
  CHAPTER 7 

FAILURE CRITERIA OF SHAFT MATERIAL 

7.1 INTRODUCTION 

Deformations in any structural element depend upon the characteristics of the load, the element shape and 

its material properties. With laterally loaded shafts and shafts, the flexural deformations are based on the 

applied moment and the flexural stiffness of the shaft at the cross section in question. In addition, the flexural 

stiffness (EI) of the shaft is a function of the Young’s modulus (E), moment of inertia (I) of the shaft cross 

section and the properties of the surrounding soil. Given the type of material, concrete and/or steel, the 

properties of shaft material vary according to the level of the applied stresses. 

Behavior of shafts under lateral loading is basically influenced by the properties of both the soil and shaft 

(shaft material and shape). The nonlinear modeling of shaft material, whether it is steel and/or concrete, 

should be employed in order to predict the value of the lateral load and the realistic associated bending 

moment and shaft deflection especially at large values of shaft-head deflection and the onset of shaft material 

failure. It is known that the variation in the bending stiffness (EI) of a laterally loaded shaft is a function of 

the bending moment distribution along the shaft (moment-curvature, M-F, relationship) as seen in Fig. 7-1.

 Consequently, some of the shaft cross sections which are subjected to high bending moment experience 

a reduction in bending stiffness and softer interaction with the surrounding soil. Such behavior is observed 

with drilled shafts and steel shafts at advanced levels of loading and has an impact on the lateral response 

and capacity of the loaded shaft. The shaft bending stiffnesses along the deflected shaft change with the 

level of loading, the M-F relationship of the shaft material, and the soil reaction which affects the pattern 

of shaft deflection. Therefore, the equilibrium among the distributions of shaft deflection, bending moment, 

bending stiffness, and soil reaction along the shaft should be maintained. 
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In the case of a steel shaft, the Young’s modulus remains constant (elastic zone) until reaching the yield 

stress, fy (indicating the initial yielding), at which time the steel starts to behave elastic-plastically with 

different values of the secant Young’s modulus. Once a plastic hinge develops, the shaft cross section 

responds in plastic fashion under a constant plastic moment. But, in the case of a concrete shaft, the stress

strain relationship varies in a nonlinear fashion producing a simultaneous reduction in Young’s modulus and, 

in turn, the stiffness of the shaft cross section. Furthermore, once it reaches a critical value of strain, the 

concrete ruptures catastrophically. 

The technique suggested by Reese (1984), which employs the Matlock-Reese p-y curves, requires 

separate evaluation of the M-F relationship of the shaft cross section and then adoption of a reduced 

bending stiffness (EIr) to replace the original shaft bending stiffness (EI). The suggested procedure utilizes 

this reduced bending stiffness (EIr) over the full length of the shaft at all levels of loading. Assuming a 

reasonable reduction in bending stiffness, particularly with drilled shafts, is a critical matter that requires 

guidance from the literature which has only limited experimental data.  At the same time, the use of one 

constant reduced bending stiffness for the shaft does not reflect the real progressive deformations and forces 

associated with the steps of lateral loading. However, this technique may work quite well with the steel H

pile which fails approximately once the shaft flange reaches the yielding stage (occurs rapidly). In general, 

the response of the shaft (shaft-head load vs. deflection, and shaft-head load vs. maximum moment) is 

assessed based on a constant bending stiffness (EIr) and is truncated at the ultimate bending moment of the 

original shaft/drilled shaft cross section. The moment-curvature relationship, and thus the maximum bending 

moment carried by the shaft cross section should be evaluated first. 

Reese and Wang (1994) enhanced the technique presented above by computing the bending moment 

distribution along the shaft and the associated value of EI at each increment of loading. Reese and Wang 

(1994) concluded that the bending moment along the shaft does not depend strongly on structural 

characteristics and that the moment differences due to EI variations are small. It should be noted that the 

effect of the varying EI on the bending moment values along the drilled shaft was not obvious because the 
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EI of the drilled shaft had no effect on the p-y curves (i.e. modulus of subgrade reaction) employed in their 

procedure. Therefore, it was recommended that a single value of EI of the cracked section (constant value) 

be used for the upper portion of the shaft throughout the analysis. Contrary to Reese and Wang’s 

assumption, the variation in the value of EI has a significant effect on the nature of the p-y curve and 

modulus of subgrade reaction [Ashour and Norris (2000); Yoshida and Yoshinaka (1972); and Vesic 

(1961)] especially in the case of large diameter shafts. 

