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ABSTRACT 
Long-term prestress losses in concrete structures are caused by creep and shrinkage of concrete 
and relaxation of prestressing steel. Reasonably accurate prediction of these losses is important 
to ensure satisfactory performance of the concrete member under service loads. An analytical 
method is presented to predict the long-term prestress losses and the associated change in 
concrete stresses in cast-in-place post-tensioned bridges. It is assumed that prestress loading and 
bridge self weight are applied at the same time instant, and a single concrete type (same creep, 
shrinkage and modulus of elasticity properties) is used for the entire cross section.  
 
It is shown that long-term prestress losses calculated using the current provisions of bridge codes 
can be underestimated or overestimated, depending on the concrete creep and shrinkage 
properties as well as the non-prestressed steel ratio. On the other hand, the remaining concrete 
compressive stresses after long-term losses have occurred are normally overestimated when 
using current codes; this could result in unexpected cracking under additional live loads. 
 
Keywords: creep; long-term; prestress loss; relaxation; serviceability; shrinkage 
 
INTRODUCTION 
Creep and shrinkage of concrete and relaxation of prestressing steel cause long-term prestress 
losses in concrete structures. While it is generally accepted that long-term losses do not affect the 
ultimate capacity of a prestressed concrete member, reasonably accurate prediction of these 
losses is important to ensure satisfactory performance of concrete structures in service. If 
prestress losses are underestimated, the tensile strength of concrete can be exceeded under full 
service loads, causing cracking and unexpected excessive deflection. On the other hand, 
overestimating prestress losses can lead to excessive camber and uneconomic design. 
 
The error in predicting the long-term prestress losses can be due to: (1) inaccuracy of the input 
parameters (creep and shrinkage of concrete and relaxation of prestressing steel); and (2) 
inaccuracy of the method of analysis used. The objective of this paper is to address the second 
source of inaccuracy by presenting a simple analytical method to estimate long-term prestress 
losses. The method satisfies the requirements of equilibrium and compatibility and avoids the use 
of empirical equations that cannot be accurate in all cases. The inaccuracy in the material 
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properties used can be mitigated by varying the input material parameters and establishing upper 
and lower bounds on prestress loss.  
 
Several empirical equations are available in bridge codes1-3 that give the long-term losses in 
prestressing tendons due to creep, shrinkage, and relaxation. These equations ignore, or consider 
empirically, the presence of non-prestressed steel; thus, equilibrium and compatibility are not 
satisfied. When these equations are used to give the prestress loss in the tendon, the common 
practice is to apply the calculated change in prestress force in reversed direction to the concrete 
section to obtain the long-term change in concrete stresses. An example will show that, in 
presence of non-prestressed steel, this practice overestimates the long-term compressive stresses, 
and as a result, unpredicted cracking can occur at critical extreme fibers under full service loads. 
 
Sign convention 
Axial force N is positive when it is tensile. Bending moment M and its associated curvature ψ are 
positive when they produce tension at the bottom fiber of the cross section. Stress σ and strain ε 
are positive for tension and elongation. It follows that shrinkage csε  is a negative quantity; also, 
the relaxation in prestressing steel prσ∆  and the loss in tension due to combined effects of creep, 
shrinkage, and relaxation psσ∆  is negative. The analysis is considered for a prestressed concrete 
section with its centroidal principal y-axis in vertical direction; the coordinate y of any concrete 
fiber or steel layer is measured downward from a reference point O (to be defined later). 
 
PROPOSED EQUATION FOR PRESTRESS LOSS 
The long-term prestress loss psσ∆  due to creep, shrinkage, and relaxation for a typical post-
tensioned section (Fig. 1) is given by 

 ( ) ( )[ ]{ } prpsfreeccccfreeIpsfreeccApsps khkkykE σεψεσ ∆+∆+∆+∆=∆ /  (1) 
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 ( ) ( ) csccfreecc t εεϕε +=∆ 0 ; ( )0tfree ψϕψ =∆  (3) 

 ( ) ( ) ( ) ( )01010 tyytt cccc ψεε −+=  (4) 
The derivation of Eq. 1 is given elsewhere.4 Equation 1 satisfies the equilibrium requirement as 
well as compatibility at non-prestressed steel layers and at the centroid of prestressing steel. 
 
