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ABSTRACT 
This paper presents an analytical procedure for estimating seismic demands of a bridge crossing 
a strike-slip fault that is capable of producing motions with permanent offset. In this procedure 
for linear elastic systems, seismic demands are computed by adding the results from: (1) quasi-
static analysis for all support displacements applied simultaneously, and (2) dynamic analysis for 
reference ground acceleration using the “effective” influence vector. A unique feature of this 
procedure is that even though the bridge is subjected to multi-support excitation, its dynamic 
response can be estimated by procedures similar to standard procedures for systems subjected to 
uniform ground motion. 

Analysis of a linear elastic, three-span symmetric bridge subjected to transverse support motions 
resulting from a fault rupture between its two bents shows that only the torsional modes are 
excited even though the bridge is subjected to transverse motions; in contrast, only transverse 
modes are excited for symmetric bridge subjected to uniform transverse support motions. 
Furthermore, it is found that deck displacement at abutment 1 is dominated by the quasi-static 
part, whereas column drift is dominated by the dynamic part. Therefore, no generalization should 
be made about ignoring either quasi-static or dynamic parts in estimating seismic demands. 

Finally, responses of bridge with nonlinear shear keys obtained from nonlinear response history 
analysis are compared with bridges without shear keys and bridges with elastic shear keys. A 
simple tri-linear model for shear-key behavior is used to “mimic” the experimental results. It is 
shown that response of bridges with nonlinear shear keys may be significantly different 
compared to the bridge either without shear keys or with elastic shear keys. However, the cases 
without shear keys and with elastic shear keys may be used to obtain bounding values on the 
response of bridges with nonlinear shear keys. Since different shear key condition may provide 
upper bound for different seismic demands, both cases – without shear keys and with elastic 
shear keys – must be considered to establish upper bounds on all seismic demands. The current 
Caltrans practice of ignoring shear keys may not always provide conservative estimates of all 
seismic demands. 
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INTRODUCTION 
Bridges crossing active earthquake faults should be designed for a fault rupture offset and near-
fault ground motions, which may include a forward directivity pulse and/or a fling displacement. 
While site-specific seismological studies to define spatially varying (or multiple-support) ground 
motions, including fault rupture, and rigorous nonlinear response history analysis (RHA) are 
required for important bridges designated as “lifeline” structures, such investigations are too 
onerous for “ordinary” bridges. For such structures, simplified procedures for estimating seismic 
demands are needed to facilitate their seismic evaluation and design. As a first step towards 
developing simplified procedure, this paper examines the dynamic response of bridges located 
across a strike-slip fault capable of producing a magnitude 6.5 earthquake that results in 
permanent offset between two sides of the fault.   

Presented first is an analytical procedure for estimating seismic demands of linear elastic bridges 
crossing a strike-slip fault that is capable of producing motions with permanent offset. The 
dynamic response of linear elastic bridges is examined next to identify the modes that may be 
excited during selected ground motions, and examine the contribution of various parts in the 
analytical procedure. Finally, response of bridges responding beyond the linear elastic range is 
examined. In particular, seismic demands in bridges with nonlinear shear keys are compared 
with two extreme cases: bridges without shear keys and bridges with elastic shear keys. The 
shear key is modeled by a simple tri-linear force-deformation relationship that “mimics” the 
experimental observations. 

CONSIDERED BRIDGE AND GROUND MOTIONS 
A three-span bridge with single-column bents with fault located between bent 2 and bent 3 is 
considered (Figure 1). The deck is modeled by elastic beam elements. The columns are modeled 
by elastic beam elements for linear analysis and by nonlinear fiber-section beam-column 
elements for nonlinear analysis. For first part of the paper, the transverse restraint provided by 
shear keys at the abutment is ignored. However, linear and nonlinear shear keys are included in 
the later part of the paper.  
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Figure 1. Selected three-span symmetric bridge with single-column bents. 

The motions used in this investigation are the simulated motions, generated by the seismological 
group of the research team, for a magnitude 6.5 strike-slip event resulting in fault rupture 
between two bents of the bridge (Figure 2). These motions indicate that: (1) the spatial variation 
in the ground motion on either side of the fault is minimal, and (2) the motion reverses algebraic 
sign at supports located on two opposite sides of the fault. Therefore, motion at supports of this 
bridge may be approximated as  
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 ( ) ( )gl l gu t u tα=  (1) 

in which 1 2 3 41; 1α α α α= = = = −  and ( )gu t  is the acceleration at a reference support selected 
to be at abutment 1.  
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Figure 2. Motions at four supports of the selected bridge during a magnitude 6.5 event on a 
strike-slip fault. 