The main purpose in this chapter is to assess the moment-curvature relationship (M-f) of the loaded shaft 

in a convenient and simplified fashion considering the soil-shaft interaction. The prediction of the moment

curvature curve allows one to realistically determine the variation of shaft stiffness (EI) as a function of 

bending moment. 

The SW model allows the designer to include the nonlinear behavior of the shaft material and, as a result, 

to find out the effect of material types on the shaft response and its ultimate capacity based on the concepts 

of soil-shaft interaction. 

7.2	 COMBINATION OF MATERIAL MODELING WITH THE STRAIN WEDGE 

MODEL 

The bending moment distribution along the deflected length of a laterally loaded shaft varies as shown in Fig. 

7-1. This profile of moment indicates the associated variation of shaft stiffness with depth if the stress-strain 

relationship of shaft material is nonlinear. The strain wedge model is capable of handling the nonlinear 

behavior of shaft material as well as the surrounding soil. The multi-sublayer technique, presented in 

Chapter 5, allows one to provide an independent description for each soil sublayer and the associated shaft 

segment. The effect of shaft material is considered with the global stability of the loaded shaft and the shape 

of the developing passive wedge of soil in front of the shaft. During the iteration process using the SW 

model, the stiffness of each shaft segment, which has a length equal to the depth of the soil sublayer, is a 

function of the calculated bending moment at the associated shaft segment, as seen in Fig. 7-1. Therefore, 
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the shaft is divided into a number of segments of different values of flexural stiffness under a particular lateral 

load. 

In order to incorporate the effect of material non-linearity, numerical material models should be employed 

with the SW model. A unified stress-strain approach for confined concrete has been employed with the 

reinforced concrete shaft as well as the steel pipe shaft filled with concrete. In addition, steel is modeled 

using an elastic perfectly plastic uniaxial stress-strain relationship which is commonly used to describe steel 

behavior. The procedure presented provides the implementation of soil-shaft interaction in a fashion more 

sophisticated than that followed in the linear analysis with the SW model presented in Chapter 5. 

The approach developed will allow one to load the shaft to its actual ultimate capacity for the desired lateral 

load and bending moment according to the variation of shaft material properties along the shaft length. 

7.2.1 Material Modeling of Concre te Strength and Failure Criteria 

Based upon a unified stress-strain approach for the confined concrete proposed by Mander et al. (1984 

and 1988), a concrete model is employed with circular and rectangular concrete sections. The proposed 

model, which is shown in Fig. 7-2, has been employed for a slow strain rate and monotonic loading. The 

longitudinal compressive concrete stress fc is given by 

f cc x r
f c = (7-1)

rr - 1+ x 

where fcc symbolizes the compressive strength of confined concrete. 
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x = ec (7-2) 
ecc 

where ec indicates the axial compressive strain of concrete. 

Ø

1+5
  

  
Ł

 
ø  

ł

f 
-
1
 (7-3)
ccŒ

Œº

=
 e e
 œ 

ßœ

cc co 

f co 

where ecc is the axial strain at the peak stress. fco and eco represent the unconfined (uniaxial) concrete 

strength and the corresponding strain, respectively. Generally, eco can be assumed equal to 0.002, and 

Ecr = (7-4)
Ec - Esec 

where 

Ec = 57,000 ( f co )0.5 (p s i) (7-5) 

and 
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f ccE sec = (7-6) 
e cc 

Ec denotes the initial modulus of elasticity of the concrete under slowly applied compression load. 