Definition of Symbols 
The symbols used in Eqs. 1 through 4 are defined below: 
 
Material parameters 

nsE  and  = moduli of elasticity of non-prestressed and prestressing steel, respectively psE
( )0tEc  = modulus of elasticity of concrete at time  0t

cE  = ( ) ( )χϕ+10tEc  = age-adjusted elasticity modulus of concrete5 to account for the creep 
effects of stresses applied gradually on concrete 

 2



ϕ, χ, and csε  = creep coefficient, aging coefficient, and shrinkage 

prσ∆  = reduced relaxation = prr σχ ∆ , where rχ  is the reduced relaxation coefficient (0.7~ 0.8) 
and prσ∆  is the intrinsic relaxation.6 

 
Geometry parameters 

cA  = area of net concrete section, that is gross concrete section minus area of non-prestressed 
steel minus area of prestressing duct 

nsA  and  = areas of non-prestressed and prestressing steels, respectively psA

1A  = area of the transformed section at  composed of  plus 0t cA nsA ( )( )0tEE cns  

A  = area of age-adjusted transformed section composed of  plus cA nsA ( )cns EE  plus 

psA ( )cps EE  

cI  = second moment of  about its centroid cA

I = second moment of A  about its centroid  
y = coordinate of any point measured downward from O, centroid of A  
h = total thickness of section 
 
Strain and stress 
ε and σ  = strain and stress in concrete, respectively 
cc, 1, free, ps = subscripts referring, to centroid of , centroid of , the change in concrete 
strain if creep and shrinkage were unrestrained, and prestressing steel 

cA 1A

ψ  = dydε = curvature (slope of strain diagram) 
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Fig. 1 Typical prestressed concrete section and strain diagram immediately after prestressing. 
 
Long-Term Change in Concrete Stress 
The time-dependent change in concrete stress at any fiber at distance y from O is 
 ( ) ( )( )( )freefreeOc yE ψψεεσ ∆−∆+∆−∆=∆  (5) 

where Oε∆  and ψ∆ are, respectively, the long-term change in strain at O and curvature: 
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PROVISIONS OF BRIDGE CODES 
 
AASHTO-LRFD Refined Method1 
The refined and approximate methods of AASHTO-LRFD are adopted by PCI-BDM.7 The total 
long-term prestress loss psσ∆  is expressed as the sum of prestress loss due to creep, )(crpsσ∆ ; 
due to shrinkage, )(shpsσ∆ ; and due to relaxation, )(relaxpsσ∆  (kip-in. units): 
 cdpcgpcrps ff ∆−=∆ 712)(σ  (8) 
 )123.05.13()( RHshps −−=∆σ  (9) 

 ( )[ ])()()()()( 2.04.03.0203.0 crpsshpsespsfrpsrelaxps σσσσσ ∆+∆−∆−∆−−=∆  (10) 
where 

cgpf  = concrete stress at center of gravity of prestressing steel at transfer 

cdpf∆  = change in concrete stress at center of gravity of prestressing steel due to permanent loads 
applied after transfer 
RH = relative humidity in percent 

)( frpsσ∆  and )(espsσ∆ = prestress losses due to friction and elastic shortening, respectively. 
 
AASHTO-LRFD Approximate Method1 
For post-tensioned box-girder bridges with spans up to 160 ft (50 m), stressed at concrete age of 
10 to 30 days with low-relaxation strands and subjected to average exposure conditions, the 
following approximate equations are suggested: 
 ( )PPRps 417 +−=∆σ  (Upper bound) (11) 
 ( )PPRps 415+−=∆σ  (Average) (12) 
PPR is the partial prestress ratio and is given by: 
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where  
pyf  and  = yield strength of prestressing and non-prestressed steel, respectively. yf

 
CEB-FIP Model Code2 
The code gives the following equation for prestress loss due to creep, shrinkage, and relaxation: 
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where   
( )0tEE cpsps =α  = ratio of modulus of elasticity of prestressing steel to that of concrete 

psy  = y-coordinate of prestressing steel measured from the centroid of the net concrete section. 
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In Eq. 14, rχ  is taken 0.8 and the section is assumed to have a single layer of prestressing steel, 
without non-prestressed steel. In such a section, the requirements of equilibrium and 
compatibility are satisfied and Eq. 14 gives the same result as Eq. 1. 
 
Canadian Highway Bridge Design Code3 (CHBDC) 
For post-tensioned concrete bridges with low-relaxation strands and ratio of the area of non-
prestressed steel in tension to area of prestressing steel less than unity, CHBDC recommends the 
following equations, where  is the ultimate strength of prestressing tendons: puf

 ( )[ ] ( )cdpcgpps)cr(ps ffRH.... ∆−−=∆ ασ 201077037161  (15) 
 ( )RHshps 12.06.13)( −−=∆σ  (16) 
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ILLUSTRATIVE EXAMPLE 
The two-span continuous post-tensioned bridge shown in Fig. 2 is subjected to its self weight and 
a uniform prestressing force P (after immediate losses) = 6200 kips (28,000 kN). It is required to: 
1. Use the proposed method to find the long-term prestress loss and the change in concrete 
strains and stresses at two sections: Section A, at 50 ft from end support, and Section B, at 
intermediate support.  
 2. Use the equations of the bridge codes reviewed in the preceding section to calculate psσ∆  in 
Sections A and B and the stresses after long time, ( )bottσ  in Section A and ( ) toptσ  in Section B. 
 
