
  

 

CHAPTER 4 

VERTICAL SIDE SHAER AND POINT RESISTANCE OF
 

PILE/SHAFT IN SAND
 

4.1 INTRODUCTION 

The friction pile in cohesionless soil gains its support from the pile tip resistance and the transfer 

of load via the pile wall along its length. It has been suggested that the load transferred by skin 

friction pile can be neglected which is not always the case. The load transferred via the pile wall 

depends on the diameter and length of the pile, the surface roughness, and soil properties. It 

should also be mentioned that both pile point and skin resistances are interdependent. 

The assessment of the mobilized load transfer of a pile in sand depends on the success in 

developing a representative t-z relationship. This can be achieved via empirical relationships 

(Kraft et al. 1981) or numerical methods (Randolph and Worth, 1978). The semi-empirical 

procedure presented in this chapter employs the stress-strain relationship of sand and findings 

from experimental tests. The t-z curve obtained based on the current study will be used in 

Chapter 5 to account for the vertical side shear resistance that develops with the laterally loaded 

large diameter shafts. 

The method of slices presented in this chapter reflects the analytical portion of this technique that 

allows the assessment of the attenuating shear stress/strain and vertical displacement within the 

vicinity of the driven pile. As a result, the load transfer and the t-z curve can be assessed using a 

combination between the tip and side resistances of the pile. 

PILE POINT (SHAFT BASE) RESISTANCE AND SETTLEMENT 

(QP – zP) IN SAND 

It is evident that the associated pile tip resistance manipulates the side resistance of the pile shaft. 

As presented in the analysis procedure, the pile tip resistance should be assumed at the first step. 

As a result, the shear resistance and displacement of the upper segments of the pile can be 
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computed based on the assumed pile tip movement. This indicates the need for a practical 

technique that allows the assessment of the pile tip load-displacement relationship under a 

mobilized or developing state. Most of the available techniques provide the ultimate pile tip 

resistance that is independent of the specified settlement. In other words, the pile tip settlement 

at the ultimate tip resistance is a function of the pile diameter (e.g. 5 to 10% of pile tip diameter). 

Thereafter, a hyperbolic curve is used to describe the load-settlement curve based on the 

estimated ultimate resistance and settlement of the pile tip. 

Elfass (2001) developed an approach that allows the assessment of the mobilized pile tip 

resistance in sand and the accompanying settlement over the whole range of soil strain up to and 

beyond soil failure. In association with the pile side shear resistance technique presented in 

Section 4-2, the approach established by Elfass (2001) will be employed in the current study to 

compute the pile tip load-settlement in sand. 

The failure mechanism developed by Elfass (2001) assumes four failure zones represented by 

four Mohr circles as shown in Fig. 4.1. This mechanism yields the bearing capacity (q) and its 

relationship with the deviatoric stress (sd) of the last (fourth Mohr circle) as shown in Fig 4-2. . 

sd = 0.6 q (4-1) 

The pile tip resistance (QP ) is given as, 

Q = q A = 
sd A (4-2)P base base0.6 

where Abase is the cross sectional area of the pile tip (shaft base). 

As seen in Fig. 4-1, the Mohr Columb strength envelope is nonlinear and requires the evaluation 

of the secant angle of the fourth circle (jIV) tangent to the curvilinear envelope. The angle of the 

secant line tangent to first circle (jI) at effective overburden pressure can be obtained from the 

field blow data count (SPT test) or a laboratory triaxial test at approximately 1 tsf (100 kPa) 

confining pressure. Due to the increase in the confining pressure (s3 ) from one circle to the 
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next, the friction angle (j) decreases from jI at (s3 ) I to jIV at (s3 ) IV based on the following 

Bolton (1986) relationship modified by Elfass (2001) (Fig. 4-3) 

jpeak = jmin + jdiff	 (4-3) 

 	 2    Ø 2 + tan (45+j / 2 ) ø  
jdiff = 3 I R = 3 DR  10 - ln Œ    s3 œ  - 1 (4-4)

3 ł   Ł

s3  is in kPa.  jmin is the lowest friction angle that j may reach at high confining pressure, as 

shown in Fig. 4-4 and Dr is inputted as its decimal value. 