As mentioned by Paulay and Priestly (1992), the strain at peak stress given by Eqn. 7-3 does not represent 

the maximum useful strain for design purposes. The concrete strain limits occur when transverse confining 

steel fractures. A conservative estimate for ultimate compression strain (ecu) is given by 

1.4 r f es yh sm 
ecu = 0.004+ (7-7)

f cc 

where esm is the steel strain at maximum tensile stress (ranges from 0.1 to 0.15), and rs is the volumetric 

ratio of confining steel. Typical values for ecu range from 0.012 to 0.05. fyh represents the yield stress of 

the transverse reinforcement. 

In order to determine the compressive strength of the confined concrete (fcc), a constitutive model (Mander 

et al. 1988) is directly related to the effective confining stress (fl) that can be developed at the yield of the 

transverse reinforcement. 

Ø 0.5 ø7.94 f l 2 f l 
cc = f Œ - 1.254+ 2.254 1+ - œ (7-8)f co 

Œ Ł f co ł f co œº ß 
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For circular and square section of concrete, fl is given by 

f = 0.95 r f (7-9)l s yh 

• Monotonic tensile loading 

Although concrete tension strength is ignored in flexural strength calculation, due to the effect of concrete 

confinement it would be more realistic if it were considered in the calculation. As suggested by Mander et 

al. (1988), a linear stress-strain relationship is assumed in tension up to the tensile strength (ftu). The tensile 

stress is given by 

f = Ec ec for f £ f (7-10)t t tu 

and 

f 
etu = tu (7-11) 

Ec 

where 

f = 9 ( f )0.5 ( p s i ) (7-12)tu co 

If tensile strain e t is greater than the ultimate tensile strain (e tu), ft is assumed to be equal to zero. 

7.2.2 Material Modeling of Steel Strength 
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There are different numerical models to represent the stress-strain relationship of steel. The model 

employed for steel in this study is linearly elastic-perfectly plastic, as shown in Fig. 7-3. The complexity of 

this numerical model is located in the plastic portion of the model which dose not include any strain 

hardening (perfectly plastic). 

The elastic behavior of the steel is limited by the linearly elastic zone of this model at which the strain is less 

than the yield strain 

f ye y = (7-13)
Eso 

where fy is the yield stress of steel, and ey is the value of the steel strain at the end of the elastic zone where 

the stress is equal to fy. Eso is the elastic Young’s modulus of steel which is equal to 29,000 kips/inch2. 

When the value of steel stress (fs) at any point on the cross section reaches the yield stress, the Young’s 

modulus becomes less than Eso of the elastic zone. The initial yielding takes place when the stress at the 

farthest point from the neutral axis on the steel cross section (point A) becomes equal to the yield stress (fy), 

as shown in Fig. 7-4a. 

The initial yielding indicates the beginning of the elastic-plastic response of the steel section. By increasing 

the load, other internal points on the cross section will satisfy the yield stress to respond plastically under 

a constant yield stress (fy), as seen in Figure 7-4b. Once all points on the steel section satisfy a normal 

stress (fs) equal to the yield stress (fy) or a strain value larger than the yield strain (ey), the steel section 

responds as a plastic hinge with an ultimate plastic moment (Mp) indicating the complete yielding of the steel 

section, as presented in Fig. 7-4c. 
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During the elastic-plastic stage (after the initial yielding and before complete yielding) some points on the 

steel section respond elastically (fs£ fy) and the others respond plastically (fs = fy) with different values of 

Young’s modulus (Es) , as presented in Fig. 7-3. The values of normal strain are assumed to vary linearly 

over the deformed cross section of steel. 

If the strain at any point on the steel cross section is larger than the yield strain (ey), the plastic behavior will 

be governed by the flow of the steel under a constant stress (fy) at the point in question. Regardless of 

whether the section is under elastic, elastic-plastic or plastic states, the strain is linearly distributed over the 

whole steel section. In addition, the strain at any point is controlled by the values of strain at other locations 

in order to keep the strain distribution linear. Generally, the external and internal moments over the steel 

section should be in a state of equilibrium. 