The bridge is located in an area with average relative humidity RH = 60%. The bottom slab 
thickness increases gradually in the 15 ft adjacent to the intermediate support from 7 to 12 in. 
Low relaxation strands of area = 31 in.psA 2 (duct area = 62 in.2) and = 243 ksi are used in 
post-tensioning. The profile of the tendon is composed of two parabolas with common tangent at 
Section D. Use the following material properties: 

pyf

( )0tEc  = 3600 ksi (25 GPa);  = 29000 ksi 
(200 GPa); and  = 27500 ksi (190 GPa). The volume to surface ratio ≈ 6 in. The following 
material parameters are used: ϕ = 2.6; 

nsE

psE

csε  = −380 × 10-6; prσ∆  = −6.6 ksi χ = 0.8; and rχ  = 0.7. 
The values of ϕ and csε  are averages taken from AASHTO-LRFD, CEB-FIP, and CHBDC. 
 
The values of  and  given in Fig. 2(a) are used in the analysis described below. 
To study the effect of non-prestressed steel on concrete stresses and strains, additional results are 
given with the non-prestressed steel ignored and with the non-prestressed steel increased by 
50%. Elastic analysis of the bridge subjected to self weight combined with prestress loading 
gives the strain and stress diagrams in Fig. 3(a) for Sections A and B immediately after 
prestressing. Figure 3(a) also gives the strain 

( ) topnsA ( )botnsA

( )0tccε  at the centroids of the net concrete areas. 
The coefficients , , , and  (Eq. 2) are given in Table 1. Ak Ik cck psk
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Fig. 2 Two-span continuous post-tensioned bridge. (a) Half elevation; (b) Cross section. 
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Fig. 3 Analysis of the bridge using proposed method. (a) Strains and stresses at time ; (b) 
Strains and stresses at time t. 

0t

 
The curvature, strains, and stresses at top and bottom fibers are listed in Table 2 for Sections A 
and B. Three sets of values are given corresponding to ignoring the non-prestressed steel, 
considering the non-prestressed steel as specified in Fig. 2(a), and considering that the non-
prestressed steel areas are 1.5 times the areas in Fig. 2(a). The bottom fiber of Section A and the 
top fiber of Section B are the locations more vulnerable to cracking in service. Thus, prestressing 
is commonly designed such that sufficient compressive stresses remain after prestress loss. It can 
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be seen, by comparing the values printed in bold in Table 2, that ignoring the non-prestressed 
steel overestimates the absolute values of the compressive concrete stresses remaining at critical 
locations. The overestimation in the analyzed case is 0.156 and 0.353 ksi (1.08 and 2.43 MPa) at 
Sections A and B, respectively (column 4 minus column 8, Table 2); such overestimation can 
result in unexpected cracking and greater deflection than predicted due to live and other loads. 
 
The concrete strains immediately after prestressing at the level of  are −327 × 10psA -6 and −261 
× 10-6 in Sections A and B, respectively (Fig. 3(a)). Multiplication by , gives  = 
−1.177 and −0.940 ksi (−8.12 and −6.48 MPa). In the AASHTO-LRFD approximate method, 

 and  are taken equal to 243 and 60 ksi, respectively and the sum of ( )  and 

( )0tEc cgpf

pyf yf topnsA ( ) botnsA  

is used for . In Eq. 17 of CHBDC, the ultimate strength of the tendons  is taken 270 ksi. 
It can be seen from Table 3 that the loss in tension in the prestressing steel, 

nsA puf

psσ∆ , is either 
overestimated or underestimated by the codes. On the other hand, all the codes overestimate the 
concrete compressive stress remaining after long-term at the critical locations. The 
overestimation of the remaining compression increases with the increase of non-prestressed steel. 
 