 º	 ß  

Knowing the sand relative density (Dr) and the associated friction angle under the original 

confining pressure (s3 = s vo ) , the reduction in the friction angle (Dj) due to the increase of the 

confining pressure from s vo  to (s3 ) IV  can be evaluated based on Eqns. 4-3 and 4-4, as 

described in the following steps: 

1. Based on Eqn. 4-4, calculate (jdiff)I at the original confining pressure (s3 = s vo ) 

 Ø ( )  ø   2 + tan 2 45 +jI / 2  (jdiff ) I = 3 DR	  10 - ln Œ    svo œ  - 1 (4-5)
 Œ 3 œ   ºŁ	 ł ß  

2. Assume a value for the deviatoric stress (sd) of the fourth circle (Fig. 4-2). As a result, 

sdq =	 (4-6)
0.6 

(s3 ) IV = svo + q - sd = svo + 0.4 q	 (4-7) 

3. Assume a reduction (Dj = 3 or 4 degrees) in the sand friction angle at (s3 = s vo ) 

due to the increase in the confining pressure from s vo  to (s3 ) IV , as seen in Fig. 4-4. 

Therefore, 

jIV = jI - Dj (4-8) 
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4. As presented by Elfass (2001) and shown in Fig. 4-4, j changes in a linear pattern with 

5. 

6. 

7. 

8. 

9. 

the logarithmic increase of s3 . The friction angle jIV associated with the confining 

pressure (s3 ) IV can be calculated as 

(s3 ) IVjIV = jI - Dj log (4-9) 
svo 

According to the computed friction angle (jIV), use Eqn. 4-4 to evaluate (jdiff)IV. 

2Ø 2 + tan (45+jIV / 2 ) ø 
(j ) = 3 D 10 - ln Œ (s3 ) œ - 1 (4-10)diff VI R IV

Œ 3 ł œßºŁ 

Having the values of (jdiff)I and (jdiff)IV, a revised value for Dj can be obtained. 

Dj = (jdiff)I - (jdiff)IV (4-11) 

Compare the value of Dj obtained in step 6 with the assumed Dj in step3. If they are 

different, take the new value and repeat the steps 3 through 7 until the value of jIV 

converges and the difference in Dj reached is within the targeted tolerance. 

Using the calculated values of jI and jIV, the deviatoric stress at failure can be expressed 

as 

2sdf = (s3 ) IV (tan (45 +jIV / 2 ) - 1) (4-12) 

The current stress level (SL) in soil (Zone 4 below pile tip) is evaluated as 
2tan (45 + jm / 2 ) -1 sdSL = = ; sd = SLsdf (4-13)
2tan (45 + jIV / 2 ) -1 sdf
 

where
 

-1 s / 2jm = sin d (4-14)
(s3 + / 2Ł ) IV sd ł 
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4.2.1 Pile Tip Settlement 

As presented in Chapter 3 with clay soil, the pile tip displacement in sand can be determined 

based on the drained stress-strain relationship presented in Chapter 5 (Norris 1986 and Ashour et 

al. 1998). The soil strain (e) below the pile tip is evaluated according to the following equations: 

Corresponding to a triaxial test at a given confining pressure (s3 ) at a deviator stress (sd) and 

stress level (SL) as given by Eqns. 4-12 through 4-14. 

3.707 SLSL e 
e = e50 (4-15)

l 

The value 3.707 and l represent the fitting parameters of the power function relationship, and e50 

symbolizes the soil strain at 50 percent stress level. l is equal to 3.19 for SL less than 0.5 and l 

decreases linearly with SL from 3.19 at 0.5 to 2.14 at SL equal to 0.8. 