7.3 MOMENT-CURVATURE (M-FF ) RELATIONSHIP 

The aim of developing the moment-curvature relationship of the shaft material is to determine the variation 

of the flexural stiffness (EI) at every level of loading. The normal stress (sx) at any cross section along the 

shaft length is linked to the bending moment (M) and curvature (f) by the following equations: 

2 y
EI d = M (7-14)

d x2 

EI
EI f= = M (7-15) 

r 
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d 2 y e xf= = (7-16)
d x2 z 

z 
e x = - (7-17) 

ro 

where 

sx = E ex = E f z (7-18) 

z = the distance from the neutral axis to the longitudinal fiber in question 

ro = the radius of curvature of the deflected axis of the shaft 

ex = the normal strain at the fiber located z-distance from the neutral axis. 

The above equations are based on the assumption of a linear variation of strain across the shaft cross 

section. In addition, the shaft cross section is assumed to remain perpendicular to the shaft axis before and 

after deforming, as shown in Fig. 7-5. 

7.4 ANALYSIS PROCEDURE 

The analysis procedure adopted consists of calculating the value of bending moment (Mi) at each cross 

section associated with a profile of the soil modulus of subgrade reaction which is induced by the applied 

load at the shaft top. Then, the associated curvature (f), stiffness (EI), normal stress (sx) and normal strain 

(ex) can be obtained. This procedure depends on the shaft material. The profile of moment distribution 
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along the deflected portion of the shaft is modified in an iterative fashion along with the values of the strain, 

stress, bending stiffness and curvature to satisfy the equilibrium among the applied load and the associated 

responses of the soil and shaft. Based on the concepts of the SW model, the modulus of subgrade reaction 

(i.e. p-y curve) is influenced by the variations in the shaft bending stiffness at every shaft segment. This 

procedure guarantees the incorporation of soil-shaft interaction with the material modeling. The technique 

presented strives for a more realistic assessment of the shaft deflection pattern under lateral loading and due 

to the nonlinear response of shaft material and soil resistance. 

7.4.1 Steel Shaft 

Steel shafts involved in this study have circular cross sections, as seen in Fig. 7-6. The cross section of the 

steel shaft is divided into a number of horizontal strips (equal to a total of 2m) parallel to the neutral axis.

 Each strip has a depth equal to the thickness of the pipe shaft skin, as seen in Fig. 7-7. The moment applied 

over the cross section of the shaft segment (i) is Mi, and the normal stress at a strip (n) is (fs)n (1 £ n £ m). 

Using Eqns. 7-17 and 7-18, the stress and strain distributions over the cross section of each shaft segment 

can be determined as 

M ifi = (7-19)( E I )i 

( e s )n = zn fi 1 £ n £ m (7-20) 
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                   ( f s )n= ( Es )n ( es )n 

(7-21) 

where Es £ Eso; fi is the curvature at shaft segment (i) which is constant over the steel cross section at the 

current level of loading; zn indicates the distance from the neutral axis to the midpoint of strip n; (es)n 

represents the strain at strip n; (EI)i represents the initial stiffness of the shaft segment (i); I is the moment 

of inertia of the steel cross section of the shaft segment (i) which is always constant; and Eso symbolizes the 

elastic Young’s modulus of the steel. 

1. Elastic Stage 

The Young’s modulus of any strip of the steel section (i) is equal to the steel elastic modulus (29x106 psi) 

as long as the stress (es)n is less or equal to the yield strain. Consequently, there is no change in the stiffness 

value of the shaft segment (i) if es at the outer strip (n = 1) is less than or equal to ey. This stage is similar 

to the linear analysis (constant EI) of the SW model presented in Chapter 5. 

2. The Elastic-Plastic Stage 

Once the calculated strain at the outer strip based on Eqn. 7-20 is larger than ey, the stress (fs)n determined 

at the outer strip (n = 1) using Eqn. 7-21 will be equal to the yield stress.  Therefore, initial yielding occurs 

and the elastic-plastic stage begins. During the elastic-plastic stage, the strips of the steel cross section 

experience a combination of elastic and plastic responses with different values of the secant Young’s 

modulus (Es). Some strips behave elastically (es £ ey and fs £ fy) , and the others behave plastically (es > 

ey and fs = fy) with different values of the secant Young’s modulus (Es), as shown in Figs. 7-3, 7-4 and 7-8.

