately if you disconnect the vehicles.

Construct scale undersupports:

1. Using portland cement concrete containing at least 470 pounds of cement per cubic yard produced from commercial quality materials
2. Such that footing heights are at least 20 inches thick
3. With a bearing surface at least 30 inches wide and bearing pressure on the footing not over 4000 pounds per square foot

In constructing a scale:

1. Furnish drainage to prevent water from saturating the ground under the scale
2. Use bulkheads that prevent displacement
3. If shimming is necessary:
3.1. Use securely attached metal shims or grout
3.2. Do not use wedges to shim the supports
3.3. Do not use shim material in excess of 3 inches

4. Install mechanical indicating elements level, plumb, and rigidly mounted on the concrete undersupports
5. For a hopper scale, rigidly attach hopper scale lever systems and mechanical indicating elements so no weight is lost from bending or support distortion

Each scale used to determine material payment quantities must be operated by a licensed weighmaster (Bus & Prof Code § 12700 et seq.).
Submit a public weighmaster's certificate or certified daily summary weigh sheets for each weighed material quantity. The Department may witness material weighing and check and compile the daily scale weight record.
Each vehicle operator must obtain weight or load slips from the weighmaster. Submit these records at the delivery point.

9-1.01B(3) Procedures
Daily, weigh empty vehicles used to haul material paid for by weight. Each vehicle must have a legible identification mark. The Department may verify material weight by having an empty and loaded vehicle weighed on any scale the Engineer designates.
For imported topsoil measured by volume, soil amendment, and mulch:

1. Each vehicle must allow a ready and accurate contents determination
2. Unless vehicles are of uniform capacity, each vehicle must have a legible identification mark showing its volume capacity
3. Load vehicles to at least the volume capacity
4. Level vehicle loads on arrival at the delivery point

If determining a quantity paid on a volume basis is impractical or if you request and the Engineer authorizes the request, the Engineer weighs the material and converts the result to a volume measurement. The Engineer determines the conversion factors and, if you agree, adopts this method of measurement.

9-1.01C Final Pay Items
The Department shows a bid item quantity as a final pay item for payment purposes only. For a final pay item, accept payment based on the verified Bid Item List quantity, regardless of actual quantity used unless dimensions are changed by the Engineer.

9-1.01D Quantities of Aggregate and Other Roadway Materials
The Engineer determines the weight of aggregate and other roadway materials that are being paid for by weight as shown and does not include the deducted weight of water in their payment quantities.

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantity Determination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate or other roadway material except as otherwise shown in this table</td>
<td>By deducting the weight of water in the material(^a) in excess of 3 percent of the dry weight of the material from the weight of the material</td>
</tr>
<tr>
<td>Imported borrow, imported topsoil, aggregate subbase</td>
<td>By deducting the weight of water in the material(^a) in excess of 6 percent of the dry weight of the material from the weight of the material</td>
</tr>
<tr>
<td>Straw</td>
<td>By deducting the weight of water in the material(^a) in excess of 15 percent of the dry weight of the material from the weight of the material</td>
</tr>
<tr>
<td>Fiber(^b)</td>
<td>Engineer does not deduct the weight of water</td>
</tr>
<tr>
<td>Aggregate base and aggregate for cement treated bases</td>
<td>As specified in Section 26, "Aggregate Bases," and Section 27, "Cement Treated Bases"</td>
</tr>
</tbody>
</table>

NOTE: Percentage of water is determined by California Test 226.
\(^a\)At the time of weighing
\(^b\)Weight of water in the fiber\(^a\) must not exceed 15 percent of the dry weight of the fiber.
9-1.02 SCOPE OF PAYMENT

The Department pays you for furnishing the resources and activities required to complete the Contract work. The Department's payment is full compensation for furnishing the resources and activities, including:

1. Risk, loss, damage repair, or cost of whatever character arising from or relating to the work and performance of the work
2. PLACs and taxes

Full compensation for work specified in Sections 1 through 9 is included in the payment for the bid items involved unless:

1. Bid item for the work is shown on the verified Bid Item List
2. Work is specified as paid for as extra work

The Department does not pay for your loss, damage, repair, or extra costs of whatever character arising from or relating to the work that is a direct or indirect result of your choice of construction methods, materials, equipment, or manpower, unless specifically mandated by the Contract.

Payment is:

1. Full compensation for each bid item specified by the description and measurement unit shown on the verified Bid Item List
2. For the price bid for each bid item shown on the verified Bid Item List or as changed by change order with a specified price adjustment

If an alternative is described in the Contract, the Department pays based on the bid items for the details and specifications not described as an alternative.

The Department pays for work performed by change order based on one or a combination of the following:

1. Bid item prices
2. Force account
3. Agreed price
4. Specialist billing

If the Engineer chooses to pay for work performed by change order based on an agreed price, but you and the Engineer cannot agree on the price, the Department pays by force account.

If a portion of extra work is covered by bid items, the Department pays for this work as changed quantities in those items. The Department pays for the remaining portion of the extra work by force account or agreed price.

The Department pays 10 percent annual interest for unpaid and undisputed:

1. Progress payments
2. After-acceptance payment except for claims

For these payments, interest starts to accrue 30 days after the 1st working day following the 20th day of the month payment is due. For extra work bills not submitted within 7 days after performing the work as specified in 5-1.015E, "Extra Work Bills," interest starts to accrue 60 days after the 1st working day following the 20th day of the month payment is due.

The Department pays 6 percent annual interest for unpaid and undisputed claims. Interest starts to accrue 61 days after the Department accepts a claim statement.

The Department pays 6 percent annual interest for awards in arbitration (Civ Code § 3289).

If the amount of a deduction or withhold exceeds final payment, the Department invoices you for the difference, to be paid upon receipt.

9-1.03 FORCE ACCOUNT PAYMENT

9-1.03A General

For work paid by force account, the Engineer compares the Department's records to your daily force account work report. When you and the Engineer agree on the contents of the daily force account work reports, the Engineer accepts the report and the Department pays for the work. If the records differ, the Department pays for the work based only on the information shown on the Department's records.

Contract No. 08-0M94U4
80 of 290
If a subcontractor performs work at force account, accept an additional 10 percent markup to the total cost of that work paid at force account, including markups specified in Section 9-1.03, as reimbursement for additional administrative costs.

The markups specified in labor, materials, and equipment include compensation for all delay costs, overhead costs, and profit.

If an item's payment is adjusted for work-character changes, the Department excludes your cost of determining the adjustment.

Payment for owner-operated labor and equipment is made at the market-priced invoice submitted.

9-1.03B Labor

Labor payment is full compensation for the cost of labor used in the direct performance of the work plus a 35 percent markup. Force account labor payment consists of:

1. Employer payment to the worker for:
 1.1. Basic hourly wage
 1.2. Health and welfare
 1.3. Pension
 1.4. Vacation
 1.5. Training
 1.6. Other State and federal recognized fringe benefit payments

2. Labor surcharge percentage in Labor Surcharge and Equipment Rental Rates current during the work paid at force account for:
 2.1. Workers’ compensation insurance
 2.2. Social security
 2.3. Medicare
 2.4. Federal unemployment insurance
 2.5. State unemployment insurance
 2.6. State training taxes

3. Subsistence and travel allowances paid to the workers
4. Employer payment to supervisors, if authorized

The 35 percent markup consists of payment for all overhead costs related to labor but not designated as costs of labor used in the direct performance of the work including:

1. Home office overhead
2. Field office overhead
3. Bond costs
4. Profit
5. Labor liability insurance
6. Other fixed or administrative costs that are not costs of labor used in the direct performance of the work

9-1.03C Materials

Material payment is full compensation for materials you furnish and use in the work. The Engineer determines the cost based on the material purchase price, including delivery charges, except:

1. A 15 percent markup is added.
2. Supplier discounts are subtracted whether you took them or not.
3. If the Engineer believes the material purchase prices are excessive, the Department pays the lowest current wholesale price for a similar material quantity.
4. If you procured the materials from a source you wholly or partially own, the determined cost is based on the lower of the:
 4.1. Price paid by the purchaser for similar materials from that source on Contract items
 4.2. Current wholesale price for those materials
5. If you do not submit a material cost record within 30 days of billing, the determined cost is based on the lowest wholesale price:

5.1. During that period
5.2. In the quantities used

9.1.03D Equipment Rental

9.1.03D(1) General

Equipment rental payment is full compensation for:

1. Rental equipment costs, including moving rental equipment to and from the site of work performed by change order using its own power.
2. Transport equipment costs for rental equipment that cannot be transported economically using its own power. No payment is made during transport for the transported equipment.
3. 15 percent markup.

If you want to return the equipment to a location other than its original location, the payment to move the equipment must not exceed the cost of returning the equipment to its original location. If you use the equipment for work other than work paid by force account, the transportation cost is included in the other work. Before moving or loading the equipment, obtain authorization for the equipment rental's original location. The Engineer determines rental costs:

1. Using rates in Labor Surcharge and Equipment Rental Rates:
 1.1. By classifying equipment using manufacturer's ratings and manufacturer-approved changes.
 1.2. Current during the work paid by force account.
 1.3. Regardless of equipment ownership; but the Department uses the rental document rates or minimum rental cost terms if:
 1.3.1. Rented from equipment business you do not own.
 1.3.2. The Labor Surcharge and Equipment Rental Rates hourly rate is $10.00 per hour or less.

2. Using rates established by the Engineer for equipment not listed in Labor Surcharge and Equipment Rental Rates. You may submit cost information that helps the Engineer establish the rental rate; but the Department uses the rental document rates or minimum rental cost terms if:

 2.1. Rented from equipment business you do not own.
 2.2. The Engineer establishes a rate of $10.00 per hour or less.

3. Using rates for transport equipment not exceeding the hourly rates charged by established haulers.

Equipment rental rates include the cost of:

1. Fuel
2. Oil
3. Lubrication
4. Supplies
5. Small tools that are not consumed by use
6. Necessary attachments
7. Repairs and maintenance
8. Depreciation
9. Storage
10. Insurance
11. Incidentals

The Department pays for small tools consumed by use. The Engineer determines payment for small tools consumed by use based on Contractor-submitted invoices.
9-1.03D(2) Equipment On the Job Site

For equipment on the job site at the time required to perform work paid by force account, the time paid is the time:

1. To move the equipment to the location of work paid by force account plus an equal amount of time to move the equipment to another location on the job site when the work paid by force account is completed
2. To load and unload equipment
3. Equipment is operated to perform work paid by force account and:
 3.1. Hourly rates are paid in 1/2-hour increments
 3.2. Daily rates are paid in 1/2-day increments

When rented equipment on the job site is used to perform work at force account not required by the original contract work, the Engineer may authorize rates in excess of those in Labor Surcharge and Equipment Rental Rates if:

1. You submit a request to use rented equipment
2. Equipment is not available from your owned equipment fleet or from your subcontractors
3. Rented equipment is from an independent rental company
4. Proposed equipment rental rate is reasonable
5. Engineer authorizes the equipment source and the rental rate before you use the equipment

The Department pays for fuel consumed during operation of rented equipment not included in the invoiced rental rate.

9-1.03D(3) Equipment Not On the Job Site Required for Original Contract Work

For equipment not on the job site at the time required to perform work paid by force account and required for original Contract work, the time paid is the time the equipment is operated to perform work paid by force account and the time to move the equipment to a location on the job site when the work paid by force account is completed.

The minimum total time paid is:

1. 1 day if daily rates are paid
2. 8 hours if hourly rates are paid

If daily rates are recorded, equipment:

1. Idled is paid as 1/2 day
2. Operated 4 hours or less is paid as 1/2 day
3. Operated 4 hours or more is paid as 1 day

If the minimum total time exceeds 8 hours and if hourly rates are listed, the Department rounds up hours operated to the nearest 1/2-hour increment and pays based on the following table. The table does not apply when equipment is not operated due to breakdowns; in which case rental hours are the hours the equipment was operated.

<table>
<thead>
<tr>
<th>Equipment Rental Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours operated</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>1.0</td>
</tr>
<tr>
<td>1.5</td>
</tr>
<tr>
<td>2.0</td>
</tr>
<tr>
<td>2.5</td>
</tr>
<tr>
<td>3.0</td>
</tr>
<tr>
<td>3.5</td>
</tr>
<tr>
<td>4.0</td>
</tr>
<tr>
<td>4.5</td>
</tr>
<tr>
<td>5.0</td>
</tr>
</tbody>
</table>
9-1.03D(4) Equipment Not On the Job Site Not Required for Original Contract Work

For equipment not on the job site at the time required to perform work paid by force account and not required for original Contract work, the time paid is the time:

1. To move the equipment to the location of work paid by force account plus an equal amount of time to return the equipment to its source when the work paid by force account is completed
2. To load and unload equipment
3. Equipment is operated to perform work paid by force account

For this equipment, the Engineer may authorize rates in excess of those in Labor Surcharge and Equipment Rental Rates subject to the following:

1. Equipment is not available from your normal sources or from one of your subcontractors
2. Proposed equipment rental rate is reasonable
3. Engineer authorizes the equipment source and the rental rate before you use the equipment

9-1.03D(5) Non-Owner-Operated Dump Truck Rental

Submit the rental rate for non-owner-operated dump truck rental. The Engineer determines the payment rate. Payment for non-owner-operated dump truck rental is for the cost of renting a dump truck, including its driver. For the purpose of markup payment only, the non-owner-operated dump truck is rental equipment and the owner is a subcontractor.

9-1.04 EXTRA WORK PERFORMED BY SPECIALISTS

If the Engineer determines that you or your subcontractors are not capable of performing specialty extra work, a specialist may be used. Itemize the labor, material, and equipment rental costs unless it is not the special service industry’s established practice to provide itemization; in which case, the Engineer accepts current market-priced invoices for the work.

The Engineer may accept an invoice as a specialist billing for work performed at an off-job site manufacturing plant or machine shop.

The Engineer determines the cost based on the specialist invoice price minus any available or offered discounts plus a 10 percent markup.

9-1.05 CHANGED QUANTITY PAYMENT ADJUSTMENTS

9-1.05A General

The unit prices specified in Section 9-1.05 are adjusted under Section 9-1.03, "Force Account."

9-1.05B Increases of More Than 25 Percent

If the total bid item quantity exceeds 125 percent of the quantity shown on the verified Bid Item List and if no approved Contract Change Order addresses payment for the quantity exceeding 125 percent, the Engineer may adjust the unit price for the excess quantity under Section 9-1.03, "Force Account," or the following:

1. The adjustment is the difference between the unit price and the unit cost of the total item pay quantity.
2. In determining the unit cost, the Engineer excludes the item’s fixed costs. You have recovered the fixed costs in the payment for 125 percent shown on the verified Bid Item List.
3. After excluding fixed costs, the Engineer determines the item unit cost under Section 9-1.03, "Force Account."

If the payment for the number of units of a bid item in excess of 125 percent of the verified Bid Item List is less than $5,000 at the unit price, the Engineer may not adjust the unit price unless you request it.
9-1.05C Decreases of More Than 25 Percent

If the total item pay quantity is less than 75 percent of the quantity shown on the verified Bid Item List and if no approved Contract Change Order addresses payment for the quantity less than 75 percent, you may request a unit price adjustment. The Engineer may adjust the unit price for the decreased quantity under Section 9-1.03, "Force Account" or the following:

1. The adjustment is the difference between the unit price and the unit cost of the total pay quantity.
2. In determining the unit cost, the Engineer includes the item's fixed costs.
3. After including fixed costs, the Engineer determines the item unit cost under Section 9-1.03, "Force Account."

The Department does not pay more than 75 percent of the item total in the verified Bid Item List.

9-1.05D Eliminated Items

If the Engineer eliminates an item, the Department pays your costs incurred before the Engineer's elimination notification date.

If you order authorized material for an eliminated item before the notification date and the order cannot be canceled, either of the following occurs:

1. If the material is returnable to the vendor, the Engineer orders you to return the material and the Department pays your handling costs and vendor charges.
2. The Department pays your cost for the material and its handling and becomes the material owner.

The Engineer determines the payment for the eliminated bid item under Section 9-1.03, "Force Account."

9-1.06 WORK-CHARACTER CHANGES

The Department adjusts a bid item unit price based on the difference between the cost to perform the work as planned and the cost to perform the work as changed. The Engineer determines the payment adjustment under Section 9-1.03, "Force Account." The Department adjusts payment for only the work portion that changed in character.

9-1.07 PROGRESS PAYMENTS

9-1.07A General

The Department pays you based on Engineer-prepared monthly progress estimates. Each estimate reflects:

1. Total work completed during the pay period
2. Extra work bills if:
 2.1. Submitted by the 15th of a month
 2.2. Approved by the 20th of a month
3. Amount for materials on hand
4. Amount earned for mobilization
5. Deductions
6. Withholds
7. Resolved potential claims
8. Payment adjustments

Submit certification stating the work complies with the QC procedures. The Engineer does not process a progress estimate without a signed certification.

You may protest a progress payment.

9-1.07B Schedule of Values

Section 9-1.07B applies to a lump sum bid item for which a schedule of values is specified to be submitted. The sum of the amounts for the work units listed in the schedule of values must equal the lump sum price bid for the bid item.

Obtain authorization of a schedule of values before you perform work shown on the schedule. The Department does not process a progress payment for the bid item without an authorized schedule of values.
Accept progress payments for overhead, profit, bond costs, and other fixed or administrative costs as distributed proportionally among the items listed except that for a contract with a bid item for mobilization, accept progress payments for bond costs as included in the mobilization bid item. For changed quantities of the work units listed, the Department adjusts payments in the same manner as specified for changed quantities of bid items under Section 9-1.05, "Changed Quantity Payment Adjustments."

9-1.07C Materials On Hand
A material on hand but not incorporated into the work is eligible for progress payment if:

1. Listed in a special provision as eligible and is in compliance with other Contract parts
2. Purchased
3. An invoice is submitted
4. Stored within the State and you submit evidence that the stored material is subject to the Department's control
5. Requested on the Department-furnished form

9-1.07D Mobilization
Mobilization is eligible for partial payments if the Contract includes a bid item for mobilization. The Department makes the partial payments under Pub Cont Code § 10264. If the Contract does not include a mobilization bid item, mobilization is included in the payment for the various bid items. The Department pays the item total for mobilization in excess of 10 percent of the total bid in the 1st payment after Contract acceptance.

9-1.07E Withholds
9-1.07E(1) General
The Department may withhold payment for noncompliance. The Department returns the noncompliance withhold in the progress payment following correction of noncompliance. Withholds are not retentions under Pub Cont Code § 7107 and do not accrue interest under Pub Cont Code § 10261.5. Withholds are cumulative and independent of deductions. Section 9-1.07E does not include all withholds that may be taken; the Department may withhold other payments as specified.

9-1.07E(2) Progress Withholds
The Department withholds 10 percent of a partial payment for noncompliant progress. Noncompliant progress occurs when:

1. Total days to date exceed 75 percent of the revised Contract working days
2. Percent of working days elapsed exceeds the percent of value of work completed by more than 15 percent

The Engineer determines the percent of working days elapsed by dividing the total days to date by the revised Contract working days and converting the quotient to a percentage. The Engineer determines the percent of value of work completed by summing payments made to date and the amount due on the current progress estimate, dividing this sum by the current total estimated value of the work, and converting the quotient to a percentage. These amounts are shown on the Progress Payment Voucher. When the percent of working days elapsed minus the percent of value of work completed is less than or equal to 15 percent, the Department returns the withhold in the next progress payment.

9-1.07E(3) Performance Failure Withholds
During each estimate period you fail to comply with a Contract part, including submittal of a document as specified, the Department withholds a part of the progress payment. The documents include QC plans, schedules, traffic control plans, and water pollution control submittals. For 1 performance failure, the Department withholds 25 percent of the progress payment but does not withhold more than 10 percent of the total bid. For multiple performance failures, the Department withholds 100 percent of the progress payment but does not withhold more than 10 percent of the total bid.
9-1.07E(4) Stop Notice Withholds
The Department may withhold payments to cover claims filed under Civ Code § 3179 et seq. Stop notice information may be obtained from the Office of External Accounts Payable, Division of Accounting.

9-1.07E(5) Penalty Withholds
Penalties include fines and damages that are proposed, assessed, or levied against you or the Department by a governmental agency or private lawsuit. Penalties are also payments made or costs incurred in settling alleged violations of federal, state, or local laws, regulations, requirements, or PLACs. The cost incurred may include the amount spent for mitigation or correcting a violation.

If you or the Department is assessed a penalty, the Department may withhold the penalty amount until the penalty disposition has been resolved. The Department may withhold penalty funds without notifying you.

Instead of the withhold, you may provide a bond equal to the highest estimated liability for any disputed penalties proposed.

9-1.07E(6)–9-1.07E(10) Reserved

9-1.07F Retentions
The Department does not retain moneys from progress payments due to the Contractor for work performed (Pub Cont Code § 7202).

9-1.07G–9-1.07K Reserved

9-1.08 PAYMENT AFTER CONTRACT ACCEPTANCE

9-1.08A General
Reserved

9-1.08B Payment Before Final Estimate
After Contract acceptance, the Department pays you based on the Engineer-prepared estimate that includes withholds and the balance due after deduction of previous payments.

9-1.08C Proposed Final Estimate
The Engineer estimates the amount of work completed and shows the amount payable in a proposed final estimate based on:

1. Contract items
2. Payment adjustments
3. Work paid by force account or agreed price
4. Extra work
5. Deductions

Submit either a written final estimate acceptance or a claim statement no later than the 30th day after receiving the proposed final estimate. Evidence of the Contractor's receipt of the final estimate and the Engineer's receipt of the Contractor's written acceptance or claim statement is a delivery service's proof of delivery or Engineer's written receipt if hand delivered.

If you claim that the final estimate is less than 90 percent of your total bid, the Department adjusts the final payment to cover your overhead. The adjustment is 10 percent of the difference between the total bid and the final estimate. The Department does not make this adjustment on a terminated contract.

9-1.08D Final Payment and Claims

9-1.08D(1) General
If you accept the proposed final estimate or do not submit a claim statement within 30 days of receiving the estimate, the Engineer furnishes the final estimate to you and the Department pays the amount due within 30 days. This final estimate and payment is conclusive except as specified in Sections 5-1.015, "Records," 6-1.075, "Guarantee," and 9-1.09, "Clerical Errors."
If you submit a claim statement within 30 days of receiving the Engineer's proposed final estimate, the Engineer furnishes a semifinal estimate to the Contractor and the Department pays the amount due within 30 days. The semifinal estimate is conclusive as to the amount of work completed and the amount payable except as affected by the claims or as specified in Sections 5-1.015, "Records," 6-1.075, "Guarantee," and 9-1.09, "Clerical Errors."

9-1.08D(2) Claim Statement

9-1.08D(2)(a) General

For each claim, submit a claim statement showing only the identification number that corresponds to the Full and Final Potential Claim Record and the final amount of additional payment requested except:

1. If the final amount of requested payment differs from the amount requested in the Full and Final Potential Claim Record
2. For a claim for quantities, withholds, deductions, liquidated damages, or change order bills
3. For an overhead claim

If the final amount of requested payment differs from the amount requested in the Full and Final Potential Claim Record, submit:

1. Identification number that corresponds to the Full and Final Potential Claim Record
2. Final amount of additional payment requested
3. Basis for the changed amount
4. Contract documentation that supports the changed amount
5. Statement of the reasons the Contract documentation supports the claim

The Engineer notifies you of an omission of or a disparity in the exclusive identification number. Within 15 days of the notification, correct the omission or disparity. If the omission or disparity is not resolved after the 15 days, the Engineer assigns a new number.

For a claim for quantities, withholds, deductions, or change order bills submit:

1. Final amount of additional payment requested
2. Enough detail to enable the Engineer to determine the basis and amounts of the additional payment requested

9-1.08D(2)(b) Overhead Claims

Include with an overhead claim:

1. Final amount of additional payment requested
2. Independent CPA audit report

Failure to submit the audit report with an overhead claim with the claim statement is a waiver of the overhead claim and operates as a bar to arbitration on the claim (Pub Cont Code § 10240.2).

The Department deducts an amount for field and home office overhead paid on added work from any claim for overhead. The value of the added work equals the value of the work completed minus the total bid. The home office overhead deduction equals 5 percent of the added work. The field office overhead deduction equals 5-1/2 percent of the added work.

If you intend to pursue a claim for reimbursement for field or home office overhead beyond that provided expressly by the Contract:

1. Notify the Engineer within 30 days of receipt of the proposed final estimate of your intent to seek reimbursement for specific overhead costs beyond that provided by the Contract
2. Specifically identify each claim and each date associated with each claim from which you seek reimbursement for specific overhead costs beyond that provided by the Contract
3. Timely submit all other claims
4. Within 30 days of receipt of the proposed final estimate, submit an audit report prepared by an independent CPA

4.1. The audit report must show calculations with supporting documentation of actual home office and project field overhead costs
4.2. The calculations must specify the actual daily rates for both field and home office overhead for the entire duration of the project expressed as a rate per working day.

4.3. The start and end dates of the actual project performance period, number of working days, overhead cost pools, and all allocation bases must be disclosed in the calculations of your actual field and home office overhead daily rates.

4.4. Neither daily rate may include a markup for profit.

5. Field overhead costs from which the daily rate is calculated must be:

5.2. Supported by reliable records.
5.3. Related solely to the project.
5.4. Incurred during the actual project performance period.
5.5. Comprised of only time-related field overhead costs.
5.6. Not a direct cost.

6. Home office overhead costs from which the daily rate is calculated must be:

6.2. Supported by reliable records.
6.3. Incurred during the actual project performance period.
6.4. Comprised of only fixed home office overhead costs.
6.5. Not a direct cost.

The actual rate of time-related overhead is subject to authorization by the Engineer.

The CPA’s audit must be performed under the Attestation Standards published by the American Institute of Certified Public Accountants. The CPA’s audit report must express an opinion whether or not your calculations of your actual field and home office overhead daily rates comply with Section 9-1.08D(2)(b), "Overhead Claims." The attest documentation prepared by the CPA in connection with the audit must be reproduced and submitted for review with the audit report.

The Department provides markups for all work paid by force account. Overhead for field and home office costs are included in the markups. Overhead claims in excess of Contract markups are not allowed under the Contract. If you seek reimbursement for costs not allowed under the Contract, the Department does not pay your cost of performing the independent CPA examination specified in section 9-1.08D(2)(b), "Overhead Claims," including preparation of the audit report.

9-1.08D(2)(c) Declaration
Submit a declaration that includes the following language with the claim statement:

I declare under penalty of perjury, according to the laws of the State of California, that the foregoing claims, with specific reference to the California False Claims Act (Gov't Code § 12650 et seq.) and to the extent the project contains federal funding, the U.S. False Claims Act (31 USC § 3729 et seq.), are true and correct, and that this declaration was signed on ______(date)_______, 20__ at ______________, California.

9-1.08D(2)(d) Waiver
A claim is waived if:

1. Claim does not have a corresponding Full and Final Potential Claim Record identification number.
2. Claim does not have the same nature, circumstances, and basis of claim as the corresponding Full and Final Potential Claim Record.
3. Claim is not included in the claim statement.
4. You do not comply with the claim procedures.
5. You do not submit the declaration specified in 9-1.08D(2)(c), "Declaration."

9-1.08D(3) Final Determination of Claims
Failure to allow timely access to claim supporting data when requested waives the claim.
The Department's costs in reviewing or auditing a claim not supported by the Contractor's accounting or other records are damages incurred by the State within the meaning of the California False Claims Act.

If the Engineer determines that a claim requires additional analysis, the Engineer schedules a board of review meeting. Meet with the board of review and make a presentation supporting the claim.

After claim review completion by the Engineer or board of review, the Department makes the final determination of claims and furnishes it to the Contractor.

After the determination, the Engineer furnishes a final estimate to the Contractor and the Department pays the amount due within 30 days. The final estimate is conclusive as to the amount of work completed and the amount payable except as specified in Sections 5-1.015, "Records," 6-1.075, "Guarantee," and 9-1.09, "Clerical Errors."

The Contractor's failure to comply with the claim procedures is a bar to arbitration under Pub Cont Code § 10240.2.

9-1.09 CLERICAL ERRORS

For 3 years after Contract acceptance, estimates and payments are open to correction and adjustment for clerical errors. Either the Department or the Contractor pays to the other the amount due except for clerical errors resulting in an adjustment less than $200; in which case, no payment is made.

9-1.10 ARBITRATION

Pub Cont Code § 10240 through 10240.13 provides for the resolution of contract claims by arbitration.

Start arbitration by filing a complaint with the Office of Administrative Hearings in Sacramento (1 CA Code Regs § 1350). File the arbitration complaint no later than 90 days after receiving the Department's final written decision on a claim (Pub Cont Code § 10240.1).

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECTION 10 DUST CONTROL

(Issued 02-06-09)

Replace Section 10 with:

SECTION 10 (BLANK)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECTION 11 MOBILIZATION

(Issued 06-05-09)

Replace Section 11 with:

SECTION 11 (BLANK)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECTION 12 CONSTRUCTION AREA TRAFFIC CONTROL DEVICES

(Issued 11-07-08)

In Section 12-1.01 in the 2nd paragraph, replace the 1st sentence with:

Attention is directed to Part 6 of the California MUTCD.
Replace Section 12-2.01 with:

12-2.01 FLAGGERS

Flaggers while on duty and assigned to traffic control or to give warning to the public that the highway is under construction and of any dangerous conditions to be encountered as a result thereof, shall perform their duties and shall be provided with the necessary equipment in conformance with Part 6 of the California MUTCD. The equipment shall be furnished and kept clean and in good repair by the Contractor at the Contractor's expense.

All flaggers shall wear safety apparel meeting the requirements of ANSI/ISEA 107-2004 for Class 2 or 3 garment and complying with 71 Fed Reg 67792.

In Section 12-3.01 replace the 1st paragraph with:

In addition to the requirements in Part 6 of the California MUTCD, all devices used by the Contractor in the performance of the work shall conform to the provisions in this Section 12-3.

In Section 12-3.06 in the 1st paragraph, replace the 2nd sentence with:

Construction area signs are shown in or referred to in Part 6 of the California MUTCD.

In Section 12-3.06 in the 4th paragraph, replace the 1st sentence with:

All construction area signs shall conform to the dimensions, color and legend requirements of the plans, Part 6 of the California MUTCD and these specifications.

In Section 12-3.06 in the 8th paragraph, replace the 1st sentence with:

Used signs with the specified sheeting material will be considered satisfactory if they conform to the requirements for visibility and legibility and the colors conform to the requirements in Part 6 of the California MUTCD.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECTION 14 (BLANK)
(Issued 06-01-11)

Replace Section 14 with:

SECTION 14 ENVIRONMENTAL STEWARDSHIP

14-1 GENERAL

Environmental stewardship includes both environmental compliance and environmental resource management.

If an ESA is shown on the plans:

1. The boundaries shown are approximate; the Department marks the exact boundaries on the ground
2. Do not enter the ESA unless authorized
3. If the ESA is breached, immediately:
 3.1. Secure the area and stop all operations within 60 feet of the ESA boundary
 3.2. Notify the Engineer
4. If the ESA is damaged, the Department determines what efforts are necessary to remedy the damage and who performs the remedy; you are responsible for remedies and charges.

14-2 CULTURAL RESOURCES

14-2.01 GENERAL

Reserved

14-2.02 ARCHAEOLOGICAL RESOURCES

If archaeological resources are discovered at the job site, do not disturb the resources and immediately:
1. Stop all work within a 60-foot radius of the discovery
2. Protect the discovery area
3. Notify the Engineer

The Department investigates. Do not move archaeological resources or take them from the job site. Do not resume work within the discovery area until authorized.

If, in the opinion of the Engineer, completion of the work is delayed or interfered with by reason of an archaeological find, or investigation or recovery of archeological materials, you will be compensated for resulting losses, and an extension of time will be granted, in the same manner as provided for in Section 8-1.09, "Right of Way Delays."

If ordered, furnish resources to assist in the investigation or recovery of archaeological resources. This work will be paid for as extra work as specified in Section 4-1.03D, "Extra Work."

14-2.03 ARCHAEOLOGICAL MONITORING AREA
Section 14-2.03 applies if an AMA is described in the Contract.

The Department assigns an archaeological monitor to monitor job site activities within the AMA. Do not work within the AMA unless the archeological monitor is present.

The Engineer and the Department archaeological monitor conduct an AMA location field review with you at least 5 business days before start of work. The Department marks the exact boundaries of the AMA on the ground.

If temporary fence (Type ESA) or other exclosure for an AMA is described in the Contract, install temporary fence (Type ESA) or other exclosure to define the boundaries of the AMA during the AMA location field review.

At least 5 business days before starting work within an AMA, submit a schedule of days and hours to be worked for the Engineer's approval. If you require changes in the schedule, submit an update for the Engineer's approval at least 5 business days before any changed work day.

If archaeological resources are discovered within an AMA, comply with Section 14-2.02, "Archaeological Resources."

14-2.04 HISTORIC STRUCTURES
Reserved

14-3 COMMUNITY IMPACTS AND ENVIRONMENTAL JUSTICE
Reserved

14-4 NATIVE AMERICAN CONCERNS
Reserved

14-5 AESTHETICS
Reserved

14-6 BIOLOGICAL RESOURCES

14-6.01 GENERAL
Reserved

14-6.02 BIRD PROTECTION

Protect migratory and nongame birds, their occupied nests, and their eggs.

The Department anticipates nesting or attempted nesting from February 15 to September 1.

The federal Migratory Bird Treaty Act, 16 USC § 703–711, and 50 CFR Pt 10 and Fish & Game Code §§ 3503, 3513, and 3800 protect migratory and nongame birds, their occupied nests, and their eggs.

The federal Endangered Species Act of 1973, 16 USC §§ 1531 and 1543, and the California Endangered Species Act, Fish & Game Code §§ 2050–2115.5, prohibit the take of listed species and protect occupied and unoccupied nests of threatened and endangered bird species.

The Bald and Golden Eagle Protection Act, 16 USC § 668, prohibits the destruction of bald and golden eagles and their occupied and unoccupied nests.

If migratory or nongame bird nests are discovered that may be adversely affected by construction activities or an injured or killed bird is found, immediately:
1. Stop all work within a 100-foot radius of the discovery.
2. Notify the Engineer.

The Department investigates. Do not resume work within the specified radius of the discovery until authorized.

When ordered, use exclusion devices, take nesting prevention measures, remove and dispose of partially constructed and unoccupied nests of migratory or nongame birds on a regular basis to prevent their occupation, or perform any combination of these. This work will be paid for as extra work as specified in Section 4-1.03D, "Extra Work."

Prevent nest materials from falling into waterways.

Bird protection that causes a delay to the controlling activity is a condition unfavorable to the suitable prosecution of work as specified in Section 8-1.05, "Temporary Suspension of Work."

14-7 PALEONTOLOGICAL RESOURCES

If paleontological resources are discovered at the job site, do not disturb the material and immediately:

1. Stop all work within a 60-foot radius of the discovery
2. Protect the area
3. Notify the Engineer

The Department investigates and modifies the dimensions of the protected area if necessary. Do not move paleontological resources or take them from the job site. Do not resume work within the specified radius of the discovery until authorized.

14-8 NOISE AND VIBRATION

14-8.01 GENERAL
Reserve

14-8.02 NOISE CONTROL

Do not exceed 86 dBA LMax at 50 feet from the job site activities from 9 p.m. to 6 a.m.

Equip an internal combustion engine with the manufacturer-recommended muffler. Do not operate an internal combustion engine on the job site without the appropriate muffler.

14-9 AIR QUALITY

14-9.01 AIR POLLUTION CONTROL

Comply with air pollution control rules, regulations, ordinances, and statutes that apply to work performed under the Contract, including air pollution control rules, regulations, ordinances, and statutes provided in Govt Code § 11017 (Pub Cont Code § 10231).

Do not burn material to be disposed of.

14-9.02 DUST CONTROL

Prevent and alleviate dust by applying water, dust palliative, or both under Section 14-9.01.

Apply water under Section 17, "Watering."

Apply dust palliative under Section 18,"Dust Palliative."

If ordered, apply water, dust palliative, or both to control dust caused by public traffic. This work will be paid for as extra work as specified in Section 4-1.03D, "Extra Work."

14-10 SOLID WASTE DISPOSAL AND RECYCLING

14-10.01 SOLID WASTE DISPOSAL AND RECYCLING

Submit an annual Solid Waste Disposal and Recycling Report between January 1 and 15 for each year work is performed under the Contract at any time during the previous calendar year. Show the types and amounts of project-generated solid waste taken to or diverted from landfills or reused on the project from January 1 through December 31 of the previous calendar year.

Submit a final annual Solid Waste Disposal and Recycling Report within 5 business days after Contract acceptance. Show the types and amounts of project-generated solid waste taken to or diverted from landfills or reused on the project from January 1 to Contract acceptance.

For each failure to submit a completed form, the Department withholds $10,000.
14-11 HAZARDOUS WASTE AND CONTAMINATION

14-11.01 GENERAL
Reserved

14-11.02 ASBESTOS AND HAZARDOUS SUBSTANCES
Upon discovery, immediately stop working in and notify the Engineer of areas where asbestos or a hazardous substance is present if the:

1. Contractor reasonably believes the substance is asbestos as defined in Labor Code § 6501.7 or a hazardous substance as defined in Health & Safety Code §§ 25316 and 25317
2. Presence is not described in the Contract
3. Substance has not been made harmless

14-12 OTHER INTERAGENCY RELATIONS
Reserved

14-13 PAYMENT
Payment for work specified in Section 14 is included in the payment for the bid items involved unless:

1. Bid item for the work is shown in the verified Bid Item List
2. Work is specified as paid for as extra work

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECTION 15 EXISTING HIGHWAY FACILITIES
(Issued 05-01-09)

In Section 15-1.02 replace the 1st paragraph with:
Existing facilities which are to remain in place shall be protected in conformance with the provisions in Sections 5-1.18, "Property and Facility Preservation," and 7-1.12, "Indemnification and Insurance."

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECTION 19 EARTHWORK
(Issued 09-16-11)

Replace Section 19-1.02 with:

19-1.02 (BLANK)

Replace Section 19-1.03 with:

19-1.03 GRADE TOLERANCE
Immediately prior to placing subsequent layers of material thereon, the grading plane shall conform to one of the following:

A. When hot mix asphalt is to be placed on the grading plane, the grading plane at any point shall not vary more than 0.05 foot above or below the grade established by the Engineer.
B. When subbase or base material to be placed on the grading plane is to be paid for by the ton, the grading plane at any point shall not vary more than 0.10 foot above or below the grade established by the Engineer.
C. When the material to be placed on the grading plane is to be paid for by the cubic yard, the grading plane at any point shall be not more than 0.05 foot above the grade established by the Engineer.
In Section 19-3.025C replace the 1st paragraph with:
Cementitious material used in soil cement bedding shall conform to the provisions in Section 90-2.01, "Cementitious Materials." Supplementary cementitious material will not be required.

In Section 19-3.025C replace the 4th paragraph with:
The aggregate, cementitious material, and water shall be proportioned either by weight or by volume. Soil cement bedding shall contain not less than 282 pounds of cementitious material per cubic yard. The water content shall be sufficient to produce a fluid, workable mix that will flow and can be pumped without segregation of the aggregate while being placed.

In Section 19-3.06 replace the 9th paragraph with:
Unless otherwise shown on the plans or specified in these specifications or the special provisions, material for structure backfill to be compacted to a relative compaction of not less than 90 percent, except material to be placed behind retaining walls, shall consist of material free of rocks, broken concrete, other solid material exceeding 3 inches in greatest dimension, or organic or other unsatisfactory material.

In Section 19-3.062 replace the 1st paragraph with:
Slurry cement backfill shall consist of a fluid, workable mixture of aggregate, cementitious material, and water.

In Section 19-3.062 replace the 5th paragraph with:
Cementitious material shall conform to the provisions in Section 90-2.01, "Cementitious Materials." Supplementary cementitious material will not be required.

In Section 19-3.062 replace the 8th paragraph with:
The aggregate, cementitious material, and water shall be proportioned either by weight or by volume. Slurry cement backfill shall contain not less than 188 pounds of cementitious material per cubic yard. The water content shall be sufficient to produce a fluid, workable mix that will flow and can be pumped without segregation of the aggregate while being placed.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECTION 20 EROSION CONTROL AND HIGHWAY PLANTING
(issued 04-20-12)

Replace Section 20-2.03 with:

20-2.03 SOIL AMENDMENT
Soil amendment must comply with the Food & Agri Code.

In Section 20-2.10 delete the 8th, 9th, and 10th paragraphs.

In Section 20-3.04A delete the last paragraph.

In Section 20-4.026 replace the 3rd paragraph with:
Oil or pelleted forms of pesticides for weed control shall not be used.

Contract No. 08-0M94U4
95 of 290
Replace Section 20-4.055 with:

20-4.055 PRUNING

Prune plants under ANSI A300 (Part 1) published by the Tree Care Industry Association.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECTION 24 LIME STABILIZATION

(Issued 06-05-09)

Replace Section 24 with:

SECTION 24 LIME STABILIZED SOIL

24-1.01 GENERAL

24-1.01A Summary
Section 24 includes specifications for stabilizing soil by mixing lime and water with soil and compacting the mixture to the specified dimensions.

24-1.01B Definitions
lime: Quicklime made from high-calcium or dolomitic sources specified under ASTM C 51. For high-calcium quicklime, the calcium oxide content must be greater than 90 percent. For dolomitic quicklime, the calcium oxide content must be greater than 55 percent and the combined calcium oxide and magnesium oxide content must be greater than 90 percent.

mellowing period: The time between the initial and final mixing to promote initial chemical reactions between lime, water, and soil.

24-1.01C Submittals
From 30 to 180 days before use, submit one 10-pound sample of each lime product proposed and from each source.

Submit lime samples in airtight containers under ASTM C 50. Mark the sample date on the container. Include the MSDS and chemical and physical analysis with the submittal.

With the lime samples, submit a Certificate of Compliance from the pre-qualified lime source under Section 6-1.07, "Certificates of Compliance," with a statement certifying the lime furnished is the same as that pre-qualified.

Fifteen days before starting soil stabilization activities, submit for the Engineer's approval a laboratory to perform quality control tests. The laboratory must be qualified under the Department's Independent Assurance Program.

Before you apply lime in slurry form, submit the slurry's lime content for Engineer's approval 25 days before application.

Before performing quality control sampling and testing, submit the time and location the sampling and testing will occur. Submit quality control testing results within 24 hours of receiving the results.

Submit a weighmaster certificate or bill of lading with each load of lime delivered to the jobsite.

24-1.01D Quality Control and Assurance

General
Perform quality control testing in the presence of the Engineer.

Place unique, sequentially numbered lock seals on each load and affix them to trailer blow down valves that are locked open. The bill of lading for each lime delivery must have that specific lock seal number legibly and visibly imprinted.

The Engineer samples each lime delivery truck at the job site and randomly tests them off-site.

Pre-qualification of Lime Sources
Lime sources must be listed on the Department's pre-qualified products list. The list is available at the METS web site.

The pre-qualified list for lime sources describes the application procedures for inclusion on the list.
Preparing Soil

After you prepare an area for lime soil stabilization, test the soil to be stabilized every 500 cubic yards for relative compaction under California Test 231 and moisture content under California Test 226, and verify the surface grades.

Applying Lime

The Engineer determines the final application rate for each lime product proposed from the samples submitted. If the soil being stabilized changes, the Engineer changes the application rate. Based on California Test 373, the Engineer reports the application rates as the percent of lime by dry weight of soil. The Engineer provides the optimum moisture content determined under California Test 373 for each application rate.

Before applying lime, measure the temperature at the ground surface.

If lime in dry form is used, the Engineer verifies the application rate using the drop pan method once per 40,000 square feet stabilized, or twice per day, whichever is greater.

If lime in slurry form is used, report the quantity of slurry placed by measuring the volume of slurry in the holding tank once per 40,000 square feet stabilized, or twice per day, whichever is greater.

Mixing

For each day of initial mixing, test the moisture content. Sample the material immediately after initial mixing. Randomly test the adequacy of the final mixing with a phenolphthalein indicator solution. During mixing operations, measure the ground temperature at full mixing depth.

After mixing and before compacting, determine maximum density under California Test 216 from composite samples of the mixed material and at each distinct change in material. Test the moisture content of the mixed material under California Test 226. Test the gradation for compliance with "Materials."

Compaction

Test relative compaction on a wet weight basis.

After initial compaction, determine in-place density under California Test 231 and moisture content under California Test 226 at the same locations. The testing frequency must be 1 test per 250 cubic yards of lime stabilized soil. Test in 0.50-foot depth intervals.

Before requesting to compact material in layers greater than 0.50 foot, construct a test strip in the production area and demonstrate the test strip passes compaction tests using the proposed thickness. The test strip must contain no more material than 1 day's production. The Engineer tests at not more than 0.50-foot depth intervals regardless of the thickness of your layers.

Construct test pads by scraping away material to the depth ordered by the Engineer. If a compaction test fails corrective action must include the layers of material already placed above the test pad elevation.

Finish Grading

Do not proceed with construction activities for subsequent layers of material until the Engineer verifies the final grades of the lime stabilized soil.

Dispute Resolution

You and the Engineer must work together to avoid potential conflicts and to resolve disputes regarding test result discrepancies. Notify the Engineer within 5 days of receiving a test result if you dispute the test result.

If you or the Engineer dispute each other's test results, submit written quality control test results and copies of paperwork including worksheets used to determine the disputed test results to the Engineer. An Independent Third Party (ITP) performs referee testing. Before the ITP participates in a dispute resolution, the ITP must be accredited under the Department's Independent Assurance Program. The ITP must be independent of the project. By mutual agreement, the ITP is chosen from:

1. A Department laboratory
2. A Department laboratory in a district or region not in the district or region the project is located
3. The Transportation Laboratory
4. A laboratory not currently employed by you or your lime producer

If split quality control or acceptance samples are not available, the ITP uses any available material representing the disputed material for evaluation.
24-1.02 MATERIALS

24-1.02A Lime

Lime must comply with ASTM C 977 and the following:

<table>
<thead>
<tr>
<th>Quality Characteristic</th>
<th>ASTM</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available Calcium and Magnesium Oxide (min., %)</td>
<td>C 25*</td>
<td>High Calcium Quicklime: CaO > 90</td>
</tr>
<tr>
<td></td>
<td>C 25</td>
<td>Dolomitic Quicklime: CaO > 55 and CaO + MgO > 90</td>
</tr>
<tr>
<td>Loss on ignition (max., %)</td>
<td>C 25</td>
<td>7 (total loss)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 (carbon dioxide)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 (free moisture)</td>
</tr>
<tr>
<td>Slaking rate</td>
<td>C 110</td>
<td>30 °C rise in 8 minutes</td>
</tr>
</tbody>
</table>

Notes:
* You may use ASTM C25 or ASTM C1301 and ASTM C1271.

A 0.5-pound sample of lime dry-sieved in a mechanical sieve shaker for 10 minutes ±30 seconds must comply with:

<table>
<thead>
<tr>
<th>Sieve Sizes</th>
<th>Percentage Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8-inch</td>
<td>98-100</td>
</tr>
</tbody>
</table>

Slurry must:

1. Be free of contaminants
2. Contain at least the minimum dry solids
3. Have uniform consistency

If you prepare lime slurry, prepare it at the jobsite.

24-1.02B Water

If available, use potable water. Inform the Engineer if a water source other than potable water is used. If not using potable water, water for mixing soil and lime must:

1. Contain no more than 650 parts per million of chlorides as Cl, and no more than 1,300 parts per million of sulfates as SO4
2. Not contain an amount of impurities that will cause a reduction in the strength of the stabilize soil

24-1.02C Mixed Material

Take a composite sample from 5 random locations after initial mixing. The moisture content of the composite sample tested under California Test 226 must be a minimum of 3 percent greater than optimum. Determine the moisture versus density relationship of the composite sample material determined under California Test 216, except Part 2, Section E, Paragraph 6 is modified as follows:

After adjustment of the moisture content, compact each of the remaining test specimens in the mold, then record the water adjustment, tamper reading, and the corresponding adjusted wet density from the chart on
Table 1 using the column corresponding to the actual wet weight of the test specimen compacted. Note each of these wet weights on Line I.

The mixed material before compaction excluding rock must comply with:

<table>
<thead>
<tr>
<th>Sieve Sizes</th>
<th>Percentage Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1”</td>
<td>98 - 100</td>
</tr>
<tr>
<td>No. 4</td>
<td>60 - 100</td>
</tr>
</tbody>
</table>

24-1.02D Curing Treatment
Curing treatment may be any of the following:

1. Water cure
2. Curing seal
3. Moist material blanket

Curing seal must be SS or CSS grade asphaltic emulsion under Section 94, "Asphaltic Emulsions."

24-1.03 CONSTRUCTION

24-1.03A General
If using different types of lime or lime from more than one source, do not mix them. The Engineer determines separate application rates.

Deliver lime in full loads unless it is the last load needed for a work shift.

Apply lime at ground temperatures above 35 °F. Do not apply lime if you expect the ground temperature to drop below 35 °F before you complete mixing and compacting.

During mixing, maintain the in-place moisture of the soil to be stabilized a minimum 3 percent above the optimum moisture determined under California Test 216 as modified in "Mixed Material." During compaction and finish grading, add water to the surface to prevent drying until the next layer of mixed material is placed, or until you apply curing treatment.

Scarify the surface of lime stabilized soil at least 2 inches between each layer. Do not scarify the final surface of the lime stabilized soil.

Between the time of applying lime and 3 days after applying curing treatment, only allow equipment or vehicles on the soil being stabilized that are essential to the work.

24-1.03B Preparing Soil

Except for soil clods, remove rocks or solids larger than 1/3 of the layer thickness. Regardless of the layer thickness, remove rocks and solids greater than 4 inches. Notify the Engineer if you encounter rocks or solids greater than 1/3 of the layer thickness.

Before adding lime, place the soil to be stabilized to within 0.08 foot of the specified lines and grades and compact to not less than 90 percent relative compaction.

24-1.03C Applying Lime

Apply lime uniformly over the area to be stabilized using a vane spreader.

The Engineer determines the final application rate. Do not vary from this application rate by more than 5 percent.

Apply lime in dry form. If you request and the Engineer approves, you may apply lime in slurry form.

Lime slurry must be in suspension during application. Apply lime slurry uniformly making successive passes over a measured section or roadway until the specified lime content is reached. Apply the residue from lime slurry over the length of the roadway being processed.

24-1.03D Mixing

Lime and soil to be stabilized must be mixed uniformly at least twice to within 0.10 foot of the specified depth at any point. If the mixing depth exceeds the specified depth by more than 10 percent, add lime in proportion to the exceeded depth. The Department does not pay for this added lime.

Mix lime on the same day it is applied. After the initial mixing, allow a mellowing period for at least 36 hours before final mixing. Moisture content during the mellowing period determined under California Test 226 must be at
least 3 percent higher than the optimum moisture content. You may add water and mix during the mellowing period.

Remix until the mixture is uniform with no streaks or pockets of lime.

Except for clods larger than 1 inch, mixed material must have a color reaction with sprayed phenolphthalein alcohol indicator solution.

Complete all the mixing work within 7 days of the initial application of lime.

24-1.03E Compaction

Begin compacting immediately after final mixing, but not less than 36 hours after the beginning of initial mixing.

Compact by using sheepsfoot or segmented wheel rollers immediately followed by steel drum or pneumatic-tired rollers. Do not use vibratory rollers.

If you request and the Engineer approves, you may compact mixed material in layers greater than 0.50 foot.

If the specified thickness is 0.50 foot or less, compact in one layer. If the specified thickness is more than 0.50 foot, compact in 2 or more layers of approximately equal thickness. The maximum compacted thickness of any one layer must not exceed 0.50 foot unless you first demonstrate your equipment and methods provide uniform distribution of lime and achieve the specified compaction.

Use other compaction methods in areas inaccessible to rollers.

Compact the lime stabilized soil to at least 95 percent relative compaction determined under California Test 216 as modified under "Mixed Material." The relative compaction is determined on a wet weight basis.

24-1.03F Finish Grading

Maintain the moisture content of the lime stabilized soil through the entire finish grading operation at a minimum of 3 percent above optimum moisture content.

The finished surface of the lime stabilized soil must not vary more than 0.08 foot above or below the grade established by the Engineer unless the lime stabilized soil is to be covered by material paid for by the cubic yard, in which case the finished surface may not vary above the grade established by the Engineer.

If lime stabilized soil is above the allowable tolerance, trim, remove, and dispose of the excess material. Do not leave loose material on the finished surface. If finish rolling cannot be completed within 2 hours of trimming, defer trimming.

If lime stabilized soil is below the allowable tolerance, you may use trimmed material to fill low areas only if final grading and final compaction occurs within 48 hours of beginning initial compaction. Before placing trimmed material, scarify the surface of the area to be filled at least 2 inches deep.

Finish rolling of trimmed surfaces must be performed with at least 1 complete coverage with steel drum or pneumatic-tired rollers.

24-1.03G Curing

General

Choose the method of curing.

Apply the chosen cure method within 48 hours of completing the sheepsfoot or segmented wheel compaction. Apply the chosen cure method within the same day of any trimming and finish grading.

Water Cure

Water may be used to cure the finished surface before you place a moist material blanket, or apply curing seal. Keep the surface above the optimum moisture content of the lime stabilized soil. Use this method for no more than 3 days, after which you must place a curing seal or moist material blanket.

Curing Seal

Curing seal equipment must have a gage indicating the volume of curing seal in the storage tank.

If curing seal is used, apply it:

1. To the finished surface of lime stabilized soil under Section 94-1.06, "Applying," of the Standard Specifications
2. At a rate from 0.10 to 0.20 gallon per square yard. The Engineer determines the exact rate
3. When the lime stabilized soil is at optimum moisture
4. When the ambient temperature is above 40 °F and rising
Repair damaged curing seal the same day the damage occurs.

Moist Material Blanket

Moist material blanket consists of moist structural material. Moist material blanket may be a temporary or permanent layer of material of sufficient thickness to prevent drying of the lime stabilized soil. You may use moist material blanket if the lime stabilized soil can bear the weight of construction equipment. Maintain the moist material blanket above the optimum moisture content, as appropriate, until the next structural layer is placed.

24-1.04 MEASUREMENT AND PAYMENT

Lime stabilized soil is measured by the square yard determined from horizontal measurements of the planned surface of the lime stabilized soil.

Curing seal is measured under Section 94, "Asphaltic Emulsions." The amount of curing seal used is determined from the gauge specified for the curing equipment.

The contract item prices for the work involved with lime stabilized soil are paid:

1. Per square yard for lime stabilized soil
2. Per ton for lime
3. Per ton for asphaltic emulsion (curing seal)

Payment for the contract items involved with lime stabilized soil includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in constructing the lime stabilized soil, complete in place, as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer.

The Department does not adjust payment for lime.

Quantities of lime wasted or disposed of in a manner not specified, or remaining on hand after completion of the work, will not be paid for. If you use a partial load of lime, weigh the truck and the remaining lime on a scale under Section 9-1.01, "Measurement of Quantities," and submit a weighmaster certificate to the Engineer.

Full compensation for preparing soil to be stabilized is included in the contract price paid per square yard for lime stabilized soil, and no separate payment is made therefor, except removing and disposing of rocks and solids larger 1/3 of the layer thickness and larger than 4 inches from native soil or embankment other than imported borrow is paid for as extra work as provided in Section 4-1.03D, "Extra Work." Removing and disposing of rocks and solids larger than 1/3 of the lift thickness and larger than 4 inches from imported borrow is at your expense.

Full compensation for mixing, compacting, and maintaining the moisture content of the lime stabilized soil is included in the contract price paid per square yard for lime stabilized soil, and no separate payment is made therefor.

Full compensation for applying lime is included in the contract price paid per ton for lime, and no additional compensation is allowed therefor.

If the dispute resolution ITP determines the Engineer's test results are correct, the Engineer deducts the ITP's testing costs from payments. If the ITP determines your test results are correct, the State pays the ITP testing costs.

^^

SECTION 25 AGGREGATE SUBBASES

(Issued 02-16-07)

In Section 25-1.02A replace the 1st paragraph with:

Aggregate must be clean and free from organic matter and other deleterious substances. Aggregate must consist of any combination of:

1. Broken stone
2. Crushed gravel
3. Natural rough surfaced gravel
4. Sand
5. Up to 100 percent of any combination of processed:

5.1. Asphalt concrete
5.2. Portland cement concrete
5.3. Lean concrete base
5.4. Cement treated base

Replace Section 25-1.02B with:

25-1.02B Class 4 Aggregate Subbase
Aggregate must be clean and free from organic matter and other deleterious substances. Aggregate must consist of any combination of:

1. Broken stone
2. Crushed gravel
3. Natural rough surfaced gravel
4. Sand
5. Up to 100 percent of any combination of processed:

5.1. Asphalt concrete
5.2. Portland cement concrete
5.3. Lean concrete base
5.4. Cement treated base

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECTION 26 AGGREGATE BASES
(Issued 02-16-07)

In Section 26-1.02A replace the 1st paragraph with:

Aggregate must be clean and free from organic matter and other deleterious substances. Aggregate must consist of any combination of:

1. Broken stone
2. Crushed gravel
3. Natural rough surfaced gravel
4. Sand
5. Up to 100 percent of any combination of processed:

5.1. Asphalt concrete
5.2. Portland cement concrete
5.3. Lean concrete base
5.4. Cement treated base

In Section 26-1.02B replace the 1st paragraph with:

Aggregate must be clean and free from organic matter and other deleterious substances. Aggregate must consist of any combination of:

1. Broken stone
2. Crushed gravel
3. Natural rough surfaced gravel
4. Sand
5. Up to 100 percent of any combination of processed:

5.1. Asphalt concrete
5.2. Portland cement concrete
5.3. Lean concrete base
5.4. Cement treated base

SECTION 27 CEMENT TREATED BASES
(Issued 07-31-07)

In Section 27-1.02 replace the 1st paragraph with:
Cement shall be Type II portland cement conforming to the provisions in Section 90-2.01A, "Cement."

In Section 27-1.02 replace the 3rd paragraph with:
Aggregate for use in Class A cement treated base shall be of such quality that when mixed with cement in an amount not to exceed 5 percent by weight of the dry aggregate and compacted at optimum moisture content, the compressive strength of a sample of the compacted mixture shall not be less than 750 pounds per square inch at 7 days, when tested by California Test 312.

In Section 27-1.02 replace the 4th paragraph with:
Aggregate for use in Class B cement treated base shall have a Resistance (R-value) of not less than 60 before mixing with cement and a Resistance (R-value) of not less than 80 after mixing with cement in an amount not to exceed 2.5 percent by weight of the dry aggregate.

In Section 27-1.07 replace the 9th paragraph with:
When surfacing material is hot mix asphalt, the low areas shall be filled with hot mix asphalt conforming to the requirements for the lowest layer of hot mix asphalt to be placed as surfacing. This filling shall be done as a separate operation prior to placing the lowest layer of surfacing, and full compensation for this filling will be considered as included in the contract price paid for cement treated base and no additional compensation will be allowed therefor.

SECTION 28 LEAN CONCRETE BASE
(Issued 05-15-09)

In Section 28-1.02 replace the 1st paragraph with:
Cement shall be Type II portland cement conforming to the provisions in Section 90-2.01A, "Cement."

In Section 28-1.02 replace the 6th paragraph with:
Aggregate shall be of such quality that, when mixed with cement in an amount not to exceed 300 pounds per cubic yard, and tested in conformance with the requirements in California Test 548, the compressive strength of a sample will be not less than 700 pounds per square inch at 7 days.

Replace Section 28-1.05 with:
Placing of lean concrete base shall conform to the provisions for placing concrete pavement in Section 40-3.04, "Placing Concrete," except that the third paragraph in Section 40-3.04A, "General," shall not apply.

Unless otherwise required by the plans or the special provisions, lean concrete base shall be constructed in not less than 12-foot widths separated by construction joints. Lean concrete base constructed monolithically in widths greater than 26 feet shall be constructed with a longitudinal contraction joint offset not more than 3 feet from the centerline of the width being constructed.

Longitudinal contraction joints in lean concrete base shall be constructed in conformance with the provisions in Section 40-3.08E, "Sawing Method."
When concrete pavement is to be placed over lean concrete base, longitudinal construction joints and longitudinal contraction joints in the lean concrete base shall not be within one foot of planned longitudinal contraction joints nor longitudinal construction joints in the concrete pavement.

Lean concrete base shall not be mixed nor placed while the atmospheric temperature is below 35 °F, and shall not be placed on frozen ground.

**In Section 28-1.06 replace the 1st and 2nd paragraphs with:**

Lean concrete base shall be spread, compacted, and shaped in conformance with the provisions in Section 40-3.04D, "Stationary Side Form Construction," and Section 40-3.04E, "Slip-Form Construction."

In advance of curing operations, lean concrete base to be surfaced with hot mix asphalt shall be textured with a drag strip of burlap, a broom or a spring steel tine device which will produce scoring in the finished surface. The scoring shall be parallel with the centerline or transverse thereto. The operation shall be performed at a time and in a manner to produce the coarsest texture practical for the method used.

**In Section 28-1.08 replace the 2nd paragraph with:**

Hardened lean concrete base with a surface lower than 0.05 foot below the grade established by the Engineer shall be removed and replaced with lean concrete base which complies with these specifications, or if permitted by the Engineer, the low areas shall be filled with pavement material as follows:

1. When pavement material is hot mix asphalt, the low areas shall be filled with hot mix asphalt conforming to the requirements for the lowest layer of hot mix asphalt to be placed as pavement. This shall be done as a separate operation prior to placing the lowest layer of pavement, and full compensation for this filling will be considered as included in the contract price paid per cubic yard for lean concrete base and no additional compensation will be allowed therefor.
2. When pavement material is portland cement concrete, the low areas shall be filled with pavement concrete at the time and in the same operation that the pavement is placed. Full compensation for this filling will be considered as included in the contract price paid per cubic yard for lean concrete base and no additional compensation will be allowed therefor.

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

**SECTION 29 TREATED PERMEABLE BASES**

(Issued 05-15-09)

**In Section 29-1.02B replace the 2nd paragraph with:**

Cement shall be Type II portland cement conforming to the provisions in Section 90-2.01A, "Cement."

**In Section 29-1.04A replace the 1st paragraph with:**

Aggregates and asphalt for asphalt treated permeable base shall be stored, proportioned and mixed in the same manner provided for storing, proportioning and mixing aggregates and asphalt for hot mix asphalt in Section 39-1.08, "Production," except as follows:

1. The aggregate need not be separated into sizes.
2. The temperature of the aggregate before adding the asphalt binder shall be not less than 275° F nor more than 325° F.
3. Asphalt treated permeable base stored in excess of 2 hours shall not be used in the work.
4. The aggregate shall be combined with 2.5 percent paving asphalt by weight of the dry aggregate. After testing samples of the Contractor's proposed aggregate supply, the Engineer may order an increase or decrease in the asphalt content. If an increase or decrease is ordered, and the increase or decrease exceeds the specified amount by more than 0.1 percent by weight of the dry aggregate, the compensation payable to the Contractor for the asphalt treated permeable base will be increased or decreased on the basis of the total increase or decrease in asphalt.
5. The asphalt content of the asphalt mixture will be determined, at the option of the Engineer, by extraction tests in conformance with the requirements in California Test 310 or 362, or will be determined in conformance with the requirements in California Test 379. The bitumen ratio pounds of asphalt per 100 pounds of dry aggregate shall not vary by more than 0.5 pound of asphalt above or 0.5 pound of asphalt below the amount designated by the Engineer. Compliance with this requirement will be determined either by taking samples from trucks at the plant or from the mat behind the paver before rolling. If the sample is taken from the mat behind the paver, the bitumen ratio shall be not less than the amount designated by the Engineer, less 0.7 pound of asphalt per 100 pounds of dry aggregate.

In Section 29-1.04B replace the 2nd paragraph with:
Cement treated permeable base shall contain not less than 287 pounds of cement per cubic yard.

In Section 29-1.05 replace the 1st paragraph with:
Asphalt treated permeable base shall be spread and compacted as specified for hot mix asphalt under the "Method" construction process in Section 39, "Hot Mix Asphalt," and these specifications.

In Section 29-1.05 in the 8th paragraph, replace the 2nd sentence with:
The filter fabric shall conform to the provisions in Section 88-1.02, "Filtration," and shall be placed in conformance with the provisions for placing filter fabric for edge drains in Section 68-3.03, "Installation."

In Section 29-1.06 replace the 1st and 2nd paragraphs with:
Cement treated base shall be placed, spread, compacted, and shaped in conformance with the provisions in Section 40-3.04D, "Stationary Side Form Construction," and Section 40-3.04E, "Slip-Form Construction," except that vibrators shall not be used and the third paragraph in Section 40-3.04A, "General," shall not apply.

In Section 29-1.06 in the 9th paragraph, replace the 2nd sentence with:
The filter fabric shall conform to the provisions in Section 88-1.02, "Filtration," and shall be placed in conformance with the provisions for placing filter fabric for edge drains in Section 68-3.03, "Installation."

In Section 29-1.07 replace the 2nd paragraph with:
Hardened treated permeable base with a surface lower than 0.05 foot below the grade established by the Engineer shall be removed and replaced with treated permeable base which complies with these specifications, or if permitted by the Engineer, the low areas shall be filled with pavement material as follows:

1. When pavement material is hot mix asphalt, the low areas shall be filled with hot mix asphalt conforming to the requirements for the lowest layer of hot mix asphalt to be placed as pavement. This shall be done as a separate operation prior to placing the lowest layer of pavement.
2. When pavement material is portland cement concrete, the low areas shall be filled with pavement concrete at the time and in the same operation in which the pavement is placed.
3. Full compensation for filling low areas will be considered as included in the contract price paid per cubic yard for treated permeable base and no additional compensation will be allowed therefor.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECTION 37 BITUMINOUS SEALS
(Issued 06-05-09)

In Section 37-1.03 replace the 4th through 6th paragraphs with:
On 2-lane two-way roadways, W8-7 "LOOSE GRAVEL" signs and W13-1 (35) speed advisory signs shall be furnished and placed adjacent to both sides of the traveled way where screenings are being spread on a traffic lane.
The first W8-7 sign in each direction shall be placed where traffic first encounters loose screenings, regardless of which lane the screenings are being spread on. The W13-1 (35) signs need not be placed in those areas with posted speed limits of less than 40 MPH. The signs shall be placed at maximum 2,000-foot intervals along each side of the traveled way and at public roads or streets entering the seal coat area as directed by the Engineer.

On multiline roadways (freeways, expressways and multilane conventional highways) where screenings are being spread on a traffic lane, W8-7 "LOOSE GRAVEL" signs and W13-1 (35) speed advisory signs shall be furnished and placed adjacent to the outside edge of the traveled way nearest to the lane being worked on. The first W8-7 sign shall be placed where the screenings begin with respect to the direction of travel on that lane. The W13-1 (35) signs need not be placed in those areas with posted speed limits of less than 40 MPH. The signs shall be placed at maximum 2,000-foot intervals along the edge of traveled way and at on-ramps, public roads or streets entering the seal coat area as directed by the Engineer.

The W8-7 and W13-1 signs shall be maintained in place at each location until final brooming of the seal coat surface at that location is completed. The W8-7 and W13-1 signs shall conform to the provisions for construction area signs in Section 12, "Construction Area Traffic Control Devices." The signs may be set on temporary portable supports with the W13-1 below the W8-7 or on barricades with the W13-1 sign alternating with the W8-7 sign.

In Section 37-1.07 replace the 2nd paragraph with:

Rollers shall be oscillating type pneumatic-tired rollers. A minimum of 2 pneumatic-tired rollers conforming to the provisions in Section 39-3.03 "Spreading and Compacting Equipment," shall be furnished.

In Section 37-1.09 replace the 2nd paragraph with:

The above prices and payments shall include full compensation for furnishing all labor, materials, tools, equipment and incidentals, and for doing all the work involved in applying seal coat, complete in place, including furnishing, placing, maintaining, and removing W8-7 and W13-1 signs, when required, and temporary supports or barricades for the signs, as shown on the plans, and as specified in these specifications and the special provisions, and as directed by the Engineer.

In Section 37-2.05 replace the 6th paragraph with:

In addition to conforming to the provisions in Section 5-1.10, "Equipment," the identifying number of mixer-spreader trucks shall be at least 2 inches in height, located on the front and rear of the vehicle.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECTION 39 ASPHALT CONCRETE
(issued 04-20-12)

Replace Section 39 with:

SECTION 39 HOT MIX ASPHALT

39-1 GENERAL

39-1.01 DESCRIPTION

Section 39 includes specifications for producing and placing hot mix asphalt (HMA) by mixing aggregate and asphalt binder at a mixing plant and spreading and compacting the HMA mixture.

The special provisions specify one or more types of HMA, including:

1. Type A
2. Type B
3. Open graded friction course (OGFC). OGFC includes hot mix asphalt (open graded)[HMA-O], rubberized hot mix asphalt (open graded) [RHMA-O] and rubberized hot mix asphalt (open graded high binder) [RHMA-O-HB]
4. Rubberized hot mix asphalt (gap graded) [RHMA-G]

The special provisions specify the HMA construction process, including:

1. Standard
2. Method
3. Quality Control / Quality Assurance (QC / QA)

39-1.02 MATERIALS

39-1.02A Geosynthetic Pavement Interlayer

Geosynthetic pavement interlayer must comply with the specifications for pavement fabric, paving mat, paving grid, paving geocomposite grid, or geocomposite strip membrane in Section 88-1.07, "Pavement Interlayer."

39-1.02B Tack Coat

Tack coat must comply with the specifications for asphaltic emulsion in Section 94, "Asphaltic Emulsion," or asphalt binder in Section 92, "Asphalts." Choose the type and grade.

Notify the Engineer if you dilute asphaltic emulsion with water. The weight ratio of added water to asphaltic emulsion must not exceed 1 to 1.

Measure added water either by weight or volume in compliance with the specifications for weighing, measuring, and metering devices under Section 9-1.01, "Measurement of Quantities," or you may use water meters from water districts, cities, or counties. If you measure water by volume, apply a conversion factor to determine the correct weight.

With each dilution, submit in writing:

1. The weight ratio of water to bituminous material in the original asphaltic emulsion
2. The weight of asphaltic emulsion before diluting
3. The weight of added water
4. The final dilution weight ratio of water to asphaltic emulsion

39-1.02C Asphalt Binder

Asphalt binder in HMA must comply with Section 92, "Asphalts," or Section 39-1.02D, "Asphalt Rubber Binder." The special provisions specify the grade.

Asphalt binder for geosynthetic pavement interlayer must comply with Section 92, "Asphalts." Choose from Grades PG 64-10, PG 64-16, or PG 70-10.

39-1.02D Asphalt Rubber Binder

General

Use asphalt rubber binder in RHMA-G, RHMA-O, and RHMA-O-HB. Asphalt rubber binder must be a combination of:

1. Asphalt binder
2. Asphalt modifier
3. Crumb rubber modifier (CRM)

The combined asphalt binder and asphalt modifier must be 80.0 ± 2.0 percent by weight of the asphalt rubber binder.

Asphalt Modifier

Asphalt modifier must be a resinous, high flash point, and aromatic hydrocarbon, and comply with:
Asphalt Modifier for Asphalt Rubber Binder

<table>
<thead>
<tr>
<th>Quality Characteristic</th>
<th>ASTM</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity, m²/s (x 10⁻⁶) at 100 °C</td>
<td>D 445</td>
<td>X ± 3 a</td>
</tr>
<tr>
<td>Flash Point, CL.O.C., °C</td>
<td>D 92</td>
<td>207 minimum</td>
</tr>
</tbody>
</table>

Molecular Analysis

<table>
<thead>
<tr>
<th></th>
<th>ASTM</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphaltenes, percent by mass</td>
<td>D 2007</td>
<td>0.1 maximum</td>
</tr>
<tr>
<td>Aromatics, percent by mass</td>
<td>D 2007</td>
<td>55 minimum</td>
</tr>
</tbody>
</table>

Note:

a The symbol "X" is the proposed asphalt modifier viscosity. "X" must be between 19 and 36. A change in "X" requires a new asphalt rubber binder design.

Asphalt modifier must be from 2.0 percent to 6.0 percent by weight of the asphalt binder in the asphalt rubber binder.

Crumb Rubber Modifier

CRM consists of a ground or granulated combination of scrap tire CRM and high natural CRM. CRM must be 75.0 ± 2.0 percent scrap tire CRM and 25.0 ± 2.0 percent high natural CRM by total weight of CRM. Scrap tire CRM must be from any combination of automobile tires, truck tires, or tire buffings.

Sample and test scrap tire CRM and high natural CRM separately. CRM must comply with:

<table>
<thead>
<tr>
<th>Quality Characteristic</th>
<th>Test Method</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scrap tire CRM gradation</td>
<td>LP-10</td>
<td>100</td>
</tr>
<tr>
<td>(% passing No. 8 sieve)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High natural CRM gradation</td>
<td>LP-10</td>
<td>100</td>
</tr>
<tr>
<td>(% passing No. 10 sieve)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wire in CRM (% max.)</td>
<td>LP-10</td>
<td>0.01</td>
</tr>
<tr>
<td>Fabric in CRM (% max.)</td>
<td>LP-10</td>
<td>0.05</td>
</tr>
<tr>
<td>CRM particle length (inch max.) a</td>
<td>--</td>
<td>3/16</td>
</tr>
<tr>
<td>CRM specific gravity a</td>
<td>CT 208</td>
<td>1.1 – 1.2</td>
</tr>
<tr>
<td>Natural rubber content in high natural CRM (%) a</td>
<td>ASTM D 297</td>
<td>40.0 – 48.0</td>
</tr>
</tbody>
</table>

Note:

a Test at mix design and for Certificate of Compliance.

Only use CRM ground and granulated at ambient temperature. If steel and fiber are cryogenically separated, it must occur before grinding and granulating. Only use cryogenically produced CRM particles that can be ground or granulated and not pass through the grinder or granulator.

CRM must be dry, free-flowing particles that do not stick together. CRM must not cause foaming when combined with the asphalt binder and asphalt modifier. You may add calcium carbonate or talc up to 3 percent by weight of CRM.

Asphalt Rubber Binder Design and Profile

Submit in writing an asphalt rubber binder design and profile that complies with the asphalt rubber binder specifications. In the design, designate the asphalt, asphalt modifier, and CRM and their proportions. The profile is not a performance specification and only serves to indicate expected trends in asphalt rubber binder properties during binder production. The profile must include the same component sources for the asphalt rubber binder used.

Design the asphalt rubber binder from testing you perform for each quality characteristic and for the reaction temperatures expected during production. The 24-hour (1,440-minute) interaction period determines the design profile. At a minimum, mix asphalt rubber binder components, take samples, and perform and record the following tests:
Asphalt Rubber Binder Reaction Design Profile

<table>
<thead>
<tr>
<th>Test</th>
<th>Minutes of Reaction</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cone penetration @ 77 °F, 0.10-mm (ASTM D 217)</td>
<td>X(^b)</td>
<td>25 - 70</td>
</tr>
<tr>
<td>Resilience @ 77 °F, percent rebound (ASTM D 5329)</td>
<td>X</td>
<td>18 min.</td>
</tr>
<tr>
<td>Field softening point, °F (ASTM D 36)</td>
<td>X</td>
<td>125 - 165</td>
</tr>
<tr>
<td>Viscosity, centipoises (LP-11)</td>
<td>X X X X X X X X</td>
<td>1,500 - 4,000</td>
</tr>
</tbody>
</table>

Notes:

\(^a\) Six hours (360 minutes) after CRM addition, reduce the oven temperature to 275 °F for a period of 16 hours. After the 16-hour (1320 minutes) cool-down after CRM addition, reheat the binder to the reaction temperature expected during production for sampling and testing at 24 hours (1440 minutes).