Table 1: Analysis for prestress loss using proposed method  

Section Ak  Ik  cck  psk  Oε∆  ψ∆  
(in.-1) 

psy  
(in.) 

psσ∆  
(ksi) 

A 
B 

0.821 
0.775 

0.796 
0.781 

−0.197 
0.187 

0.823
0.890

−831 × 10-6 

−707 × 10-6
−1.93 × 10-6 

1.85 × 10-6
27.5 
−19.4 

−28.9 
−25.1 

 
 
Table 2:  Concrete strains and stresses and curvature immediately after transfer and after long-
term prestress loss (units: kip and in.) 

nsA  ignored nsA  as given in Fig. 2(a) nsA  increased by 50% Section  
At transfer Final At transfer Final At transfer Final 

1 2 3 4 5 6 7 8 

A 

psσ∆  
ψ 
topε  

botε  
topσ  

botσ  

⎯ 
−2.63 × 10-6

−179 × 10-6

−368 × 10-6

−0.644 
−1.325 

−31.6 
−4.48 × 10-6

−1047 × 10-6 

−1370 × 10-6 

−0.671
−0.934 

⎯ 
−2.56 × 10-6

−174 × 10-6

−358 × 10-6

−0.626 
−1.288 

−29.1 
−4.61 × 10-6

−941 × 10-6 

−1273 × 10-6 

−0.550
−0.826 

⎯ 
−2.52 × 10-6

−171 × 10-6

−353 × 10-6

−0.617 
−1.271 

−28.0 
−4.63 × 10-6

−896 × 10-6 

−1229 × 10-6

−0.499
−0.778 

B 

psσ∆  
ψ 
topε  
botε  
topσ  

botσ  

⎯ 
2.49 × 10-6

−309 × 10-6

−130 × 10-6

−1.113 
−0.468 

−30.3 
6.03 × 10-6

−1288 × 10-6 

−854 × 10-6 

−0.873
−0.475 

⎯ 
2.25 × 10-6

−289 × 10-6

−127 × 10-6

−1.040 
−0.456 

−25.2 
4.16 × 10-6

−1060 × 10-6 

−760 × 10-6 

−0.619
−0.367 

⎯ 
2.13 × 10-6

−280 × 10-6

−126 × 10-6

−1.007 
−0.453 

−23.2 
3.29 × 10-6

−971 × 10-6 

−734 × 10-6 

−0.520
−0.337 
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Table 3: Comparison of prestress loss and long-term concrete stresses calculated by codes’ 
equations with values determined by the proposed method of analysis (units: ksi). 

Section Stress or  
stress change 

Proposed 
method 

AASHTO 
refined 

AASHTO 
approximate

CEB-FIP 
Model Code CHBDC 

A 

psσ∆  
( )( ) bot0tσ  

botσ∆  
( )( ) bottσ  

−29.1 
−1.288 
0.462 
−0.826 

−25.0 
−1.288 
0.300 
−0.988 

−18.3 
−1.288 
0.220 
−1.068 

−31.5 
−1.288 
0.379 
−0.909 

−25.9 
−1.288 
0.311 
−0.977 

B 

psσ∆  
( )( ) top0tσ  

topσ∆  
( )( )toptσ  

−25.1 
−1.040 
0.426 
−0.619 

−22.4 
−1.040 
0.168 
−0.872 

−17.8 
−1.040 
0.134 
−0.906 

−30.4 
−1.040 
0.229 
−0.811 

−22.8 
−1.040 
0.171 
−0.869 

 
 
DISCUSSION ON CODES 
The empirical equations of the codes give accurate values of psσ∆  only in specific conditions. 
The equations of AASHTO-LRFD refined method and CHBDC contain relative humidity RH as 
independent variable in calculating the prestress loss due to creep and shrinkage. Although 
relative humidity is a major parameter, creep and shrinkage are also dependent upon the volume 
divided by the surface area and the concrete mix proportions (often represented by the specified 
compressive strength ). Therefore, concrete shrinkage cf ′ csε  and creep coefficients ϕ vary 
within a wide range. A typical box girder section with multiple cells is shown in Fig. 4. The 
effect of varying ϕ on the prestress loss due to creep for the bridge section is shown in Fig. 5. 
The section has the following geometric dimensions: bbwΣ  = 0.2; bbt  = 1.5; hht  = hhb  = 
0.1;  = 0.8h; and = (0.8/100)hpsd psA wbΣ . 
 
The proposed method (Eq. 1) is used to calculate the prestress loss due to creep ( )crpsσ∆  by 

setting csε  = 0, prσ∆ = 0, and varying χϕ. The ratios of non-prestressed steel in top and bottom 
slabs are assumed equal and ( )crpsσ∆  is calculated for three ratios of nsρ  = 0.2, 0.8 and 1.5%. At 
time  immediately after prestressing, the concrete strains are assumed equal to zero0t

 and −460 × 
10-6 at top and bottom fibers, respectively. The elasticity moduli used are:  = 3600 ksi; 

 = 27,500 ksi; and  = 29,000 ksi. As expected, Eq. 8 of AASHTO-LRFD gives constant 
( )0tEc

psE nsE

( )crpsσ∆ , independent of χϕ. As shown in Fig. 5, the proposed method gives ( )crpsσ∆  values that 
are almost linearly dependent upon χϕ. Compared with the proposed method, the prestress loss 
according to AASHTO equation changes from overestimating to underestimating the creep 
losses as the creep coefficient increases. 
 