Equation 4-16 represents the final loading zone which extends from 80 percent to 100 percent 

stress level. The following equation is used to assess the strain (e) in this range: 

Ø ø100 e 
SL = exp Œ ln 0.2+ œ ; SL ‡ 0.80 (4-16) 

Œ ( m e+ q ) œßº 

where m=59.0 and q=95.4 e50 are the required values of the fitting parameters. 

The two relationships mentioned above are developed based on unpublished experimental results 

(Norris 1977). 

For a constant Young’s modulus (E) with depth, the strain or e1 profile has the same shape as the 

elastic (Ds1 - Ds3) variation or Schmertmann’s Iz factor (Schmertmann 1970, Schmertmann et al. 

1979 and Norris 1986). Taking e1 at depth B/2 below the shaft base (the peak of the Iz curve), 

the shaft base displacement (zP) is a function of the area of the triangular variation (Fig. 3-9). 
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z P = e B (4-17) 

where B is the diameter of the pile point (shaft base). Dealing with different values for pile tip 

resistance (Eqn. 4-2), the associated deviatoric stress (Eqn. 4-1), stress level (Eqn. 4-13) and 

principal strain (e) (Eqns. 4-15 and 4-16) can be used to assess base movement in order to 

construct the pile tip load-settlement (QP – zP) curve. 

4.2	 LOAD TRANSFER ALONG THE PILE/SHAFT SIDE 

(VERTICAL SIDE SHEAR) 

4.3.1	 Method of Slices for Calculating the Shear Deformation and 

Vertical Displacement in Cohesionless Soil 

The methodology presented in this chapter is called the method of slices. The soil around the 

pile/shaft is modeled as soil horizontal slices that deform vertically as shown in Fig. 4-5. The 

shear stress/strain caused by the shaft settlement (z) at a particular depth gradually decreases 

along the radial distance (r) from the pile wall. As seen in Fig. 4-6, the shear stress (t) and strain 

(g) experience their largest values (tmax and gmax) just at the contact surface between the shaft and 

the adjacent sand. Due to the shear resistance of sand, the induced shear stress/ strain decreases 

to zero and large radial distance (r). 

Randolph and Worth (1978) and Kraft et al. (1981) assume the shear stress decreases with 

distance such that t r = toro in which to is the shear stress (tmax) at the pile wall (ro); and t is the 

shear stress angular ring at distance r. However, Randolph and Worth (1978) argued this 

assumption and indicated that the shear stress decreases rapidly with the distance r. Based on 

this assumption, Terzaghi (1943) showed a more decreasing parabolic pattern (similar to the one 

shown in Fig. 4-7) for the horizontal variation of the shear stress caused by the axially loaded 

sheet pile embedded in a homogenous mass of soil. Robinsky and Morrison (1964) performed 

experimental tests on model piles embedded in sand that exhibited the parabolic deflection 

pattern seen in Fig. 4-7. The following relationship describes the attenuation in the shear stress 

(t) in soil with the distance r for such a parabolic pattern. 
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t ro 
2 

= (4-18)
to r 2 

In order to understand the slice method, the stress-strain conditions of a small soil element at the 

contact surface with the pile shaft is analyzed. Figure 4-8 shows the induced shear stress on the 

soil-pile contact surface. 

The lateral earth pressure coefficient (K) varies, with the radial distance, from 1 at the pile wall 

(due to pile installation) to K = Ko = 1 – sin j in the free-field where the z-movement-induced 

shear stress (t) reaches zero. Therefore, the horizontal effective stress at the pile wall after 

installation (prior to loading of the pile) just equals the vertical effective overburden, s vo  (i.e. 

lateral earth pressure coefficient K = 1). It should be noted that to represents the tmax induced at 

the pile wall. Accordingly, a Mohr circle with a center at s vo  and a diameter of 2to (tmax = to) 

develops at r = ro, as shown in Fig. 4-8. With radial distance from the pile, the horizontal normal 

stress (sh) and the deviator stress (sd) continue to drop from s vo  and 2tmax at ro to svo (1-sin j) 

and s vo (1- K o ) or s vo sin j in the far-field (where t due to z is 0). The corresponding shear 

strain (g = gmax) causes a major normal strain e1, 

e1 = (1 + n) g (4-19) 

In addition, the shear modulus (G) is related to the Young’s modulus (E) at the given effective 

confining pressure ( s3 ) and normal strain (e1), i.e. 