\(^b\) “X” denotes required testing

**Asphalt Rubber Binder**

After interacting for a minimum of 45 minutes, asphalt rubber binder must comply with:

<table>
<thead>
<tr>
<th>Quality Characteristic</th>
<th>Test for Quality Control or Acceptance</th>
<th>Test Method</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ASTM D 217</td>
<td>Minimum 70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ASTM D 5329</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ASTM D 36</td>
<td>125 - 165</td>
</tr>
<tr>
<td></td>
<td>Quality Control</td>
<td>LP-11</td>
<td>1,500 - 4,000</td>
</tr>
</tbody>
</table>

**39-1.02E Aggregate**

Aggregate must be clean and free from deleterious substances. Aggregate:

1. Retained on the No. 4 sieve is coarse
2. Passing the No. 4 sieve is fine
3. Added and passing the No. 30 sieve is supplemental fine, including:
   3.1. Hydrated lime
   3.2. Portland cement
   3.3. Fines from dust collectors

The special provisions specify the aggregate gradation for each HMA type. The specified aggregate gradation is before the addition of asphalt binder and includes supplemental fines. The Engineer tests for aggregate grading under California Test 202, modified by California Test 105 if there is a difference in specific gravity of 0.2 or more between the coarse and fine parts of different aggregate blends. Choose a sieve size target value (TV) within each target value limit presented in the aggregate gradation tables.
## Aggregate Gradation
(Particular Percentage Passing)
HMA Types A and B

### 3/4-inch HMA Types A and B

<table>
<thead>
<tr>
<th>Sieve Sizes</th>
<th>Target Value Limits</th>
<th>Allowable Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1&quot;</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>3/4&quot;</td>
<td>90 - 100</td>
<td>TV ±5</td>
</tr>
<tr>
<td>1/2&quot;</td>
<td>70 - 90</td>
<td>TV ±6</td>
</tr>
<tr>
<td>No. 4</td>
<td>45 - 55</td>
<td>TV ±7</td>
</tr>
<tr>
<td>No. 8</td>
<td>32 - 40</td>
<td>TV ±5</td>
</tr>
<tr>
<td>No. 30</td>
<td>12 - 21</td>
<td>TV ±4</td>
</tr>
<tr>
<td>No. 200</td>
<td>2 - 7</td>
<td>TV ±2</td>
</tr>
</tbody>
</table>

### 1/2-inch HMA Types A and B

<table>
<thead>
<tr>
<th>Sieve Sizes</th>
<th>Target Value Limits</th>
<th>Allowable Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4&quot;</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>1/2&quot;</td>
<td>95 - 99</td>
<td>TV ±6</td>
</tr>
<tr>
<td>3/8&quot;</td>
<td>75 - 95</td>
<td>TV ±6</td>
</tr>
<tr>
<td>No. 4</td>
<td>55 - 66</td>
<td>TV ±7</td>
</tr>
<tr>
<td>No. 8</td>
<td>38 - 49</td>
<td>TV ±5</td>
</tr>
<tr>
<td>No. 30</td>
<td>15 - 27</td>
<td>TV ±4</td>
</tr>
<tr>
<td>No. 200</td>
<td>2 - 8</td>
<td>TV ±2</td>
</tr>
</tbody>
</table>

### 3/8-inch HMA Types A and B

<table>
<thead>
<tr>
<th>Sieve Sizes</th>
<th>Target Value Limits</th>
<th>Allowable Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2&quot;</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>3/8&quot;</td>
<td>95 - 100</td>
<td>TV ±6</td>
</tr>
<tr>
<td>No. 4</td>
<td>58 - 72</td>
<td>TV ±7</td>
</tr>
<tr>
<td>No. 8</td>
<td>34 - 48</td>
<td>TV ±6</td>
</tr>
<tr>
<td>No. 30</td>
<td>18 - 32</td>
<td>TV ±5</td>
</tr>
<tr>
<td>No. 200</td>
<td>2 - 9</td>
<td>TV ±2</td>
</tr>
</tbody>
</table>

### No. 4 HMA Types A and B

<table>
<thead>
<tr>
<th>Sieve Sizes</th>
<th>Target Value Limits</th>
<th>Allowable Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8&quot;</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>No. 4</td>
<td>95 - 100</td>
<td>TV ±7</td>
</tr>
<tr>
<td>No. 8</td>
<td>72 - 77</td>
<td>TV ±7</td>
</tr>
<tr>
<td>No. 30</td>
<td>37 - 43</td>
<td>TV ±7</td>
</tr>
<tr>
<td>No. 200</td>
<td>2 - 12</td>
<td>TV ±4</td>
</tr>
</tbody>
</table>
### Rubberized Hot Mix Asphalt - Gap Graded (RHMA-G)

#### 3/4–inch RHMA-G

<table>
<thead>
<tr>
<th>Sieve Sizes</th>
<th>Target Value Limits</th>
<th>Allowable Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1”</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>3/4”</td>
<td>95 - 100</td>
<td>TV ±5</td>
</tr>
<tr>
<td>1/2”</td>
<td>83 - 87</td>
<td>TV ±6</td>
</tr>
<tr>
<td>3/8”</td>
<td>65 - 70</td>
<td>TV ±6</td>
</tr>
<tr>
<td>No. 4</td>
<td>28 - 42</td>
<td>TV ±7</td>
</tr>
<tr>
<td>No. 8</td>
<td>14 - 22</td>
<td>TV ±5</td>
</tr>
<tr>
<td>No. 200</td>
<td>0 - 6</td>
<td>TV ±2</td>
</tr>
</tbody>
</table>

#### 1/2–inch RHMA-G

<table>
<thead>
<tr>
<th>Sieve Sizes</th>
<th>Target Value Limits</th>
<th>Allowable Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4”</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>1/2”</td>
<td>90 - 100</td>
<td>TV ±6</td>
</tr>
<tr>
<td>3/8”</td>
<td>83 - 87</td>
<td>TV ±6</td>
</tr>
<tr>
<td>No. 4</td>
<td>28 - 42</td>
<td>TV ±7</td>
</tr>
<tr>
<td>No. 8</td>
<td>14 - 22</td>
<td>TV ±5</td>
</tr>
<tr>
<td>No. 200</td>
<td>0 - 6</td>
<td>TV ±2</td>
</tr>
</tbody>
</table>

#### Open Graded Friction Course (OGFC)

#### 1–inch OGFC

<table>
<thead>
<tr>
<th>Sieve Sizes</th>
<th>Target Value Limits</th>
<th>Allowable Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1/2”</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>1”</td>
<td>99 - 100</td>
<td>TV ±5</td>
</tr>
<tr>
<td>3/4”</td>
<td>85 - 96</td>
<td>TV ±5</td>
</tr>
<tr>
<td>1/2”</td>
<td>55 - 71</td>
<td>TV ±6</td>
</tr>
<tr>
<td>No. 4</td>
<td>10 - 25</td>
<td>TV ±7</td>
</tr>
<tr>
<td>No. 8</td>
<td>6 - 16</td>
<td>TV ±5</td>
</tr>
<tr>
<td>No. 200</td>
<td>1 - 6</td>
<td>TV ±2</td>
</tr>
</tbody>
</table>

#### 1/2–inch OGFC

<table>
<thead>
<tr>
<th>Sieve Sizes</th>
<th>Target Value Limits</th>
<th>Allowable Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4”</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>1/2”</td>
<td>95 - 100</td>
<td>TV ±6</td>
</tr>
<tr>
<td>3/8”</td>
<td>78 - 89</td>
<td>TV ±6</td>
</tr>
<tr>
<td>No. 4</td>
<td>28 - 37</td>
<td>TV ±7</td>
</tr>
<tr>
<td>No. 8</td>
<td>7 - 18</td>
<td>TV ±5</td>
</tr>
<tr>
<td>No. 30</td>
<td>0 - 10</td>
<td>TV ±4</td>
</tr>
<tr>
<td>No. 200</td>
<td>0 - 3</td>
<td>TV ±2</td>
</tr>
</tbody>
</table>

#### 3/8–inch OGFC

<table>
<thead>
<tr>
<th>Sieve Sizes</th>
<th>Target Value Limits</th>
<th>Allowable Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2”</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>3/8”</td>
<td>90 - 100</td>
<td>TV ±6</td>
</tr>
<tr>
<td>No. 4</td>
<td>29 - 36</td>
<td>TV ±7</td>
</tr>
<tr>
<td>No. 8</td>
<td>7 - 18</td>
<td>TV ±6</td>
</tr>
<tr>
<td>No. 30</td>
<td>0 - 10</td>
<td>TV ±5</td>
</tr>
<tr>
<td>No. 200</td>
<td>0 - 3</td>
<td>TV ±2</td>
</tr>
</tbody>
</table>

Before the addition of asphalt binder and lime treatment, aggregate must comply with:
### Aggregate Quality

<table>
<thead>
<tr>
<th>Quality Characteristic</th>
<th>Test Method</th>
<th>HMA Type</th>
<th>A</th>
<th>B</th>
<th>RHMA-G</th>
<th>OGFC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent of crushed particles</td>
<td>CT 205</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coarse aggregate (% min.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One fractured face</td>
<td></td>
<td></td>
<td>90</td>
<td>25</td>
<td>--</td>
<td>90</td>
</tr>
<tr>
<td>Two fractured faces</td>
<td></td>
<td></td>
<td>75</td>
<td>--</td>
<td>90</td>
<td>75</td>
</tr>
<tr>
<td>Fine aggregate (% min.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Passing No. 4 sieve and retained on No. 8 sieve.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One fractured face</td>
<td></td>
<td></td>
<td>70</td>
<td>20</td>
<td>70</td>
<td>90</td>
</tr>
<tr>
<td>Los Angeles Rattler (% max.)</td>
<td>CT 211</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss at 100 Rev.</td>
<td></td>
<td></td>
<td>12</td>
<td>--</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Loss at 500 Rev.</td>
<td></td>
<td></td>
<td>45</td>
<td>50</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Sand equivalent (min.)</td>
<td>CT 217</td>
<td></td>
<td>47</td>
<td>42</td>
<td>47</td>
<td>--</td>
</tr>
<tr>
<td>Fine aggregate angularity (% min.)</td>
<td>CT 234</td>
<td></td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>--</td>
</tr>
<tr>
<td>Flat and elongated particles (% max. by weight @ 5:1)</td>
<td>CT 235</td>
<td></td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Notes:

a Reported value must be the average of 3 tests from a single sample.

b The Engineer waives this specification if HMA contains 10 percent or less of nonmanufactured sand by weight of total aggregate. Manufactured sand is fine aggregate produced by crushing rock or gravel.

### 39-1.02F Reclaimed Asphalt Pavement

You may produce HMA using reclaimed asphalt pavement (RAP). HMA produced using RAP must comply with the specifications for HMA except aggregate quality specifications do not apply to RAP. You may substitute RAP aggregate for a part of the virgin aggregate in HMA in a quantity not exceeding 15.0 percent of the aggregate blend. Do not use RAP in OGFC and RHMA-G.

Assign the substitution rate of RAP aggregate for virgin aggregate with the job mix formula (JMF) submittal. The JMF must include the percent of RAP used. If you change your assigned RAP aggregate substitution rate by more than 5 percent (within the 15.0 percent limit), submit a new JMF.

Process RAP from asphalt concrete. You may process and stockpile RAP throughout the project's life. Prevent material contamination and segregation. Store RAP in stockpiles on smooth surfaces free of debris and organic material. Processed RAP stockpiles must consist only of homogeneous RAP.

### 39-1.03 HOT MIX ASPHALT MIX DESIGN REQUIREMENTS

#### 39-1.03A General

A mix design consists of performing California Test 367 and laboratory procedures on combinations of aggregate gradations and asphalt binder contents to determine the optimum binder content (OBC) and HMA mixture qualities. If RAP is used, use Laboratory Procedure LP-9. The result of the mix design becomes the proposed JMF.

Use Form CEM-3512 to document aggregate quality and mix design data. Use Form CEM-3511 to present the JMF.

Laboratories testing aggregate qualities and preparing the mix design and JMF must be qualified under the Department's Independent Assurance Program. Take samples under California Test 125.

The Engineer reviews the aggregate qualities, mix design, and JMF and verifies and accepts the JMF.

You may change the JMF during production. Do not use the changed JMF until the Engineer accepts it. Except when adjusting the JMF in compliance with Section 39-1.03E, "Job Mix Formula Verification," perform a new mix design and submit in writing a new JMF submittal for changing any of the following:

1. Target asphalt binder percentage
2. Asphalt binder supplier
3. Asphalt rubber binder supplier
4. Component materials used in asphalt rubber binder or percentage of any component materials
5. Combined aggregate gradation
6. Aggregate sources
7. Substitution rate for RAP aggregate of more than 5 percent
8. Any material in the JMF
For OGFC, submit in writing a complete JMF submittal except asphalt binder content. The Engineer determines the asphalt binder content under California Test 368 within 20 days of your complete JMF submittal and provides you a Form CEM-3513.

### 39-1.03B Hot Mix Asphalt Mix Design

Perform a mix design that produces HMA in compliance with:

#### Hot Mix Asphalt Mix Design Requirements

<table>
<thead>
<tr>
<th>Quality Characteristic</th>
<th>Test Method</th>
<th>HMA Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air voids content (%)</td>
<td>CT 367&lt;sup&gt;a&lt;/sup&gt;</td>
<td>4.0</td>
</tr>
<tr>
<td>Voids in mineral aggregate (% min.)</td>
<td>LP-2</td>
<td>17.0</td>
</tr>
<tr>
<td>No. 4 grading</td>
<td></td>
<td>15.0</td>
</tr>
<tr>
<td>3/8&quot; grading</td>
<td></td>
<td>14.0</td>
</tr>
<tr>
<td>1/2&quot; grading</td>
<td></td>
<td>13.0</td>
</tr>
<tr>
<td>Voids filled with asphalt (%)</td>
<td>LP-3</td>
<td>76.0 – 80.0</td>
</tr>
<tr>
<td>No. 4 grading</td>
<td></td>
<td>73.0 – 76.0</td>
</tr>
<tr>
<td>3/8&quot; grading</td>
<td></td>
<td>65.0 – 75.0</td>
</tr>
<tr>
<td>1/2&quot; grading</td>
<td></td>
<td>65.0 – 75.0</td>
</tr>
<tr>
<td>3/4&quot; grading</td>
<td></td>
<td>65.0 – 75.0</td>
</tr>
<tr>
<td>Dust proportion</td>
<td>LP-4</td>
<td>0.9 – 2.0</td>
</tr>
<tr>
<td>No. 4 and 3/8&quot; gradings</td>
<td></td>
<td>0.6 – 1.3</td>
</tr>
<tr>
<td>1/2&quot; and 3/4&quot; gradings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stabilometer value (min.)&lt;sup&gt;c&lt;/sup&gt;</td>
<td>CT 366</td>
<td>30</td>
</tr>
<tr>
<td>No. 4 and 3/8&quot; gradings</td>
<td></td>
<td>37</td>
</tr>
<tr>
<td>1/2&quot; and 3/4&quot; gradings</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- <sup>a</sup> Calculate the air voids content of each specimen using California Test 309 and Lab Procedure LP-1. Modify California Test 367, Paragraph C5, to use the exact air voids content specified in the selection of OBC.
- <sup>b</sup> Voids in mineral aggregate for RHMA-G must be within this range.
- <sup>c</sup> Modify California Test 304, Part 2.B.2.c: "After compaction in the compactor, cool to 140 °± 5 °F by allowing the briquettes to cool at room temperature for 0.5-hour, then place the briquettes in the oven at 140 °F for a minimum of 2 hours and not more than 3 hours."
- <sup>d</sup> Report this value in the JMF submittal.

For stability and air voids content, prepare 3 briquettes at the OBC and test for compliance. Report the average of 3 tests. Prepare new briquettes and test if the range of stability for the 3 briquettes is more than 8 points. The average air void content may vary from the specified air void content by ±0.5 percent.

You may use the briquettes used for stability testing to determine bulk specific gravity under CT 308. If you use the same briquettes and tests using bulk specific gravity fail, you may prepare 3 new briquettes and determine a new bulk specific gravity.

### 39-1.03C Job Mix Formula Submittal

Each JMF submittal must consist of:

1. Proposed JMF on Form CEM-3511
2. Mix design documentation on Form CEM-3512 dated within 12 months of submittal
3. JMF verification on Form CEM-3513, if applicable
4. JMF renewal on Form CEM-3514, if applicable
5. Materials Safety Data Sheets (MSDS) for:
   1. Asphalt binder
   2. Base asphalt binder used in asphalt rubber binder
   3. CRM and asphalt modifier used in asphalt rubber binder
   4. Blended asphalt rubber binder mixture
5.5. Supplemental fine aggregate except fines from dust collectors
5.6. Antistrip additives

If the Engineer requests in writing, sample the following materials in the presence of the Engineer and place in labeled containers weighing no more than 50 pounds each:

1. Coarse, fine, and supplemental fine aggregate from stockpiles, cold feed belts, or hot bins. Samples must include at least 120 pounds for each coarse aggregate, 80 pounds for each fine aggregate, and 10 pounds for each type of supplemental fines. The Department combines these aggregate samples to comply with the JMF target values submitted on Form CEM-3511.
2. RAP from stockpiles or RAP system. Samples must be at least 60 pounds.
3. Asphalt binder from the binder supplier. Samples must be in two 1-quart cylindrical shaped cans with open top and friction lids.
4. Asphalt rubber binder with the components blended in the proportions to be used. Samples must be in four 1-quart cylindrical shaped cans with open top and friction lids.

Notify the Engineer in writing at least 2 business days before sampling materials. For aggregate and RAP, split the samples into at least 4 parts. Submit 3 parts to the Engineer and use 1 part for your testing.

39-1.03D Job Mix Formula Review
The Engineer reviews each mix design and proposed JMF within 5 business days from the complete JMF submittal. The review consists of reviewing the mix design procedures and comparing the proposed JMF with the specifications.

The Engineer may verify aggregate qualities during this review period.

39-1.03E Job Mix Formula Verification
If you cannot submit a Department-verified JMF on Form CEM-3513 dated within 12 months before HMA production, the Engineer verifies the JMF.

Based on your testing and production experience, you may submit on Form CEM-3511 an adjusted JMF before the Engineer’s verification testing. JMF adjustments may include a change in the:

1. Asphalt binder content target value up to ±0.6 percent from the optimum binder content value submitted on Form CEM-3512 except do not adjust the target value for asphalt rubber binder for RHMA-G below 7.0 percent
2. Aggregate gradation target values within the target value limits specified in the aggregate gradation tables

For HMA Type A, Type B, and RHMA-G, the Engineer verifies the JMF from samples taken from HMA produced by the plant to be used. Notify the Engineer in writing at least 2 business days before sampling materials.

In the Engineer’s presence and from the same production run, take samples of:

1. Aggregate
2. Asphalt binder
3. RAP
4. HMA

Sample aggregate from cold feed belts or hot bins. Sample RAP from the RAP system. Sample HMA under California Test 125 except if you request in writing and the Engineer approves, you may sample from any of the following locations:

1. The plant
2. A truck
3. A windrow
4. The paver hopper
5. The mat behind the paver

You may sample from a different project including a non-Department project if you make arrangements for the Engineer to be present during sampling.
For aggregate, RAP, and HMA, split the samples into at least 4 parts and label their containers. Submit 3 split parts to the Engineer and use 1 part for your testing.

The Engineer verifies each proposed JMF within 20 days of receiving all verification samples and the JMF submittal has been accepted. If you request in writing, the Engineer verifies RHMA-G quality requirements within 3 business days of sampling. Verification is testing for compliance with the specifications for:

1. Aggregate quality
2. Aggregate gradation (JMF TV ± tolerance)
3. Asphalt binder content (JMF TV ± tolerance)
4. HMA quality specified in the table Hot Mix Asphalt Mix Design Requirements except:
   4.1. Air voids content (design value ± 2.0 percent)
   4.2. Voids filled with asphalt (report only if an adjustment for asphalt binder content target value is less than or equal to ± 0.3 percent from OBC)
   4.3. Dust proportion (report only if an adjustment for asphalt binder content target value is less than or equal to ± 0.3 percent from OBC)

The Engineer prepares 3 briquettes from a single split sample. To verify the JMF for stability and air voids content, the Engineer tests the 3 briquettes and reports the average of 3 tests. The Engineer prepares new briquettes if the range of stability for the 3 briquettes is more than 8 points.

The Engineer may use the briquettes used for stability testing to determine bulk specific gravity under CT 308. If the Engineer uses the same briquettes and the tests using bulk specific gravity fail, the Engineer prepares 3 new briquettes and determines a new bulk specific gravity.

If the Engineer verifies the JMF, the Engineer provides you a Form CEM-3513.
If the Engineer's tests on plant-produced samples do not verify the JMF, the Engineer notifies you in writing and you must submit a new JMF submittal or submit an adjusted JMF based on your testing. JMF adjustments may include a change in the:

1. Asphalt binder content target value up to ±0.6 percent from the optimum binder content value submitted on Form CEM-3512 except do not adjust the target value for asphalt rubber binder for RHMA-G below 7.0 percent
2. Aggregate gradation target values within the target value limits specified in the aggregate gradation tables

You may adjust the JMF only once due to a failed verification test. An adjusted JMF requires a new Form CEM-3511 and verification of a plant-produced sample.

A verified JMF is valid for 12 months.

For each HMA type and aggregate size specified, the Engineer verifies at the State's expense up to 2 proposed JMF including a JMF adjusted after verification failure. The Engineer deducts $3,000 from payments for each verification exceeding this limit. This deduction does not apply to verifications initiated by the Engineer or JMF renewal.

39-1.03F  Job Mix Formula Renewal
You may request a JMF renewal by submitting the following:

1. Proposed JMF on Form CEM-3511
2. A previously verified JMF documented on Form CEM-3513 dated within 12 months
3. Mix design documentation on Form CEM-3512 used for the previously verified JMF

If the Engineer requests in writing, sample the following materials in the presence of the Engineer and place in labeled containers weighing no more than 50 pounds each:

1. Coarse, fine, and supplemental fine aggregate from stockpiles, cold feed belts, or hot bins. Samples must include at least 120 pounds for each coarse aggregate, 80 pounds for each fine aggregate, and 10 pounds for each type of supplemental fines. The Department combines these aggregate samples to comply with the JMF target values submitted on Form CEM-3511.
2. RAP from stockpiles or RAP system. Samples must be at least 60 pounds.
3. Asphalt binder from the binder supplier. Samples must be in two 1-quart cylindrical shaped cans with open top and friction lids.
4. Asphalt rubber binder with the components blended in the proportions to be used. Samples must be in four 1-quart cylindrical shaped cans with open top and friction lids.

Notify the Engineer in writing at least 2 business days before sampling materials. For aggregate and RAP, split samples into at least 4 parts. Submit 3 parts to the Engineer and use 1 part for your testing.

The Engineer may verify aggregate qualities during this review period.

Notify the Engineer in writing at least 2 business days before sampling materials. For aggregate, RAP, and HMA, split the samples into at least 4 parts. Submit 3 parts to the Engineer and use 1 part for your testing.

The Engineer verifies the JMF renewal submittal under Section 39-1.03E, "Job Mix Formula Verification," except:

1. The Engineer retains samples until you provide test results for your part on Form CEM-3514.
2. The Engineer tests samples of materials obtained from the HMA production unit after you submit test results that comply with the specifications for the quality characteristics under Section 39-1.03E, "Job Mix Formula Verification."
3. The Engineer verifies each proposed JMF renewal within 20 days of receiving verification samples.
4. You may not adjust the JMF due to a failed verification.
5. For each HMA type and aggregate gradation specified, the Engineer verifies at the State's expense 1 proposed JMF renewal within a 12-month period.

The most recent aggregate quality test results within the past 12 months may be used for verification of JMF renewal or the Engineer may perform aggregate quality tests for verification of JMF renewal.

If the Engineer verifies the JMF renewal, the Engineer provides you a Form CEM-3513.

39-1.03G  Job Mix Formula Modification

For an accepted JMF, you may change binder source one time during production.

Submit your modified JMF request a minimum of 3 business days before production. Each modified JMF submittal must consist of:

1. Proposed modified JMF on Form CEM-3511.
2. Mix design records on Form CEM-3512 for the accepted JMF to be modified.
3. JMF verification on Form CEM-3513 for the accepted JMF to be modified.
4. Quality characteristics test results for the modified JMF as specified in section 39-1.03B. Perform tests at the mix design OBC as shown on Form CEM-3512.
5. If required, California Test 371 test results for the modified JMF.

With an accepted modified JMF submittal, the Engineer verifies each modified JMF within 5 business days of receiving all verification samples. If California Test 371 is required, the Engineer tests for California Test 371 within 10 days of receiving verification samples.

The Engineer verifies the modified JMF after the modified JMF HMA is placed on the project and verification samples are taken within the first 750 tons following sampling requirements in Section 39-1.03E, "Job Mix Formula Verification." The Engineer tests verification samples for compliance with:

1. Stability as shown in the table titled "Hot Mix Asphalt Mix Design Requirements"
2. Air void content at design value ±2.0 percent
3. Voids in mineral aggregate as shown in the table titled "Hot Mix Asphalt Mix Design Requirements"
4. Voids filled with asphalt if an adjustment for asphalt binder content TV is more than ±0.3 percent from the original OBC shown on Form CEM-3512.
5. Dust proportion if an adjustment for asphalt binder content TV is more than ±0.3 percent from OBC shown on Form CEM-3512.

If the modified JMF is verified, the Engineer revises your Form CEM-3513 to include the new binder source. Your revised Form CEM-3513 will have the same expiration date as the original Form CEM-3513 for the accepted JMF that is modified.

If a modified JMF is not verified, stop production and any HMA placed using the modified JMF is rejected. The Engineer deducts $2,000 from payments for each modified JMF verification. The Engineer deducts an additional $2,000 from payments for each modified JMF verification that requires California Test 371.
39-1.03H Job Mix Formula Acceptance
You may start HMA production if:

1. The Engineer's review of the JMF shows compliance with the specifications.
2. The Department has verified the JMF within 12 months before HMA production.
3. The Engineer accepts the verified JMF.

39-1.04 CONTRACTOR QUALITY CONTROL

39-1.04A General
Establish, maintain, and change a quality control system to ensure materials and work comply with the specifications. Submit quality control test results to the Engineer within 3 business days of a request except when QC / QA is specified.

You must identify the HMA sampling location in your Quality Control Plan. During production, take samples under California Test 125. You may sample HMA from:

1. The plant
2. The truck
3. A windrow
4. The paver hopper
5. The mat behind the paver

39-1.04B Prepaving Conference
Meet with the Engineer at a prepaving conference at a mutually agreed time and place. Discuss methods of performing the production and paving work.

39-1.04C Asphalt Rubber Binder
Take asphalt rubber binder samples from the feed line connecting the asphalt rubber binder tank to the HMA plant. Sample and test asphalt rubber binder under Laboratory Procedure LP-11.

Test asphalt rubber binder for compliance with the viscosity specifications in Section 39-1.02, "Materials." During asphalt rubber binder production and HMA production using asphalt rubber binder, measure viscosity every hour with not less than 1 reading for each asphalt rubber binder batch. Log measurements with corresponding time and asphalt rubber binder temperature. Submit the log daily in writing.

Submit a Certificate of Compliance under Section 6-1.07, "Certificates of Compliance." With the Certificate of Compliance, submit test results in writing for CRM and asphalt modifier with each truckload delivered to the HMA plant. A Certificate of Compliance for asphalt modifier must not represent more than 5,000 pounds. Use an AASHTO-certified laboratory for testing.

Sample and test gradation and wire and fabric content of CRM once per 10,000 pounds of scrap tire CRM and one per 3,400 pounds of high natural CRM. Sample and test scrap tire CRM and high natural CRM separately.

Submit certified weight slips in writing for the CRM and asphalt modifier furnished.

39-1.04D Aggregate
Determine the aggregate moisture content and RAP moisture content in continuous mixing plants at least twice a day during production and adjust the plant controller. Determine the RAP moisture content in batch mixing plants at least twice a day during production and adjust the plant controller.

39-1.04E Reclaimed Asphalt Pavement
Perform RAP quality control testing each day.
Sample RAP once daily and determine the RAP aggregate gradation under Laboratory Procedure LP-9 and submit the results to the Engineer in writing with the combined aggregate gradation.

39-1.04F Density Cores
To determine density for Standard and QC / QA projects, take 4-inch or 6-inch diameter density cores at least once every 5 business days. Take 1 density core for every 250 tons of HMA from random locations the Engineer designates. Take density cores in the Engineer's presence and backfill and compact holes with material authorized by the Engineer. Before submitting a density core to the Engineer, mark it with the density core's location and place it in a protective container.
If a density core is damaged, replace it with a density core taken within 1 foot longitudinally from the original density core. Relocate any density core located within 1 foot of a rumble strip to 1 foot transversely away from the rumble strip.

39-1.04G Briquettes
Prepare 3 briquettes for each stability and air voids content determination. Report the average of 3 tests. Prepare new briquettes and test if the range of stability for the 3 briquettes is more than 12 points.

You may use the briquettes used for stability testing to determine bulk specific gravity under CT 308. If you use these briquettes and tests using bulk specific gravity fail, you may prepare 3 new briquettes and determine a new bulk specific gravity.

39-1.05 ENGINEER'S ACCEPTANCE
The Engineer's acceptance of HMA is specified in the sections for each HMA construction process.
The Engineer samples materials for testing under California Test 125 and the applicable test method except samples may be taken from:

1. The plant from:
   1.1. A truck
   1.2. An automatic sampling device
2. The mat behind the paver

Sampling must be independent of Contractor quality control, statistically-based, and random. If you request, the Engineer splits samples and provides you with a part.

The Engineer accepts HMA based on:

1. Accepted JMF
2. Accepted QCP for Standard and QC / QA
3. Compliance with the HMA Acceptance tables
4. Acceptance of a lot for QC / QA
5. Visual inspection

The Engineer prepares 3 briquettes for each stability and air voids content determination. The Engineer reports the average of 3 tests. The Engineer prepares new briquettes and test if the range of stability for the 3 briquettes is more than 8 points.

The Engineer may use the briquettes used for stability testing to determine bulk specific gravity under CT 308. If the Engineer uses the same briquettes and the tests using bulk specific gravity fail, the Engineer prepares 3 new briquettes and determines a new bulk specific gravity.

39-1.06 DISPUTE RESOLUTION
You and the Engineer must work together to avoid potential conflicts and to resolve disputes regarding test result discrepancies. Notify the Engineer in writing within 5 business days of receiving a test result if you dispute the test result.

If you or the Engineer dispute each other's test results, submit written quality control test results and copies of paperwork including worksheets used to determine the disputed test results to the Engineer. An Independent Third Party (ITP) performs referee testing. Before the ITP participates in a dispute resolution, the ITP must be accredited under the Department's Independent Assurance Program. The ITP must be independent of the project. By mutual agreement, the ITP is chosen from:

1. A Department laboratory
2. A Department laboratory in a district or region not in the district or region the project is located
3. The Transportation Laboratory
4. A laboratory not currently employed by you or your HMA producer

If split quality control or acceptance samples are not available, the ITP uses any available material representing the disputed HMA for evaluation.
39-1.07 PRODUCTION START-UP EVALUATION

The Engineer evaluates HMA production and placement at production start-up.
Within the first 750 tons produced on the first day of HMA production, in the Engineer's presence and from the same production run, take samples of:

1. Aggregate
2. Asphalt binder
3. RAP
4. HMA

Sample aggregate from cold feed belts or hot bins. Take RAP samples from the RAP system. Sample HMA under California Test 125 except if you request in writing and the Engineer approves, you may sample HMA from:

1. The plant
2. The truck
3. A windrow
4. The paver hopper
5. The mat behind the paver

For aggregate, RAP, and HMA, split the samples into at least 4 parts and label their containers. Submit 3 split parts to the Engineer and keep 1 part.

For Standard and QC / QA projects, you and the Engineer must test the split samples and report test results in writing within 3 business days of sampling. If you proceed before receipt of the test results, the Engineer may consider the HMA placed to be represented by these test results.

For Standard and QC / QA projects, take 4-inch or 6-inch diameter density cores within the first 750 tons on the first day of HMA production. For each density core, the Engineer reports the bulk specific gravity determined under California Test 308, Method A in addition to the percent of maximum theoretical density. You may test for in-place density at the density core locations and include them in your production tests for percent of maximum theoretical density.

39-1.08 PRODUCTION

39-1.08A General

Produce HMA in a batch mixing plant or a continuous mixing plant. Proportion aggregate by hot or cold feed control.

HMA plants must be Department-qualified. Before production, the HMA plant must have a current qualification under the Department's Materials Plant Quality Program.

During production, you may adjust:

1. Hot or cold feed proportion controls for virgin aggregate and RAP
2. The set point for asphalt binder content

39-1.08B Mixing

Mix HMA ingredients into a homogeneous mixture of coated aggregates.
Asphalt binder must be between 275 °F and 375 °F when mixed with aggregate.
Asphalt rubber binder must be between 375 °F and 425 °F when mixed with aggregate.
When mixed with asphalt binder, aggregate must not be more than 325 °F except aggregate for OGFC with unmodified asphalt binder must be not more than 275 °F. Aggregate temperature specifications do not apply when you use RAP.
HMA with or without RAP must not be more than 325 °F.

39-1.08C Asphalt Rubber Binder

Deliver scrap tire CRM and high natural CRM in separate bags.
Either proportion and mix asphalt binder, asphalt modifier, and CRM simultaneously or premix the asphalt binder and asphalt modifier before adding CRM. If you premix asphalt binder and asphalt modifier, asphalt binder must be from 375 to 425 degrees F when you add the asphalt modifier. Mix them for at least 20 minutes. When you add CRM, the asphalt binder and asphalt modifier must be between 375 °F and 425 °F.
Do not use asphalt rubber binder during the first 45 minutes of the reaction period. During this period, the asphalt rubber binder mixture must be between 375 °F and the lower of 425 °F or 25 °F below the asphalt binder's flash point indicated in the MSDS.

If any asphalt rubber binder is not used within 4 hours after the reaction period, discontinue heating. If the asphalt rubber binder drops below 375 °F, reheat before use. If you add more scrap tire CRM to the reheated asphalt rubber binder, the binder must undergo a 45-minute reaction period. The added scrap tire CRM must not exceed 10 percent of the total asphalt rubber binder weight. Reheated and reacted asphalt rubber binder must comply with the viscosity specifications for asphalt rubber binder in Section 39-1.02, "Materials." Do not reheat asphalt rubber binder more than twice.

39-1.09 SUBGRADE, TACK COAT, AND GEOSYNTHETIC PAVEMENT INTERLAYER

39-1.09A General
Prepare subgrade or apply tack coat to surfaces receiving HMA. If specified, place geosynthetic pavement interlayer over a coat of asphalt binder.

39-1.09B Subgrade
Subgrade to receive HMA must comply with the compaction and elevation tolerance specifications in the sections for the material involved. Subgrade must be free of loose and extraneous material. If HMA is paved on existing base or pavement, remove loose paving particles, dirt, and other extraneous material by any means including flushing and sweeping.

39-1.09C Tack Coat
Apply tack coat:

1. To existing pavement including planed surfaces
2. Between HMA layers
3. To vertical surfaces of:
   3.1. Curbs
   3.2. Gutters
   3.3. Construction joints

Before placing HMA, apply tack coat in 1 application at the minimum residual rate specified for the condition of the underlying surface:

<table>
<thead>
<tr>
<th>Tack Coat Application Rates for HMA Type A, Type B, and RHMA-G</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>HMA over:</strong></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>New HMA (between layers)</td>
</tr>
<tr>
<td>PCC and existing HMA (AC) surfaces</td>
</tr>
<tr>
<td>Planed PCC and HMA (AC) surfaces</td>
</tr>
</tbody>
</table>
**Tack Coat Application Rates for OGFC**

<table>
<thead>
<tr>
<th>OGFC over:</th>
<th>Minimum Residual Rates (gallons per square yard)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CSS1/CSS1h, SS1/SS1h and QS1h/QS1h</td>
</tr>
<tr>
<td></td>
<td>Asphaltic Emulsion</td>
</tr>
<tr>
<td>New HMA</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>0.03</td>
</tr>
<tr>
<td>PCC and existing HMA (AC) surfaces</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>Planed PCC and HMA (AC) surfaces</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
</tr>
</tbody>
</table>

If you dilute asphaltic emulsion, mix until homogeneous before application. Apply to vertical surfaces with a residual tack coat rate that will thoroughly coat the vertical face without running off.

If you request in writing and the Engineer authorizes, you may:

1. Change tack coat rates
2. Omit tack coat between layers of new HMA during the same work shift if:
   2.1. No dust, dirt, or extraneous material is present
   2.2. The surface is at least 140 °F

Immediately in advance of placing HMA, apply additional tack coat to damaged areas or where loose or extraneous material is removed.

Close areas receiving tack coat to traffic. Do not track tack coat onto pavement surfaces beyond the job site.

**Asphalt binder tack coat must be between 285 °F and 350 °F when applied.**

### 39-1.09D Geosynthetic Pavement Interlayer

Place geosynthetic pavement interlayer in compliance with the manufacturer's recommendations. Before placing the geosynthetic pavement interlayer and asphalt binder:

1. Repair cracks 1/4 inch and wider, spalls, and holes in the pavement. The State pays for this repair work under Section 4-1.03D, "Extra Work."
2. Clean the pavement of loose and extraneous material.

Immediately before placing the interlayer, apply 0.25 gallon ± 0.03 gallon of asphalt binder per square yard of interlayer or until the fabric is saturated. Apply asphalt binder the width of the geosynthetic pavement interlayer plus 3 inches on each side. At interlayer overlaps, apply asphalt binder on the lower interlayer the same overlap distance as the upper interlayer.

Asphalt binder must be from 285 °F to 350 °F and below the minimum melting point of the geosynthetic pavement interlayer when applied.

Align and place the interlayer with no overlapping wrinkles, except a wrinkle that overlaps may remain if it is less than 1/2 inch thick. If the overlapping wrinkle is more than 1/2 inch thick, cut the wrinkle out and overlap the interlayer no more than 2 inches.

The minimum HMA thickness over the interlayer must be 0.12 foot thick including conform tapers. Do not place the interlayer on a wet or frozen surface.

Overlap the interlayer borders between 2 inches and 4 inches. In the direction of paving, overlap the following roll with the preceding roll at any break.

You may use rolling equipment to correct distortions or wrinkles in the interlayer.

If asphalt binder tracked onto the interlayer or brought to the surface by construction equipment causes interlayer displacement, cover it with a small quantity of HMA.

Before placing HMA on the interlayer, do not expose the interlayer to:

1. Traffic except for crossings under traffic control and only after you place a small HMA quantity
2. Sharp turns from construction equipment
3. Damaging elements
Pave HMA on the interlayer during the same work shift.

39-1.10 SPREADING AND COMPACTING EQUIPMENT

Paving equipment for spreading must be:

1. Self-propelled
2. Mechanical
3. Equipped with a screed or strike-off assembly that can distribute HMA the full width of a traffic lane
4. Equipped with a full-width compacting device
5. Equipped with automatic screed controls and sensing devices that control the thickness, longitudinal grade, and transverse screed slope

Install and maintain grade and slope references.
The screed must produce a uniform HMA surface texture without tearing, shoving, or gouging.
The paver must not leave marks such as ridges and indentations unless you can eliminate them by rolling.
Rollers must be equipped with a system that prevents HMA from sticking to the wheels. You may use a parting agent that does not damage the HMA or impede the bonding of layers.

In areas inaccessible to spreading and compacting equipment:

1. Spread the HMA by any means to obtain the specified lines, grades and cross sections.
2. Use a pneumatic tamper, plate compactor, or equivalent to achieve thorough compaction.

39-1.11 TRANSPORTING, SPREADING, AND COMPACTING

Do not pave HMA on a wet pavement or frozen surface.
You may deposit HMA in a windrow and load it in the paver if:

1. Paver is equipped with a hopper that automatically feeds the screed
2. Loading equipment can pick up the windrowed material and deposit it in the paver hopper without damaging base material
3. Activities for deposit, pick-up, loading, and paving are continuous
4. HMA temperature in the windrow does not fall below 260 °F

You may pave HMA in 1 or more layers on areas less than 5 feet wide and outside the traveled way including shoulders. You may use mechanical equipment other than a paver for these areas. The equipment must produce a uniform smoothness and texture.

HMA handled, spread, or windrowed must not stain the finished surface of any improvement including pavement.
Do not use petroleum products such as kerosene or diesel fuel to release HMA from trucks, spreaders, or compactors.

HMA must be free of:

1. Segregation
2. Coarse or fine aggregate pockets
3. Hardened lumps

Longitudinal joints in the top layer must match specified lane edges. Alternate longitudinal joint offsets in lower layers at least 0.5 foot from each side of the specified lane edges. You may request in writing other longitudinal joint placement patterns.

Until the adjoining through lane's top layer has been paved, do not pave the top layer of:

1. Shoulders
2. Tapers
3. Transitions
4. Road connections
5. Driveways
6. Curve widenings
7. Chain control lanes
8. Turnouts
9. Turn pockets

If the number of lanes change, pave each through lane's top layer before paving a tapering lane's top layer. Simultaneous to paving a through lane's top layer, you may pave an adjoining area's top layer including shoulders. Do not operate spreading equipment on any area's top layer until completing final compaction.

If HMA (leveling) is specified, fill and level irregularities and ruts with HMA before spreading HMA over base, existing surfaces, or bridge decks. You may use mechanical equipment other than a paver for these areas. The equipment must produce a uniform smoothness and texture. HMA used to change an existing surface's cross slope or profile is not HMA (leveling).

If placing HMA against the edge of existing pavement, sawcut or grind the pavement straight and vertical along the joint and remove extraneous material without damaging the surface remaining in place. If placing HMA against the edge of a longitudinal or transverse construction joint and the joint is damaged or not placed to a neat line, sawcut or grind the pavement straight and vertical along the joint and remove extraneous material without damaging the surface remaining in place. Repair or remove and replace damaged pavement at your expense.

Rolling must leave the completed surface compacted and smooth without tearing, cracking, or shoving. Complete finish rolling activities before the pavement surface temperature is:

1. Below 150 °F for HMA with unmodified binder
2. Below 140 °F for HMA with modified binder
3. Below 200 °F for RHMA-G

If a vibratory roller is used as a finish roller, turn the vibrator off. Do not use a pneumatic tired roller to compact RHMA-G.

For Standard and QC/QA, if a 3/4-inch aggregate grading is specified, you may use a 1/2-inch aggregate grading if the specified total paved thickness is at least 0.15 foot and less than 0.20 foot thick.

Spread and compact HMA under Section 39-3.03, "Spreading and Compacting Equipment," and Section 39-3.04, "Transporting, Spreading, and Compacting," for any of the following:

1. Specified paved thickness is less than 0.15 foot.
2. Specified paved thickness is less than 0.20 foot and a 3/4-inch aggregate grading is specified and used.
3. You spread and compact at:
   3.1. Asphalt concrete surfacing replacement areas
   3.2. Leveling courses
   3.3. Areas the Engineer determines conventional compaction and compaction measurement methods are impeded

Do not open new HMA pavement to public traffic until its mid-depth temperature is below 160 °F.

If you request in writing and the Engineer authorizes, you may cool HMA Type A and Type B with water when rolling activities are complete. Apply water under Section 17, "Watering."

Spread sand at a rate between 1 pound and 2 pounds per square yard on new RHMA-G, RHMA-O, and RHMA-O-HB pavement when finish rolling is complete. Sand must be free of clay or organic matter. Sand must comply with Section 90-3.03, "Fine Aggregate Grading." Keep traffic off the pavement until spreading sand is complete.

39-1.12 SMOOTHNESS

39-1.12A General

Determine HMA smoothness with a profilograph and a straightedge. Smoothness specifications do not apply to OGFC placed on existing pavement not constructed under the same project.

If portland cement concrete is placed on HMA:

1. Cold plane the HMA finished surface to within specified tolerances if it is higher than the grade specified by the Engineer.
2. Remove and replace HMA if the finished surface is lower than 0.05 foot below the grade specified by the Engineer.
39-1.12B Straightedge
The HMA pavement top layer must not vary from the lower edge of a 12-foot long straightedge:

1. More than 0.01 foot when the straight edge is laid parallel with the centerline
2. More than 0.02 foot when the straightedge is laid perpendicular to the centerline and extends from edge to edge of a traffic lane
3. More than 0.02 foot when the straightedge is laid within 24 feet of a pavement conform

39-1.12C Profilograph
Under California Test 526, determine the zero (null) blanking band Profile Index ($PI_0$) and must-grinds on the top layer of HMA Type A, Type B, and RHMA-G pavement. Take 2 profiles within each traffic lane, 3 feet from and parallel with the edge of each lane.

A must-grind is a deviation of 0.3 inch or more in a length of 25 feet. You must correct must-grinds.

For OGFC, only determine must-grinds when placed over HMA constructed under the same project. The top layer of the underlying HMA must comply with the smoothness specifications before placing OGFC.

Profile pavement in the Engineer's presence. Choose the time of profiling.

On tangents and horizontal curves with a centerline radius of curvature 2,000 feet or more, the $PI_0$ must be at most 2.5 inches per 0.1-mile section.

On horizontal curves with a centerline radius of curvature between 1,000 feet and 2,000 feet including pavement within the superelevation transitions, the $PI_0$ must be at most 5 inches per 0.1-mile section.

Before the Engineer accepts HMA pavement for smoothness, submit written final profilograms.

Submit 1 electronic copy of profile information in Microsoft Excel and 1 electronic copy of longitudinal pavement profiles in ".erd" format or other ProVAL compatible format to the Engineer and to:

Smoothness@dot.ca.gov

The following HMA pavement areas do not require a $PI_0$. You must measure these areas with a 12-foot straightedge and determine must-grinds with a profilograph:

1. New HMA with a total thickness less than 0.25 foot
2. HMA sections of city or county streets and roads, turn lanes and collector lanes that are less than 1,500 feet in length

The following HMA pavement areas do not require a $PI_0$. You must measure these areas with a 12-foot straightedge:

1. Horizontal curves with a centerline radius of curvature less than 1,000 feet including pavement within the superelevation transitions of those curves
2. Within 12 feet of a transverse joint separating the pavement from:
   2.1. Existing pavement not constructed under the same project
   2.2. A bridge deck or approach slab
3. Exit ramp termini, truck weigh stations, and weigh-in-motion areas
4. If steep grades and superelevation rates greater than 6 percent are present on:
   4.1. Ramps
   4.2. Connectors
5. Turn lanes
6. Areas within 15 feet of manholes or drainage transitions
7. Acceleration and deceleration lanes for at-grade intersections
8. Shoulders and miscellaneous areas
9. HMA pavement within 3 feet from and parallel to the construction joints formed between curbs, gutters, or existing pavement
39-1.12D Smoothness Correction

If the top layer of HMA Type A, Type B, or RHMA-G pavement does not comply with the smoothness specifications, grind the pavement to within tolerances, remove and replace it, or place a layer of HMA. The Engineer must authorize your choice of correction before the work begins.

Remove and replace the areas of OGFC not in compliance with the must-grind and straightedge specifications, except you may grind OGFC for correcting smoothness:

1. At a transverse joint separating the pavement from pavement not constructed under the same project
2. Within 12 feet of a transverse joint separating the pavement from a bridge deck or approach slab

Corrected HMA pavement areas must be uniform rectangles with edges:

1. Parallel to the nearest HMA pavement edge or lane line
2. Perpendicular to the pavement centerline

Measure the corrected HMA pavement surface with a profilograph and a 12-foot straightedge and correct the pavement to within specified tolerances. If a must-grind area or straightedged pavement cannot be corrected to within specified tolerances, remove and replace the pavement.

On ground areas not overlaid with OGFC, apply fog seal coat under Section 37-1, "Seal Coats."

39-1.13 MISCELLANEOUS AREAS AND DIKES

Miscellaneous areas are outside the traveled way and include:

1. Median areas not including inside shoulders
2. Island areas
3. Sidewalks
4. Gutters
5. Gutter flares
6. Ditches
7. Overside drains
8. Aprons at the ends of drainage structures

Spread miscellaneous areas in 1 layer and compact to the specified lines and grades.

For miscellaneous areas and dikes:

1. Do not submit a JMF.
2. Choose the 3/8-inch or 1/2-inch HMA Type A and Type B aggregate gradations.
3. Minimum asphalt binder content must be 6.8 percent for 3/8-inch aggregate and 6.0 percent for 1/2-inch aggregate. If you request in writing and the Engineer authorizes, you may reduce the minimum asphalt binder content.
4. Choose asphalt binder Grade PG 70-10 or the same grade specified for HMA.

39-2 STANDARD

39-2.01 DESCRIPTION

If HMA is specified as Standard, construct it under Section 39-1, "General," this Section 39-2, "Standard," and Section 39-5, "Measurement and Payment."

39-2.02 CONTRACTOR QUALITY CONTROL

39-2.02A Quality Control Plan

Establish, implement, and maintain a Quality Control Plan (QCP) for HMA. The QCP must describe the organization and procedures you will use to:

1. Control the quality characteristics
2. Determine when corrective actions are needed (action limits)
3. Implement corrective actions
When you submit the proposed JMF, submit the written QCP. You and the Engineer must discuss the QCP during the prepaving conference.

The QCP must address the elements affecting HMA quality including:

1. Aggregate
2. Asphalt binder
3. Additives
4. Production
5. Paving

The Engineer reviews each QCP within 5 business days from the submittal. Hold HMA production until the Engineer accepts the QCP in writing. The Engineer's QCP acceptance does not mean your compliance with the QCP will result in acceptable HMA. Section 39-1.05, "Engineer's Acceptance," specifies HMA acceptance.

39-2.02B Quality Control Testing

Perform sampling and testing at the specified frequency for the following quality characteristics:
<table>
<thead>
<tr>
<th>Quality Characteristic</th>
<th>Test Method</th>
<th>Minimum Sampling and Testing Frequency</th>
<th>HMA Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RHMA-G</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OGFC</td>
</tr>
<tr>
<td>Aggregate gradation</td>
<td>CT 202</td>
<td>1 per 750 tons and any remaining part at the end of the project</td>
<td>JMF ± Tolerance b</td>
</tr>
<tr>
<td>Sand equivalent (min.)</td>
<td>CT 217</td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>Asphalt binder content (%)</td>
<td>CT 379 or 382</td>
<td></td>
<td>JMF ± 0.45</td>
</tr>
<tr>
<td>HMA moisture content (%)</td>
<td>CT 226 or CT 370</td>
<td>1 per 2,500 tons but not less than 1 per paving day</td>
<td>1.0</td>
</tr>
<tr>
<td>Field compaction, (% max. theoretical density)</td>
<td>Quality control plan</td>
<td>2 per business day (min.)</td>
<td>91 - 97</td>
</tr>
<tr>
<td>Stabilometer value (min.)</td>
<td>CT 366</td>
<td>One per 4,000 tons or 2 per 5 business days, whichever is more</td>
<td>30</td>
</tr>
<tr>
<td>Air voids content (%)</td>
<td>CT 367</td>
<td>4 ± 2</td>
<td>4 ± 2</td>
</tr>
<tr>
<td>Aggregate moisture content at continuous mixing plants and RAP moisture content at continuous mixing plants and batch mixing plants</td>
<td>CT 226 or CT 370</td>
<td>2 per day during production</td>
<td>--</td>
</tr>
<tr>
<td>Percent of crushed particles coarse aggregate (%)</td>
<td>CT 205</td>
<td>90</td>
<td>25</td>
</tr>
<tr>
<td>Fine aggregate (%)</td>
<td>CT 205</td>
<td>75</td>
<td>--</td>
</tr>
<tr>
<td>Los Angeles Rattler (% max.)</td>
<td>CT 211</td>
<td>12</td>
<td>--</td>
</tr>
<tr>
<td>Loss at 100 rev.</td>
<td>CT 211</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>Loss at 500 rev.</td>
<td>CT 211</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CT 235</td>
<td>Report only</td>
<td>Report only</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Flat and elongated particles (% max. by weight @ 5:1)</td>
<td>CT 234</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Fine aggregate angularity (% min.)</td>
<td>LP-3</td>
<td>76.0 – 80.0</td>
<td>76.0 – 80.0</td>
</tr>
<tr>
<td>Voids filled with asphalt (%)</td>
<td>LP-2</td>
<td>17.0</td>
<td>17.0</td>
</tr>
<tr>
<td>Voids in mineral aggregate (% min.)</td>
<td>LP-4</td>
<td>0.9 – 2.0</td>
<td>0.6 – 1.3</td>
</tr>
<tr>
<td>Dust proportion</td>
<td>Section 39-1.12</td>
<td>12-foot straightedge, must-grind, and PI₀</td>
<td>12-foot straightedge, must-grind, and PI₀</td>
</tr>
<tr>
<td>Smoothness</td>
<td>Section 39-1.02D</td>
<td>Section 39-1.04C</td>
<td>--</td>
</tr>
<tr>
<td>Asphalt rubber binder viscosity @ 375 °F, centipoises</td>
<td>Section 39-1.02D</td>
<td>Section 39-1.04C</td>
<td>--</td>
</tr>
<tr>
<td>Asphalt modifier</td>
<td>Section 39-1.02D</td>
<td>Section 39-1.04C</td>
<td>--</td>
</tr>
<tr>
<td>Crumb rubber modifier</td>
<td>Section 39-1.02D</td>
<td>Section 39-1.04C</td>
<td>--</td>
</tr>
</tbody>
</table>

Notes:

- Determine combined aggregate gradation containing RAP under Laboratory Procedure LP-9.
- The tolerances must comply with the allowable tolerances in Section 39-1.02E, "Aggregate."
- Report the average of 3 tests from a single split sample.
- Determine field compaction for any of the following conditions:
  1. 1/2-inch, 3/8-inch, No. 4 aggregate grading is used and the specified total paved thickness is at least 0.15 foot.
  2. 3/4-inch aggregate grading is used and the specified total paved thickness is at least 0.20 foot.
- To determine field compaction use:
  1. In-place density measurements using the method specified in your QC.
  2. California Test 309 to determine maximum theoretical density at the frequency specified in California Test 375, Part 5C.
- Modify California Test 304, Part 2.B.2.c: "After compaction in the mechanical compactor, cool to 140 °F ± 5 °F by allowing the briquettes to cool at room temperature for 0.5 hour, then place the briquettes in the oven at 140 °F for a minimum of 2 hours and not more than 3 hours."
- Determine the bulk specific gravity of each lab-compacted briquette under California Test 308, Method A, and theoretical maximum specific gravity under California Test 309.
- For adjusting the plant controller at the HMA plant.
- The Engineer waives this specification if HMA contains 10 percent or less of nonmanufactured sand by weight of total aggregate. Manufactured sand is fine aggregate produced by crushing rock or gravel.
- Report only if the adjustment for asphalt binder content target value is less than or equal to ± 0.3 percent from OBC.
- Voids in mineral aggregate for RHMA-G must be within this range.
For any single quality characteristic except smoothness, if 2 consecutive quality control test results do not comply with the action limits or specifications:

1. Stop production.
2. Notify the Engineer in writing.
3. Take corrective action.
4. Demonstrate compliance with the specifications before resuming production and placement on the State highway.

39-2.03 ENGINEER'S ACCEPTANCE

39-2.03A Testing

The Engineer samples for acceptance testing and tests for:
<table>
<thead>
<tr>
<th>Quality Characteristic</th>
<th>Test Method</th>
<th>HMA Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate gradation a</td>
<td>CT 202</td>
<td>A</td>
</tr>
<tr>
<td>Sieve</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>3/4&quot; 1/2&quot; 3/8&quot; X X</td>
<td></td>
<td>RHMA-G</td>
</tr>
<tr>
<td>3/8&quot; X</td>
<td></td>
<td>OGFC</td>
</tr>
<tr>
<td>No. 4 X X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 8 X X X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 200 X X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand equivalent (min.) d</td>
<td>CT 217</td>
<td>JMF ± Tolerance c</td>
</tr>
<tr>
<td>Asphalt binder content (%) CT 379 or 382</td>
<td></td>
<td>JMF ± Tolerance c</td>
</tr>
<tr>
<td>HMA moisture content (% max.) CT 226 or CT 370</td>
<td></td>
<td>JMF ± Tolerance c</td>
</tr>
<tr>
<td>Field compaction (% max. theoretical density) e</td>
<td>CT 375</td>
<td>91 – 97</td>
</tr>
<tr>
<td>Stabilometer value (min.) d/^g</td>
<td>CT 366</td>
<td>30</td>
</tr>
<tr>
<td>No. 4 and 3/8&quot; gradings</td>
<td>CT 366</td>
<td>30</td>
</tr>
<tr>
<td>1/2&quot; and 3/4&quot; gradings</td>
<td>CT 366</td>
<td>37</td>
</tr>
<tr>
<td>Air voids content (%) d/^h</td>
<td>CT 367</td>
<td>4 ± 2</td>
</tr>
<tr>
<td>Percent of crushed particles</td>
<td>CT 205</td>
<td>90</td>
</tr>
<tr>
<td>Coarse aggregate (% min.)</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>One fractured face</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>Two fractured faces</td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>Fine aggregate (% min.)</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>(Passing No. 4 sieve and retained on No. 8 sieve.)</td>
<td>CT 366</td>
<td>30</td>
</tr>
<tr>
<td>One fractured face</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Los Angeles Rattler (% max.) CT 211</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Loss at 100 rev.</td>
<td>CT 211</td>
<td>45</td>
</tr>
<tr>
<td>Loss at 500 rev.</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Fine aggregate angularity (% min.) CT 234</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>Flat and elongated particles (% max. by weight @ 5:1) CT 235 Report only</td>
<td>Report only</td>
<td>Report only</td>
</tr>
<tr>
<td>Voids filled with asphalt (%) ^j</td>
<td>LP-3</td>
<td>76.0 – 80.0</td>
</tr>
<tr>
<td>No. 4 grading</td>
<td></td>
<td>73.0 – 76.0</td>
</tr>
<tr>
<td>3/8&quot; grading</td>
<td></td>
<td>65.0 – 75.0</td>
</tr>
<tr>
<td>1/2&quot; grading</td>
<td></td>
<td>65.0 – 75.0</td>
</tr>
<tr>
<td>3/4&quot; grading</td>
<td></td>
<td>65.0 – 75.0</td>
</tr>
<tr>
<td>Voids in mineral aggregate (% min.) ^k</td>
<td>LP-2</td>
<td>17.0</td>
</tr>
<tr>
<td>No. 4 grading</td>
<td></td>
<td>15.0</td>
</tr>
<tr>
<td>3/8&quot; grading</td>
<td></td>
<td>14.0</td>
</tr>
<tr>
<td>1/2&quot; grading</td>
<td></td>
<td>13.0</td>
</tr>
<tr>
<td>3/4&quot; grading</td>
<td></td>
<td>18.0 – 23.0 k</td>
</tr>
<tr>
<td>Dust proportion ^l</td>
<td>LP-4</td>
<td>0.9 – 2.0</td>
</tr>
<tr>
<td>No. 4 and 3/8&quot; gradings</td>
<td></td>
<td>0.6 – 1.3</td>
</tr>
<tr>
<td>1/2&quot; and 3/4&quot; gradings</td>
<td></td>
<td>12-foot straightedge, must-grind, and PI_0</td>
</tr>
<tr>
<td>Smoothness</td>
<td></td>
<td>12-foot straightedge, must-grind, and PI_0</td>
</tr>
<tr>
<td>Asphalt binder</td>
<td></td>
<td>12-foot straightedge, must-grind, and PI_0</td>
</tr>
<tr>
<td>Asphalt rubber binder</td>
<td></td>
<td>12-foot straightedge and must-grind</td>
</tr>
</tbody>
</table>

Note: a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z

Contract No. 08-OM94U4
130 of 290
Asphalt modifier | Various | -- | -- | Section 39-1.02D | Section 39-1.02D
Crumb rubber modifier | Various | -- | -- | Section 39-1.02D | Section 39-1.02D

a The Engineer determines combined aggregate gradations containing RAP under Laboratory Procedure LP-9.
b “X” denotes the sieves the Engineer considers for the specified aggregate gradation.
c The tolerances must comply with the allowable tolerances in Section 39-1.02E, "Aggregate."
d The Engineer reports the average of 3 tests from a single split sample.
e The Engineer determines field compaction for any of the following conditions:
   1. 1/2-inch, 3/8-inch, or No.4 aggregate grading is used and the specified total paved thickness is at least 0.15 foot.
   2. 3/4-inch aggregate grading is used and the specified total paved thickness is at least 0.20 foot.
f To determined field compaction, the Engineer uses:
   1. California Test 308, Method A, to determine in-place density of each density core.
   2. California Test 309 to determine maximum theoretical density at the frequency specified in California Test 375, Part 5C.
g Modify California Test 304, Part 2.B.2.c: "After compaction in the mechanical compactor, cool to 140 °F ±5 °F by allowing the briquettes to cool at room temperature for 0.5 hour, then place the briquettes in the oven at 140 °F for a minimum of 2 hours and not more than 3 hours."
h The Engineer determines the bulk specific gravity of each lab-compacted briquette under California Test 308, Method A, and theoretical maximum specific gravity under California Test 309.
i The Engineer waives this specification if HMA contains 10 percent or less of nonmanufactured sand by weight of total aggregate. Manufactured sand is fine aggregate produced by crushing rock or gravel.
j Report only if the adjustment for asphalt binder content target value is less than or equal to ± 0.3 percent from OBC.
k Voids in mineral aggregate for RHMA-G must be within this range.

No single test result may represent more than the smaller of 750 tons or 1 day's production.
For any single quality characteristic except smoothness, if 2 consecutive acceptance test results do not comply with the specifications:

1. Stop production.
2. Take corrective action.
3. In the Engineer's presence, take samples and split each sample into 4 parts. Test 1 part for compliance with the specifications and submit 3 parts to the Engineer. The Engineer tests 1 part for compliance with the specifications and reserves and stores 2 parts.
4. Demonstrate compliance with the specifications before resuming production and placement on the State highway.

The Engineer tests the density core you take from each 250 tons of HMA production. The Engineer determines the percent of maximum theoretical density for each density core by determining the density core's density and dividing by the maximum theoretical density.

The Engineer determines the percent of maximum theoretical density from density cores taken from the final layer measured the full depth of the total paved HMA thickness if any of the following applies:

1. 1/2-inch, 3/8-inch, or No. 4 aggregate grading is used and the specified total paved thickness is at least 0.15 foot and any layer is less than 0.15 foot.
2. 3/4-inch aggregate grading is used and the specified total paved thickness is at least 0.20 foot and any layer is less than 0.20 foot.

For percent of maximum theoretical density, the Engineer determines a deduction for each test result outside the specifications in compliance with:
## Reduced Payment Factors for Percent of Maximum Theoretical Density

<table>
<thead>
<tr>
<th>Percent of Maximum Theoretical Density</th>
<th>Reduced Payment Factor</th>
<th>HMA Type A and B and RHMA-G Percent of Maximum Theoretical Density</th>
<th>Reduced Payment Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>91.0</td>
<td>0.0000</td>
<td>97.0</td>
<td>0.0000</td>
</tr>
<tr>
<td>90.9</td>
<td>0.0125</td>
<td>97.1</td>
<td>0.0125</td>
</tr>
<tr>
<td>90.8</td>
<td>0.0250</td>
<td>97.2</td>
<td>0.0250</td>
</tr>
<tr>
<td>90.7</td>
<td>0.0375</td>
<td>97.3</td>
<td>0.0375</td>
</tr>
<tr>
<td>90.6</td>
<td>0.0500</td>
<td>97.4</td>
<td>0.0500</td>
</tr>
<tr>
<td>90.5</td>
<td>0.0625</td>
<td>97.5</td>
<td>0.0625</td>
</tr>
<tr>
<td>90.4</td>
<td>0.0750</td>
<td>97.6</td>
<td>0.0750</td>
</tr>
<tr>
<td>90.3</td>
<td>0.0875</td>
<td>97.7</td>
<td>0.0875</td>
</tr>
<tr>
<td>90.2</td>
<td>0.1000</td>
<td>97.8</td>
<td>0.1000</td>
</tr>
<tr>
<td>90.1</td>
<td>0.1125</td>
<td>97.9</td>
<td>0.1125</td>
</tr>
<tr>
<td>90.0</td>
<td>0.1250</td>
<td>98.0</td>
<td>0.1250</td>
</tr>
<tr>
<td>89.9</td>
<td>0.1375</td>
<td>98.1</td>
<td>0.1375</td>
</tr>
<tr>
<td>89.8</td>
<td>0.1500</td>
<td>98.2</td>
<td>0.1500</td>
</tr>
<tr>
<td>89.7</td>
<td>0.1625</td>
<td>98.3</td>
<td>0.1625</td>
</tr>
<tr>
<td>89.6</td>
<td>0.1750</td>
<td>98.4</td>
<td>0.1750</td>
</tr>
<tr>
<td>89.5</td>
<td>0.1875</td>
<td>98.5</td>
<td>0.1875</td>
</tr>
<tr>
<td>89.4</td>
<td>0.2000</td>
<td>98.6</td>
<td>0.2000</td>
</tr>
<tr>
<td>89.3</td>
<td>0.2125</td>
<td>98.7</td>
<td>0.2125</td>
</tr>
<tr>
<td>89.2</td>
<td>0.2250</td>
<td>98.8</td>
<td>0.2250</td>
</tr>
<tr>
<td>89.1</td>
<td>0.2375</td>
<td>98.9</td>
<td>0.2375</td>
</tr>
<tr>
<td>89.0</td>
<td>0.2500</td>
<td>99.0</td>
<td>0.2500</td>
</tr>
<tr>
<td>&lt; 89.0</td>
<td>Remove and Replace</td>
<td>&gt; 99.0</td>
<td>Remove and Replace</td>
</tr>
</tbody>
</table>

### 39-2.04 TRANSPORTING, SPREADING, AND COMPACTING

Determine the number of rollers needed to obtain the specified density and surface finish.

### 39-3 METHOD

#### 39-3.01 DESCRIPTION

If HMA is specified as Method, construct it under Section 39-1, "General," this Section 39-3, "Method," and Section 39-5, "Measurement and Payment."

### 39-3.02 ENGINEER’S ACCEPTANCE

#### 39-3.02A Testing

The Engineer samples for acceptance testing and tests for:
<table>
<thead>
<tr>
<th>Quality Characteristic</th>
<th>Test Method</th>
<th>HMA Type</th>
<th>HMA Type</th>
<th>HMA Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>B</td>
<td>RHMA-G</td>
</tr>
<tr>
<td>Aggregate gradation a</td>
<td>CT 202</td>
<td>JMF ± Tolerance b</td>
<td>JMF ± Tolerance b</td>
<td>JMF ± Tolerance b</td>
</tr>
<tr>
<td>Sand equivalent (min.) c</td>
<td>CT 217</td>
<td>47</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Asphalt binder content (%)</td>
<td>CT 379 or 382</td>
<td>JMF ± 0.45</td>
<td>JMF ± 0.45</td>
<td>JMF ± 0.50</td>
</tr>
<tr>
<td>HMA moisture content (% max.)</td>
<td>CT 226 or CT 370</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Stabilometer value (min.) c,d</td>
<td>CT 366</td>
<td>30</td>
<td>30</td>
<td>--</td>
</tr>
<tr>
<td>Percent of crushed particles</td>
<td>CT 205</td>
<td>90</td>
<td>25</td>
<td>--</td>
</tr>
<tr>
<td>Coarse aggregate (% min.)</td>
<td></td>
<td>75</td>
<td>--</td>
<td>90</td>
</tr>
<tr>
<td>Fine aggregate (% min.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss at 100 rev.</td>
<td>CT 211</td>
<td>12</td>
<td>--</td>
<td>12</td>
</tr>
<tr>
<td>Loss at 500 rev.</td>
<td></td>
<td>45</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td>Air voids content (%) c,e</td>
<td>CT 367</td>
<td>4 ± 2</td>
<td>4 ± 2</td>
<td>Specification ± 2</td>
</tr>
<tr>
<td>Fine aggregate angularity (% min.) f</td>
<td>CT 234</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Flat and elongated particles (% max. by weight @ 5:1)</td>
<td>CT 235</td>
<td>Report only</td>
<td>Report only</td>
<td>Report only</td>
</tr>
<tr>
<td>Voids filled with asphalt (%) g</td>
<td>LP-3</td>
<td>76.0 – 80.0</td>
<td>76.0 – 80.0</td>
<td></td>
</tr>
<tr>
<td>Voids in mineral aggregate (% min.) g</td>
<td>LP-2</td>
<td>17.0</td>
<td>17.0</td>
<td>--</td>
</tr>
<tr>
<td>Dust proportion g</td>
<td>LP-4</td>
<td>0.9 – 2.0</td>
<td>0.9 – 2.0</td>
<td>Report only</td>
</tr>
<tr>
<td>Smoothness</td>
<td>Section 39-1.12</td>
<td>12-foot straightedge and must-grind</td>
<td>12-foot straightedge and must-grind</td>
<td>12-foot straightedge and must-grind</td>
</tr>
<tr>
<td>Asphalt binder</td>
<td>Various</td>
<td>Section 92</td>
<td>Section 92</td>
<td>Section 92</td>
</tr>
<tr>
<td>Asphalt rubber binder</td>
<td>Various</td>
<td>--</td>
<td>--</td>
<td>Section 92-1.02(C) and Section 39-</td>
</tr>
</tbody>
</table>
Asphalt modifier | Various | -- | -- | Section 39-1.02D | Section 39-1.02D
Crumb rubber modifier | Various | -- | -- | Section 39-1.02D | Section 39-1.02D

The Engineer determines combined aggregate gradations containing RAP under Laboratory Procedure LP-9.

The tolerances must comply with the allowable tolerances in Section 39-1.02E, "Aggregate."

The Engineer reports the average of 3 tests from a single split sample.

Modify California Test 304, Part 2.B.2.c: "After compaction in the mechanical compactor, cool to 140 °F ±5 °F by allowing the briquettes to cool at room temperature for 0.5 hour, then place the briquettes in the oven at 140 °F for a minimum of 2 hours and not more than 3 hours."

The Engineer determines the bulk specific gravity of each lab-compacted briquette under California Test 308, Method A, and theoretical maximum specific gravity under California Test 309.

The Engineer waives this specification if HMA contains 10 percent or less of nonmanufactured sand by weight of total aggregate. Manufactured sand is fine aggregate produced by crushing rock or gravel.

Report only if the adjustment for asphalt binder content target value is less than or equal to ± 0.3 percent from OBC.

Voids in mineral aggregate for RHMA-G must be within this range.

No single test result may represent more than the smaller of 750 tons or 1 day's production.

For any single quality characteristic except smoothness, if 2 consecutive acceptance test results do not comply with the specifications:

1. Stop production.
2. Take corrective action.
3. In the Engineer's presence, take samples and split each sample into 4 parts. Test 1 part for compliance with the specifications and submit 3 parts to the Engineer. The Engineer tests 1 part for compliance with the specifications and reserves and stores 2 parts.
4. Demonstrate compliance with the specifications before resuming production and placement on the State highway.

39-3.03 SPREADING AND COMPACTING EQUIPMENT

Each paver spreading HMA Type A and Type B must be followed by 3 rollers:

1. One vibratory roller specifically designed to compact HMA. The roller must be capable of at least 2,500 vibrations per minute and must be equipped with amplitude and frequency controls. The roller's gross static weight must be at least 7.5 tons.
2. One oscillating type pneumatic-tired roller at least 4 feet wide. Pneumatic tires must be of equal size, diameter, type, and ply. The tires must be inflated to 60 psi minimum and maintained so that the air pressure does not vary more than 5 psi.
3. One steel-tired, 2-axle tandem roller. The roller's gross static weight must be at least 7.5 tons.

Each roller must have a separate operator. Rollers must be self-propelled and reversible.

Compact RHMA-G under the specifications for compacting HMA Type A and Type B except do not use pneumatic-tired rollers.

Compact OGFC with steel-tired, 2-axle tandem rollers. If placing over 300 tons of OGFC per hour, use at least 3 rollers for each paver. If placing less than 300 tons of OGFC per hour, use at least 2 rollers for each paver. Each roller must weigh between 126 pounds to 172 pounds per linear inch of drum width. Turn the vibrator off.

39-3.04 TRANSPORTING, SPREADING, AND COMPACTING

Pave HMA in maximum 0.25-foot thick compacted layers.

If the surface to be paved is both in sunlight and shade, pavement surface temperatures are taken in the shade.

Spread HMA Type A and Type B only if atmospheric and surface temperatures are:
Minimum Atmospheric and Surface Temperatures

<table>
<thead>
<tr>
<th>Compacted Layer Thickness, feet</th>
<th>Atmospheric, °F</th>
<th>Surface, °F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unmodified Asphalt Binder</td>
<td>Modified Asphalt Binder</td>
</tr>
<tr>
<td>&lt; 0.15</td>
<td>55</td>
<td>50</td>
</tr>
<tr>
<td>0.15 – 0.25</td>
<td>45</td>
<td>45</td>
</tr>
</tbody>
</table>

Note:
* Except asphalt rubber binder.

If the asphalt binder for HMA Type A and Type B is:

1. Unmodified asphalt binder, complete:
   1.1. First coverage of breakdown compaction before the surface temperature drops below 250 °F
   1.2. Breakdown and intermediate compaction before the surface temperature drops below 200 °F
   1.3. Finish compaction before the surface temperature drops below 150 °F

2. Modified asphalt binder, complete:
   2.1. First coverage of breakdown compaction before the surface temperature drops below 240 °F
   2.2. Breakdown and intermediate compaction before the surface temperature drops below 180 °F
   2.3. Finish compaction before the surface temperature drops below 140 °F

For RHMA-G:

1. Only spread and compact if the atmospheric temperature is at least 55 °F and the surface temperature is at least 60 °F.
2. Complete the first coverage of breakdown compaction before the surface temperature drops below 285 °F.
3. Complete breakdown and intermediate compaction before the surface temperature drops below 250 °F.
4. Complete finish compaction before the surface temperature drops below 200 °F.
5. If the atmospheric temperature is below 70 °F, cover loads in trucks with tarpaulins. The tarpaulins must completely cover the exposed load until you transfer the mixture to the paver's hopper or to the pavement surface.

For OGFC with unmodified asphalt binder:

1. Only spread and compact if the atmospheric temperature is at least 55 °F and the surface temperature is at least 60 °F.
2. Complete first coverage using 2 rollers before the surface temperature drops below 240 °F.
3. Complete all compaction before the surface temperature drops below 200 °F.
4. If the atmospheric temperature is below 70 °F, cover loads in trucks with tarpaulins. The tarpaulins must completely cover the exposed load until you transfer the mixture to the paver's hopper or to the pavement surface.

For OGFC with modified asphalt binder except asphalt rubber binder:

1. Only spread and compact if the atmospheric temperature is at least 50 °F and the surface temperature is at least 50 °F.
2. Complete first coverage using 2 rollers before the surface temperature drops below 240 °F.
3. Complete all compaction before the surface temperature drops below 180 °F.
4. If the atmospheric temperature is below 70 °F, cover loads in trucks with tarpaulins. The tarpaulins must completely cover the exposed load until you transfer the mixture to the paver's hopper or to the pavement surface.

For RHMA-O and RHMA-O-HB:

1. Only spread and compact if the atmospheric temperature is at least 55 °F and surface temperature is at least 60 °F.
2. Complete the 1st coverage using 2 rollers before the surface temperature drops below 280 °F.
3. Complete compaction before the surface temperature drops below 250 °F.
4. If the atmospheric temperature is below 70 °F, cover loads in trucks with tarpaulins. The tarpaulins must completely cover the exposed load until the mixture is transferred to the paver's hopper or to the pavement surface.

For RHMA-G and OGFC, tarpaulins are not required if the time from discharge to truck until transfer to the paver's hopper or the pavement surface is less than 30 minutes.

HMA compaction coverage is the number of passes needed to cover the paving width. A pass is 1 roller's movement parallel to the paving in either direction. Overlapping passes are part of the coverage being made and are not a subsequent coverage. Do not start a coverage until completing the prior coverage.

Start rolling at the lower edge and progress toward the highest part.
\[\text{Perform breakdown compaction of each layer of HMA Type A, Type B, and RHMA-G with 3 coverages using a vibratory roller. The speed of the vibratory roller in miles per hour must not exceed the vibrations per minute divided by 1,000. If the HMA layer thickness is less than 0.08 foot, turn the vibrator off. The Engineer may order fewer coverages if the HMA layer thickness is less than 0.15 foot.}\]

Perform intermediate compaction of each layer of HMA Type A and Type B with 3 coverages using a pneumatic-tired roller at a speed not to exceed 5 mph.

Perform finish compaction of HMA Type A, Type B, and RHMA-G with 1 coverage using a steel-tired roller. Compact OGFC with 2 coverages using steel-tired rollers.

\[\text{39-4 QUALITY CONTROL / QUALITY ASSURANCE}\]

39-4.01 DESCRIPTION

If HMA is specified as Quality Control / Quality Assurance, construct it under Section 39-1, "General," this Section 39-4, "Quality Control / Quality Assurance," and Section 39-5, "Measurement and Payment."

39-4.02 GENERAL

The QC / QA construction process consists of:

1. Establishing, maintaining, and changing if needed a quality control system providing assurance the HMA complies with the specifications
2. Sampling and testing at specified intervals, or sublots, to demonstrate compliance and to control process
3. The Engineer sampling and testing at specified intervals to verify testing process and HMA quality
4. The Engineer using test results, statistical evaluation of verified quality control tests, and inspection to accept HMA for payment

A lot is a quantity of HMA. The Engineer designates a new lot when:

1. 20 sublots are complete
2. The JMF changes
3. Production stops for more than 30 days

Each lot consists of no more than 20 sublots. A sublot is 750 tons except HMA paved at day's end greater than 250 tons is a sublot. If HMA paved at day's end is less than 250 tons, you may either make this quantity a sublot or include it in the previous sublot's test results for statistical evaluation.

39-4.03 CONTRACTOR QUALITY CONTROL

39-4.03A General

Use a composite quality factor, QF\text{C}, and individual quality factors, QF\text{QCi}, to control your process and evaluate your quality control program. For quality characteristics without quality factors, use your quality control plan's action limits to control process.

Control HMA quality including:

1. Materials
2. Proportioning
3. Spreading and compacting
4. Finished roadway surface
Develop, implement, and maintain a quality control program that includes:

1. Inspection
2. Sampling
3. Testing

**39-4.03B Quality Control Plan**

With the JMF submittal, submit a written Quality Control Plan (QCP). The QCP must comply with the Department's Quality Control Manual for Hot Mix Asphalt Production and Placement. Discuss the QCP with the Engineer during the prepping conference.

The Engineer reviews each QCP within 5 business days from the submittal. Hold HMA production until the Engineer accepts the QCP in writing. The Engineer's QCP acceptance does not mean your compliance with the QCP will result in acceptable HMA. Section 39-1.05, "Engineer's Acceptance," specifies HMA acceptance.

The QCP must include the name and qualifications of a Quality Control Manager. The Quality Control Manager administers the QCP and during paving must be at the job site within 3 hours of receiving notice. The Quality Control Manager must not be any of the following on the project:

1. Foreman
2. Production or paving crewmember
3. Inspector
4. Tester

The QCP must include action limits and details of corrective action you will take if a test result for any quality characteristic falls outside an action limit.

As work progresses, you must submit a written QCP supplement to change quality control procedures, personnel, tester qualification status, or laboratory accreditation status.

**39-4.03C Quality Control Inspection, Sampling, And Testing**

Sample, test, inspect, and manage HMA quality control.