 The normal stresses on the steel cross section are redistributed in order to generate a resisting moment 

(MR)i that balances the applied moment (Mi) and satisfies the following equation: 
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M i = ( M R ) = ( M e ) + ( M y ) (7-22)i i i 

where (Me)i and (My)i represent the internal elastic and plastic moments induced over the steel cross 

section (i). 

The internal elastic moment (Me)i represents the internal moment exerted by the strips (m1) which behave 

elastically and can be obtained as 

( M )i = S ( f s ) Aj z j ( 1 £ j £ m1 ) (7-23)e j 

The internal plastic moment (My)i is the moment generated by the yielded strips (m2) which respond 

plastically and can be calculated using the following equation: 

( M y )i = S f y Ak zk ( 1 £ k £ m2 ) (7-24) 

where A is the area of the steel strip, and 

2 m= m1 + m2 (4.25) 

For the first iteration of the solution in this stage, the steel cross section experiences a resisting internal 

moment (MR)i less than the external moment (Mi). Therefore, the steel cross section of the shaft segment 

(i) should maintain a modified stiffness value for the shaft segment in question, i.e. (EI)i,mod. This reduced 

value of stiffness at shaft segment (i) is associated with an increase in the value of curvature such that the 

( f ) =f M i 7-13 (7-26)i mod i ( M R )i 



  
              

new value of curvature, (fi)mod, is 

The modified stiffness value at shaft segment (i) can be computed using the following equation, 

( EI ) = M i (7-27)i,mod (f )i mod 

The above procedure should be performed with all the unbalanced segments along the deflected portion 

of the loaded shaft at each step of loading. 

The global stability problem of the laterally loaded shaft is resolved under the same level of loading and soil 

resistance using the modified values of stiffness of the shaft segments (Eqn. 7-27).  Consequently, the new 

moment distribution (Mi) along the shaft length is assessed during each iteration.  The modification for shaft 

curvature and, therefore, stiffness values at the unbalanced segments continues until Eqn. 7-22 is satisfied 

over all the defelcted segments of the shaft. 

3. Plastic Stage 

The elastic-plastic stage continues until the steel cross section reaches a condition of complete yield. 

Thereafter, all strips of the steel section will be subjected to the yield stress (fy) and strain values lager than 

ey , as presented in Fig. 7-9. At this level of shaft head load, the steel section exhibits a plastic moment 

(Mp) which represents the ultimate moment that can be carried by the steel section. Once the steel section 

reaches the plastic moment, a plastic hinge develops to indicate the beginning of the plastic stage at the shaft 

segment in question. The plastic moment is expressed as 
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M p =S f y An zn (7-28) 

Equations 7-26 and 7-27 are employed in order to obtain the desired values of curvature and the 

associated stiffness at the plastic section is 

M p( EI) = (7-29)i,mod (f )i mod 

During the plastic stage, the moment capacity and the stress over the steel section are restricted to the 

plastic moment (Mp) and the yield stress (fy), respectively. However, the strain and curvature values are 

free to increase in order to produce reduced stiffnesses with the higher level of loading. 

The resisting moment of the completely yielded section (plastic hinge) is always equal to Mp. If the external 

moment (Mi) which is calculated from the global stability is larger than Mp, Eqns. 7-26, 7-28 and 7-.29 will 

be employed. The iteration process continues until satisfying an external moment value equal to the plastic 

moment at the shaft segment in question. 

The development of the plastic hinge on the shaft does not mean the failure of the shaft but leads to a 

limitation for the shaft-head load. After the formation of the plastic hinge, the shaft deflects at a higher rate 

producing larger curvatures and smaller stiffnesses to balance the applied load.  Therefore, another plastic 

hinge may develop at another location on the shaft. If the soil has not failed at the development of the plastic 

hinge, the shaft may exhibit a lateral load capacity slightly larger than the load associated with the plastic 

hinge formation due to increase in soil resistance. The laterally loaded shaft is assumed to fail when the 

outer strip at any shaft segment experiences a strain value larger than 0.15. 