E
G = (4-20)

2(1 + n) 

The method of slices described in Fig. 4-10, is based on the shear stress variation concepts 

presented above. The proposed method of slices provides the radius of the soil ring (radial 

distance, r) over which the induced shear stress diminishes, as shown in Fig. 4-7. 
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As shown in Fig. 4-11 for soil ring 1, the horizontal stress (sh) on the soil-pile interface (inner 

surface of the first soil slice) is equal to s vo . At the same time, the horizontal stress (sh) on the 

outer surface is expressed as 

sh = s vo - Dt (4-21) 

The horizontal (radial and tangential) equilibrium is based on the ring action for the whole ring 

of soil (2pr) around the pile. The vertical equilibrium is also conducted on a full ring of soil. 

The vertical equilibrium of the first soil ring (slice) adjacent to the pile wall is expressed by the 

following equations: 

� Fy = 0 (4-22) 

R cosj - R cosj - DT - W = 0 (4-23)B B T T 1 

Therefore, 

R cosj - R cosj - DT - W = 0 (4-24)B B T T 1 

and 

W = R cosj - R cosj - DT (4-25)1 B B T T 

where DT represents the reduction in the vertical shear force along the radial width (Dr) of the 

horizontal soil ring. 

The following steps explain the implementation of the method of slices: 

1. Divide the pile length into a number of segments that are equal in length (Hs). Note that 

the effective stress (s vo ) (i.e. the initial confining stress) increases with depth for each 

pile segment. 

2. Assume a shear stress developed at the soil-pile interface (r = ro) equal to that at soil 

failure or tult. It should be noted that there might be a slip condition (e.g. tlimit = K s vo 

tand) at the soil pile interface that limits to a value tlimit less than tult. 
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3.	 Determine the developing confining pressure s3  due to tmax (Fig. 4-11) 

s3 = Ko svo = 1 - sin j	 (4-26) 

where j the friction angle at failure. 

4.	 Increase the radial distance (r) from ro to r1 by a small incremental amount (Dr). As a 

result, the vertical shear stress on the face of the slice at r1 will drop to t1 as expressed in 

Eqn. 4-21. 

5.	 The horizontal stress (sh) on the vertical face of the soil slice decreases with the 

attenuating shear stress (t) as shown in Fig. 4-9 until it reaches the value of s3  given in 

Eqn. 4-26. The Mohr circles shown in Fig. 4 describe the decrease in horizontal stress 

(sh) and the mobilized friction angle (jm) in association to the attenuation in the shear 

stress (t) (and the vertical shear force, T, on a vertical unit length) acting on the vertical 

face of the soil ring, i.e. 

DT1 = T0 – T1 = 2p  (roto - r1t1)	 (4-27) 

s h1R = p (r 2 - r 2 )	 (4-28)T 1 o cos jT 

svo 2 2R = p (r - r )	 (4-29)B 1 o cos jB 

It should be noted that s vo  is the effective stress at the middle of the slice which is used 

as an average effective stress for the whole slice (i.e. with More circle). The angles jT 

and jB at the top and bottom of the first soil ring, respectively, are determined as follows, 

1 tojB = sin - (4-30) 
svo 

j = sin -1 t1 where Dt = t -t	 (4-31)T	 o 1 s vo - Dt 
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jB equals jT of the next slice (soil ring 2) where t1 and t2 are the vertical shear stresses at 

radii r1 and r2, respectively (Fig. 4-12). 