Provide a roadway inspector while HMA paving activities are in progress. Provide a plant inspector during HMA production.

Inspectors must comply with the Department's Quality Control Manual for Hot Mix Asphalt Production and Placement.

Provide a testing laboratory and personnel for quality control testing. Provide the Engineer unrestricted access to the quality control activities. Before providing services for the project, the Engineer reviews, accredits, and qualifies the testing laboratory and personnel under the Department's Independent Assurance Program.

The minimum random sampling and testing for quality control is:
## Minimum Quality Control – QC / QA

<table>
<thead>
<tr>
<th>Quality Characteristic</th>
<th>Test Method</th>
<th>Minimum Sampling and Testing Frequency</th>
<th>HMA Type</th>
<th>Location of Sampling</th>
<th>Max. Reporting Time Allowance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate gradation ( ^{a} )</td>
<td>CT 202</td>
<td>1 per 750 tons</td>
<td>JMF ± Tolerance ( ^{b} )</td>
<td>A</td>
<td>CT 125</td>
</tr>
<tr>
<td>Asphalt binder content (%)</td>
<td>CT 379 or 382</td>
<td>2 per day during production</td>
<td>JMF ±0.45</td>
<td>B</td>
<td>Stockpiles or cold feed belts</td>
</tr>
<tr>
<td>Field compaction (% max. theoretical density) ( ^{c,d} )</td>
<td>QC Plan</td>
<td></td>
<td>92 - 96</td>
<td>RHMA-G</td>
<td>24 hours</td>
</tr>
<tr>
<td>Aggregate moisture content at continuous mixing plants and RAP moisture content at continuous mixing plants ( ^{e} )</td>
<td>CT 226 or CT 370</td>
<td>1 per 2,500 tons but not less than 1 per paving day</td>
<td>1.0</td>
<td></td>
<td>Loose Mix Behind Paver See CT 125</td>
</tr>
<tr>
<td>Sand equivalent (min.) ( ^{f} )</td>
<td>CT 217</td>
<td>1 per 750 tons</td>
<td>47</td>
<td></td>
<td>24 hours</td>
</tr>
<tr>
<td>HMA moisture content (% max.)</td>
<td>CT 226 or CT 370</td>
<td>1 per 4,000 tons or 2 per 5 business days, whichever is more</td>
<td>30</td>
<td></td>
<td>48 hours</td>
</tr>
<tr>
<td>Stabilometer Value (min.) ( ^{f,g} ) No. 4 and 3/8&quot; gradings 1/2&quot; and 3/4&quot; gradings</td>
<td>CT 366</td>
<td></td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air voids content (%) ( ^{h} )</td>
<td>CT 367</td>
<td></td>
<td>4 ± 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\( ^{a} \): Minimum Quality Control – QC / QA

\( ^{b} \): JMF ± Tolerance

\( ^{c} \): QC Plan

\( ^{d} \): No. 4 and 3/8" gradings 1/2" and 3/4" gradings

\( ^{e} \): Stockpiles or cold feed belts

\( ^{f} \): CT 226 or CT 370

\( ^{g} \): 30 30 --

\( ^{h} \): 4 ± 2 Specification ± 2
<table>
<thead>
<tr>
<th>Percent of crushed particles coarse aggregate (% min.)</th>
<th>One fractured face</th>
<th>Two fractured faces</th>
<th>90</th>
<th>25</th>
<th>--</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine aggregate (% min) (Passing No. 4 sieve and retained on No. 8 sieve.)</td>
<td>One fractured face</td>
<td>70</td>
<td>20</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Los Angeles Rattler (% max.)</td>
<td>As necessary and designated in QCP. At least once per project.</td>
<td>12</td>
<td>--</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Fine aggregate angularity (% min.)</td>
<td>CT 205</td>
<td>CT 211</td>
<td>--</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>Flat and elongated particle (% max. by weight @ 5:1)</td>
<td>CT 234</td>
<td>CT 235</td>
<td>Report only</td>
<td>Report only</td>
<td>Report only</td>
</tr>
<tr>
<td>Voids filled with asphalt (%)</td>
<td>No. 4 grading 3/8&quot; grading 1/2&quot; grading 3/4&quot; grading</td>
<td>LP-3</td>
<td>76.0 – 80.0 73.0 – 76.0 65.0 – 75.0 65.0 – 75.0</td>
<td>76.0 – 80.0 73.0 – 76.0 65.0 – 75.0 65.0 – 75.0</td>
<td>Report only</td>
</tr>
<tr>
<td>Voids in mineral aggregate (% min.)</td>
<td>No. 4 grading 3/8&quot; grading 1/2&quot; grading 3/4&quot; grading</td>
<td>LP-2</td>
<td>17.0 15.0 14.0 13.0</td>
<td>17.0 15.0 14.0 13.0</td>
<td>--</td>
</tr>
<tr>
<td>Dust proportion</td>
<td>No. 4 and 3/8&quot; gradings 1/2&quot; and 3/4&quot; gradings</td>
<td>LP-4</td>
<td>0.9 – 2.0 0.6 – 1.3</td>
<td>0.9 – 2.0 0.6 – 1.3</td>
<td>Report only</td>
</tr>
<tr>
<td>Smoothness</td>
<td>Section 39-1.12</td>
<td>12-foot straight-edge, must-grind, and PI&lt;sub&gt;0&lt;/sub&gt;</td>
<td>12-foot straight-edge, must-grind, and PI&lt;sub&gt;O&lt;/sub&gt;</td>
<td>12-foot straight-edge, must-grind, and PI&lt;sub&gt;O&lt;/sub&gt;</td>
<td>--</td>
</tr>
<tr>
<td>Asphalt rubber binder viscosity @ 375 °F, centipoises</td>
<td>Section 39-1.02D</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1,500 – 4,000</td>
</tr>
<tr>
<td>Crumb rubber modifier</td>
<td>Section 39-1.02D</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Section 39-1.02D</td>
</tr>
</tbody>
</table>

Notes:

a. Determine combined aggregate gradation containing RAP under Laboratory Procedure LP-9.

b. The tolerances must comply with the allowable tolerances in Section 39-1.02E, "Aggregate."

c. Determine field compaction for any of the following conditions:
1. 1/2-inch, 3/8-inch, No. 4 aggregate grading is used and the specified total paved thickness is at least 0.15 foot.
2. 3/4-inch aggregate grading is used and the specified total paved thickness is at least 0.20 foot.

Contract No. 08-0M94U4
139 of 290
To determine field compaction use:
1. In-place density measurements using the method specified in your QC.
2. California Test 309 to determine maximum theoretical density at the frequency specified in California Test 375, Part 5C.

For adjusting the plant controller at the HMA plant.
1. Report the average of 3 tests from a single split sample.
2. Modify California Test 304, Part 2.B.2.c: "After compaction in the mechanical compactor, cool to 140 °F ± 5 °F by allowing the briquettes to cool at room temperature for 0.5 hour, then place the briquettes in the oven at 140 °F for a minimum of 2 hours and not more than 3 hours."
3. Determine the bulk specific gravity of each lab-compacted briquette under California Test 308, Method A, and theoretical maximum specific gravity under California Test 309.
4. The Engineer waives this specification if HMA contains 10 percent or less of nonmanufactured sand by weight of total aggregate. Manufactured sand is fine aggregate produced by crushing rock or gravel.
5. Report only if the adjustment for asphalt binder content target value is less than or equal to ± 0.3 percent from OBC.
6. Voids in mineral aggregate for RHMA-G must be within this range.

Within the specified reporting time, submit written test results including:
1. Sampling location, quantity, and time
2. Testing results
3. Supporting data and calculations

If test results for any quality characteristic are beyond the action limits in the QCP, take corrective actions. Document the corrective actions taken in the inspection records under Section 39-4.03E, "Records of Inspection and Testing."

Stop production, notify the Engineer in writing, take corrective action, and demonstrate compliance with the specifications before resuming production and placement on the State highway if:

1. A lot's composite quality factor, QF<sub>C</sub>, or an individual quality factor, QF<sub>QCi</sub> for i = 3, 4, or 5, is below 0.90 determined under Section 39-4.03F, "Statistical Evaluation," using quality control data
2. An individual quality factor, QF<sub>QCi</sub> for i = 1 or 2, is below 0.75 using quality control data
3. Quality characteristics for which a quality factor, QF<sub>QCi</sub>, is not determined has 2 consecutive quality control tests not in compliance with the specifications

39-4.03D Charts And Records
Record sampling and testing results for quality control on forms provided in the "Quality Control Manual for Hot Mix Asphalt," or on forms you submit with the QCP. The QCP must also include form posting locations and submittal times.
Submit quality control test results using the Department's statistical evaluation program, HMAPay, available at www.dot.ca.gov/hq/construc/hma/index.htm

39-4.03E Records Of Inspection And Testing
During HMA production, submit in writing a daily:
1. HMA Construction Daily Record of Inspection. Also make this record available at the HMA plant and job site each day.
2. HMA Inspection and Testing Summary. Include in the summary:

2.1. QC worksheet with updated test results from the HMAPay program
2.2. Test forms with the testers' signatures and Quality Control Manager's initials.
2.3. Inspection forms with the inspectors' signatures and Quality Control Manager's initials.
2.4. A list and explanation of deviations from the specifications or regular practices.
2.5. A signed statement by the Quality Control Manager that says:

"It is hereby certified that the information contained in this record is accurate, and that information, tests, or calculations documented herein comply with the specifications of the contract and the
standards set forth in the testing procedures. Exceptions to this certification are documented as part of this record."

Retain for inspection the records generated as part of quality control including inspection, sampling, and testing for at least 3 years after final acceptance.

39-4.03F Statistical Evaluation

General

Determine a lot's composite quality factor, \(Q_F\), and the individual quality factors, \(Q_{Fi}\). Perform statistical evaluation calculations to determine these quality factors based on quality control test results for:

1. Aggregate gradation
2. Asphalt binder content
3. Percent of maximum theoretical density

The Engineer grants a waiver and you must use 1.0 as the individual quality factor for percent of maximum theoretical density, \(Q_{F5}\), for HMA paved in:

1. Areas where the total paved thickness is less than 0.15 foot
2. Areas where the total paved thickness is less than 0.20 foot and a 3/4-inch grading is specified and used
3. Dig outs
4. Leveling courses
5. Areas where, in the opinion of the Engineer, compaction or compaction measurement by conventional methods is impeded

Statistical Evaluation Calculations

Use the Variability-Unknown / Standard Deviation Method to determine the percentage of a lot not in compliance with the specifications.

Determine the percentage of work not in compliance with the specification limits for each quality characteristic as follows:

1. Calculate the arithmetic mean (\(\bar{X}\)) of the test values

\[
\bar{X} = \frac{\sum x}{n}
\]

where:
- \(x\) = individual test values
- \(n\) = number of test values

2. Calculate the standard deviation

\[
s = \sqrt{\frac{n \sum x^2 - (\sum x)^2}{n(n-1)}}
\]

where:
- \(\sum x^2\) = sum of the squares of individual test values
- \((\sum x)^2\) = sum of the individual test values squared
- \(n\) = number of test values

3. Calculate the upper quality index (\(Q_u\))

\[
Q_u = \frac{USL - \bar{X}}{s}
\]

where:
- \(USL\) = target value plus the production tolerance or upper specification limit
\[ s = \text{standard deviation} \]
\[ \bar{X} = \text{arithmetic mean} \]

4. Calculate the lower quality index (QL);

\[ Q_L = \frac{\bar{X} - LSL}{s} \]

where:

- \( LSL \) = target value minus production tolerance or lower specification limit
- \( s \) = standard deviation
- \( \bar{X} \) = arithmetic mean

5. From the table, Upper Quality Index \( Q_U \) or Lower Quality Index \( Q_L \), of this Section 39-4.03F, "Statistical Evaluation", determine \( P_U \);

where:

- \( P_U = \) the estimated percentage of work outside the USL.
- \( P_U = 0 \), when USL is not specified.

6. From the table, Upper Quality Index \( Q_U \) or Lower Quality Index \( Q_L \), of this Section 39-4.03F, "Statistical Evaluation," determine \( P_L \);

where:

- \( P_L = \) the estimated percentage of work outside the LSL.
- \( P_L = 0 \), when LSL is not specified.

7. Calculate the total estimated percentage of work outside the USL and LSL, percent defective

\[
\text{Percent defective} = P_U + P_L
\]

\( P_U \) and \( P_L \) are determined from:
PU
Upper Quality Index QU or Lower Quality Index QL
or
Sample Size (n)
PL
5
6
7
8
9
10-11 12-14 15-17 18-22 23-29 30-42 43-66
0
1.72 1.88 1.99 2.07 2.13 2.20 2.28 2.34 2.39 2.44 2.48 2.51
1
1.64 1.75 1.82 1.88 1.91 1.96 2.01 2.04 2.07 2.09 2.12 2.14
2
1.58 1.66 1.72 1.75 1.78 1.81 1.84 1.87 1.89 1.91 1.93 1.94
3
1.52 1.59 1.63 1.66 1.68 1.71 1.73 1.75 1.76 1.78 1.79 1.80
4
1.47 1.52 1.56 1.58 1.60 1.62 1.64 1.65 1.66 1.67 1.68 1.69
5
1.42 1.47 1.49 1.51 1.52 1.54 1.55 1.56 1.57 1.58 1.59 1.59
6
1.38 1.41 1.43 1.45 1.46 1.47 1.48 1.49 1.50 1.50 1.51 1.51
7
1.33 1.36 1.38 1.39 1.40 1.41 1.41 1.42 1.43 1.43 1.44 1.44
8
1.29 1.31 1.33 1.33 1.34 1.35 1.35 1.36 1.36 1.37 1.37 1.37
9
1.25 1.27 1.28 1.28 1.29 1.29 1.30 1.30 1.30 1.31 1.31 1.31
10
1.21 1.23 1.23 1.24 1.24 1.24 1.25 1.25 1.25 1.25 1.25 1.26
11
1.18 1.18 1.19 1.19 1.19 1.19 1.20 1.20 1.20 1.20 1.20 1.20
12
1.14 1.14 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15
13
1.10 1.10 1.10 1.10 1.10 1.10 1.11 1.11 1.11 1.11 1.11 1.11
14
1.07 1.07 1.07 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06
15
1.03 1.03 1.03 1.03 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02
16
1.00 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.98
17
0.97 0.96 0.95 0.95 0.95 0.95 0.94 0.94 0.94 0.94 0.94 0.94
18
0.93 0.92 0.92 0.92 0.91 0.91 0.91 0.91 0.90 0.90 0.90 0.90
19
0.90 0.89 0.88 0.88 0.88 0.87 0.87 0.87 0.87 0.87 0.87 0.87
20
0.87 0.86 0.85 0.85 0.84 0.84 0.84 0.83 0.83 0.83 0.83 0.83
21
0.84 0.82 0.82 0.81 0.81 0.81 0.80 0.80 0.80 0.80 0.80 0.80
22
0.81 0.79 0.79 0.78 0.78 0.77 0.77 0.77 0.76 0.76 0.76 0.76
23
0.77 0.76 0.75 0.75 0.74 0.74 0.74 0.73 0.73 0.73 0.73 0.73
24
0.74 0.73 0.72 0.72 0.71 0.71 0.70 0.70 0.70 0.70 0.70 0.70
25
0.71 0.70 0.69 0.69 0.68 0.68 0.67 0.67 0.67 0.67 0.67 0.67
26
0.68 0.67 0.67 0.65 0.65 0.65 0.64 0.64 0.64 0.64 0.64 0.64
27
0.65 0.64 0.63 0.62 0.62 0.62 0.61 0.61 0.61 0.61 0.61 0.61
28
0.62 0.61 0.60 0.59 0.59 0.59 0.58 0.58 0.58 0.58 0.58 0.58
29
0.59 0.58 0.57 0.57 0.56 0.56 0.55 0.55 0.55 0.55 0.55 0.55
30
0.56 0.55 0.54 0.54 0.53 0.53 0.52 0.52 0.52 0.52 0.52 0.52
31
0.53 0.52 0.51 0.51 0.50 0.50 0.50 0.49 0.49 0.49 0.49 0.49
32
0.50 0.49 0.48 0.48 0.48 0.47 0.47 0.47 0.46 0.46 0.46 0.46
33
0.47 0.48 0.45 0.45 0.45 0.44 0.44 0.44 0.44 0.43 0.43 0.43
34
0.45 0.43 0.43 0.42 0.42 0.42 0.41 0.41 0.41 0.41 0.41 0.41
35
0.42 0.40 0.40 0.39 0.39 0.39 0.38 0.38 0.38 0.38 0.38 0.38
36
0.39 0.38 0.37 0.37 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36
37
0.36 0.35 0.34 0.34 0.34 0.33 0.33 0.33 0.33 0.33 0.33 0.33
38
0.33 0.32 0.32 0.31 0.31 0.31 0.30 0.30 0.30 0.30 0.30 0.30
39
0.30 0.30 0.29 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28
40
0.28 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
41
0.25 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23
42
0.23 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
43
0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18
44
0.16 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
45
0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13
46
0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
47
0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
48
0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
49
0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
50
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1. If the value of QU or QL does not correspond to a value in the table, use the next lower value.
2. If QU or QL are negative values, PU or PL is equal to 100 minus the table value for PU or PL.

Contract No. 08-0M94U4
143 of 290

>66
2.56
2.16
1.95
1.81
1.70
1.60
1.52
1.44
1.38
1.31
1.26
1.20
1.15
1.11
1.06
1.02
0.98
0.94
0.90
0.87
0.83
0.79
0.76
0.73
0.70
0.66
0.63
0.60
0.57
0.54
0.52
0.49
0.46
0.43
0.40
0.38
0.36
0.32
0.30
0.28
0.25
0.23
0.20
0.18
0.15
0.13
0.10
0.08
0.05
0.03
0.00


## Quality Factor Determination

Determine individual quality factors, $QF_{QC_i}$, using percent defective = $P_U + P_L$ and:

$$QF_{QC} = \sum_{i=1}^{5} w_i QF_{QC_i}$$

where:

- $QF_{QC}$ = the composite quality factor for the lot rounded to 2 decimal places.
- $QF_{QC_i}$ = the quality factor for the individual quality characteristic.
- $w$ = the weighting factor listed in the table HMA Acceptance – QC / QA.

### Quality Factors

<table>
<thead>
<tr>
<th>Quality Factor</th>
<th>Maximum Allowable Percent Defective ($P_U + P_L$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sample Size (n)</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td>1.05</td>
<td>0</td>
</tr>
<tr>
<td>1.04</td>
<td>0</td>
</tr>
<tr>
<td>1.03</td>
<td>0</td>
</tr>
<tr>
<td>1.02</td>
<td>1</td>
</tr>
<tr>
<td>1.01</td>
<td>0</td>
</tr>
</tbody>
</table>

|                | 1.00 | 22   | 20   | 18   | 17  | 16     | 15     | 14     | 13     | 12     | 11     | 10     | 9    |
|                | 0.99 | 24   | 22   | 20   | 19  | 18     | 17     | 16     | 15     | 14     | 13     | 12     | 10   |
|                | 0.98 | 26   | 24   | 22   | 21  | 20     | 19     | 18     | 17     | 16     | 15     | 14     | 13   |
|                | 0.97 | 28   | 26   | 24   | 23  | 22     | 21     | 20     | 19     | 18     | 17     | 16     | 15   |
|                | 0.96 | 30   | 28   | 26   | 25  | 24     | 23     | 22     | 21     | 20     | 19     | 18     | 17   |

|                | 0.95 | 32   | 29   | 28   | 26  | 25     | 24     | 23     | 22     | 21     | 20     | 19     | 18   |
|                | 0.94 | 33   | 31   | 29   | 28  | 27     | 25     | 24     | 23     | 22     | 21     | 20     | 19   |
|                | 0.93 | 35   | 33   | 31   | 29  | 28     | 27     | 25     | 24     | 23     | 22     | 21     | 20   |
|                | 0.92 | 37   | 34   | 32   | 31  | 30     | 28     | 27     | 25     | 24     | 23     | 22     | 21   |
|                | 0.91 | 38   | 36   | 34   | 32  | 31     | 30     | 28     | 27     | 26     | 25     | 24     | 23   |

|                | 0.90 | 39   | 37   | 35   | 34  | 33     | 31     | 29     | 28     | 26     | 25     | 24     | 23   |
|                | 0.89 | 41   | 38   | 37   | 35  | 34     | 32     | 31     | 29     | 28     | 26     | 25     | 24   |
|                | 0.88 | 42   | 40   | 38   | 36  | 35     | 34     | 32     | 30     | 29     | 27     | 26     | 25   |
|                | 0.87 | 43   | 41   | 39   | 38  | 37     | 35     | 33     | 32     | 30     | 29     | 27     | 26   |
|                | 0.86 | 45   | 42   | 41   | 39  | 38     | 37     | 35     | 33     | 32     | 30     | 29     | 27   |

|                | 0.85 | 46   | 44   | 42   | 40  | 39     | 38     | 36     | 34     | 33     | 31     | 29     | 28   |
|                | 0.84 | 47   | 45   | 43   | 42  | 40     | 39     | 37     | 35     | 34     | 32     | 30     | 29   |
|                | 0.83 | 49   | 46   | 44   | 43  | 42     | 40     | 38     | 36     | 35     | 33     | 31     | 30   |
|                | 0.82 | 50   | 47   | 46   | 44  | 43     | 41     | 39     | 38     | 36     | 34     | 33     | 31   |
|                | 0.81 | 51   | 49   | 47   | 45  | 44     | 42     | 41     | 39     | 37     | 36     | 34     | 32   |

|                | 0.80 | 52   | 50   | 48   | 46  | 45     | 44     | 42     | 40     | 38     | 37     | 35     | 33   |
|                | 0.79 | 54   | 51   | 49   | 48  | 46     | 45     | 43     | 41     | 39     | 38     | 36     | 34   |
|                | 0.78 | 55   | 52   | 50   | 49  | 48     | 46     | 44     | 42     | 41     | 39     | 37     | 35   |
|                | 0.77 | 56   | 54   | 52   | 50  | 49     | 47     | 45     | 43     | 42     | 40     | 38     | 36   |
|                | 0.76 | 57   | 55   | 53   | 51  | 50     | 48     | 46     | 44     | 43     | 41     | 39     | 37   |
|                | 0.75 | 58   | 56   | 54   | 52  | 51     | 49     | 47     | 46     | 44     | 42     | 40     | 38   |

| Reject         | 60   | 57   | 55   | 53  | 52  | 51     | 48     | 47     | 45     | 43     | 41     | 40     | 37   |
|                | 61   | 58   | 56   | 55  | 53  | 52     | 50     | 48     | 46     | 44     | 43     | 41     | 38   |
|                | 62   | 59   | 57   | 56  | 54  | 53     | 51     | 49     | 47     | 45     | 44     | 42     | 39   |
|                | 63   | 61   | 58   | 57  | 55  | 54     | 52     | 50     | 48     | 47     | 45     | 43     | 40   |
|                | 64   | 62   | 60   | 58  | 57  | 55     | 53     | 51     | 49     | 48     | 46     | 44     | 41   |

### Notes:

1. To obtain a quality factor when the estimated percent outside specification limits from table, "Upper Quality Index $Q_U$ or Lower Quality Index $Q_L$" does not correspond to a value in the table, use the next larger value.

Reject Values Greater Than Those Shown Above

Compute the composite of single quality factors, $QF_{C}$, for a lot using:

$$QF_{C} = \sum_{i=1}^{5} w_i QF_{QC_i}$$
i = the quality characteristic index number in the table HMA Acceptance – QC / QA.

39-4.04 ENGINEER’S QUALITY ASSURANCE

39-4.04A General
The Engineer assures quality by:

1. Reviewing mix designs and proposed JMF
2. Inspecting procedures
3. Conducting oversight of quality control inspection and records
4. Verification sampling and testing during production and paving

39-4.04B Verification Sampling And Testing

General
The Engineer samples:

1. Aggregate to verify gradation
2. HMA to verify asphalt binder content

Verification
For aggregate gradation and asphalt binder content, the minimum ratio of verification testing frequency to quality control testing frequency is 1:5. The Engineer performs at least 3 verification tests per lot.

Using the t-test, the Engineer compares quality control tests results for aggregate gradation and asphalt binder content with corresponding verification test results. The Engineer uses the average and standard deviation of up to 20 sequential sublots for the comparison. The Engineer uses production start-up evaluation tests to represent the first subplot. When there are less than 20 sequential sublots, the Engineer uses the maximum number of sequential sublots available. The 21st subplot becomes the 1st subplot (n = 1) in the next lot.

The t-value for a group of test data is computed as follows:

\[
t = \frac{\overline{X}_c - \overline{X}_v}{s_p \sqrt{\frac{1}{n_c} + \frac{1}{n_v}}}
\]

and

\[
s_p^2 = \frac{s_c^2(n_c - 1) + s_v^2(n_v - 1)}{n_c + n_v - 2}
\]

where:

- \(n_c\) = Number of quality control tests (2 minimum, 20 maximum).
- \(n_v\) = Number of verification tests (minimum of 1 required).
- \(\overline{X}_c\) = Mean of quality control tests.
- \(\overline{X}_v\) = Mean of verification tests.
- \(s_p\) = Pooled standard deviation (When \(n_v = 1\), \(s_p = s_c\)).
- \(s_c\) = Standard deviation of quality control tests.
- \(s_v\) = Standard deviation of verification tests (when \(n_v > 1\)).

The comparison of quality control test results and the verification test results is at a level of significance of \(\alpha = 0.025\). The Engineer computes \(t\) and compares it to the critical \(t\)-value, \(t_{crit}\), from:
### Critical T-Value

<table>
<thead>
<tr>
<th>Degrees of freedom</th>
<th>$t_{crit}$ (for $\alpha = 0.025$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(n_v+n_c-2)$</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>24.452</td>
</tr>
<tr>
<td>2</td>
<td>6.205</td>
</tr>
<tr>
<td>3</td>
<td>4.177</td>
</tr>
<tr>
<td>4</td>
<td>3.495</td>
</tr>
<tr>
<td>5</td>
<td>3.163</td>
</tr>
<tr>
<td>6</td>
<td>2.969</td>
</tr>
<tr>
<td>7</td>
<td>2.841</td>
</tr>
<tr>
<td>8</td>
<td>2.752</td>
</tr>
<tr>
<td>9</td>
<td>2.685</td>
</tr>
<tr>
<td>10</td>
<td>2.634</td>
</tr>
<tr>
<td>11</td>
<td>2.593</td>
</tr>
<tr>
<td>12</td>
<td>2.560</td>
</tr>
<tr>
<td>13</td>
<td>2.533</td>
</tr>
<tr>
<td>14</td>
<td>2.510</td>
</tr>
<tr>
<td>15</td>
<td>2.490</td>
</tr>
<tr>
<td>16</td>
<td>2.473</td>
</tr>
<tr>
<td>17</td>
<td>2.458</td>
</tr>
<tr>
<td>$\infty$</td>
<td>2.241</td>
</tr>
</tbody>
</table>

If the t-value computed is less than or equal to $t_{crit}$, quality control test results are verified.

If the t-value computed is greater than $t_{crit}$ and both $\overline{X}_v$ and $\overline{X}_c$ comply with acceptance specifications, the quality control tests are verified. You may continue to produce and place HMA with the following allowable differences:

1. $|\overline{X}_v - \overline{X}_c| \leq 1.0$ percent for any grading
2. $|\overline{X}_v - \overline{X}_c| \leq 0.1$ percent for asphalt binder content

If the t-value computed is greater than $t_{crit}$ and the $|\overline{X}_v - \overline{X}_c|$ for grading or asphalt binder content are greater than the allowable differences, quality control test results are not verified and:

1. The Engineer notifies you in writing.
2. You and the Engineer must investigate why the difference exist.
3. If the reason for the difference cannot be found and corrected, the Engineer's test results are used for acceptance and pay.

### 39-4.05 ENGINEER'S ACCEPTANCE

#### 39-4.05A Testing

The Engineer samples for acceptance testing and tests for:
<table>
<thead>
<tr>
<th>Index (i)</th>
<th>Quality Characteristic</th>
<th>Weight -ing Factor (w)</th>
<th>Test Method</th>
<th>HMA Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aggregate gradation ²</td>
<td></td>
<td>CT 202</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>1/2&quot;</td>
<td>X b</td>
<td>CT 202</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>3/8&quot;</td>
<td>--</td>
<td>CT 202</td>
<td>RHMA-G</td>
</tr>
<tr>
<td>1</td>
<td>No. 4</td>
<td>--</td>
<td>CT 202</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>No. 8</td>
<td>X</td>
<td>CT 202</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>No. 200</td>
<td>X</td>
<td>CT 202</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Asphalt binder content (%)</td>
<td>0.30</td>
<td>CT 379 or 382</td>
<td>JMF ± 0.45</td>
</tr>
<tr>
<td>5</td>
<td>Field compaction (% max. theoretical density) d,e</td>
<td>0.40</td>
<td>CT 375</td>
<td>JMF ± 0.45</td>
</tr>
<tr>
<td></td>
<td>Sand equivalent (min.) ¹</td>
<td></td>
<td>CT 217</td>
<td>JMF ± 0.45</td>
</tr>
<tr>
<td></td>
<td>Stabilometer value (min.) f, g</td>
<td></td>
<td>CT 366</td>
<td>JMF ± 0.45</td>
</tr>
<tr>
<td></td>
<td>Air voids content (%) f,h</td>
<td></td>
<td>CT 367</td>
<td>JMF ± 0.45</td>
</tr>
<tr>
<td></td>
<td>Percent of crushed particles coarse aggregate (% min.)</td>
<td></td>
<td>CT 205</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>One fractured face</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Two fractured faces</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fine aggregate (% min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Passing No. 4 sieve and retained on No. 8 sieve.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>One fractured face</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HMA moisture content (% max.)</td>
<td></td>
<td>CT 226 or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los Angeles Rattler (% max.)</td>
<td></td>
<td>CT 211</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fine aggregate angularity (% min.) ¹</td>
<td></td>
<td>CT 234</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flat and elongated particle (% max. by weight @ 5:1)</td>
<td></td>
<td>CT 235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Voids in mineral aggregate (% min.) ¹</td>
<td></td>
<td>LP-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. 4 grading</td>
<td>17.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3/8&quot; grading</td>
<td>15.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2&quot; grading</td>
<td>14.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3/4&quot; grading</td>
<td>13.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Voids filled with asphalt (%) ¹</td>
<td></td>
<td>LP-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. 4 grading</td>
<td>76.0 - 80.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3/8&quot; grading</td>
<td>73.0 - 76.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2&quot; grading</td>
<td>65.0 - 75.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3/4&quot; grading</td>
<td>65.0 - 75.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dust proportion ¹</td>
<td></td>
<td>LP-4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. 4 and 3/8&quot; gradings</td>
<td>0.9 - 2.0</td>
<td></td>
<td>Report only</td>
</tr>
<tr>
<td></td>
<td>1/2&quot; and 3/4&quot; gradings</td>
<td>0.6 - 1.3</td>
<td></td>
<td>Report only</td>
</tr>
</tbody>
</table>

Note: ± Tolerance
<table>
<thead>
<tr>
<th>Smoothness</th>
<th>Section 39-1.12</th>
<th>12-foot straight-edge, must-grind, and PI₀</th>
<th>12-foot straight-edge, must-grind, and PI₀</th>
<th>12-foot straight-edge, must-grind, and PI₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt binder</td>
<td>Various</td>
<td>Section 92</td>
<td>Section 92</td>
<td>Section 92</td>
</tr>
<tr>
<td>Asphalt rubber binder</td>
<td>Various</td>
<td>--</td>
<td>--</td>
<td>Section 92-1.02(C) and Section 39-1.02D</td>
</tr>
<tr>
<td>Asphalt modifier</td>
<td>Various</td>
<td>--</td>
<td>--</td>
<td>Section 39-1.02D</td>
</tr>
<tr>
<td>Crumb rubber modifier</td>
<td>Various</td>
<td>--</td>
<td>--</td>
<td>Section 39-1.02D</td>
</tr>
</tbody>
</table>

Notes:

a The Engineer determines combined aggregate gradations containing RAP under Laboratory Procedure LP-9.
b "X" denotes the sieves the Engineer considers for the specified aggregate gradation.
c The tolerances must comply with the allowable tolerances in Section 39-1.02E, "Aggregate."
d The Engineer determines field compaction for any of the following conditions:
   1. 1/2-inch, 3/8-inch, or No.4 aggregate grading is used and the specified total paved thickness is at least 0.15 foot.
   2. 3/4-inch aggregate grading is used and the specified total paved thickness is at least 0.20 foot.
e To determined field compaction, the Engineer uses:
   1. California Test 308, Method A, to determine in-place density of each density core.
   2. California Test 309 to determine maximum theoretical density at the frequency specified in California Test 375, Part 5C.
f The Engineer reports the average of 3 tests from a single split sample.
g Modify California Test 304, Part 2.B.2.c: "After compaction in the mechanical compactor, cool to 140 °F ± 5 °F by allowing the briquettes to cool at room temperature for 0.5 hour, then place the briquettes in the oven at 140 °F for a minimum of 2 hours and not more than 3 hours."
h The Engineer determines the bulk specific gravity of each lab-compacted briquette under California Test 308, Method A, and theoretical maximum specific gravity under California Test 309.
i The Engineer waives this specification if HMA contains 10 percent or less of nonmanufactured sand by weight of total aggregate. Manufactured sand is fine aggregate produced by crushing rock or gravel.
j Report only if the adjustment for asphalt binder content target value is less than or equal to ± 0.3 percent from OBC.
k Voids in mineral aggregate for RHMA-G must be within this range.

The Engineer determines the percent of maximum theoretical density from the average density of 3 density cores you take from every 750 tons of production or part thereof divided by the maximum theoretical density.

The Engineer determines the percent of maximum theoretical density from density cores taken from the final layer measured the full depth of the total paved HMA thickness if any of the following applies:

1. If 1/2-inch, 3/8-inch, or No. 4 aggregate grading is used and the specified total paved thickness is at least 0.15 foot and any layer is less than 0.15 foot.
2. If 3/4-inch aggregate grading is used and the specified total paved thickness is at least 0.20 foot and any layer is less than 0.20 foot.

The Engineer calculates $Q_{QC_i}$ for $i = 1, 2, 3,$ and $4$ using quality control data and $Q_{QC_5}$ for $i = 5$ using quality assurance data.

The Engineer stops production and terminates a lot if:

1. The lot's composite quality factor, $Q_C$, or an individual quality factor, $Q_{QC_i}$ for $i = 3, 4$, or $5$, is below 0.90 determined under Section 39-4.03F, "Statistical Evaluation"
2. An individual quality factor, $Q_{QC_i}$ for $i = 1$ or $2$, is below 0.75
3. Quality characteristics for which a quality factor, $QF_{QCi}$, is not determined has 2 consecutive acceptance or quality control tests not in compliance with the specifications

For any single quality characteristic for which a quality factor, $QF_{QCi}$, is not determined, except smoothness, if 2 consecutive acceptance test results do not comply with specifications:

1. Stop production.
2. Take corrective action.
3. In the Engineer’s presence, take samples and split each sample into 4 parts. Test 1 part for compliance with the specifications and submit 3 parts to the Engineer. The Engineer tests 1 part for compliance with the specifications and reserves and stores 2 parts.
4. Demonstrate compliance with the specifications before resuming production and placement on the State highway.

39-4.05B Statistical Evaluation, Determination Of Quality Factors And Acceptance

Statistical Evaluation and Determination of Quality Factors

To determine the individual quality factor, $QF_{QCi}$, for any quality factor $i = 1$ through 5 or a lot’s composite quality factor, $QF_C$, for acceptance and payment adjustment, the Engineer uses the evaluation specifications under Section 39-4.03F, "Statistical Evaluation," and:

1. Verified quality control test results for aggregate gradation
2. Verified quality control test results for asphalt binder content
3. The Engineer’s test results for percent of maximum theoretical density

Lot Acceptance Based on Quality Factors

The Engineer accepts a lot based on the quality factors determined for aggregate gradation and asphalt binder content, $QF_{QCi}$ for $i = 1$ through 4, using the total number of verified quality control test result values and the total percent defective ($P_U + P_L$).

The Engineer accepts a lot based on the quality factor determined for maximum theoretical density, $QF_{QC5}$, using the total number of test result values from density cores and the total percent defective ($P_U + P_L$).

The Engineer calculates the quality factor for the lot, $QF_C$, which is a composite of weighted individual quality factors, $QF_{QCi}$, determined for each quality characteristic in the HMA Acceptance – QC / QA table in Section 39-4.05A, "Testing."

The Engineer accepts a lot based on quality factors if:

1. The current composite quality factor, $QF_C$, is 0.90 or greater
2. Each individual quality factor, $QF_{QCi}$ for $i = 3, 4, \text{ and } 5$, is 0.90 or greater
3. Each individual quality factor, $QF_{QCi}$ for $i = 1$ and 2, is 0.75 or greater

No single quality characteristic test may represent more than the smaller of 750 tons or 1 day’s production.

Payment Adjustment

If a lot is accepted, the Engineer adjusts payment with the following formula:

$$\text{PA} = \sum_{i=1}^{n} \text{HMACP}^* w_i \times [\text{QF}_{QCi} \times (\text{HMATT} - \text{WHMATT}) + \text{WHMATT}] - (\text{HMACP}^* \text{HMATT})$$

where:

- $\text{PA}$ = Payment adjustment rounded to 2 decimal places.
- $\text{HMACP}$ = HMA contract price.
- $\text{HMATT}$ = HMA total tons represented in the lot.
- $\text{WHMATT}$ = Total tons of waived quality characteristic HMA.
- $\text{QF}_{QCi}$ = Running quality factor for the individual quality characteristic.
  $\text{QF}_{QCi}$ for $i = 1$ through 4 must be from verified Contractor’s QC results. $\text{QF}_{QC5}$ must be determined from the Engineer’s results on density cores taken for percent of maximum theoretical density determination.
- $w$ = Weighting factor listed in the HMA acceptance table.
\[ i = \text{Quality characteristic index number in the HMA acceptance table.} \]

If the payment adjustment is a negative value, the Engineer deducts this amount from payment. If the payment adjustment is a positive value, the Engineer adds this amount to payment.

The 21st sublot becomes the 1st sublot \((n = 1)\) in the next lot. When the 21st sequential sublot becomes the 1st sublot, the previous 20 sequential sublots become a lot for which the Engineer determines a quality factor. The Engineer uses this quality factor to pay for the HMA in the lot. If the next lot consists of less than 8 sublots, these sublots must be added to the previous lot for quality factor determination using 21 to 27 sublots.

### 39-4.05C Dispute Resolution

For a lot, if you or the Engineer dispute any quality factor, \(QF_{Qi}\), or verification test result, every sublot in that lot must be retested.

Referee tests must be performed under the specifications for acceptance testing.

Any quality factor, \(QF_{Qi}\), must be determined using the referee tests.

For any quality factor, \(QF_{Qi}\), for \(i = 1\) through 5, dispute resolution:

1. If the difference between the quality factors for \(QF_{Qi}\) using the referee test result and the disputed test result is less than or equal to 0.01, the original test result is correct.
2. If the difference between the quality factor for \(QF_{Qi}\) using the referee test result and the disputed test result is more than 0.01, the quality factor determined from the referee tests supersedes the previously determined quality factor.

### 39-5 MEASUREMENT AND PAYMENT

#### 39-5.01 MEASUREMENT

The contract item for HMA is measured by weight. The weight of each HMA mixture designated in the Engineer's Estimate must be the combined mixture weight.

If tack coat, asphalt binder, and asphaltic emulsion are paid with separate contract items, their contract items are measured under Section 92, "Asphalts," or Section 94, "Asphaltic Emulsions," as the case may be.

If recorded batch weights are printed automatically, the contract item for HMA is measured by using the printed batch weights, provided:

1. Total aggregate and supplemental fine aggregate weight per batch is printed. If supplemental fine aggregate is weighed cumulatively with the aggregate, the total aggregate batch weight must include the supplemental fine aggregate weight.
2. Total asphalt binder weight per batch is printed.
3. Each truckload's zero tolerance weight is printed before weighing the first batch and after weighing the last batch.
4. Time, date, mix number, load number and truck identification is correlated with a load slip.
5. A copy of the recorded batch weights is certified by a licensed weighmaster and submitted to the Engineer.

The contract item for placing HMA dike is measured by the linear foot along the completed length. The contract item for placing HMA in miscellaneous areas is measured as the in-place compacted area in square yards.

In addition to the quantities measured on a linear foot or square yard basis, the HMA for dike and miscellaneous areas are measured by weight.

The contract item for geosynthetic pavement interlayer is measured by the square yard for the actual pavement area covered.

#### 39-5.02 PAYMENT

The contract prices paid per ton for hot mix asphalt as designated in the Engineer's Estimate include full compensation for furnishing all labor, materials, tools, equipment, and incidentals for doing all the work involved in constructing hot mix asphalt, complete in place, as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer.

If HMA is specified to comply with Section 39-4, "Quality Control / Quality Assurance," the Engineer adjusts payment under that section.

Full compensation for the Quality Control Plan and prepaing conference is included in the contract prices paid per ton for hot mix asphalt as designated in the Engineer's Estimate and no additional compensation will be allowed therefor.
Full compensation for performing and submitting mix designs and for Contractor sampling, testing, inspection, testing facilities, and preparation and submittal of results is included in the contract prices paid per ton for HMA as designated in the Engineer's Estimate and no additional compensation will be allowed therefor.

Full compensation for reclaimed asphalt pavement is included in the contract prices paid per ton for HMA as designated in the Engineer's Estimate and no additional compensation will be allowed therefor.

The contract price paid per ton for hot mix asphalt (leveling) includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals for doing all the work involved in hot mix asphalt (leveling), complete in place, as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer.

The contract price paid per ton for hot mix asphalt (miscellaneous area) includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals for doing all the work involved in furnishing all labor, tools, equipment, and incidentals for doing all the work involved in hot mix asphalt (miscellaneous area) complete in place, including excavation, backfill, and preparation of the area to receive the dike, as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer.

The contract price paid per ton for tack coat includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals for doing all the work involved in applying tack coat, complete in place, as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer.

The contract price paid per ton for geosynthetic pavement interlayer includes full compensation for furnishing all labor, tools, equipment, and incidentals, and for doing all the work involved in placing geosynthetic pavement interlayer, complete in place, as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer.

The contract price paid per linear foot for place hot mix asphalt dike as designated in the Engineer's Estimate includes full compensation for furnishing all labor, tools, equipment, and incidentals, and for doing all the work involved in placing HMA dike, complete in place, including excavation, backfill, and preparation of the area to receive the dike, as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer.

The State pays for HMA dike at the contract price per linear foot for place HMA dike and by the ton for HMA. The contract prices paid per linear foot for place hot mix asphalt dike as designated in the Engineer's Estimate include full compensation for furnishing all labor, tools, equipment, and incidentals, and for doing all the work involved in placing HMA dike, complete in place, including excavation, backfill, and preparation of the area to receive HMA dike, as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer.

The State pays for HMA specified to be a miscellaneous area at the contract price per square yard for place hot mix asphalt (miscellaneous area) and per ton for hot mix asphalt. The contract price paid per square yard for place hot mix asphalt (miscellaneous area) includes full compensation for furnishing all labor, tools, equipment, and incidentals, and for doing all the work involved in furnishing all labor, tools, equipment, and incidentals for doing all the work involved in hot mix asphalt (miscellaneous area) complete in place, including excavation, backfill, and preparation of the area to receive HMA (miscellaneous area), as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer.

If the Quality Control / Quality Assurance construction process is specified, HMA placed in dikes and miscellaneous areas is paid for at the contract price per ton for hot mix asphalt under Section 39-4, "Quality Control / Quality Assurance." Section 39-4.05B, "Statistical Evaluation, Determination of Quality Factors and Acceptance," does not apply to HMA placed in dikes and miscellaneous areas.

If there are no contract items for place hot mix asphalt dike and place hot mix asphalt (miscellaneous area) and the work is specified, full compensation for constructing HMA dikes and HMA (miscellaneous areas) including excavation, backfill, and preparation of the area to receive HMA dike or HMA (miscellaneous area) is included in the contract price paid per ton for the hot mix asphalt designated in the Engineer's Estimate and no separate payment will be made therefor.

The contract price paid per square yard for geosynthetic pavement interlayer includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in placing geosynthetic pavement interlayer, complete in place, as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer.

The contract price paid per ton for paving asphalt (binder, geosynthetic pavement interlayer) includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in applying paving asphalt (binder, geosynthetic pavement interlayer), complete in place, including spreading sand to cover exposed binder material, as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer.

The contract price paid per ton for tack coat includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in applying tack coat, complete in place, as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer.

The contract price paid per ton for geosynthetic pavement interlayer to prevent displacement during construction is included in the contract price paid per ton for the HMA being paved over the interlayer and no separate payment will be made therefor.

The contract price paid per ton for tack coat includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in applying tack coat, complete in place, as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer.

The Engineer does not adjust payment for increases or decreases in the quantities for tack coat, regardless of the reason for the increase or decrease. Section 4-1.03B, "Increased or Decreased Quantities," does not apply to the items for tack coat.

Full compensation for performing smoothness testing, submitting written and electronic copies of tests, and performing corrective work including applying fog seal coat is included in the contract price paid per ton for the HMA designated in the Engineer's Estimate and no separate payment will be made therefor.

Full compensation for spreading sand on RHMA-G, RHMA-O, and RHMA-O-HB surfaces and for sweeping and removing excess sand is included in the contract price paid per ton for rubberized hot mix asphalt as designated in the Engineer's Estimate and no separate payment will be made therefor.

If the dispute resolution ITP determines the Engineer's test results are correct, the Engineer deducts the ITP's testing costs from payments. If the ITP determines your test results are correct, the State pays the ITP's testing costs. If, in the Engineer's opinion, work completion is delayed because of incorrect Engineer test results, the Department makes payment and time adjustments under Section 8-1.09, "Delays."
SECTION 40  PORTLAND CEMENT CONCRETE PAVEMENT  
(Issued 01-20-12)

Replace Section 40 with:  
SECTION 40  CONCRETE PAVEMENT

40-1  GENERAL

40-1.01  SUMMARY
Section 40 includes specifications for constructing concrete pavement on a prepared subgrade.

40-1.02  SUBMITTALS

40-1.02A  Certificates of Compliance
Submit Certificates of Compliance under Section 6-1.07, "Certificates of Compliance." Include a test result report for any specified test with certification that test was performed within 12 months before the tested material's use.
Submit Certificates of Compliance for:

1. Tie bars
2. Threaded tie bar splice couplers
3. Dowel bars
4. Tie bar baskets
5. Dowel bar baskets
6. Chemical adhesive (drill and bond)
7. Silicone joint sealant
8. Asphalt rubber joint sealant
9. Preformed compression seal
10. Backer rods. Include the manufacturer's statement of compatibility with the sealant to be used.
11. Joint filler material
12. Curing compound. For each delivery to the job site, submit a copy of the Certificate of Compliance to the Engineer and the Transportation Laboratory. Each Certificate of Compliance must not represent more than 10,000 gallons and must include a test result report for:
   12.1. Moisture loss at 24 hours under California Test 534
   12.2. Reflectance under ASTM E 1347
   12.3. Viscosity under ASTM D 2196
   12.4. Nonvolatile content under ASTM D 2369
   12.5. Pigment content under ASTM D 3723
13. Epoxy powder coating

40-1.02B  Curing Compound Samples
Submit split curing compound samples to the Transportation Laboratory.

40-1.02C  Drilled Corings
Submit each core taken for Engineer's acceptance in a plastic bag. Mark each core with a location description.

40-1.02D  Independent Third Party Air Content Testing Laboratory
Before testing, submit for the Engineer's approval the name of a laboratory that will test drilled core specimens for air content in cases of dispute.

40-1.02E  Dowel Bars
Before placing dowel bars, submit a procedure for identifying transverse contraction joint locations relative to the dowel bars' longitudinal center and a procedure for consolidating concrete around the dowel bars.
40-1.02F Concrete Field Qualification
Submit field qualification data and test reports including:

1. Mixing date
2. Mixing equipment and procedures used
3. Batch volume in cubic yards
4. Type and source of ingredients used
5. Penetration of the concrete
6. Air content of the plastic concrete
7. Age and strength at time of concrete beam testing

Field qualification test reports must be certified with a signature by an official in responsible charge of the laboratory performing the tests.

40-1.02G Frequency Measuring Device (Tachometer)
Submit calibration documentation and operational guidelines for frequency measuring devices for concrete consolidation vibrators.

40-1.02H Manufacturer's Recommendations and Instructions
If used and at least 15 days before delivery to the job site, submit manufacturer's recommendations and instructions for storage and installation of:

1. Threaded tie bar splice couplers
2. Chemical adhesive (drill and bond)
3. Silicone liquid sealant
4. Asphalt rubber liquid sealant
5. Preformed compression seals
6. Joint filler material

40-1.02I Mix Proportions
At least 15 days before starting testing for mix proportions, submit a copy of the AASHTO accreditation for your laboratory determining the mix proportions. At least 30 days before starting field qualification, submit the proposed concrete mix proportions, the corresponding mix identifications, and laboratory test reports including the modulus of rupture for each trial mixture at 10, 21, 28, and 42 days.

40-1.02J Preformed Compression Seal
Submit the manufacturer's data sheet used to develop the recommended preformed compression seal based on the joint dimensions.

40-1.02K Concrete Pavement Early Age Crack Mitigation System
At least 24 hours before each paving shift, submit:

1. Early age stress and strength predictions
2. Scheduled sawing and curing activities
3. Contingency plan if volunteer cracking occurs

At least 24 hours before paving, meet with the Engineer to review the submittals for the early age crack mitigation system. During paving, update the system with current weather data obtained from a portable weather station. Before paving concrete pavement with these updates, submit new stress and strength predictions and curing and sawing activity schedules.

40-1.02L Profilograms
Submit profilograms within 5 business days of initial profiling and within 2 business days of profiling corrected sections.
Submit 1 electronic copy of profile information in ".erd" format or other ProVAL compatible format to the Engineer and to:

Smoothness@dot.ca.gov

Submit the original of final profilograms before the Engineer accepts the contract. Submitted profilograms become the Department's property.

40-1.02M Protecting Concrete Pavement During Cold Weather
Submit a plan for protecting concrete pavement during the initial 72 hours after paving when the forecasted minimum ambient temperature is below 40 degrees F.

40-1.02N Quality Control Charts
Submit updated quality control charts each paving day.

40-1.02O Quality Control Plan
At least 30 days before the start of field qualification, submit a concrete pavement quality control plan (QCP).

40-1.03 QUALITY CONTROL AND ASSURANCE
40-1.03A Contractor Quality Control Plan
Establish, implement, and maintain a QCP for concrete pavement. The QCP must describe the organization and procedures you use to:

1. Control the production process
2. Determine if changes to the production process are needed
3. Implement changes

The QCP must address the elements affecting concrete pavement quality including:

1. Mix proportions
2. Aggregate gradation
3. Materials quality
4. Stockpile management
5. Line and grade control
6. Proportioning
7. Mixing and transportation
8. Placing and consolidation
9. Contraction and construction joints
10. Dowel bar placement, alignment, and anchorage
11. Tie bar placement
12. Modulus of rupture
13. Finishing and curing
14. Surface smoothness
15. Joint sealant and compression seal installation

The QCP must include details of corrective action to be taken if any process is out of control. As a minimum, a process is out of control if any of the following occurs:

1. For fine and coarse aggregate gradation, 2 consecutive running averages of 4 tests are outside the specification limits
2. For individual penetration or air content measurements:
   2.1. One point falls outside the suspension limit line
   2.2. Two points in a row fall outside the action limit line

Stop production and take corrective action for out of control processes or the Engineer rejects subsequent material.
40-1.03B Quality Control Testing

Select random locations and perform sampling and testing in compliance with:

<table>
<thead>
<tr>
<th>Test</th>
<th>Frequency</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cleanness value</td>
<td>2 per day</td>
<td>CT 227</td>
</tr>
<tr>
<td>Sand equivalent</td>
<td>2 per day</td>
<td>CT 217</td>
</tr>
<tr>
<td>Aggregate gradation</td>
<td>2 per day</td>
<td>CT 202</td>
</tr>
<tr>
<td>Air content (freeze thaw)</td>
<td>1 per hour</td>
<td>CT 504</td>
</tr>
<tr>
<td>Air content (non-freeze thaw)</td>
<td>1 per 4 hours</td>
<td>CT 504</td>
</tr>
<tr>
<td>Density</td>
<td>1 per 4 hours</td>
<td>CT 518</td>
</tr>
<tr>
<td>Penetration</td>
<td>1 per 4 hours</td>
<td>CT 533</td>
</tr>
<tr>
<td>Calibration of moisture meter b, c</td>
<td>1 per day</td>
<td>CT 223 or CT 226</td>
</tr>
</tbody>
</table>

Notes:

a If air entrainment is specified, make at least 1 air content measurement per hour. If air entrainment is not specified, make at least 1 air content measurement per 4 hours.

b Make at least 1 measurement of moisture content per week to check the calibration of an electronically actuated moisture meter.

c Random location sampling and testing is not applicable.

If air entrainment is specified, the testing laboratory and tester must be qualified under the Department's Independent Assurance Manual. The manual is available from the Transportation Laboratory.

40-1.03C Control Charts

Maintain control charts to identify potential problems and assignable causes. Post a copy of each control chart at a location determined by the Engineer.

Individual measurement control charts must use the target values in the mix proportions as indicators of central tendency.

Develop linear control charts for:

1. Cleanness value
2. Sand equivalent
3. Fine and coarse aggregate gradation
4. Air content
5. Penetration

Control charts must include:

1. Contract number
2. Mix proportions
3. Test number
4. Each test parameter
5. Action and suspension limits
6. Specification limits
7. Quality control test results

For fine and coarse aggregate gradation control charts, record the running average of the previous 4 consecutive gradation tests for each sieve and superimpose the specification limits.

For penetration and air content control charts, record the individual measurements and superimpose the following action and suspension limits:

<table>
<thead>
<tr>
<th>Penetration and Air Content Action and Suspension Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Parameter</td>
</tr>
<tr>
<td>Penetration, CT 533</td>
</tr>
<tr>
<td>Air content, CT 504</td>
</tr>
</tbody>
</table>
40-1.03D Contractor's Laboratory

Use a laboratory that complies with ASTM C 1077 to determine the mix proportions for concrete pavement. The laboratory must have a current AASHTO accreditation for:

1. AASHTO T 97 or ASTM C 78
2. ASTM C 192/C 192M

40-1.03E Joint Sealant and Compression Seal Installation Training

Before installing joint sealant or compression seals, arrange for a representative from the joint sealant or compression seal manufacturer to provide training on the cleaning and preparation of the joint and installing the sealant or seal. Until your personnel and the Department's personnel have been trained, do not install joint sealant or compression seals.

40-1.03F Frequency Measuring Device (Tachometer)

Before each day's concrete pavement placement and at intervals not to exceed 4 hours of production, test and record vibration frequency for concrete consolidation vibrators.

40-1.03G Early Age Concrete Pavement Crack Mitigation System

Develop and implement a system for predicting concrete pavement stresses and strength during the initial 72 hours after paving. The system must include:

1. Subscribing to a weather service to obtain forecasts for wind speed, ambient temperatures, humidity, and cloud cover
2. Portable weather station with anemometer, temperature and humidity sensors, located at the paving site
3. Early age concrete pavement stress and strength prediction computer program
4. Analyzing, monitoring, updating, and reporting the system's predictions

40-1.03H Curing Compound

Sample curing compound from shipping containers at the manufacturer's source of supply. Split the samples.

40-1.03I Concrete Pavement Smoothness

Within 10 days after paving, measure the Profile Index (PI₀) of the concrete pavement surface using a zero (null) blanking band under California Test 526.

For the following concrete pavement areas, the Engineer does not require a profilograph and you must test and correct high points determined by a 12-foot straightedge placed parallel with and perpendicular to the centerline:

1. Horizontal curves with a centerline radius of curvature less than 1,000 feet including concrete pavement within the superelevation transitions of those curves.
2. Exit ramp termini, truck weigh stations, and weigh-in-motion areas
3. Where steep grades and superelevation rates greater than 6 percent are present on:
   3.1. Ramps
   3.2. Connectors
4. Turn lanes and areas around manholes or drainage transitions
5. Acceleration and deceleration lanes for at-grade intersections
6. Shoulders and miscellaneous gore areas

Use a California Profilograph to determine the concrete pavement profile. If the profilograph uses a mechanical recorder, use an electronic scanner to reduce the profilogram.

The profilograph operator must be qualified under the Department's Independent Assurance Manual. The manual is available from the Department's Materials Engineering and Testing Services Web site.

40-1.03J Profilograph Test Procedure

Notify the Engineer at least 2 business days before performing profilograph testing. Each day before performing profilograph testing, notify the Engineer of the start location. Perform profilograph testing in the Engineer's presence.
Before starting profilograph testing, remove foreign objects from the concrete pavement surface.

Before starting profilograph testing, calibrate the profilograph in the Engineer's presence. If the Engineer chooses not to be present during profilograph testing, you may perform the testing with the Engineer's written approval. Note the Engineer's absence on the profilogram.

Determine PI₀ values for the final concrete pavement surface of each 0.1-mile section of a traffic lane. Take 2 profiles within each traffic lane, 3 feet from and parallel with the edge of each lane. Each section's PI₀ is the average of the PI₀ values for the measurements within that traffic lane. A section that is less than 0.01 mile and is the result of an interruption to continuous concrete pavement surface must comply with the PI₀ specifications for a full section. Adjust the PI₀ for a partial section to reflect a full section.

Use stationing to locate vertical deviations greater than 0.3 inches. The profilogram stationing must be the same as the project stationing. Note 0.1-mile segments on the profilogram.

Label the profilogram with:
1. Contract number
2. County and route number
3. Stationing
4. Operator's name
5. Test date
6. Test number
7. Traffic direction
8. Traffic lane (numbered from left to right in direction of travel)
9. Test wheel path (left or right in direction of travel)
10. Test direction
11. Paving direction

40-1.03K Smoothness Corrective Action
Correct concrete pavement not complying with the Engineer's acceptance specifications for smoothness by grinding under Section 42-2, "Grinding."

Do not grind before:
1. Ten days after concrete pavement placement
2. The concrete has developed a modulus of rupture of at least 550 psi

Grind the entire lane width. When completed, the lane width must be uniform in texture and appearance. Square the corrected area's start and end normal to the paved surface's centerline. Retest sections where corrections were made.

40-1.03L Acceptance Criteria
General
Concrete pavement is accepted based on the Department's testing for the concrete pavement quality characteristics shown in the following table:

<table>
<thead>
<tr>
<th>Concrete Pavement Acceptance Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality Characteristic</td>
</tr>
<tr>
<td>28-day modulus of rupture</td>
</tr>
<tr>
<td>Thickness</td>
</tr>
<tr>
<td>Dowel bar placement</td>
</tr>
<tr>
<td>Tie bar placement</td>
</tr>
<tr>
<td>Coefficient of friction</td>
</tr>
<tr>
<td>Air content (freeze-thaw) a</td>
</tr>
</tbody>
</table>

Note:
a Air content tests must be performed under California Test 504 if air entrainment is specified.

Pavement smoothness may be accepted based on the Department's testing. A single test represents no more than 0.1 mile.
Acceptance of modulus of rupture, thickness, dowel bar and tie bar placement, coefficient of friction, smoothness, and air content, does not constitute final concrete pavement acceptance.

**Modulus of Rupture**

The Engineer accepts concrete pavement for modulus of rupture on a lot basis. The minimum modulus of rupture for each lot is 570 psi at 28 days.

For each lot of concrete for concrete pavement:

1. Quantity must not exceed 1,000 cubic yards.
2. Department determines the modulus of rupture of test beams aged 10 days and 28 days.
3. Department calculates the modulus of rupture by averaging the individual test results of 2 beams aged for 28 days.

The Department provides molds and machines for modulus of rupture acceptance testing. Provide material and labor the Engineer may require.

**Concrete Pavement Smoothness**

If the Department tests for smoothness, the tests are performed under Section 40-1.03I, "Concrete Pavement Smoothness."

The Engineer accepts concrete pavement for smoothness in compliance with the following:

1. For tangents and horizontal curves having a centerline radius of curvature 2,000 feet or more, the PI₀ must be at most 2-1/2 inches per 0.1-mile section.
2. For horizontal curves having a centerline radius of curvature from 1,000 to 2,000 feet including concrete pavement within the superelevation transitions of those curves, the PI₀ must be at most 5 inches per 0.1-mile section.
3. If using a profilograph to measure smoothness, the surface must not have individual high points greater than 0.3 inch.
4. If using a straightedge to measure smoothness, the surface must be within 0.02 foot of the straightedge's lower edge.

Profile index specifications apply to existing pavement within 50 feet of the transverse joint separating new concrete pavement and the existing pavement.

If the Department's profilograph test results do not match yours, the Engineer may order you to recalibrate your profilograph equipment and perform a retest. If your test results are inaccurate due to operator error, the Engineer may disqualify your profilograph operator. If the Engineer determines your test results are inaccurate, the Engineer does not make adjustments to payment or contract time for recalibrating, retesting, and delays.

**Concrete Pavement Thickness**

The Engineer accepts concrete pavement for thickness based on coring in the primary area, which is the area placed in 1 day for each thickness. Concrete pavement thickness must not be deficient by more than 0.05 foot.

After corrective grinding has been completed, core concrete pavement in the primary area under Section 40-3.16, "Obtaining Drilled Cores," at locations determined by the Engineer and in the Engineer's presence. The core specimen diameter must be 4 inches. To identify the limits of concrete pavement deficient in thickness by more than 0.05 foot, you may divide primary areas into secondary areas. Specifications that may affect concrete pavement thickness such as allowable tolerances for subgrade construction do not change the thickness specified for concrete pavement.

In each primary area, the Engineer measures concrete pavement thickness every 1,200 square yards and any remaining area. The Engineer measures cores under California Test 531 to the nearest 0.01 foot. Core at least 1 foot from existing, contiguous, and parallel concrete pavement not constructed as part of this contract.

You may request the Engineer make additional thickness measurements and use them to determine the average thickness variation. The Engineer determines the locations with random sampling methods.

If each thickness measurement in a primary area is less than 0.05 foot deficient, the Engineer calculates the average thickness deficiency in that primary area. The Engineer uses 0.02 foot for a thickness difference more than 0.02 foot over the specified thickness.

For each thickness measurement in a primary area deficient by more than 0.05 foot, the Engineer determines a secondary area where the thickness deficiency is more than 0.05 foot. The Engineer determines this secondary area...
by measuring the thickness of each concrete pavement slab adjacent to the measurement found to be more than 0.05 foot deficient. The Engineer continues to measure the thickness until an area that is bound by slabs with thickness deficient by 0.05 foot or less is determined.

Slabs without bar reinforcement are defined as the areas bound by longitudinal and transverse joints and concrete pavement edges. Slabs with bar reinforcement are defined as the areas bound by longitudinal joints and concrete pavement edges and 15-foot lengths. Secondary area thickness measurements in a slab determine that entire slab's thickness.

The Engineer measures the remaining primary area thickness after removing the secondary areas from consideration for determining the average thickness deficiency.

The Engineer determines the slabs to remove and replace.

**Required Use of Air-Entraining Admixtures**

If air-entraining admixtures are specified, the Engineer may choose to accept concrete pavement for air content based on your air content quality control tests. The Engineer decides to use your air content quality control tests based on a $t$-test that determines the difference in the means of your test and the Engineer's verification tests. The Engineer calculates the $t$-value of the test data as follows:

$$t = \frac{\bar{X}_c - \bar{X}_v}{S_p \sqrt{\frac{1}{n_c} + \frac{1}{n_v}}}$$

and

$$S_p^2 = \frac{S_c^2(n_c - 1) + S_v^2(n_v - 1)}{n_c + n_v - 2}$$

where:

- $n_c$ = Number of your quality control tests (minimum of 6 required)
- $n_v$ = Number of verification tests (minimum of 2 required)
- $\bar{X}_c$ = Mean of your quality control tests
- $\bar{X}_v$ = Mean of the verification tests
- $S_p$ = Pooled standard deviation
  (When $n_v = 1$, $S_p = S_c$)
- $S_c$ = Standard deviation of your quality control tests
- $S_v$ = Standard deviation of the verification tests (when $n_v > 1$)

The Engineer compares your quality control test results with the Department's verification test results at a level of significance of $\alpha = 0.01$. The Engineer compares the $t$-value to $t_{crit}$, determined from:

<table>
<thead>
<tr>
<th>degrees of freedom ($n_c + n_v - 2$)</th>
<th>$t_{crit}$ (for $\alpha = 0.01$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>63.657</td>
</tr>
<tr>
<td>2</td>
<td>9.925</td>
</tr>
<tr>
<td>3</td>
<td>5.841</td>
</tr>
<tr>
<td>4</td>
<td>4.604</td>
</tr>
<tr>
<td>5</td>
<td>4.032</td>
</tr>
<tr>
<td>6</td>
<td>3.707</td>
</tr>
<tr>
<td>7</td>
<td>3.499</td>
</tr>
<tr>
<td>8</td>
<td>3.355</td>
</tr>
<tr>
<td>9</td>
<td>3.250</td>
</tr>
<tr>
<td>10</td>
<td>3.169</td>
</tr>
</tbody>
</table>

If the $t$-value calculated is less than or equal to $t_{crit}$, your quality control test results are verified. If the $t$-value calculated is greater than $t_{crit}$, quality control test results are not verified.

If your quality control test results are not verified, core at least 3 specimens from concrete pavement under Section 40-3.16, "Obtaining Drilled Cores." The Engineer selects the core locations. Your approved third party independent testing laboratory must test these specimens for air content under ASTM C 457. The Engineer
compares these test results with your quality control test results using the t-test method. If your quality control test results are verified based on this comparison, the Engineer uses the quality control test results for acceptance of concrete pavement for air content. If your quality control test results are not verified based on this comparison, the Engineer uses the air content of core specimens determined under ASTM C 457 for acceptance.

**Dowel Bar and Tie Bar Placement**

Dowel bar alignment must comply with section 40-3.06. Tie bar alignment must comply with Section 40-3.05. Except for CRCP, core specimens for:

1. Dowel bar placement
2. Tie bar placement
3. Concrete consolidation

Obtain cores under Section 40-3.16, "Obtaining Drilled Cores." The Engineer determines the core locations. Each core must have a nominal diameter of 4 inches. Core each day's paving within 2 business days in compliance with:

1. One test for every 700 square yards of doweled concrete pavement or remaining fraction of that area. Each dowel bar test consists of 2 cores, 1 on each dowel bar end to expose both ends and allow measurement.
2. One test for every 4,000 square yards of concrete pavement with tie bars or remaining fraction of that area. Each tie bar test consists of 2 cores, 1 on each tie bar end to expose both ends and allow measurement.

If the tests indicate dowel or tie bars are not placed within the specified tolerances or if there are air voids around the dowel or tie bars, core additional specimens to determine the limits of unacceptable work.

The Engineer determines the slabs to remove and replace.

If the Engineer approves your request, slabs may remain in place with an adjustment in payment for:

1. Dowel bars with centers from ±2 inches to ±3 inches from the saw cut of a transverse contraction joint or with deficient concrete consolidation around the dowel bars
2. Tie bars placed outside their specified placement and position or with deficient concrete consolidation around the tie bars

**Bar Reinforcing Steel**

The Engineer accepts concrete pavement for bar reinforcing steel based on inspection before concrete placement.

**Curing Compound**

Curing compound sampled from shipping containers from the manufacturer's supply source or from the job site must match the test results for viscosity, nonvolatile content, and pigment content within the specified tolerances listed in the precision and bias statements for the test methods.

### 40-2 MATERIALS

**40-2.01 CONCRETE**

**40-2.01A General**

Concrete must comply with Section 90, "Portland Cement Concrete."

**40-2.01B Aggregate**

The specifications for reduction in Operating Range and Contract Compliance for cleanliness value and sand equivalent specified under Section 90-2.02A, "Coarse Aggregate," and Section 90-2.02B, "Fine Aggregate," do not apply to concrete pavement.

Combined aggregate gradings must comply with Section 90-3, "Aggregate Gradings," and the difference between the percent passing the 3/8-inch sieve and the percent passing the No. 8 sieve must not be less than 16 percent of the total aggregate.
40-2.01C Cementitious Material

Concrete for concrete pavement must contain from 505 pounds to 675 pounds cementitious material per cubic yard. Determine the minimum cementitious materials content. Use your value for minimum cementitious material content for $MC$ in equation 1 and equation 2 of section 90-1.02B(3).

40-2.01D Mix Proportions

Your laboratory determining mix proportions must determine the minimum cementitious materials content or the maximum water to cementitious materials ratio and:

1. You must make trial mixtures no more than 24 months before field qualification.
2. Modulus of rupture used to determine the minimum cementitious materials content or maximum water to cementitious materials ratio must be 570 psi at 28 days age and 650 psi at 42 days age.
3. Your laboratory must determine an increase in the cementitious materials content or a decrease in the water to cementitious materials ratio from the trial mixtures to ensure concrete pavement complies with the specifications.

If changing an aggregate supply source or the mix proportions, produce a trial batch and field-qualify the new concrete. The Engineer does not adjust contract time for performing sampling, testing, and qualifying new mix proportions or changing an aggregate supply source.

40-2.01E Field Qualification

Proposed mix proportions must be field qualified before you place concrete pavement. Use an American Concrete Institute (ACI) certified "Concrete Laboratory Technician, Grade I" to perform field qualification tests and calculations.

The Engineer accepts field qualification if five beams made and tested under California Test 523 comply with the following:

1. At a minimum, beams are tested at 10, 21, and 28 days of age
2. At your choice of age not later than 28 days, no single beam's modulus of rupture is less than 550 psi and the average modulus of rupture is at least 570 psi

40-2.02 TIE BARS

Tie bars must be deformed bars.

If the project is not shown to be in high desert or any mountain climate region, tie bars must be one of the following:

1. Epoxy-coated bar reinforcement. Bars must comply with Section 52-1.02B, "Epoxy-coated Reinforcement" except bars must comply with either ASTM A 706/A 706M; ASTM A 996/A 996M; or ASTM A 615/A 615M, Grade 40 or 60.
2. Stainless-steel bars. Bars must be descaled, pickled, polished, and solid stainless-steel bars under ASTM A 955/A 955M, Grade 60, UNS Designation S31603 or S31803.
3. Low carbon, chromium-steel bars complying with ASTM A 1035/A 1035M.

If the project is shown to be in high desert or any mountain climate region, tie bars must be one of the following:

1. Epoxy-coated bar reinforcement. Bars must comply with "Epoxy-coated Prefabricated Reinforcement" in the special provisions except bars must comply with either ASTM A 706/A 706M; ASTM A 996/A 996M; or ASTM A 615/A 615M, Grade 40 or 60.
2. Stainless-steel bars. Bars must be descaled, pickled, polished, and solid stainless-steel bars under ASTM A 955/A 955M, Grade 60, UNS Designation S31603 or S31803.

Fabricate, sample, and handle epoxy-coated deformed tie bars at the job site under ASTM D 3963/D 3963M and Section 52-1.02B, "Epoxy-coated Reinforcement."

Do not bend tie bars.
40-2.03 DOWEL BARS

40-2.03A General

Dowel bars must be plain bars. Fabricate, sample, and handle epoxy-coated dowel bars under ASTM D 3963/D 3963M and section 52-1.02B, "Epoxy-coated Reinforcement," except each sample must be 18 inches long.

If the project is not shown to be in high desert or any mountain climate region, dowel bars must be one of the following:

1. Epoxy-coated bars. Bars must comply with ASTM A 615/A 615M, Grade 40 or 60. Epoxy coating must comply with either (1) Section 52-1.02B, "Epoxy-coated Reinforcement" or (2) "Epoxy-coated Prefabricated Reinforcement" in the special provisions.
2. Stainless-steel bars. Bars must be descaled, pickled, polished, and solid stainless-steel bars under ASTM A 955/A 955M, Grade 60, UNS Designation S31603 or S31803.
3. Low carbon, chromium-steel bars under ASTM A 1035/A 1035M.

If the project is shown to be in high desert or any mountain climate region, dowel bars must be one of the following:

1. Epoxy-coated bars. Bars must comply with ASTM A 615/A 615M, Grade 40 or 60. Epoxy coating must comply with "Epoxy-coated Prefabricated Reinforcement" in the special provisions.
2. Stainless-steel bars. Bars must be descaled, pickled, polished, and solid stainless-steel bars under ASTM A 955/A 955M, Grade 60, UNS Designation S31603 or S31803.

40-2.03B Dowel Bar Lubricant

Dowel bar lubricant must be either (1) petroleum paraffin based or (2) curing compound no. 3. Paraffin-based lubricant must be either Dayton Superior DSC BB-Coat, Valvoline Tectyl 506, or an approved equal. Petroleum paraffin based lubricant must be factory-applied.

40-2.04 CURING COMPOUND

Curing compound must be curing compound (1) or (2) with white pigment under Section 90-7.01B, "Curing Compound Method."

Reflectance must be at least 60 percent when tested under ASTM E 1347.

40-2.05 CHEMICAL ADHESIVE (DRILL AND BOND)

Chemical adhesive for drilling and bonding dowels and tie bars must be prequalified. A list of prequalified chemical adhesives is available on the Department's Materials Engineering and Testing Services website. The prequalified list indicates the appropriate chemical adhesive system for the concrete temperature and installation conditions.

Each chemical adhesive system must clearly and permanently show the following:

1. Manufacturer's name
2. Model number of the system
3. Manufacture date
4. Batch number
5. Expiration date
6. Current International Conference of Building Officials Evaluation Report number
7. Directions for use
8. Warnings or precautions required by state and federal laws and regulations

40-2.06 DOWEL AND TIE BAR BASKETS

For dowel and tie bar baskets, wire must comply with ASTM A 82/A 82M and be welded under ASTM A 185/A 185M, Section 7.4. The minimum wire-size no. is W10. Use either U-frame or A-frame shaped assemblies.

If the project is not shown to be in high desert or any mountain climate region. Baskets may be epoxy-coated, and the epoxy coating must comply with either (1) Section 52-1.02B, "Epoxy-coated Reinforcement" or (2) "Epoxy-coated Prefabricated Reinforcement" in the special provisions.

If the project is shown to be in high desert or any mountain climate region, wire for dowel bar and tie bar baskets must be one of the following:
1. Epoxy-coated wire under "Epoxy-coated Prefabricated Reinforcement" in the special provisions
2. Stainless-steel wire. Wire must be descaled, pickled, and polished solid stainless-steel. Wire must comply with (1) the chemical requirements in ASTM A 276/A 276M, UNS Designation S31603 or S31803 and (2) the tension requirements in ASTM A 1022/ A 1022M.

Handle epoxy-coated tie bar and dowel bar baskets under ASTM D 3963/D 3963M and either (1) Section 52-1.02B, "Epoxy-coated Reinforcement" or (2) "Epoxy-coated Prefabricated Reinforcement" in the special provisions.

Fasteners must be driven fasteners under ASTM F 1667. Fasteners on lean concrete base or HMA must have a minimum shank diameter of 3/16 inch and a minimum shank length of 2-1/2 inches. For asphalt treated permeable base or cement treated permeable base, the shank diameter must be at least 3/16 inch and the shank length must be at least 5 inches.

Fasteners, clips, and washers must have a minimum 0.2-mil thick zinc coating applied either by electroplating or galvanizing.

40-2.07 BACKER RODS

Backer rods must be Type 1 under ASTM D 5249. Backer rod diameter must be at least 25 percent greater than the sawcut joint width. Backer rod material must be expanded, crosslinked, closed-cell polyethylene foam. No bond or adverse reaction may occur between the backer rod and sealant.

40-2.08 JOINT FILLER MATERIAL

Joint filler for isolation joints must be preformed expansion joint filler for concrete (bituminous type) under ASTM D 994.

40-2.09 HYDRAULIC CEMENT GROUT (NON-SHRINK)

Hydraulic cement grout (non-shrink) must comply with ASTM C 1107/ C 1107M. Use clean, uniform, rounded aggregate filler to extend the grout. Aggregate filler must not exceed 60 percent of the grout mass or the maximum recommended by the manufacturer, whichever is less. Aggregate filler moisture content must not exceed 0.5 percent. Aggregate filler must comply with:

<table>
<thead>
<tr>
<th>Aggregate Filler Grading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieve Size</td>
</tr>
<tr>
<td>1/2-inch</td>
</tr>
<tr>
<td>3/8-inch</td>
</tr>
<tr>
<td>No. 4</td>
</tr>
<tr>
<td>No. 8</td>
</tr>
<tr>
<td>No. 16</td>
</tr>
</tbody>
</table>

40-2.10 BAR REINFORCEMENT

Bar reinforcement must be deformed bars.

If the project is not shown to be in high desert or any mountain climate region, bar reinforcement must comply with section 52.