SUMMARY AND CONCLUSIONS
Empirical equations for long-term prestress loss psσ∆ of several codes are reviewed. The codes 
do not give guidance on how to calculate the long-term changes in concrete stresses and strains. 
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Presumably, the ratio of the changes to the initial strain and stress due to prestress loading is the 
same as the ratio of psσ∆  to the initial tension. It is shown that this presumption is correct only 
in the absence of non-prestressed steel. The equation of the CEB-FIP Model Code gives the same 

psσ∆  as the proposed method for sections containing one layer of prestressing steel, without 
non-prestressed steel. The AASHTO-LRFD and CHBDC equations are functions of the relative 
humidity, RH, rather than the creep coefficient ϕ and the shrinkage csε . For the same RH, the 
values of ϕ and csε  can vary with the concrete strength and the volume divided by the surface 
area. Thus the equations of the two codes cannot be accurate in all cases; it is shown that they 
overestimate psσ∆  in some cases and underestimate it in others. 

1b w bwb

b

2
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b 4w
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Fig. 4 Geometric dimensions and reinforcement in a typical bridge cross section. 
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Fig. 5 Prestress loss due to creep: comparison between proposed method and AASHTO-LRFD 
refined method.  
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The proposed method of analysis is demonstrated by a worked example of a two-span bridge. 
The analysis is done with three different non-prestressed steel ratios. It is shown that at bottom 
fiber near mid-span and at top fiber over the interior support, the compressive stress remaining in 
concrete after losses has smaller absolute value as the amount of non-prestressed steel is 
increased. It is concluded that ignoring the non-prestressed steel, as is occasionally done in 
current design practice, can result in unexpected cracking and greater deflection than is predicted 
under subsequent live loads that occur in service. 
 
REFERENCES 
1. American Association of State Highway and Transportation Officials, “AASHTO-LRFD 

Bridge Design Specifications,” Third Edition, Washington, DC, 2004. 
2. Comité Euro-International du Beton − Fédération Internationale de la Précontrainte, “Model 

Code for Concrete Structures,” CEB-FIP MC 90, London, UK, 1993. 
3. Canadian Highway Bridge Design Code, CAN/CSA-S6-00, Rexdale, Canada, 2000. 
4. Youakim, S.A., and Karbhari, V.M., “A Simplified Method for Prediction of Long-Term 

Prestress Loss in Post-Tensioned Concrete Bridges,” Caltrans Draft Report, University of 
California at San Diego, CA, 2004, 64 pp. 

5. Trost, H., “Auswirkungen des Superpositionsprinzips auf Kriech-und Relaxations-problems 
bei Beton und Spannbeton,” Beton und Stahlbetonbau, V. 62, No. 10, 1967, pp. 230-238; No. 
11, 1967, pp. 261-269 (in German). 

6. Magura, D.D., Sozen, M.A., and Siess, C.P., “A Study of Stress Relaxation in Prestressing 
Reinforcements,” PCI Journal, V. 9, No. 2, 1964, pp. 13-57. 

7. Precast/Prestressed Concrete Institute, “Precast/Prestressed Concrete Bridge Design 
Manual,” Sixth Edition, Chicago, IL, 2003. 

 
ACKNOWLEDGEMENTS 
The research reported in this paper was supported by California Department of Transportation 
under Research Grant No. 59A0420; this support is gratefully acknowledged.  

 10


	Sign convention
	PROPOSED EQUATION FOR PRESTRESS LOSS
	Definition of Symbols
	Long-Term Change in Concrete Stress

	(7)
	PROVISIONS OF BRIDGE CODES
	AASHTO-LRFD Refined Method1
	AASHTO-LRFD Approximate Method1
	CEB-FIP Model Code2
	Canadian Highway Bridge Design Code3 (CHBDC)

	ILLUSTRATIVE EXAMPLE
	Table 1: Analysis for prestress loss using proposed method
	Table 2:  Concrete strains and stresses and curvature immedi
	Table 3: Comparison of prestress loss and long-term concrete
	DISCUSSION ON CODES
	SUMMARY AND CONCLUSIONS
	REFERENCES
	ACKNOWLEDGEMENTS