6.	 Based on the induced shear stress (to) on the inner face of the current soil ring (first ring) 

and its Mohr circle, calculate the associated shear strain (g) that develop over the width 

(Dr) of the current soil ring. For each horizontal soil slice i (soil ring with a width Dr) and 

based on the induced shear stress (t) as seen in Fig. 4-10, the normal strain and stress (e 

and sd), and n will be evaluated. Thereafter, determine the associating shear strain gi and 

vertical displacement zi as follows, 

ig i =	 
e 

(4-32)
1 + n
 

where
 

n = 0.1 + 0.4 SLi
 

zi = g i	 Dri (4-33) 

7.	 Repeat steps 1 through 6 for larger values of r (i.e. an additional soil ring) and calculate zi 

for each soil slice (ring) until the induced vertical shear stress approaches zero at r = rf. 

8.	 Assess the total vertical displacement at the soil-pile contact (t = tmax or to) as follows, 

t = 0 

z f = � zi	 (4-34) 
t = t o 

zf represents the elastic vertical displacement at failure at the soil-pile contact that is 

needed to construct the Ramberg-Osgood model in the next sections. 

It would be noticed that the soil ring is always in horizontal equilibrium. For example, the 

horizontal equilibrium for the first ring of soil can be expressed as 

� F = 0x 
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E + R sin j - E - R sin j = 0 (4-35)o T T 1 B B 

where, 

E = svo 2pr H (4-37)o o s 

E = s v 2pr H (4-38)1 1 s 

sv  varies from s vo  at the sand-pile contact surface to svo (1 - sin j)  at rf where the induced 

shear stress (t) = 0, as shown in Fig. 4-7. 

4.3.2 Ramberg-Osgood Model for Sand 

As presented in Chapter 3 with the clay soil, Ramberg-Osgood model represented by Eqn. 4-39 

can be used to characterize the t-z curve. 

Ø R-1 øz g t t 
= = Œ1 + b œ (4-39) 

z g t tr r ult Œ Ł ult ł œº ß 

At t/tult = 1 then 

g
b = f -1 (4-40) 

g r 

At t/tult = 0.5 and g = g50, then 

gg 502 50 -1 2 -1 
g g rrlog log 

gb f -1 
gŁ ł Ł r łR -1 = = (4-41)

log (0.5) log (0.5) 

The initial shear modulus (Gi) at a very low SL and the shear modulus (G50) at SL = 0.5 can be 

determined via their direct relationship with the normal stress-strain relationship and Poisson’s 

ration (n) 
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Gi = 
Ei = 

Ei n for sand = 0.1 (4-42)
2(1 + n) 2.2 

and 

E E s / 2
50 50G = = = df (4-43)50 2 (1 + n) 3 3 e50 

Therefore, 

s / 2tult df g = = (4-44)r Gi Gi 

The Poisson’s ratio (n) for sand varies 0.1 to 0.5 with the increasing values of SL as follows, 

n = 0.1 + 0.4 SL (4-45) 

The shear strain at failure (gf) is determined in terms of the normal strain at failure (ef). 

e e 
g f = f = f (4-46)

(1 + n) 1.5 

The normal stress-strain relationship of sand (sd - e) is assessed based on the procedure 

presented in Chapter 5. The initial Young’s modulus of clay (Ei) is determined at a very small 

value of the normal strain (e) or stress level (SL). In the same fashion, ef is evaluated at SL = 1 

or the normal strength sdf. By knowing the values of gr, g50 and gf, the constants b  and R of the 

Ramberg-Osgood model shown in Eqn. 4-39 can be evaluated. 

The Ramberg-Osgood model given in Eqn. 4-39 allows the assessment of the elastic vertical 

displacement that occurs at the soil-pile contact surface based on zf obtained in Section 4-3-1. 