If the project is shown to be in high desert or any mountain climate regions, bar reinforcement must be one of the following:

1. Epoxy-coated bar reinforcement under section 52-2.03B except bars must comply with either ASTM A 706/A 706M; ASTM A 996/A 996M; or ASTM A 615/A 615M, Grade 40 or 60. Bars must be handled under ASTM D 3963/D 3963M and section 52-2.02C.
2. Low carbon, chromium steel bar complying with ASTM A 1035/A 1035M

40-2.11 JOINT SEALANT

40-2.11A General

Do not use hot-pour sealant that will melt the backer rod.
40-2.11B Silicone Joint Sealant
Silicone joint sealant must be prequalified. A list of prequalified silicone joint sealant available on the Department's Materials Engineering and Testing Services Web site at:
http://www.dot.ca.gov/hq/esc/approved_products_list/

40-2.11C Asphalt Rubber Joint Sealant
Asphalt rubber joint sealant must:

1. Be a mixture of paving asphalt and ground rubber containing not less than 22 percent ground rubber by weight. One hundred percent of ground rubber must pass a No. 8 sieve. Ground rubber must be vulcanized or a combination of vulcanized and devulcanized materials.
2. Comply with ASTM D 6690, Type II except:
   
   2.1. The cone penetration requirement must not exceed 120 at 77 °F, 5 ounces, 5 seconds.
   2.2. The resilience requirement must be a minimum 50 percent recovery when tested at 77 °F.
3. Have a Ring and Ball softening point of 135 °F minimum when tested under AASHTO T 53.
4. Be capable of being melted and applied to cracks and joints at temperatures below 400 °F.
5. Not be applied when the concrete pavement surface temperature is below 50 °F.

40-2.11D Preformed Compression Joint Seals
Preformed compression joint seals must comply with ASTM D 2628. Lubricant adhesive used with the seals must comply with ASTM D 2835. Preformed compression joint seals must have 5 or 6 cells, except seals for Type A2 and Type B joints may have 4 cells. Install preformed compression joint seals in compliance with the manufacturer's recommendations. Show evidence that the seals are compressed from 30 to 50 percent for the joint width at the time of installation.

40-2.12 WATER
Water for core drilling may be obtained from a potable water source, or submit proof that it does not contain:

1. More than 1,000 parts per million of chlorides as Cl
2. More than 1,300 parts per million of sulfates as SO₄
3. Impurities that cause pavement discoloration or surface etching

40-3 CONSTRUCTION

40-3.01 WATER SUPPLY
Before placing concrete pavement, develop enough water supply for the work.

40-3.02 SUBGRADE PREPARATION
Immediately before placing concrete, the subgrade to receive concrete pavement must be:

1. In compliance with the specified compaction and elevation tolerances
2. Free of loose and extraneous material
3. Uniformly moist, but free of standing or flowing water
4. Excavated for thickened parts of concrete pavement end anchors with no disturbed compaction outside the end anchor dimensions

If cement treated permeable base is specified, cover the base surface with asphaltic emulsion before placing concrete pavement. Apply the asphaltic emulsion uniformly at a rate of 0.1 gallons per square yard. Asphaltic emulsion must comply with anionic slow-setting type, SS1h grade in Section 94, "Asphaltic Emulsions." Repair damaged asphaltic emulsion before placing concrete pavement.

40-3.03 PROPORTIONING
Proportion aggregate and bulk cementitious materials under Section 90-5, "Proportioning."
40-3.04 PLACING CONCRETE

40-3.04A General

Place concrete pavement with stationary side forms or slip-form paving equipment.
Place consecutive concrete loads within 30 minutes of each other. Construct a transverse construction joint when concrete placement is interrupted by more than 30 minutes. The transverse construction joint must coincide with the next contraction joint location, or you must remove fresh concrete pavement to the preceding transverse joint location.
Place concrete pavement in full slab widths separated by construction joints or monolithically in multiples of full lane widths with a longitudinal contraction joint at each traffic lane line.
Do not retemper concrete.
If the concrete pavement surface width is constructed as specified, you may construct concrete pavement sides on a batter not flatter than 6:1 (vertical:horizontal).

40-3.04B Concrete Pavement Widening

If concrete pavement is placed adjacent to existing pavement not constructed as part of the contract, grind the existing concrete pavement lane or shoulder adjacent to the new concrete pavement. Perform the grinding before new concrete pavement is placed. The new concrete pavement must match the elevation of the existing concrete pavement after grinding. Grind existing concrete pavement under Section 42-2, "Grinding," except profile index must comply with the pavement smoothness specifications in Section 40-1.03, "Quality Control and Assurance."
Use paving equipment with padded crawler tracks or rubber-tired wheels on the existing concrete pavement with enough offset to avoid breaking or cracking the existing concrete pavement's edge.

40-3.04C Concrete Pavement Transition Panel

For concrete pavement placed in a transition panel, texture the surface with a drag strip of burlap, a broom, or a spring steel tine device that produces scoring in the finished surface. The scoring must be either parallel with or transverse to the centerline. For the method you choose, texture at the time that produces the coarsest texture.

40-3.04D Stationary Side Form Construction

Stationary side forms must be straight and without defects including warps, bends, and indentations. Side forms must be metal except at end closures and transverse construction joints where other materials may be used.
You may build up side forms by attaching a section to the top or bottom. If attached to the top of metal forms, the attached section must be metal.
The side form's base width must be at least 80 percent of the specified concrete pavement thickness.
Side forms including interlocking connections with adjoining forms must be rigid enough to prevent springing from subgrading and paving equipment and concrete pressure.
Construct subgrade to final grade before placing side forms. Side forms must bear fully on the foundation throughout their length and base width. Place side forms to the specified grade and alignment of the finished concrete pavement's edge. Support side forms during concrete placing, compacting, and finishing.
After subgrade work is complete and immediately before placing concrete, true side forms and set to line and grade for a distance that avoids delays due to form adjustment.
Clean and oil side forms before each use.
Side forms must remain in place for at least 1 day after placing concrete and until the concrete pavement edge no longer requires protection from the forms.
Spread, screed, shape, and consolidate concrete with 1 or more machines. The machine must uniformly distribute and consolidate the concrete. The machines must operate to place the concrete pavement to the specified cross section with minimal hand work.
Consolidate the concrete without segregation. If vibrators are used:

1. The vibration rate must be at least 3,500 cycles per minute for surface vibrators and 5,000 cycles per minute for internal vibrators
2. Amplitude of vibration must cause perceptible concrete surface movement at least 1 foot from the vibrating element
3. Use a calibrated tachometer for measuring frequency of vibration
4. Vibrators must not rest on side forms or new concrete pavement
5. Power to vibrators must automatically cease when forward or backward motion of the paving machine is stopped
Use high-frequency internal vibrators within 15 minutes of depositing concrete on the subgrade to uniformly consolidate the concrete across the paving width including adjacent to forms. Do not use vibrators to shift the mass of concrete.

**40-3.04E Slip-Form Construction**

If slip-form construction is used, spread, screed, shape, and consolidate concrete to the specified cross section with slip-form machines and minimal hand work. Slip-form paving machines must be equipped with traveling side forms and must not segregate the concrete.

Do not deviate from the specified concrete pavement alignment by more than 0.1 foot.

Slip-form paving machines must use high frequency internal vibrators to consolidate concrete. You may mount vibrators with their axes parallel or normal to the concrete pavement alignment. If mounted with axes parallel to the concrete pavement alignment, space vibrators no more than 2.5 feet measured center to center. If mounted with axes normal to the concrete pavement alignment, space the vibrators with a maximum 0.5-foot lateral clearance between individual vibrators.

Each vibrator must have a vibration rate from 5,000 cycles per minute to 8,000 cycles per minute. The amplitude of vibration must cause perceptible concrete surface movement at least 1 foot from the vibrating element. Use a calibrated tachometer to measure frequency of vibration.

**40-3.05 TIE BAR PLACEMENT**

Place tie bars in compliance with the tolerances shown in the following table:

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal and vertical skew</td>
<td>10 degrees maximum</td>
</tr>
<tr>
<td>Longitudinal translation</td>
<td>±2 inch maximum</td>
</tr>
<tr>
<td>Horizontal offset (embedment)</td>
<td>±2 inch maximum</td>
</tr>
</tbody>
</table>
| Vertical depth                   | 1. Not less than 1/2 inch below the saw cut depth of joints  
|                                  | 2. When measured at any point along the bar, not less than 2 inches clear of the pavement's surface and bottom |

Install tie bars at longitudinal joints by 1 of the following methods:

1. Drill concrete and bond tie bars with chemical adhesive in compliance with the manufacturer's instructions. Clean and dry drilled holes before placing chemical adhesive and tie bars. After inserting tie bars into chemical adhesive, support the bars to prevent movement during curing. If the Engineer rejects a tie bar installation, cut the tie bar flush with the joint face and coat the exposed end of the tie bar with chemical adhesive under Section 40-2, "Materials." Offset new holes 3 inches horizontally from the rejected hole's center.

2. Insert tie bars into plastic slip-formed concrete before finishing. Inserted tie bars must have full contact between the bar and the concrete. If tie bars are inserted through the plastic concrete surface, eliminate evidence of the insertion by reworking the concrete over the tie bars.

3. Use threaded tie bar splice couplers fabricated from deformed bar reinforcement free of external welding or machining.

4. Use tie bar baskets. Anchor baskets at least 200 feet in advance of concrete pavement placement activity. If you request a waiver, describe the construction limitations or restricted access preventing the advanced anchoring. After the baskets are anchored and before paving, demonstrate the tie bars do not move from their specified depth and alignment during paving. Use fasteners to anchor tie bar baskets.

If tie bars are not placed correctly, stop paving activities until you demonstrate to the Engineer correction of the cause.

**40-3.06 DOWEL BAR PLACEMENT**

Center dowel bars within 2 inches in the longitudinal direction on transverse contraction joints or construction joints.
If using curing compound as lubricant, apply the curing compound to dowels in 2 separate applications. Lubricate each dowel bar entirely with bond breaker before placement. The last application must be applied not more than 8 hours before placing the dowel bars. Apply each curing compound application at a rate of 1 gallon per 150 square feet.

If dowel bars are placed by mechanical insertion, eliminate evidence of the insertion by reworking the concrete over the dowel bars. If drilling and bonding dowel bars at construction joints, use a grout retention ring.

If using dowel bar baskets, anchor them with fasteners.

Use at least 10 fasteners for basket sections greater than 12 feet and less than or equal to 16 feet. Baskets must be anchored at least 200 feet in advance of the concrete placement activity unless the Engineer approves your waiver request. If requesting a waiver, describe the construction limitations or restricted access preventing the advanced anchoring. After the baskets are anchored and before the concrete is placed, cut and remove temporary spacer wires and demonstrate the dowel bars do not move from their specified depth and alignment during concrete placement.

Place dowel bars in compliance with:

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal offset</td>
<td>±1 inch</td>
</tr>
<tr>
<td>Longitudinal translation</td>
<td>±2 inches</td>
</tr>
<tr>
<td>Horizontal skew</td>
<td>3/8 inch, max</td>
</tr>
<tr>
<td>Vertical skew</td>
<td>3/8 inch, max</td>
</tr>
<tr>
<td>Vertical depth</td>
<td>The minimum distance below the concrete pavement surface must be: DB = d/3 + 1/2 inch where: DB = vertical distance in inches, measured from concrete pavement surface to any point along the top of dowel bar d = concrete pavement thickness in inches The maximum distance below the depth shown must be 5/8 inch.</td>
</tr>
</tbody>
</table>

If dowel bars are not placed correctly, stop paving activities until you demonstrate to the Engineer correction of the cause.

Remove and replace the concrete pavement 3 feet on either side of a joint with a rejected dowel bar.

**40-3.07 BAR REINFORCEMENT**

Place bar reinforcement under Section 52, "Reinforcement." Bar reinforcement must be more than 1/2 inch below the saw cut depth at concrete pavement joints.

**40-3.08 JOINTS**

**40-3.08A General**

Concrete pavement joints consist of:

1. Longitudinal and transverse construction joints
2. Longitudinal and transverse contraction joints
3. Isolation joints

Construction joints must be normal to the concrete pavement surface.

Until contract acceptance and except for joint filler material, keep joints free of foreign material including soil, gravel, concrete, or asphalt mix.

Volunteer cracks are cracks not coincident with constructed joints.

Repair concrete pavement damaged during joint construction under Section 40-3.17B, "Repair of Spalls, Raveling, and Tearing."
Do not bend tie bars or reinforcement in existing concrete pavement joints.

40-3.08B Construction Joints
Construction joints form where fresh concrete is placed against hardened concrete, existing pavements, or structures.
Before placing concrete at construction joints, apply a curing compound under Section 90-7.01B, "Curing Compound Method," to the vertical surface of existing or hardened concrete and allow it to dry.
Use a metal or wooden bulkhead to form transverse construction joints. If dowel bars are specified, the bulkhead must allow dowel bar installation.

40-3.08C Contraction Joints
In multilane monolithic concrete pavement, use the sawing method to construct longitudinal contraction joints. Construct transverse contraction joints by the sawing method.
Construct transverse contraction joints within 1 foot of their specified spacing. If a slab length of less than 5 feet would be formed, adjust the transverse contraction joint spacing.
Construct transverse contraction joints across the full concrete pavement width regardless of the number or types of longitudinal joints crossed. In areas of converging and diverging pavements, space transverse contraction joints so their alignment is continuous across the full width where converging and diverging pavements are contiguous. Longitudinal contraction joints must be parallel with the concrete pavement centerline. Transverse and longitudinal contraction joints must not deviate by more than 0.1 foot from either side of a 12-foot straight line, except for longitudinal joints parallel to a curving centerline.

40-3.08D Isolation Joints
Construct isolation joints by saw cutting a minimum 1/8-inch width to full concrete pavement depth at the existing concrete pavement's edge and removing the concrete to expose a flat vertical surface. Before placing concrete, secure joint filler material that prevents new concrete from adhering to the existing concrete face.
Dispose of concrete saw cutting residue under Section 7-1.13, "Disposal of Materials Outside the Highway Right of Way."

40-3.08E Sawing Method
The sawing method is cutting a groove in the concrete pavement with a power driven concrete saw. Grooves for longitudinal and transverse contraction joints must be the minimum width possible for the type of saw used. If necessary, the top of the joint must be sawn wider to provide space for joint sealant. Immediately wash slurry from the joint with water under 100 psi maximum pressure.
Saw longitudinal and transverse contraction joints before volunteer cracking occurs and after the concrete is hard enough to saw without spalling, raveling, or tearing.
To keep foreign material out of grooves before joint sealant or compression seal installation, you may use joint filler in sawed contraction joints. Joint filler must not react adversely with the concrete or cause concrete pavement damage. After sawing and washing a joint, install joint filler material that keeps moisture in the adjacent concrete during the 72 hours after paving. If you install joint filler material, the specifications for spraying the sawed joint with additional curing compound under Section 40-3.13, "Curing," do not apply. If using absorptive filler material, moisten the filler immediately before or after installation.

40-3.09 JOINT SEALANT AND COMPRESSION SEAL INSTALLATION
40-3.09A General
At least 7 days after concrete pavement placement and not more than 4 hours before installing joint sealant or compression seal materials, use dry sand blasting and other methods to clean the joint walls of objectionable material such as soil, asphalt, curing compound, paint, and rust. The maximum sand blasting nozzle diameter must be 1/4 inch. The minimum pressure must be 90 psi. Sand blast each side of the joint at least once, in at least 2 separate passes. Hold the nozzle at an angle to the joint from 1 to 2 inches from the concrete pavement. Using a vacuum, collect sand, dust, and loose material at least 2 inches on each side of the joint. Remove surface moisture and dampness at the joints with compressed air that may be moderately hot.
Before you install joint sealant or compression seal, the joint wall must be free of moisture, residue, or film.
If grinding or grooving over or adjacent to sealed joints, remove joint sealant or compression seal materials and dispose of them under Section 7-1.13, "Disposal of Material Outside the Highway Right of Way." After grinding or grooving, replace the joint sealant or compression seal materials.
40-3.09B Liquid Sealant
Do not install liquid sealant in construction joints. Install backer rods when the concrete pavement temperature is above the air dew point and when the air temperature is at least 40 °F. Install liquid sealant immediately after installing the backer rod. Install sealant using a mechanical device with a nozzle shaped to introduce the sealant from inside the joint. Extrude sealant evenly and with continuous contact with the joint walls. Recess the sealant surface after placement. Remove excess sealant from the concrete pavement surface.
Do not allow traffic over sealed joints until the sealant is set.

40-3.09C Preformed Compression Seal
Install preformed compression seal in construction or isolation joints when specified in the special provisions. Install longitudinal seals before transverse seals. Longitudinal seals must be continuous except splicing is allowed at intersections with transverse seals. Transverse seals must be continuous for the entire transverse length of concrete pavement except splices are allowed for widenings and staged construction. With a sharp instrument, cut across the longitudinal seal at the intersection with transverse construction joints. If the longitudinal seal does not relax enough to properly install the transverse seal, trim the longitudinal seal to form a tight seal between the 2 joints.
If splicing is authorized, splicing must comply with the manufacturer's written instructions.
Use a machine specifically designed for preformed compression seal installation. The machine must install the seal:
1. To the specified depth
2. To make continuous contact with the joint walls
3. Without cutting, nicking, or twisting the seal
4. With less than 4 percent stretch

Lay a length of preformed compression seal material cut to the exact length of the pavement joint to be sealed. The Engineer measures this length. After you install the length of preformed compression joint sealant, the Engineer measures the excess amount of material at the joint end. The Engineer divides the excess amount length by the original measured length to determine the percentage of stretch.

40-3.10 SHOULDER RUMBLE STRIP
If specified, construct shoulder rumble strips by rolling or grinding indentations in new concrete pavement. Select the method and equipment for constructing ground-in indentations. Do not construct shoulder rumble strips on structures or approach slabs. Construct rumble strips within 2 inches of the specified alignment. Roller or grinding equipment must be equipped with a sighting device enabling the operator to maintain the rumble strip alignment. Indentations must not vary from the specified dimensions by more than 1/16 inch in depth or more than 10 percent in length and width.
The Engineer orders grinding or removal and replacement of noncompliant rumble strips to bring them within specified tolerances. Ground surface areas must be neat and uniform in appearance. The grinding equipment must be equipped with a vacuum attachment to remove residue.
Dispose of removed material under Section 7-1.13, "Disposal of Material Outside the Highway Right of Way."

40-3.11 PRELIMINARY FINISHING
40-3.11A General
Preliminary finishing must produce a smooth and true-to-grade finish. After preliminary finishing, mark each day's concrete pavement with a stamp. The stamp must be approved by the Engineer before paving starts. The stamp must be approximately 1’ x 2’ in size. The stamp must form a uniform mark from 1/8 to 1/4 inch deep. Locate the mark 20 feet ± 5 feet from the transverse construction joint formed at each day's start of paving and 1 foot ± 0.25 foot from the concrete pavement's outside edge. The stamp mark must show the month, day, and year of placement and the station of the transverse construction joint. Orient the stamp mark so it can be read from the concrete pavement's outside edge.
Do not apply more water to the concrete pavement surface than can evaporate before float finishing and texturing are completed.
40-3.11B Stationary Side Form Finishing

If stationary side form construction is used, give the concrete a preliminary finish by the machine float method or the hand method.

If using the machine float method:

1. Use self-propelled machine floats.
2. Determine the number of machine floats required to perform the work at a rate equal to the concrete delivery rate. When the time from concrete placement to machine float finishing exceeds 30 minutes, stop concrete delivery. When machine floats are in proper position, you may resume concrete delivery and paving.
3. Machine floats must run on side forms or adjacent concrete pavement lanes. If running on adjacent concrete pavement, protect the adjacent concrete pavement surface under Section 40-3.15, "Protecting Concrete Pavement."
4. Floats must be hardwood, steel, or steel-shod wood. Floats must be equipped with devices that adjust the underside to a true flat surface.

If using the hand method, finish concrete smooth and true to grade with manually operated floats or powered finishing machines.

40-3.11C Slip-Form Finishing

If slip-form construction is used, the slip-form paver must give the concrete pavement a preliminary finish. You may supplement the slip-form paver with machine floats.

Before the concrete hardens, correct concrete pavement edge slump in excess of 0.02 foot exclusive of edge rounding.

40-3.12 FINAL FINISHING

After completing preliminary finishing, round the edges of the initial paving widths to a 0.04-foot radius. Round transverse and longitudinal construction joints to a 0.02-foot radius.

Before curing, texture the pavement. Perform initial texturing with a burlap drag or broom device that produces striations parallel to the centerline. Perform final texturing with a steel-tined device that produces grooves parallel with the centerline.

Construct longitudinal grooves with a self-propelled machine designed specifically for grooving and texturing concrete pavement. The machine must have tracks to maintain constant speed, provide traction, and maintain accurate tracking along the pavement surface. The machine must have a single row of rectangular spring steel tines. The tines must be from 3/32 to 1/8 inch wide, on 3/4-inch centers, and must have enough length, thickness, and resilience to form grooves approximately 3/16 inch wide. The machine must have horizontal and vertical controls. The machine must apply constant down pressure on the pavement surface during texturing. The machines must not cause ravels.

Construct grooves over the entire pavement width in a single pass except do not construct grooves 3 inches from the concrete pavement edges and longitudinal joints. Final texture must be uniform and smooth. Use a guide to properly align the grooves. Grooves must be parallel and aligned to the pavement edge across the pavement width. Grooves must be from 1/8 to 3/16 inch deep after concrete has hardened.

For irregular areas and areas inaccessible to the grooving machine, you may hand-construct grooves in compliance with the hand method under Section 40-3.11B, "Stationary Side Form Finishing." Hand-constructed grooves must comply with the specifications for machine-constructed grooves.

Initial and final texturing must produce a coefficient of friction of at least 0.30 when tested under California Test 342. Notify the Engineer when the concrete pavement is scheduled to be opened to traffic to allow at least 25 days for the Department to schedule for test for coefficient of friction. Notify the Engineer when the pavement is ready for testing which is the latter of:

1. Seven days after concrete placement
2. When the concrete pavement has attained a modulus of rupture of 550 psi

The Department tests for coefficient of friction within 7 days of receiving notification that the pavement is ready for testing. Do not open the concrete pavement to traffic unless the coefficient of friction is at least 0.30.

Correct concrete pavement not complying with the Engineer's acceptance criteria for coefficient of friction by grooving or grinding under Section 42, "Groove and Grind Pavement."

Contract No. 08-0M94U4
170 of 290
Do not grind before:

1. Ten days after concrete pavement placement
2. Concrete has developed a modulus of rupture of at least 550 psi

Before opening to traffic, allow at least 25 days for the Department to retest sections for coefficient of friction after corrections are made.

40-3.13 CURING
Cure the concrete pavement's exposed area with waterproof membrane or curing compound (1) or (2) under Section 90-7.01, "Methods of Curing." When side forms are removed within 72 hours of the start of curing, also cure the concrete pavement edges.

If curing compound is used, apply it with mechanical sprayers. Reapply curing compound to sawcuts and disturbed areas.

40-3.14 EARLY USE OF CONCRETE PAVEMENT
If requesting early use of concrete pavement:

1. Furnish molds and machines for modulus of rupture testing
2. Sample concrete
3. Fabricate beam specimens
4. Test for modulus of rupture under California Test 523

When you request early use, concrete pavement must have a modulus of rupture of at least 350 psi. Protect concrete pavement under Section 40-3.15, "Protecting Concrete Pavement."

40-3.15 PROTECTING CONCRETE PAVEMENT
Protect concrete pavement under Section 90-8, "Protecting Concrete."

Maintain the concrete pavement temperature at not less than 40 °F for the initial 72 hours.

Protect the concrete pavement surface from activities that cause damage and reduce texture and coefficient of friction. Do not allow soil, gravel, petroleum products, concrete, or asphalt mixes on the concrete pavement surface.

Construct crossings for traffic convenience. If the Engineer approves your request, you may use rapid strength concrete for crossings. Do not open crossings until the Department determines by California Test 523 the concrete pavement's modulus of rupture is at least 550 psi.

Do not open concrete pavement to traffic or use equipment on the concrete pavement for 10 days after paving nor before the concrete has attained a modulus of rupture of 550 psi except:

1. If the equipment is for sawing contraction joints
2. If the Engineer approves your request, one side of paving equipment's tracks may be on the concrete pavement after a modulus of rupture of 350 psi has been attained, provided:

   2.1. Unit pressure exerted on the concrete pavement by the paver does not exceed 20 psi
   2.2. You change the paving equipment tracks to prevent damage or the paving equipment tracks travel on protective material such as planks
   2.3. No part of the track is closer than 1 foot from the concrete pavement's edge

If concrete pavement damage including visible cracking occurs, stop operating paving equipment on the concrete pavement and repair the damage.

40-3.16 OBTAINING DRILLED CORES
Drill concrete pavement cores under ASTM C 42/ C 42M. Core drilling equipment must use diamond impregnated bits.

Clean, dry, and fill core holes with hydraulic cement grout (non-shrink) or pavement concrete. Coat the core hole walls with epoxy under the specifications for epoxy adhesive for bonding new concrete to old concrete in Section 95, "Epoxy." The backfill must match the adjacent concrete pavement surface elevation and texture.

Do not allow residue from core drilling to fall on traffic, flow across shoulders or lanes occupied by traffic, or flow into drainage facilities including gutters.
40-3.17 REPAIR, REMOVAL, AND REPLACEMENT

40-3.17A General

Working cracks are full-depth cracks essentially parallel to a planned contraction joint beneath which a contraction crack has not formed. If the Engineer orders, take 4-inch nominal diameter cores on designated cracks under Section 40-3.16, "Obtaining Drilled Cores."

40-3.17B Repair of Spalls, Raveling, and Tearing

Before concrete pavement is open to traffic, repair spalls, raveling, and tearing in sawed joints. Make repairs in compliance with the following:

1. Saw a rectangular area with a diamond-impregnated blade at least 2 inches deep.
2. Remove unsound and damaged concrete between the saw cut and the joint and to the saw cut's depth. Do not use a pneumatic hammer heavier than 15 pounds. Do not damage concrete pavement to remain in place.
3. Dispose of removed concrete pavement under Section 7-1.13, "Disposal of Materials Outside the Highway Right of Way."
4. Clean the repair area's exposed surfaces with high pressure abrasive water blasting. Further clean and dry the exposed surfaces with compressed air free of moisture and oil.
5. Apply epoxy as specified for epoxy resin adhesive for bonding new concrete to old concrete under Section 95, "Epoxy." Apply the epoxy with a stiff bristle brush.
6. Apply a portland cement concrete or mortar patch immediately following the epoxy application. Install an insert to prevent bonding of the sides of planned joints.

Repair spalls if they are:

1. Deeper than 0.05 foot
2. Wider than 0.04 foot
3. Longer than 0.3 foot

40-3.17C Route and Seal Working Cracks

Treat working cracks within 0.5 foot of either side of a planned contraction joint in compliance with the following:

1. Route and seal the crack with epoxy resin in compliance with the following:
   
   1.1. Use a powered rotary router mounted on wheels, with a vertical shaft and a routing spindle that casters as it moves along the crack
   
   1.2. Form a reservoir 3/4 inch deep by 3/8 inch wide in the crack
   
   1.3. Use equipment that does not cause raveling or spalling
   
   1.4. Place liquid sealant

2. Treat the contraction joint adjacent to the working crack in compliance with the following:

   2.1. Use epoxy resin under ASTM C 881/C 881M, Type IV, Grade 2 for Type B joints and secondary saw cuts for Type A1 and Type A2 joints
   
   2.2. Pressure inject epoxy resin under ASTM C 881/C881M, Type IV, Grade 1 for narrow saw cuts including initial saw cuts for Type A1 and Type A2 joints

If a working crack intersects a contraction joint, route and seal the working crack and seal the contraction joint as specified for installing liquid sealant under Section 40-3.09, "Joint Seal and Joint Sealant Installation."

40-3.17D Removal and Replacement of Slabs

As specified, remove and replace slabs or partial slabs for:

1. Insufficient thickness
2. Dowel bar misalignment
3. Working cracks more than 0.5 foot from a planned contraction joint
40-4 MEASUREMENT AND PAYMENT

40-4.01 MEASUREMENT

Concrete pavement is measured by the cubic yard. The Engineer calculates the pay quantity volume based on the dimensions shown on the plans and as ordered.

The contract items for sealing joints as designated in the Verified Bid Item List are measured by the linear foot. Sealing joints are measured from field measurements for each type of sealed joint.

The contract item for shoulder rumble strips is measured by the station along each shoulder on which the rumble strips are constructed without deductions for gaps between indentations.

40-4.02 PAYMENT

The contract price paid per cubic yard for concrete pavement as designated in the Verified Bid Item List includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in constructing the concrete pavement, complete in place including bar reinforcement, tie bars, dowel bars, anchors, fasteners, tack coat, and providing the facility for and attending the prepping conference, as shown on the plans and as specified in these specifications and the special provisions, and as directed by the Engineer.

The Engineer adjusts payment for each primary area deficient in average thickness in compliance with the following:

| Pay Adjustments for Deficient Thickness |
|-------------------------------|-------------------|
| Average Thickness Deficiency (foot) | Deficiency Adjustment ($/sq yd) |
| 0.01                           | 0.90              |
| 0.02                           | 2.30              |
| 0.03                           | 4.10              |
| 0.04                           | 6.40              |
| 0.05                           | 9.11              |

If the average thickness deficiency is less than 0.01 foot, the Engineer does not adjust payment for thickness deficiency. If the average thickness deficiency is more than 0.01 foot, the Engineer rounds to the nearest 0.01 foot and uses the adjustment table.

Full compensation for core drilling and backfilling the cores ordered by the Engineer for measuring concrete pavement thickness and determining full-depth cracks is included in the contract price paid per cubic yard for concrete pavement as designated in the Engineer's Estimate and no additional compensation will be allowed therefor. The Department does not pay for additional concrete pavement thickness measurements requested by the Contractor.

The Department does not pay for the portion of concrete that penetrates treated permeable base.

Full compensation for the quality control plan is included in the contract price paid per cubic yard for concrete pavement as designated in the Verified Bid Item List and no separate payment will be made therefor.

Full compensation for furnishing and applying asphaltic emulsion on cement treated permeable base is included in the contract price paid per cubic yard for concrete pavement as designated in the Engineer's Estimate and no separate payment will be made therefor.

Full compensation for repairing joints is included in the contract price paid per cubic yard for concrete pavement as designated in the Verified Bid Item List and no separate payment will be made therefor.

Full compensation for furnishing, calibrating, and operating profilograph equipment for Profile Index, for submitting profilograms, and for performing corrective work is included in the contract price paid per cubic yard for concrete pavement as designated in the Verified Bid Item List and no separate payment will be made therefor.

Full compensation for grooving and grinding for final finishing is included in the contract price paid per cubic yard for concrete pavement as designated in the Verified Bid Item List and no separate payment will be made therefor.

Full compensation for removing and replacing joint material for grooving and grinding is included in the contract price per cubic yard for concrete pavement as designated in the Verified Bid Item List and no separate payment will be made therefor.

Full compensation for removing and replacing slabs is included in the contract price paid per cubic yard for concrete pavement as designated in the Verified Bid Item List and no separate payment will be made therefor.

Full compensation for drilling holes and bonding tie bars with chemical adhesive is included in the contract price paid per cubic yard for concrete pavement as designated in the Verified Bid Item List and no additional compensation will be allowed therefor.
Full compensation for repairing damage caused by operating paving equipment on new concrete pavement is included in the contract price paid per cubic yard for concrete pavement as designated in the Verified Bid Item List and no separate payment will be made therefor.

The material and work necessary for the construction of crossings for public convenience, and their subsequent removal and disposal, will be paid for at the contract prices for the items of work involved and if there are no contract items for the work involved, payment for concrete pavement crossings will be made by extra work as specified in Section 4-1.03D, "Extra Work."

The Department will reduce payments to the Contractor by $56.12 per square yard for concrete pavement slabs allowed to remain in place represented by cores indicating dowel bars placed with their centers from ±2 inches to ±3 inches from the saw cut of a transverse contraction joint.

The Engineer will calculate the reduced payment using the slab dimensions adjacent to and inclusive of the joints with misplaced dowel bars. This reduced payment is in addition to other specified payment reductions.

The Department will reduce payments to the Contractor by $59.56 per square yard for concrete pavement allowed to remain in place represented by cores indicating either of the following:

1. Tie bars placed outside their specified placement and position tolerances
2. Bar reinforcement placed outside their specified placement and position tolerances

The Engineer will calculate the reduced payment using the slab dimensions adjacent to and inclusive of the joints with misplaced tie bars. This reduced payment is in addition to other specified payment reductions.

Full compensation for core drilling for checking dowel or tie bar alignment and backfilling the cores is included in the contract price paid per cubic yard for concrete pavement as designated in the Engineer's Estimate and no additional compensation will be allowed therefor.

If the initial cores show that dowel bars or tie bars are out of tolerance for alignment and the Engineer orders additional dowel or tie bar coring, full compensation for drilling the additional cores is included in the contract price paid per cubic yard for concrete pavement as designated in the Verified Bid Item List and no additional compensation will be allowed therefor.

If the initial cores show that dowel bars or tie bars are within alignment tolerances and the Engineer orders more dowel or tie bar coring, the additional cores will be paid for as extra work as specified in Section 4-1.03D, "Extra Work."

The Department will not pay for additional coring to check dowel or tie bar alignment you request.

Full compensation for performing profilograph tests, furnishing the profilograms and electronic files to the Engineer, and for performing corrective work is included in the contract price paid per cubic yard for the type of concrete pavement as designated in the Verified Bid Item List and no additional compensation will be allowed therefor.

The contract prices paid per linear foot for seal pavement joint and seal isolation joint include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in sealing pavement joints and sealing isolation joints, complete in place, as shown on the plans, and as specified in these specifications and the special provisions, and as directed by the Engineer.

The contract price paid per station for shoulder rumble strip includes full compensation for furnishing all labor, materials, tools, equipment and incidentals, and for doing all the work involved in constructing the rumble strip complete in place, as shown on the plans, as specified in these Standard Specifications and as directed by the Engineer.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECTION 41 PAVEMENT SUBSEALING AND JACKING
(Issued 01-05-07)

In Section 41-1.02 replace the 2nd and 3rd paragraphs with:

Cement for grout shall be Type II portland cement conforming to the provisions in Section 90-2.01A, "Cement."

Fly ash shall conform to the requirements in AASHTO Designation: M 295 for either Class C or for Class F. The brand of fly ash used in the work shall conform to the provisions for approval of admixture brands in Section 90-4.03, "Admixture Approval."
In Section 41-1.02 replace the 5th paragraph with:
Chemical admixtures and calcium chloride may be used. Chemical admixtures in the grout mix shall conform to the provisions in Section 90-4, "Admixtures." Calcium chloride shall conform to ASTM Designation: D 98.

SECTION 42 GROOVE AND GRIND PAVEMENT
(Issued 05-15-09)

In Section 42-2.02 replace the 3rd paragraph with:
Existing portland cement concrete pavement not constructed as part of the project shall be ground as follows:

Grinding shall be performed so that the pavement surface on both sides of all transverse joints and cracks has essentially the same depth of texture and does not vary from a true plane enough to permit a 0.006-foot thick shim 0.25-foot wide to pass under a 3-foot straightedge adjacent to either side of the joint or crack when the straightedge is laid on the pavement parallel to centerline with its midpoint at the joint or crack. After grinding has been completed, the pavement shall conform to the straightedge and profile requirements specified in Section 40-1.03, "Quality Control and Assurance." Abnormally depressed areas due to subsidence or other localized causes will be excluded from testing with the profilograph and 12-foot straightedge specified in Section 40-1.03. The accumulated total of the excluded areas shall not exceed 5 percent of the total area to be ground. Profilograph testing shall end 25 feet prior to excluded areas and shall resume 25 feet following the excluded areas.

In Section 42-2.03 replace the 2nd paragraph with:
Replacement concrete paving shall conform to the provisions in Section 40, "Concrete Pavement." Replacement pavement may be spread and shaped by any suitable powered finishing machines, supplemented by handwork as necessary. Consolidation of the concrete shall be by means of high-frequency internal vibrators within 15 minutes after the concrete is deposited on the subgrade. Vibrating shall be done with care and in such manner to assure adequate consolidation adjacent to forms and uniformly across the full paving width. Use of vibrators for extensive shifting of the mass of concrete will not be permitted. Methods of spreading, shaping and compacting that result in segregation, voids or rock pockets shall be discontinued, and the Contractor shall adopt methods which will produce dense homogeneous pavement conforming to the required cross section. Finishing may be performed by hand method, as specified in Section 40-3.11B, "Stationary Side Form Finishing."

SECTION 49 PILING
(Issued 07-20-12)

In Section 49-1.03 replace the 4th paragraph with:
Modification to the specified installation methods and specified pile tip elevation will not be considered at locations where settlement, tension demands, or lateral load demands control design pile tip elevations or when the plans state that specified pile tip elevation shall not be revised.

In Section 49-1.03 in the 7th paragraph, replace the 2nd sentence with:
The loading apparatus described as "Tensile Load Applied by Hydraulic Jack(s) Acting Upward at One End of Test Beam(s)" shall not be used.

In Section 49-1.03 replace the 9th paragraph with:
The Contractor shall furnish piling of sufficient length to obtain the specified tip elevation shown on the plans or specified in the special provisions.
In Section 49-1.04 replace the 6th paragraph with:

The Contractor may use additional cementitious material in the concrete for the load test and anchor piles.

In Section 49-4.01 replace the 2nd paragraph with:

The drilling of holes shall conform to the provisions in these specifications. Concrete filling for cast-in-place concrete piles shall be prequalified in conformance with the provisions in Section 90-9, "Compressive Strength," and shall have a minimum 28-day compressive strength of 3,600 psi. At the option of the Contractor, the combined aggregate grading for the concrete shall be either the one-inch maximum grading, the 1/2-inch maximum grading, or the 3/8-inch maximum grading. Concrete shall conform to the provisions in Section 90, "Portland Cement Concrete," and Section 51, "Concrete Structures." Reinforcement shall conform to the provisions in Section 52, "Reinforcement."

In Section 49-6.01 replace the 1st paragraph with:

The length of timber, steel, and precast prestressed concrete piles, and of cast-in-place concrete piles consisting of driven shells filled with concrete, shall be measured along the longest side, from the tip elevation shown on the plans to the plane of pile cut-off.

In Section 49-6.02 add:

When pile tips are revised by the Engineer for timber, steel, and precast prestressed concrete piles, and for cast-in-place concrete piles consisting of driven shells filled with concrete, the additional length required, including all materials, equipment, and labor for furnishing, splicing, and installing the piling, will be paid for as extra work as provided in Section 4-1.03D, "Extra Work."

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECTION 50  PRESTRESSING CONCRETE
(Issued 04-20-12)

In Section 50-1.02 replace the 2nd paragraph with:

The working drawings of the prestressing system shall show complete details and substantiating calculations of the method and materials the Contractor proposes to use in the prestressing operations, including any additions or rearrangement of reinforcing steel from that shown on the plans. The details shall outline the method and sequence of stressing and shall include complete specifications and details of the prestressing steel and anchoring devices, jacking stresses, elongation calculations, type of ducts and all other data pertaining to the prestressing, including the proposed arrangement of the prestressing steel in the members. The drawings shall also show (1) the exact location of anchorage system components, ducts, and other related elements and (2) the duct location data, including elevations at least every 1/8th point of the span for each span.

In Section 50-1.05 replace the 1st paragraph with:

Prestressing steel shall be high-tensile wire conforming to the requirements in ASTM Designation: A 421, including Supplement I; high-tensile seven-wire strand conforming to the requirements in ASTM Designation: A 416; or uncoated deformed (Type II) high-strength steel bars conforming to the requirements in ASTM Designation: A 722, including all supplementary requirements. The maximum weight requirement of ASTM Designation: A 722 will not apply.

In Section 50-1.05 in the 3rd paragraph, delete item A.
In Section 50-1.05 in the 3rd paragraph, replace item E with:

E. In addition to the requirements in Section 50-1.10, "Samples for Testing," four 4-foot-long samples of coated strand and one 5-foot-long sample of uncoated strand of each size and reel shall be furnished to the Engineer for testing. These samples, as selected by the Engineer, shall be representative of the material to be used in the work.

In Section 50-1.05 between the 3rd and 4th paragraphs, add:

The Contractor shall furnish to the Transportation Laboratory a representative 8-ounce sample from each batch of epoxy patching material to be used. Each sample shall be packaged in an airtight container identified with the manufacturer's name and batch number.

In Section 50-1.07 replace the 2nd paragraph with:

Ducts shall be fabricated with either welded or interlocked seams. Galvanizing of the welded seam will not be required. Ducts shall have sufficient strength to maintain their correct alignment during placing of concrete. Joints between sections of duct shall be positive metallic connections which do not result in angle changes at the joints. Waterproof tape shall be used at the connections. Ducts shall be bent without crimping or flattening. Transition couplings connecting the ducts to anchoring devices shall be either ferrous metal or polyolefin. Ferrous metal transition couplings need not be galvanized.

Ducts shall have an inside cross-sectional area of at least:

1. 2.5 times the net area of the prestressing steel for multistrand tendons that will be placed by the pull-through method.
2. 2.0 times the net area of the prestressing steel for multistrand tendons that will not be placed by the pull-through method.

Ducts shall have an outside diameter not exceeding 50 percent of the girder web width.

In Section 50-1.07 replace the 7th paragraph with:

All ducts having a vertical duct profile change of 6 inches or more shall be vented. Vents shall be placed within 6 feet of every high point in the duct profile. Vents shall be 1/2 inch minimum diameter standard pipe or suitable plastic pipe. Connections to ducts shall be made with metallic or plastic structural fasteners. Plastic components, if selected, shall not react with the concrete or enhance corrosion of the prestressing steel and shall be free of water soluble chlorides. The vents shall be mortar tight, taped as necessary, and shall provide means for injection of grout through the vents and for sealing the vents. Ends of vents shall be removed one inch below the roadway surface after grouting has been completed.

In Section 50-1.08 replace the 2nd paragraph with:

The maximum temporary tensile stress (jacking stress) in prestressing steel of post-tensioned members shall not exceed 75 percent of the specified minimum ultimate tensile strength of the prestressing steel.

In Section 50-1.08 delete the 4th, 5th, and 6th paragraphs.

In Section 50-1.08 replace the 11th paragraph with:

Prestressing forces shall not be applied to cast-in-place concrete until at least 10 days after the last concrete has been placed in the member to be prestressed and until the concrete compressive strength has reached the strength shown on the plans or specified in the specifications.

In Section 50-1.08 replace the 15th paragraph with:

When prestressing steel in pretensioned members is tensioned at a temperature appreciably lower than the estimated temperature of the concrete and the prestressing steel at the time of initial set of the concrete, the calculated elongation of the prestressing steel shall be increased to compensate for the loss in stress. The maximum temporary tensile stress in the prestressing steel of pretensioned members shall not exceed 80 percent of the specified minimum ultimate tensile strength of the prestressing steel. Pretensioned prestressing steel shall be anchored at stresses that will result in the ultimate retention of working forces at not less than those shown on the plans.
In Section 50-1.09 replace the 2nd and 3rd paragraphs with:
Grout shall consist of cement and water and may contain an admixture if approved by the Engineer. Cement shall conform to the provisions in Section 90-2.01A, "Cement."

In Section 50-1.10 between the 3rd and 4th paragraphs, add:
Each sample shall be identified by location and Contract number with weatherproof markings. A completed Sample Identification Card shall also be attached to each sample. The card is available from the Transportation Laboratory.

In Section 50-1.10 in the 5th paragraph, replace item A with:
A. For wire or bars, one 7-foot-long sample and for strand, one 4-foot-long sample, of each size shall be furnished for each heat or reel.

In Section 50-1.11 replace the 1st paragraph with:
No separate payment will be made for pretensioning precast concrete members. Payment for pretensioning precast concrete members shall be considered as included in the contract price paid for furnish precast members as provided for in Section 51, "Concrete Structures."

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECTION 51 CONCRETE STRUCTURES
(Issued 08-05-11)

In Section 51-1.05 in the 11th paragraph, replace the 1st sentence with:
Form panels for exposed surfaces shall be furnished and placed in uniform widths of not less than 3 feet and in uniform lengths of not less than 6 feet, except at the end of continuously formed surfaces where the final panel length required is less than 6 feet.

In Section 51-1.06A(3) in the 1st paragraph, replace items E and F with:
E. When timber members are used to brace falsework bents which are located adjacent to roadways or railroads, all connections for the timber bracing shall be of the bolted type using 5/8-inch diameter or larger bolts or coil rod with a root diameter equal to that of the shank of a 5/8-inch diameter bolt.
F. Falsework member clearances must be at least those shown in the following table:

<table>
<thead>
<tr>
<th>Falsework member</th>
<th>Clearances</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>To railing members, barriers, and anchored temporary railings</td>
</tr>
<tr>
<td>Footings</td>
<td>0'-3"</td>
</tr>
<tr>
<td>Piles</td>
<td>1'-0"</td>
</tr>
<tr>
<td>Other members</td>
<td>2'-0"</td>
</tr>
</tbody>
</table>

In Section 51-1.06C in the 11th paragraph, replace the 1st sentence with:
Falsework for box culverts and other structures with decks lower than the roadway pavement and with span lengths of 14 feet or less shall not be released until the last placed concrete has attained a compressive strength of 1,600 psi, provided that curing of the concrete is not interrupted.

In Section 51-1.11 replace the 6th paragraph with:
Construction methods and equipment employed by the Contractor shall conform to the provisions in Section 7-1.02, "Load Limitations."
In Section 51-1.12D replace the 4th paragraph with:

Expanded polystyrene shall be a commercially available polystyrene board. Expanded polystyrene shall have a minimum flexural strength of 35 psi determined in conformance with the requirements in ASTM Designation: C 203 and a compressive yield strength of between 16 and 40 psi at 5 percent compression. Surfaces of expanded polystyrene against which concrete is placed shall be faced with hardboard. Hardboard shall be 1/8 inch minimum thickness, conforming to ANSI A135.4, any class. Other facing materials may be used provided they furnish equivalent protection. Boards shall be held in place by nails, waterproof adhesive, or other means approved by the Engineer.

In Section 51-1.12F replace the 3rd paragraph with:

Type A and AL joint seals shall consist of a groove in the concrete that is filled with field-mixed silicone sealant.

In Section 51-1.12F in the 6th paragraph, replace the table with:

<table>
<thead>
<tr>
<th>Movement Rating (MR)</th>
<th>Seal Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>MR ≤ 1 inch</td>
<td>Type A or Type B</td>
</tr>
<tr>
<td>1 inch < MR ≤ 2 inches</td>
<td>Type B</td>
</tr>
<tr>
<td>2 inches < MR ≤ 4 inches</td>
<td>Joint Seal Assembly (Strip Seal)</td>
</tr>
<tr>
<td>MR > 4 inches</td>
<td>Joint Seal Assembly (Modular Unit) or Seismic Joint</td>
</tr>
</tbody>
</table>

In Section 51-1.12F(3)(a) replace the 1st and 2nd paragraphs with:

The sealant must consist of a 2-component silicone sealant that will withstand up to ±50 percent movement. Silicone sealants must be tested under California Test 435 and must comply with the following:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulus at 150 percent elongation</td>
<td>8-75 psi</td>
</tr>
<tr>
<td>Recovery</td>
<td>21/32 inch max.</td>
</tr>
<tr>
<td>Notch Test</td>
<td>Notched or loss of bond 1/4 inch, max.</td>
</tr>
<tr>
<td>Water Resistance</td>
<td>Notched or loss of bond 1/4 inch, max.</td>
</tr>
<tr>
<td>Ultraviolet Exposure</td>
<td>No more than slight checking or cracking.</td>
</tr>
<tr>
<td>ASTM Designation: G 154, Table X2.1.Cycle 2</td>
<td></td>
</tr>
<tr>
<td>Cone Penetration</td>
<td>4.5-12.0 mm</td>
</tr>
</tbody>
</table>

In Section 51-1.12F(3)(a) delete the 3rd and 8th paragraphs.

In Section 51-1.12F(3)(a) replace the 10th paragraph with:

A Certificate of Compliance accompanied by a certified test report must be furnished for each batch of silicone sealant in conformance with the provisions in Section 6-1.07, "Certificates of Compliance."

In Section 51-1.12F(3)(b) replace the 2nd paragraph with:

The preformed elastomeric joint seal must conform to the requirements in ASTM D 2628 and the following:

1. The seal must consist of a multichannel, nonporous, homogeneous material furnished in a finished extruded form.
2. The minimum depth of the seal measured at the contact surface must be at least 95 percent of the minimum uncompressed width of the seal as designated by the manufacturer.
3. When tested in conformance with the requirements in California Test 673 for Type B seals, joint seals must provide a movement rating (MR) of not less than that shown on the plans.
4. The top and bottom edges of the joint seal must maintain continuous contact with the sides of the groove over the entire range of joint movement.

5. The seal must be furnished full length for each joint with no more than 1 shop splice in any 60-foot length of seal.

6. The Contractor must demonstrate the adequacy of the procedures to be used in the work before installing seals in the joints.

7. One field splice per joint may be made at locations and by methods approved by the Engineer. The seals are to be manufactured full length for the intended joint, then cut at the approved splice section and rematched before splicing. The Contractor must submit splicing details prepared by the joint seal manufacturer for approval before beginning splicing work.

8. Shop splices and field splices must have no visible offset of exterior surfaces and must show no evidence of bond failure.

9. At all open ends of the seal that would admit water or debris, each cell must be filled to a depth of 3 inches with commercial quality open cell polyurethane foam or closed by other means subject to approval by the Engineer.

In Section 51-1.12F(3)(b) replace the 7th paragraph with:

The joint seal must be installed full length for each joint with equipment that does not twist or distort the seal, elongate the seal longitudinally, or otherwise cause damage to the seal or to the concrete forming the groove.

In Section 51-1.12F(3)(b) in the 11th paragraph, replace the 1st sentence with:

Samples of the prefabricated joint seals, not less than 3 feet in length, will be taken by the Engineer from each lot of material.

In Section 51-1.12H(1) in the 6th paragraph, replace the 4th and 5th sentences with:

Each ply of fabric shall have a breaking strength of not less than 800 pounds per inch of width in each thread direction when 3" x 36" samples are tested on split drum grips. The bond between double plies shall have a minimum peel strength of 20 pounds per inch.

In Section 51-1.12H(1) in the 8th paragraph in the table, replace the hardness (Type A) requirements with:

| Hardness (Type A) | D 2240 with 2kg mass. | 55 ±5 |

In Section 51-1.12H(2) in the 1st paragraph in item A, replace the 1st and 2nd sentences with:

The bearings shall consist of alternating steel laminates and internal elastomer laminates with top and bottom elastomer covers. Steel laminates shall have a nominal thickness of 0.075 inch (14 gage).

In Section 51-1.13 replace the 2nd, 3rd, and 4th paragraphs with:

Surfaces of fresh concrete at horizontal construction joints shall be thoroughly consolidated without completely removing surface irregularities. Additionally, surfaces of fresh concrete at horizontal construction joints between girder stems and decks shall be roughened to at least a 1/4-inch amplitude.

Construction joint surfaces shall be cleaned of surface laitance, curing compound, and other foreign materials using abrasive blast methods before fresh concrete is placed against the joint surface.

Construction joint surfaces shall be flushed with water and allowed to dry to a surface dry condition immediately before placing concrete.

In Section 51-1.135 replace the 1st paragraph with:

Mortar shall be composed of cementitious material, sand, and water proportioned and mixed as specified in this Section 51-1.135.

In Section 51-1.135 replace the 3rd paragraph with:

The proportion of cementitious material to sand, measured by volume, shall be 1 to 2 unless otherwise specified.
In Section 51-1.17 in 4th paragraph, replace the 3rd sentence with:
The surfaces shall have a profile trace showing no high points in excess of 0.25 inch, and the portions of the surfaces within the traveled way shall have a profile count of 5 or less in any 100 foot section.

Add:

51-1.17A Deck Crack Treatment
The Contractor shall use all means necessary to minimize the development of shrinkage cracks.
The Contractor shall remove all equipment and materials from the deck and clean the surface as necessary for the Engineer to measure the surface crack intensity. Surface crack intensity will be determined by the Engineer after completion of concrete cure, before prestressing, and before the release of falsework. In any 500 square foot portion of deck within the limits of the new concrete deck, should the intensity of cracking be such that there are more than 50 feet of cracks whose width at any location exceeds 0.02 inch, the deck shall be treated with a high molecular weight methacrylate (HMWM) resin system. The area of deck to be treated shall have a width that extends for the entire width of new deck inside the concrete barriers and a length that extends at least 5 feet beyond the furthest single continuous crack outside the 500 square foot portion, measured from where that crack exceeds 0.02 inch in width, as determined by the Engineer.

Deck crack treatment shall include furnishing, testing, and applying the HMWM resin system, with sand and absorbent material. If grinding is required, deck crack treatment shall take place before grinding.

51-1.17A(1) Submittals
Submit a HMWM resin system placement plan. When HMWM resin is to be applied within 100 feet of a residence, business, or public space including sidewalks under a structure, also submit a public safety plan. Submit plans under Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications. The review time is 15 days.
The HMWM resin system placement plan must include:
1. Schedule of work and testing for each bridge
2. Description of equipment for applying HMWM resin
3. Range of gel time and final cure time for HMWM resin
4. Absorbent material to be used
5. Description of equipment for applying and removing excess sand and absorbent material
6. Procedure for removing HMWM resin from the deck, including equipment
7. Storage and handling of HMWM resin components and absorbent material
8. Disposal of excess HMWM resin and containers

The public safety plan must include:
1. A public notification letter with a list of delivery and posting addresses. The letter must state HMWM resin work locations, dates, times, and what to expect. Deliver the letter to residences and businesses within 100 feet of HMWM resin work locations and to local fire and police officials at least 7 days before starting work. Post the letter at the job site.
2. An airborne emissions monitoring plan prepared and executed by a certified industrial hygienist (CIH) certified in comprehensive practice by the American Board of Industrial Hygiene. The plan must have at least 4 monitoring points including the mixing point, application point, and point of nearest public contact. Monitor airborne emissions during HMWM resin work and submit emissions monitoring results after completing the work.
3. An action plan for protection of the public when airborne emissions levels exceed permissible levels.
4. A copy of the CIH's certification.

If the measures proposed in the safety plan are inadequate to provide for public safety associated with the use of HMWM resin, the Engineer will reject the plan and direct the Contractor to revise the plan. Directions for revisions will be in writing and include detailed comments. The Engineer will notify the Contractor of the approval or rejection of a submitted or revised plan within 15 days of receipt of that plan.
51-1.17A(2) Quality Control and Assurance

Submit samples of HMWM resin components 15 days before use under Section 6-3, "Testing," of the Standard Specifications. Notify the Engineer 15 days before delivery of HMWM resin components in containers over 55 gallons to the job site.

Complete a test area before starting work. Results from airborne emissions monitoring of the test area must be submitted to the Engineer before starting production work.

The test area must:

1. Be approximately 500 square feet
2. Be placed within the project limits outside the traveled way at an approved location
3. Be constructed using the same equipment as the production work
4. Replicate field conditions for the production work
5. Demonstrate proposed means and methods meet the acceptance criteria
6. Demonstrate production work will be completed within the time allowed
7. Demonstrate suitability of the airborne emissions monitoring plan

The test area will be acceptable if:

1. The treated deck surface is tack free and non-oily
2. The sand cover adheres and resists brushing by hand
3. Excess sand and absorbent material has been removed
4. The coefficient of friction is at least 0.35 when tested under California Test 342

51-1.17A(3) Materials

HMWM resin system consists of a resin, promoter, and initiator. HMWM resin must be low odor and comply with the following:

<table>
<thead>
<tr>
<th>HMWM Resin</th>
<th>Property</th>
<th>Requirement</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Volatile Content</td>
<td>30 percent, maximum</td>
<td>ASTM D 2369</td>
</tr>
<tr>
<td></td>
<td>Viscosity</td>
<td>25 cP, maximum, (Brookfield RVT with UL adaptor, 50 RPM at 77°F)</td>
<td>ASTM D 2196</td>
</tr>
<tr>
<td></td>
<td>Specific Gravity</td>
<td>0.90 minimum, at 77°F</td>
<td>ASTM D 1475</td>
</tr>
<tr>
<td></td>
<td>Flash Point</td>
<td>180°F, minimum</td>
<td>ASTM D 3278</td>
</tr>
<tr>
<td></td>
<td>Vapor Pressure</td>
<td>1.0 mm Hg, maximum, at 77°F</td>
<td>ASTM D 323</td>
</tr>
<tr>
<td></td>
<td>Tack-free Time</td>
<td>400 minutes, maximum, at 25°C</td>
<td>Specimens prepared per California Test 551</td>
</tr>
<tr>
<td></td>
<td>PCC Saturated Surface-Dry Bond Strength</td>
<td>3.5 MPa, minimum at 24 hours and 21 ± 1°C</td>
<td>California Test 551</td>
</tr>
</tbody>
</table>

*Test must be performed before adding initiator.

Sand for abrasive sand finish must:

1. Be commercial quality dry blast sand
2. Have at least 95 percent pass the No. 8 sieve and at least 95 percent retained on the No. 20 sieve when tested under California Test 205

Absorbent material must be diatomaceous earth, abrasive blast dust, or substitute recommended by the HMWM resin supplier and approved by the Engineer.

51-1.17A(4) Construction

HMWM resin system applied by machine must be:
1. Combined in volumetric streams of promoted resin to initiated resin by static in-line mixers
2. Applied without atomization

HMWM resin system may be applied manually. Limit the quantity of resin mixed for manual application to 5 gallons at a time.

Prepare the area to be treated by abrasive blasting. Curing compound, surface contaminants, and foreign material must be removed from the bridge deck surface. Sweep the deck surface clean after abrasive blasting and blow loose material from cracks using high-pressure air.

The deck surface must be dry when abrasive blast cleaning is performed. When abrasive blast cleaning within 10 feet of public traffic, remove dust and residue from abrasive blast cleaning using a vacuum attachment operating concurrently with blasting equipment. If the deck surface becomes contaminated before placing HMWM, abrasive blast clean the contaminated area and sweep the deck clean.

The deck must be dry before applying HMWM resin. The concrete surface must be at least 50 degrees F and at most 100 degrees F. Relative humidity must be expected to be at most 85 percent during the work shift.

Thoroughly mix all components of the HMWM resin system. Apply HMWM resin to the deck surface within 5 minutes of mixing at approximately 90 sq ft per gallon. The Engineer determines the exact application rate. The resin gel time must be between 40 and 90 minutes. HMWM resin that thickens during application is rejected.

Spread the HMWM resin system uniformly. Completely cover surfaces to be treated and fill all cracks. Redistribute excess resin using squeegees or brooms within 10 minutes of application. For textured or grooved deck surfaces, excess resin must be removed from the texture indentations.

Apply the abrasive sand finish of at least 2 pounds per square yard or until saturation as determined by the Engineer no sooner than 20 minutes after applying resin. Apply absorbent material before opening lane to traffic. Remove excess sand and absorbent material by vacuuming or power sweeping.

Traffic or equipment will be allowed on the overlay after the Engineer has determined:

1. The treated deck surface is tack free and non-oily
2. The sand cover adheres and resists brushing by hand
3. Excess sand and absorbent material has been removed
4. No material will be tracked beyond limits of treatment by traffic

In Section 51-1.18C replace the 2nd paragraph with:

When Class 2 surface finish (gun finish) is specified, ordinary surface finish shall first be completed. The concrete surfaces shall then be abrasive blasted to a rough texture and thoroughly washed down with water. While the washed surfaces are damp, but not wet, a finish coating of machine applied mortar, approximately 1/4 inch thick, shall be applied in not less than 2 passes. The coating shall be pneumatically applied and shall consist of either (1) sand, cementitious material, and water mechanically mixed prior to its introduction to the nozzle, or (2) premixed sand and cementitious material to which water is added prior to its expulsion from the nozzle. The use of admixtures shall be subject to the approval of the Engineer as provided in Section 90, "Portland Cement Concrete." Unless otherwise specified, supplementary cementitious materials will not be required. The proportion of cementitious material to sand shall be not less than one to 4, unless otherwise directed by the Engineer. Sand shall be of a grading suitable for the purpose intended. The machines shall be operated and the coating shall be applied in conformance with standard practice. The coating shall be firmly bonded to the concrete surfaces on which it is applied.

In Section 51-1.18C replace the 5th paragraph with:

When surfaces to be finished are in pedestrian undercrossings, the sand shall be silica sand and the cementitious material shall be standard white portland cement.

In Section 51-1.23 add:

Full compensation for deck crack treatment, including the public safety plan, shall be considered as included in the contract price paid per cubic yard for structural concrete, bridge, and no additional compensation will be allowed therefor.

^^
SECTION 52 REINFORCEMENT
(Issued 06-05-09)

In Section 52-1.02(B) between the 3rd and 4th paragraphs, add:
The epoxy powder coating shall be selected from the Department's Pre-Qualified Products List.

In Section 52-1.02(B) replace the 14th paragraph with:
Except for lap splices, splices for epoxy-coated reinforcement shall be coated with a corrosion protection covering that is selected from the Department's Pre-Qualified Products List. The covering shall be installed in accordance with the manufacturer's recommendations.

In Section 52-1.07 in the 11th paragraph, replace the table with:

<table>
<thead>
<tr>
<th>Height Zone (H) (Feet above ground)</th>
<th>Wind Pressure Value (psf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H ≤ 30</td>
<td>20</td>
</tr>
<tr>
<td>30 < H ≤ 50</td>
<td>25</td>
</tr>
<tr>
<td>50 < H ≤ 100</td>
<td>30</td>
</tr>
<tr>
<td>H > 100</td>
<td>35</td>
</tr>
</tbody>
</table>

In Section 52-1.08B(1) replace the 1st paragraph with:
Mechanical splices to be used in the work shall be selected from the Department’s Pre-Qualified Products List.

In Section 52-1.08B(1) in the 2nd paragraph, replace the table with:

<table>
<thead>
<tr>
<th>Reinforcing Bar Number</th>
<th>Total Slip</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.020-inch</td>
</tr>
<tr>
<td>5</td>
<td>0.020-inch</td>
</tr>
<tr>
<td>6</td>
<td>0.020-inch</td>
</tr>
<tr>
<td>7</td>
<td>0.028-inch</td>
</tr>
<tr>
<td>8</td>
<td>0.028-inch</td>
</tr>
<tr>
<td>9</td>
<td>0.028-inch</td>
</tr>
<tr>
<td>10</td>
<td>0.036-inch</td>
</tr>
<tr>
<td>11</td>
<td>0.036-inch</td>
</tr>
<tr>
<td>14</td>
<td>0.048-inch</td>
</tr>
<tr>
<td>18</td>
<td>0.060-inch</td>
</tr>
</tbody>
</table>

In Section 52-1.08B(1), in the 6th paragraph, delete item C.

In Section 52-1.08B(2) in the 6th paragraph, replace the subparagraph with:
The minimum preheat and interpass temperatures shall be 400º F for Grade 40 bars and 600º F for Grade 60 bars. Immediately after completing the welding, at least 6 inches of the bar on each side of the splice shall be covered by an insulated wrapping to control the rate of cooling. The insulated wrapping shall remain in place until the bar has cooled below 200º F.

Replace Section 52-1.08B(3) with:

52-1.08B(3) Resistance Butt Welds
Shop produced resistance butt welds shall be produced by a fabricator who is selected from the Department's Pre-Qualified Products List.
A Certificate of Compliance conforming to the provisions in Section 6-1.07, "Certificates of Compliance," shall be furnished for each shipment of splice material. The Certificate of Compliance shall include heat number, lot number and mill certificates.
In Section 52-1.08C replace the 3rd paragraph with:

Testing on prequalification and production sample splices shall be performed at an approved independent testing laboratory. The laboratory shall not be employed or compensated by any subcontractor, or by other persons or entities hired by subcontractors who will provide other services or materials for the project.

The independent testing laboratory shall be selected from the Department's Pre-Qualified Products List.

In Section 52-1.08C replace the 5th paragraph with:

Prequalification and production sample splices and testing shall conform to California Test 670 and these specifications.

In Section 52-1.08C delete the 6th paragraph.

In Section 52-1.08C replace the 8th paragraph with:

Each sample splice, as defined herein, shall be identified as representing either a prequalification or production test sample splice.

In Section 52-1.08C in the 10th paragraph, delete the last sentence.

Replace Section 52-1.08C(1) with:

52-1.08C(1) Splice Prequalification Report

Before using any service splices or ultimate butt splices in the work, the Contractor shall submit a Splice Prequalification Report. The report shall include the following:

A. A copy of the manufacturer's product literature giving complete data on the splice material and installation procedures.
B. Names of the operators who will be performing the splicing.
C. Descriptions of the positions, locations, equipment, and procedures that will be used in the work.
D. Certifications from the fabricator for prequalification of operators and procedures based on sample tests performed no more than 2 years before submitting the report. Each operator shall be certified by performing 2 sample splices for each bar size of each splice type that the operator will be performing in the work. For deformation-dependent types of splice devices, each operator shall be certified by performing 2 additional samples for each bar size and deformation pattern that will be used in the work.

Prequalification sample splices shall be tested by an approved independent testing laboratory and shall conform to the appropriate production test criteria and slip requirements specified herein. When epoxy-coated reinforcement is required, resistance butt welded sample splices shall have the weld flash removed by the same procedure as will be used in the work, before coating and testing. The Splice Prequalification Report shall include the certified test results for all prequalification sample splices.

The QCM shall review and approve the Splice Prequalification Report before submitting it to the Engineer for approval. The Contractor shall allow 2 weeks for the review and approval of a complete report before performing any service splicing or ultimate butt splicing in the work.

In Section 52-1.08C(2)(a) replace the 1st, 2nd, 3rd, 4th, and 5th paragraphs with:

Production tests shall be performed by an approved independent testing laboratory for all service splices used in the work. A production test shall consist of testing 4 sample splices prepared for each lot of completed splices. The samples shall be prepared by the Contractor using the same splice material, position, operators, location, and equipment, and following the same procedure as used in the work.

At least one week before testing, the Contractor shall notify the Engineer in writing of the date and location where the testing of the samples will be performed.

The 4 samples from each production test shall be securely bundled together and identified with a completed sample identification card before shipment to the approved independent testing laboratory. The card will be furnished by the Engineer. Bundles of samples containing fewer than 4 samples of splices shall not be tested.
Before performing any tensile tests on production test sample splices, one of the 4 samples shall be tested for, and shall conform to, the requirements for total slip in Section 52-1.08B(1), "Mechanical Splices." Should this sample not meet the total slip requirements, one retest, in which the 3 remaining samples are tested for total slip, will be allowed. Should any of the 3 remaining samples not conform to the total slip requirements, all splices in the lot represented by this production test will be rejected.

If 3 or more sample splices from a production test conform to the provisions in this Section 52-1.08C(2), "Service Splice Test Criteria," all splices in the lot represented by this production test will be considered acceptable.

Replace Section 52-1.08C(2)(b) with:

52-1.08C(2)(b) Quality Assurance Test Requirements for Service Splices

In addition to the required production tests, the Contractor shall concurrently prepare 4 service quality assurance sample splices for:

A. The first production test performed.
B. One of every 5 subsequent production tests, or fraction thereof, randomly selected by the Engineer.

These service quality assurance sample splices shall be prepared in the same manner as specified herein for service production sample splices.

The service quality assurance sample splices shall be shipped to the Transportation Laboratory for quality assurance testing. Each set of 4 sample splices shall be securely bundled together and identified by location and contract number with weatherproof markings before shipment. Bundles containing fewer than 4 samples of splices will not be tested. Sample splices not accompanied by the supporting documentation required in Section 52-1.08B(1), "Mechanical Splices," for mechanical splices, or in Section 52-1.08B(3), "Resistance Butt Welds," for resistance butt welds, will not be tested.

Quality assurance testing will be performed in conformance with the requirements for service production sample splices in Section 52-1.08C(2)(a), "Production Test Requirements for Service Splices."

Replace Section 52-1.08C(3) with:

52-1.08C(3) Ultimate Butt Splice Test Criteria

Ultimate production and quality assurance sample splices shall be tensile tested in conformance with the requirements described in ASTM Designation: A 370 and California Test 670.

Each sample splice shall be identified as representing a prequalification, production, or quality assurance sample splice.

The portion of hoop reinforcing bar, removed to obtain a sample splice, shall be replaced using a prequalified ultimate mechanical butt splice, or the hoop shall be replaced in kind.

Reinforcing bars, other than hoops, from which sample splices are removed, shall be repaired using ultimate mechanical butt splices conforming to the provisions in Section 52-1.08C(1), "Splice Prequalification Report," or the bars shall be replaced in kind. These bars shall be repaired or replaced such that no splices are located in any "No Splice Zone" shown on the plans.

Ultimate production and quality assurance sample splices shall rupture either: 1) in the reinforcing bar but outside of the affected zone, provided that the sample splice has visible necking or 2) anywhere, provided that the sample splice has achieved the strain requirement for necking.

When tested in conformance with the requirements in California Test 670, "Necking (Option I)," the visible necking shall be such that there is a visible decrease in the sample's cross-sectional area at the point of rupture.

When tested in conformance with the requirements in California Test 670, "Necking (Option II)," the strain requirement for necking shall be such that the largest measured strain is not less than 6 percent for No. 11 and larger bars, or not less than 9 percent for No. 10 and smaller bars.

The affected zone is the portion of the reinforcing bar where any properties of the bar, including the physical, metallurgical, or material characteristics, have been altered by fabrication or installation of the splice. The weld and one inch adjacent to the weld will be considered part of the affected zone.

In Section 52-1.08C(3)(a) replace the 1st paragraph with:

Production tests shall be performed for all ultimate butt splices used in the work. A production test shall consist of testing 4 sample splices removed from each lot of completed splices.
In Section 52-1.08C(3)(a) replace the 3rd paragraph with:

After notification has been received, the Engineer will randomly select the 4 sample splices to be removed from the lot and place tamper-proof markings or seals on them. These ultimate production sample splices shall be removed by the Contractor, and tested by an approved independent testing laboratory.

In Section 52-1.08(C)(3)(a) replace the 5th, 6th, and 7th paragraphs with:

A sample splice will be rejected if a tamper-proof marking or seal is disturbed before testing.

The 4 sample splices from each production test shall be securely bundled together and identified with a completed sample identification card before shipment to the approved independent testing laboratory. The card will be furnished by the Engineer. Bundles of samples containing fewer than 4 sample splices shall not be tested.

Before performing any tensile tests on production test sample splices, one of the 4 sample splices shall be tested for, and shall conform to, the requirements for total slip in Section 52-1.08B(1), "Mechanical Splices." Should this sample splice not meet these requirements, one retest, in which the 3 remaining sample splices are tested for total slip, will be allowed. Should any of the 3 remaining sample splices not conform to these requirements, all splices in the lot represented by this production test will be rejected.

Replace Section 52-1.08C(3)(b) with:

52-1.08C(3)(b) Quality Assurance Test Requirements for Ultimate Butt Splices

In addition to the required production tests, the Contractor shall concurrently prepare 4 ultimate quality assurance sample splices for:

A. The first production test performed.
B. One of every 5 subsequent production tests, or fraction thereof, randomly selected by the Engineer.

These ultimate quality assurance sample splices shall be prepared in the same manner as specified herein for ultimate production sample splices.

The ultimate quality assurance sample splices shall be shipped to the Transportation Laboratory for quality assurance testing. Each set of 4 sample splices shall be securely bundled together and identified by location and contract number with weatherproof markings before shipment. Bundles containing fewer than 4 samples of splices will not be tested. Sample splices not accompanied by the supporting documentation required in Section 52-1.08B(1), "Mechanical Splices," for mechanical splices, or in Section 52-1.08B(3), "Resistance Butt Welds," for resistance butt welds, will not be tested.

Quality assurance testing will be performed in conformance with the requirements for ultimate production sample splices in Section 52-1.08C(3)(a), "Production Test Requirements for Ultimate Butt Splices."

Replace Section 52-1.08D with:

A Production Test Report for all testing performed on each lot shall be prepared by the approved independent testing laboratory performing the testing and submitted to the QCM for review and approval. The report shall be signed by an engineer who represents the laboratory and is registered as a Civil Engineer in the State of California. The report shall include, as a minimum, the following information for each test: contract number, bridge number, lot number and location, bar size, type of splice, length of mechanical splice, length of test specimen, physical condition of test sample splice, any notable defects, total measured slip, and ultimate tensile strength of each splice. In addition, the report shall include location of visible necking area and largest measured strain for ultimate butt splices.

The QCM must review, approve, and forward each Production Test Report to the Engineer for review before the splices represented by the report are encased in concrete. The Engineer will have 3 working days to review each Production Test Report and respond in writing after a complete report has been received. Should the Contractor elect to encase any splices before receiving notification from the Engineer, it is expressly understood that the Contractor will not be relieved of the responsibility for incorporating material in the work that conforms to the requirements of the plans and specifications. Material not conforming to these requirements will be subject to rejection.

Quality assurance test results for each bundle of 4 samples of splices will be reported in writing to the Contractor within 3 working days after receipt of the bundle by the Transportation Laboratory. In the event that more than one bundle is received on the same day, 2 additional working days shall be allowed for providing test results for each additional bundle received. A test report will be made for each bundle received. Should the Contractor elect to encase splices before receiving notification from the Engineer, it is expressly understood that the
Contractor will not be relieved of the responsibility for incorporating material in the work that conforms to the requirements of the plans and specifications. Material not conforming to these requirements will be subject to rejection.

SECTION 53 SHOTCRETE
(Issued 11-02-07)

In Section 53-1.01 replace the 3rd paragraph with:

The dry-mix process shall consist of delivering dry mixed aggregate and cementitious material pneumatically or mechanically to the nozzle body and adding water and mixing the materials in the nozzle body. The wet-mix process shall consist of delivering mixed aggregate, cement, and water pneumatically to the nozzle and adding any admixture at the nozzle.

In Section 53-1.02 replace the 1st through 4th paragraphs with:

Cementitious material, fine aggregate, and mixing water shall conform to the provisions in Section 90, "Portland Cement Concrete."

Shotcrete to be mixed and applied by the dry-mix process shall consist of one part cementitious material to not more than 4.5 parts fine aggregate, thoroughly mixed in a dry state before being charged into the machine. Measurement may be either by volume or by weight. The fine aggregate shall contain not more than 6 percent moisture by weight.

Shotcrete to be mixed and applied by the wet-mix process shall consist of cementitious material, fine aggregate, and water and shall contain not less than 632 pounds of cementitious material per cubic yard. A maximum of 30 percent pea gravel may be substituted for fine aggregate. The maximum size of pea gravel shall be such that 100 percent passes the 1/2 inch screen and at least 90 percent passes the 3/8 inch screen.

Admixtures may be added to shotcrete and shall conform to the provisions in Section 90-4, "Admixtures."

In Section 53-1.04 in the 3rd paragraph, replace item C with:

C. Aggregate and cementitious material that have been mixed for more than 45 minutes shall not be used unless otherwise permitted by the Engineer.

Replace Section 53-1.07 with:

53-1.07 MEASUREMENT

Quantities of shotcrete will be measured by the cubic yard computed from measurements, along the slope, of actual areas placed and the theoretical thickness shown on the plans. The Department does not pay for shotcrete placed outside the dimensions shown on the plans or to fill low foundation.

Replace Section 53-1.08 with:

53-1.08 PAYMENT

The contract price paid per cubic yard for shotcrete shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in placing shotcrete, including preparing the foundation, wire reinforcement, structure backfill, joint filling material, and if required by the plans, drains with sacked pervious backfill material, as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer.
SECTION 54 WATERPROOFING
(Issued 07-01-11)

In Section 54-1.02, replace the 1st paragraph with:
Waterproofing asphalt shall conform to the requirements in ASTM Designation: D 449, Type I for below ground and Type II for above ground.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECTION 55 STEEL STRUCTURES
(Issued 08-05-11)

In Section 55-1.01 replace the 4th paragraph with:
Design details, fabrication, and workmanship for steel railway bridges shall conform to the provisions in Chapter 15, "Steel Structures," of the AREMA Manual for Railway Engineering.

In Section 55-1.05 replace the 3rd paragraph with:
Construction methods and equipment employed by the Contractor shall conform to the provisions in Section 7-1.02, "Load Limitations."

In Section 55-2.01 replace the table in the 5th paragraph with:

<table>
<thead>
<tr>
<th>Material Conforming to ASTM Designation: A 709/A 709M</th>
<th>CVN Impact Value (Ft. Lbs at Temp.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 36</td>
<td>15 at 40º F</td>
</tr>
<tr>
<td>Grade 50* (2 inches and under in thickness)</td>
<td>15 at 40º F</td>
</tr>
<tr>
<td>Grade 50W* (2 inches and under in thickness)</td>
<td>15 at 40º F</td>
</tr>
<tr>
<td>Grade 50* (Over 2 inches to 4 inches in thickness)</td>
<td>20 at 40º F</td>
</tr>
<tr>
<td>Grade 50W* (Over 2 inches to 4 inches in thickness)</td>
<td>20 at 40º F</td>
</tr>
<tr>
<td>Grade HPS 50W* (4 inches and under in thickness)</td>
<td>20 at 10º F</td>
</tr>
<tr>
<td>Grade HPS 70W (4 inches and under in thickness)</td>
<td>25 at -10º F</td>
</tr>
<tr>
<td>Grade 100 (2 1/2 inches and under in thickness)</td>
<td>25 at 0º F</td>
</tr>
<tr>
<td>Grade 100W (Over 2 1/2 inches to 4 inches in thickness)</td>
<td>35 at 0º F</td>
</tr>
</tbody>
</table>

* If the yield point of the material exceeds 65,000 psi, the temperature for the CVN impact value for acceptability shall be reduced 15º F for each increment of 10,000 psi above 65,000 psi.
In Section 55-2.01 replace the Structural Steel Materials table with:

<table>
<thead>
<tr>
<th>Structural Steel Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Material</strong></td>
</tr>
<tr>
<td>Structural steel:</td>
</tr>
<tr>
<td>High strength low alloy columbium vanadium steel</td>
</tr>
<tr>
<td>High strength low alloy structural steel</td>
</tr>
<tr>
<td>High strength low alloy structural steel plate</td>
</tr>
<tr>
<td>High-yield strength, quenched and tempered alloy steel plate suitable for welding</td>
</tr>
</tbody>
</table>

Steel fastener components for general applications:

- **Bolts and studs** ASTM: A 307
- **Anchor bolts** ASTM: F 1554 or A 307, Grade C
- **High-strength bolts and studs** ASTM: A 449, Type 1
- **High-strength threaded rods** ASTM: A 449, Type 1
- **High-strength nonheaded anchor bolts** ASTM: F 1554, Grade 105, Class 2A
- **Nuts** ASTM: A 563, including Appendix X1[^b]
- **Washers** ASTM: F 844

Components of high-strength steel fastener assemblies for use in structural steel joints:

- **Bolts** ASTM: A 325, Type 1
- **Tension control bolts** ASTM: F 1852, Type 1
- **Nuts** ASTM: A 563, including Appendix X1[^b]
- **Hardened washers** ASTM: F 436, Type 1, Circular, including S1 supplementary requirements
- **Direct tension indicators** ASTM: F 959, Type 325, zinc-coated

**Carbon steel for forgings, pins and rollers** ASTM: A 668/A 668M, Class D

**Alloy steel for forgings** ASTM: A 668/A 668M, Class G

**Pin nuts** ASTM: A 36/A 36M

**Carbon-steel castings** ASTM: A 27/A 27M, Grade 65-35, Class 1

**Malleable iron castings** ASTM: A 47/A 47M, Grade 32510 (Grade 22010)

**Gray iron castings** ASTM: A 48, Class 30B

**Carbon steel structural tubing** ASTM: A 500, Grade B or A 501

**Steel pipe (Hydrostatic testing will not apply)** ASTM: A 53, Type E or S, Grade B; A 106, Grade B; or A 139, Grade B

**Stud connectors** AASHTO/AWS D1.5

[^a]: Grades that may be substituted for the equivalent ASTM Designation: A 709 steel, at the Contractor’s option, subject to the modifications and additions specified and to the requirements of A 709.