THEORETICAL BACKGROUND: LINEAR SYSTEMS  
Equations governing the motions of a structure subjected to multiple-support excitation are 
formulated by separating the displacement at the structure in two parts: (1) su  the quasi-static 
displacement due to static application of the displacement gu  imposed at the supports, and (2) u  
the dynamic displacements. It can be shown that, for the excitation considered, u  are governed 
by   

 ( )gu t+ + = −mu cu ku mι  (2) 

in which u  is a N×1 vector representing the dynamic displacement in the N superstructure 
degrees-of-freedom (DOF); , ,m c k are N×N matrices representing the mass, damping, and 
stiffness corresponding to structural DOF; gu is the acceleration at a reference support;  and ι , 
the “effective” influence vector, is a vector of displacements at all structural degrees of freedom 
due to simultaneous static application of unit displacement at all supports in the appropriate 
direction. The total response is then given by 
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in which ( )nD t  is the displacement response of an nth mode SDF system subjected to ground 

motion ( )gu t , nφ  is the nth mode shape, and ( )T T
n n n nΓ = mι mφ φ φ  is the nth mode participation 

factor.  Therefore, analysis of bridges crossing fault rupture zones becomes a two step process: 
(1) static analysis for all support displacements applied simultaneously to obtain the quasi-static 
response as a function of time; and (2) dynamic analysis to reference ground acceleration ( )gu t  
using the “effective” influence vector.   
 
However, peak values of the total displacements of linear elastic bridges may be estimated by 
adding peak absolute values of the quasi-static displacement, s

ou , and dynamic displacements, 

ou  

 t s
o o o+u u u . (4) 

The peak absolute value of the dynamic displacements may be estimated by standard Response 
Spectrum Analysis (RSA) procedure using the response spectrum for the reference acceleration 

( )gu t , which should include the effects of permanent offset resulting from fault rupture. Note 
that the standard ARS spectrum specified in Caltrans design guidelines is not appropriate. 

It is useful to note that the dynamic part of the response of a bridge which is subjected to multi-
support excitation resulting from fault rupture with permanent offset may be estimated by using 
standard RSA procedure developed for systems subjected to uniform ground motion. This 
simplification is achieved because the support motions conform to equation 1. However, the 
procedure presented in this paper differs from the standard procedures for uniform excitation 
because the “effective” influence vector must be used as opposed to =ι 1 , where 1 is a vector 
with all elements equal to unity, used for uniform transverse support motions.  

MODES EXCITED BY THE SELCTED SUPPORT MOTIONS 
Typically, RSA of linear elastic bridges includes only those modes that contribute significantly 
to the response. In order to identify the significant modes, the modal contribution factor (MCF) 
defined by Chopra (2001: Section 12.10) is examined next for two seismic demands: (a) column 
drift in bent 2, and (2) deck displacement, relative to the ground, at abutment 1.  

The first six mode shapes of the linear elastic bridge are shown in Figure 3. The 1st and 4th modes 
of the bridge are 1st and 2nd  transverse modes. The 2nd and 6th modes of the bridge are 1st and 2nd 
torsional modes. The 3rd mode is coupled vertical-longitudinal and 5th mode is predominantly 
vertical mode. 

The deflected shape of the bridge associated with the effective influence vector for the selected 
support motions is shown in Figure 4. This deflected shape exhibits significant torsional motion 
of the bridge indicating that torsional modes may be excited by the motions resulting from fault 
rupture between bent 2 and bent 3. This assertion is confirmed by the MCFs presented in Table 1 
which indicate that the largest contribution to both deck displacement at abutment 1 and column 
drift is due to the 2nd mode, which is 1st torsional of the selected bridge (see Figure 3). Although 
6th mode, which is the 2nd torsional mode of the bridge (see Figure 3), is also excited, its 
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contribution is relatively small. The MCFs for all other modes, including the 1st and 2nd 
transverse modes are zero indicating that these modes are not excited by the ground motion. 

Mode 1: T=1.08 sec Mode 2: T=0.8249 sec Mode 3: T=0.4191 sec

Mode 4: T=0.3395 sec Mode 5: T=0.3318 sec Mode 6: T=0.3051 sec  
Figure 3. First six linear elastic mode shapes of the selected bridge. 

The results presented so far indicate that transverse motions associated with the fault rupture 
between two bents of a symmetric bridge excite only the torsional modes of the bridge. Note that 
torsional modes would not be excited if the bridge is subjected to uniform transverse support 
motions; only transverse modes would be excited in the latter case. 

 
Figure 4. Deflected shape of the selected bridge associated with the effective influence vector 
corresponding to motions due to fault rupture between bent 2 and bent 3. 

Table 1. Modal Contribution Factors for deck displacement at abutment 1 and column drift of the 
selected bridge and support motions. 