7.4.2 Reinforced Concrete Shaft 

The reinforced concrete shaft has a circular cross section and to be divided into a total number of horizontal 
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strips of (2m) as seen in Fig. 7-10. Unlike the cross section of a steel shaft, the cross section of the 

reiforced concrete shaft is not symmetrical around the neutral axis as a result of the different behavior of 

concrete under tensile and compressive stresses. The incorporation of concrete tensile strength reflects the 

actual response of the reinforced concrete shaft. As presented in Section 7.2.1, the employment of 

concrete confinement has a significant influence on the concrete behavior (strength and strain values). 

The resistance of the concrete cover (outside the confined core of concrete) is neglected. Therefore, the 

initial stiffness of the whole concrete cross section (EI)i represents the effective concrete section which is 

the confined concrete core. The curvature (fi) at the concrete section (i) is initially determined based on 

the applied external moment Mi and the initial stiffness of the reinforced concrete cross section (EI)I, i.e. 

M ifi = (7-30)( E I )i 

Based on a linear distribution of strain (e) over the reinforced concrete cross section, the strain at any strip 

(n) can be obtained using Eqn. 7-20 and is expressed as 

( e )n = zn fi 1 £ n £ m (7-31) 

Eqns. 7-1 and 7-21, which represent the numerical models of the compressive stress of confined concrete 

and tensile stress of steel, respectively, are used to calculate the associated concrete stress (fc) and steel 

stress (fs) at each strip (n). In this study, the tensile stress (ft) is assumed to be equal to the compressive 

stress (fc) if the tensile strain (e t)n is less than e tu, which is more conservative than Eqn. 7-10.  Therefore, 

the reinforced concrete cross section remains symmetric (the centerline represents the neutral axis) as long 

as e t at the outer strip (n = 1) is less than e tu. Under the conditions of a symmetric reinforced concrete 

section, the moment equilibrium and stiffness modification at any shaft segment (i) can be expressed as 
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( M R )i = S 2 [( f c Ac )n zn +( f s As )n zn ] ( 1£ n £ m ) (7-32) 

Once the value of the tensile strain at the outer strip of any shaft cross section exceeds e tu, the outer strip 

on the tension side fails and the cross section becomes unsymmetric.  Thereafter, the neutral axis is shifted 

towards the compression side as shown in Fig. 7-10. In order to accurately estimate the new position of 

the neutral axis, the cross section should be in equilibrium under the compressive and tensile forces (Fcom 

and Ften) or 

( F )i = ( F )i (7-33)com ten 

where 

( F ) = S ( A f + A f ) 1£ n £ n (7-34)com c s 1i c s n 

and 

( Ften )i = S ( Ac f t + As f s )n 1£ n £ n2 (7-35) 

n1 and n2 are the numbers of strips in the compression and tension zones of the concrete cross section, 

respectively. At any strip in the tension zone, ft is equal to zero when the tensile strain is greater than e tu. 

Having the values of n1 and n2 (2m = n1 + n2) and using Eqns. 7-33 through 7-35, the location of the neutral 

axis can be identified, and the resisting moment can be determined as 

where 
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( M )i =( M + M )i (7-36)R com ten 

( M com ) =S [( f Ac + f As ) ( zc ) ] ( 1£ n £ n1 ) (7-37)i c s n n 

( M ten ) =S [ ( f Ac + f As ) ( zt ) ] ( 1 £ n £ n2 ) (7-38)i t s n n 

where zc and zt are the distance from the neutral axis to the strip in question in the compression and tension 

zones, respectively. 

In addition, the behavior of steel bars in the compressive and tensile zones is subjected to the steel model 

presented in Section 7.2.2. Once the strain of any steel bar is greater than or equal to ey, fs will be equal 

to fy in Eqns. 7-34 through 7-38.  The equations above are influenced by the ultimate values of concrete 

strength and strain (ecu and fcc) that are associated with concrete confinement as presented in Section 7.2.1. 