[^b]: Zinc-coated nuts that will be tightened beyond snug or wrench tight shall be furnished with a dry lubricant conforming to Supplementary Requirement S2 in ASTM Designation: A 563.

In Section 55-2.04 delete the 1st paragraph.

Delete Section 55-2.05.

In Section 55-3.05 replace the 1st paragraph with:

Surfaces of bearing and base plates and other metal surfaces that are to come in contact with each other or with ground concrete surfaces shall be flat to within 1/32-inch tolerance in 12 inches and to within 1/16-inch tolerance overall. Surfaces of bearing and base plates and other metal bearing surfaces that are to come in contact with preformed fabric pads, elastomeric bearing pads, or mortar shall be flat to within 1/8-inch tolerance in 12 inches and to within 3/16-inch tolerance overall.
In Section 55-3.07 in the 1st paragraph, replace item B with:
B. The radius of bend measured to the concave face shall conform to the requirements in ASTM Designation: A6/A6M

In Section 55-3.10 in the 1st paragraph, replace item B with:
B. Internal threads shall conform to the requirements in ASTM Designation: A 563.

In Section 55-3.19 replace the 3rd paragraph with:
Immediately before setting bearing assemblies or masonry plates directly on ground concrete surfaces, the Contractor shall thoroughly clean the surfaces of the concrete and the metal to be in contact and shall apply a coating of nonsag polysulfide or polyurethane caulking conforming to the requirements in ASTM Designation: C 920 to contact areas to provide full bedding.

In Section 55-4.01 in the 1st paragraph, replace item D with:
D. To determine the pay quantities of galvanized metal, the weight to be added to the calculated weight of the base metal for the galvanizing will be determined from the table of weights of zinc coatings specified in ASTM Designation: A 153/A 153M.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECTION 56 SIGNS
(issued 07-20-12)

In Section 56-1.01 in the 2nd paragraph, replace the 1st sentence with:
Sign structures shall be of the following types: truss, tubular, lightweight and bridge mounted.

In Section 56-1.02A replace the 1st paragraph with:
Bars and plates shall be structural steel complying with one or more of the following:

1. ASTM Designation: A36/A36M
2. ASTM Designation: A709/A709M, Grade 36 or 50
3. ASTM Designation: A572/A572M, Grade 50

Other open shapes shall be structural steel complying with one or more of the following:

1. ASTM Designation: A36/A36M
2. ASTM Designation: A709/A709M, Grade 36 or 50
3. ASTM Designation: A992/A992M

Light fixture mounting channel shall be a continuous slot channel made from one of the following:

1. Steel complying with ASTM Designation: A1011/A1011M, Designation SS, Grade 33
2. Extruded aluminum of alloy 6063-T6 complying with ASTM Designation: B221 or B221M

In Section 56-1.02B delete the 2nd paragraph.

Contract No. 08-0M94U4
191 of 290
In Section 56-1.02E replace the 1st paragraph with:

Pipe posts shall be welded or seamless steel pipe conforming to the requirements in ASTM Designation: A 53/A 53M, Grade B; ASTM Designation: A 106/A 106M, Grade B; or API Specification 5L PSL2 Grade B or Grade X42R or Grade X42M. At the option of the Contractor, posts may be fabricated from structural steel conforming to the requirements in ASTM Designation: A 36/A 36M.

Pipe posts shall not be spiral seam welded.

In Section 56-1.02F replace item B of the 1st paragraph with:

B. Material for gratings shall be structural steel conforming to the requirements in ASTM Designation: A 1011/A 1011M, Designation CS, Type B or Designation SS, Grade 36, Type 1.

In Section 56-1.03 replace the 5th paragraph with:

Clips, eyes, or removable brackets shall be affixed to all signs and all posts and shall be used to secure the sign during shipping and for lifting and moving during erection as necessary to prevent damage to the finished galvanized or painted surfaces. Brackets on tubular sign structures shall be removed after erection. Details of the devices shall be shown on the working drawings.

In Section 56-1.03 delete the 12th paragraph.

In Section 56-1.05 replace the 1st paragraph with:

Excepting tubular type, all ferrous metal parts of sign structures shall be galvanized and not painted, unless otherwise specified in the special provisions.

In Section 56-1.05 replace the 2nd paragraph with:

Except as herein provided, all exterior surfaces including those areas to be covered by sign panels of tubular type of sign structures shall be cleaned and painted as provided in Section 59-5, "Painting Sign Structures," and as provided in the special provisions. There shall be no chemical treatment of galvanized surfaces prior to cleaning and painting. Walkway gratings, walkway brackets, gutters, safety railings, steel mountings for light fixtures, and all nuts, bolts, and washers for sign structures shall be galvanized after fabrication and shall not be painted.

In Section 56-1.05 replace the 3rd paragraph with:

Galvanizing shall conform to the provisions in Section 75-1.05, "Galvanizing," except that when permission is granted by the Engineer, surfaces may be coated with zinc by the metalizing process. Metalizing shall be performed in conformance with the AWS requirements. The thickness of the sprayed zinc coat shall be 10 ± 2 mils. The thickness of the sprayed zinc coat on faying surfaces shall not be more than 10 mils.

In Section 56-1.05, add:

Zinc solders or zinc alloys that contain tin shall not be used to repair a damaged galvanized surface.

In Section 56-1.07, add:

Bridge-mounted signs shall not be fastened to concrete elements of bridges or railings before the concrete attains a compressive strength of 2,500 psi.

In Section 56-1.10 replace the 4th paragraph with:

The contract price paid per pound for install sign structure of the type or types designated in the Engineer's Estimate shall include full compensation for furnishing all labor, materials, tools, equipment and incidentals, and for doing all the work involved in installing sign structures, complete in place, including installing anchor bolt assemblies, removable sign panel frames, and sign panels and performing any welding, painting or galvanizing required during installation, as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer.
In Section 56-2.03 replace the 4th paragraph with:

Backfill material for metal posts shall consist of minor concrete conforming to the provisions in Section 90-10, "Minor Concrete," and shall contain not less than 463 pounds of cementitious material per cubic yard.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECTION 59 PAINTING
(issued 07-20-12)

In Section 59-1.01 add:

Coatings selected for use shall conform to the volatile organic compound limits specified for the air quality district where the project is located.

In Section 59-1.03 replace the 3rd paragraph with:

Painting shall be done in a neat and workmanlike manner. Unless otherwise specified, paint shall be applied by brush, or spray, or roller, or any combination of these methods. Gun extensions shall not be used.

In Section 59-1.03 replace the 5th paragraph with:

Unless otherwise specified, should 7 days elapse between paint applications, the painted surface shall be pressure rinsed prior to the next paint application. Pressure rinsing is defined as a pressurized water rinse with a minimum nozzle pressure of 1,160 psi. During rinsing, the tip of the pressure nozzle shall be placed between 12 inches and 18 inches from the surface to be rinsed. The nozzle shall have a maximum fan tip angle of 30°.

In Section 59-2.01 replace the 2nd paragraph with:

Unless otherwise specified, no painting Contractors or subcontractors will be permitted to perform work without having the following current "SSPC: The Society for Protective Coatings" (formerly the Steel Structures Painting Council) certifications in good standing throughout the duration of the contract:

A. For cleaning and painting structural steel in the field, certification in conformance with the requirements in Qualification Procedure No. 1, "Standard Procedure For Evaluating Painting Contractors (Field Application to Complex Industrial Structures)" (SSPC-QP 1).

B. For removing paint from structural steel, certification in conformance with the requirements in Qualification Procedure No. 2, "Standard Procedure for the Qualification of Painting Contractors (Field Removal of Hazardous Coatings from Complex Structures)" (SSPC-QP 2, Category A).

C. For cleaning and painting structural steel in a permanent painting facility, certification in conformance with the requirements in Qualification Procedure No. 3, "Standard Procedure For Evaluating Qualifications of Shop Painting Applicators" (SSPC-QP 3, Enclosed Shop Facility). The AISC's Sophisticated Paint Endorsement (SPE) quality program, Certification P-1 Enclosed, will be considered equivalent to SSPC-QP 3, Enclosed Shop Facility.

Replace Section 59-2.05 with:

59-2.05 CLEANING PAINTED SURFACES

All previously painted surfaces shall be cleaned by pressure washing or steam cleaning before other cleaning or painting activities are performed. Gloss on the existing paint shall be removed without removing sound paint. Areas of gloss remaining after cleaning shall be roughened using 100 to 200-grit sandpaper. Any paint that becomes loose, curled, lifted, or that loses its bond after cleaning shall be removed to sound paint or metal.

Pressure washing includes cleaning surfaces using a pressure wash system with a nozzle pressure from 2,500 to 5,000 psi and a maximum fan tip angle of 45 degrees.

Steam cleaning includes cleaning dirt, grease, loose chalky paint, and other foreign material from surfaces using steam. The steam temperature at the nozzle shall be from 265 to 375 degrees F. A biodegradable detergent shall be
used during steam cleaning. After steam cleaning, cleaned surfaces shall be rinsed clean with fresh water. Steam cleaning shall not be performed more than 2 weeks before painting or other phases of cleaning. Steam-cleaned surfaces shall not be painted until they are thoroughly dry and 24 hours have elapsed after steam cleaning.

In Section 59-2.12 replace the 3rd and 4th paragraphs with:

Contact surfaces of stiffeners, railings, built up members or open seam exceeding 6 mils in width that would retain moisture, shall be caulked with polysulfide or polyurethane sealing compound conforming to the requirements in ASTM Designation: C 920, Type S, Grade NS, Class 25, Use O, or other approved material.

The dry film thickness of the paint will be measured in place with a calibrated Type 2 magnetic film thickness gage in conformance with the requirements in SSPC-PA 2, "Measurement of Dry Coating Thickness with Magnetic Gages," of the "SSPC: The Society for Protective Coatings," except that there shall be no limit to the number or location of spot measurements to verify compliance with specified thickness requirements.

In Section 59-5.01 replace the 1st paragraph with:

Tubular sign structures shall be cleaned and painted in conformance with the provisions in Section 59-1, "General," and this Section 59-5. Sign structures, other than tubular sign structures, shall not be painted unless otherwise specified in the special provisions.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECTION 63: CAST-IN-PLACE CONCRETE PIPE
(Issued 10-21-11)

Replace Section 63 with:
SECTION 63: (BLANK)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECTION 64 PLASTIC PIPE
(Issued 06-05-09)

In Section 64-1.02 replace the 5th paragraph with:

HDPE compounds used in the manufacture of corrugated polyethylene pipe and fittings shall comply with AASHTO M 294 except that the mix shall contain not less than 2 nor greater than 4 percent well dispersed carbon black. HDPE compounds used in the manufacture of ribbed profile wall polyethylene pipe shall comply with ASTM F 894 except that Type E ultraviolet stabilizers shall not be allowed and carbon black shall be well dispersed in an amount not less than 2 percent nor greater than 4 percent.

Manufacturers of corrugated polyethylene pipe shall:

1. Participate in the National Transportation Product Evaluation Control Program (NTPEP) for each plant supplying corrugated polyethylene pipe and fittings for the project.
2. Conduct and maintain a quality control program under NTPEP.
3. Submit a copy to the Engineer of manufacturing plant audits and NTPEP test results from the current cycle of NTPEP testing for all pipe diameters supplied.

Type D corrugated polyethylene pipe is not allowed. Corrugated polyethylene pipe greater than 60 inches in nominal diameter is not allowed.
In Section 64-1.05 replace the 1st paragraph with:

Excavation, backfill, and shaped bedding shall comply with Section 19-3, "Structure Excavation and Backfill," except the following:

1. At locations where pipe is to be backfilled with concrete, the backfill shall comply with Section 64-1.06, "Concrete Backfill."
2. Corrugated polyethylene pipe that is greater than 48 inches in nominal diameter but not exceeding 60 inches in nominal diameter shall be backfilled with either controlled low strength material under the special provisions or slurry cement backfill under Section 19-3.062, "Slurry Cement Backfill."
3. Where cementitious or flowable backfill is used for structure backfill, the backfill shall be placed to a level not less than 12 inches above the crown of the pipe.

In Section 64-1.06 replace the 1st paragraph with:

At locations where pipe is to be backfilled with concrete as shown on the plans, the concrete backfill shall be constructed of minor concrete or Class 4 concrete conforming to the provisions in Section 90, "Portland Cement Concrete." Minor concrete shall contain not less than 380 pounds of cementitious material per cubic yard. The concrete to be used will be designated in the contract item or shown on the plans.

In Section 64-1.06 replace the 3rd paragraph with:

The surface of the concrete backfill shall be broomed with a heavy broom to produce a uniform rough surface if hot mix asphalt is to be placed directly thereon.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECTION 65 REINFORCED CONCRETE PIPE
(Issued 07-20-12)

In Section 65-1.02 replace the 1st paragraph with:

Cementitious material and aggregate shall conform to the provisions in Section 90-2, "Materials" except that grading requirements shall not apply to the aggregate. Use of supplemental cementitious material shall conform to AASHTO Designation: M 170.

In Section 65-1.02A(1) in the 11th paragraph, replace item c with:

c. Cementitious material and aggregate for non-reinforced concrete pipe shall conform to the provisions in Section 65-1.02, "Materials."

In Section 65-1.035 replace the 1st paragraph with:

At locations where pipe is to be backfilled with concrete as shown on the plans, the concrete backfill shall be constructed of minor concrete or Class 4 concrete in conformance with the provisions in Section 90, "Portland Cement Concrete." Minor concrete shall contain not less than 380 pounds of cementitious material per cubic yard. The concrete to be used will be designated in the contract item.

In Section 65-1.035 replace the 3rd paragraph with:

The surface of the concrete backfill shall be broomed with a heavy broom to produce a uniform rough surface if hot mix asphalt is to be placed directly thereon.

Replace Section 65-1.05 with:

65-1.05 (BLANK)
In Section 65-1.06 in the 2nd paragraph, replace the 1st subparagraph with:
Cement Mortar. - Mortar shall be composed of one part cementitious material and 2 parts sand by volume. Supplementary cementitious material will not be required.

In Section 65-1.10 in the 1st paragraph in the 1st sentence, delete "jacked reinforced concrete pipe."

In Section 65-1.10 delete the 2nd paragraph.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECTION 66 CORRUGATED METAL PIPE
(Issued 07-20-12)

In Section 66-1.045 replace the 1st paragraph with:
At locations where pipe is to be backfilled with concrete as shown on the plans, the concrete backfill shall be constructed of minor concrete or Class 4 concrete conforming to the provisions in Section 90, "Portland Cement Concrete." Minor concrete shall contain not less than 380 pounds of cementitious material per cubic yard. The concrete to be used will be designated in the contract item or shown on the plans.

In Section 66-1.045 replace the 3rd paragraph with:
The surface of the concrete backfill shall be broomed with a heavy broom to produce a uniform rough surface if hot mix asphalt is to be placed directly thereon.

Replace Section 66-3.10 with:
66-3.10 (BLANK)

In Section 66-4.02 delete the 2nd paragraph.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECTION 68 SUBSURFACE DRAINS
(Issued 07-31-07)

In Section 68-3.02D replace the 1st and 2nd paragraphs with:
Concrete for splash pads shall be produced from minor concrete conforming to the provisions in Section 90-10, "Minor Concrete." Minor concrete shall contain not less than 470 pounds of cementitious material per cubic yard. Mortar placed where edge drain outlets and vents connect to drainage pipe and existing drainage inlets shall conform to the provisions in Section 51-1.135, "Mortar."

In Section 68-3.03 replace the 13th paragraph with:
Cement treated permeable material, which is not covered with hot mix asphalt within 12 hours after compaction of the permeable material, shall be cured by either sprinkling the material with a fine spray of water every 4 hours during daylight hours or covering the material with a white polyethylene sheet, not less than 6 mils thick. The above curing requirements shall begin at 7:00 a.m. on the morning following compaction of the cement treated permeable material and continue for the next 72 hours or until the material is covered with hot mix asphalt, whichever is less.
The cement treated permeable material shall not be sprayed with water during the first 12 hours after compacting, but may be covered with the polyethylene sheet during the first 12 hours or prior to the beginning of the cure period.

In Section 68-3.03 replace the 17th and 18th paragraphs with:

Hot mix asphalt for backfilling trenches in existing paved areas shall be produced from commercial quality aggregates and asphalt and mixed at a central mixing plant. The aggregate shall conform to the 3/4 inch grading, or the 1/2 inch grading for Type A and Type B hot mix asphalt specified in Section 39-1.02E, "Aggregate." The amount of asphalt binder to be mixed with the aggregate shall be between 4 percent and 7 percent by weight of the dry aggregate, as determined by the Engineer.

Hot mix asphalt backfill shall be spread and compacted in approximately 2 equal layers by methods that will produce a hot mix asphalt surfacing of uniform smoothness, texture and density. Each layer shall be compacted before the temperature of the mixture drops below 250 ºF. Prior to placing the hot mix asphalt backfill, a tack coat of asphaltic emulsion conforming to the provisions in Section 94, "Asphaltic Emulsions," shall be applied to the vertical edges of existing pavement at an approximate rate of 0.05 gallon per square yard.

In Section 68-3.03 replace the 20th paragraph with:

Type A pavement markers conforming to the details shown on the plans and the provisions in Section 85, "Pavement Markers," shall be placed on paved shoulders or dikes at outlet, vent and cleanout locations as directed by the Engineer. The waiting period for placing pavement markers on new hot mix asphalt surfacing will not apply.

Replace Section 68-3.05 with:

68-3.05 PAYMENT

The contract price paid per linear foot for plastic pipe (edge drain) of the size or sizes shown in the Engineer's Estimate shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals and for doing all the work involved in installing edge drains complete in place, including excavation (and removal of any concrete deposits that may occur along the lower edge of the concrete pavement in Type 1 installations) and hot mix asphalt backfill for Type 1 edge drain installation, tack coat, filter fabric, and treated permeable material, as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer.

The contract price paid per linear foot for plastic pipe (edge drain outlet) of the size or sizes shown in the Engineer's Estimate shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals and for doing all the work involved in installing edge drain outlets, vents and cleanouts complete in place, including outlet and vent covers, expansion plugs, pavement markers, concrete splash pads, connecting outlets and vents to drainage facilities, and excavation and backfill [aggregate base, hot mix asphalt, tack coat, and native material] for outlets, vents, and cleanouts to be installed in embankments and existing shoulders, as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer.

SECTION 69 OVERSIDE DRAINS

(Issued 07-31-07)

In Section 69-1.01 replace the 1st paragraph with:

This work shall consist of furnishing and installing entrance tapers, pipe downdrains, tapered inlets, flume downdrains, anchor assemblies, reducers, slip joints and hot mix asphalt overside drains to collect and carry surface drainage down the roadway slopes as shown on the plans or as directed by the Engineer and as specified in these specifications and the special provisions.

Replace Section 69-1.02D with:

69-1.02D Hot Mix Asphalt

Hot mix asphalt for overside drains shall conform to the provisions in Section 39-1.13, "Miscellaneous Areas."
Replace Section 69-1.04 with:

69-1.04 HOT MIX ASPHALT OVERSIDE DRAINS

Hot mix asphalt overside drains shall be constructed as shown on the plans or as directed by the Engineer. The hot mix asphalt shall be placed in conformance with the provisions in Section 39-1.13, "Miscellaneous Areas."

In Section 69-1.06 replace the 2nd paragraph with:

Quantities of hot mix asphalt placed for overside drains will be paid for as provided in Section 39-5, "Measurement and Payment," for hot mix asphalt placed in miscellaneous areas.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECTION 70 MISCELLANEOUS FACILITIES

(issued 01-20-12)

In Section 70-1.02C replace the 2nd paragraph with:

Precast concrete flared end sections shall conform to the requirements for Class III Reinforced Concrete Pipe in AASHTO Designation: M 170M. Cementitious materials and aggregate shall conform to the provisions in Section 90-2, "Materials," except that grading requirements shall not apply to the aggregate. Use of supplementary cementitious material shall conform to the requirements in AASHTO Designation: M 170. The area of steel reinforcement per linear foot of flared end section shall be at least equal to the minimum steel requirements for circular reinforcement in circular pipe for the internal diameter of the circular portion of the flared end section. The basis of acceptance of the precast concrete flared end section shall conform to the requirements of Section 5.1.2 of AASHTO Designation: M 170.

In Section 70-1.02C replace the 3rd paragraph with:

Plastic flared end sections shall conform to the requirements in ASTM Designation: D 3350.

In Section 70-1.02H replace the 1st paragraph with:

Precast concrete pipe risers and pipe reducers, and precast concrete pipe sections, adjustment rings and tapered sections for pipe energy dissipators, pipe inlets and pipe manholes shall conform to the requirements in AASHTO Designation: M 199M/M 199, except that the cementitious material and aggregate shall conform to the provisions in Section 90-2, "Materials," except that grading requirements shall not apply to the aggregate. Use of supplementary cementitious material shall conform to the requirements in AASHTO Designation: M 170.

In Section 70-1.03 replace the 2nd paragraph with:

Cutoff walls for precast concrete flared end sections shall be constructed of minor concrete conforming to the provisions in Section 90-10, "Minor Concrete." Minor concrete shall contain not less than 470 pounds of cementitious material per cubic yard.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECTION 72 SLOPE PROTECTION

(issued 07-20-12)
In Section 72-4.04 replace the 6th paragraph with:

Pervious backfill material, if required by the plans, shall be placed as shown. A securely tied sack containing one cubic foot of pervious backfill material shall be placed at each weep hole and drain hole. The sack material shall conform to the requirements for filter fabric in Section 88-1.02, “Filtration.”

Replace Section 72-5.05 with:

72-5.05 Measurement

Concreted-rock slope protection is measured by the ton or cubic yard.

Quantities of concreted-rock slope protection to be paid for by the cubic yard will be determined from the dimensions shown on the plans or the dimensions directed by the Engineer, and concreted-rock slope protection placed in excess of these dimensions will not be paid for.

Quantities of concreted-rock slope protection to be paid for by the ton will be determined from the weight of the rock in conformance with the provisions in Section 9-1.01, “Measurement of Quantities.”

In Section 72-5.06 replace the 1st sentence with:

The contract price paid per cubic yard or per ton for concreted-rock slope protection designated in the Engineer’s Estimate includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all work involved in constructing the concreted-rock slope protection, complete in place, including excavating and backfilling footing trenches and furnishing and placing concrete, as shown on the plans, and as specified in these specifications and the special provisions, and as directed by the Engineer.

SECTION 73 CONCRETE CURBS AND SIDEWALKS

(Issued 06-05-09)

In Section 73-1.01 in the 2nd paragraph, replace item 2 with:

2. Minor concrete shall contain not less than 463 pounds of cementitious material per cubic yard except that when extruded or slip-formed curbs are constructed using 3/8-inch maximum size aggregate, minor concrete shall contain not less than 505 pounds of cementitious material per cubic yard.

In Section 73-1.06 replace the 15th paragraph with:

Where hot mix asphalt or portland cement concrete pavements are to be placed around or adjacent to manholes, pipe inlets or other miscellaneous structures in sidewalk, gutter depression, island paving, curb ramps or driveway areas, the structures shall not be constructed to final grade until after the pavements have been constructed for a reasonable distance on each side of the structures.

SECTION 74 PUMPING PLANT EQUIPMENT

(Issued 07-01-08)

In Section 74-1.02 delete the 2nd paragraph.
In Section 75-1.02 replace the 6th paragraph with:
Manhole frames and covers shall conform to AASHTO M 306.
In Section 75-1.02 replace the 10th paragraph with:

Unless otherwise specified, materials shall conform to the following specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel bars, plates and shapes</td>
<td>ASTM Designation: A 36/A 36M or A 575, A 576 (AISI or M Grades 1016 through 1030)</td>
</tr>
<tr>
<td>Steel fastener components for general applications:</td>
<td></td>
</tr>
<tr>
<td>Bolts and studs</td>
<td>ASTM Designation: A 307</td>
</tr>
<tr>
<td>Headed anchor bolts</td>
<td>ASTM Designation: A 307, Grade B, including S1 supplementary requirements</td>
</tr>
<tr>
<td>Nonheaded anchor bolts</td>
<td>ASTM Designation: F 1554 or A 307, Grade C, including S1 supplementary requirements and S1.6 of AASHTO Designation: M 314 supplementary requirements, or AASHTO Designation: M 314, Grade 36 or 55, including S1 supplementary requirements</td>
</tr>
<tr>
<td>High-strength bolts and studs, threaded rods, and nonheaded anchor bolts</td>
<td>ASTM Designation: A 449, Type 1</td>
</tr>
<tr>
<td>Nuts</td>
<td>ASTM Designation: A 563, including Appendix X1*</td>
</tr>
<tr>
<td>Washers</td>
<td>ASTM Designation: F 844</td>
</tr>
<tr>
<td>Components of high-strength steel fastener assemblies for use in structural steel joints:</td>
<td></td>
</tr>
<tr>
<td>Bolts</td>
<td>ASTM Designation: A 325, Type 1</td>
</tr>
<tr>
<td>Tension control bolts</td>
<td>ASTM Designation: F 1852, Type 1</td>
</tr>
<tr>
<td>Nuts</td>
<td>ASTM Designation: A 563, including Appendix X1*</td>
</tr>
<tr>
<td>Hardened washers</td>
<td>ASTM Designation: F 436, Type 1, Circular, including S1 supplementary requirements</td>
</tr>
<tr>
<td>Direct tension indicators</td>
<td>ASTM Designation: F 959, Type 325, zinc-coated</td>
</tr>
<tr>
<td>Stainless steel fasteners (Alloys 304 & 316) for general applications:</td>
<td></td>
</tr>
<tr>
<td>Bolts, screws, studs, threaded rods, and nonheaded anchor bolts</td>
<td>ASTM Designation: F 593 or F 738M</td>
</tr>
<tr>
<td>Nuts</td>
<td>ASTM Designation: A 240/A 240M and ANSI B 18.22M</td>
</tr>
<tr>
<td>Washers</td>
<td>ASTM Designation: F 594 or F 836M</td>
</tr>
<tr>
<td>Carbon-steel castings</td>
<td>ASTM Designation: A 27/A 27M, Grade 65-35, Class 1</td>
</tr>
<tr>
<td>Malleable iron castings</td>
<td>ASTM Designation: A 47, Grade 32510 or A 47M, Grade 22010</td>
</tr>
<tr>
<td>Gray iron castings</td>
<td>AASHTO M 306</td>
</tr>
<tr>
<td>Inside a roadbed</td>
<td>AASHTO M306 except only AASHTO M105, Class 35B is allowed</td>
</tr>
<tr>
<td>Outside a roadbed</td>
<td>ASTM Designation: A 536, Grade 65-45-12</td>
</tr>
<tr>
<td>Ductile iron castings</td>
<td>Commercial quality</td>
</tr>
<tr>
<td>Cast iron pipe</td>
<td>Commercial quality, welded or extruded</td>
</tr>
<tr>
<td>Steel pipe</td>
<td>Commercial quality</td>
</tr>
<tr>
<td>Other parts for general applications</td>
<td>Commercial quality</td>
</tr>
</tbody>
</table>

Zinc-coated nuts that will be tightened beyond snug or wrench tight shall be furnished with a dyed dry lubricant conforming to Supplementary Requirement S2 in ASTM Designation: A 563.
In Section 75-1.03 replace the 13th paragraph with:

Concrete anchorage devices shall be mechanical expansion or resin capsule types installed in drilled holes or cast-in-place insert types. The anchorage devices shall be selected from the Department's Pre-Qualified Products List. The qualification requirements for concrete anchorage devices may be obtained from the Pre-Qualified Products List Web site.

The anchorage devices shall be a complete system, including threaded studs, hex nuts, and cut washers. Thread dimensions for externally threaded concrete anchorage devices prior to zinc coating shall conform to the requirements in ASME Standard: B1.1 having Class 2A tolerances or ASME Standard: B1.13M having Grade 6g tolerances. Thread dimensions for internally threaded concrete anchorage devices shall conform to the requirements in ASTM A 563.

In Section 75-1.03 replace the 18th paragraph with:

Mechanical expansion anchors shall, when installed in accordance with the manufacturer's instructions and these specifications and tested in conformance with the requirements in California Test 681, withstand the application of a sustained tension test load of at least the following values for at least 48 hours with a movement not greater than 0.035 inch:

<table>
<thead>
<tr>
<th>Stud Diameter (inches)</th>
<th>Sustained Tension Test Load (pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>*3/4</td>
<td>5,000</td>
</tr>
<tr>
<td>5/8</td>
<td>4,100</td>
</tr>
<tr>
<td>1/2</td>
<td>3,200</td>
</tr>
<tr>
<td>3/8</td>
<td>2,100</td>
</tr>
<tr>
<td>1/4</td>
<td>1,000</td>
</tr>
</tbody>
</table>

* Maximum stud diameter permitted for mechanical expansion anchors.

Resin capsule anchors shall, when installed in accordance with the manufacturer's instructions and these specifications and tested in conformance with the requirements in California Test 681, withstand the application of a sustained tension test load of at least the following values for at least 48 hours with a movement not greater than 0.010 inch:

<table>
<thead>
<tr>
<th>Stud Diameter (inches)</th>
<th>Sustained Tension Test Load (pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1/4</td>
<td>31,000</td>
</tr>
<tr>
<td>1</td>
<td>17,900</td>
</tr>
<tr>
<td>7/8</td>
<td>14,400</td>
</tr>
<tr>
<td>3/4</td>
<td>5,000</td>
</tr>
<tr>
<td>5/8</td>
<td>4,100</td>
</tr>
<tr>
<td>1/2</td>
<td>3,200</td>
</tr>
<tr>
<td>3/8</td>
<td>2,100</td>
</tr>
<tr>
<td>1/4</td>
<td>1,000</td>
</tr>
</tbody>
</table>

At least 25 days before use, the Contractor shall submit one sample of each resin capsule anchor per lot to the Transportation Laboratory for testing. A lot of resin capsule anchors is 100 units, or fraction thereof, of the same brand and product name.

In Section 75-1.03 replace the 20th paragraph with:

A Certificate of Compliance for concrete anchorage devices shall be furnished to the Engineer in conformance with the provisions in Section 6-1.07, "Certificates of Compliance."
In Section 75-1.03 replace the 24th paragraph with:
Sealing compound, for caulking and adhesive sealing, shall be a polysulfide or polyurethane material conforming to the requirements in ASTM Designation: C 920, Type S, Grade NS, Class 25, Use O.

In Section 75-1.035 in the 3rd paragraph, replace the 1st sentence with:
Cables shall be 3/4 inch preformed, 6 x 19, wire strand core or independent wire rope core (IWRC), galvanized in conformance with the requirements in Federal Specification RR-W-410, right regular lay, manufactured of improved plow steel with a minimum breaking strength of 23 tons.

In Section 75-1.035 in the 4th paragraph, replace item C with:
C. Nuts shall conform to the requirements in ASTM Designation: A 563 including Appendix X1, except lubrication is not required.

In Section 75-1.035 replace the 12th paragraph with:
Concrete for filling cable drum units shall conform to the provisions in Section 90-10, "Minor Concrete," or at the option of the Contractor, may be a mix with 3/8-inch maximum size aggregate and not less than 675 pounds of cementitious material per cubic yard.

In Section 75-1.05 replace the 6th paragraph with:
Galvanizing of iron and steel hardware and nuts and bolts, when specified or shown on the plans, shall conform to the requirements in ASTM Designation: A 153/A 153M, except whenever threaded studs, bolts, nuts, and washers are specified to conform to the requirements in ASTM Designation: A 307, A 325, A 449, A 563, F 436, or F 1554 and zinc coating is required, they shall be hot-dip zinc coated or mechanically zinc coated in conformance with the requirements in the ASTM Designations. Unless otherwise specified, galvanizing shall be performed after fabrication.

In Section 75-1.05 replace the 8th paragraph with:
Tapping of nuts or other internally threaded parts to be used with zinc coated bolts, anchor bars or studs shall be done after galvanizing and shall conform to the requirements for thread dimensions and overtapping allowances in ASTM Designation: A 563.

^^

SECTION 80 FENCES
(Issued 01-05-07)

In Section 80-3.01F replace the 4th paragraph with:
Portland cement concrete for metal post and brace footings and for deadmen shall be minor concrete conforming to the provisions in Section 90-10, "Minor Concrete." Minor concrete shall contain not less than 470 pounds of cementitious material per cubic yard.

In Section 80-4.01C replace the 4th paragraph with:
Portland cement concrete for metal post and for deadmen shall be produced from minor concrete conforming to the provisions in Section 90-10, "Minor Concrete." Minor concrete shall contain not less than 470 pounds of cementitious material per cubic yard.

^^
In Section 83-1.02 replace the 7th paragraph with:
Mortar shall conform to the provisions in Section 51-1.135, “Mortar,” and shall consist of one part by volume of cementitious material and 3 parts of clean sand.

In Section 83-1.02B in the 24th paragraph in the 8th subparagraph, replace the 1st sentence with:
Anchor cable shall be 3/4 inch preformed, 6 x 19, wire strand core or independent wire rope core (IWRC), galvanized in conformance with the requirements in Federal Specification RR-W-410, right regular lay, manufactured of improved plow steel with a minimum breaking strength of 23 tons.

In Section 83-1.02E in the 6th paragraph, replace the 2nd sentence with:
Cable shall be galvanized in conformance with the requirements in Federal Specification RR-W-410.

In Section 83-1.02I replace the 5th paragraph with:
Where shown on the plans, cables used in the frame shall be 5/16 inch in diameter, wire rope, with a minimum breaking strength of 5,000 pounds and shall be galvanized in conformance with the requirements in Federal Specification RR-W-410.

In Section 83-1.02I replace the 14th paragraph with:
Chain link fabric shall be 11-gage conforming to one of the following:

1. AASHTO Designation: M181, Type I, Class C
2. AASHTO Designation: M181, Type IV, Class A
3. ASTM F 1345, Class 2

In Section 83-2.02D(1) replace the 5th paragraph with:
When concrete barriers are to be constructed on existing structures, the dowels shall be bonded in holes drilled in the existing concrete. Drilling of holes and bonding of dowels shall conform to the following:

1. The bonding materials shall be either magnesium phosphate concrete, modified high alumina based concrete or portland cement based concrete. Magnesium phosphate concrete shall be either single component (water activated) or dual component (with a prepackaged liquid activator). Modified high alumina based concrete and portland cement based concrete shall be water activated. Bonding materials shall conform to the following requirements:
<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressive Strength</td>
<td></td>
<td></td>
</tr>
<tr>
<td>at 3 hours, MPa</td>
<td>California Test 551</td>
<td>21 min.</td>
</tr>
<tr>
<td>at 24 hours, MPa</td>
<td>California Test 551</td>
<td>33 min.</td>
</tr>
<tr>
<td>Flexure Strength</td>
<td></td>
<td></td>
</tr>
<tr>
<td>at 24 hours, MPa</td>
<td>California Test 551</td>
<td>3.5 min.</td>
</tr>
<tr>
<td>Bond Strength: at 24 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSD Concrete, MPa</td>
<td>California Test 551</td>
<td>2.1 min.</td>
</tr>
<tr>
<td>Dry Concrete, MPa</td>
<td>California Test 551</td>
<td>2.8 min.</td>
</tr>
<tr>
<td>Water Absorption, %</td>
<td>California Test 551</td>
<td>10 max.</td>
</tr>
<tr>
<td>Abrasion Resistance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>at 24 hours, grams</td>
<td>California Test 550</td>
<td>25 max.</td>
</tr>
<tr>
<td>Drying Shrinkage at 4 days, %</td>
<td>ASTM Designation: C 596</td>
<td>0.13 max.</td>
</tr>
<tr>
<td>Soluble Chlorides by weight, %</td>
<td>California Test 422</td>
<td>0.05 max.</td>
</tr>
<tr>
<td>Water Soluble Sulfates by weight, %</td>
<td>California Test 417</td>
<td>0.25 max.</td>
</tr>
</tbody>
</table>

2. Magnesium phosphate concrete shall be formulated for minimum initial set time of 15 minutes and minimum final set time of 25 minutes at 70° F. The materials, prior to use, shall be stored in a cool, dry environment.

3. Mix water used with water activated material shall conform to the provisions in Section 90-2.03, "Water."

4. The quantity of water for single component type or liquid activator (for dual component type) to be blended with the dry component, shall be within the limits recommended by the manufacturer and shall be the least amount required to produce a pourable batter.

5. Addition of retarders, when required and approved by the Engineer, shall be in conformance with the manufacturer's recommendations.

6. Before using concrete material that has not been previously approved, a minimum of 45 pounds shall be submitted to the Engineer for testing. The Contractor shall allow 45 days for the testing. Each shipment of concrete material that has been previously approved shall be accompanied by a Certificate of Compliance as provided in Section 6-1.07, "Certificates of Compliance."

7. Magnesium phosphate concrete shall not be mixed in containers or worked with tools containing zinc, cadmium, aluminum or copper metals. Modified high alumina based concrete shall not be mixed in containers or worked with tools containing aluminum.

8. The surface of any dowel coated with zinc or cadmium shall be coated with a colored lacquer before installation of the dowel. The lacquer shall be allowed to dry thoroughly before embedment of the dowels.

9. The holes shall be drilled by methods that will not shatter or damage the concrete adjacent to the hole. The diameter of the drilled hole shall be 1/2 inch larger than the nominal diameter of the dowels.

10. The drilled holes shall be clean and dry at the time of placing the bonding material and the steel dowels. Bonding material and dowel shall completely fill the drilled hole. The surface temperature shall be 40° F or above when the bonding material is placed.

11. After bonding, dowels shall remain undisturbed for a minimum of 3 hours or until the bonding material has reached a strength sufficient to support the dowels. Dowels that are improperly bonded, as determined by the Engineer, shall be removed. The holes shall be cleaned or new holes shall be drilled and the dowels replaced and securely bonded to the concrete. Removing, redrilling and replacing improperly bonded dowels shall be performed at the Contractor’s expense. Modified high alumina based concrete and portland cement based concrete shall be cured in conformance with the provisions in Section 90-7.01B, "Curing Compound Method," of the Standard Specifications. Magnesium phosphate concrete shall not be cured.

In Section 83-2.02D(1) replace the 8th paragraph with:

Granular material for backfill between the 2 walls of concrete barrier (Types 50E, 60F, 60GE and 60SF), as shown on the plans, shall be placed without compaction.

In Section 83-2.02D(2) in the 1st paragraph, replace item b with:

b. If the 3/8-inch maximum size aggregate grading is used to construct extruded or slip-formed concrete barriers, the cementitious material content of the minor concrete shall be not less than 675 pounds per cubic yard.
In Section 83-2.02D(2) replace the 3rd paragraph with:
The concrete paving between the tops of the 2 walls of concrete barrier (Types 50E, 60F, 60GE, and 60SF) and the optional concrete slab at the base between the 2 walls of concrete barrier (Types 50E, 60F, 60GE, and 60SF) shall be constructed of minor concrete conforming to the provisions of Section 90-10, “Minor Concrete,” except that the minor concrete shall contain not less than 505 pounds of cementitious material per cubic yard.

In Section 83-2.02D(2) replace the 8th paragraph with:
Granular material for backfill between the 2 walls of concrete barrier (Types 50E, 60F, 60GE and 60SF) shall be earthy material suitable for the purpose intended, having no rocks, lumps or clods exceeding 1-1/2 inches in greatest dimension.

In Section 83-2.03 replace the 8th and 9th paragraphs with:
Concrete barriers, except Type 50E, Type 60F, Type 60GE, and Type 60SF will be measured along the top of the barrier.
Concrete barriers Type 50E, Type 60F, Type 60GE, and Type 60SF will be measured once along the centerline between the 2 walls of the barrier.

In Section 83-2.04 replace the 3rd paragraph with:
The contract prices paid per linear foot for concrete barrier of the type or types listed in the Engineer's Estimate shall include full compensation for furnishing all labor, materials, tools, equipment and incidentals, and for doing all the work involved in constructing the concrete barriers, complete in place, including bar reinforcing steel, steel dowels and drilling and bonding dowels in structures, hardware for steel plate barrier, miscellaneous metal, excavation, backfill (including concrete paving for, and granular material or concrete slab used as backfill in Type 50E, Type 60F, Type 60GE, and Type 60SF concrete barrier), and disposing of surplus material and for furnishing, placing, removing and disposing of the temporary railing for closing the gap between existing barrier and the concrete barrier being constructed, as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECTION 85  PAVEMENT MARKERS
(Issued 07-31-07)

In Section 85-1.06 replace the 6th paragraph with:
Pavement markers shall not be placed on new hot mix asphalt surfacing or seal coat until the surfacing or seal coat has been opened to public traffic for a period of not less than 7 days when hot melt bituminous adhesive is used, and not less than 14 days when epoxy adhesive is used.

In Section 85-1.06 in the 14th paragraph, replace the 2nd sentence with:
Cleaning shall be done by blast cleaning on all surfaces regardless of age or type, except that blast cleaning of clean, new hot mix asphalt and clean, new seal coat surfaces will not be required when hot melt bituminous adhesive is used.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECTION 86 SIGNALS, LIGHTING AND ELECTRICAL SYSTEMS
(Issued 01-20-12)
Replace Section 86 with:

SECTION 86 ELECTRICAL SYSTEMS

86-1 GENERAL

86-1.01 DESCRIPTION
Section 86 includes specifications for installing, modifying, and removing:

1. Traffic Signal
2. Interconnect System
3. Ramp metering system
4. Flashing beacon system
5. Lighting system
6. Sign illumination system
7. Traffic monitoring station
8. Communication system
9. Electrical equipment in structure
10. Falsework lighting

Comply with Part 4 of the California MUTCD. Nothing in this Section 86 is to be construed as to reduce the minimum standards in this manual.

The locations of electrical system elements are approximate; the Engineer will approve final location.

86-1.015 DEFINITIONS
Definitions pertain only to Section 86, "Electrical Systems."

actuation: As defined in the California MUTCD.

channel: Discrete information path.

controller assembly: Controller unit and auxiliary equipment housed in a rainproof cabinet to control a system's operations.

controller unit: Part of the controller assembly performing the basic timing and logic functions.

detector: As defined in the California MUTCD.

electroliter: Complete assembly of lighting standard and luminaire.

flashing beacon control assembly: Switches, circuit breakers, terminal blocks, flasher, wiring, and necessary electrical components all housed in a single enclosure to properly operate a beacon.

inductive loop detector: Detector capable of being actuated by inductance change caused by vehicle passing or standing over the loop.

lighting standard: Pole and mast arm supporting the luminaire.

luminaire: Assembly that houses the light source and controls the light emitted from the light source.

magnetic detector: Detector capable of being actuated by induced voltage caused by vehicle passing through the earth's magnetic field.

powder coating: A coating applied electrostatically using UV-stable polymer exterior grade powder.

pre-timed controller assembly: Operates traffic signals under a predetermined cycle length.

signal face: As defined in the California MUTCD.

signal head: As defined in the California MUTCD.

signal indication: As defined in the California MUTCD.

signal section: As defined in the California MUTCD.

signal standard: Pole and mast arm supporting one or more signal faces with or without a luminaire mast arm.

traffic-actuated controller assembly: Operates traffic signals under the varying demands of traffic as registered by detector actuation.

traffic phase: Signal phase as defined in the California MUTCD.

vehicle: As defined in the California Vehicle Code.

86-1.02 REGULATIONS AND CODE
Electrical equipment must comply with one or more of the following:

1. ANSI
2. ASTM
3. 8 CA Code of Regs § 2299 et seq.
4. EIA
5. NEMA
6. NETA
7. UL

Materials and workmanship must comply with:

1. FCC
2. ITE
3. NEC
4. NRTL
5. Public Utilities Commission, General Order No. 95, "Rules for Overhead Electrical Line Construction"

86-1.03 COST BREAK-DOWN

Determine quantities required to complete work. Submit the quantities as part of the cost breakdown.

The sum of the amounts for the units of work listed in the cost breakdown must equal the contract lump sum price bid for the work. Include overhead and profit for each unit of work listed in the cost breakdown. If mobilization is a bid item, include bond premium, temporary construction facilities, and material plants into the mobilization bid item, otherwise, include in each unit of work listed in the cost breakdown. Do not include costs for traffic control system in the cost breakdown.

The cost breakdown may be used to determine partial payment and to calculate payment adjustments for additional costs incurred due to a change order. If a change order increases or decreases the quantities, payment adjustment may be determined under Section 4-1.03B, "Increased or Decreased Quantities."

The cost breakdown must include type, size, and installation method for:

1. Foundations
2. Standards and poles
3. Conduit
4. Pull boxes
5. Conductors and cables
6. Service equipment enclosures
7. Telephone demarcation cabinet
8. Signal heads and hardware
9. Pedestrian signal heads and hardware
10. Pedestrian push buttons
11. Loop detectors
12. Luminaires and lighting fixtures

86-1.04 EQUIPMENT LIST AND DRAWINGS

Within 15 days of contract approval, submit for review a list of equipment and materials that you propose to install. Comply with Section 5-1.02, "Plans and Working Drawings." The list must include:

1. Name of manufacturer
2. Dimension
3. Item identification number
4. List of components

The list must be supplemented by other data as required, including:

1. Schematic wiring diagrams
2. Scale drawings of cabinets showing location and spacing of shelves, terminal blocks, and equipment, including dimensioning
3. Operation manual

Submit 2 copies of the above data. The Engineer will review within 15 days. Electrical equipment that is manufactured as detailed on the plans will not require detailed drawings and diagrams.

Furnish 3 sets of computer-generated cabinet schematic wiring diagrams.
The cabinet schematic wiring diagram must be placed in a heavy duty plastic envelope and attached to the inside of the door of each cabinet.

Prepare diagrams, plans, and drawings using graphic symbols in IEEE 315, "Graphic Symbols for Electrical and Electronic Diagrams."

86-1.05 CERTIFICATE OF COMPLIANCE

Submit a Certificate of Compliance for all electrical material and equipment to the Engineer under Section 6-1.07, "Certificates of Compliance."

86-1.06 MAINTAINING EXISTING AND TEMPORARY ELECTRICAL SYSTEMS

Keep existing electrical system or approved temporary replacement in working order during the progress of the work. Shutdown is allowed for alteration or removal of the system. Traffic signal shutdown must be limited to normal working hours. Lighting system shutdown must not interfere with the regular lighting schedule.

- Notify the Engineer before performing work on the existing system.
- Notify the local traffic enforcement agency before traffic signal shutdown.
- If existing or temporary system must be modified, work not shown on the plans or specified in the special provisions, but required to keep the system in working order will be paid for as extra work as specified in Section 4-1.03D, "Extra Work."
- The State or local agency will:
 1. Continue the operation and maintenance of existing electrical facilities
 2. Continue to provide electrical energy to operate existing electrical facilities
 3. Repair or replace existing facilities damaged by public traffic
 4. Pay for electrical energy to operate existing or new facilities undergoing the functional tests described in Section 86-2.14C, "Functional Testing"

Verify location and depth of existing detectors, conduits, pull boxes, and other electrical facilities before using tools or equipment that may damage those facilities or interfere with an electrical system.

- Notify the Engineer immediately if existing facility is damaged by your activities. Repair or replace damaged facility promptly. If you fail to complete the repair or replacement, promptly, the State will repair or replace and deduct the costs.
- Damaged detectors must be replaced within 24 hours at your expense. If you fail to complete the repair within 24 hours, the State will repair and deduct the repair costs.
- If roadway remains open to traffic while an existing lighting system is modified:
 1. Keep existing system in working order
 2. Make final connection so the modified circuit is in operation by nightfall

Keep temporary electrical installations in working order until no longer required. Remove temporary installations as specified in Section 86-7, "Removing, Reinstalling or Salvaging Electrical Equipment."

- These provisions do not void your responsibilities as specified in Section 7-1.12, "Indemnification and Insurance," and Section 7-1.16, "Contractor's Responsibility for the Work and Materials."
- During traffic signal system shutdown, place W3-1a, "STOP AHEAD," and R1-1, "STOP," signs in each direction to direct traffic through the intersection. For 2-lane approaches, place 2 R1-1 signs.
- W3-1a and R1-1 signs must comply with Section 12-3.06, "Construction Area Signs." Use a minimum size of 30 inches for the R1-1 sign.
- Cover signal faces when the system is shut down overnight. Cover temporary W3-1a and R1-1 signs when the system is turned on.

86-1.07 SCHEDULING OF WORK

Except service installation and service equipment enclosure, do not work above ground until all materials are on hand to complete electrical work at each location. Schedule work to allow each system to be completed and ready for operation before opening the corresponding section of the roadway to traffic.

- If street lighting exists or is installed in conjunction with traffic signals, do not turn on the signals until the street lighting is energized.
- Traffic signals will not be placed in operation until the roadways to be controlled are open to public traffic.
- Lighting and traffic signals, including flashing operation, will not be placed in operation before starting the functional test period specified in Section 86-2.14, "Testing."
Do not pull conductors into conduit until:

1. Pull boxes are set to grade
2. Metallic conduit is bonded

In vehicular undercrossings, soffit lights must be in operation as soon as practicable after falsework has been removed from the structure. Lighting for pedestrian structures must be in operation before opening the structure to pedestrian traffic.

If the Engineer orders soffit lights or lighting for pedestrian structures to be activated before permanent power service is available, the cost of installing and removing temporary power service will be paid for as extra work as specified in Section 4-1.03D, "Extra Work."

The initial traffic signal turn-on must be made between 9:00 a.m. and 2:00 p.m. Before the initial turn-on, all equipment, including pedestrian signals, pedestrian push buttons, vehicle detectors, lighting, signs, and pavement delineation must be installed and in working order. Direct louvers, visors, and signal faces to maximize visibility.

Start functional tests on any working day except Friday or the day before a legal holiday. You must notify the Engineer 48 hours before the start of functional test.

86-1.08 (BLANK)

86-2 MATERIALS AND INSTALLATION

86-2.01 EXCAVATING AND BACKFILLING

Dispose of surplus excavated material under Section 7-1.13, "Disposal of Materials Outside the Highway Right of Way."

Backfill as specified in Section 19-3, "Structure Excavation and Backfill." Compact backfill in conduit trenches outside the hinge point of slopes and not under pavement to a minimum relative compaction of 90 percent. Compact backfill within hinge points and in areas where pavement is to be constructed to a minimum relative compaction of 95 percent.

Backfill trenches and restore sidewalk, pavement, and landscaping at one intersection before starting excavation at another intersection.

If excavating on a street or highway, restrict closure to 1 lane at a time.

86-2.02 REMOVING AND REPLACING IMPROVEMENTS

Replace or reconstruct sidewalk, curb, gutter, concrete pavement, asphalt concrete pavement, underlying material, lawn, plant, and other facilities damaged by your activities. Replacement material must be of equal or better quality than the material replaced. Work must be in a serviceable condition.

If a part of a square or slab of concrete sidewalk, curb, gutter, or driveway is broken or damaged, the entire square or slab must be removed and reconstructed.

Cut outline of PCC sidewalk or driveway to be removed:

1. Using a power-driven saw
2. On a neat line
3. To a 0.17-foot minimum depth

86-2.03 FOUNDATIONS

Except for concrete for cast-in-drilled-hole concrete pile foundation, PCC must comply with Section 90-10, "Minor Concrete."

Construct concrete foundation on firm ground.

After each post, standard, and pedestal is properly positioned, place mortar under the base plate. Finish exposed portion to present a neat appearance. Mortar must comply with Section 51-1.135, "Mortar," except mortar must have:

1. 1 part by volume of cementitious material
2. 3 parts by volume of clean sand

Reinforced cast-in-drilled-hole concrete pile foundation must comply with Section 49, "Piling," except:

1. Material resulting from drilling holes must be disposed of as specified in Section 86-2.01, "Excavating and Backfilling"
2. Concrete for cast-in-drilled-hole concrete pile will not be considered as designated by compressive strength

Form exposed portion of the foundation to present a neat appearance and true to line and grade. The top of a foundation for post and standard must be finished to curb or sidewalk grade. Forms must be rigid and securely braced in place. Conduit ends and anchor bolts must be placed at proper height and position. Anchor bolts must be installed a maximum of 1:40 from vertical and held in place by rigid top and bottom templates. Use a steel bottom template at least 1/2 inch thick that provides proper spacing and alignment of anchor bolts near the embedded bottom end. Install bottom template before placing footing concrete.

Provide new foundation and anchor bolts of the proper type and size for relocated standards.

Steel parts must be galvanized as specified in Section 75-1.05, "Galvanizing."

Provide 2 nuts and washers for the upper threaded part of each anchor bolt. Provide 3 nuts and washers for each anchor bar or stud.

Do not weld high-strength steel used for anchor bolt, anchor bar, or stud.

Before placing concrete, moisten forms and ground. Keep forms in place until the concrete sets for at least 24 hours and is strong enough to prevent damage to surface.

Except if located on a structure, construct foundation for post, standard, and pedestal monolithically.

Apply ordinary surface finish as specified in Section 51-1.18A, "Ordinary Surface Finish."

If a foundation must be extended for additional depth, the extension work will be paid for as extra work as specified in Section 4-1.03D, "Extra Work."

Do not erect post, pole, standard, pedestal, or cabinet until the foundation is set for a minimum of 7 days.

The Engineer will choose the plumbing or raking technique for posts, standards, and pedestals. Plumb or rake by adjusting the leveling nuts before tightening nuts. Do not use shims or similar devices. After final adjustments of both top nuts and leveling nuts on anchorage assemblies have been made, and each post, standard, and pedestal on structure is properly positioned, tighten nuts as follows:

1. Tighten leveling nuts and top nuts, following a crisscross pattern, until bearing surfaces of all nuts, washers, and base plates are in firm contact.
2. Use an indelible marker to mark the top nuts and base plate with lines showing relative alignment of the nut to the base plate.
3. Tighten top nuts, following a crisscross pattern, an additional 1/6th of a turn.

In unpaved areas, construct a raised PCC pad in front of each controller cabinet.

Completely remove foundations not to be reused or abandoned.

If abandoning a foundation, remove the top of foundation, anchor bolts, and conduits to a minimum depth of 0.5 foot below sidewalk surface or original ground. Backfill the resulting hole with material equivalent to the surrounding material.

86-2.04 STANDARDS, STEEL PEDESTALS AND POSTS

Bolts, including anchor bolts, nuts, and washers for signal and lighting support structures must comply with Section 55-2, "Materials." Except for bearing-type connection or slip-base, high-strength bolted connection must comply with Section 55-3.14, "Bolted Connections." Welding, nondestructive testing of welds, and acceptance and repair criteria for steel member nondestructive testing must comply with American Welding Society (AWS) D1.1.

Using stainless steel rivets, attach rectangular corrosion-resistant metal identification tag on all standards and poles, except Type 1:

1. Above the hand hole, near the base of standards and poles
2. On the underside of mast arms near the arm plate

The lettering on each identification tag must be depressed or raised, 1/4 inch tall, legible, and include the following information:

1. Name of the manufacturer
2. Date of manufacture
3. Identification number
4. Contract number
5. Unique identification code that is:
 5.1. Assigned by the manufacturer
 5.2. Traceable to a particular contract and the welds on that component
5.3. Readable after the support structure is coated and installed

Type 1 standard and steel pedestal for controller cabinet must be manufactured of one of the following:

1. 0.12-inch or thicker galvanized steel
2. 4-inch standard weight galvanized steel pipe as specified in ASTM A 53
3. 4-inch Type 1 conduit with the top designed for post-top slip-fitter

Ferrous metal parts of a standard that has a shaft length of 15 feet or longer must comply with the provisions in Section 55-2, “Materials,” and the following:

1. Standard must be manufactured from sheet steel of weldable grade having a minimum yield strength of 40,000 psi after manufacturing.
2. Certified test report verifying compliance with minimum yield strength requirements must be submitted. Test report may be the mill test report for the as-received steel or if the as-received steel has a lower yield strength than required you must provide test data assuring that your method of cold forming will consistently increase the tensile properties of the steel to meet the specified minimum yield strength. Test data must include tensile properties of the steel after cold forming for specific heats and thicknesses.
3. If a single-ply 5/16-inch thick pole is specified, a 2-ply pole with equivalent section modulus may be substituted.
4. Standard may be manufactured of full-length sheets or shorter sections. Each section must be manufactured from 1 or 2 pieces of sheet steel. If 2 pieces are used, the longitudinal welded seams must be directly opposite from one another. If the sections are butt-welded together, the longitudinal welded seams of adjacent sections must be placed to form continuous straight seams from base to top of standard.
5. Butt-welded circumferential joints of tubular sections requiring CJP groove welds must be made using a metal sleeve backing ring inside each joint. The sleeve must be 1/8 inch nominal thickness, or thicker, and manufactured from steel having the same chemical composition as the steel in the tubular sections to be joined. If the sections to be joined have different specified minimum yield strengths, the steel in the sleeve must have the same chemical composition as the tubular section having the higher minimum yield strength. The width of the metal sleeve must be consistent with the type of nondestructive testing selected and must be a minimum width of 1 inch. At fitting time, the sleeve must be centered at the joint and in contact with the tubular section at the point of the weld.
6. Welds must be continuous.
7. Weld metal at the transverse joint must extend to the sleeve, making the sleeve an integral part of the joint.
8. During manufacturing, longitudinal seams on vertical tubular members of cantilevered support structures must be centered on and along the side of the pole that the pole plate is located. Longitudinal seams on horizontal tubular members, including signal and luminaire arms, must be within ±45 degrees of the bottom of the arm.
9. Longitudinal seam weld in steel tubular section may be made by the electric resistance welding process.
10. Longitudinal seam weld must have 60 percent minimum penetration, except:
 10.1. Within 6 inches of circumferential weld, longitudinal seam weld must be CJP groove weld.
 10.2. Longitudinal seam weld on lighting support structure having telescopic pole segment splice must be CJP groove weld on the female end for a length on each end equal to the designated slip-fit splice length plus 6 inches.

11. Exposed circumferential weld, except fillet and fatigue-resistant weld, must be ground flush with the base metal before galvanizing or painting. Ground flush is specified as -0, +0.08-inch.
12. Circumferential weld and base plate-to-pole weld may be repaired only one time.
13. Exposed edges of the plates that make up the base assembly must be finished smooth and exposed corners of the plates must be broken. Provide shafts with slip-fitter shaft caps.
14. Surface flatness requirements of ASTM A 6 apply to plates:
 14.1. In contact with concrete, grout, or washers and leveling nuts
 14.2. In high-strength bolted connections
 14.3. In joints, where cap screws are used to secure luminaire and signal arms
 14.4. Used for breakaway slip-base assemblies

15. Standard must be straight with a maximum variation of:
15.1. 1 inch measured at the midpoint of a 30-foot to 35-foot standard
15.2. 3/4 inch measured at the midpoint of a 17-foot to 20-foot standard
15.3. 1 inch measured 15 feet above the base plate for Type 35 and Type 36 standards

16. Zinc-coated nuts used on fastener assemblies having a specified preload obtained by specifying a prescribed tension, torque value, or degree of turn must be provided with a colored lubricant, clean and dry to the touch. The lubricant color must contrast the zinc coating color on the nut so the presence of the lubricant is visually obvious. Lubricant must be insoluble in water or the fastener components must be shipped to the job site in a sealed container.

17. Do not make additional holes in structural members.
18. Standard with an outside diameter of 12 inches or less must be round. Standard with an outside diameter greater than 12 inches must be round or multisided. Multisided standard must be convex with a minimum of 12 sides and have a minimum bend radius of 4 inches.
19. Manufacture mast arm from material specified for standard.
20. Manufacture cast steel option for slip base from material of Grade 70-40, as specified in ASTM A 27/A 27M. Other comparable material may be used if approved by the Engineer. The casting tolerances must comply with the Steel Founders' Society of America's recommendations for green sand molding.
21. One casting from each lot of a maximum of 50 castings must be radiographed as specified in ASTM E 94. Casting must comply with the acceptance criteria for severity level 3 or better for the types and categories of discontinuities in ASTM E 186 and E 446. If the casting fails the inspection, 2 additional castings must be radiographed. If the 2 additional castings fail the inspection, the entire lot will be rejected.
22. Material certification, consisting of physical and chemical properties, and radiographic film of the casting must be filed at the manufacturer's office. Certification and film must be available for inspection.
23. High-strength bolts, nuts, and flat washers used to connect slip-base plate must comply with ASTM A 325 or A 325M and be galvanized as specified in Section 75-1.05, "Galvanizing."
24. Plate washers must be manufactured by saw cutting and drilling steel plate. Steel plate must comply with AISI 1018 and be galvanized as specified in Section 75-1.05, "Galvanizing." Before galvanizing, remove burrs and sharp edges and chamfer both sides of holes to allow the bolt head to make full contact with the washer without tension.
25. High-strength cap screws for attaching arms to standards must comply with ASTM A 325, A 325M, or A 449, and the mechanical requirements in ASTM A 325 or A 325M after galvanizing. Cap screws must be galvanized as specified in Section 75-1.05, "Galvanizing." Coat threads of cap screws with a colored lubricant, clean and dry to the touch. Lubricant color must contrast the zinc-coating color on the cap screw so the presence of the lubricant is visually obvious. Lubricant must be insoluble in water or the fastener components must be shipped to the job site in a sealed container.
26. Bolted connection attaching signal or luminaire arm to pole must be considered slip critical. Galvanized faying surfaces of plates on luminaire, signal arm, and pole must be roughened by hand using a wire brush before assembly and must comply with requirements for Class C surface conditions for slip-critical connections in "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts," a specification approved by the Research Council on Structural Connections (RCSC). Paint for faying surfaces must be as specified in the RCSC specification for Class B coating.
27. The Engineer will randomly take samples of fastener components from each production lot and submit to the Transportation Laboratory with test reports as specified in ASTM fastener specifications for QA testing and evaluation. The Engineer will determine sample sizes for each fastener component.

Change in mast arm configuration is allowed as long as the mounting height and stability are maintained.

Before manufacturing, details must be adjusted to ensure that cap screw heads can be turned using conventional installation tools. During manufacturing process, to avoid interference with the cap screw heads, the position of the luminaire arm on the arm plate must be properly located.

Configure mast arm as a smooth curving arm.

Push button post, pedestrian barricade, and guard post must comply with ASTM A 53.

Assemble and tighten slip base when pole is on the ground. Threads of heavy hex nuts for each slip-base bolt must be coated with additional lubricant that is clean and dry to the touch. Tighten high strength slip-base bolts to within ±10 foot-pounds of the following:
Slip-Base Bolt-Tightening Requirements

<table>
<thead>
<tr>
<th>Standard Type</th>
<th>Torque (foot-pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-SB</td>
<td>150</td>
</tr>
<tr>
<td>30</td>
<td>150</td>
</tr>
<tr>
<td>31</td>
<td>200</td>
</tr>
<tr>
<td>36-20A</td>
<td>165</td>
</tr>
</tbody>
</table>

Hole in shaft of existing standard, due to removal of equipment or mast arms, must be sealed by fastening a galvanized steel disk to cover the hole. Fasten using a single central galvanized steel fastener. Seal edges of disk and hole with polysulfide or polyurethane sealing compound of Type S, Grade NS, Class 25, and Use O, as specified in ASTM C 920.

If existing standard is ordered to be relocated or reused, remove large dents, straighten shafts, and replace parts that are in poor condition. You must furnish anchor bolts or bars and nuts required for relocating or reusing standard. Repair and replacement work will be paid for as extra work as specified in Section 4-1.03D, "Extra Work."

New nuts, bolts, cap screws, and washers must be provided if:

1. Standard or mast arm is relocated
2. Used standard or mast arm is State furnished

If the standard has a slip base, a new keeper plate must be provided.

86-2.05 CONDUIT

Run conductors in conduit except for overhead and where conductors are run inside poles.

You may use a larger size conduit than specified as long as you use it for the entire length between outlets. Do not use reducing coupling.

New conduit must not pass through existing foundations for standards.

86-2.05A Material

Conduit and conduit fitting must be UL or NRTL listed and comply with the following:

Conduit and Conduit Fitting Requirements

<table>
<thead>
<tr>
<th>Type</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td>Hot-dip galvanized rigid steel conduit and conduit couplings must comply with UL 6 and ANSI C80.1. Zinc coating testing must comply with copper sulfate test requirements in UL 6. Conduit couplings for rigid steel conduit must be electrogalvanized.</td>
</tr>
<tr>
<td>Type 2</td>
<td>Hot-dip galvanized rigid steel conduit must comply with requirements for Type 1 conduit and be coated with polyvinyl chloride (PVC) or polyethylene. Exterior thermoplastic coating must have a minimum thickness of 35 mils. Internal coating must have a minimum thickness of 2 mils. Coated conduit must comply with UL 6; NEMA RN 1; or NRTL PVC-001.</td>
</tr>
<tr>
<td>Type 3</td>
<td>Rigid nonmetallic PVC conduit must comply with UL 651. Type A extruded rigid PVC conduit and extruded rigid HDPE conduit must comply with UL 651A. Coilable, smooth-wall, continuous length HDPE conduits must comply with UL 651B. Install at underground locations only.</td>
</tr>
<tr>
<td>Type 4</td>
<td>Waterproof flexible metal conduit must consist of conduit with a waterproof non-metallic sunlight-resistant jacket over an inner flexible metal core. Type 4 conduit must be UL listed for use as the grounding conductor.</td>
</tr>
<tr>
<td>Type 5</td>
<td>Intermediate steel conduit and conduit couplings must comply with UL 1242 and ANSI C80.6. Zinc coating testing must comply with copper sulfate test requirements in UL 1242. Conduit couplings for intermediate rigid steel conduit must be electrogalvanized. Type 5 conduit must only be used if specified.</td>
</tr>
</tbody>
</table>

Bonding bushings to be installed on metal conduit must be insulated and either galvanized or zinc alloy type. Fittings for steel conduit and for watertight flexible metal conduit must be UL listed at UL 514B.
86-2.05B Use

Install Type 1 conduit on all exposed surfaces and at the following locations:

1. In concrete structures
2. Between a structure and nearest pull box

Exposed conduit installed on painted structure must be painted the same color as the structure.

Change or extend existing conduit runs using the same material. Install pull box if an underground conduit changes from the metallic type to Type 3.

Minimum trade size of conduit must be:

1. 1-1/2 inches from electrolier to adjacent pull box
2. 1 inch from pedestrian push button post to adjacent pull box
3. 2 inches from signal standard to adjacent pull box
4. 3 inches from controller cabinet to adjacent pull box
5. 2 inches from overhead sign to adjacent pull box
6. 2 inches from service equipment enclosure to adjacent pull box
7. 1-1/2 inches if unspecified

Two conduits must be installed between controller cabinet and adjacent pull box.

86-2.05C Installation

Whether shop or field cut, ream ends of conduit to remove burrs and rough edges. Make cuts square and true. Slip joints and running threads are not allowed for coupling conduit. If a standard coupling cannot be used for coupling metal type conduit, use a threaded union coupling that is UL or NRTL listed. Tighten couplings for metal conduit to maintain a good electrical connection through conduit run.

Cut Type 3 conduit with tools that will not deform the conduit. Use solvent weld for connections.

Cut Type 2 conduit with pipe cutters; do not use hacksaws. Coated conduit must be threaded with standard conduit-threading dies. Tighten conduit into couplings or fittings using strap wrenches or approved groove-joint pliers.

Protect shop-cut threads from corrosion as follows:

<table>
<thead>
<tr>
<th>Shop-Cut Thread Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel conduit and conduit couplings</td>
</tr>
<tr>
<td>Electrical intermediate metal conduit and conduit couplings</td>
</tr>
</tbody>
</table>

Paint conduits as specified in Section 91, "Paint." Apply 2 coats of approved unthinned zinc-rich primer of organic vehicle type. Do not use aerosol cans. Paint the following parts of conduits:

1. All exposed threads
2. Field-cut threads before installing conduit couplings to steel conduit
3. Damaged surfaces on metal conduit

Do not remove shop-installed conduit couplings.

Damaged Type 2 conduit or conduit coupling must be wrapped with at least 1 layer of 2 inch wide, 20 mil minimum thickness PVC tape, as specified in ASTM D 1000, with a minimum tape overlap of 1/2 inch. Before applying the tape, conduit or fitting must be cleaned and painted with 1 coat of rubber-resin based adhesive as recommended by the tape manufacturer. You may repair damaged spots in the thermoplastic coating by painting over with a brushing type compound supplied by the conduit manufacturer instead of the tape wrap.

The ends of Types 1, 2, or 5 conduit must be threaded and capped with standard pipe caps until wiring is started. The ends of Types 3 and 4 conduit must be capped until wiring is started. If caps are removed, replace with conduit bushings. Fit insulated bonding bushings on the end of metal conduit ending in pull box or foundation. Bell or end bushings for Type 3 conduit must be non-metallic type.
Conduit bends, except factory bends, must have a radius of not less than 6 times the inside diameter of the conduit. If factory bends are not used, bend the conduit without crimping or flattening using the longest radius practicable. Bend conduits as follows:

Conduit-Bending Requirements

<table>
<thead>
<tr>
<th>Type</th>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td>By methods recommended by the conduit manufacturer and with equipment approved for the purpose.</td>
<td></td>
</tr>
<tr>
<td>Type 2</td>
<td>Use standard bending tool designed for use on thermoplastic coated conduit. Conduit must be free of burrs and pits.</td>
<td></td>
</tr>
<tr>
<td>Type 3</td>
<td>By methods recommended by the conduit manufacturer and with equipment approved for the purpose. Do not expose conduit to direct flame.</td>
<td></td>
</tr>
<tr>
<td>Type 4</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Type 5</td>
<td>By methods recommended by the conduit manufacturer and with equipment approved for the purpose.</td>
<td></td>
</tr>
</tbody>
</table>

Install pull tape in conduit that is to receive future conductors. The pull tape must be a flat woven lubricated soft-fiber polyester tape with a minimum tensile strength of 1,800 pounds and have printed sequential measurement markings every 3 feet. At least 2 feet of pull tape must be doubled back into the conduit at each end.

Existing underground conduit to be incorporated into a new system must be cleaned with a mandrel or cylindrical wire brush and blown out with compressed air.

Install conduit to a depth of not less than 30 inches below finished grade, except in sidewalk and curbed median areas, where it must be at least 18 inches below grade. You may lay conduit on existing pavement within new curbed median.

Conduit coupling must be a minimum of 6 inches from face of foundation.

Place a minimum of 2 inches of sand bedding in the trench before installing Type 2 or Type 3 conduit. Place a minimum of 4 inches of same material over conduit before placing additional backfill material.

Obtain approval from the Engineer before disturbing pavement. If obstruction is encountered, obtain approval from Engineer to cut small holes in the pavement to locate or remove obstruction. If jacking or drilling method is used, keep jacking or drilling pit 2 feet away from edge of pavement. Pavement must not be weakened or subgrade softened from excess water use.

Conduit used for drilling or jacking must be removed; install new conduit for completed work. If a hole larger than the conduit is pre-drilled and you install conduit by hand or by method recommended by the conduit manufacturer with equipment approved for purpose, you may install Type 2 or Type 3 conduit under pavement.

If trenching in pavement method is specified, conduit installation under pavement that is not a freeway lane or freeway to freeway connector ramp, must comply with the following:

1. Use Type 3 conduit. Place conduit under pavement in a trench approximately 2 inches wider than the outside diameter of conduit, but not exceeding 6 inches in width. Trench depth must not exceed the greater of 12 inches or conduit trade size plus 10 inches, except that at pull boxes the trench may be hand dug to required depth. The top of the installed conduit must be a minimum of 9 inches below finished grade.
2. Trenching installation must be completed before placing final pavement layer.
3. Cut pavement to be removed with a rock cutting excavator. Minimize shatter outside the removal area.
4. Place conduit in bottom of trench and backfill with minor concrete as specified in Section 90-10, "Minor Concrete." Minor concrete must contain a minimum of 590 pounds of cementitious material per cubic yard. If the trench is in asphalt concrete pavement and pavement overlay is not placed, backfill the top 0.10 foot of trench with minor HMA.
5. Before spreading HMA, apply tack coat as specified in Section 39, "Hot Mix Asphalt."
6. Backfill trenches, except for the top 0.10 foot, by the end of each day. The top 0.10 foot must be filled within 3 days after trenching.

Conduit installed beneath railroad tracks must be:

1. Type 1 or 2
2. 1-1/2-inch minimum diameter
3. Placed a minimum depth of 42 inches below bottom of the rail

If jacking or drilling method is used, construct jacking pit to a minimum of 13 feet from the centerline of track at the near side of jacking pit. Cover jacking pit with substantial planking if left overnight.
Conduit ending in standard or pedestal must not extend more than 3 inches vertically above the foundation and must be sloped toward the handhole opening. Conduit entering through the side of non-metallic pull box must end inside the box within 2 inches of the wall and 2 inches above the bottom and be sloped toward the top of box to facilitate pulling of conductors. Conduit entering through the bottom of a pull box must end 2 inches above the bottom and be located near the end walls to leave the major portion of the box clear. At outlet, conduit must enter from the direction of the run.

Underground conduit runs, including under sidewalks, that are adjacent to gasoline service stations or other underground gasoline or diesel storage, piping, or pumps and that lead to a controller cabinet, circuit breaker panel, service, or enclosure where an arc may occur during normal operations must be sealed if the conduit is within the limits specified in the NEC for Class 1, Division 1. Use Type 1 or Type 2 conduit for these runs.

Conduit for future use in structures must be threaded and capped. Conduit leading to soffit, wall, or other lights or fixtures below pull box grade must be sealed and made watertight, except where conduit ends in a No. 9 or No. 9A pull box.

Support for conduit in or on wall or bridge superstructure must comply with the following:

1. Steel hangers, steel brackets, and other fittings must comply with Section 75-1.03, "Miscellaneous Bridge Metal."
2. Construct precast concrete conduit cradles using minor concrete and commercial quality welded wire fabric. Minor concrete must comply with Section 90-10, "Minor Concrete," and contain a minimum of 590 pounds of cementitious material per cubic yard. The cradles must be moist cured for a minimum of 3 days. Bond precast concrete cradles to structure with epoxy adhesives specified in one of the following:
 2.1. Section 95-2.03, "Epoxy Resin Adhesive for Bonding New Concrete to Old Concrete"
 2.2. Section 95-2.04, "Rapid Set Epoxy Adhesive for Pavement Markers"
 2.3. Section 95-2.05, "Standard Set Epoxy Adhesive for Pavement Markers"
3. Use pipe sleeve or form opening for conduit through bridge superstructure concrete. Sleeve or opening through either prestressed member or conventionally reinforced precast member must be:
 3.1. Transverse to the member
 3.2. Through the web
 3.3. Not more than 3 inches maximum gross opening in concrete
4. Where conduits pass through the abutment concrete, wrap conduit with 2 layers of asphalt-felt building paper securely taped or wired in place. Fill space around conduit that runs through bridge abutment wall with mortar as specified in Section 51-1.135, "Mortar," except the proportion of cementitious material to sand must be 1 to 3. Fill the space around conduits that run through abutments after prestressing is completed.
5. Run surface-mounted conduit straight and true, horizontal or vertical on the wall, and parallel to wall on ceiling or other similar surfaces. Support conduit at a maximum of 5-foot intervals or closer where necessary to prevent vibration or unsightly deflection. The supports must include galvanized malleable iron conduit clamps and clamp backs secured with expansion anchorage devices as specified for concrete anchorage devices in Section 75-1.03, "Miscellaneous Bridge Metal." Threaded studs must be galvanized and be of the largest diameter that will pass through the mounting hole in conduit clamp.
6. Where pull boxes are placed in conduit runs, conduit must be fitted with threaded bushings and bonded.
7. Mark location of conduit end in structure, curb, or wall with a "Y" that is a minimum of 3 inches tall, directly above conduit.

86-2.05D Expansion Fittings

Install expansion fitting where the conduit crosses an expansion joint in structure. Each expansion fitting for metal conduit must include a copper bonding jumper having the ampacity specified in NEC.