Modal Contribution Factors Mode No. Period, nT  
(sec) Deck Disp. at 

Abutment 
Column Drift 

1 1.0800 0.000 0.000 
2 0.8249 0.996 0.995 
3 0.4191 0.000 0.000 
4 0.3395 0.000 0.000 
5 0.3318 0.000 0.000 
6 0.3051 0.004 0.005 

Total 1.0 1.0 

RELATIVE IMPORTANCE OF QUASI-STATIC AND DYNAMIC RESPONSE 
As mentioned previously in equation 3, the total displacements of the linearly elastic bridge 
subjected to multiple-support motions consist of the quasi-static and dynamic displacements. The 
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contributions of these two displacements to the total displacements are examined next for linear 
elastic bridges. For this purpose, peak values of total seismic demands and their contributions 
from the quasi-static and dynamic parts, computed by linear RHA, are examined for a range of 
longitudinal steel ratio, which is defined as the longitudinal reinforcement in columns of the 
bridge as a percentage of the gross column cross section. 

The results presented in Figure 5 indicate that the column drift in the selected bridge is 
dominated by the dynamic part, with the column drift almost entirely due to the dynamic part. 
The deck displacement at abutment 1, on the other hand, is dominated by the quasi-static part. 
However, its relative contribution increases with longitudinal reinforcement. These results also 
show that although the contribution of the dynamic part is small and decreases with longitudinal 
steel ratio, it can not be completely ignored in estimating the deck displacement at abutment. 
While the column drift for the selected can be computed by considering only the dynamic part, 
results for other bridges and fault locations, not shown here for brevity, indicate that quasi-static 
part may be significant for column drift and dynamic part may be comparable to the quasi-static 
part for deck displacement at abutment. Therefore, no generalization should be made about 
ignoring either quasi-static or dynamic parts in estimating seismic demands. 
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Figure 5. Relative contribution of quasi-static and dynamic parts to the total seismic demands. 

SEISMIC DEMANDS IN NONLINEAR BRIDGES 
Bridges subjected to motions resulting from fault rupture between their supports are expected to 
be deformed significantly beyond the linear elastic range. Therefore, response of the selected 
bridge responding in the nonlinear range is examined next. The response is computed by solving 
nonlinear equations of motion, not presented here for reason of brevity, for total displacements 
and the relative displacements, such as column drift and deck displacement considered in this 
investigation, are obtained by subtracting the ground displacements. 

Since the bridge response can be significantly influenced by the transverse restraint provided by 
the shear keys at the abutments, three shear-key conditions are investigated: (1) bridges without 
shear keys; (2) bridges with elastic shear keys, and (3) bridges with nonlinear shear keys. The 
bridges without shear keys represent the current Caltrans design philosophy (CALTRANS, 
2004): shear keys are designed as sacrificial elements to protect abutment walls and piles, 
implying that the shear keys should break-off before initiation of damage either in the piles or the 
abutment walls, during the Maximum Considered Earthquake (MCE). The bridges with elastic 
shear keys represent condition in which the shear key may be too strong and may not break-off 
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during the MCE. The bridges with nonlinear shear key consider the nonlinear behavior of 
external shear keys observed during recently conducted experiments (Bozorgzadeh et al., 2003). 

For nonlinear shear keys, a simple tri-linear model (Figure 6) is used to “mimic” the 
experimental observations (Bozorgzadeh et al., 2003). The first yield is selected to occur at yV = 
1263 kN and the peak strength of the shear key (or break-off force) to occur at nV  = 1407 kN. 
The values of displacements at initiation of yielding and shear key break-off of 0.1 in (2.54 mm) 
and 1 inch (25.4 mm), respectively, observed during the experiments were modified to include 
the effects of pile flexibility which were not considered during the experiments. The 
displacement, mu , at which the shear key breaks-off, i.e., it ceases to provide any resistance, is 
selected as 4 inch (101 .6 mm).  
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Figure 6. Nonlinear model for shear keys. 

Figure 7 shows the time-histories of deck displacement at abutment 1 and column drift due to the 
selected motions obtained from nonlinear RHA. Also shown on the time history of nonlinear 
shear key case is the time instant when the shear key breaks-off. These results show that 
response of bridge with nonlinear shear keys can be significantly different compared to the 
bridge either without shear keys or with elastic shear keys. The response in bridge with nonlinear 
shear keys begins to diverge from the elastic shear keys case at about 3.5 sec, when the shear key 
begins to yield, with significant changes after the shear keys breaks-off. After the shear key 
breaks-off, the bridge begins to vibrate essentially in the same manner as the one without shear 
keys. The peak responses, however, are different because of different initial conditions at the 
instant of shear key break-off. Note that the response for the bridge with elastic shear keys does 
not exhibit oscillatory behavior because the vibration periods of modes that contribute 
significantly to the dynamic response are much shorter, about one-fifth, of the effective rise time 
of the ground displacement. However, the bridge without shear keys case and the elastic shear 
key case serve as the two bounding cases for the seismic demands in bridge with nonlinear shear 
keys: without shear keys and with elastic shear keys cases provide the upper and lower bounds, 
respectively, for deck displacement at abutment 1. But this trend reverses for column drift. 
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Figure 7. Time histories of column drift and deck displacement at abutment 1. 