If the calculated moment (MR)i is less than the external moment Mi, the cross section curvature will be 

modified to obtain new values for the curvature and stiffness to balance the applied moment, i.e. 

( f ) =f M i (7-39)i mod i ( M R )i 

The modified stiffness value at shaft segment (i) can be computed using the following equation, 
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              ( EI )i,mod = M i (7-40)(fi )mod 

By iteration, Eqns. 7-33 through 7-40 are emlpoyed to obtain the desired values of the curvature and the 

stiffness of the shaft segment (i) in order to generate a resisting moment (MR)i equal to the external moment 

(Mi). The above procedure should be performed with all unbalanced segments along the deflected portion 

of the loaded shaft at each level of loading. 

The global stability problem of the laterally loaded shaft is solved again under the same level of loading and 

using the modified values of stiffness of the shaft segments. Consequently, the bending moment (Mi) is 

redistributed along the shaft length. 

Once any concrete strip under compressive stress reaches the ultimate strain ecu (Eqn. 7-7), the strip fails 

and is excluded from the resisting moment. The steel bars fail when the steel strain reaches a value of 0.15.

 The strength of a failed strip is assumed to be equal to zero in Eqn. 7-28.  However, the shaft fails when 

the stiffness of any shaft segment diminishes to a small value that does not provide equilibrium between the 

external and the resisting moments. Therefore, the plastic moment of a concrete shaft represents the largest 

induced moment in the shaft that can be sustained before failure. 

7.4.3 Concrete Shaft with Steel Case (Cast in Steel Shell, CISS) 

In the current case, the shaft cross section is treated as a composite section similar to the reinforced 

concrete shaft. The shaft cross section (steel and concrete) is divided into a number of strips (equal to 2m) 

as shown in Fig. 7-9. The thickness of each strip is equal to the thickness of the steel shell (ts). Both 

numerical material models presented in Section 7.2 are employed here using an iterative technique governed 

by the deformation criteria of the numerical models. 

The normal strain is assumed to vary linearly over the shaft cross section which is perpendicular to the shaft 
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axis, as shown in Fig. 7-11. Therefore, the curvature is constant over the whole composite section. The 

applied bending moment (Mi) at shaft segment (i) generates initial values for curvature, stresses and strains 

in both the steel pipe and the concrete section as described in Section 4.2. Similar to the reinforced 

concrete section, the concrete resistance in the tension zone is considered. It should be noted that the steel 

pipe provides large concrete confinement resulting in large values of concrete strength and strain. 

The composite cross section of shaft behaves symmetrically as long as the tensile strain at the outer strip 

of concrete (n = 2) is less than e tu. The strain values of steel and concrete are obtained using Eqns. 7-30 

and 7-31. Then the associated stress values of concrete and steel are calculated based on Eqns. 7-1 and 

7-21. Generally, the stiffness the composite cross section is modified according to the equilibrium between 

the external and internal moments as expressed by Eqn. 7-32 for the symmetric section. 

When the tensile strain of the outer strip of concrete (n = 2) exceeds e tu, the composite cross section in no 

longer symmetric and the neutral axis location is shifted towards the compression zone and should be 

determined by using an iterative technique which includes Eqns. 7-36 through 7-39.  It should be noted that 

the concrete tensile stress (ft) at any failed strip in the tension zone is equal to zero. In addition, at any strip, 

the steel stress is equal to fy if the strain is equal to or larger than ey. If the calculated resisting moment 

(MR)i does not match the external moment (Mi), the stiffness of the shaft segment in question is modified 

using Eqn. 7-40. 