Each expansion-deflection fitting for expansion joints of 1-1/2-inch movement rating must be watertight and include a molded neoprene sleeve, a bonding jumper, and 2 silicon bronze or zinc-plated iron hubs. Each fitting must allow a minimum of 3/4-inch expansion, contraction, and lateral deflection.
86-2.06 PULL BOXES

86-2.06A (Blank)

86-2.06B Cover Marking
Marking must be clearly defined, uniform in depth, and parallel to either the long or short sides of cover.
Marking letters must be 1 inch to 3 inches high.
Before galvanizing steel or cast iron cover, apply marking by one of the following methods:

1. Use cast iron strip at least 1/4 inch thick with letters raised a minimum of 1/16 inch. Fasten strip to cover with 1/4 inch flathead stainless steel machine bolts and nuts. Peen bolts after tightening.
2. Use sheet steel strip at least 0.027-inch thick with letters raised a minimum of 1/16 inch. Fasten strip to cover by spot welding, tack welding, or brazing, with 1/4 inch stainless steel rivets or 1/4 inch roundhead stainless steel machine bolts and nuts. Peen bolts after tightening.
3. Bead weld the letters on cover so that letters are raised a minimum of 3/32 inch.

86-2.06C Installation and Use
Space pull boxes no more than 200 feet apart. You may install additional pull boxes to facilitate the work.
You may use a larger standard size pull box than that shown on the plans or specified.
A pull box in ground or sidewalk area must be installed as follows:

1. Embed bottom of pull box in crushed rock.
2. Place a layer of roofing paper on the crushed rock.
3. Place mortar over the layer of roofing paper. Mortar must be 0.50 inch to 1 inch thick and sloped toward the drain hole.
4. Make a 1-inch drain hole in center of pull box through mortar and roofing paper.
5. Place mortar between pull box and pull box extension, and around conduits.

The top of the pull box must be flush with the surrounding grade or the top of an adjacent curb, except in unpaved areas where the pull box is not immediately adjacent to and protected by a concrete foundation, pole, or other protective construction. Place the pull box 1-1/4 inches above the surrounding grade. Where practical, place a pull box shown in the vicinity of curbs or adjacent to a standard on the side of the foundation facing away from traffic, unless otherwise directed. If a pull box is installed in a sidewalk area, adjust the depth of the pull box so that the top of the pull box is flush with the sidewalk.
Reconstruct the sump of an existing pull box if it is disturbed by your operations. Remove old grout and replace with new if the sump was grouted.

86-2.07 TRAFFIC PULL BOXES
Comply with Sections 86-2.06B, "Cover Marking," and 86-2.06C, "Installation and Use."
Traffic pull box and cover must comply with ASTM C857, "Standard Practice for Minimum Structural Design Loading for Underground Precast Concrete Utility Structures," for HS20-44 loading. You must be able to place the load anywhere on box and cover for 1 minute without causing cracks or permanent deformations.
Frame must be anchored to the box with 1/4" x 2-1/4" concrete anchors. Four concrete anchors must be included for No. 3-1/2(T) pull box; one placed in each corner. Six concrete anchors for must be included for No. 5(T) and No. 6(T) pull boxes; one placed in each corner and one near the middle of each of the longer sides.
Nuts must be zinc plated carbon steel, vibration resistant, and have a wedge ramp at the root of the thread.
After installation of traffic pull box, install steel cover and keep bolted down when your activities are not in progress at the pull box. When steel cover is placed for final time, cover and Z bar frame must be cleaned of debris and tightened securely.
Steel cover must be countersunk approximately 1/4 inch to accommodate bolt head. When tightened, bolt head must not exceed more than 1/8 inch above the top of cover.
Concrete placed around and under traffic pull box must be minor concrete as specified in Section 90-10, "Minor Concrete."

86-2.08 CONDUCTORS AND CABLES
Conductor must be copper wire that complies with ASTM B 3 and B 8.
Wire size must comply with the following:
Wire Size Requirements

<table>
<thead>
<tr>
<th>Conductor usage</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>In loop detector lead-in cable</td>
<td>ASTM B 286</td>
</tr>
<tr>
<td>Everywhere except in loop</td>
<td>American Wire Gage (AWG)*</td>
</tr>
<tr>
<td>detector lead-in cable</td>
<td></td>
</tr>
</tbody>
</table>

*Except conductor diameter must not be less than 98 percent of specified AWG diameter.

Single conductor and cable, except detector lead-in cable, must have clear, distinctive, and permanent markings on the outer surface throughout its length. The markings must include the manufacturer's name or trademark, insulation type letter designation, conductor size, voltage, and temperature rating, and for cables, it must also include number of conductors.

86-2.08A Conductor Identification

Conductor insulation must be a solid color with a permanent stripe as specified below. The solid color must be homogeneous through the full depth of insulation. Identification stripe must be continuous throughout the length of conductor. For conductor sizes No. 2 and larger, the insulation may be black and the ends of the conductors must be taped for a minimum length of 20 inches with electrical insulating tape of the required color.

Conductor Identification

<table>
<thead>
<tr>
<th>Circuit</th>
<th>Signal Phase or Function</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Insulation Color¹</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Base</td>
</tr>
<tr>
<td>Vehicle Signals⁴,a,b,d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>Red, Yel, Brn</td>
<td>Blk</td>
</tr>
<tr>
<td>4.8</td>
<td>Red, Yel, Brn</td>
<td>Ora</td>
</tr>
<tr>
<td>1.5</td>
<td>Red, Yel, Brn</td>
<td>None</td>
</tr>
<tr>
<td>3.7</td>
<td>Red, Yel, Brn</td>
<td>Pur</td>
</tr>
<tr>
<td>Ramp Meter 1</td>
<td>Red, Yel, Brn</td>
<td>None</td>
</tr>
<tr>
<td>Ramp Meter 2</td>
<td>Red, Yel, Brn</td>
<td>Blk</td>
</tr>
<tr>
<td>Pedestrian Signals⁴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2p,6p</td>
<td>Red, Brn</td>
<td>Blk</td>
</tr>
<tr>
<td>4p,8p</td>
<td>Red, Brn</td>
<td>Ora</td>
</tr>
<tr>
<td>1p,5p</td>
<td>Red, Brn</td>
<td>None</td>
</tr>
<tr>
<td>3p,7p</td>
<td>Red, Brn</td>
<td>Pur</td>
</tr>
<tr>
<td>Pedestrian Push Buttons⁴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2p,6p</td>
<td>Blu</td>
<td>Blk</td>
</tr>
<tr>
<td>4p,8p</td>
<td>Blu</td>
<td>Ora</td>
</tr>
<tr>
<td>1p,5p</td>
<td>Blu</td>
<td>None</td>
</tr>
<tr>
<td>3p,7p</td>
<td>Blu</td>
<td>Pur</td>
</tr>
<tr>
<td>Traffic Signal Controller Cabinet</td>
<td>Ungrounded Circuit Conductor</td>
<td>Blk</td>
</tr>
<tr>
<td>Grounded Circuit Conductor</td>
<td>Wht</td>
<td>None</td>
</tr>
<tr>
<td>Highway Lighting Pull Box to Luminaire</td>
<td>Ungrounded-Line 1</td>
<td>Blk</td>
</tr>
<tr>
<td>Ungrounded-Line 2</td>
<td>Red</td>
<td>None</td>
</tr>
<tr>
<td>Grounded</td>
<td>Wht</td>
<td>None</td>
</tr>
<tr>
<td>Multiple Highway Lighting</td>
<td>Ungrounded-Line 1</td>
<td>Blk</td>
</tr>
<tr>
<td>Ungrounded-Line 2</td>
<td>Red</td>
<td>None</td>
</tr>
<tr>
<td>Lighting Control</td>
<td>Ungrounded to PEU</td>
<td>Blk</td>
</tr>
<tr>
<td>Switching leg from PEU unit or SM transformer</td>
<td>Red</td>
<td>None</td>
</tr>
<tr>
<td>Service</td>
<td>Ungrounded-Line 1 (Signals)</td>
<td>Blk</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>Ungrounded-Line 2 (Lighting)</td>
<td>Red<sup>h</sup></td>
</tr>
<tr>
<td>Sign Lighting</td>
<td>Ungrounded-Line 1</td>
<td>Blk</td>
</tr>
<tr>
<td></td>
<td>Ungrounded-Line 2</td>
<td>Red</td>
</tr>
<tr>
<td>Flashing Beacons<sup>g</sup></td>
<td>Ungrounded between Flasher and Beacons</td>
<td>Red or Yel</td>
</tr>
<tr>
<td>Grounded and Common</td>
<td>Pedestrian Push Buttons</td>
<td>Wht</td>
</tr>
<tr>
<td></td>
<td>Signals and Multiple Lighting</td>
<td>Wht</td>
</tr>
<tr>
<td></td>
<td>Flashing Beacons and Sign Lighting</td>
<td>Wht</td>
</tr>
<tr>
<td></td>
<td>Lighting Control</td>
<td>Wht</td>
</tr>
<tr>
<td></td>
<td>Multiple Service</td>
<td>Wht</td>
</tr>
<tr>
<td>Railroad Preemption</td>
<td>Blk</td>
<td>None</td>
</tr>
<tr>
<td>Spares</td>
<td>Blk</td>
<td>None</td>
</tr>
</tbody>
</table>

NBR = No Band Required PEU=Photoelectric unit
^aOn overlaps, insulation is striped for 1st phase in designation. e.g., phase (2+3) conductor is striped as for phase 2.
^bBand for overlap and special phases as required.
^cFlashing beacons having separate service do not require banding.
^dThese requirements do not apply to signal cable.
^e“S” if circuit is switched on line side of service equipment by utility.
^fBand conductors in each pull box and near ends of termination points. On signal light circuits, a single band may be placed around 2 or 3 ungrounded conductors comprising a phase.
^gUngrounded conductors between service switch and flasher mechanism must be black and banded.
^hBlack acceptable for size No. 2 and larger. Tape ends for 20 inches with indicated color.
ⁱColor Code: Yel-Yellow, Brn-Brown, Blu-Blue, Blk-Black, Wht-White, Ora-Orange, Pur-Purple.

86-2.08B Multiple Circuit Conductors

Conductor for multiple circuit must be UL or NRTL listed and rated for 600 V(ac) operation. Insulation for No. 14 to No. 4 conductors must be one of the following:

1. Type TW PVC as specified in ASTM D 2219
2. Type THW PVC
3. Type USE, RHH, or RHW cross-linked polyethylene

Minimum insulation thickness must comply with the following:

<table>
<thead>
<tr>
<th>Insulation Type</th>
<th>Conductor Size</th>
<th>Insulation Thickness (mils)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USE, RHH, or RHW</td>
<td>No. 14 to No. 10</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>No. 8 to No. 2</td>
<td>51</td>
</tr>
<tr>
<td>THW or TW</td>
<td>No. 14 to No. 10</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>No. 8</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>No. 6 to No. 2</td>
<td>54</td>
</tr>
</tbody>
</table>

Insulation for No. 2 and larger conductor must be one of the types listed above or Type THWN. Conductor for wiring wall and soffit luminaire must be stranded copper with insulation rated for use at temperatures up to 125 °C.

86-2.08C Signal Cable

Signal cable, except for the 28-conductor type, must:

1. Not be spliced
2. Be marked in each pull box with the signal standard information it is connecting to

Signal cable must comply with the following:

1. Cable jacket must be:
 1.1. Black polyethylene with an inner polyester binder sheath
 1.2. Rated for 600 V(ac) and 75 °C

2. Filler material, if used, must be polyethylene material.

3. Conductor must be solid copper with Type THWN insulation as specified in Section 86-2.08, "Conductors and Cables," and ASTM B 286. The minimum thickness of Type THWN insulation must be 12 mils for conductor sizes No. 14 to No. 12 and 16 mils for conductor size No. 10. The minimum thickness of nylon jacket must be 4 mils.

Conductor Signal Cable Requirements

<table>
<thead>
<tr>
<th>Cable Type<sup>a</sup></th>
<th>Conductor Quantity and Type</th>
<th>Cable Jacket Thickness (mils)</th>
<th>Maximum Nominal Outside Diameter (inch)</th>
<th>Conductor Color Code</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>3CSC</td>
<td>3 - No. 14</td>
<td>44</td>
<td>0.40</td>
<td>blue/black, blue/orange, white/black stripe</td>
<td>Use for pedestrian push buttons and spare</td>
</tr>
<tr>
<td></td>
<td></td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5CSC</td>
<td>5 - No. 14</td>
<td>44</td>
<td>0.50</td>
<td>red, yellow, brown, black, white</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9CSC</td>
<td>8 - No. 14</td>
<td>60</td>
<td>0.65</td>
<td>No. 12 - white No. 14 - red, yellow, brown, black, and red/black, yellow/black, brown/black, white/black stripe</td>
<td>Use for vehicle signals, pedestrian signals, spares, and signal common</td>
</tr>
<tr>
<td></td>
<td>1 - No. 12</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12CSC</td>
<td>11 - No. 14</td>
<td>60</td>
<td>0.80</td>
<td>No. 12 - white No. 14 - see "12CSC Color Code and Functional Connection" table</td>
<td>Keep signal commons in each cable separate except at the signal controller. Label each cable as "C1" or "C2" in pull box. Use "C1" for signal phases 1, 2, 3, and 4. Use "C2" for phases 5, 6, 7, and 8.</td>
</tr>
<tr>
<td></td>
<td>1 - No. 12</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28CSC</td>
<td>27 - No. 14</td>
<td>80</td>
<td>0.90</td>
<td>No. 10 - white No. 14 - see "28CSC Color Code and Functional Connection" table</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 - No. 10</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^aConductor signal cable description starts with the number of conductors, followed by "CSC". (e.g., a signal cable with 3 conductors is labeled "3CSC.")
12CSC Color Code and Functional Connection

<table>
<thead>
<tr>
<th>Color Code</th>
<th>Termination</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>Vehicle signal red</td>
<td>2, 4, 6, or 8</td>
</tr>
<tr>
<td>Yellow</td>
<td>Vehicle signal yellow</td>
<td>2, 4, 6, or 8</td>
</tr>
<tr>
<td>Brown</td>
<td>Vehicle signal green</td>
<td>2, 4, 6, or 8</td>
</tr>
<tr>
<td>Red/black stripe</td>
<td>Vehicle signal red</td>
<td>1, 3, 5, or 7</td>
</tr>
<tr>
<td>Yellow/black stripe</td>
<td>Vehicle signal yellow</td>
<td>1, 3, 5, or 7</td>
</tr>
<tr>
<td>Brown/black stripe</td>
<td>Vehicle signal green</td>
<td>1, 3, 5, or 7</td>
</tr>
<tr>
<td>Black/red stripe</td>
<td>Spare, or use as required for red or DONT WALK</td>
<td></td>
</tr>
<tr>
<td>Black/white stripe</td>
<td>Spare, or use as required for yellow</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>Spare, or use as required for green or WALK</td>
<td></td>
</tr>
<tr>
<td>Red/white stripe</td>
<td>Ped signal DONT WALK</td>
<td></td>
</tr>
<tr>
<td>Brown/white stripe</td>
<td>Ped signal WALK</td>
<td></td>
</tr>
</tbody>
</table>

28CSC Color Code and Functional Connection

<table>
<thead>
<tr>
<th>Color Code</th>
<th>Termination</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red/black stripe</td>
<td>Vehicle signal red</td>
<td>2 or 6</td>
</tr>
<tr>
<td>Yellow/black stripe</td>
<td>Vehicle signal yellow</td>
<td>2 or 6</td>
</tr>
<tr>
<td>Brown/black stripe</td>
<td>Vehicle signal green</td>
<td>2 or 6</td>
</tr>
<tr>
<td>Red/orange stripe</td>
<td>Vehicle signal red</td>
<td>4 or 8</td>
</tr>
<tr>
<td>Yellow/orange stripe</td>
<td>Vehicle signal yellow</td>
<td>4 or 8</td>
</tr>
<tr>
<td>Brown/orange stripe</td>
<td>Vehicle signal green</td>
<td>4 or 8</td>
</tr>
<tr>
<td>Red/silver stripe</td>
<td>Vehicle signal red</td>
<td>1 or 5</td>
</tr>
<tr>
<td>Yellow/silver stripe</td>
<td>Vehicle signal yellow</td>
<td>1 or 5</td>
</tr>
<tr>
<td>Brown/silver stripe</td>
<td>Vehicle signal green</td>
<td>1 or 5</td>
</tr>
<tr>
<td>Red/purple stripe</td>
<td>Vehicle signal red</td>
<td>3 or 7</td>
</tr>
<tr>
<td>Yellow/purple stripe</td>
<td>Vehicle signal yellow</td>
<td>3 or 7</td>
</tr>
<tr>
<td>Brown/purple stripe</td>
<td>Vehicle signal green</td>
<td>3 or 7</td>
</tr>
<tr>
<td>Red/2 black stripes</td>
<td>Ped signal DONT WALK</td>
<td>2 or 6</td>
</tr>
<tr>
<td>Brown/2 black stripes</td>
<td>Ped signal WALK</td>
<td>2 or 6</td>
</tr>
<tr>
<td>Red/2 orange stripes</td>
<td>Ped signal DONT WALK</td>
<td>4 or 8</td>
</tr>
<tr>
<td>Brown/2 orange stripes</td>
<td>Ped signal WALK</td>
<td>4 or 8</td>
</tr>
<tr>
<td>Red/2 silver stripes</td>
<td>Overlap A, C red</td>
<td>OLA, OLC</td>
</tr>
<tr>
<td>Brown/2 silver stripes</td>
<td>Overlap A, C green</td>
<td>OLA, OLC</td>
</tr>
<tr>
<td>Red/2 purple stripes</td>
<td>Overlap B, D red</td>
<td>OLB, OLD</td>
</tr>
<tr>
<td>Brown/2 purple stripes</td>
<td>Overlap B, D green</td>
<td>OLB, OLD</td>
</tr>
<tr>
<td>Blue/black stripe</td>
<td>Ped push button</td>
<td>2 or 6</td>
</tr>
<tr>
<td>Blue/orange stripe</td>
<td>Ped push button</td>
<td>4 or 8</td>
</tr>
<tr>
<td>Blue/silver stripe</td>
<td>Overlap A, C yellow</td>
<td>OLA(y), OLC(y)</td>
</tr>
<tr>
<td>Blue/purple stripe</td>
<td>Overlap B, D yellow</td>
<td>OLB(y), OLD(y)</td>
</tr>
<tr>
<td>White/black stripe</td>
<td>Ped push button common</td>
<td></td>
</tr>
<tr>
<td>Black/red stripe</td>
<td>Railroad preemption</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>Spare</td>
<td></td>
</tr>
</tbody>
</table>

86-2.08D Signal Interconnect Cable (SIC)

Signal interconnect cable must be a 3-pair or 6-pair type with stranded tinned copper No. 20 conductors. Each conductor insulation must be 13 mils minimum nominal thickness, color-coded, polypropylene material. Conductor must be in twisted pairs. Color coding distinguishes each pair. Each pair must be wrapped with an aluminum polyester shield and must have a No. 22 or larger stranded tinned copper drain wire inside the shielded pair.

Cable jacket must be black, high density polyethylene, rated for a minimum of 300 V(ac) and 60 °C, and must have a minimum nominal wall thickness of 40 mils. Cable jacket or moisture-resistant tape directly under the outer jacket must be marked as specified in Section 86-2.08.

You must have a minimum of 6 feet of slack at each controller cabinet. Splicing is allowed only if shown on the plans.

Insulate conductor splice with heat-shrink tubing and overlap at least 0.6 inch. Cover overall cable splice with heat-shrink tubing and overlap the cable jacket at least 1-1/2 inch.
86-2.09 WIRING

Run conductors in conduit, except for overhead and temporary installations and where conductors are run inside poles.
Solder by hot iron, pouring, or dipping method, connectors and terminal lugs for conductor sizes No. 8 and smaller. Do not perform open-flame soldering.

86-2.09A Circuitry
Do not run traffic signal indication conductors to a terminal block on a standard unless connected to a mounted signal head.
Use only 1 conductor to connect to each terminal of a pedestrian push button.
The common for pedestrian push button circuit must be separate from traffic signal circuit grounded conductor.

86-2.09B Installation
Use a UL- or NRTL-listed inert lubricant for placing conductors in conduit.
Pull conductors into conduit by hand using pull tape specified in Section 86-2.05C, "Installation." Do not use winches or other power-actuated pulling equipment.
If adding new conductors or removing existing conductors, remove all conductors, clean conduit as specified in Section 86-2.05C, "Installation," and pull all conductors in conduit as 1 unit.
If traffic signal conductors are run in lighting standard containing street lighting conductors from a different service point, you must encase the traffic signal conductors or the lighting conductors with a flexible or rigid metal conduit for a length until the 2 types of conductors are no longer in the same raceway.
If less than 10 feet above grade, enclose temporary conductors in flexible or rigid metal conduit.
Leave slack for each conductor as follows:

<table>
<thead>
<tr>
<th>Location</th>
<th>Slack (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal standard</td>
<td>1</td>
</tr>
<tr>
<td>Lighting standard</td>
<td>1</td>
</tr>
<tr>
<td>Signal and lighting standard</td>
<td>1</td>
</tr>
<tr>
<td>Pull box</td>
<td>3</td>
</tr>
<tr>
<td>Splice</td>
<td>3</td>
</tr>
<tr>
<td>Standards with slip base</td>
<td>0</td>
</tr>
</tbody>
</table>

After conductors are installed, seal ends of conduits with an approved sealing compound.
To form a watertight seal, tape ends of spare conductors and conductors ending in pull boxes.
Conductors and cables inside fixture or cabinet must be neatly arranged and tied together by function with self-clinching nylon cable ties or enclosed in plastic tubing or raceway.
Identify conductors for signal overlap phase as specified for vehicle signals in the table titled "Conductor Identification."
Permanently identify conductors by function. Place identification on each conductor, or each group of conductors forming a signal phase, at each pull box and near the end of conductors.
Label, tag, or band conductors by mechanical methods. Identification must not move along the conductors.

86-2.09C Connectors and Terminals
Connectors and terminals must be UL- or NRTL-listed crimp type. Use manufacturer-recommended tool for connectors and terminals to join conductors. Comply with MIL-T-7928.
Terminate stranded conductors smaller than No. 14 in crimp style terminal lugs.

86-2.09D Splicing and Terminations
Splices are allowed for:

1. Grounded conductors in pull box.
2. Pedestrian push button conductors in pull box.
3. Conductors in pull box adjacent to each electrolier or luminaire.
4. Ungrounded traffic signal conductors in pull box, if traffic signals are modified.
5. Ungrounded traffic signal conductors to a terminal compartment or signal head on a standard with conductors of the same phase in the pull box adjacent to the standard.
6. Ungrounded lighting circuit conductors in pull box, if lighting circuits are modified.

86-2.09E Splice Insulation
Splice must function under continuous submersion in water.
Multi-conductor cable must be spliced and insulated to form a watertight joint and to prevent moisture absorption by the cable.
Low-voltage tape must be:
1. UL or NRTL listed
2. Self-fusing, oil and flame-resistant, synthetic rubber
3. PVC, pressure-sensitive adhesive of 6 mils minimum thickness

Insulating pad must be a combination of an 80-mils thick electrical grade PVC laminate and a 120-mils thick butyl splicing compound with removable liner.
Heat-shrink tubing must comply with the following:
1. Be medium or heavy wall thickness, irradiated polyolefin tubing with an adhesive mastic inner wall.
2. Before contraction, minimum wall thickness must be 40 mils.
3. Heating must be as recommended by the manufacturer. Do not perform open-flame heating.
4. When heated, the inner wall must melt and fill crevices and interstices of the covered object and the outer wall must shrink to form a waterproof insulation.
5. After contraction, each end of the heat-shrink tubing or the open end of end cap of heat-shrink tubing must overlap the conductor insulation at least 1-1/2 inches. Coat ends and seams with electrical insulation coating.
6. Comply with requirements for extruded insulated tubing at 600 V(ac) in UL Standard 468D and ANSI C119.1, and the following requirements:

<table>
<thead>
<tr>
<th>Heat-Shrink Tubing Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shrinkage Ratio</td>
</tr>
<tr>
<td>33 percent, maximum, of supplied diameter when heated to</td>
</tr>
<tr>
<td>125 °C and allowed to cool to 25 °C</td>
</tr>
<tr>
<td>Dielectric Strength</td>
</tr>
<tr>
<td>350 kV per inch, minimum</td>
</tr>
<tr>
<td>Resistivity</td>
</tr>
<tr>
<td>25 Ω per inch, minimum</td>
</tr>
<tr>
<td>Tensile Strength</td>
</tr>
<tr>
<td>2,000 psi, minimum</td>
</tr>
<tr>
<td>Operating Temperature</td>
</tr>
<tr>
<td>-40 °C to 90 °C (135 °C in emergency)</td>
</tr>
<tr>
<td>Water Absorption</td>
</tr>
<tr>
<td>0.5 percent, maximum</td>
</tr>
</tbody>
</table>

7. If 3 or more conductors are to be enclosed in 1 splice, place mastic around each conductor before placing inside tubing. Use mastic type recommended by heat-shrink tubing manufacturer.

You may use “Method B” as an alternative method for splice insulation. Use at least 2 thicknesses of electrical insulating pad. Apply pad to splice as recommended by manufacturer.

86-2.095 FUSED SPLICE CONNECTORS
Install a fused disconnect splice connector in each ungrounded conductor, between the line and the ballast, in the pull box adjacent to each luminaire. Connector must be accessible in the pull box.
For 240 and 480 V(ac) circuits, each connector must simultaneously disconnect both ungrounded conductors. Connector must not have exposed metal parts, except for the head of stainless steel assembly screw. Recess head of stainless steel assembly screw a minimum of 1/32 inch below top of plastic boss that surrounds the head.
Splice connector must protect fuse from water or weather damage. Contact between fuse and fuseholder must be spring loaded. Splice connector terminals must be:
1. Rigidly crimped, using a tool recommended by manufacturer of fused splice connector, onto ungrounded conductors
2. Insulated
3. Watertight
Fuses must be standard midget ferrule type, with "Non-Time-Delay" feature, and 13/32” x 1-1/2”.

86-2.10 BONDING AND GROUNDING

Secure all metallic components, mechanically and electrically, to form a continuous system that is effectively grounded.

Bonding jumper must be copper wire or copper braid of the same cross sectional area as a No. 8 or larger to match the load. Equipment grounding conductors must be color coded as specified in NEC or be bare.

Attach bonding jumper to standard as follows:

<table>
<thead>
<tr>
<th>Bonding Jumper Attachment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard type</td>
</tr>
<tr>
<td>Requirements</td>
</tr>
<tr>
<td>Standard with handhole and traffic pull box lid cover</td>
</tr>
<tr>
<td>Standard without handhole</td>
</tr>
<tr>
<td>Slip-base standard</td>
</tr>
</tbody>
</table>

Ground one side of secondary circuit of step-down transformer.

Ground metal conduit, service equipment, and grounded conductor at service point as specified by NEC and service utility, except grounding electrode conductor must be No. 6 or larger.

Equipment bonding and grounding conductors are required in conduit. Run a No. 8 minimum bare copper wire continuously in conduit system. The bonding wire must be sized as specified in the NEC.

Ground electrode must be:

1. 1 piece
2. 10-foot minimum length of one of the following:
 2.1. Galvanized steel rod or pipe not less than 3/4 inch in diameter
 2.2. Copper clad steel rod not less than 5/8 inch in diameter
3. Installed as specified in NEC
4. Bonded to service equipment using one of the following:
 4.1. Ground clamp
 4.2. Exothermic weld
 4.3. No. 6 or larger copper conductor

On wood pole, metallic equipment mounted less than 8 feet above ground surface must be grounded.

Bond metallic conduit in non-metallic pull box using bonding bushing or bonding jumper.

Bond metallic conduit in metal pull box using bonding bushings and bonding jumpers connected to bonding wire running in the conduit system.

86-2.11 SERVICE

Electrical service installation and materials must comply with service utility requirements.

If service equipment is to be installed on utility-owned pole, you must furnish and install conduit, conductors, and other necessary material to complete service installation. Service utility will decide riser and equipment position.

Install service equipment early on to allow service utility to schedule its work before project completion.

Furnish each service with a circuit breaker that simultaneously disconnects all ungrounded service entrance conductors.

Circuit breakers must:

1. Be quick-break on either automatic or manual operation.
2. Have operating mechanism that is enclosed and trip-free from operating handle on overload.
3. Be trip indicating.
4. Have frame size plainly marked.
5. Have trip rating clearly marked on operating handle.
6. Have overload tripping of breakers not influenced by ambient temperature range of -18 °C to 50 °C.
7. Be internal trip type.
8. Be UL or NRTL listed and comply with UL 489 or equal.
9. Have minimum interrupting capacity of 10,000 A, rms, if used as service disconnect.

Service equipment enclosure must be a NEMA 3R enclosure with dead-front panel and a hasp with a 7/16-inch hole for a padlock. Enclosure must be field marked as specified in the NEC to warn qualified persons of potential electric arc flash hazards.

Service equipment enclosure, except Types II and III, must be galvanized or have a factory-applied rust-resistant prime coat and finish coat.

Types II and III service equipment enclosures must be manufactured from one of the following:

1. Galvanized sheet steel
2. Sheet steel plated with zinc or cadmium after manufacturing
3. Aluminum

Manufacture service equipment enclosure as specified in Section 86-3.04A, "Cabinet Construction." Overlapping exterior seams and doors must comply with requirements for NEMA 3R enclosures in the NEMA Enclosure Standards.

If an alternative design is proposed for Type II or III service equipment enclosure, submit plans and shop drawings to the Engineer for approval before manufacturing.

Except for falsework lighting and power for your activities, when you submit a written request, the Engineer will arrange:

1. With the service utility to complete service connections for permanent installations and the Department will pay all costs and fees required by the service utility. Submit request at least 15 days before service connections are required.
2. For furnishing electrical energy. Energy used before contract completion will be charged to you, except cost of energy used for public benefit as ordered by the Engineer will be paid by the Department or local authorities.

Full compensation for furnishing and installing State-owned or permanent service poles, service equipment, conduit, conductors, and pull boxes, including equipment, conduit, and conductors placed on utility-owned poles, is included in the contract item of electrical work involved and no additional compensation will be allowed therefor.

If the service point is indeterminate and is shown on the plans as "approximate location" or "service point not yet established," the labor and materials required for making the connection between the service point, when established, and the nearest pull box shown on the plans will be paid for as extra work as specified in Section 4-1.03D, "Extra Work."

86-2.12 WOOD POLES

Wood poles must comply with the following:

1. Class 5 or larger as specified in ANSI O 5.1
2. Less than 180-degree twist in grain over the full length
3. 4-inch or less sweep
4. Beveled top
5. Placed in ground at least 6 feet
6. Length must be:
 6.1. 25 feet for service pole
 6.2. 35 feet for other

After each pole is set in ground, backfill space around pole with selected earth or sand, free of rocks and other deleterious material, placed in 4-inch thick layers. Moisten each layer and thoroughly compact.
Manufacture mast arm from standard pipe, free from burrs. Each mast arm must have an insulated wire inlet and wood pole mounting brackets for mast arm and tie-rod cross arm. Manufacture tie rod from structural steel and pipe.

Mount mast arm for luminaire to provide a 34-foot mounting height for a 200 W high pressure sodium luminaire and 40-foot mounting height for 310 W high pressure sodium luminaire. Traffic signals and flashing beacons on mast arm must provide a minimum vertical clearance of 17 feet from bottom of equipment to pavement.

If specified, treat pole with waterborne wood preservative.

86-2.13 LIGHTING AND SIGN ILLUMINATION CONTROL

Enclosure for the circuit breaker for lighting and sign illumination control must:

1. Be NEMA 3R
2. Be galvanized, cadmium plated, or powder-coated
3. Include dead front panel and a hasp with a 7/16 inch diameter hole for padlock

86-2.14 TESTING

86-2.14A Materials Testing

Deliver material and equipment to be tested to either the Transportation Laboratory or a testing location ordered by the Engineer.

Allow 30 days for acceptance testing from the time material or equipment is delivered to test site. You must pay for all shipping, handling, and related transportation costs associated with testing. If equipment is rejected, you must allow 30 days for retesting. Retesting period starts when corrected equipment is delivered to test site. You must pay for all retesting costs. Delays resulting from submittal of non-compliant materials do not relieve you from executing the contract within the allotted time.

If equipment submitted for testing does not comply with specifications, remove the equipment within 5 business days after notification that the equipment is rejected. If equipment is not removed within that period, it may be shipped to you at your expense.

When testing is complete, you will be notified. You must pick up the equipment at the test site and deliver it to the job site.

Testing and quality control procedures for all other traffic signal controller assemblies must comply with NEMA TS Standards for Traffic Control Systems.

86-2.14B Field Testing

Before starting functional testing, perform the following tests in the presence of the Engineer:

86-2.14B(1) Continuity

Test each circuit for continuity.

86-2.14B(2) Ground

Test each circuit for grounds.

86-2.14B(3) Insulation Resistance

Perform insulation resistance test at 500 V(dc) on each circuit between the circuit and a ground. Insulation resistance must be 10 MΩ minimum on all circuits, except for inductive loop detector circuits that must have an insulation resistance value at least 100 MΩ.

86-2.14C Functional Testing

Test periods must comply with Section 86-1.07, "Scheduling of Work."

Acceptance of new or modified traffic signal will be made only after all traffic signal circuits have been thoroughly tested.

Perform functional test to show that each part of the system functions as specified.

Functional test for each new or modified system must include at least 5 business days of continuous, satisfactory operation. If unsatisfactory performance of the system occurs, the condition must be corrected and the system retested until the 5 business days of continuous, satisfactory operation is obtained.
Except for new or modified parts of existing lighting circuit and sign illumination system, the State or local agency will maintain the system during test period and pay the electrical energy cost. Except for electrical energy, you must pay the cost of necessary maintenance performed by the State or local agency on new circuits or on the portions of existing circuits modified under the contract.

Shutdown of electrical system caused by traffic from a power interruption or from unsatisfactory performance of State-furnished materials does not constitute discontinuity of the functional test.

86-2.15 GALVANIZING

Galvanize as specified in Section 75-1.05, "Galvanizing." Cabinet material may be galvanized before manufacturing as specified in ASTM A 653/653M, Coating Designation G 90.

Steel pipe standard and pipe mast arm must be hot-dip galvanized after manufacturing and must comply with Section 75-1.05, "Galvanizing." Remove spikes from galvanized surfaces.

A minimum of 10 inches of upper end of anchor bolts, anchor bars or studs, and nuts and washers must be galvanized as specified in Section 75-1.05, "Galvanizing."

After galvanizing, bolt threads must accept galvanized standard nuts without requiring tools or causing removal of protective coatings.

Galvanizing existing materials in an electrical installation will not be required.

86-2.16 PAINTING

Paint electrical equipment and material as specified in Section 59, "Painting," and the following:

1. Use paint material specified in Section 91, "Paint."
2. Factory or shop cleaning methods for metals are acceptable if equal to the methods specified.
3. Instead of temperature and seasonal restrictions for painting as specified in Section 59, "Painting," paint may be applied to equipment and materials for electrical installations if ordered by the Engineer.
4. Ungalvanized ferrous surface to be painted must be cleaned before applying prime coat. Blast cleaning is not required.
5. If an approved prime coat is applied by manufacturer, and in good condition, the 1st primer application is not required.
6. Existing equipment to be painted in the field, including State-furnished equipment, must be washed with a stiff bristle brush using a solution of water containing 2 tablespoons of heavy duty detergent powder per gallon. After rinsing, surface must be wire-brushed with a coarse, cup-shaped, power-driven brush to remove badly bonded paint, rust, scale, corrosion, grease, or dirt. Dust or residue remaining after wire brushing must be removed before priming.
7. Do not paint galvanized metal guard post, galvanized equipment, State-furnished controller cabinet, and wood poles for traffic signal or flashing beacon.
8. New galvanized metal surface to be painted in the field must be cleaned as specified for existing equipment before applying the prime coat. Do not wire brush new galvanized surface.
9. After erection, examine exterior surface for damaged primer, clean, and spot coat with primer.
10. Paint Types II and III steel service equipment enclosures with a polymeric or an enamel coating system matching Color No. 14672, light green, of Federal Standard 595B. Coating must be commercially smooth and free of flow lines, paint washout, streaks, blisters, and other defects that would impair serviceability or detract from general appearance. Coating must comply with the following:

10.1. Coating hardness - Finish must have pencil lead hardness of HB, minimum, using an Eagle Turquoise pencil.
10.2. Salt spray resistance - Undercutting coating system's film must not exceed 1/8-inch average, from lines scored diagonally and deep enough to expose the base metal, after 336 hours of exposure in a salt spray cabinet complying with ASTM B 117.
10.3. Adherence - Must not have coating loss when tested as specified in California Test 645. Perform testing by applying coating to 4" x 8" x 0.024" test specimens of the same material as the cabinet, using the same application method.

11. Finish interior of metal signal visor, louver, and front face of back plates with 2 applications of lusterless black exterior grade latex paint formulated for application to properly prepared metal surface. Good condition factory finish will be acceptable.
12. Finish metal signal section, signal head mounting, brackets and fittings, outside of visor, pedestrian push button housing, pedestrian signal section and visor, and back face of back plate with 2 applications of
lusterless black or dark olive green exterior grade latex paint formulated for application to properly prepared metal surface. Match dark olive green color to Color Chip No. 68 filed at the Transportation Laboratory.

13. Prepare and finish conduit and conduit fitting above ground the same as adjacent standard or post.

14. Relocated, reset or modified equipment previously finished as specified in this section, except for previously-finished galvanized standard with traffic signal yellow enamel, must be given a spot finishing application on newly primed areas and 1 finishing application over the entire surface. If signal face or mounting brackets are required to be painted under this section, all signal faces and mounting brackets on the same mounting must be repainted.

15. Small rusted or repaired areas of relocated or reset galvanized equipment must be cleaned and painted as specified in Section 75-1.05, "Galvanizing," for repairing damaged galvanized surfaces.

16. Stencil equipment number neatly on the standard or adjacent structure. Obtain number from the Engineer.

17. Perform painting neatly. The Engineer reserves the right to require use of brushes if the work performed by paint spraying machine is unsatisfactory.

86-3 CONTROLLER ASSEMBLIES

86-3.01 CONTROLLER ASSEMBLIES

A controller assembly houses a complete mechanism for controlling the operation of traffic signals or other systems.

Model 170 and Model 2070, specified as a Model 170/2070 controller assembly, includes a Model 170, 170E or 2070 controller unit, a wired cabinet, and all auxiliary equipment required to control the system.

86-3.02 (BLANK)

86-3.03 (BLANK)

86-3.04 CONTROLLER CABINETS

Controller cabinets for controller assemblies other than Model 170/2070 must comply with the following:

86-3.04A Cabinet Construction

Cabinet must be rainproof and the top crowned 1/2 inch or slanted toward the back to prevent standing water. Cabinet and door must be manufactured from one of the following:

1. 0.073-inch minimum thickness cold-rolled steel with continuously-welded exterior seams
2. 0.073-inch minimum thickness stainless steel with overlapping exterior seams complying with Type 4 enclosures of the NEMA Enclosure Standards
3. 0.125-inch minimum thickness aluminum with continuously-welded exterior seams

Exterior welds must be ground smooth and edges filed to a radius of at least 0.03 inch.

Cabinet manufactured from cold-rolled steel must comply with Section 86-2.16, "Painting," and the following:

1. Cabinet manufactured from cold-rolled steel must be finished with a polymeric or an enamel coating system conforming to Color No. 14672 of Federal Standard 595B.
2. Cabinet must not have coating loss when 2 test specimens, 4” x 8”, of the same material and coating as the cabinet are tested. Two 9-inch-diagonal scratches exposing bare metal will be made on a specimen. Soak specimen in demineralized water for 192 hours. Tightly affix a 1-inch wide strip of masking tape to the surface and remove with one quick motion. Specimen showing evidence of blistering, softening, or peeling of paint or coating from the base metal will be rejected. Testing must comply with California Test 645, except passing 180 Degree Bend Test is not required.
3. Metal must be prepared by the 3-step, iron phosphate conversion coating bonderizing technique.
4. Inside walls, doors, and ceiling of the housing must be the same as the outside finish.

Cabinet manufactured from stainless steel must comply with the following:

1. Use annealed or quarter-hard stainless steel that complies with ASTM A 666 for Type 304, Grades A or B.
2. Use gas tungsten arc welding (GTAW) process with bare stainless steel welding electrodes. Electrodes must comply with AWS A5.9 for ER308 chromium-nickel bare arc welding electrodes.
3. Procedures, welder, and welding operator must comply with requirements and practices recommended in AWS C5.5.
4. Ground or brush exposed, exterior surfaces of stainless steel cabinet to a 25 to 50-microinch finish using iron-free abrasives or stainless steel brushes.
5. After grinding or brushing, cabinet must not show rust discoloration when:
 5.1. Exposed for 48 hours in a salt spray cabinet as specified in ASTM B 117
 5.2. Exposed 24 hours in a tap water spray cabinet with the water temperature between 38 °C and 45 °C
6. After the test, cabinet showing rust discoloration anywhere on its surface will be rejected. Rejected cabinets may be cleaned, passivated, and resubmitted for testing.

Cabinet manufactured from aluminum sheet must comply with ASTM B 209 or B 209M for 5052-H32 aluminum sheet, and the following:
1. Use gas metal arc welding (GMAW) process with bare aluminum welding electrodes. Electrodes must comply with AWS A5.10 for ER5356 aluminum alloy bare welding electrodes.
2. Procedures, welder, and welding operator for welding must comply with requirements in AWS B3.0, "Welding Procedure and Performance Qualification," and to practices recommended in AWS C5.6.
3. Surface finish of each aluminum cabinet must comply with MIL-A-8625 for a Type II, Class I coating, except anodic coating must have a minimum thickness of 0.0007 inch and a minimum coating weight of 0.001 ounce per square inch. The anodic coating must be sealed in a 5 percent aqueous solution of nickel acetate, pH 5.0 to 6.5, for 15 minutes at 97 °C. Before applying anodic coating, clean and etch cabinets using the steps below:
 3.1. Clean by immersing into inhibited alkaline cleaner, Oakite 61A, Diversey 909, or equal, 6 to 8 ounces per gallon at 71 °C for 5 minutes.
 3.2. Rinse in cold water.
 3.3. Etch in solution of 1-1/2 ounce of sodium fluoride and 4 to 6 ounces of sodium hydroxide per gallon of distilled water at 60 °C to 65 °C for 5 minutes.
 3.4. Rinse in cold water.
 3.5. Immerse in 50 percent by volume nitric acid solution at room temperature for 2 minutes.
 3.6. Rinse in cold water.

Cabinet must have:
1. Single front door with:
 1.1. 44-inch maximum door width.
 1.2. Lock, when closed and latched, that is locked.
 1.3. Police panel mounted on door, equipped with a keyed lock and 2 police keys. Each police key must have a shaft at least 1-3/4 inch in length.
2. Dust-tight gasketing on all door openings, permanently bonded to the metal. Mating surface of the gasketing must be covered with silicone lubricant to prevent sticking.
3. Handle that:
 3.1. Allows padlocking in closed position
 3.2. Has a minimum length of 7 inches
 3.3. Has a 5/8-inch, minimum, steel shank
 3.4. Is manufactured of cast aluminum, or zinc-plated or cadmium-plated steel
4. Cabinet door frame with:
 4.1. Latching mechanism that:
 4.1.1. Holds tension on and forms a firm seal between door gasketing and frame.
 4.1.2. Is a 3-point cabinet latch with nylon rollers that have a minimum diameter of 3/4 inch and equipped with ball bearings.
4.1.3. Has a center catch and a pushrod made of zinc-plated or cadmium-plated steel. Pushrod must be at least 1/4” x 3/4” and turned edgewise at outer supports. Cadmium plating must comply with MIL-QQ-416. Zinc plating must comply with MIL-QQ-325.

4.2. Hinging that:

4.2.1. Has 3-bolt butt hinges, each having a stainless steel fixed pin. Hinges must be stainless steel or may be aluminum for aluminum cabinet.
4.2.2. Is bolted or welded to the cabinet. Hinge pins and bolts must not be accessible when door is closed.
4.2.3. Has a catch to hold the door open at 90 degrees and 180 degrees, ± 10 degrees, if a door is larger than 22 inches in width or 6 square feet in area. Catch must be at least 3/8-inch diameter, stainless steel plated rod capable of holding door open at 90 degrees in a 60 mph wind at an angle perpendicular to the plane of the door.

5. Lock that:

5.1. Is solid brass, 6-pin tumbler, rim type
5.2. Has rectangular, spring-loaded bolts
5.3. Is left hand and rigidly mounted with stainless steel machine screws approximately 2 inches apart
5.4. Extends 1/8 to 3/8 inch beyond the outside surface of door

6. 2 keys that are removable in the locked and unlocked positions.

Submit alternative design details for review and approval before manufacturing cabinet.

Use metal shelves or brackets that will support controller unit and auxiliary equipment.

Machine screws and bolts must not protrude outside the cabinet wall.

86-3.04B Cabinet Ventilation

Each controller cabinet must have:

1. 8 screened, 1/2-inch diameter or larger, raintight vent holes, in lower side or bottom of cabinet. You may use louvered vents with a permanent metal mesh or 4-ply woven polypropylene air filter held firmly in place, instead.
2. Electric fan with ball or roller bearings and capacity of at least 100 cubic feet per minute. Fan must be thermostatically controlled and manually adjustable to turn on between 32 °C and 65 °C with a differential of not more than 6 °C between automatic turn on and turn off. Fan circuit must be fused at 125 percent of ampacity of installed fan motor.

Fan and cabinet vent holes must be positioned to direct bulk of airflow over controller unit or through ventilating holes of controller unit.

86-3.04C Cabinet Wiring

Conductors used in controller cabinet wiring must:

1. Be neatly arranged and laced, or enclosed in plastic tubing or raceway.
2. End with properly sized captive or spring-spade terminal or be soldered to a through-panel solder lug on the back side of the terminal block. Apply crimp-style connector with proper tool to prevent opening of handle until crimp is completed.

Controller cabinet must have an equipment grounding conductor bus that is grounded to the cabinet and connected to metal conduit system or other approved ground with a No. 8, or larger, grounding conductor.

With all cabinet equipment in place and connected, resistance between grounded conductor terminal bus and equipment grounding conductor bus must be 50 MΩ, minimum, when measured with an applied voltage of 150 V(dc).

If direct current is to be grounded, connect to equipment ground only.

Use two or more terminal blocks for field connection. Install field terminal within 22 inches from front of cabinet and orient for screwdriver operation. Terminal must be a minimum of 5 inches above foundation.
No more than 3 conductors per terminal are allowed. Two flat metal jumpers, straight or U shaped, may be placed under terminal screw. At least 2 full threads of terminal screws must be fully engaged when screw is tightened. Live parts must not extend beyond the barrier.

86-3.05 CABINET ACCESSORIES

86-3.05A Labels
Include permanently printed, engraved, or silk-screened label for equipment and removable items of equipment. Labeling must match cabinet wiring diagram. Label for shelf-mounted equipment must be on shelf face below item. Label for wall-mounted equipment must be below item.

86-3.05B Convenience Receptacle
Mount convenience receptacle in a readily accessible location inside the cabinet. Convenience receptacle must be a duplex, 3-prong, NEMA 5-15R grounding type outlet that complies with UL Standard 943.

86-3.05C Surge Arrestor
Surge arrestor must reduce effects of power line voltage transients and have ratings as follows:

<table>
<thead>
<tr>
<th>Surge Arrestor Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurrent peak voltage</td>
</tr>
<tr>
<td>Energy rating, maximum</td>
</tr>
<tr>
<td>Power dissipation, average</td>
</tr>
<tr>
<td>Peak current for pulses less than 7 µs</td>
</tr>
</tbody>
</table>

Standby current must be 1 mA or less for 120 V(ac), 60 Hz sinusoidal input.

86-3.05D Terminal Blocks
Terminal block must be rated 600 V(ac), minimum, and have nickel-, silver-, or cadmium-plated brass binder head screw terminal.

Heavy duty terminal block must be rated at 20 A and have 12 position with No. 10 x 5/16-inch nickel-plated brass binder head screws and nickel-plated brass inserts. Each position must have 2 screw-type terminals. Terminal block must be barrier type with shorting bars in each of the 12 positions, and must have integral type marking strips.

Light duty terminal block must be rated at 5 A and have 12 positions with No. 6 x 1/8 inch binder head screws. Each position must have 1 screw-type terminal.

86-3.06 COMPONENTS

86-3.06A Toggle Switches
Toggle switch must:

1. Have poles as required
2. Be rated at 200 percent of circuit current for circuits of 10 A or less and 125 percent of circuit current for circuits over 10 A

86-3.06B Cartridge Fuses
Install cartridge fuse in panel-mounted fuseholder. Fuse type and rating must be as recommended by the fuse manufacturer for protecting the load.

86-3.06C Circuit Breakers
Circuit breaker must comply with Section 86-2.11, "Service," except breaker must have a minimum interrupting capacity of 5,000 A, rms.

86-3.06D Connectors
Use connector designed to interconnect various parts of circuit together and constructed for the application involved. Design connector for positive connection of circuit and easy insertion and removal of mating contacts. Connector must be permanently keyed to prevent improper connection of circuit.
Connector, or device plugging into connector, must have positive connection to prevent a circuit from breaking due to vibration, a pull on connecting cable, or similar disruptive force.

86-4 TRAFFIC SIGNAL FACES AND FITTINGS

86-4.01 VEHICLE SIGNAL FACES

Each vehicle signal face must:

1. Be adjustable and allow for 360-degree rotation about vertical axis
2. Comply with ITE publication ST-017B, "Vehicle Traffic Control Signal Heads"
3. Comply with California Test 604, except for arrow and "X" faces
4. Have 3 sections arranged vertically: red at top, yellow at center, and green at bottom
5. Be of the same manufacturer and material, if more than 1 is installed at an intersection, except for programmed visibility type
6. Be sealed with neoprene gasket at top opening
7. Be LED modules

86-4.01A Signal Sections

Each signal section must comply with the following:

1. Maximum height must be 10-1/4 inches for an 8-inch section and 14-3/4 inches for a 12-inch section.
2. Housing must:
 2.1. Be either die-cast or permanent mold-cast aluminum, or if specified, be structural plastic.
 2.2. Comply with ITE publication ST-017B if die-cast or permanent mold-cast aluminum is used.
 2.3. Have a 1-piece, hinged, square-shaped door designed to allow access for relamping without the use of tools. Door must be secured to hold the door closed during loading tests. Module or lens must be watertight and mounted in the door.
3. Hinge pins, door latching devices, and other exposed hardware must be Type 304 or 305 stainless steel. Interior screws and fittings must be stainless steel, or steel with a corrosion resistant plating or coating.
4. Opening must be placed on top and bottom to receive 1-1/2-inch pipe. The 8-inch and 12-inch sections of an individual manufacturer must be capable of joining to form a signal face in any combination. This interchangeability is not required between metal and plastic sections.
5. Gaskets must be made of a material that is not affected if installed in a section with metal or plastic housing that is continuously operated for 336 hours.

Structural failure is described as follows:

<table>
<thead>
<tr>
<th>Signal Section Type</th>
<th>Requirements</th>
<th>Description of Structural Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal</td>
<td>California Test 666</td>
<td>Fracture within housing assembly or deflection of more than half the lens diameter of signal section during wind load test</td>
</tr>
<tr>
<td>Plastic</td>
<td>California Test 605</td>
<td>Fracture within housing assembly or deflection of more than 10 degrees in either the vertical or horizontal plane after wind load has been removed from front of signal face, or deflection of more than 6 degrees in either the vertical or horizontal plane after wind load has been removed from back of signal face</td>
</tr>
</tbody>
</table>

86-4.01A(1) Metal Signal Sections

Each metal signal section must have a metal visor. Metal signal faces requiring backplates must have metal backplates.

86-4.01A(2) Plastic Signal Sections

Housing must be molded in 1 piece, or fabricated from 2 or more pieces and joined into a single piece. Plastic must have ultraviolet stability, be unaffected by lamp heat, and be self-extinguishing. Housing and door must be colored throughout and be black, matching Color No. 17038, 27038, or 37038 of Federal Standard 595B.
Each face section must be joined to adjacent section by one of the following:

1. Minimum of 3 machine screws for 8-inch sections and 4 machine screws for 12-inch sections, installed through holes near front and back of housing. Each screw must be a No. 10 and have a nut, flat washer, and lock washer.

2. Two machine screws, each with a nut, flat washer, and lock washer, installed through holes near the front of the housing, and a fastening through the 1-1/2-inch pipe opening. Fastening must have 2 large flat washers to distribute the load around the pipe opening and 3 carriage bolts, each with a nut and lock washer. Minimum screw size must be No. 10. Minimum carriage bolt size must be 1/4 inch.

Supporting section of each signal face supported only at top or bottom must have reinforcement. Reinforcement plate must be either sheet aluminum, galvanized steel, or cast aluminum. Each plate must be a minimum of 0.11-inch thick and have a hole concentric with 1-1/2-inch pipe-mounting hole in the housing. Place reinforcement plate as follows:

<table>
<thead>
<tr>
<th>Type of Reinforcement Plate</th>
<th>Placement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheet aluminum</td>
<td>Inside and outside of housing</td>
</tr>
<tr>
<td>Galvanized steel</td>
<td>Inside of housing</td>
</tr>
<tr>
<td>Cast aluminum</td>
<td>Outside of housing</td>
</tr>
</tbody>
</table>

Reinforcement plates placed outside of the housing must be finished to match signal housing color and be designed to allow proper serrated coupling between signal face and mounting hardware. Minimum of 3 No. 10 machine screws must be installed through holes in each plate and matching holes in the housing. Each screw must have a round or binder head, a nut, and lock washer.

If signal face is supported by a Type MAS side attachment slip-fitter inserted between 2 sections, place spacers between the 2 sections. Vertical dimension of spacers must allow proper seating of serrations between the slip-fitter and the 2 sections. In addition to the fastening through the large openings in housing, the 2 sections must join with at least 2 machine screws through holes near the front of housing and the spacers, and through matching holes in a reinforcing plate installed in housing. Machine screws must be No. 10 minimum size. Spacers must be made of same material as signal housing.

If reinforcing webs are used to connect back of housing to top, bottom, and sides, reinforcing plates are not required.

Holes for machine screws must be either cast or drilled during signal section manufacturing. Surround each hole with a 1/8-inch minimum width boss to allow contact between signal sections about axis of hole.

Each plastic signal section must have a plastic or metal visor. Plastic signal faces requiring backplates must have plastic backplates.

Serrated nylon washer must be inserted between each plastic signal section and metal mounting assembly. Each washer must be between 3/16- and 1/4-inch thick. Serrations must match those on signal section and mounting assembly.

86-4.01B Electrical Components

Conductors must be connected to a terminal block mounted inside, at the back of housing. Terminal block must have enough screw type terminals or NEMA type tab connectors to end all field and module or lamp conductors independently. Permanently identify terminal with field conductors attached or color code conductors to facilitate field wiring.

86-4.01C Visors

Include removable visor with each signal section. Comply with ITE publication ST-017B. Visors are classified by lens enclosure as full circle, tunnel or cap. Bottom opens for tunnel type and both, bottom and lower sides open for cap type. Visors must be tunnel type.

Visor must have a downward tilt between 3 and 7 degrees with a length of:

1. 9-1/2-inch minimum for nominal 12-inch round lenses
2. 7 inch for nominal 8-inch round lenses

Metal visor must be formed from 0.050-inch, minimum thickness, aluminum alloy sheet.
Plastic visor must be either formed from sheet plastic or assembled from one or more injection, rotational, or blow-molded plastic sections. Material must be of a black homogeneous color with lusterless finish. Sections must be joined using thermal, chemical, or ultrasonic bonding, or with aluminum rivets and washers permanently colored to match visor.

Secure each visor to its door and prevent removal or permanent deformation when wind load specified in California Test 605 for plastic visors or 666 for metal visors is applied to its side for 24 hours.

If directional louvers are used, fit louvers snugly into full-circular signal visors. Outside cylinder must be constructed of 0.030-inch nominal thickness, or thicker, sheet steel and vanes must be constructed of 0.016-inch nominal thickness, or thicker, sheet steel, or the cylinder and vanes must be constructed of 5052-H32 aluminum alloy of equal thickness.

86-4.02 (BLANK)

86-4.03 (BLANK)

86-4.04 BACKPLATES

Background light must not be visible between backplate and signal face or between sections.

Plastic backplates must be either formed from sheet plastic or assembled from extruded, molded, or cast sections. Sections must be factory joined using one of the following:

1. Appropriate solvent cement
2. Aluminum rivets and washers painted or permanently colored to match backplate
3. No. 10 machine screws with washers, lock washers, and nuts, painted to match backplate

Backplate material must be of black homogeneous color with a lusterless finish. Secure each plastic backplate to the plastic signal face in a manner that prevents its removal or permanent deformation when the wind-load test is applied to either the front or back of signal face. Permanent deformation of any portion of backplate must not exceed 5 degrees forward or backward after wind loading is applied for 24 hours.

If plastic backplate requires field assembly, join with at least 4 No. 10 machine screws at each field-assembled joint. Each machine screw must have an integral or captive flat washer, a hexagonal head slotted for a standard screwdriver, and either a locking nut or a nut and lockwasher. Machine screws, nuts, and washers must be stainless steel or steel with a zinc or black-oxide finish.

If a metal backplate has 2 or more sections, fasten sections with rivets or aluminum bolts peened after assembly to avoid loosening.

Instead of the screws shown on the plans, you may use self-threading No. 10 steel screws to fasten plastic backplates to plastic signal face. Each screw must have an integral or captive flat washer, a hexagonal head slotted for a standard screwdriver, and is stainless steel or steel with a zinc or black-oxide finish.

86-4.05 PROGRAMMED VISIBILITY VEHICLE SIGNAL FACES

Programmed visibility signal face and its installation must comply with Section 86-4.01, "Vehicle Signal Faces," Section 86-4.04, "Backplates," and Section 86-4.08, "Signal Mounting Assemblies."

Each programmed visibility signal section must:

1. Have a nominal 12-inch diameter circular or arrow indication
2. Comply with ITE publication ST-017B for color and arrow configuration
3. Have a cap visor
4. Have an adjustable connection that provides incremental tilting from 0 to 10 degrees above or below horizontal while maintaining a common vertical axis through couplers and mountings

Terminal connection must allow external adjustment about the mounting axis in 5-degree increments.

Signal must be mountable with ordinary tools and capable of servicing without tools. Preset adjustment at 4 degrees below horizontal.

Visibility of each programmed visibility signal face must be capable of adjustment or programming, within the face. When programmed, each signal face’s indication must be visible only in those areas or lanes to be controlled, except that during dusk and darkness a faint glow to each side is allowed.

You must program the head as recommended by the manufacturer.
86-4.06 PEDESTRIAN SIGNAL FACES

Message symbols for pedestrian signal faces must be white "WALKING PERSON" and Portland orange "UPRAISED HAND." Comply with ITE Standards: "Pedestrian Traffic Control Signal Indications" and California MUTCD. Each symbol’s height must be at least 10 inches and width must be at least 6-1/2 inches.

Luminance of "UPRAISED HAND" symbol must be 1,100 foot-lamberts, minimum, and luminance of "WALKING PERSON" symbol must be 1,550 foot-lamberts, minimum, when tested as specified in California Test 606.

Uniformity ratio of an illuminated symbol must not exceed 4 to 1 between the highest luminance area and the lowest luminance area.

Luminance difference between a nonilluminated symbol and the background around the symbol must be less than 30 percent when viewed with the visor and front screen in place and at a low sun angle.

Each housing, including front screen, must have maximum overall dimensions of 18-1/2-inch width, 19-inch height, and 11-1/2-inch depth.

All new pedestrian signal faces installed at an intersection must be the same make and type.

86-4.06A Type A

Each Type A pedestrian signal face must include a housing, 1 LED pedestrian signal combo module and a front screen.

86-4.06B Front Screen

Front screen installation for each Type A signal must comply with one of the following:

1. Install, tilting downward, at an angle of 15±2 degrees out from the top, an aluminum honeycomb screen with 0.2-inch cells, 3/8-inch thick, or a plastic screen of 3/8-inch squares, 1/2-inch thick with wall thickness of 1/16-inch. Completely cover message plate. Include a clear front cover of 1/8-inch minimum thickness acrylic plastic sheet or 1/16-inch minimum thickness polycarbonate plastic. Hold screen and cover firmly in place with stainless steel or aluminum clips or stainless steel metal screws.

2. Install a 1-1/2-inch deep eggcrate or Z crate type screen of 1/32-inch nominal thickness polycarbonate. Mount screening in a frame constructed of 0.040-inch minimum thickness aluminum alloy or polycarbonate. Install screen parallel to face of message plate and hold in place with stainless steel screws.

The Department will test screens in a horizontal position with its edges supported. When a 3-inch diameter, 4-pound steel ball is dropped on the screen from a height of 4 feet above, the front screen must not fracture, separate at the welds, or compress more than 1/8-inch. When pedestrian housing is used to support front screen during test, remove message plate from pedestrian signal housing, so there is no back support for the screen.

Screen and frame must be one of the following:

1. Manufactured from aluminum anodized flat black
2. Finished with lusterless black exterior grade latex paint formulated for application to properly prepared metal surfaces
3. Manufactured from flat black plastic

86-4.06C Housing

Pedestrian signal housing must comply with Section 86-4.01A, "Signal Sections."

86-4.06D Finish

Paint exterior of each housing as specified in Section 86-2.16, "Painting."

86-4.06E Control

Pedestrian signals must be controllable by solid-state switching devices specified for traffic signal controller assemblies.

86-4.06F Terminal Blocks

Include light duty terminal block, as specified in Section 86-4.01B, "Electrical Components," with each pedestrian signal face.
86-4.07 (BLANK)

86-4.08 SIGNAL MOUNTING ASSEMBLIES

Signal mounting assembly must include:

1. 1-1/2-inch standard steel pipe or galvanized conduit
2. Pipe fitting made of ductile iron, galvanized steel, aluminum alloy Type AC-84B No. 380, or bronze
3. Mast arm and post top slip-fitters, and terminal compartments made of cast bronze or hot-dip galvanized ductile iron

After installation, clean and paint exposed threads of galvanized conduit brackets and bracket areas damaged by wrench or vise jaws. Use wire brush to clean and apply 2 coats of approved unthinned zinc-rich primer, organic vehicle type, as specified in Section 91, "Paint.” Do not use aerosol can.

Fit each terminal compartment with a terminal block having a minimum of 12 positions, each with 2 screw-type terminals. Each terminal must accommodate at least five No. 14 conductors. Include a cover on compartment for ready access to terminal block. Terminal compartment used to bracket mount signals must be bolted securely to pole or standard.

Horizontal dimension of mounting assembly members between vertical centerline of terminal compartment or slip-fitter, and the vertical centerline of each signal face must not exceed 11 inches, except where required for proper signal face alignment or to allow programming of programmed visibility signal faces.

Mounting assembly members must be plumb or level, symmetrically arranged, and securely assembled.

Mounting assembly must be watertight, and free of sharp edges or protrusions that might damage conduct or insulation. Include positive locking serrated fittings that, if mated with similar fittings on signal faces, will prevent faces from rotating.

Orient each mounting assembly to allow maximum horizontal clearance to adjacent roadway.

Use slip-fitter for post-top mounting of signals. Fit slip-fitter over a 4-1/2-inch outside diameter pipe or tapered standard end. Include cadmium-plated steel set screws. Include an integral terminal compartment for each slip-fitter used to post-top mount signals with brackets.

Do not install signal faces at an intersection until all other signal equipment, including complete controller assembly, is in place and ready for operation. You may mount signal faces if covered or not directed toward traffic.

86-4.09 FLASHING BEACONS

Flashing beacon must include:

1. Single section traffic signal face with yellow or red LED module indications
2. Backplate
3. Tunnel visor
4. Flashing beacon control assembly

Beacon flasher unit must be independent of intersection flasher unit.

86-4.09A Flashing Beacon Control Assembly

86-4.09A(1) Enclosure

Enclosure must be:

1. NEMA 3R with a dead front panel and a hasp with a 7/16-inch hole for a padlock
2. Powder coated, hot-dip galvanized, or factory-applied rust resistant prime coat and finish coat

86-4.09A(2) Circuit Breakers and Switches

Circuit breakers must comply with Section 86-2.11, "Service."

Switch for manually operating sign lighting circuit must be a single-hole-mounting toggle type with a single pole and throw and rated at 12 A, 120 V(ac). Furnish switch with an indicating nameplate reading "Auto-Test."

86-4.09A(3) Flasher

Comply with Section 8, "Solid-State Flashers," of NEMA Standards publication No. TS 1.

Flasher must be a solid-state device with no contact points or moving parts.
Include 2 output circuits to allow alternate flashing of signal faces. Flasher must be able to carry a minimum of 10 A per circuit at 120 V(ac).

86-4.09A(4) Wiring
Conductors and wiring in the enclosure must comply with Section 86-2.09B(1), "Cabinet and Enclosure Installation."

86-4.09A(5) Terminal Blocks
Terminal blocks must be:
1. Rated 25 A, 600 V(ac)
2. Molded phenolic or nylon material
3. Barrier type with plated brass screw terminals and integral marking strips

86-5 DETECTORS

86-5.01 VEHICLE DETECTORS
Sensor unit and isolator must comply with TEES.

86-5.01A Inductive Loop Detectors

86-5.01A(1) General
Inductive loop detector includes a completely installed loop or group of loops, in the roadway, lead-in cable, and a sensor unit, with power supply installed in a controller cabinet.

86-5.01A(2) (Blank)

86-5.01A(3) Construction Materials
Conductor for each inductive loop detector must be continuous, unspliced, and one of the following:

<table>
<thead>
<tr>
<th>Conductor Options for Inductive Loop Detector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>Type 1 loop wire</td>
</tr>
<tr>
<td>Type 2 loop wire</td>
</tr>
</tbody>
</table>

Conductor for loop detector lead-in cable must be two No. 16, 19 x 29, stranded, tinned copper wires, comply with the calculated cross sectional area of ASTM B 286, Table 1, and be one of the following:

<table>
<thead>
<tr>
<th>Conductor Options for Loop Detector Lead-In Cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>Type B lead-in cable</td>
</tr>
<tr>
<td>Type C lead-in cable</td>
</tr>
</tbody>
</table>
86-5.01A(4) Installation Details

Install loop conductors without splices and end in nearest pull box. Seal open end of cable jacket or tubing similar to splicing requirements to prevent water from entering. Do not make final splices between loops and lead-in cable until loop operations under actual traffic conditions is approved.

Splice all loop conductors for each direction of travel for same phase of a traffic signal system, in same pull box, to a detector lead-in cable that runs from pull box adjacent to loop detector to a sensor unit mounted in controller cabinet.

End all loop conductors in a pull box or terminal strip in the cabinet.

Identify and band conductors for inductive loop installations. Band, in pairs, by lane, in the pull box adjacent to the loops and near the end of conductors in the cabinet. Bands must comply with Section 86-2.09, "Wiring."

If HMA surfacing is to be placed, install loop conductors before placing uppermost layer of HMA. Install conductors in compacted layer of HMA immediately below the uppermost layer. Install conductors as shown on the plans, except fill slot with sealant flush to the surface.

When cutting loops:

1. Residue from slot cutting activities must not be allowed to flow across shoulders or lanes occupied by public traffic and must be removed from the pavement surface before residue flows off. Dispose of residue from slot cutting activities under Section 7-1.13, "Disposal of Materials Outside the Highway Right of Way."

2. Surplus sealant must be removed from adjacent road surface without using solvents before setting.

Sealant for filling slots must comply with one of the following:

Elastomeric Sealant
Polyurethane material that will, within stated shelf life, cure only in the presence of moisture. Sealant must be suitable for use in both HMA and PCC.

The cured sealant must have the following performance characteristics:

<table>
<thead>
<tr>
<th>Performance Characteristics of Cured Sealant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specification</td>
</tr>
<tr>
<td>Hardness (indentation) at 25 °C and 50% relative humidity. (Type A, Model 1700 only)</td>
</tr>
<tr>
<td>Tensile Strength: Pulled at 508 mm per minute</td>
</tr>
<tr>
<td>Elongation: Pulled at 508 mm per minute</td>
</tr>
<tr>
<td>Flex at -40 °C: 0.6-mm free film bend (180°) over 13-mm mandrel</td>
</tr>
<tr>
<td>Weathering Resistance: Weatherometer 350 h, cured 7 days at 25 °C @ 50% relative humidity</td>
</tr>
<tr>
<td>Salt Spray Resistance: 28 days at 38 °C with 5% NaCl, Die C & pulled at 508 mm per minute</td>
</tr>
<tr>
<td>Dielectric Constant over a temperature range of -30 °C to 50 °C</td>
</tr>
</tbody>
</table>

Asphaltic Emulsion Sealant
Comply with State Specification 8040-41A-15. Use for filling slots in HMA pavement that are a maximum of 5/8 inch in width. Do not use where the slope causes the material to run from the slot. Material must not be thinned beyond manufacturer's recommendations. Place material when air temperature is at least 7 °C.

Hot-Melt Rubberized Asphalt Sealant
Hot-melt rubberized asphalt must be:

1. In solid form at room temperature and fluid at application temperature of 190 °C to 205 °C. Fumes must be non-toxic.
2. Suitable for use in both HMA and PCC.
3. Melted in a jacketed, double-boiler type melting unit. Temperature of heat transfer medium must not exceed 245 °C.
4. Applied with a pressure feed applicator or pour pot, when the pavement surface temperature is greater than 4 °C.
5. Packaged in containers clearly marked "Detector Loop Sealant" and specifying manufacturer's batch and lot number.

The cured sealant must have the following performance characteristics:

<table>
<thead>
<tr>
<th>Specification</th>
<th>ASTM</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cone Penetration, 25 °C, 150 g, 5 s</td>
<td>D 5329, Sec. 6</td>
<td>3.5 mm, max</td>
</tr>
<tr>
<td>Flow, 60 °C</td>
<td>D 5329, Sec. 8</td>
<td>5 mm, max</td>
</tr>
<tr>
<td>Resilience, 25 °C</td>
<td>D 5329, Sec. 12</td>
<td>25%, min</td>
</tr>
<tr>
<td>Softening Point</td>
<td>D 36</td>
<td>82 °C, min</td>
</tr>
<tr>
<td>Ductility, 25 °C, 50 mm/min</td>
<td>D 113</td>
<td>300 mm, min</td>
</tr>
<tr>
<td>Flash Point, COC, °C</td>
<td>D 92</td>
<td>288 °C, min</td>
</tr>
<tr>
<td>Viscosity, Brookfield Thermosel, No. 27 Spindle, 20 rpm, 190 °C</td>
<td>D 150</td>
<td>Less than 25% change</td>
</tr>
</tbody>
</table>

86-5.01B Magnetic Detectors
Cable from pull box, adjacent to magnetic detector sensing element, to the field terminals in the controller cabinet must be the type specified for inductive loop detectors.

86-5.02 PEDESTRIAN PUSH BUTTON ASSEMBLIES
Housing must be either die-cast or permanent mold-cast aluminum, or ultraviolet stabilized, self-extinguishing structural plastic, if specified. Plastic housing must be black matching Color No. 17038, 27038 or 37038 of Federal Standard 595B, and colored throughout. Assembly must be rainproof and shockproof in any weather condition.

Switch must be a single-pole, double-throw, switching unit, with screw type terminals, rated 15 A at 125 V(ac), and must have:

1. Plunger actuator and a U frame to allow recessed mounting in push button housing
2. Operating force of 3.5 pounds
3. 1/64-inch maximum pretravel
4. 7/32-inch minimum overtravel
5. 0.0004- to 0.002-inch differential travel
6. 2-inch minimum diameter actuator

Where pedestrian push button is attached to a pole, shape housing to fit the pole curvature and secure. Include saddles to make a neat fit if needed.
Where a pedestrian push button is mounted on top of a 2-1/2-inch diameter post, fit housing with a slip-fitter and use screws for securing rigidly to post.

Pedestrian push button signs must be porcelain enameled metal or structural plastic.
Install push button and sign on crosswalk side of pole.
Point arrows on push button signs in the same direction as the corresponding crosswalk.
Attach sign on Type B push button assembly.
For Type C pedestrian push button assembly, mount instruction sign on the same standard as the push button assembly, using 2 straps and saddle brackets. Straps and saddle brackets must be corrosion-resisting chromium nickel steel and comply with ASTM A 167, Type 302B. Theft-proof bolts must be stainless steel with a chromium content of at least 17 percent and a nickel content of at least 8 percent.

86-6 LIGHTING
86-6.01 HIGH PRESSURE SODIUM LUMINAIRES
High pressure sodium luminaires must be the enclosed cutoff type.
Housing must be manufactured from aluminum. Painted or powder-coated housing must withstand a 1,000-hour salt spray test as specified in ASTM B 117.
Other metal parts must be corrosion resistant.

Each housing must include a slip-fitter that can be mounted on a 2-inch pipe tenon and can be adjusted 5 degrees from the axis of the tenon. Clamping brackets of slip-fitter must not bottom out on housing bosses when adjusted within the ±5 degree range.

The slip-fitter mounting bracket must not permanently set in excess of 0.020-inch when the 3/8-inch diameter cap screw used for mounting is tightened to 10 foot-pounds.

Luminaire to be mounted horizontally on mast arm, when tested as specified in California Test 611, must be capable of withstanding cyclic loading for a minimum of 2 million cycles without failure of any luminaire parts as follows:

<table>
<thead>
<tr>
<th>Plane</th>
<th>Internal Ballast</th>
<th>Minimum Peak Acceleration Level<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical</td>
<td>Removed</td>
<td>3.0 G peak-to-peak sinusoidal loading (same as 1.5 G peak)</td>
</tr>
<tr>
<td>Horizontal<sup>b</sup></td>
<td>Installed</td>
<td>1.5 G peak-to-peak sinusoidal loading (same as 0.75 G peak)</td>
</tr>
<tr>
<td>Vertical</td>
<td>Installed</td>
<td>1.0 G peak-to-peak sinusoidal loading (same as 0.5 G peak)</td>
</tr>
</tbody>
</table>

^aG = Acceleration of gravity
^bPerpendicular to direction of mast arm

If a photoelectric unit receptacle is included, a raintight shorting cap must be installed. If luminaire housing has a hole for the receptacle, hole must be permanently closed, covered, and sealed with weatherproof material.

Optical system must be in a sealed chamber and include:

1. Reflector shaped so that a minimum of light is reflected through the arc tube of the lamp. Reflector surface must be specular and protected by either an anodized finish or a silicate film on its specular surface.
2. Refractor or lens mounted in a door frame that is hinged to the housing and secured with a spring-loaded latch. Refractor must be made of glass or polycarbonate plastic. Lens must be made of heat- and impact-resistant glass.
3. Lamp socket that is a porcelain enclosed mogul-multiple type. Shell must include integral lamp grips to assure electrical contact under conditions of normal vibration. Socket must be mounted in the luminaire to allow presetting a variety of specified light distribution patterns. Socket must be rated for 1,500 W and 600 V(ac), and a 4 kV pulse.
4. Lamp.

Sealing must be provided by a gasket between the reflector and:

1. Refractor or lens
2. Lamp socket

Chamber must allow for filtered flow of air in and out of the chamber from lamp heat. Filtering must be accomplished by either a separate filter or a filtering gasket.

If components are mounted on a down-opening door, door must be hinged and secured to luminaire housing separately from refractor or flat lens frame. Door must be easily removable and replaceable, and secured to housing to prevent accidental opening when refractor or flat lens frame is opened.

Field wires connected to luminaire must terminate on a barrier-type terminal block secured to the housing. Terminal screws must be captive and equipped with wire grips for conductors up to No. 6. Each terminal positions must be clearly identified.

Minimum light distribution for each luminaire must meet the isolux diagrams.

Maximum brightness of each cutoff luminaire, with the lamp indicated, must be as follows:
<table>
<thead>
<tr>
<th>Cutoff Type</th>
<th>Lamp ANSI Code No.</th>
<th>Lamp Wattage</th>
<th>Maximum Brightness foot-lamberts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S55</td>
<td>150</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>S66</td>
<td>200</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>S50</td>
<td>250</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>S67</td>
<td>310</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>S51</td>
<td>400</td>
<td>75</td>
</tr>
</tbody>
</table>

Brightness readings will be taken using a brightness meter with an acceptance angle of 1.5 degrees. When measured on the 90-degree and 270-degree lateral angle line, maximum brightness must not exceed above specified brightness when meter is located at a horizontal distance of 120 feet and a vertical distance of 7.5 feet between luminaire and meter, or at an angle of 3 degrees 35 minutes from the horizontal to the line between luminaire and meter. Measurements must be made from 90-degree line and 270-degree line, and averaged. Lamp used for each test must operate at wattage necessary to produce the following light output:

<table>
<thead>
<tr>
<th>Lamp Wattage</th>
<th>Lumens</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>16,000</td>
</tr>
<tr>
<td>200</td>
<td>22,000</td>
</tr>
<tr>
<td>250</td>
<td>27,000</td>
</tr>
<tr>
<td>310</td>
<td>37,000</td>
</tr>
<tr>
<td>400</td>
<td>50,000</td>
</tr>
</tbody>
</table>

86-6.01A High Pressure Sodium Lamp Ballasts

Each ballast must:

1. Operate the lamp for its rated characteristics and wattage
2. Continuously operate at ambient air temperatures from -20 °C to 25 °C without reduction in ballast life
3. Operate for at least 180 cycles of 12 hours on and 12 hours off, with the lamp circuit in an open or short-circuited condition and without measurable reduction in operating requirements
4. Have a design life of not less than 60,000 hours
5. Provide proper starting and operating waveforms, voltage, and current
6. Provide reliable lamp starting and operation at ambient temperature down to -20 °C for the rated life of lamp

Ballast must be tested as specified in ANSI C82.6-1980, "Methods of Measurement of High-Intensity-Discharge Lamp Ballasts."