It is also useful to examine how the various seismic demands are affected by the shear key 
strength. For this purpose, the variations of seismic demands – column drift and deck 
displacement at abutment 1 – with the normalized shear key strength are examined next. The 
normalization of the shear key strength is with respect to the reference strength of the shear key 
defined previously. The normalized values of the shear key strength in the range of zero to two 
are considered. A value of normalized strength equal to zero leads to bridge without shear keys 
whereas normalized strength equal to one leads to bridge with the selected nonlinear shear keys. 
Much higher values of the normalized strength would lead to bridge with elastic shear keys.  

Figure 8 presents the variation of peak seismic demands with the normalized shear keys strength. 
For reference purpose, the curves for peaks seismic demands in bridges without shear keys and 
with elastic shear keys are also included. These results show that peak values of the seismic 
demands depend significantly on the strength of the shear key. The seismic demands in the 
bridge with nonlinear shear keys approach those without shear keys for low values of normalized 
shear key strength, and approach those with elastic shear keys for high values of normalized 
shear key strength. Therefore, the cases without shear keys and with elastic shear keys provide 
bounding values on the response of bridges with nonlinear shear keys.  
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Figure 8. Variation of seismic demands with normalized shear key strength. 

As mentioned previously, the Caltrans bridge design practice typically ignores the transverse 
restraint provided by the shear keys for the MCE ground motion. Therefore, seismic demands are 
estimated assuming the bridge has no shear keys. The results presented here clearly indicate that 
the case without shear keys may not be adequate in estimating upper bounds on all seismic 
demands. While the case without shear keys provides upper bound for deck displacement at 
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abutment 1, it did not provide the upper bound for column drift. The case with elastic shear keys 
provided upper bound estimate of column drifts. Therefore, both extreme cases – without shear 
keys and with elastic shear keys – must be considered to obtain estimates of upper bound of all 
seismic demands.  

CONCLUSIONS 
Presented in this paper is a procedure for analysis of bridges crossing strike-slip faults capable of 
producing motions with permanent offset in which seismic demands for linearly elastic bridges 
are computed by adding the results from: (1) static analysis for all support displacements applied 
simultaneously, and (2) dynamic analysis for reference ground acceleration using the “effective” 
influence vector. The dynamic displacements may be estimated by the standard RSA procedure 
using the “effective” influence vector and the response spectrum for the reference acceleration 

( )gu t . However, response spectrum must include the effects the near-fault motions of Figure 2 
with  permanent offset resulting from fault rupture. Note that the standard ARS spectrum 
specified in Caltrans design guidelines is not appropriate for this case. 

The dynamic response of a three-span symmetric bridge responding in the linearly elastic and 
nonlinear range computed for ground motions resulting from rupture on a strike-slip fault 
between its two bents has led to the following conclusions: 

1. The selected support motions excite only the torsional modes in the symmetric bridge due to 
predominantly torsional nature of the “effective” influence vector. Note that only transverse 
modes are excited for symmetric bridge subjected to uniform transverse support motions.  

2. No generalization should be made about ignoring either quasi-static or dynamic parts in 
estimating seismic demands because different parts may dominate different seismic demands 
or both parts may contribute significantly to seismic demands. 

3. Response of bridges with nonlinear shear keys may be significantly different compared to the 
bridge either without shear keys or with elastic shear keys. However, the response of bridges 
with nonlinear shear keys is bounded by that of bridges without shear keys and with elastic 
shear keys provide. 

4. To obtain an upper bound on seismic demands in bridges with nonlinear shear keys, both 
cases – without shear keys and with elastic shear keys – must be considered. The current 
Caltrans practice of ignoring shear keys may not always provide conservative estimates of all 
seismic demand. 

While nonlinear RHA of bridges with nonlinear shear keys responding beyond the elastic limit 
provides the most “accurate” estimate of seismic demands, it may not always be suitable for 
design of “ordinary” bridges. Therefore, procedures simpler than the nonlinear RHA are 
desirable. The research is currently underway to develop simplified procedures that consider the 
nonlinear behavior of the bridge and provide improved estimates, compared to the current 
Caltrans practice, of seismic demands in bridges crossing fault rupture zones.  
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