Equation 4-39 can be rewritten as follows, 

Ø R -1 øz t t 
= Œ1 + b œ (4-47) 

zr tult Œ Łtult ł œßº 

where, 

4-12
 



 

 

z g	 gr r	 r= i.e. zr = z f	 (4-48) 
z g	 gf f	 f 

4.3.3	 Procedure Steps to Assess Load Transfer and Pile Settlement 

in Sand (t-z Curve) 

The assessment of the load transfer and associated settlement of a pile embedded in sand requires 

the employment of t-z curve for that particular soil. The load transferred from pile shaft to the 

surrounding sand is a function of the diameter and the surface roughness of the pile skin and 

sand properties (effective unit weight, friction angle, relative density and confining pressure) in 

addition to the pile tip resistance. The development of a representative procedure allows the 

assessment of the t-z curve in soil (sand and/or clay) that leads to the prediction of a nonlinear 

load-settlement curve at the pile/shaft head. Such a relationship provides the mobilized pile-head 

settlement under axial load and vertical shear resistance. 

A new procedure is developed in this chapter to assess pile/shaft skin resistance in sand in a 

mobilized fashion. The proposed procedure provides the deformation in sand around the pile in 

the radial zone affected by the pile movement (Fig. 4-1). At the same time, the horizontal 

degradation (attenuation) of the shear stress away from the pile is evaluated by the suggested 

analysis. As a result, the varying shear stress/strain, shear modulus and deformation in the radial 

distance away from the pile can be predicted based on reasonable assumptions. 

The presented t-z curve is developed according to the induced displacement along the pile. The 

following steps present the procedure that is employed to assess the load transfer and pile 

movement in sand soil: 

1.	 Based on the approach presented in Section 4-2 for the pile tip resistance, assume a small 

pile tip resistance, QP as given in Eqns (4-1 and 4-2) 
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2.	 Using the SL evaluated above and the stress-strain relationship presented in Eqns. 4-13 

through 4-16, compute the induced axial (deviatoric) soil strain, eP and the shaft base 

displacement, zP = eP B. B is the diameter of the shaft base. 

3.	 Divide the pile length into segments equal in length (hs). Take the load QB at the base of 

the bottom segment as (QP) and movement at its base (zB) equal to (zP). Estimate a 

midpoint movement for the bottom segment (segment 4 as seen in Fig. 4-13). For the 

first trial, the midpoint movement can be assumed equal to the shaft base movement. 

4.	 Calculate the elastic axial deformation of the bottom half of this segment, 

Q h / 2 = B	 s (4-49)z elastic E Abase 

The total movement of the midpoint in the bottom segment (segment 4) is equal to 

z = zT + zelastic	 (4-50) 

5.	 Based on the soil properties of the surrounding sand, use a Ramberg-Osgood formula to 

characterize the backbone response (Richart 1975). 

Ø R-1 øz g t t 
= = Œ1 + b œ (4-51) 

zr g r tult ºŒ Ł tult ł ßœ 

z = total midpoint movement of a pile/shaft segment
 

g = average shear strain in soil adjacent to the shaft segment
 

t = average shear stress in soil adjacent to the shaft segment
 

gr is the reference strain, as shown in Fig. 3-4, and given by Eqn. 4-44
 

zr = shaft segment movement associated to gr 

e50 = axial strain at SL = 0.5. e50 can be obtained from the chart provided in Chapter 5. 
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b and R-1 are the fitting parameters of the Ramberg-Osgood model given in Eqn. 4-52. 

These parameters are evaluated in section 4.2.1. 

6.	 Using Eqn. 4-51 which is rewritten in the form of Eqn. 4-52, the average shear stress 

level (SLt) in sand around the shaft segment can be obtained iteratively based on 

movement z evaluated in Eqn. 4-50. 

z g	 R -1=	 = SLt [1 + b(SL ) ] (Solved for SLt) (4-52)t zr	 gr 

7.	 Shear stress at soil-shaft contact surface is then calculated, i.e. 

t = SL sdf/2 (4-53) 

8.	 The axial load carried by the shaft segment in skin friction / adhesion (Qs) is 

expressed as 

Qs = p  B hs t	 (4-54) 

9.	 Calculate the total axial load (Qi) carried at the top of the bottom segment (i = 4). 

Qi = Qs + QB (4-55) 

10.	 Determine the elastic deformation in the bottom half of the bottom segment 

assuming a linear variation of the load distribution along the segment. 