Starting aids for ballast of a given lamp wattage must be interchangeable between ballasts of same wattage and manufacturer, without adjustment.

Each integral ballast must consist of separate components that can be easily replaced. An encapsulated starting aid will be counted as a single component. Each component must include screw terminals, NEMA tab connectors, or a single multi-circuit connector. Conductors and terminals must be identified.

Mount heat-generating component so as to use the portion of the luminaire it is mounted to as a heat sink. Place capacitor a maximum practicable distance from heat-generating components or thermally shield to limit the case temperature to 75 °C.

Transformer and inductor must be resin-impregnated for protection against moisture. Capacitors, except those in starting aids, must be metal cased and hermetically sealed.

The Department will test high-pressure sodium lamp ballast. High-pressure sodium lamp ballast must have a characteristic curve that will intersect both of the lamp-voltage limit lines between the wattage limit lines and remain between the wattage limit lines throughout the full range of lamp voltage. This requirement must be met at the rated input voltage of the ballast and at the lowest and highest rated input voltage of the ballast.

Throughout the lifetime of the lamp, ballast curve must fall within the specified limits of the lamp voltage and wattage.

Ballast for luminaires must be located in the luminaire housing.

86-6.01A(1) Regulator Type Ballasts

Regulator type ballast must comply with the following:
1. For nominal input voltage and lamp voltage, ballast design center must not vary more than 7.5 percent from rated lamp wattage.
2. Ballast must be designed for a capacitance variance of ±6 percent that will not cause more than ±8 percent variation in lamp wattage regulation during rated lamp life.
3. Lamp current crest factor must not exceed 1.8 for input voltage variation of ±10 percent at any lamp voltage during lamp life.

Regulator-type ballast must be one of the following:

<table>
<thead>
<tr>
<th>Regulator-Type Ballast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ballast Type</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Lag-type<sup>a</sup></td>
</tr>
<tr>
<td>Lead-type<sup>b</sup></td>
</tr>
</tbody>
</table>

^aPrimary and secondary windings must be electrically isolated
^bConstant wattage autoregulator (CWA)

86-6.01A(2) Nonregulator Type Ballasts

Each nonregulator type ballast must comply with the following:

1. For nominal input voltage and lamp voltage, ballast design center must not vary more than 7.5 percent from rated lamp wattage.
2. Lamp current crest factor must not exceed 1.8 for input voltage variation of ±5 percent at any lamp voltage during lamp life.

Nonregulator-Type Ballast

<table>
<thead>
<tr>
<th>Nonregulator-Type Ballast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ballast Type</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Autotransformer or High-Reactance</td>
</tr>
</tbody>
</table>

86-6.01B High Pressure Sodium Lamps

High pressure sodium lamps must comply with ANSI C 78.42, "High Pressure Sodium Lamps," when tested as specified in ANSI C 78.389, "American National Standard for Electric Lamps - High Intensity Discharge-Methods of Measuring Characteristics." High pressure sodium lamps must have a minimum average rated life of 24,000 hours.

86-6.02 LOW PRESSURE SODIUM LUMINAIRES

Each low pressure sodium luminaire must be completely assembled with a lamp and ballast, and must:

1. Be the enclosed type, either semi-cutoff or cutoff type.
2. Include housing, reflector, refractor or lens, lamp socket, integral ballast, removable ballast tray, lamp support, terminal strip, capacitor, and slip fitter. Reflector may be an integral part of the housing.

Luminaire housing must be minimum 1/16-inch thick, corrosion resistant die cast aluminum sheet and plate with concealed continuous welds, or minimum nominal wall thickness of 3/32-thick acrylonitrile-butadiene-styrene sheet material, on a cast aluminum frame that provides mounting for all electrical components and slip fitter.
Housing must be divided into optical and power compartments that are individually accessible for service and maintenance. Position and clamp luminaire to pipe tenon by tightening mounting bolts.

Painted exterior surface of luminaire must be finished with a fused coating of electrostatically applied polyester powder paint or other ultraviolet inhibiting film. Color must be aluminum gray.

High temperature neoprene, or equal, sealing ring must be installed in pipe tenon opening to prevent entry of water and insects into power and optical compartments.

Access to power unit assembly must be through a weathertight hinged cover, secured with spring type latches or captive screws, to luminaire housing.

Hardware must be stainless steel or cadmium plated. Use machine screws or bolts to secure removable components. Do not use sheet metal screws.

Semi-cutoff luminaires and molded refractor style cutoff luminaires must include a refractor. Other cutoff luminaires must include a flat lens.

Refractor must be 1-piece injection molded polycarbonate of 3/32 inch minimum thickness, or 1-piece injection molded acrylic of 1/8 inch minimum thickness. Flat lens must be 1-piece polycarbonate of 3/32 inch minimum thickness, mounted to metal frame. Refractor assembly and flat lens assembly must be constructed to rigidly maintain its shape, and hinged and secured with spring type latches to luminaire housing. Alternate methods of manufacturing refractor may be approved provided minimum specified thicknesses are maintained.

Lamp socket must be high temperature, flame retardant thermoset material with self-wiping contacts or equivalent. Socket must be rated for 660 W and 1,000 V(ac). Position of socket and support must maintain the lamp in correct relationship with reflector and refractor for designed distribution pattern.

Isofootcandle distribution must be ANSI Type III, short or Type IV, medium distribution, for cutoff or semi-cutoff luminaires.

With a 40-foot mounting height, each type of luminaire must maintain a minimum of 0.2 footcandle at least 60 feet each side, along the longitudinal roadway line below the luminaire, and a minimum of 0.35 footcandle at a transverse roadway distance from luminaire location equal to 1.5 times the luminaire mounting height.

Certified luminaire performance data must be provided. This data must include complete photometric test data in isofootcandle charts at a scale of 1 inch equals 20 feet, for the luminaire and lamp sizes shown on the plans.

Alternate data may be in horizontal footcandle values recorded on a 15’ x 15’ area extending 90 feet longitudinally each side of the light source, and 15 feet behind and 90 feet in front of the light source, for luminaire and lamp sizes, and mounting height shown on the plans. Horizontal footcandle levels in data submitted must equal or exceed levels specified. Failure to meet referenced values will be justification for rejection of the luminaires.

Photometric testing must be performed and certified by an independent and recognized testing laboratory. Low pressure sodium lamps must:

1. Be 180 W, single-ended, bayonet base, tubular gas discharge lamp
2. Maintain a minimum of 93 percent of initial lumens during rated life and must comply with the following minimum performance requirements:

<table>
<thead>
<tr>
<th>Performance Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamp Designation</td>
</tr>
<tr>
<td>Initial Lumens</td>
</tr>
<tr>
<td>Rated Ave. Life (@ 10 hrs/Start)</td>
</tr>
<tr>
<td>Operating Position</td>
</tr>
</tbody>
</table>

3. Reach 80 percent of light output within 10 minutes and must restrike within 1 minute after an outage due to power interruption or voltage drop at the lamp socket
4. Identify the month and year of installation.
5. Have an autotransformer or high-reactance type ballast. The ballast must comply with the following:

5.1. Lamp current crest factor must not exceed 1.8 at nominal line voltage
5.2. Ballast loss must not exceed 24 percent for 180 W ballast at nominal line voltage
Autotransformer or High-Reactance Type Ballast

<table>
<thead>
<tr>
<th>Ballast Type</th>
<th>Power Factor</th>
<th>Lamp Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autotransformer or High-Reactance</td>
<td>Not less than 90 percent when ballast is operated at nominal line voltage with a nominally-rated reference lamp</td>
<td>Lamp wattage regulation spread does not vary by more than ±6 percent for ±10 percent input voltage variation from nominal through life</td>
</tr>
</tbody>
</table>

A multi-circuit connector must be included for quick disconnection of ballast tray.

86-6.03 SOFFIT AND WALL LUMINAIRES

Soffit and wall luminaire must be weatherproof and corrosion resistant.

Each flush-mounted soffit luminaire must consist of:

1. Metal body with two 1-inch minimum conduit hubs and provisions for anchoring into concrete
2. Prismatic refractor made of heat-resistant polycarbonate mounted in a door frame and clearly identified as to street side
3. Specular anodized aluminum reflector
4. Ballast located either within housing or in a ceiling pull box as shown on the plans
5. Lamp socket

The door frame assembly must be hinged, gasketed, and secured to body by at least 3 machine screws.

Each pendant soffit luminaire must be enclosed and gasketed, have an aluminum finish, and include:

1. Reflector with a specular anodized aluminum finish
2. Refractor made of heat-resistant polycarbonate
3. Optical assembly hinged and latched for lamp access and a device to prevent dropping
4. Ballast designed for operation in a raintight enclosure
5. Galvanized metal box with a gasketed cover, 2 captive screws, and 2 chains to prevent dropping and for luminaire mounting

Each wall-mounted luminaire must consist of:

1. Cast metal body
2. Prismatic refractor, made of glass, mounted in a door frame
3. Aluminum reflector with a specular anodized finish
4. Integral ballast
5. Lamp socket
6. Gasket between refractor and body
7. At least two 5/16-inch minimum diameter mounting bolts

Cast-aluminum bodies to be cast into or mounted against concrete must have a thick application of alkali-resistant bituminous paint on all surfaces to be in contact with concrete.

Each soffit luminaire and wall luminaire must include a 70 W high-pressure sodium lamp with a minimum average rated life of 24,000 hours. Each lamp socket must be positioned to locate the light center of the lamp within 1/2 inch of light center location of the luminaire design.

Ballast must comply with Section 86-6.01A, “High Pressure Sodium Lamp Ballasts.” Wall luminaire ballast must be located in luminaire housing or, if shown on the plans, in a pull box adjacent to luminaire.

86-6.04 PEDESTRIAN CROSSING FIXTURES

Before starting fixture manufacturing, submit fixture design for approval. If requested, submit 1 complete prototype fixture for approval at least 30 days before manufacturing the fixtures. The prototype fixture will be returned to you, and if permitted, the fixture may be installed in the work.

Lens unit in door section must be formed of 1-1/2-inch methyl methacrylate rod cut and fire-glazed for a clear finish or a cast unit with equivalent tolerances and finish.

Lens must be secured to door section with an extruded lens retainer of 6063-T5 aluminum alloy that fits the lens shape. Lens retainer must fit the full length of lens on both sides. Continuous lens retainer for the full length of 3 lenses is allowed. Z bars of 5052-H32 or 5005-H14 aluminum alloy, 1/16 inch minimum thickness may be substituted for extruded lens retainer.
A captive positive-keyed screw-type latching device requiring a special socket wrench must be installed at upper edge to secure door in the closed position as shown on the plans. Furnish 2 special wrenches to the Engineer.

Each fixture must include a F48T12/CW rapid start fluorescent lamp with recessed, double contact base installed on back side of door directly behind lens.

Each lampholder must be UL listed for outdoor use without an enclosure and with 1,500 mA rapid start fluorescent lamp. Lampholder must be spring-loaded type.

For each lamp, the distance from face of lampholder to the lamp must be designed to provide a compression of at least 0.10-inch on the spring-type lampholder when lamp is in place. Lamp must have positive mechanical and electrical contact when lamp is in place. Socket on spring-type lampholder must have enough travel to allow lamp installation. Spring must not be a part of current-carrying circuit.

Ballast must be high-power-factor type with weatherproof leads for operation of one 48-inch rapid-start lamp. Ballast must be UL listed for outdoor operation on 110 to 125 V(ac) 60 Hz circuit and rated at 1,500 mA.

Conductors from ballast leads to lampholder must be minimum size of No. 16, stranded, and UL-listed copper AWM. Splicing of lampholder conductors to ballast leads must be performed by using mechanically secure connectors.

Conductors in fixture except ballast leads and entrance line conductors, must be UL-listed AWM.

Provide sufficient slack in the conductors to allow the fixture door to fully open.

Circuit conductors entering the fixture must be terminated on molded phenolic barrier-type terminal blocks rated at 15 A and 600 V(ac) and must have integral-type white waterproof-marking strips. Current-carrying parts of terminal blocks must be insulated from fixture with integral plugs or strips to provide protection from line-to-ground flashover voltage. Terminal blocks must be attached to wireway cover in top section. If you use sectionalized terminal blocks, each section must include an integral barrier on each side and be capable of rigid mounting and alignment.

Exposed surfaces of fixture must be uniform in appearance and free from significant defects, including improper fit, dents, deep scratches and abrasions, burrs, roughness, off-square ends, holes off-center or jagged, and surface irregularities. Screws for attaching components to fixture door, including Z bars, ballasts, and terminal block, must be tapped into door from the inside only. Screwheads, nuts, or other fasteners must not be removable from the outside.

86-6.04A Pedestrian Undercrossing Fixtures

Fixture shell must be cast aluminum alloy, industrial type or Federal Class 18 aluminum of 1/4 inch minimum thickness.

Door must be 1 piece of 6061-T6 aluminum alloy of 1/8 inch minimum thickness.

Continuous piano hinge must be Type 1100 aluminum alloy. The piano hinge must be welded or riveted to door section with 1/8 inch aluminum rivets. Matching holes must be drilled in the hinge and lower edge of fixture. After shell is in place, door assembly must be attached by minimum 3/8-inch No. 8 stainless steel self-tapping screws.

A neoprene gasket must be attached to frame to provide a cushion between the shell and the door.

Chain or other device must be included to prevent the door, when fully opened, from coming in contact with the undercrossing wall.

Fixture must be held in place by three 3/8” x 8” anchor bolts with 2 nuts each.

Fixture surfaces in contact with concrete, and with anchor bolts and nuts must be painted with a thick application of alkali-resistant bituminous paint. Paint must comply with MIL-P-6883.

Circuit conductor entering the fixture must be terminated on 2-position terminal blocks.

Both ends of fixture must have holes for 1-inch conduit. Unused holes must be plugged with pressed metal closures.

86-6.04B Pedestrian Overcrossing Fixtures

Fixture shell must consist of:

1. Top section and a door section of extruded 6063-T5 aluminum alloy, each with a nominal 1/8 inch wall thickness
2. 2 cast-end sections of 319 aluminum alloy
3. Internal wireway cover of 505-H32 aluminum alloy

Top section and door section must be joined together on one side by a continuous hinge formed as part of the 2 extrusions and must overlay to allow locking on the other side. Hinge must be treated with a silicone grease that will prevent the entrance of water by capillary action.
Wireway cover with 3/16 inch hemmed ends up and terminal blocks and circuit conductors must be inserted before welding end sections and must provide clearance at both ends for conductors. Cover must be fastened by at least two 1/4 inch No. 4 self-threading sheet metal screws with binding head and blunt point. You may substitute blind rivets of equivalent strength.

One or more bronze sash chains or other device must be included to prevent door from opening to an extent that will damage the hinge.

Lampholder must include heat-resistant circular cross section neoprene sealing gasket, silver-coated contacts, and waterproofed lead entrance for use with a 1,500 mA rapid start fluorescent lamp.

Ballast must be at most 13-1/4 inches long.

Circuit conductors entering the fixture must be terminated on 3-position terminal blocks.

Electrical system of pedestrian overcrossing must be grounded by a No. 8 copper wire installed in conduit from fixture to fixture, from end fixture to conduit fitting on end post and from conduit fitting on end post to grounding bushing in nearest pull box.

Ground wire must be secured to inside of telescoping sleeve end casting where conductors are carried and to the inside of Type LB conduit fitting on end post by a connecting lug and a No. 8 self-threading pan screw.

Lamp, lampholder, ballast, and fixture wire, must be attached to door section. Terminal blocks must be attached to top section or wireway cover.

Three No. 10, solid copper circuit conductors must be installed between terminal blocks as part of each completed fixture.

Before shipment to job site, fixture must be completely manufactured and assembled in the shop.

86-6.05 INDUCTION SIGN LIGHTING FIXTURES

Each induction sign lighting fixture must include housing with door, reflector, refractor or lens, lamp, power coupler, high frequency generator, socket assembly, fuse block, and fuses.

Each induction sign lighting fixture must:

1. Be designed for mounting near the bottom of sign panel on an overhead sign structure.
2. Be an enclosed design and be raintight and corrosion resistant.
3. Have a minimum average rating of 60,000 hours.
5. Have a power factor greater than 90 percent and total harmonic distortion less than 10 percent.
6. Be UL approved for wet locations and be FCC Class A-listed.
7. Not exceed 44 pounds in weight.
8. Include the manufacturer's brand name, trademark, model number, serial number, and date of manufacture on packaged assembly. Same information must be permanently marked on the outside and inside of housing.
9. Comply with minimum horizontal footcandle requirement shown on the plans.
10. Be a maximum height of 12 inches above the top of the mounting rails.

If fixture is located so that the light center of the lamp is 55 inches in front of, 1 foot below, and centered on a 10-foot high by 20-foot wide sign panel, the ratio of maximum to minimum illuminance level on the panel must not exceed 12 to 1 in 95 percent of the points measured. Illuminance gradient must not exceed 2 to 1 and is defined as the ratio of minimum illuminance on a 1-foot square of panel to that on an adjacent 1-foot square of panel.

Each fixture must have a mounting assembly that will allow fixture to be mounted on continuous slot channels. Mounting assembly must be either cast aluminum, hot-dip galvanized steel plate, or steel plate that has been galvanized and finished with a polymeric coating system or same finish that is used for housing.

Housing must have a door designed to hold a refractor or lens, and to open without the use of special tools. Housing and door must be manufactured of sheet or cast aluminum, and have a powder coat or polyester paint finish of a gray color resembling unfinished manufacturing. Sheet aluminum must comply with ASTM B 209 or B 209M for 5052-H32 aluminum sheet. External bolts, screws, hinges, hinge pins, and door closure devices must be corrosion resistant.

Housing must include weep holes.

Door must be hinged to housing on side of fixture away from the sign panel and include 2 captive latch bolts or other latching device. Door must be designed to lock in the open position, 50 degrees minimum from the plane of the door opening, with an 85-mph 3-second-wind-gust load striking the door from either side.

Door and housing must be gasketed to be raintight and dusttight. Thickness of gasket must be 1/4 inch, minimum.

Fixture height must be less than 12 inches above the top of mounting rails.
Reflector must be 1 piece, made from specularly finished aluminum protected with an electrochemically applied anodized finish or a chemically applied silicate film, and designed so deposited water due to condensation will drain away. Reflector must be secured to housing with a minimum of 2 screws and removable without removing any fixture parts. Do not attach reflectors to outside of housing.

Reflector or lens must have a smooth exterior and must be manufactured from the material as follows:

<table>
<thead>
<tr>
<th>Reflector and Lens Material Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component</td>
</tr>
<tr>
<td>Flat lens</td>
</tr>
<tr>
<td>Convex lens</td>
</tr>
<tr>
<td>Refractor</td>
</tr>
</tbody>
</table>

Reflector and convex lens must be designed or shielded so no fixture luminance is visible if fixture is approached directly from the rear and viewing level is the bottom of the fixture. If a shield is used, it must be an integral part of the door casting.

Each fixture must include an 85 W induction lamp with an interior wall that is fluorescent phosphor-coated. Light output must be at least 70 percent at 60,000 hours. Lamp must have a minimum color-rendering index of 80, be rated at a color temperature of 4,000K and be removable without the use of tools.

Lamp socket must be a porcelain enclosed mogul type with a shell that contains integral lamp grips to assure electrical contact under normal vibration conditions. Center contact must be spring-loaded. Shell and center contact must be nickel-plated brass. Socket must be rated for 1,500 W and 600 V(ac).

Power coupler must include a construction base with antenna, heat sink, and electrical connection cable, and be designed so it can be removed with common hand tools.

High frequency generator must:

1. Start and operate lamps at an ambient temperature of -25 °C or greater for the rated life of the lamp
2. Operate continuously at ambient air temperatures from -25 °C to 25 °C without reduction in generator life
3. Have a design life of at least 100,000 hours at 55 °C
4. Have an output frequency of 2.65 MHz ± 10 percent
5. Have radio frequency interference that complies with FCC Title 47, Part 18, regulations regarding harmful interference
6. Be replaceable with common hand tools
7. Mounted so the fixture can be used as a heat sink

Conductor terminal must be identified by the component terminal the conductor connects to. Submit a copy of the high frequency generator test methods and results from the manufacturer with each lot of fixtures.

Each fixture must include a barrier-type fuse block for terminating field connections. Fuse block must:

1. Be secured to housing and be accessible without removal of any fixture parts
2. Be mounted to leave a minimum of 1/2 inch air space from sidewalls of housing
3. Be designed for easy removal of fuses with a fuse puller, be rated at 600 V(ac), and have box terminals.

Fuses must be 13/32-inch diameter, 1-1/2 inch long ferrule type and UL or NRTL listed. For 120 V(ac) input fixture, only the ungrounded conductor must be fused and there must be a solid link between the neutral and the high frequency generator.

If shown on the plans, include a wire guard to prevent damage to the refractor or lens. Guard must be constructed of 1/4-inch minimum diameter galvanized steel wire, and either hot-dip galvanized or electroplated-zinc coated as specified in ASTM B 633, Service Condition SC4 with a clear chromate dip treatment. Guard elements must be spaced to prevent rocks larger than 1-1/2-inch diameter from passing through.

86-6.06 SIGN LIGHTING FIXTURES FOR FLASHING BEACON

Sign lighting fixture must:

1. Be UL or NRTL listed for outdoor installation
2. Include a hood with side outlet tapped for conduit, a symmetrical 10-inch steel reflector with a white porcelain-enamel finish, and a medium base socket
3. Be rated at 150 W minimum

86-6.07 INTERNALLY ILLUMINATED STREET NAME SIGNS

Sign fixture must be:

1. Designed and constructed to prevent deformation or failure when subjected to an 85 mph 3-second-wind-gust load as specified in AASHTO publication, "Standard Specifications for Structural Supports of Highway Signs, Luminaires and Traffic Signals," and its interim revisions
2. Manufactured from all new material and all ferrous parts must be galvanized or cadmium-plated
3. Type A or B signs

Top and bottom must be formed or extruded aluminum and must be attached to formed or cast aluminum end fittings. Housing must be designed for continuous sealing between top and bottom assemblies, and end fittings, and be constructed to resist torsional twist and warp. Opening or removing 1 panel must allow access to the interior of the sign for lamp, ballast, and fuse replacement.

Photoelectric unit sockets are not allowed.

For Type A sign, both sides must be hinged at the top to allow installation or removal of sign panel, and to allow access to interior of sign.

For Type B sign, sign panel must be slide-mounted into housing.

Reflectors may be used to obtain required sign brightness. Reflectors must be formed aluminum with acrylic baked white enamel surface having a minimum reflectance of 0.85.

Sign panel must be slide-mounted or rigid-mounted in a frame, with white legend, symbols, arrows, and border on each face. Background must be green.

Sign panels surface must be evenly illuminated. Average of brightness readings for letters must be 150 foot-lamberts, minimum. Light transmission factor of sign panel must provide a letter to background brightness ratio between 10 to 1 and 20 to 1. Background luminance must not vary by more than 40 percent from the average background brightness reading. Luminance of letters, symbols, and arrows must not vary by more than 20 percent from their average brightness readings.

Sign panels must be translucent, high impact, resistant plastic panels of one of the following:

1. Glass fiber reinforced acrylated resin
2. Polycarbonate resin
3. Cellulose acetate butyrate plastic

Paint on the outside of plastic must be protected by a plastic film that seals the front surface of panel and filters out ultraviolet radiation. Paint must be acrylic plastic type.

Surface must be free of blemishes in the plastic or coating that may impair the serviceability or detract from the general appearance and color matching of sign.

White or green color must not fade or darken when sign is exposed to an accelerated test of ultraviolet light equivalent to 2 years of outdoor exposure. Green color of sign, when not illuminated, must match Color No. 14109 of Federal Standard 595B.

Sign panel must not crack or shatter when a 1-inch diameter, steel ball with a weight of 2.4 ounces is dropped from a height of 8.5 feet above the sign panel to any point of sign panel. For this test, sign panel must be lying in a horizontal position and supported within its frame.

For Type A sign, gasket must be installed between sign panel frame and fixture housing to prevent water entry between frame and fixture housing. Gasket must be uniform and even-textured, and be the closed-cell, sponge-neoprene type, designed for use at temperatures between -20 °C and +74 °C.

Gasket must be neatly applied to thoroughly degreased, clean surface with a suitable heat-resistant adhesive that will not allow the gasket to slip at temperatures between -20 °C and +74 °C.

Ballast must be high power factor type and capable of starting the lamp at -20 °C and above.

Ballast for Type A sign must be rated at 200 mA. Ballasts for Type B sign must be rated at 430 mA. Ballast must be UL or NRTL listed for operation on 110 to 125 V(ac), 60 Hz circuits, and comply with ANSI C 82.1 and ANSI C 82.2.

Lampholder must be UL or NRTL listed for outdoor use and of the spring-loaded type. Lampholder must have silver-coated contacts and waterproofed entrance leads for use with a rapid-start fluorescent lamp. Removal of lamp from socket must de-energize the primary of ballast. Each lampholder must include heat-resistant, circular cross...
section, partially-recessed neoprene ring to seal against lamp ends and protect electrical contacts from moisture, dirt or other injurious elements.

Distance between face of lampholders must be designed to provide compression of at least 0.10 inch on the spring-type lampholder when lamp is in place. Lamp must have positive mechanical and electrical contact when lamp is in place. Socket on spring-type lampholder must have sufficient travel to allow lamp installation. Spring must not be a part of current carrying circuit. Lampholder must match lamp requirements and must not increase cathode filament circuit resistance by more than 0.10 Ω.

Lamp must comply with ANSI C 78.

Wiring connections in fixture must be terminated on molded, phenolic, barrier-type, terminal blocks rated at 15 A, 1,000 V(ac), and must have integral-type white waterproof-marking strips. Current carrying parts of terminal blocks must be insulated from fixture with integral plugs or strips to provide protection from line-to-ground flashover voltage. If you choose to use sectionalized terminal blocks, each section must include an integral barrier on each side and be capable of rigid mounting and alignment. Terminal screws must be No. 10, minimum.

Fuses must be Type 3AG, miniature, slow-blowing type with appropriate current and voltage ratings.

Fuseholder must be a panel-mounting type with threaded or bayonet-type knob that grips the fuse tightly for extraction. Use a separate fuse for each ballast.

Screened weep holes must be constructed at strategic locations in members subject to moisture collection.

Fasteners, screws, and hardware must be passive stainless steel, Type 302 or 304, or aluminum Type 6060-T6.

Top of fixture housing must have 2 free-swinging mounting brackets. Each bracket must be adjustable vertically for leveling the sign to either a straight or curved mast arm. Bracket assembly must allow fixture to swing perpendicular to the sign panel.

Hinge pins for the free-swinging brackets must have a minimum diameter of 1/4 inch.

Message, as shown on the plans, must be displayed on both sign panels.

If not shown on the plans, the message and the size of symbols or arrows will be given by the Engineer at your request. Letters must be 8-inch upper case and 6-inch lower case, Series E.

Fixture conductors must be UL- or NRTL-listed AWM stranded copper wire with 28 mils, minimum, thermoplastic insulation, rated at 1,000 V(ac) and rated for use at 90 °C. Conductors must be No. 16 minimum and must match color coding of ballast leads.

Conductors within the fixture must be secured with easily removable spring cross straps, not clamped, in the chassis or fixture. Straps must be installed 12 inches apart or less.

Stranded copper conductors connected to screw-type terminals must terminate in approved crimp-type ring connectors.

Splices are not allowed within fixture.

Submit shop drawings showing the message for each sign, including size of letters, symbols or arrows, as shown on the plans. If requested, you must supply, without cost to the State, sufficient samples of materials to be used in the manufacturing of the sign or a complete sign assembly, to allow adequate testing and evaluation of compliance to specified requirements.

86-6.08 PHOTOELECTRIC CONTROLS

Photoelectric controls must be capable of directly switching multiple lighting systems.

86-6.08A Types

Photoelectric control type must comply with the following:

<table>
<thead>
<tr>
<th>Photoelectric Control Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
</tr>
<tr>
<td>Type II</td>
</tr>
<tr>
<td>Type III</td>
</tr>
<tr>
<td>Type IV</td>
</tr>
<tr>
<td>Type V</td>
</tr>
</tbody>
</table>

A switch to allow manual operation of lighting circuit must be included for each Type I, Type II, Type III, and Type V photoelectric control. Switches must be single-hole mounting toggle type, single-pole, single-throw, rated at 12 A with a voltage rating that matches the circuit. Switches must have an indicating nameplate reading "Auto-
Test" and be connected in parallel with the load contacts of the photoelectric unit. Test switches must not have an "OFF" position.

Photoelectric unit for Types I, II, and III photoelectric controls, must be pole-top mounted.

86-6.08B Equipment Details

86-6.08B(1) Photoelectric Unit

Photoelectric unit must:

1. Have an output in response to changing light levels. Response level must remain stable throughout life of control unit.
2. Have a "turn-on" between 1 and 5 footcandles, and a "turn-off" between 1.5 and 5 times "turn-on." Measurements must be made by procedures in EEI-NEMA standards for physical and electrical interchangeability of light-sensitive control devices used in the control of roadway lighting.
3. Have a EEI-NEMA type receptacle. Mounting brackets must be used where pole-top mounting is not possible. Photoelectric controls must be installed at locations show on the plans and oriented.
4. Be screened to prevent artificial light from causing cycling.
5. Have a supply voltage rating of 60 Hz, 105-130 V(ac), 210-240 V(ac), or 105-240 V(ac), as specified.
6. Have a load rating of 800 W minimum, incandescent, high intensity discharge, or fluorescent.
7. Operate at a temperature range of -20 °C to 55 °C.
8. Have a power consumption less than 10 W.
9. Be housed in a weatherproof enclosure.
10. Have a base with a 3-prong, EEI-NEMA standard, twist-lock plug mounting.
11. Have a "fail-on" feature.

Unit components must not require periodic replacement.
Photoelectric controls, except Type IV and Type V, must include a 4-inch minimum inside diameter, pole-top mounting adaptor containing a terminal block, and cable supports or clamps to support pole wires.
For switching 480 V(ac), 60 Hz circuits, a 100 VA, minimum, 480/120 V(ac) transformer must be installed in the contactor enclosure to allow 120 V(ac) for the photoelectric control unit. If more than 1 photoelectric unit is to be installed at a location, a single transformer with a volt-ampere rating capable of handling the total controlled load, may be used.

86-6.08B(2) Contactor

Contactor must:

1. Have contacts rated to switch the specified lighting load
2. Be normally open
3. Be the mechanical armature type with contacts of fine silver, silver alloy, or superior alternative material

86-6.08B(3) Enclosure

Enclosure for Type I and Type III photoelectric controls must be NEMA 3R. Enclosure must be supplied with a factory-applied rust-resistant prime coat and finish coat. Two applications of paint to match the color of the standard must be applied as specified in Section 86-2.16, "Painting." Enclosure may be hot-dip galvanized instead of painting. A minimum of 2-1/2 inches must be provided between contactor terminals and end of enclosure for wiring connections. Enclosure must be mounted on the same standard as the photoelectric unit at a height of about 6 feet above finished grade.

86-6.08B(4) Terminal Blocks

Terminal blocks must be rated at 25 A, 600 V(ac), molded from phenolic or nylon material, and of the barrier type with plated-brass screw terminals and integral-type marking strips.

86-6.09 TRANSFORMERS

Multiple-to-multiple transformers must be single-phase dry type designed for operation on a 60 Hz supply.
86-6.09A Electrical Requirements

Transformers must have a decal showing a connection diagram. Diagram must show either color-coding or wire-tagging with primary (H1, H2) or secondary (X1, X2) markers, and the primary and secondary voltage and volt-ampere rating. Transformers must comply with the following:

<table>
<thead>
<tr>
<th>Transformer Characteristic</th>
<th>Multiple-to-Multiple Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rating</td>
<td>120/480 V(ac), 240/480 V(ac), or 480/120 V(ac)</td>
</tr>
<tr>
<td>Efficiency</td>
<td>Exceed 95 percent</td>
</tr>
<tr>
<td>Secondary Voltage Regulation and Tolerance</td>
<td>±3 percent from half load to full load</td>
</tr>
</tbody>
</table>

Secondary 480 V(ac) windings must be center-tapped.

86-6.09B Physical Requirements

External leads for multiple-to-multiple secondary connections must be Type USE, No. 10, rated 600 V(ac).

Transformer leads must extend a minimum of 12 inches from the case.

Transformer insulation must be NEMA 185 C or better.

Multiple-to-multiple transformers must withstand the application of 2,200 V(ac) from core to coils and from coil to coil for a 1-minute period.

The above tests must be made immediately after operation of transformer at full load for 24 hours.

Non-submersible transformers must include metal half-shell coil protection, have moisture resistant synthetic varnish impregnated windings, and be suitable for outdoor operation in a raintight enclosure.

Each transformer to be installed in a pull box must be the submersible type and include a handle and a hanger.

86-6.09C Submersible Type Transformers

Submersible type transformers must be securely encased in a rugged corrosion resistant, watertight case and must withstand a 5-day test submerged in 2 feet of salt water, 2 percent salt by weight, with 12-hour on and off periods. The operating periods must be at full load.

Leads of submersible transformers must be brought out through one or more sealed hubs and secured to withstand a 100 pound static pull without loosening or leaking.

86-6.10 (BLANK)

86-6.11 FALSEWORK LIGHTING

86-6.11A General

Falsework lighting must include lighting to illuminate the pavement, portals, and pedestrian walkways at or under openings in the falswork required for traffic.

Lighting for pedestrian walkway illumination must be installed at all pedestrian openings through or under falswork.

Before starting falswork opening construction, you must submit a plan of proposed lighting installations for review and obtain approval. Approval will be made as specified in Section 5-1.02, "Plans and Working Drawings."

You must design falswork lighting so that required maintenance can be performed with a minimum of inconvenience to public traffic. Closing of traffic lanes for routine maintenance will not be permitted on roadways with posted speed limits greater than 25 mph.

Pavement under falswork with portals less than 150 feet apart and falswork portals must be illuminated only during the hours of darkness as defined in Division 1, Section 280, of the California Vehicle Code. Photoelectric switches must be used to control falswork lighting systems. Pavement under falswork with portals 150 feet or more apart and all pedestrian openings through falswork must be illuminated 24 hours per day.

Lighting fixtures must be aimed to avoid glare to oncoming motorists.

Type NMC cable with No. 12 minimum conductors, with ground wire, must be used. Fasten cable to supporting structure at sufficient intervals to adequately support cable and within 12 inches from every box or fitting. Conductors within 8 feet of ground must be enclosed in a 1/2 inch or larger metal conduit.

Each illumination system must be on a minimum of 1 separate branch circuit at each bridge location. Each branch circuit must be fused, not to exceed 20 A.
For falsework lighting, you must arrange with the serving utility to complete service connections. You must pay for energy, line extension, service, and service hookup costs.

At completion of project or when ordered by the Engineer, falsework lighting equipment will become your property and you must remove it from the job site.

You may propose a lighting plan that fulfills light intensity requirements to the systems specified herein. You must supply sufficient data to allow evaluation of alternative methods.

86-6.11B Pavement Illumination

Illumination of pavement at vehicular openings through falsework must comply with the following:

1. Fixture must include R/FL commercial type floodlamp holder with protective covers.
2. Fixture must be fully adjustable with brackets and locking screws, and allow mounting directly to a standard metal junction box.
3. Lamp must be medium-base 120 V(ac), 120 W, minimum, PAR-38 quartz-halogen floodlamp.
4. A continuous row of fixture types required must be installed at locations and spacing specified. Fixtures must be installed beneath falsework structure, with the end fixtures not further than 10 feet inside portal faces. Fixtures must be installed and energized immediately after the members supporting them have been erected.
5. Fixtures along the sides of the opening must be placed not more than 4 feet behind or 2 feet in front of the roadway face of the temporary railing. Mounting heights of fixtures must be between 12 and 16 feet above the roadway surface and must present an unobstructed light pattern on the pavement.

86-6.11C Portal Illumination

Illumination of falsework portals must comply with the following:

1. On each side of each entrance portal, plywood sheet clearance guides, 4 feet wide by 8 feet high, must be fastened vertically, facing traffic, with the bottom of the panel 3 feet to 4 feet above the roadway. The center of the panel must be located approximately 3 feet horizontally behind the roadway face of the railing. Panels must be freshly painted for each installation with not less than 2 applications of flat white paint. Paint testing will not be required.
2. If ordered by the Engineer, in order to improve the general appearance of the painted surfaces, you must repaint designated areas and that painting will be paid for as extra work as specified in Section 4-1.03D, "Extra Work."
3. Falsework portals must be illuminated on the side facing traffic with 150 W, minimum, PAR reflector floodlamps mounted on the structure directly over each vertical support adjacent to the traveled way, as needed to uniformly illuminate the exterior falsework beam, the clearance guides, and the overhead clearance sign. Each lamp must be supported approximately 16 feet above the pavement and approximately 6 feet in front of the portal face.
4. Portal lighting and clearance guides must be installed on the day that vertical members are erected.

86-6.11D Pedestrian Walkway Illumination

Illumination of pedestrian openings through or under falsework must comply with the following:

1. Fixtures must be flush-mounted in the overhead protection shield and equipped with a damage-resistant clear polycarbonate diffuser lens. Lamps must be standard incandescent 100 W, 120 V(ac).
2. Fixtures must be centered over the passageway at intervals of not more than 15 feet with the end fixtures not more than 7 feet inside the end of the pedestrian openings.
3. Pedestrian passageway light systems must be installed immediately after the overhead protection shield is erected.

86-7 REMOVING, REINSTALLING OR SALVAGING ELECTRICAL EQUIPMENT

86-7.01 REMOVING ELECTRICAL EQUIPMENT

Existing electrical equipment, pull boxes, and conduits, to be removed and not reused or salvaged, become your property and you must dispose of it under Section 7-1.13, "Disposal of Materials Outside the Highway Right of Way." Unused underground conduit may be abandoned in place after all conductors have been removed, except that conduit terminations from conduit to be abandoned must be removed from pull boxes to remain.
Exercise care in salvaging equipment so that it will not be damaged or destroyed. Mast arms must be removed from standards. Luminaires, signal heads, and signal mounting assemblies must be removed from standards and mast arms. Holes resulting from removing pull boxes must be filled with material equivalent to the surrounding material.

86-7.02 REINSTALLING REMOVED ELECTRICAL EQUIPMENT

If removed electrical equipment is to be reinstalled, you must supply all necessary materials and equipment, including signal mounting assemblies, anchor bolts, nuts, washers, and concrete as required to complete the new installation.

Luminaires to be reinstalled must be cleaned and relamped.

Existing materials required to be reused and found to be unsatisfactory by the Engineer must be replaced with new material and the replacement cost will be paid for as extra work as specified in Section 4-1.03D, "Extra Work."

86-8 PAYMENT

86-8.01 PAYMENT

The contract lump sum price or prices paid for signal, ramp metering, flashing beacon, lighting, sign illumination, traffic monitoring station, highway advisory radio systems, closed circuit television systems, or combinations thereof; for modifying or removing those systems; for temporary systems; or the lump sum or unit prices paid for various units of those systems; or the lump sum or per foot price paid for conduit of the various sizes, types, and installation methods listed in the Engineer's Estimate include full compensation for furnishing all labor, materials, tools, equipment and incidentals, and for doing all the work involved in furnishing and installing, modifying, or removing the systems, combinations or units thereof, including any necessary pull boxes (except if the type required is shown as a separate contract item); excavation and backfill; concrete foundations (except if shown as a separate contract item); pedestrian barricades; furnishing and installing illuminated street name signs; installing sign panels on pedestrian barricades, on flashing beacon standards, and on traffic signal mast arms; restoring sidewalk, pavement and appurtenances damaged or destroyed during construction; salvaging existing materials; and making all required tests, as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer.

If poles for electrical systems are manufactured from a source located more than 300 air-line miles from Sacramento and Los Angeles, the Department will deduct $5,000 for inspection costs for each inspection site. If poles for electrical systems are manufactured from a source located more than 3,000 air-line miles from Sacramento and Los Angeles, the Department will deduct $8,000 for inspection costs for each inspection site.

Full compensation for all additional materials and labor, not shown on the plans or specified, that are necessary to complete the installation of the various systems, is included in the prices paid for the systems, or units thereof, except as provided in Section 86-1.06, "Maintaining Existing and Temporary Electrical Systems," and no additional compensation will be allowed therefor.

If shown as a contract item, the contract price paid per foot for cast-in-drilled-hole concrete pile (signal foundation) includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in constructing reinforced concrete pile foundations of the size shown on the Engineer's Estimate, including drilling holes, disposing of the material resulting from drilling holes, furnishing and placing anchor bolt assemblies and reinforcing steel, complete in place, as shown on the plans, and as specified in these specifications and the special provisions, and as directed by the Engineer.

If shown as a contract item, non-reinforced PCC foundations will be measured and paid for by the cubic yard for foundation concrete in the same manner as specified for minor concrete (minor structure) in Section 51, "Concrete Structures."

If shown as a separate contract item by the lump sum or per foot, interconnection conduit and cable includes all interconnection conductors, and conduit and pull boxes containing interconnection cable and no other conductors. The quantity of interconnection conduit and cable to be paid for by the foot is the length of that conduit. Compensation for conduit containing interconnection cable and other conductors is included in the contract price paid for the item requiring the other conductors.

Full compensation for furnishing, installing, maintaining, and removing falsework lighting equipment is included in the contract prices paid for the items of work involved in the structure that requires the falsework lighting and no additional compensation will be allowed therefor.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SECTION 88 ENGINEERING FABRICS
(issued 01-20-12)

Replace Section 88 with:
SECTION 88 GEOSYNTHETICS

88-1.01 GENERAL

88-1.01A Summary
Section 88 includes specifications for geosynthetics. Geosynthetics are used for:

1. Filtration
2. Drainage
3. Reinforcement
4. Water pollution control
5. Channel and shore protection
6. Pavement interlayer
7. Separation and stabilization

88-1.01B Submittals
Submit:

1. Certificate of Compliance under Section 6-1.07, "Certificates of Compliance"
2. Samples representing each lot
3. Minimum average roll values (MARV)

Label submittals with the manufacturer's name and product information.

88-1.01C Quality Control and Assurance
Treat geosynthetics to resist degradation from exposure to sunlight. Using covers, protect geosynthetics from moisture, sunlight, and shipping and storage damage.

88-1.02 FILTRATION

88-1.02A Filter Fabric
Geosynthetics used for filter fabric must be permeable and nonwoven. Filter fabric must consist of 1 of the following:

1. Polyester
2. Polypropylene
3. Combined polyester and polypropylene

Filter fabric must comply with:
### Filter Fabric

<table>
<thead>
<tr>
<th>Property</th>
<th>ASTM</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grab breaking load, 1-inch grip, lb</td>
<td>D 4632</td>
<td>157</td>
</tr>
<tr>
<td>minimum in each direction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apparent elongation, percent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>minimum in each direction</td>
<td>D 4632</td>
<td>50</td>
</tr>
<tr>
<td>Puncture strength, lb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>minimum</td>
<td>D 6241</td>
<td>600</td>
</tr>
<tr>
<td>Ultraviolet resistance, percent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>minimum retained grab breaking load, 500 hr</td>
<td>D 4355</td>
<td>70</td>
</tr>
<tr>
<td>Permittivity, sec(^{-1}) minimum</td>
<td>D 4491</td>
<td>0.5</td>
</tr>
<tr>
<td>Apparent opening size, average roll value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. Standard sieve size maximum</td>
<td>D 4751</td>
<td>40 60 70</td>
</tr>
</tbody>
</table>

#### 88-1.03 DRAINAGE

**88-1.03A Geocomposite Wall Drain**

Geocomposite wall drain must consist of a polymeric core with filter fabric integrally bonded to 1 or both sides of the core creating a stable drainage void.

Filter fabric must comply with Section 88-1.02, "Filtration."

Geocomposite wall drain must comply with:

### Geocomposite Wall Drain

<table>
<thead>
<tr>
<th>Property</th>
<th>ASTM</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness with fabric, inches maximum</td>
<td>--</td>
<td>2</td>
</tr>
<tr>
<td>Transmissivity, gradient = 1.0, normal stress = 5,000 psf, gal/min/ft</td>
<td>D 4716</td>
<td>4</td>
</tr>
</tbody>
</table>

#### 88-1.04 REINFORCEMENT

**88-1.04A Geotechnical Subsurface Reinforcement**

**General**

Geosynthetic used for geotechnical subsurface reinforcement must be either of the following:

1. Geotextile
2. Geogrid

Geotextile permittivity must be at least 0.05 sec\(^{-1}\) determined under ASTM D 4491.

Geogrid must have a regular and defined open area. The open area must be from 50 to 90 percent of the total grid area.

**Long Term Design Strength**

Long Term Design Strength (LTDS) of geosynthetic reinforcement is the ultimate tensile strength in the primary strength direction divided by reduction factors. Calculate the LTDS from the guidelines in Geosynthetic Research Institute (GRI) Standard Practice GG4a, GRI GG4b, or GRI GT7.

The product of the appropriate reduction factors must be at least 1.30. Determine the reduction factor for creep using a 75-year design life for permanent applications and a 5-year design life for temporary applications. Determine the installation damage reduction factor based on the characteristics of the backfill materials used.

If test data is not available, use default values of reduction factors in the GRI Standard Practice to calculate LTDS.
Submit the LTDS and its supporting calculations at least 15 days before placing geosynthetic reinforcement. Do not install before the Engineer's approval. The LTDS must be signed by an engineer who is registered as a civil engineer in the State.

88-1.05 WATER POLLUTION CONTROL

Geosynthetics used for water pollution control must comply with:

<table>
<thead>
<tr>
<th>Property</th>
<th>ASTM</th>
<th>Silt Fence</th>
<th>Sediment Filter Bag</th>
<th>Gravel-Filled Bags</th>
<th>Temporary Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Woven</td>
<td>Non-woven</td>
<td>Woven</td>
<td>Non-woven</td>
</tr>
<tr>
<td>Grab breaking load, 1-inch grip, lb</td>
<td>D 4632</td>
<td>120</td>
<td>120</td>
<td>200</td>
<td>250</td>
</tr>
<tr>
<td>minimum in each direction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apparent elongation, percent</td>
<td>D 4632</td>
<td>15</td>
<td>50</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>minimum, in each direction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water flow rate, gallons per minute/square</td>
<td>D 4491</td>
<td>10 - 100</td>
<td>100 - 150</td>
<td>100 - 200</td>
<td>75 - 200</td>
</tr>
<tr>
<td>foot minimum and maximum average roll value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80 - 150</td>
</tr>
<tr>
<td>Permittivity, sec⁻¹</td>
<td>D 4491</td>
<td>0.05</td>
<td>1.1</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>minimum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>Apparent opening size, inches</td>
<td>D 4751</td>
<td>0.023</td>
<td>0.012</td>
<td>0.023</td>
<td>0.012</td>
</tr>
<tr>
<td>maximum average roll value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.016</td>
</tr>
<tr>
<td>Ultraviolet resistance, percent</td>
<td>D 4355</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>minimum retained grab breaking load, 500 hr.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

88-1.06 CHANNEL AND SHORE PROTECTION

88-1.06A Rock Slope Protection

Rock slope protection (RSP) fabric must be a permeable, nonwoven, needle-punched geotextile. RSP fabric consists of 1 of the following:

1. Polyester
2. Polypropylene
3. Combined polyester and polypropylene

Polymers must be either virgin compounds or clean reworked material. Do not subject virgin compounds to use or processing other than required for initial manufacture. Clean reworked material must be previously processed material from the processor's own production that has been reground, pelletized, or solvated. RSP fabric must not consist of more than 20 percent by weight of clean reworked material. Do not use recycled materials from either post-consumer or post-industrial sources.

Class 8 or Class 10 RSP fabric must comply with:
Rock Slope Protection Fabric

<table>
<thead>
<tr>
<th>Property</th>
<th>ASTM</th>
<th>Specification Class 8</th>
<th>Specification Class 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight, oz/yd² minimum</td>
<td>D 5261</td>
<td>7.5</td>
<td>9.5</td>
</tr>
<tr>
<td>Grab breaking load, lb 1-inch grip, min. in each direction</td>
<td>D 4632</td>
<td>200</td>
<td>250</td>
</tr>
<tr>
<td>Apparent elongation, percent min., in each direction</td>
<td>D 4632</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Permittivity, sec⁻¹, minimum</td>
<td>D 4491</td>
<td>1.0</td>
<td>0.70</td>
</tr>
<tr>
<td>Apparent opening size, U.S. Standard sieve size minimum and maximum</td>
<td>D 4751</td>
<td>70 - 100</td>
<td>70 - 100</td>
</tr>
<tr>
<td>Ultraviolet resistance, percent minimum retained grab breaking load, 500 hr.</td>
<td>D 4355</td>
<td>70</td>
<td>70</td>
</tr>
</tbody>
</table>

88-1.07 PAVEMENT INTERLAYER

88-1.07A Paving Fabric

Geosynthetics used for paving fabric must be nonwoven. Paving fabric must comply with:

<table>
<thead>
<tr>
<th>Property</th>
<th>ASTM</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass per unit area, oz/yd² minimum</td>
<td>D 5261</td>
<td>4.1</td>
</tr>
<tr>
<td>Grab breaking load, lb 1-inch grip, minimum in each direction</td>
<td>D 4632</td>
<td>100</td>
</tr>
<tr>
<td>Apparent elongation, percent minimum in each direction</td>
<td>D 4632</td>
<td>50</td>
</tr>
<tr>
<td>Hydraulic bursting strength, psi minimum</td>
<td>D 3786</td>
<td>200</td>
</tr>
<tr>
<td>Melting point, °F minimum</td>
<td>D 276</td>
<td>325</td>
</tr>
<tr>
<td>Asphalt retention, gal/yd² minimum</td>
<td>D 6140</td>
<td>0.2</td>
</tr>
</tbody>
</table>

88-1.07B Paving Mat

Geosynthetics used for paving mat must be a nonwoven fiberglass and polyester hybrid material. Paving mat must comply with:

<table>
<thead>
<tr>
<th>Property</th>
<th>ASTM</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breaking force, lb/2 inches minimum</td>
<td>D 5035</td>
<td>45</td>
</tr>
<tr>
<td>Ultimate elongation, percent maximum</td>
<td>D 5035</td>
<td>5</td>
</tr>
<tr>
<td>Mass per unit area, oz/ sq yd minimum</td>
<td>D 5261</td>
<td>3.7</td>
</tr>
<tr>
<td>Melting point, °F minimum</td>
<td>D 276</td>
<td>400</td>
</tr>
<tr>
<td>Asphalt retention, gal/yd² minimum</td>
<td>D 6140</td>
<td>0.10</td>
</tr>
</tbody>
</table>
88-1.07C  Paving Grid

Geosynthetics used for paving grid must be a geopolymer material formed into a grid of integrally connected elements with openings. Paving grid must comply with:

<table>
<thead>
<tr>
<th>Property</th>
<th>Test</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength at ultimate, lb/in&lt;sup&gt;a&lt;/sup&gt; minimum</td>
<td>ASTM D 6637</td>
<td>560 x 1,120</td>
</tr>
<tr>
<td>Aperture size, inch minimum</td>
<td>Calipered</td>
<td>0.5</td>
</tr>
<tr>
<td>Elongation, % maximum</td>
<td>ASTM D 6637</td>
<td>12</td>
</tr>
<tr>
<td>Mass per area, oz / sqyd minimum</td>
<td>ASTM D 5261</td>
<td>16</td>
</tr>
<tr>
<td>Melting point, °F minimum</td>
<td>ASTM D 276</td>
<td>325</td>
</tr>
</tbody>
</table>

Note:
<sup>a</sup> For Class I, machine direction x cross direction. For Class II and Class III, both directions.

88-1.07D  Paving Geocomposite Grid

Paving geocomposite grid consists of paving grid specified under Section 88-1.07C, "Paving Grid," bonded or integrated with paving fabric specified under Section 88-1.07A, "Paving Fabric."

Paving geocomposite grid must have a peel strength of at least 10 pounds per foot determined under ASTM D 413.

88-1.07E  Geocomposite Strip Membrane

Geocomposite strip membrane must consist of various widths of strips manufactured from asphaltic rubber and geosynthetics. Geocomposite strip membrane must comply with:

<table>
<thead>
<tr>
<th>Property</th>
<th>ASTM</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strip tensile strength, lbs/inch minimum</td>
<td>D 882</td>
<td>50</td>
</tr>
<tr>
<td>Elongation at break, % minimum</td>
<td>D 882</td>
<td>50</td>
</tr>
<tr>
<td>Resistance to puncture, lbs. minimum</td>
<td>E 154</td>
<td>200</td>
</tr>
<tr>
<td>Permeance, perms maximum</td>
<td>E 96/E 96M</td>
<td>0.10</td>
</tr>
<tr>
<td>Pliability, 1/4 inch mandrel with sample conditioned at 25 °F</td>
<td>D 146</td>
<td>No cracks in fabric or bitumen</td>
</tr>
<tr>
<td>Melting point, °F</td>
<td>D 276</td>
<td>325</td>
</tr>
</tbody>
</table>

88-1.08  SEPARATION AND STABILIZATION

88-1.08A  Subgrade Enhancement Geotextile

Subgrade enhancement geotextile must consist of either of the following:

1. Polyester
2. Polypropylene

Subgrade enhancement geotextile must comply with:
## Subgrade Enhancement Geotextile

<table>
<thead>
<tr>
<th>Property</th>
<th>ASTM</th>
<th>Specification&lt;sup&gt;a&lt;/sup&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Class A1</td>
<td>Class A2</td>
</tr>
<tr>
<td>Elongation at break, %</td>
<td>D 4632</td>
<td>&lt;50</td>
</tr>
<tr>
<td>Grab tensile strength, lb minimum</td>
<td>D4632</td>
<td>250</td>
</tr>
<tr>
<td>Wide width tensile strength at 5% strain, lb/ft minimum</td>
<td>D 4595</td>
<td>--</td>
</tr>
<tr>
<td>Wide width tensile strength at ultimate strength, lb/ft minimum</td>
<td>D 4595</td>
<td>--</td>
</tr>
<tr>
<td>Tear strength, lb minimum</td>
<td>D 4533</td>
<td>90</td>
</tr>
<tr>
<td>Puncture strength, lb minimum</td>
<td>D 6241</td>
<td>500</td>
</tr>
<tr>
<td>Permittivity, sec&lt;sup&gt;−1&lt;/sup&gt; minimum</td>
<td>D 4491</td>
<td>0.05</td>
</tr>
<tr>
<td>Apparent opening size, inches maximum</td>
<td>D 4751</td>
<td>0.012</td>
</tr>
<tr>
<td>Ultraviolet stability (retained strength after 500 hrs exposure), % minimum</td>
<td>D 4355</td>
<td>70</td>
</tr>
</tbody>
</table>

Notes:

<sup>a</sup> Specifications are based on minimum average roll value in the weaker principle direction except apparent opening size is based on maximum average roll value.

### 88-1.09 PAYMENT

The Department measures and pays for geosynthetics under the specifications requiring their use.

### SECTION 90 PORTLAND CEMENT CONCRETE

(issued 08-05-11)

Replace Section 90 with:

### SECTION 90 PORTLAND CEMENT CONCRETE

#### 90-1 GENERAL

90-1.01 DESCRIPTION

Portland cement concrete shall be composed of cementitious material, fine aggregate, coarse aggregate, admixtures if used, and water, proportioned and mixed as specified in these specifications.

The Contractor shall determine the mix proportions for concrete in conformance with these specifications.

Minor concrete shall contain not less than 505 pounds of cementitious material per cubic yard unless otherwise specified in these specifications or the special provisions.

Unless otherwise designated on the plans or specified in these specifications or the special provisions, the amount of cementitious material used per cubic yard of concrete in structures or portions of structures shall conform to the following:
Use Cementitious Material Content (Pounds/CY)

<table>
<thead>
<tr>
<th>Use</th>
<th>Cementitious Material Content (Pounds/CY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete designated by compressive strength:</td>
<td></td>
</tr>
<tr>
<td>Deck slabs and slab spans of bridges</td>
<td>675 min., 800 max.</td>
</tr>
<tr>
<td>Roof sections of exposed top box culverts</td>
<td>675 min., 800 max.</td>
</tr>
<tr>
<td>Other portions of structures</td>
<td>590 min., 800 max.</td>
</tr>
<tr>
<td>Concrete not designated by compressive strength:</td>
<td></td>
</tr>
<tr>
<td>Deck slabs and slab spans of bridges</td>
<td>675 min.</td>
</tr>
<tr>
<td>Roof sections of exposed top box culverts</td>
<td>675 min.</td>
</tr>
<tr>
<td>Prestressed members</td>
<td>675 min.</td>
</tr>
<tr>
<td>Seal courses</td>
<td>675 min.</td>
</tr>
<tr>
<td>Other portions of structures</td>
<td>590 min.</td>
</tr>
<tr>
<td>Concrete for precast members</td>
<td>590 min., 925 max.</td>
</tr>
</tbody>
</table>

Except for minor structures, the minimum required compressive strength for concrete in structures or portions of structures shall be the strength specified, or 3600 pounds per square inch at 28 days, whichever is greater.

Except for when a modulus of rupture is specified, the minimum required compressive strength for concrete shall be the strength specified, or 2,500 pounds per square inch, whichever is greater. Concrete shall be proportioned such that the concrete will attain the minimum required compressive strength.

If the specified 28-day compressive strength is 3,600 pounds per square inch or greater, the concrete is designated by compressive strength. For concrete with a 28-day compressive strength greater than 3,600 pounds per square inch, 42 days will be allowed to obtain the specified strength.

For concrete not designated by compressive strength, the Engineer may test the concrete for compressive strength. The concrete will be accepted if the compressive strength at 28 days attains 85 percent or more of the minimum required compressive strength.

Concrete shall be proportioned to conform to the following shrinkage limitations when tested in conformance with the requirements of AASHTO Designation: T 160, modified as follows:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Maximum Shrinkage of Laboratory Cast Specimens at 28 days Drying (average of 3, %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paving and approach slab concrete</td>
<td>0.050</td>
</tr>
<tr>
<td>Bridge deck concrete</td>
<td>0.045</td>
</tr>
</tbody>
</table>

Note: Shrinkage requirement is waived for concrete that is used for precast elements.

Shrinkage tests shall be either:

A. Performed by a laboratory accredited to perform AASHTO Designation: T 160, or
B. Performed by a laboratory that maintains a current rating of 3 or better for the Cement and Concrete Reference Laboratory (CCRL) concrete proficiency sample program.

Laboratory cast specimens shall have a 4” x 4” cross section. Specimens shall be removed from the molds 23 ± 1 hours after mixing the concrete and placed in lime water at 73 ± 3 °F to 7 days age. A comparator reading shall be taken at 7 days age and recorded as the initial reading. Specimens then shall be stored in a humidity controlled room maintained at 73 ± 3 °F and 50 ± 4 percent relative humidity for the remainder of the test. Subsequent readings shall be taken at 7, 14, 21, and 28 days drying.

Test data verifying conformance to the shrinkage limitations shall be submitted with the mix design. Shrinkage testing data accepted by the Engineer no more than 3 years prior to the first working day of this contract will be acceptable for this entire contract, provided the data was for concrete with similar proportions and the same materials and material sources to be used on this contract. Concrete shall be considered to have similar proportions if, when compared to concrete to be used on this project, no more than 2 mix design elements are varied. Varied mix design elements shall fall within the tolerances in the following table:
<table>
<thead>
<tr>
<th>Mix Design Element</th>
<th>Tolerance (±)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water to cementitious material ratio</td>
<td>0.03</td>
</tr>
<tr>
<td>Total water content</td>
<td>5 %</td>
</tr>
<tr>
<td>Coarse aggregate (weight per cubic yard)</td>
<td>10 %</td>
</tr>
<tr>
<td>Fine aggregate (weight per cubic yard)</td>
<td>10 %</td>
</tr>
<tr>
<td>Supplementary cementitious material content</td>
<td>5 %</td>
</tr>
<tr>
<td>Admixture (as originally dosed)</td>
<td>25 %</td>
</tr>
</tbody>
</table>

Note: Admixtures must be of the same brand.

Before using concrete or in advance of revising the mix proportions, the Contractor shall submit in writing to the Engineer a copy of the mix design.

Compliance with cementitious material content requirements will be verified in conformance with procedures described in California Test 518 for cement content. For testing purposes, supplementary cementitious material (SCM) shall be considered to be cement. Batch proportions shall be adjusted as necessary to produce concrete having the specified cementitious material content.

If any concrete has a cementitious material, portland cement, or SCM content that is less than the minimum required, the concrete shall be removed. However, if the Engineer determines that the concrete is structurally adequate, the concrete may remain in place and the Contractor shall pay to the State $0.25 for each pound of cementitious material, portland cement, or SCM that is less than the minimum required. The Department may deduct the amount from any moneys due, or that may become due, the Contractor under the contract. The deductions will not be made unless the difference between the contents required and those actually provided exceeds the batching tolerances permitted by Section 90-5, "Proportioning." No deductions will be made based on the results of California Test 518.

The requirements of the preceding paragraph shall not apply to minor concrete.

90-2 MATERIALS

90-2.01 CEMENTITIOUS MATERIALS

Unless otherwise specified, cementitious material shall be either a combination of Type II or Type V portland cement and SCM, or a blended cement. No cementitious material shall be used in the work unless it is on the Department's Pre-Qualified Products List at the time of mix design submittal. Information regarding cementitious material qualification and placement on the Department's approved list can be obtained at the Transportation Laboratory.

Cementitious materials used in cast-in-place concrete for exposed surfaces of like elements of a structure shall be from the same sources and of the same proportions.

Cementitious materials shall be protected from moisture until used. Sacked cementitious materials shall be piled to permit access for tallying, inspecting, and identifying each shipment.

Facilities shall be provided to ensure that the various cementitious materials meeting this Section 90-2.01 are kept separate from each other and from other cementitious materials. A storage silo containing a cementitious material shall be emptied before using that silo for a different cementitious material. Blended cements with a percentage of SCM differing by more than 2 percentage points are considered different cementitious materials. Sampling cementitious materials shall be in conformance with California Test 125.

The Contractor shall furnish a Certificate of Compliance for cementitious materials in conformance with the provisions in Section 6-1.07, "Certificates of Compliance." The Certificate of Compliance shall indicate the source by name and location (including country, state, and city). If cementitious material is delivered directly to the job site, the Certificate of Compliance shall be signed by the cementitious material supplier. If the cementitious material is used in ready-mixed concrete or in precast concrete products purchased as such by the Contractor, the Certificate of Compliance shall be signed by the manufacturer of the concrete or product. If blended cement is used, the Certificate of Compliance shall include a statement signed by the blended cement supplier that indicates the actual percentage, by weight, of SCM in the blend. Weight of SCM shall be by weighing device conforming to Section 9-1.01, "Measurement of Quantities," or as determined by chemical analysis.

90-2.01A Cement

Portland cement shall conform to the requirements in ASTM Designation: C 150 except the C_3S content of Type II cement shall not exceed 65 percent.

Blended cement shall conform to the requirements for Portland Blast-Furnace Slag Cement, Type IS (MS) or Portland-Pozzolan Cement, Type IP (MS) in AASHTO Designation: M 240, except that the maximum limits on the pozzolan content shall not apply. Blended cement shall be comprised of Type II or Type V cement and SCM produced by intergrinding portland cement clinker and granulated blast furnace slag, ground granulated blast furnace.
slag (GGBFS), or pozzolan; by blending portland cement and either GGBFS or finely divided pozzolan; or by a combination of intergrinding and blending.

In addition, Type II portland cement and Type V portland cement shall conform to the following requirements:

A. The cement shall not contain more than 0.60-percent by mass of alkalies, calculated as the percentage of Na₂O plus 0.658 times the percentage of K₂O, when determined by methods as required in AASHTO Designation: T 105; and

B. The autoclave expansion shall not exceed 0.50-percent

Type III portland cement shall be used only as specified or with the approval of the Engineer. Type III portland cement shall conform to the additional requirements listed above for Type II portland cement. The Contractor may use Type III portland cement in the manufacturing of precast concrete.

90-2.01B Supplementary Cementitious Materials

Each supplementary cementitious material shall conform to one of the following:

A. Fly ash conforming to the requirements in AASHTO Designation: M 295, Class F, and these specifications. The available alkali, as sodium oxide equivalent, shall not exceed 1.5 percent when determined in conformance with the requirements in ASTM Designation: C 311 or the total alkali, as sodium oxide equivalent, shall not exceed 5.0 percent when determined in conformance with the requirements in AASHTO Designation: T 105.

B. Ultra fine fly ash (UFFA) conforming to the requirements in AASHTO Designation: M 295, Class F, and the following chemical and physical requirements:

<table>
<thead>
<tr>
<th>Chemical Requirements</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfur Trioxide (SO₃)</td>
<td>1.5 max.</td>
</tr>
<tr>
<td>Loss on ignition</td>
<td>1.2 max.</td>
</tr>
<tr>
<td>Available Alkalies (as Na₂O) equivalent</td>
<td>1.5 max.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physical Requirements</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle size distribution</td>
<td></td>
</tr>
<tr>
<td>Less than 3.5 microns</td>
<td>50</td>
</tr>
<tr>
<td>Less than 9.0 microns</td>
<td>90</td>
</tr>
<tr>
<td>Strength Activity Index with portland cement</td>
<td></td>
</tr>
<tr>
<td>7 days</td>
<td>95 (minimum % of control)</td>
</tr>
<tr>
<td>28 days</td>
<td>110 (minimum % of control)</td>
</tr>
<tr>
<td>Expansion at 16 days</td>
<td>0.10 max.</td>
</tr>
<tr>
<td>when testing job materials in</td>
<td></td>
</tr>
<tr>
<td>conformance with ASTM C 1567*</td>
<td></td>
</tr>
</tbody>
</table>

* In the test mix, Type II or Type V portland cement shall be replaced with at least 12% UFFA by weight.

C. Raw or calcined natural pozzolans conforming to the requirements in AASHTO Designation: M 295, Class N. and the following requirements and these specifications. The available alkali, as sodium oxide equivalent, shall not exceed 1.5 percent when determined in conformance with the requirements in ASTM Designation: C 311 or the total alkali, as sodium oxide equivalent, shall not exceed 5.0 percent when determined in conformance with the requirements in AASHTO Designation: T 105.

D. Metakaolin conforming to the requirements in AASHTO Designation: M 295, Class N, and the following chemical and physical requirements:

<table>
<thead>
<tr>
<th>Chemical Requirements</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon Dioxide (SiO₂) + Aluminum Oxide (Al₂O₃)</td>
<td>92.0 min.</td>
</tr>
<tr>
<td>Calcium Oxide (CaO)</td>
<td>1.0 max.</td>
</tr>
<tr>
<td>Sulfur Trioxide (SO₃)</td>
<td>1.0 max.</td>
</tr>
<tr>
<td>Loss on ignition</td>
<td>1.2 max.</td>
</tr>
<tr>
<td>Available Alkalies (as Na₂O) equivalent</td>
<td>1.0 max.</td>
</tr>
<tr>
<td>Physical Requirements</td>
<td>Percent</td>
</tr>
<tr>
<td>-----------------------------------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Particle size distribution</td>
<td>Less than 45 microns</td>
</tr>
<tr>
<td>Strength Activity Index with portland cement</td>
<td>7 days</td>
</tr>
<tr>
<td></td>
<td>28 days</td>
</tr>
</tbody>
</table>

E. Ground Granulated Blast Furnace Slag (GGBFS) conforming to the requirements in AASHTO Designation: M 302, Grade 100 or Grade 120.

F. Silica Fume conforming to the requirements of AASHTO Designation: M 307, with reduction in mortar expansion of 80 percent, minimum, using the cement from the proposed mix design.

Commingling of fly ash from different sources at uncontrolled ratios is permissible only if the following criteria are satisfied:

A. Sources of fly ash to be commingled shall each produce fly ash that conforms to the requirements in AASHTO Designation: M 295, Class F.

B. Testing of the commingled product is the responsibility of the fly ash supplier.

C. Each fly ash's running average of relative density shall not differ from any other by more than 0.25 at the time of commingling.

D. Each fly ash's running average of loss on ignition shall not differ from any other by more than one percent at the time of commingling.

E. The final product of commingled fly ash shall conform to the requirements in AASHTO Designation: M 295, Class F.

90-2.01C Required Use Of Supplementary Cementitious Materials

General

The amount of portland cement and SCM used in portland cement concrete shall conform to the minimum cementitious material content provisions in Section 90-1.01, "Description," or Section 90-4.05, "Optional Use of Chemical Admixtures," and these specifications.

The SCM content in portland cement concrete shall conform to one of the following:

A. Any combination of portland cement and at least one SCM, satisfying Equations (1) and (2):

   Equation (1)
   \[
   \frac{(25 \times UF) + (12 \times FA) + (10 \times FB) + (6 \times SL)}{MC} \geq X
   \]

   Where:

   UF = Silica fume, metakaolin, or UFFA, including the amount in blended cement, pounds per cubic yard.

   FA = Fly ash or natural pozzolan conforming to the requirements in AASHTO Designation: M 295, Class F or N with a CaO content up to 10 percent, including the amount in blended cement, pounds per cubic yard.

   FB = Fly ash or natural pozzolan conforming to the requirements in AASHTO Designation: M 295, Class F or N with a CaO content greater than 10 percent and up to 15 percent, including the amount in blended cement, pounds per cubic yard.

   SL = GGBFS, including the amount in blended cement, pounds per cubic yard.

   MC = Minimum amount of cementitious material specified, pounds per cubic yard.

   X = 1.8 for innocuous aggregate, 3.0 for all other aggregate.

   Equation (2)
MC – MSCM - PC ≥ 0

Where:

MC = Minimum amount of cementitious material specified, pounds per cubic yard.
MSCM = The minimum sum of SCMs that satisfies Equation (1) above, pounds per cubic yard.
PC = The amount of portland cement, including the amount in blended cement, pounds per cubic yard.

B. 15 percent of Class F fly ash with at least 48 ounces of LiNO$_3$ solution added per 100 pounds of portland cement. CaO content of the fly ash shall not exceed 15 percent.

**Precast Concrete**
The SCM content in precast portland cement concrete shall conform to one of the following:

A. Any combination of portland cement and SCM, satisfying the following equation:

Equation (3)

\[
\frac{(25 \times UF) + (12 \times FA) + (10 \times FB) + (6 \times SL)}{TC} \geq X
\]

Where:

UF = Silica fume, metakaolin, or UFFA, including the amount in blended cement, pounds per cubic yard.
FA = Fly ash or natural pozzolan conforming to the requirements in AASHTO Designation: M 295, Class F or N with a CaO content up to 10 percent, including the amount in blended cement, pounds per cubic yard.
FB = Fly ash or natural pozzolan conforming to the requirements in AASHTO Designation: M 295, Class F or N with a CaO content greater than 10 percent and up to 15 percent, including the amount in blended cement, pounds per cubic yard.
SL = GGBFS, including the amount in blended cement, pounds per cubic yard.
TC = Total amount of cementitious material used in the mix, pounds per cubic yard.
X = 0.0 if precast members are constructed with portland cement concrete using aggregate that is “innocuous” in conformance with the provisions in Section 90-2.02, “Aggregates.”
X = 3.0 for all other aggregate.

B. 15 percent of Class F fly ash with at least 48 ounces of LiNO$_3$ solution added per 100 pounds of portland cement. CaO content of the fly ash shall not exceed 15 percent.

C. Any combination of supplementary cementitious material and portland cement may be used if the expansion of cementitious material and aggregate does not exceed 0.10 percent when tested in conformance with the requirements in ASTM C 1567. Test data shall be submitted with each mix design. Test data accepted by the Engineer no more than 3 years prior to the first working day of this contract will be acceptable for this entire contract, provided the data was for the same concrete mix and the same materials and material sources to be used on this contract.

**90-2.02 AGGREGATES**
To be considered innocuous, aggregate must be on the Department's approved list, "Innocuous Aggregates for use in Concrete.” Information regarding aggregate qualification and placement on the Department's approved list can be obtained at the Transportation Laboratory.

Both coarse and fine aggregate must be on the approved list for the aggregate used in concrete to be considered innocuous.

Aggregates shall be free from deleterious coatings, clay balls, roots, bark, sticks, rags, and other extraneous material.

The Contractor shall provide safe and suitable facilities, including necessary splitting devices for obtaining samples of aggregates, in conformance with California Test 125.
Aggregates shall be of such character that it will be possible to produce workable concrete within the limits of water content provided in Section 90-6.06, "Amount of Water and Penetration."

Aggregates shall have not more than 10 percent loss when tested for soundness in conformance with the requirements in California Test 214. The soundness requirement for fine aggregate will be waived, provided that the durability index, $D_i$, of the fine aggregate is 60 or greater when tested for durability in conformance with California Test 229.

If the results of any one or more of the Cleanness Value, Sand Equivalent, or aggregate grading tests do not meet the requirements specified for "Operating Range" but all meet the "Contract Compliance" requirements, the placement of concrete shall be suspended at the completion of the current pour until tests or other information indicate that the next material to be used in the work will comply with the requirements specified for "Operating Range."

If the results of either or both the Cleanness Value and coarse aggregate grading tests do not meet the requirements specified for "Contract Compliance," the concrete that is represented by the tests shall be removed. However, if the Engineer determines that the concrete is structurally adequate, the concrete may remain in place, and the Contractor shall pay to the State $3.50 per cubic yard for paving concrete and $5.50 per cubic yard for all other concrete for the concrete represented by these tests and left in place. The Department may deduct the amount from any moneys due, or that may become due, the Contractor under the contract.

If the results of either or both the Sand Equivalent and fine aggregate grading tests do not meet the requirements specified for "Contract Compliance," the concrete which is represented by the tests shall be removed. However, if the Engineer determines that the concrete is structurally adequate, the concrete may remain in place, and the Contractor shall pay to the State $3.50 per cubic yard for paving concrete and $5.50 per cubic yard for all other concrete for the concrete represented by these tests and left in place. The Department may deduct the amount from any moneys due, or that may become due, the Contractor under the contract.

The 2 preceding paragraphs apply individually to the "Contract Compliance" requirements for coarse aggregate and fine aggregate. When both coarse aggregate and fine aggregate do not conform to the "Contract Compliance" requirements, both paragraphs shall apply. The payments specified in those paragraphs are in addition to any payments made in conformance with the provisions in Section 90-1.01, "Description."

No single Cleanness Value, Sand Equivalent, or aggregate grading test shall represent more than 300 cubic yards of concrete or one day's pour, whichever is smaller.

When the source of an aggregate is changed, the Contractor shall adjust the mix proportions and submit in writing to the Engineer a copy of the mix design before using the aggregates.

90-2.02A Coarse Aggregate

Coarse aggregate shall consist of gravel, crushed gravel, crushed rock, reclaimed aggregate, crushed air-cooled iron blast furnace slag or combinations thereof. Crushed air-cooled blast furnace slag shall not be used in reinforced or prestressed concrete.

Reclaimed aggregate is aggregate that has been recovered from plastic concrete by washing away the cementitious material. Reclaimed aggregate shall conform to all aggregate requirements.

Coarse aggregate shall conform to the following quality requirements:

<table>
<thead>
<tr>
<th>Tests</th>
<th>California Test</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss in Los Angeles Rattler (after 500 revolutions)</td>
<td>211</td>
<td>45% max.</td>
</tr>
<tr>
<td>Cleanness Value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Range</td>
<td>227</td>
<td>75 min.</td>
</tr>
<tr>
<td>Contract Compliance</td>
<td>227</td>
<td>71 min.</td>
</tr>
</tbody>
</table>

In lieu of the above Cleanness Value requirements, a Cleanness Value "Operating Range" limit of 71, minimum, and a Cleanness Value "Contract Compliance" limit of 68, minimum, will be used to determine the acceptability of the coarse aggregate if the Contractor furnishes a Certificate of Compliance, as provided in Section 6-1.07, "Certificates of Compliance," certifying that:

A. Coarse aggregate sampled at the completion of processing at the aggregate production plant had a Cleanness Value of not less than 82 when tested in conformance with the requirements in California Test 227; and
B. Prequalification tests performed in conformance with the requirements in California Test 549 indicated that the aggregate would develop a relative strength of not less than 95 percent and would have a relative shrinkage not greater than 105 percent, based on concrete.

90-2.02B Fine Aggregate

Fine aggregate shall consist of natural sand, manufactured sand produced from larger aggregate or a combination thereof. Manufactured sand shall be well graded.

Fine aggregate shall conform to the following quality requirements:

<table>
<thead>
<tr>
<th>Test</th>
<th>California Test</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic Impurities</td>
<td>213</td>
<td>Satisfactory$^a$</td>
</tr>
<tr>
<td>Sand Equivalent:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Range</td>
<td>217</td>
<td>75, min.</td>
</tr>
<tr>
<td>Contract Compliance</td>
<td>217</td>
<td>71, min.</td>
</tr>
</tbody>
</table>

$^a$Fine aggregate developing a color darker than the reference standard color may be accepted if 95% relative mortar strength is achieved when tested in conformance with ASTM C87.