The above procedure is performed with all shaft segments under the same level of loading. This procedure 

is repeated in an iterative way using the modified stiffness values to solve the problem of the laterally loaded 

shaft (global stability). The iteration process continues until there is equilibrium between the external and 

resisting moments at all shaft segments. The distribution of bending moment (Mi), along the length of the 

shaft, and the deflection pattern is based on the modified shaft stiffnesses and the resistance of the 

surrounding soil. 
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It should be noted that the concrete section will not fail before a plastic hinge develops.  This occurs 

because the steel yields at a strain (ey) much less than the ultimate strain of concrete (ecu). However, the 

failed strips of concrete (in either the tension or compression zones) are subtracted from the composite 

section resulting in a faster drop in the stiffness of the shaft segment in question. It should be emphasized 

that there is no sudden failure for the concrete portion of the composite section because of the steel shell. 

The stiffness of the loaded shaft and the effective area of the deflected shaft cross section vary according 

to the level of loading. Therefore, the actual moment-curvature relationship and the ultimate moment carried 

by a reinforced concrete shaft or a steel pipe shaft filled with concrete should be calculated using the 

technique presented. 

7.4.4 Reinforced Concrete Shaft with Steel Case (Cast in Steel Shell, CISS) 

Similar to the shaft cross section presented in Section 4.4.3, the shaft cross section is treated as a composite 

section. The shaft cross section (steel and reinforced concrete) is divided into a number of strips (equal to 

2m) as shown in Fig. 7-12. The thickness of each strip is equal to the combined thickness of the steel shell 

(ts) and the thickness equivalent to the longitudinal reinforcement, As [tr = As / 3.14 / (Zs - ts)]. Both 

numerical material models presented in Section 7.2 are employed here using an iterative technique governed 

by the deformation criteria of the numerical models. 

The normal strain is assumed to vary linearly over the shaft cross section which is perpendicular to the shaft 

axis, as shown in Fig. 7-12. Therefore, the curvature is constant over the whole composite section. The 

applied bending moment (Mi) at shaft segment (i) generates initial values for curvature, stresses and strains 

in both the steel pipe and the concrete section as described in Section 7-2. The current shaft cross section 

(Fig. 7-12) is analyzed by following the procedure applied to the CISS section presented in Section 7.4.3. 

7.5 SUMMARY 

A technique for the inclusion of nonlinear material modeling for steel, concrete, and composite steel concrete 
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shafts has been developed and demonstrated in this chapter. The strain wedge model exhibits the capability 

of predicting the response of a laterally loaded shaft based on the nonlinear behavior of shaft material. The 

technique presented allows the designer to evaluate the location of a plastic hinge developed in the shaft, 

and to determine the realistic values of the ultimate capacity and the associated deflection of the loaded 

shaft. 

The nonlinear behavior of the shaft material has an influence on the lateral response and capacity of the 

shaft/shaft. This effect is dependent on the values of bending moment (level of loading). In turn, the 

modulus of subgrade reaction (i.e. the p-y curve) is affected by the changed bending moment, the reduced 

bending stiffnesses, and the changed deflection pattern of the shaft/shaft.  Without the appropriate 

implementation of material modeling, the shaft/shaft capacity, and the associated deflection pattern and 

bending moment distribution will be difficult to predict with any degree of certainty. 
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Fig. 7-1 Deflection and Moment Distributions in a Laterally Loaded Shaft 
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Fig. 7-2 Stress-Strain Model for Confined Concrete in Compression 
(Mander et al. 1984 and 1988) 

Fig. 7-3  Elastic-Plastic Numerical Model for Steel 
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Fig. 7-4 Different stages of Normal Stresses over a Steel Section 
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Fig. 7-5 Flexural Deformations of a Pile Segment subjected to Bending Moment 
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Fig. 7-6 A Cross Sections of Steel Shaft 

Fig. 7-7 Steel Sections Divided into Horizontal Strips 
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Fig. 7-8 Behavior of Steel Shaft Cross Section in the Elastic-Plastic Stage 

Fig. 7-9 Behavior of Steel Shaft Cross Section in the Plastic Stage 
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Fig. 7-10 Behavior of a Reinforced Concrete Shaft Cross Section Divided into Strips 

Fig. 7-11 Composite Cross Section of a Concrete Shaft with Steel Case (CISS) 
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Fig. 7-12 A Shaft Cross Section of Reinforced Concrete Cast in Steel Shell 
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