In lieu of the above Sand Equivalent requirements, a Sand Equivalent "Operating Range" limit of 71, minimum, and a Sand Equivalent "Contract Compliance" limit of 68, minimum, will be used to determine the acceptability of the fine aggregate if the Contractor furnishes a Certificate of Compliance, as provided in Section 6-1.07, "Certificates of Compliance," certifying that:

A. Fine aggregate sampled at the completion of processing at the aggregate production plant had a Sand Equivalent value of not less than 82 when tested by California Test 217; and
B. Prequalification tests performed in conformance with California Test 549 indicated that the aggregate would develop a relative strength of not less than 95 percent and would have a relative shrinkage not greater than 105 percent, based on concrete.

90-2.03 WATER

In conventionally reinforced concrete work, the water for curing, for washing aggregates, and for mixing shall be free from oil and shall not contain more than 1,000 parts per million of chlorides as Cl, when tested in conformance with California Test 422, nor more than 1,300 parts per million of sulfates as SO$_4^-$, when tested in conformance with California Test 417. In prestressed concrete work, the water for curing, for washing aggregates, and for mixing shall be free from oil and shall not contain more than 650 parts per million of chlorides as Cl, when tested in conformance with California Test 422, nor more than 1,300 parts per million of sulfates as SO$_4^-$, when tested in conformance with California Test 417. In no case shall the water contain an amount of impurities that will cause either of the following results when compared to the same test using distilled or deionized water: 1) a change in the setting time of cement of more than 25 percent when tested in conformance with the requirements in ASTM Designation: C 191 or ASTM Designation: C 266 or 2) a reduction in the compressive strength of mortar at 14 days of more than 5 percent, when tested in conformance with the requirements in ASTM Designation: C 109.

In nonreinforced concrete work, the water for curing, for washing aggregates and for mixing shall be free from oil and shall not contain more than 2,000 parts per million of chlorides as Cl, when tested in conformance with California Test 422, or more than 1,500 parts per million of sulfates as SO$_4^-$, when tested in conformance with California Test 417.

In addition to the above provisions, water for curing concrete shall not contain impurities in a sufficient amount to cause discoloration of the concrete or produce etching of the surface.

Water reclaimed from mixer wash-out operations may be used in mixing concrete. The water shall not contain coloring agents or more than 300 parts per million of alcalis (Na$_2$O + 0.658 K$_2$O) as determined on the filtrate. The specific gravity of the water shall not exceed 1.03 and shall not vary more than ±0.010 during a day's operations.

90-2.04 Admixture Materials

Admixture materials shall be stored and dispensed in liquid form and conform to the following requirements:

A. Chemical Admixtures—ASTM Designation: C 494.
C. Lithium Nitrate shall be in an aqueous solution conforming to the following:
1. Lithium Nitrate (LiNO$_3$) must be 30 percent +/- 0.5 percent by weight
2. Sulfate (SO$_4$) must be less than 1000 ppm
3. Chloride (Cl) must be less than 1000 ppm
4. Alkalis (Na$_2$O + 0.658 K$_2$O) must be less than 1000 ppm

90-3 AGGREGATE GRADINGS

90-3.01 GENERAL

Before beginning concrete work, the Contractor shall submit in writing to the Engineer the gradation of the primary aggregate nominal sizes that the Contractor proposes to furnish. If a primary coarse aggregate or the fine aggregate is separated into 2 or more sizes, the proposed gradation shall consist of the gradation for each individual size, and the proposed proportions of each individual size, combined mathematically to indicate one proposed gradation. The proposed gradation shall meet the grading requirements shown in the table in this section, and shall show the percentage passing each of the sieve sizes used in determining the end result.

The Engineer may waive, in writing, the gradation requirements in this Section 90-3.01 and in Sections 90-3.02, "Coarse Aggregate Grading," 90-3.03, "Fine Aggregate Grading," and 90-3.04, "Combined Aggregate Gradings," if, in the Engineer's opinion, furnishing the gradation is not necessary for the type or amount of concrete work to be constructed.

Gradations proposed by the Contractor shall be within the following percentage passing limits:

<table>
<thead>
<tr>
<th>Primary Aggregate Nominal Size</th>
<th>Sieve Size</th>
<th>Limits of Proposed Gradation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1/2&quot; x 3/4&quot;</td>
<td>1&quot;</td>
<td>19 - 41</td>
</tr>
<tr>
<td>1&quot; x No. 4</td>
<td>3/4&quot;</td>
<td>52 - 85</td>
</tr>
<tr>
<td>1&quot; x No. 4</td>
<td>3/8&quot;</td>
<td>15 - 38</td>
</tr>
<tr>
<td>1/2&quot; x No. 4</td>
<td>3/8&quot;</td>
<td>40 - 78</td>
</tr>
<tr>
<td>3/8&quot; x No. 8</td>
<td>3/8&quot;</td>
<td>50 - 85</td>
</tr>
<tr>
<td>Fine Aggregate No. 16</td>
<td></td>
<td>55 - 75</td>
</tr>
<tr>
<td>Fine Aggregate No. 30</td>
<td></td>
<td>34 - 46</td>
</tr>
<tr>
<td>Fine Aggregate No. 50</td>
<td></td>
<td>16 - 29</td>
</tr>
</tbody>
</table>

Should the Contractor change the source of supply, the Contractor shall submit in writing to the Engineer the new gradations before their intended use.

90-3.02 COARSE AGGREGATE GRADING

The grading requirements for coarse aggregates are shown in the following table for each size of coarse aggregate:

<table>
<thead>
<tr>
<th>Sieve Sizes</th>
<th>Percentage Passing Primary Aggregate Nominal Sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2&quot;</td>
<td>88 - 100</td>
</tr>
<tr>
<td>1-1/2&quot;</td>
<td>X ±18</td>
</tr>
<tr>
<td>1&quot;</td>
<td>0 - 17</td>
</tr>
<tr>
<td>3/4&quot;</td>
<td>---</td>
</tr>
<tr>
<td>1/2&quot;</td>
<td>0 - 7</td>
</tr>
<tr>
<td>3/8&quot;</td>
<td>---</td>
</tr>
<tr>
<td>No. 4</td>
<td>---</td>
</tr>
<tr>
<td>No. 8</td>
<td>---</td>
</tr>
</tbody>
</table>

In the above table, the symbol X is the gradation that the Contractor proposes to furnish for the specific sieve size as provided in Section 90-3.01, "General."

Coarse aggregate for the 1-1/2 inch, maximum, combined aggregate grading as provided in Section 90-3.04, "Combined Aggregate Gradings," shall be furnished in 2 or more primary aggregate nominal sizes. Each primary aggregate nominal size may be separated into 2 sizes and stored separately, provided that the combined material conforms to the grading requirements for that particular primary aggregate nominal size.
When the one inch, maximum, combined aggregate grading as provided in Section 90-3.04, “Combined Aggregate Gradings,” is to be used, the coarse aggregate may be separated into 2 sizes and stored separately, provided that the combined material shall conform to the grading requirements for the 1” x No. 4 primary aggregate nominal size.

90-3.03 FINE AGGREGATE GRADING

Fine aggregate shall be graded within the following limits:

<table>
<thead>
<tr>
<th>Sieve Sizes</th>
<th>Percentage Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operating Range</td>
</tr>
<tr>
<td>3/8”</td>
<td>100</td>
</tr>
<tr>
<td>No. 4</td>
<td>95 - 100</td>
</tr>
<tr>
<td>No. 8</td>
<td>65 - 95</td>
</tr>
<tr>
<td>No. 16</td>
<td>X ±10</td>
</tr>
<tr>
<td>No. 30</td>
<td>X ±9</td>
</tr>
<tr>
<td>No. 50</td>
<td>X ±6</td>
</tr>
<tr>
<td>No. 100</td>
<td>2 - 12</td>
</tr>
<tr>
<td>No. 200</td>
<td>0 - 8</td>
</tr>
</tbody>
</table>

In the above table, the symbol X is the gradation that the Contractor proposes to furnish for the specific sieve size as provided in Section 90-3.01, "General."

In addition to the above required grading analysis, the distribution of the fine aggregate sizes shall be such that the difference between the total percentage passing the No. 16 sieve and the total percentage passing the No. 30 sieve shall be between 10 and 40, and the difference between the percentage passing the No. 30 and No. 50 sieves shall be between 10 and 40.

Fine aggregate may be separated into 2 or more sizes and stored separately, provided that the combined material conforms to the grading requirements specified in this Section 90-3.03.

90-3.04 COMBINED AGGREGATE GRADINGS

Combined aggregate grading limits shall be used only for the design of concrete mixes. Concrete mixes shall be designed so that aggregates are combined in proportions that shall produce a mixture within the grading limits for combined aggregates as specified herein.

The combined aggregate grading, except when otherwise specified in these specifications or the special provisions, shall be either the 1-1/2 inch, maximum grading, or the 1 inch, maximum grading, at the option of the Contractor.

<table>
<thead>
<tr>
<th>Sieve Sizes</th>
<th>Percentage Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-1/2” Max.</td>
</tr>
<tr>
<td>2”</td>
<td>100</td>
</tr>
<tr>
<td>1-1/2”</td>
<td>90 - 100</td>
</tr>
<tr>
<td>1”</td>
<td>50 - 86</td>
</tr>
<tr>
<td>3/4”</td>
<td>45 - 75</td>
</tr>
<tr>
<td>1/2”</td>
<td>—</td>
</tr>
<tr>
<td>3/8”</td>
<td>38 - 55</td>
</tr>
<tr>
<td>No. 4</td>
<td>30 - 45</td>
</tr>
<tr>
<td>No. 8</td>
<td>23 - 38</td>
</tr>
<tr>
<td>No. 16</td>
<td>17 - 33</td>
</tr>
<tr>
<td>No. 30</td>
<td>10 - 22</td>
</tr>
<tr>
<td>No. 50</td>
<td>4 - 10</td>
</tr>
<tr>
<td>No. 100</td>
<td>1 - 6</td>
</tr>
<tr>
<td>No. 200</td>
<td>0 - 3</td>
</tr>
</tbody>
</table>

Changes from one grading to another shall not be made during the progress of the work unless permitted by the Engineer.
90-4 ADMIXTURES

90-4.01 GENERAL

Admixtures used in portland cement concrete shall conform to and be used in conformance with the provisions in this Section 90-4 and the special provisions. Admixtures shall be used when specified or ordered by the Engineer and may be used at the Contractor's option as provided herein.

Chemical admixtures and air-entraining admixtures containing chlorides as Cl in excess of one percent by weight of admixture, as determined by California Test 415, shall not be used.

Admixtures shall be uniform in properties throughout their use in the work. Should it be found that an admixture as furnished is not uniform in properties, its use shall be discontinued.

If more than one admixture is used, the admixtures shall be compatible with each other so that the desirable effects of all admixtures used will be realized.

Chemical admixtures shall be used in conformance with the manufacturer's written recommendations. The manufacturer's written recommendations shall include a statement that the admixtures are compatible with the types and amounts of SCM's used.

90-4.02 MATERIALS

Admixture materials shall conform to the provisions in Section 90-2.04, "Admixture Materials."

90-4.03 ADMIXTURE APPROVAL

No admixture brand shall be used in the work unless it is on the Department's current list of approved brands for the type of admixture involved. Information regarding admixture qualification and placement on the Department's list can be obtained at the Transportation Laboratory.

If the Contractor proposes to use an admixture of a brand and type on the current list of approved admixture brands, the Contractor shall furnish a Certificate of Compliance from the manufacturer, as provided in Section 6-1.07, "Certificates of Compliance," certifying that the admixture furnished is the same as that previously approved. If a previously approved admixture is not accompanied by a Certificate of Compliance, the admixture shall not be used in the work until the Engineer has had sufficient time to make the appropriate tests and has approved the admixture for use. The Engineer may take samples for testing at any time, whether or not the admixture has been accompanied by a Certificate of Compliance.

90-4.04 REQUIRED USE OF CHEMICAL ADMIXTURES

If the use of a chemical admixture is specified, the admixture shall be used at the dosage specified, except that if no dosage is specified, the admixture shall be used at the dosage normally recommended by the manufacturer of the admixture.

90-4.05 OPTIONAL USE OF CHEMICAL ADMIXTURES

The Contractor may use Type A or F, water-reducing; Type B, retarding; or Type D or G, water-reducing and retarding admixtures as described in ASTM Designation: C 494 to conserve cementitious material or to facilitate any concrete construction application subject to the following conditions:

A. If a water-reducing admixture or a water-reducing and retarding admixture is used, the cementitious material content specified or ordered may be reduced by a maximum of 5 percent by weight, except that the resultant cementitious material content shall be not less than 505 pounds per cubic yard; and
B. When a reduction in cementitious material content is made, the dosage of admixture used shall be no less than the dosage used in determining approval of the admixture.

The Contractor may use Type S admixtures conforming to the requirements in ASTM Designation: C 494. Unless otherwise specified, a Type C accelerating chemical admixture conforming to the requirements in ASTM Designation: C 494, may be used in portland cement concrete. Inclusion in the mix design submitted for approval will not be required provided that the admixture is added to counteract changing conditions that contribute to delayed setting of the portland cement concrete, and the use or change in dosage of the admixture is approved in writing by the Engineer.

90-4.06 REQUIRED USE OF AIR-ENTRAINING ADMIXTURES

When air-entrainment is specified or ordered by the Engineer, the air-entraining admixture shall be used in amounts to produce a concrete having the specified air content as determined by California Test 504.
90-4.07 OPTIONAL USE OF AIR-ENTRAINING ADMIXTURES

When air-entrainment has not been specified or ordered by the Engineer, the Contractor will be permitted to use an air-entraining admixture to facilitate the use of any construction procedure or equipment provided that the average air content, as determined by California Test 504, of 3 successive tests does not exceed 4 percent, and no single test value exceeds 5.5 percent. If the Contractor elects to use an air-entraining admixture in concrete for pavement, the Contractor shall so indicate at the time the Contractor designates the source of aggregate.

90-4.08 BLANK

90-4.09 BLANK

90-4.10 PROPORTIONING AND DISPENSING LIQUID ADMIXTURES

Chemical admixtures and air-entraining admixtures shall be dispensed in liquid form. Dispensers for liquid admixtures shall have sufficient capacity to measure at one time the prescribed quantity required for each batch of concrete. Each dispenser shall include a graduated measuring unit into which liquid admixtures are measured to within ±5 percent of the prescribed quantity for each batch. Dispensers shall be located and maintained so that the graduations can be accurately read from the point at which proportioning operations are controlled to permit a visual check of batching accuracy prior to discharge. Each measuring unit shall be clearly marked for the type and quantity of admixture.

Each liquid admixture dispensing system shall be equipped with a sampling device consisting of a valve located in a safe and readily accessible position such that a sample of the admixture may be withdrawn slowly by the Engineer.

If more than one liquid admixture is used in the concrete mix, each liquid admixture shall have a separate measuring unit and shall be dispensed by injecting equipment located in such a manner that the admixtures are not mixed at high concentrations and do not interfere with the effectiveness of each other. When air-entraining admixtures are used in conjunction with other liquid admixtures, the air-entraining admixture shall be the first to be incorporated into the mix, unless it is demonstrated that a different sequence improves performance.

When automatic proportioning devices are used, dispensers for liquid admixtures shall operate automatically with the batching control equipment. The dispensers shall be equipped with an automatic warning system in good operating condition that will provide a visible or audible signal at the point at which proportioning operations are controlled when the quantity of admixture measured for each batch of concrete varies from the preselected dosage by more than 5 percent, or when the entire contents of the measuring unit are not emptied from the dispenser into each batch of concrete.

Unless liquid admixtures are added to premeasured water for the batch, their discharge into the batch shall be arranged to flow into the stream of water so that the admixtures are well dispersed throughout the batch, except that air-entraining admixtures may be dispensed directly into moist sand in the batching bins provided that adequate control of the air content of the concrete can be maintained.

Liquid admixtures requiring dosages greater than one-half gallon per cubic yard shall be considered to be water when determining the total amount of free water as specified in Section 90-6.06, "Amount of Water and Penetration."

90-4.11 BLANK

90-5 PROPORTIONING

90-5.01 STORAGE OF AGGREGATES

Aggregates shall be stored or stockpiled in such a manner that separation of coarse and fine particles of each size shall be avoided and the various sizes shall not become intermixed before proportioning.

Aggregates shall be stored or stockpiled and handled in a manner that prevent contamination by foreign materials. In addition, storage of aggregates at batching or mixing facilities that are erected subsequent to the award of the contract and that furnish concrete to the project shall conform to the following:

A. Intermingling of the different sizes of aggregates shall be positively prevented. The Contractor shall take the necessary measures to prevent intermingling. The preventive measures may include, but are not necessarily limited to, physical separation of stockpiles or construction of bulkheads of adequate length and height; and

B. Contamination of aggregates by contact with the ground shall be positively prevented. The Contractor shall take the necessary measures to prevent contamination. The preventive measures shall include, but are
not necessarily limited to, placing aggregates on wooden platforms or on hardened surfaces consisting of portland cement concrete, asphalt concrete, or cement treated material.

In placing aggregates in storage or in moving the aggregates from storage to the weigh hopper of the batching plant, any method that may cause segregation, degradation, or the combining of materials of different gradings that will result in any size of aggregate at the weigh hopper failing to meet the grading requirements, shall be discontinued. Any method of handling aggregates that results in excessive breakage of particles shall be discontinued. The use of suitable devices to reduce impact of falling aggregates may be required by the Engineer.

90-5.02 PROPORTIONING DEVICES

Weighing, measuring, or metering devices used for proportioning materials shall conform to the requirements in Section 9-1.01, "Measurement of Quantities," and this Section 90-5.02. In addition, automatic weighing systems shall comply with the requirements for automatic proportioning devices in Section 90-5.03A, "Automatic Proportioning." Automatic devices shall be automatic to the extent that the only manual operation required for proportioning the aggregates, cement, and SCM for one batch of concrete is a single operation of a switch or starter.

For concrete pavement, aggregate and bulk cementitious material must be proportioned by weight by means of automatic proportioning devices.

Proportioning devices shall be tested as frequently as the Engineer may deem necessary to ensure their accuracy.

Weighing equipment shall be insulated against vibration or movement of other operating equipment in the plant. When the plant is in operation, the weight of each batch of material shall not vary from the weight designated by the Engineer by more than the tolerances specified herein.

Equipment for cumulative weighing of aggregate shall have a zero tolerance of ±0.5 percent of the designated total batch weight of the aggregate. For systems with individual weigh hoppers for the various sizes of aggregate, the zero tolerance shall be ±0.5 percent of the individual batch weight designated for each size of aggregate. Equipment for cumulative weighing of cement and SCM shall have a zero tolerance of ±0.5 percent of the designated total batch weight of the cement and SCM. Equipment for weighing cement or SCM separately shall have a zero tolerance of ±0.5 percent of their designated individual batch weights. Equipment for measuring water shall have a zero tolerance of ±0.5 percent of its designated weight or volume.

The weight indicated for any batch of material shall not vary from the preselected scale setting by more than the following:

A. Aggregate weighed cumulatively shall be within 1.0 percent of the designated total batch weight of the aggregate. Aggregates weighed individually shall be within 1.5 percent of their respective designated batch weights; and

B. Cement shall be 99 to 102 percent of its designated batch weight. When weighed individually, SCM shall be 99 to 102 percent of its designated batch weight. When SCM and cement are permitted to be weighed cumulatively, cement shall be weighed first to 99 to 102 percent of its designated batch weight, and the total for cement and SCM shall be 99 to 102 percent of the sum of their designated batch weights. When a blended cement is used, the percentages of cement and SCM used for calculating batch weights shall be based on the percentage of SCM indicated in the Certificate of Compliance from the blended cement supplier; and

C. Water shall be within 1.5 percent of its designated weight or volume.

Each scale graduation shall be approximately 0.001 of the total capacity of the scale. The capacity of scales for weighing cement, SCM, or cement plus SCM and aggregates shall not exceed that of commercially available scales having single graduations indicating a weight not exceeding the maximum permissible weight variation above, except that no scale shall be required having a capacity of less than 1,000 pounds, with one pound graduations.

90-5.03 PROPORTIONING

Proportioning shall consist of dividing the aggregates into the specified sizes, each stored in a separate bin, and combining them with cementitious material and water as provided in these specifications. Aggregates shall be proportioned by weight.

At the time of batching, aggregates shall have been dried or drained sufficiently to result in a stable moisture content such that no visible separation of water from aggregate will take place during transport from the proportioning plant to the point of mixing. In no event shall the free moisture content of the fine aggregate at the time of batching exceed 8 percent of its saturated, surface-dry weight.
Should separate supplies of aggregate material of the same size group, but of different moisture content or specific gravity or surface characteristics affecting workability, be available at the proportioning plant, withdrawals shall be made from one supply exclusively and the materials therein completely exhausted before starting upon another.

Bulk Type IP (MS) or Type IS (MS) cement shall be weighed in an individual hopper and shall be kept separate from the aggregates until the ingredients are released for discharge into the mixer.

Bulk cement and SCM may be weighed in separate, individual weigh hoppers or may be weighed in the same weigh hopper and shall be kept separate from the aggregates until the ingredients are released for discharge into the mixer. If the cement and SCM are weighed cumulatively, the cement shall be weighed first.

If cement and SCM are weighed in separate weigh hoppers, the weigh systems for the proportioning of the aggregate, the cement, and the SCM shall be individual and distinct from all other weigh systems. Each weigh system shall be equipped with a hopper, a lever system, and an indicator to constitute an individual and independent material-weighing device. The cement and the SCM shall be discharged into the mixer simultaneously with the aggregate.

The scales and weigh hoppers for bulk weighing cement, SCM, or cement plus SCM shall be separate and distinct from the aggregate weighing equipment.

For batches of one cubic yard or more, the batching equipment shall conform to one of the following combinations:

A. Separate boxes and separate scale and indicator for weighing each size of aggregate.
B. Single box and scale indicator for all aggregates.
C. Single box or separate boxes and automatic weighing mechanism for all aggregates.

In order to check the accuracy of batch weights, the gross weight and tare weight of batch trucks, truck mixers, truck agitators, and non-agitating hauling equipment shall be determined when ordered by the Engineer. The equipment shall be weighed on scales designated by the Engineer.

90-5.03A Automatic Proportioning

Automatic proportioning devices shall be authorized by the Department.

For concrete pavement, the Contractor shall install and maintain in operating condition an electronically actuated moisture meter that will indicate, on a readily visible scale, changes in the moisture content of the fine aggregate as it is batched within a sensitivity of 0.5 percent by weight of the fine aggregate.

The batching of cement, SCM, or cement plus SCM and aggregate shall be interlocked so that a new batch cannot be started until all weigh hoppers are empty, the proportioning devices are within zero tolerance, and the discharge gates are closed. The interlock shall permit no part of the batch to be discharged until all aggregate hoppers and the cement and SCM hoppers or the cement plus SCM hopper are charged with weights that are within the tolerances specified in Section 90-5.02, "Proportioning Devices."

If interlocks are required for cement and SCM charging mechanisms and cement and SCM are weighed cumulatively, their charging mechanisms shall be interlocked to prevent the introduction of SCM until the weight of cement in the cement weigh hopper is within the tolerances specified in Section 90-5.02, "Proportioning Devices."

If concrete is completely mixed in stationary mixers, the SCMs shall be weighed in a separate weigh hopper and the SCM and cement shall be introduced simultaneously into the mixer proportionately with the aggregate. If the Contractor provides certification that the stationary mixer is capable of mixing the cement, SCM, aggregates, and water uniformly before discharge, weighing the SCM cumulatively with the cement is permitted. Certification shall contain the following:

A. Test results for 2 compressive strength test cylinders of concrete taken within the first one-third and 2 compressive strength test cylinders of concrete taken within the last one-third of the concrete discharged from a single batch from the stationary mixer. Strength tests and cylinder preparation will be in conformance with the provisions of Section 90-9, "Compressive Strength";
B. Calculations demonstrating that the difference in the averages of 2 compressive strengths taken in the first one-third is no greater than 7.5 percent different than the averages of 2 compressive strengths taken in the last one-third of the concrete discharged from a single batch from the stationary mixer. Strength tests and cylinder preparation will be in conformance with the provisions of Section 90-9, "Compressive Strength;" and
C. The mixer rotation speed and time of mixing before discharge that are required to produce a mix that meets the requirements above.
The discharge gate on the cement and SCM hoppers or the cement plus SCM hopper shall be designed to permit regulating the flow of cement, SCM, or cement plus SCM into the aggregate as directed by the Engineer. If separate weigh boxes are used for each size of aggregate, the discharge gates shall permit regulating the flow of each size of aggregate as directed by the Engineer.

Material discharged from the several bins shall be controlled by gates or by mechanical conveyors. The means of withdrawal from the several bins, and of discharge from the weigh box, shall be interlocked so that not more than one bin can discharge at a time, and so that the weigh box cannot be tripped until the required quantity from each of the several bins has been deposited therein. Should a separate weigh box be used for each size of aggregate, all may be operated and discharged simultaneously.

If the discharge from the several bins is controlled by gates, each gate shall be actuated automatically so that the required weight is discharged into the weigh box, after which the gate shall automatically close and lock.

The automatic weighing system shall be designed so that all proportions required may be set on the weighing controller at the same time.

90-6 MIXING AND TRANSPORTING

90-6.01 GENERAL

Concrete shall be mixed in mechanically operated mixers, except that when permitted by the Engineer, batches not exceeding 1/3 cubic yard may be mixed by hand methods in conformance with the provisions in Section 90-6.05, "Hand-Mixing."

Equipment having components made of aluminum or magnesium alloys that would have contact with plastic concrete during mixing, transporting, or pumping of portland cement concrete shall not be used.

Concrete shall be homogeneous and thoroughly mixed, and there shall be no lumps or evidence of undispersed cementitious material.

Uniformity of concrete mixtures will be determined by differences in penetration as determined by California Test 533, or slump as determined by ASTM Designation: C 143, and by variations in the proportion of coarse aggregate as determined by California Test 529.

When the mix design specifies a penetration value, the difference in penetration, determined by comparing penetration tests on 2 samples of mixed concrete from the same batch or truck mixer load, shall not exceed 1/2 inch. When the mix design specifies a slump value, the difference in slump, determined by comparing slump tests on 2 samples of mixed concrete from the same batch or truck mixer load, shall not exceed the values given in the table below. Variation in the proportion of coarse aggregate will be determined by comparing the results of tests of 2 samples of mixed concrete from the same batch or truck mixer load and the difference between the 2 results shall not exceed 170 pounds per cubic yard of concrete.

<table>
<thead>
<tr>
<th>Average Slump</th>
<th>Maximum Permissible Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 4&quot;</td>
<td>1&quot;</td>
</tr>
<tr>
<td>4&quot; to 6&quot;</td>
<td>1-1/2&quot;</td>
</tr>
<tr>
<td>Greater than 6&quot; to 9&quot;</td>
<td>2&quot;</td>
</tr>
</tbody>
</table>

The Contractor shall furnish samples of the freshly mixed concrete and provide satisfactory facilities for obtaining the samples.

90-6.02 MACHINE MIXING

Concrete mixers may be of the revolving drum or the revolving blade type, and the mixing drum or blades shall be operated uniformly at the mixing speed recommended by the manufacturer. Mixers and agitators that have an accumulation of hard concrete or mortar shall not be used.

The temperature of mixed concrete, immediately before placing, shall be not less than 50 °F or more than 90 °F. Aggregates and water shall be heated or cooled as necessary to produce concrete within these temperature limits. Neither aggregates nor mixing water shall be heated to exceed 150 °F. If ice is used to cool the concrete, discharge of the mixer will not be permitted until all ice is melted.

The batch shall be so charged into the mixer that some water will enter in advance of cementitious materials and aggregates. All water shall be in the drum by the end of the first one-fourth of the specified mixing time. When concrete is delivered in a truck mixer, a portion of the mixing water may be withheld and, if allowed by the Engineer, may be added at the point of delivery as specified under Section 90-6.03, "Transporting Mixed Concrete."

Cementitious materials shall be batched and charged into the mixer by means that will not result either in loss of cementitious materials due to the effect of wind, in accumulation of cementitious materials on surfaces of conveyors or hoppers, or in other conditions that reduce or vary the required quantity of cementitious material in the concrete mixture.
Stationary mixers shall be operated with an automatic timing device. The timing device and discharge mechanism shall be interlocked so that during normal operation no part of the batch will be discharged until the specified mixing time has elapsed.

The total elapsed time between the intermingling of damp aggregates and all cementitious materials and the start of mixing shall not exceed 30 minutes.

The size of batch shall not exceed the manufacturer's guaranteed capacity.

When producing concrete for pavement or base, suitable batch counters shall be installed and maintained in good operating condition at job site batching plants and stationary mixers. The batch counters shall indicate the exact number of batches proportioned and mixed.

Concrete shall be mixed and delivered to the job site by means of one of the following combinations of operations:

A. Mixed completely in a stationary mixer and the mixed concrete transported to the point of delivery in truck agitators or in nonagitating hauling equipment (central-mixed concrete).

B. Mixed partially in a stationary mixer, and the mixing completed in a truck mixer (shrink-mixed concrete).

C. Mixed completely in a truck mixer (transit-mixed concrete).

Agitators may be truck mixers operating at agitating speed or truck agitators. Each mixer and agitator shall have attached thereto in a prominent place a metal plate or plates on which is plainly marked the various uses for which the equipment is designed, the manufacturer's guaranteed capacity of the drum or container in terms of the volume of mixed concrete and the speed of rotation of the mixing drum or blades.

Truck mixers shall be equipped with electrically or mechanically actuated revolution counters by which the number of revolutions of the drum or blades may readily be verified.

When shrink-mixed concrete is furnished, concrete that has been partially mixed at a central plant shall be transferred to a truck mixer and all requirements for transit-mixed concrete shall apply. No credit in the number of revolutions at mixing speed will be allowed for partial mixing in a central plant.

90-6.03 TRANSPORTING MIXED CONCRETE

Mixed concrete may be transported to the delivery point in truck agitators or truck mixers operating at the speed designated by the manufacturer of the equipment as agitating speed, or in non-agitating hauling equipment, provided the consistency and workability of the mixed concrete upon discharge at the delivery point is suitable for adequate placement and consolidation in place, and provided the mixed concrete after hauling to the delivery point conforms to the provisions in Section 90-6.01, "General."

Truck agitators shall be loaded not to exceed the manufacturer's guaranteed capacity and shall maintain the mixed concrete in a thoroughly mixed and uniform mass during hauling.

Bodies of nonagitating hauling equipment shall be constructed so that leakage of the concrete mix, or any part thereof, will not occur at any time.

Concrete hauled in open-top vehicles shall be protected during hauling against rain or against exposure to the sun for more than 20 minutes when the ambient temperature exceeds 75 °F.

No water in excess of that in the approved mix design shall be incorporated into the concrete. If approved by the Engineer, water withheld during batching may be added to the concrete at the delivery point in one operation before the discharge of more than 1/4 cubic yard. Equipment for supplying the water shall conform to Section 90-6.06, "Amount of Water and Penetration." When water is added at the point of delivery, the drum shall be revolved not less than 30 revolutions at mixing speed after the water is added and before discharged is commenced.

The rate of discharge of mixed concrete from a truck mixer or agitator shall be controlled by the speed of rotation of the drum in the discharge direction with the discharge gate fully open.

If a truck mixer or agitator is used for transporting concrete to the delivery point, discharge shall be completed within 1.5 hours or before 250 revolutions of the drum or blades, whichever occurs first, after the introduction of the cementitious materials to the aggregates. Under conditions contributing to quick stiffening of the concrete, or if the temperature of the concrete is 85 °F or above, the time allowed may be less than 1.5 hours. If an admixture is used to retard the set time, the temperature of the concrete shall not exceed 85 °F, the time limit shall be 2 hours, and the revolution limitation shall be 300.

If nonagitating hauling equipment is used for transporting concrete to the delivery point, discharge shall be completed within one hour after the addition of the cementitious materials to the aggregates. Under conditions contributing to quick stiffening of the concrete, or when the temperature of the concrete is 85 °F or above, the time between the introduction of cementitious materials to the aggregates and discharge shall not exceed 45 minutes.

Each load of concrete delivered at the job site shall be accompanied by a weighmaster certificate showing the mix identification number, nonrepeating load number, date and time at which the materials were batched, the total amount of water added to the load, and for transit-mixed concrete, the reading of the revolution counter at the time.
the truck mixer is charged with cement. This weighmaster certificate shall also show the actual scale weights (pounds) for the ingredients batched. Theoretical or target batch weights shall not be used as a substitute for actual scale weights.

Weighmaster certificates shall be provided in printed form, or if approved by the Engineer, the data may be submitted in electronic media. Electronic media shall be presented in a tab-delimited format on a CD or DVD. Captured data, for the ingredients represented by each batch shall be "line feed, carriage return" (LFCR) and "one line, separate record" with allowances for sufficient fields to satisfy the amount of data required by these specifications.

The Contractor may furnish a weighmaster certificate accompanied by a separate certificate that lists the actual batch weights or measurements for a load of concrete provided that both certificates are imprinted with the same nonrepeating load number that is unique to the contract and delivered to the jobsite with the load.

Weighmaster certificates furnished by the Contractor shall conform to the provisions in Section 9-1.01, "Measurement of Quantities."

90-6.04 TIME OR AMOUNT OF MIXING

Mixing of concrete in stationary mixers shall continue for the required mixing time after all ingredients, except water and admixture, if added with the water, are in the mixing compartment of the mixer before any part of the batch is released. Transfer time in multiple drum mixers shall not be counted as part of the required mixing time.

The required mixing time, in stationary mixers, of concrete used for concrete structures, except minor structures, shall be not less than 90 seconds or more than 5 minutes, except that when directed by the Engineer in writing, the requirements of the following paragraph shall apply.

The required mixing time in stationary mixers, except as provided in the preceding paragraph, shall be not less than 50 seconds or more than 5 minutes.

The minimum required revolutions at the mixing speed for transit-mixed concrete shall not be less than that recommended by the mixer manufacturer, but in no case shall the number of revolutions be less than that required to consistently produce concrete conforming to the provisions for uniformity in Section 90-6.01, "General."

When a high range water-reducing admixture is added to the concrete at the job site, the total number of revolutions shall not exceed 300.

90-6.05 HAND-MIXING

Hand-mixed concrete shall be made in batches of not more than 1/3 cubic yard and shall be mixed on a watertight, level platform. The proper amount of coarse aggregate shall be measured in measuring boxes and spread on the platform and the fine aggregate shall be spread on this layer, the 2 layers being not more than one foot in total depth. On this mixture shall be spread the dry cementitious materials and the whole mass turned no fewer than 2 times dry; then sufficient clean water shall be added, evenly distributed, and the whole mass again turned no fewer than 3 times, not including placing in the carriers or forms.

90-6.06 AMOUNT OF WATER AND PENETRATION

The amount of water used in concrete mixes shall be regulated so that the penetration of the concrete as determined by California Test 533 or the slump of the concrete as determined by ASTM Designation: C 143 is within the nominal values shown in the following table. When the penetration or slump of the concrete is found to exceed the nominal values listed, the mixture of subsequent batches shall be adjusted to reduce the penetration or slump to a value within the nominal range shown. Batches of concrete with a penetration or slump exceeding the maximum values listed shall not be used in the work. If Type F or Type G chemical admixtures are added to the mix, the penetration requirements shall not apply and the slump shall not exceed 9 inches after the chemical admixtures are added.

<table>
<thead>
<tr>
<th>Type of Work</th>
<th>Nominal Penetration (inches)</th>
<th>Nominal Slump (inches)</th>
<th>Maximum Penetration (inches)</th>
<th>Maximum Slump (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete Pavement</td>
<td>0 - 1</td>
<td>—</td>
<td>1-1/2</td>
<td>—</td>
</tr>
<tr>
<td>Non-reinforced concrete facilities</td>
<td>0 – 1-1/2</td>
<td>—</td>
<td>2</td>
<td>—</td>
</tr>
<tr>
<td>Reinforced concrete structures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sections over 12 inches thick</td>
<td>0 – 1-1/2</td>
<td>—</td>
<td>2-1/2</td>
<td>—</td>
</tr>
<tr>
<td>Sections 12 inches thick or less</td>
<td>0 - 2</td>
<td>—</td>
<td>3</td>
<td>—</td>
</tr>
<tr>
<td>Concrete placed under water</td>
<td>—</td>
<td>6-8</td>
<td>—</td>
<td>9</td>
</tr>
<tr>
<td>Cast-in-place concrete piles</td>
<td>2-1/2 – 3-1/2</td>
<td>5-7</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>
The amount of free water used in concrete shall not exceed 310 pounds per cubic yard, plus 20 pounds for each required 100 pounds of cementitious material in excess of 550 pounds per cubic yard.

The term free water is defined as the total water in the mixture minus the water absorbed by the aggregates in reaching a saturated surface-dry condition.

If there are adverse or difficult conditions that affect the placing of concrete, the above specified penetration and free water content limitations may be exceeded providing the Contractor is granted permission by the Engineer in writing to increase the cementitious material content per cubic yard of concrete. The increase in water and cementitious material shall be at a ratio not to exceed 30 pounds of water per added 100 pounds of cementitious material per cubic yard. Full compensation for additional cementitious material and water added under these conditions shall be considered as included in the contract price paid for the concrete work involved and no additional compensation will be allowed therefor.

The equipment for supplying water to the mixer shall be constructed and arranged so that the amount of water added can be measured accurately. Any method of discharging water into the mixer for a batch shall be accurate within 1.5 percent of the quantity of water required to be added to the mix for any position of the mixer. Tanks used to measure water shall be designed so that water cannot enter while water is being discharged into the mixer and discharge into the mixer shall be made rapidly in one operation without dribbling. All equipment shall be arranged so as to permit checking the amount of water delivered by discharging into measured containers.

**90-7 CURING CONCRETE**

**90-7.01 METHODS OF CURING**

Newly placed concrete shall be cured by the methods specified in this Section 90-7.01 and the special provisions.

**90-7.01A Water Method**

The concrete shall be kept continuously wet by the application of water for a minimum curing period of 7 days after the concrete has been placed.

Cotton mats, rugs, carpets, or earth or sand blankets may be used as a curing medium to retain the moisture during the curing period.

If a curing medium consisting of cotton mats, rugs, carpets, polyethylene sheeting, polyethylene sheeting on burlap, or earth or sand blankets is to be used to retain the moisture, the entire surface of the concrete shall be kept damp by applying water with a nozzle that so atomizes the flow that a mist and not a spray is formed, until the surface of the concrete is covered with the curing medium. The moisture from the nozzle shall not be applied under pressure directly upon the concrete and shall not be allowed to accumulate on the concrete in a quantity sufficient to cause a flow or wash the surface. At the expiration of the curing period, the concrete surfaces shall be cleared of all curing media.

At the option of the Contractor, a curing medium consisting of white opaque polyethylene sheeting extruded onto burlap may be used to cure concrete structures. The polyethylene sheeting shall have a minimum thickness of 4-mil, and shall be extruded onto 10-ounce burlap.

At the option of the Contractor, a curing medium consisting of polyethylene sheeting may be used to cure concrete columns. The polyethylene sheeting shall have a minimum thickness of 10-mil achieved in a single layer of material.

If the Contractor chooses to use polyethylene sheeting or polyethylene sheeting on burlap as a curing medium, these media and any joints therein shall be secured as necessary to provide moisture retention and shall be within 3 inches of the concrete at all points along the surface being cured. When these media are used, the temperature of the concrete shall be monitored during curing. If the temperature of the concrete cannot be maintained below 140°F, use of these curing media shall be disallowed.

When concrete bridge decks and flat slabs are to be cured without the use of a curing medium, the entire surface of the bridge deck or slab shall be kept damp by the application of water with an atomizing nozzle as specified above, until the concrete has set, after which the entire surface of the concrete shall be sprinkled continuously with water for a period of not less than 7 days.

**90-7.01B Curing Compound Method**

Surfaces of the concrete that are exposed to the air shall be sprayed uniformly with a curing compound.

Curing compounds to be used shall be as follows:

1. Pigmented curing compound conforming to the requirements in ASTM Designation: C 309, Type 2, Class B, except the resin type shall be poly-alpha-methylstyrene.
2. Pigmented curing compound conforming to the requirements in ASTM Designation: C 309, Type 2, Class B.
3. Pigmented curing compound conforming to the requirements in ASTM Designation: C 309, Type 2, Class A.
4. Nonpigmented curing compound conforming to the requirements in ASTM Designation: C 309, Type 1, Class B.
5. Nonpigmented curing compound conforming to the requirements in ASTM Designation: C 309, Type 1, Class A.
6. Nonpigmented curing compound with fugitive dye conforming to the requirements in ASTM Designation: C 309, Type 1-D, Class A.

The infrared scan for the dried vehicle from curing compound (1) shall match the infrared scan on file at the Transportation Laboratory.

The loss of water for each type of curing compound, when tested in conformance with the requirements in California Test 534, shall not be more than 0.28 pounds per square yard in 24 hours.

The curing compound to be used will be specified elsewhere in these specifications or in the special provisions.

If the use of curing compound is required or permitted elsewhere in these specifications or in the special provisions and no specific kind is specified, any of the curing compounds listed above may be used.

Curing compound shall be applied at a nominal rate of one gallon per 150 square feet, unless otherwise specified.

At any point, the application rate shall be within \(\pm 50 \) square feet per gallon of the nominal rate specified, and the average application rate shall be within \(\pm 25 \) square feet per gallon of the nominal rate specified when tested in conformance with the requirements in California Test 535. Runs, sags, thin areas, skips, or holidays in the applied curing compound shall be evidence that the application is not satisfactory.

Curing compounds shall be applied using power operated spray equipment. The power operated spraying equipment shall be equipped with an operational pressure gage and a means of controlling the pressure. Hand spraying of small and irregular areas that are not reasonably accessible to mechanical spraying equipment, in the opinion of the Engineer, may be permitted.

The curing compound shall be applied to the concrete following the surface finishing operation, immediately before the moisture sheen disappears from the surface, but before any drying shrinkage or craze cracks begin to appear. In the event of any drying or cracking of the surface, application of water with an atomizing nozzle as specified in Section 90-7.01A, "Water Method," shall be started immediately and shall be continued until application of the compound is resumed or started; however, the compound shall not be applied over any resulting freestanding water. Should the film of compound be damaged from any cause before the expiration of 7 days after the concrete is placed in the case of structures and 72 hours in the case of pavement, the damaged portion shall be repaired immediately with additional compound.

At the time of use, compounds containing pigments shall be in a thoroughly mixed condition with the pigment uniformly dispersed throughout the vehicle. A paddle shall be used to loosen all settled pigment from the bottom of the container, and a power driven agitator shall be used to disperse the pigment uniformly throughout the vehicle.

Agitation shall not introduce air or other foreign substance into the curing compound.

The manufacturer shall include in the curing compound the necessary additives for control of sagging, pigment settling, leveling, de-emulsification, or other requisite qualities of a satisfactory working material. Pigmented curing compounds shall be manufactured so that the pigment does not settle badly, does not cake or thicken in the container, and does not become granular or curdled. Settlement of pigment shall be a thoroughly wetted, soft, mushy mass permitting the complete and easy vertical penetration of a paddle. Settled pigment shall be easily redispersed, with minimum resistance to the sideways manual motion of the paddle across the bottom of the container, to form a smooth uniform product of the proper consistency.

Curing compounds shall remain sprayable at temperatures above 40 °F and shall not be diluted or altered after manufacture.

The curing compound shall be packaged in clean 274-gallon totes, 55-gallon barrels or 5-gallon pails shall be supplied from a suitable storage tank located at the jobsite. The containers shall comply with "Title 49, Code of Federal Regulations, Hazardous Materials Regulations." The 274-gallon totes and the 55-gallon barrels shall have removable lids and airtight fasteners. The 5-gallon pails shall be round and have standard full open head and bail. Lids with bungholes will not be permitted. Settling or separation of solids in containers, except tanks, must be completely redispersed with low speed mixing prior to use, in conformance with these specifications and the manufacturer's recommendations. Mixing shall be accomplished either manually by use of a paddle or by use of a mixing blade driven by a drill motor, at low speed. Mixing blades shall be the type used for mixing paint. On-site storage tanks shall be kept clean and free of contaminants. Each tank shall have a permanent system designed to completely redisperse settled material without introducing air or other foreign substances.
Steel containers and lids shall be lined with a coating that will prevent destructive action by the compound or chemical agents in the air space above the compound. The coating shall not come off the container or lid as skins. Containers shall be filled in a manner that will prevent skinning. Plastic containers shall not react with the compound.

Each container shall be labeled with the manufacturer's name, kind of curing compound, batch number, volume, date of manufacture, and volatile organic compound (VOC) content. The label shall also warn that the curing compound containing pigment shall be well stirred before use. Precautions concerning the handling and the application of curing compound shall be shown on the label of the curing compound containers in conformance with the Construction Safety Orders and General Industry Safety Orders of the State.

Containers of curing compound shall be labeled to indicate that the contents fully comply with the rules and regulations concerning air pollution control in the State.

When the curing compound is shipped in tanks or tank trucks, a shipping invoice shall accompany each load. The invoice shall contain the same information as that required herein for container labels.

Curing compound will be sampled by the Engineer at the source of supply, at the job site, or at both locations.

Curing compound shall be formulated so as to maintain the specified properties for a minimum of one year. The Engineer may require additional testing before use to determine compliance with these specifications if the compound has not been used within one year or whenever the Engineer has reason to believe the compound is no longer satisfactory.

Tests will be conducted in conformance with the latest ASTM test methods and methods in use by the Transportation Laboratory.

90-7.01C Waterproof Membrane Method

The exposed finished surfaces of concrete shall be sprayed with water, using a nozzle that so atomizes the flow that a mist and not a spray is formed, until the concrete has set, after which the curing membrane, shall be placed. The curing membrane shall remain in place for a period of not less than 72 hours.

Sheeting material for curing concrete shall conform to the requirements in AASHTO Designation: M 171 for white reflective materials.

The sheeting material shall be fabricated into sheets of such width as to provide a complete cover for the entire concrete surface. Joints in the sheets shall be securely cemented together in such a manner as to provide a waterproof joint. The joint seams shall have a minimum lap of 0.33 foot.

The sheets shall be securely weighted down by placing a bank of earth on the edges of the sheets or by other means satisfactory to the Engineer.

Should any portion of the sheets be broken or damaged before the expiration of 72 hours after being placed, the broken or damaged portions shall be immediately repaired with new sheets properly cemented into place.

Sections of membrane that have lost their waterproof qualities or have been damaged to such an extent as to render them unfit for curing the concrete shall not be used.

90-7.01D Forms-In-Place Method

Formed surfaces of concrete may be cured by retaining the forms in place. The forms shall remain in place for a minimum period of 7 days after the concrete has been placed, except that for members over 20 inches in least dimension the forms shall remain in place for a minimum period of 5 days.

Joints in the forms and the joints between the end of forms and concrete shall be kept moisture tight during the curing period. Cracks in the forms and cracks between the forms and the concrete shall be resealed by methods subject to the approval of the Engineer.

90-7.02 BLANK

90-7.03 CURING STRUCTURES

Newly placed concrete for cast-in-place structures, other than highway bridge decks, shall be cured by the water method, the forms-in-place method, or, as permitted herein, by the curing compound method, in conformance with the provisions in Section 90-7.01, "Methods of Curing."

The curing compound method using a pigmented curing compound may be used on concrete surfaces of construction joints, surfaces that are to be buried underground, and surfaces where only ordinary surface finish is to be applied and on which a uniform color is not required and that will not be visible from a public traveled way. If the Contractor elects to use the curing compound method on the bottom slab of box girder spans, the curing compound shall be curing compound (1).

The top surface of highway bridge decks shall be cured by both the curing compound method and the water method. The curing compound shall be curing compound (1).
Concrete surfaces of minor structures, as defined in Section 51-1.02, "Minor Structures," shall be cured by the water method, the forms-in-place method or the curing compound method.

When deemed necessary by the Engineer during periods of hot weather, water shall be applied to concrete surfaces being cured by the curing compound method or by the forms-in-place method, until the Engineer determines that a cooling effect is no longer required. Application of water for this purpose will be paid for as extra work as provided in Section 4-1.03D, "Extra Work."

90-7.04 CURING PRECAST CONCRETE MEMBERS

Precast concrete members shall be cured in conformance with any of the methods specified in Section 90-7.01, "Methods of Curing." Curing shall be provided for the minimum time specified for each method or until the concrete reaches its design strength, whichever is less. Steam curing may also be used for precast members and shall conform to the following provisions:

A. After placement of the concrete, members shall be held for a minimum 4-hour presteaming period. If the ambient air temperature is below 50 °F, steam shall be applied during the presteaming period to hold the air surrounding the member at a temperature between 50 °F and 90 °F.

B. To prevent moisture loss on exposed surfaces during the presteaming period, members shall be covered as soon as possible after casting or the exposed surfaces shall be kept wet by fog spray or wet blankets.

C. Enclosures for steam curing shall allow free circulation of steam about the member and shall be constructed to contain the live steam with a minimum moisture loss. The use of tarpaulins or similar flexible covers will be permitted, provided they are kept in good repair and secured in such a manner as to prevent the loss of steam and moisture.

D. Steam at the jets shall be at low pressure and in a saturated condition. Steam jets shall not impinge directly on the concrete, test cylinders, or forms. During application of the steam, the temperature rise within the enclosure shall not exceed 40 °F per hour. The curing temperature throughout the enclosure shall not exceed 150 °F and shall be maintained at a constant level for a sufficient time necessary to develop the required transfer strength. Control cylinders shall be covered to prevent moisture loss and shall be placed in a location where temperature is representative of the average temperature of the enclosure.

E. Temperature recording devices that will provide an accurate, continuous, permanent record of the curing temperature shall be provided. A minimum of one temperature recording device per 200 feet of continuous bed length will be required for checking temperature.

F. Members in pretension beds shall be detensioned immediately after the termination of steam curing while the concrete and forms are still warm, or the temperature under the enclosure shall be maintained above 60 °F until the stress is transferred to the concrete.

G. Curing of precast concrete will be considered completed after termination of the steam curing cycle.

90-7.05 CURING PRECAST PRESTRESSED CONCRETE PILES

Newly placed concrete for precast prestressed concrete piles shall be cured in conformance with the provisions in Section 90-7.04, "Curing Precast Concrete Members," except that piles in a corrosive environment shall be cured as follows:

A. Piles shall be either steam cured or water cured. If water curing is used, the piles shall be kept continuously wet by the application of water in conformance with the provisions in Section 90-7.01A, "Water Method."

B. If steam curing is used, the steam curing provisions in Section 90-7.04, "Curing Precast Concrete Members," shall apply except that the piles shall be kept continuously wet for their entire length for a period of not less than 3 days, including the holding and steam curing periods.

90-7.06 CURING SLOPE PROTECTION

Concrete slope protection shall be cured in conformance with any of the methods specified in Section 90-7.01, "Methods of Curing."

Concreted-rock slope protection shall be cured in conformance with any of the methods specified in Section 90-7.01, "Methods of Curing," with a blanket of earth kept wet for 72 hours, or by sprinkling with a fine spray of water every 2 hours during the daytime for a period of 3 days.

90-7.07 CURING MISCELLANEOUS CONCRETE WORK

Exposed surfaces of curbs shall be cured by pigmented curing compounds as specified in Section 90-7.01B, "Curing Compound Method."
Concrete sidewalks, gutter depressions, island paving, curb ramps, driveways, and other miscellaneous concrete areas shall be cured in conformance with any of the methods specified in Section 90-7.01, "Methods of Curing."

Shotcrete shall be cured for at least 72 hours by spraying with water, by a moist earth blanket, or by any of the methods provided in Section 90-7.01, "Methods of Curing."

Mortar and grout shall be cured by keeping the surface damp for 3 days.

After placing, the exposed surfaces of sign structure foundations, including pedestal portions, if constructed, shall be cured for at least 72 hours by spraying with water, by a moist earth blanket, or by any of the methods provided in Section 90-7.01, "Methods of Curing."

90-8 PROTECTING CONCRETE

90-8.01 GENERAL

In addition to the provisions in Section 7-1.16, "Contractor's Responsibility for the Work and Materials," the Contractor shall protect concrete as provided in this Section 90-8. If required by the Engineer, the Contractor shall submit a written outline of the proposed methods for protecting the concrete.

The Contractor shall protect concrete from damage from any cause, which shall include, but not be limited to: rain, heat, cold, wind, Contractor's actions, and actions of others.

Concrete shall not be placed on frozen or ice-coated ground or subgrade nor on ice-coated forms, reinforcing steel, structural steel, conduits, precast members, or construction joints.

Under rainy conditions, placing of concrete shall be stopped before the quantity of surface water is sufficient to damage surface mortar or cause a flow or wash of the concrete surface, unless the Contractor provides adequate protection against damage.

Concrete that has been frozen or damaged by other causes, as determined by the Engineer, shall be removed and replaced by the Contractor at the Contractor's expense.

90-8.02 PROTECTING CONCRETE STRUCTURES

Structure concrete and shotcrete used as structure concrete shall be maintained at a temperature of not less than 45 °F for 72 hours after placing and at not less than 40 °F for an additional 4 days.

90-9 COMpressive STRENGTH

90-9.01 GENERAL

Concrete compressive strength requirements consist of a minimum strength that shall be attained before various loads or stresses are applied to the concrete and, for concrete designated by compressive strength, a minimum strength at the age of 28 days or at the age otherwise allowed in Section 90-1.01, "Description." The various strengths required are specified in these specifications or the special provisions or are shown on the plans.

The compressive strength of concrete will be determined from test cylinders that have been fabricated from concrete sampled in conformance with the requirements of California Test 539. Test cylinders will be molded and initially field cured in conformance with California Test 540. Test cylinders will be cured and tested after receipt at the testing laboratory in conformance with the requirements of California Test 521. A strength test shall consist of the average strength of 2 cylinders fabricated from material taken from a single load of concrete, except that, if any cylinder should show evidence of improper sampling, molding, or testing, that cylinder shall be discarded and the strength test shall consist of the strength of the remaining cylinder.

When concrete compressive strength is specified as a prerequisite to applying loads or stresses to a concrete structure or member, test cylinders for other than steam cured concrete will be cured in conformance with Method 1 of California Test 540. The compressive strength of concrete determined for these purposes will be evaluated on the basis of individual tests.

When concrete is designated by compressive strength rather than by cementitious material content, the concrete strength to be used as a basis for acceptance of other than steam cured concrete will be determined from cylinders cured in conformance with Method 1 of California Test 540. If the result of a single compressive strength test at the maximum age specified or allowed is below the specified strength but is 95 percent or more of the specified strength, the Contractor shall make corrective changes, subject to approval of the Engineer, in the mix proportions or in the concrete fabrication procedures, before placing additional concrete, and shall pay to the State $10 for each in-place cubic yard of concrete represented by the deficient test. If the result of a single compressive strength test at the maximum age specified or allowed is below 95 percent of the specified strength, but is 85 percent or more of the specified strength, the Contractor shall make the corrective changes specified above, and shall pay to the State $15 for each in-place cubic yard of concrete represented by the deficient test. In addition, such corrective changes shall be made when the compressive strength of concrete tested at 7 days indicates, in the judgment of the Engineer, that the concrete will not attain the required compressive strength at the maximum age specified or allowed.
represented by a single test that indicates a compressive strength of less than 85 percent of the specified 28-day compressive strength will be rejected in conformance with the provisions in Section 6-1.04, "Defective Materials."

If the test result indicates that the compressive strength at the maximum age specified or allowed is below the specified strength, but is 85 percent or more of the specified strength, payments to the State as required above shall be made, unless the Contractor, at the Contractor's expense, obtains and submits evidence acceptable to the Engineer that the strength of the concrete placed in the work meets or exceeds the specified 28-day compressive strength. If the test result indicates a compressive strength at the maximum age specified or allowed below 85 percent, the concrete represented by that test will be rejected, unless the Contractor, at the Contractor's expense, obtains and submits evidence acceptable to the Engineer that the strength of the concrete placed in the work is at least 85 percent of the specified strength. If the evidence consists of tests made on cores taken from the work, the cores shall be obtained and tested in conformance with the requirements in ASTM Designation: C 42.

No single compressive strength test shall represent more than 320 cubic yards.

If a precast concrete member is steam cured, the compressive strength of the concrete will be determined from test cylinders that have been handled and stored in conformance with Method 3 of California Test 540. The compressive strength of steam cured concrete will be evaluated on the basis of individual tests representing specific portions of production. If the concrete is designated by 28-day compressive strength rather than by cementitious material content, the concrete shall be considered to be acceptable whenever its compressive strength reaches the specified 28-day compressive strength provided that strength is reached in not more than the maximum number of days specified or allowed after the member is cast.

When concrete has a specified 28-day compressive strength greater than 3,600 pounds per square inch or when prequalification is specified, prequalification of materials, mix proportions, mixing equipment, and procedures proposed for use will be required prior to placement of the concrete. Prequalification shall be accomplished by the submission of acceptable certified test data or trial batch reports by the Contractor. Prequalification data shall be based on the use of materials, mix proportions, mixing equipment, procedures, and size of batch proposed for use in the work.

Certified test data, in order to be acceptable, shall indicate that not less than 90 percent of at least 20 consecutive tests exceed the specified strength at the maximum number of days specified or allowed, and none of those tests are less than 95 percent of specified strength. Strength tests included in the data shall be the most recent tests made on concrete of the proposed mix design and all shall have been made within one year of the proposed use of the concrete.

Trial batch test reports, in order to be acceptable, shall indicate that the average compressive strength of 5 consecutive concrete cylinders, taken from a single batch, at not more than 28 days (or the maximum age allowed) after molding shall be at least 600 pounds per square inch greater than the specified 28-day compressive strength, and no individual cylinder shall have a strength less than the specified strength at the maximum age specified or allowed. Data contained in the report shall be from trial batches that were produced within one year of the proposed use of specified strength concrete in the project. Whenever air-entrainment is required, the air content of trial batches shall be equal to or greater than the air content specified for the concrete without reduction due to tolerances.

Tests shall be performed in conformance with either the appropriate California Test methods or the comparable ASTM test methods. Equipment employed in testing shall be in good condition and shall be properly calibrated. If the tests are performed during the life of the contract, the Engineer shall be notified sufficiently in advance of performing the tests in order to witness the test procedures.

The certified test data and trial batch test reports shall include the following information:

A. Date of mixing.
B. Mixing equipment and procedures used.
C. The size of batch in cubic yards and the weight, type, and source of all ingredients used.
D. Penetration or slump (if the concrete will be placed under water or placed in cast-in-place concrete piles) of the concrete.
E. The air content of the concrete if an air-entraining admixture is used.
F. The age at time of testing and strength of all concrete cylinders tested.

Certified test data and trial batch test reports shall be signed by an official of the firm that performed the tests.

When approved by the Engineer, concrete from trial batches may be used in the work at locations where concrete of a lower quality is required and the concrete will be paid for as the type of concrete required at that location.
After materials, mix proportions, mixing equipment, and procedures for concrete have been prequalified for use, additional prequalification by testing of trial batches will be required prior to making changes that, in the judgment of the Engineer, could result in a strength of concrete below that specified.

The Contractor's attention is directed to the time required to test trial batches and the Contractor shall be responsible for production of trial batches at a sufficiently early date so that the progress of the work is not delayed.

When precast concrete members are manufactured at the plant of an established manufacturer of precast concrete members, the mix proportions of the concrete shall be determined by the Contractor, and a trial batch and prequalification of the materials, mix proportions, mixing equipment, and procedures will not be required.

### 90-10 MINOR CONCRETE

#### 90-10.01 GENERAL

Concrete for minor structures, slope paving, curbs, sidewalks and other concrete work, when designated as minor concrete on the plans, in the specifications, or in the contract item, shall conform to the provisions specified herein.

The Engineer, at the Engineer's discretion, will inspect and test the facilities, materials and methods for producing the concrete to ensure that minor concrete of the quality suitable for use in the work is obtained.

Before using minor concrete or in advance of revising the mix proportions, the Contractor shall submit in writing to the Engineer a copy of the mix design. When required by the following table, the Contractor shall include compressive strength test results verifying the minimum specified compressive strength:

<table>
<thead>
<tr>
<th>SCM</th>
<th>Test Submittal Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fly Ash used alone</td>
<td>When portland cement content &lt; 350 lbs/cy</td>
</tr>
<tr>
<td>GGBFS used alone</td>
<td>When portland cement content &lt; 250 lbs/cy</td>
</tr>
<tr>
<td>Natural Pozzolan used alone</td>
<td>When portland cement content &lt; 350 lbs/cy</td>
</tr>
<tr>
<td>More than 1 SCM</td>
<td>Always</td>
</tr>
</tbody>
</table>

Tests shall be performed by an ACI certified technician.

#### 90-10.02 MATERIALS

Minor concrete shall conform to the following requirements:

**90-10.02A Cementitious Material**

Cementitious material shall conform to the provisions in Section 90-1.01, "Description," and 90-2, "Materials."

**90-10.02B Aggregate**

Aggregate shall be clean and free from deleterious coatings, clay balls, roots, and other extraneous materials. Use of crushed concrete or reclaimed aggregate is acceptable only if the aggregate satisfies all aggregate requirements.

The Contractor shall submit to the Engineer for approval, a grading of the combined aggregate proposed for use in the minor concrete. After acceptance of the grading, aggregate furnished for minor concrete shall conform to that grading, unless a change is authorized in writing by the Engineer.

The Engineer may require the Contractor to furnish periodic test reports of the aggregate grading furnished.

The maximum size of aggregate used shall be at the option of the Contractor, but in no case shall the maximum size be larger than 1-1/2-inch or smaller than 3/4 inch.

The Engineer may waive, in writing, the gradation requirements in this Section 90-10.02B, if, in the Engineer's opinion, the furnishing of the gradation is not necessary for the type or amount of concrete work to be constructed.

**90-10.02C Water**

Water used for washing, mixing, and curing shall be free from oil, salts, and other impurities that would discolor or etch the surface or have an adverse affect on the quality of the concrete.

**90-10.02D Admixtures**

The use of admixtures shall conform to the provisions in Section 90-4, "Admixtures."
90-10.03 PRODUCTION

Cementitious material, water, aggregate, and admixtures shall be stored, proportioned, mixed, transported, and discharged in conformance with recognized standards of good practice that will result in concrete that is thoroughly and uniformly mixed, that is suitable for the use intended, and that conforms to requirements specified herein. Recognized standards of good practice are outlined in various industry publications such as are issued by American Concrete Institute, AASHTO, or the Department.

The cementitious material content of minor concrete shall conform to the provisions in Section 90-1.01, "Description."

The amount of water used shall result in a consistency of concrete conforming to the provisions in Section 90-6.06, "Amount of Water and Penetration."

Additional mixing water shall not be incorporated into the concrete during hauling or after arrival at the delivery point, unless allowed by the Engineer.

Discharge of ready-mixed concrete from the transporting vehicle shall be made while the concrete is still plastic and before stiffening occurs. An elapsed time of 1.5 hours (one hour in non-agitating hauling equipment), or more than 250 revolutions of the drum or blades, after the introduction of the cementitious material to the aggregates, or a temperature of concrete of more than 90 °F will be considered conditions contributing to the quick stiffening of concrete. The Contractor shall take whatever action is necessary to eliminate quick stiffening, except that the addition of water will not be permitted.

The required mixing time in stationary mixers shall be not less than 50 seconds or more than 5 minutes.

The minimum required revolutions at mixing speed for transit-mixed concrete shall be not less than that recommended by the mixer manufacturer, and shall be increased, if necessary, to produce thoroughly and uniformly mixed concrete.

When a high range water-reducing admixture is added to the concrete at the job site, the total number of revolutions shall not exceed 300.

Each load of ready-mixed concrete shall be accompanied by a weighmaster certificate that shall be delivered to the Engineer at the discharge location of the concrete, unless otherwise directed by the Engineer. The weighmaster certificate shall be clearly marked with the date and time of day when the load left the batching plant and, if hauled in truck mixers or agitators, the time the mixing cycle started.

A Certificate of Compliance conforming to the provisions in Section 6-1.07, "Certificates of Compliance," shall be furnished to the Engineer, prior to placing minor concrete from a source not previously used on the contract, stating that minor concrete to be furnished meets contract requirements, including minimum cementitious material content specified.

90-10.04 CURING MINOR CONCRETE

Curing minor concrete shall conform to the provisions in Section 90-7, "Curing Concrete."

90-10.05 PROTECTING MINOR CONCRETE

Protecting minor concrete shall conform to the provisions in Section 90-8, "Protecting Concrete," except the concrete shall be maintained at a temperature of not less than 40 °F for 72 hours after placing.

90-10.06 MEASUREMENT AND PAYMENT

Minor concrete will be measured and paid for in conformance with the provisions specified in the various sections of these specifications covering concrete construction when minor concrete is specified in the specifications, shown on the plans, or indicated by contract item in the Engineer's Estimate.
Full compensation for furnishing and incorporating admixtures required by these specifications or the special provisions will be considered as included in the contract prices paid for the concrete involved and no additional compensation will be allowed therefor.

Should the Engineer order the Contractor to incorporate any admixtures in the concrete when their use is not required by these specifications or the special provisions, furnishing the admixtures and adding them to the concrete will be paid for as extra work as provided in Section 4-1.03D, "Extra Work."

Should the Contractor use admixtures in conformance with the provisions in Section 90-4.05, "Optional Use of Chemical Admixtures," or Section 90-4.07, "Optional Use of Air-entraining Admixtures," or should the Contractor request and obtain permission to use other admixtures for the Contractor's benefit, the Contractor shall furnish those admixtures and incorporate them into the concrete at the Contractor's expense and no additional compensation will be allowed therefor.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECTION 91 PAINT
(Issued 05-1-06)

Replace Section 91-3 with:

91-3 PAINTS FOR TIMBER

91-3.01 WOOD PRIMER, LATEX-BASE
Classification:
This specification covers a ready-mixed priming paint for use on unpainted wood or exterior woodwork. It shall conform with the requirements in the Detailed Performance Standards of the Master Painters Institute (MPI) for exterior wood primers, and be listed on the Exterior Latex Wood Primer MPI List Number 6.

91-3.02 PAINT; LATEX-BASE FOR EXTERIOR WOOD, WHITE AND TINTS
Classification:
This specification covers a ready-mixed paint for use on wood surfaces subject to outside exposures. This paint shall conform to the requirements in the Detailed Performance Standards of the Master Painters Institute (MPI) for Paint, Latex, Exterior, and shall be listed on the following MPI Approved Products List:

A. Exterior Latex, Flat MPI Gloss Level 1, MPI List Number 10.
B. Exterior Latex, Semi-Gloss, MPI Gloss Level 5, MPI List Number 11.
C. Exterior Latex, Gloss, MPI Gloss Level 6, MPI List Number 119.

Unpainted wood shall first be primed with wood primer conforming to the provisions in Section 91-3.01, "Wood Primer, Latex-Base."

Replace Section 91-4 with:

91-4 MISCELLANEOUS PAINTS

91-4.01 THROUGH 91-4.04 (BLANK)

91-4.05 PAINT; ACRYLIC EMULSION, EXTERIOR WHITE AND LIGHT AND MEDIUM TINTS
Classification:
This specification covers an acrylic emulsion paint designed for use on exterior masonry. This paint shall conform to the requirements in the Detailed Performance Standards of the Master Painters Institute (MPI) for Paint, Latex, Exterior, and shall be listed on the following MPI Approved Products Lists:

A. Exterior Latex, Flat MPI Gloss Level 1, MPI List Number 10.
B. Exterior Latex, Semi-Gloss, MPI Gloss Level 5, MPI List Number 11.
C. Exterior Latex, Gloss, MPI Gloss Level 6, MPI List Number 119.
This paint may be tinted by using "universal" or "all purpose" concentrates.

SECTION 92 ASPHALTS
(Issued 01-20-12)

Replace Section 92 with:

SECTION 92 ASPHALTS

92-1.01 DESCRIPTION
Asphalt is refined petroleum or a mixture of refined liquid asphalt and refined solid asphalt that are prepared from crude petroleum. Asphalt is:

1. Free from residues caused by the artificial distillation of coal, coal tar, or paraffin
2. Free from water
3. Homogeneous

92-1.02 MATERIALS

GENERAL
Furnish asphalt under the Department's "Certification Program for Suppliers of Asphalt." The Department maintains the program requirements, procedures, and a list of approved suppliers at:

http://www.dot.ca.gov/hq/esc/Translab/fpm/fpmcoc.htm

Transport, store, use, and dispose of asphalt safely.
Prevent the formation of carbonized particles caused by overheating asphalt during manufacturing or construction.

GRADES
Performance graded (PG) asphalt binder is:
Performance Graded Asphalt Binder

<table>
<thead>
<tr>
<th>Property</th>
<th>AASHTO Test Method</th>
<th>Specification</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PG 58-22</td>
<td>PG 64-10</td>
</tr>
<tr>
<td>Flash Point, Minimum °C</td>
<td>T 48</td>
<td>230</td>
<td>230</td>
</tr>
<tr>
<td>Solubility, Minimum %</td>
<td>T 44</td>
<td>99</td>
<td>99</td>
</tr>
<tr>
<td>Viscosity at 135°C, Maximum, Pa's</td>
<td>T 316</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Dynamic Shear, Minimum G*/sin(delta), kPa</td>
<td>T 315</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>RTFO Test, Mass Loss, Maximum, %</td>
<td>T 240</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Ductility at 25°C, Minimum, cm</td>
<td>T 51</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>PAV Aging, Temperature, °C</td>
<td>R 28</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Dynamic Shear, Maximum G*sin(delta), kPa</td>
<td>T 315</td>
<td>5000</td>
<td>5000</td>
</tr>
<tr>
<td>Creep Stiffness, Maximum S-value, Mpa</td>
<td>T 313</td>
<td>-12</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300</td>
<td>300</td>
</tr>
</tbody>
</table>

Notes:

a. Use as asphalt rubber base stock for high mountain and high desert area.
b. The Engineer waives this specification if the supplier is a Quality Supplier as defined by the Department's "Certification Program for Suppliers of Asphalt."
c. The Engineer waives this specification if the supplier certifies the asphalt binder can be adequately pumped and mixed at temperatures meeting applicable safety standards.
d. Test the sample at 3°C higher if it fails at the specified test temperature. G*sin(delta) remains 5000 kPa maximum.
e. "RTFO Test" means the asphaltic residue obtained using the Rolling Thin Film Oven Test, AASHTO Test Method T 240 or ASTM Designation: D 2872. The residue from mass change determination may be used for other tests.
f. "PAV" means Pressurized Aging Vessel.

Performance graded polymer modified asphalt binder (PG Polymer Modified) is:
Performance Graded Polymer Modified Asphalt Binder

<table>
<thead>
<tr>
<th>Property</th>
<th>AASHTO Test Method</th>
<th>Specification Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PG 58-34 PM</td>
</tr>
<tr>
<td>Original Binder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flash Point, Minimum °C</td>
<td>T 48</td>
<td>230</td>
</tr>
<tr>
<td>Solubility, Minimum % b</td>
<td>T 44c</td>
<td>98.5</td>
</tr>
<tr>
<td>Viscosity at 135°C, Maximum, Pa's</td>
<td>T 316</td>
<td>3.0</td>
</tr>
<tr>
<td>Dynamic Shear, Test Temp. at 10 rad/s, °C</td>
<td>T 315</td>
<td>58</td>
</tr>
<tr>
<td>Minimum G*/sin(delta), kPa</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>RTFO Test, Mass Loss, Maximum, %</td>
<td>T 240</td>
<td>1.00</td>
</tr>
<tr>
<td>RTFO Test Aged Binder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Shear, Test Temp. at 10 rad/s, °C</td>
<td>T 315</td>
<td>58</td>
</tr>
<tr>
<td>Minimum G*/sin(delta), kPa</td>
<td></td>
<td>2.20</td>
</tr>
<tr>
<td>Dynamic Shear, Test Temp. at 10 rad/s, °C</td>
<td>T 315</td>
<td>Note e</td>
</tr>
<tr>
<td>Maximum (delta), %</td>
<td>Note e</td>
<td>80</td>
</tr>
<tr>
<td>Elastic Recovery, Test Temp., °C</td>
<td>T 301</td>
<td>25</td>
</tr>
<tr>
<td>Minimum recovery, %</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>PAV* Aging, Temperature, °C</td>
<td>R 28</td>
<td>100</td>
</tr>
<tr>
<td>RTFO Test and PAV Aged Binder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Shear, Test Temp. at 10 rad/s, °C</td>
<td>T 315</td>
<td>16</td>
</tr>
<tr>
<td>Maximum G*/sin(delta), kPa</td>
<td></td>
<td>5000</td>
</tr>
<tr>
<td>Creep Stiffness, Test Temperature, °C</td>
<td>T 313</td>
<td>-24</td>
</tr>
<tr>
<td>Maximum S-value, MPa</td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>Minimum M-value</td>
<td></td>
<td>0.300</td>
</tr>
</tbody>
</table>

Notes:

- Do not modify PG Polymer Modified using acid modification.
- The Engineer waives this specification if the supplier is a Quality Supplier as defined by the Department’s "Certification Program for Suppliers of Asphalt."
- The Department allows ASTM D 5546 instead of AASHTO T 44
- The Engineer waives this specification if the supplier certifies the asphalt binder can be adequately pumped and mixed at temperatures meeting applicable safety standards.
- Test temperature is the temperature at which G*/sin(delta) is 2.2 kPa. A graph of log G*/sin(delta) plotted against temperature may be used to determine the test temperature when G*/sin(delta) is 2.2 kPa. A graph of (delta) versus temperature may be used to determine delta at the temperature when G*/sin(delta) is 2.2 kPa. The Engineer also accepts direct measurement of (delta) at the temperature when G*/sin(delta) is 2.2 kPa.
- Tests without a force ductility clamp may be performed.
- "PAV" means Pressurized Aging Vessel.

SAMPLING

Provide a sampling device in the asphalt feed line connecting the plant storage tanks to the asphalt weighing system or spray bar. Make the sampling device accessible between 24 and 30 inches above the platform. Provide a receptacle for flushing the sampling device.

Include with the sampling device a valve:

1. Between 1/2 and 3/4 inch in diameter
2. Manufactured in a manner that a one-quart sample may be taken slowly at any time during plant operations
3. Maintained in good condition

Replace failed valves.
In the Engineer's presence, take 2 one-quart samples per operating day. Provide round, friction top, one-quart containers for storing samples.

92-1.03 EXECUTION
If asphalt is applied, you must comply with the heating and application specifications for liquid asphalt in Section 93, "Liquid Asphalts."

92-1.04 MEASUREMENT
If the contract work item for asphalt is paid by weight, the Department measures asphalt tons by complying with the specifications for weight determination of liquid asphalt in Section 93, "Liquid Asphalts."

The Engineer determines the asphalt weight from volumetric measurements if you:

1. Use a partial asphalt load
2. Use asphalt at a location other than a mixing plant and no scales within 20 miles are available and suitable
3. Deliver asphalt in either of the following:
 3.1. A calibrated truck with each tank accompanied by its measuring stick and calibration card
 3.2. A truck equipped with a calibrated thermometer that determines the asphalt temperature at the delivery time and with a vehicle tank meter complying with the specifications for weighing, measuring, and metering devices in Section 9-1.01, "Measurement of Quantities"

If you furnish hot mix asphalt from a mixing plant producing material for only one project, the Engineer determines the asphalt quantity by measuring the volume in the tank at the project's start and end provided the tank is calibrated and equipped with its measuring stick and calibration card.

The Engineer determines pay quantities from volumetric measurements as follows:

1. Before converting the volume to weight, the Engineer reduces the measured volume to that which the asphalt would occupy at 60 °F.
2. The Engineer uses 235 gallons per ton and 8.51 pounds per gallon for the average weight and volume for PG and PG Polymer Modified asphalt grades at 60 °F.
3. The Engineer uses the Conversion Table in Section 93, "Liquid Asphalts."

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECTION 93 LIQUID ASPHALTS
( Issued 11-03-06)

In Section 93-1.04 replace the 9th paragraph with:

The following Legend and Conversion Table is to be used for converting volumes of liquid asphalt products, Grades 70 to 3000, inclusive, and paving asphalt Grades PG 58-22, PG 64-10, PG 64-16, PG 64-28, and PG 70-10, and Grades PG 58-34 PM, PG 64-28 PM, and PG 76-22 PM.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECTION 95 EPOXY
(Issued 06-05-09)

Contract No. 08-0M94U4
289 of 290
Replace the table in Section 95-2.11 with:

<table>
<thead>
<tr>
<th>Characteristics of Adhesive:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test(^a)</td>
</tr>
<tr>
<td>Brookfield Viscosity, No. 3 Spindle at 20 rpm, Poise at 77°F</td>
</tr>
<tr>
<td>Gel time, minutes</td>
</tr>
<tr>
<td>Slant Shear Strength on Dry Concrete, psi, after 4 days of cure in air at 77°F ±2°F</td>
</tr>
<tr>
<td>Slant Shear Strength on Wet Concrete, psi, after 4 days of cure in air at 77°F ±2°F</td>
</tr>
<tr>
<td>Tensile Strength, psi</td>
</tr>
<tr>
<td>Elongation, %</td>
</tr>
</tbody>
</table>

\(^a\) The mixing ratio used will be that recommended by the manufacturer.

\(^b\) For slant shear strength on concrete, delete Sections B-1 and B-5 of California Test 434, Part 5. For dry concrete, use Step "2" below only. For wet concrete, use both Steps "1" & "2":

1. Soak blocks in water for 24 hours at 77°F ±2°F. Remove and wipe off excess water.
2. Mix epoxy as described in California Test 434, Part 1, and apply a coat approximately 0.010-inch thick to each diagonal surface. Place four 0.125-inch square pieces of shim stock 0.012-inch thick on one block to control final film thickness. Before pressing the coated surfaces together, leave the blocks so that the coated surfaces are horizontal until the epoxy reacts slightly to prevent excessive flow.