Qmid = (Qi + QB) / 2 (4-56) 

Q + Q (Q + 3 Q ) hmid	 B i B sz = h / EA =	 (4-57)elastic	 s
Ł	 2 ł 8EA 

11. Compute the new midpoint movement of the bottom segment. 
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z = zP + zelastic	 (4-58) 

12.	 Compare the z value calculated from step 11 with the previously evaluated estimated 

movement of the midpoint from step 4 and check the tolerance. 

14.	 Repeat steps 4 through 12 using the new values of z and Qmid until convergence is 

achieved 

15.	 Calculate the movement at the top of the segment i= 4 as 

Q + Q hi B szi = zB	 + 2 AE 

16.	 The load at the base (QB) of segment i = 3 is taken equal to Q4 (i.e. Qi+1) while zB of 

segment 3 is taken equal to z4 and steps 4-13 are repeated until convergence for segment 

3 is obtained. This procedure is repeated for successive segments going up until reaching 

the top of the pile where pile head load Q is Q1 and pile top movement d is z1. Based on 

presented procedure, a set of pile-head load-settlement coordinate values (Q - d) can be 

obtained on coordinate pair for each assumed value of QT. As a result the load 

transferred to the soil along the length of the pile can be calculated for any load 

increment. 

17.	 Knowing the shear stress (t) and the associated displacement at each depth (i.e. the 

midpoint of the pile segment), points on the t-z curve can be assessed at each new load. 

4.4	 PROCEDURE VALIDATION 

As reported by Vesic (1970), an 18-inch diameter steel pipe pile with 0.5-inch-thick walls was 

driven and tested in five stages. The bottom section has a 2-in thick flat steel plate at the base of 

the pile. Tests with this pile were performed at driving depths of 10, 20, 30, 40 and 50 ft. 

Figure, 4-14 shows the results of the standard penetration tests (SPT) at different locations at the 

test site. Figure 4-15 the particle size distribution curves of two different types of sands. The 
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fine sand curves in this figure refer to the material found mostly at the top 5 ft of the soil profile. 

It should be noted that the frictions angles shown in Table 4-1 is a little bit relatively high 

compared to the associated (N1)60. 

Table 4-1 – Suggested Soil Data for Current Soil Profile 

Soil 

layer # 

Soil type Thickness 

(ft) 

g (pcf) (N1)60 f (deg.) e50** 

1 Sand 10 110 9 30 0.009 

2 Sand 10 60 15 32 0.007 

3 Sand 10 60 19 35 .006 

4 Sand 10 66 24 39 .004 

5 Sand 10 66 32 42 0.003 

Figure 4-16 exhibits a comparison between the measured and computed data at the depths 20, 40 

and 50 ft below ground. Good agreement between the measured and computed axial pile load 

can be seen in Fig. 4-16. 

4.5 SUMMARY 

This Chapter presents a procedure that allows the assessment of the t-z and load-settlement 

curves for a pile in sand. The methodology employed is based on the elastic theory, stress-strain 

relationship, and the method of slices for the vertical equilibrium. The results obtained 

incorporate the pile tip and side resistance in a mobilized fashion. The results obtained in 

comparison with the field data show the capability of the suggested technique. The findings of 

this chapter will be employed in Chapter 5 to evaluate the vertical side shear resistance induced 

by the lateral deflection of a large diameter shaft and its contribution to the lateral resistance of 

the shaft. 
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Fig. 4-1  Failure Mechanism of Sand Around Pile Tip (Elfass, 2001) 
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Fig. 4-2  Relationship Between Bearing Capacity (qnet) of Pile Tip in Sand and the Deviatoric

 Stress (sd) (after Elfass, 2001) 
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Fig. 4-3  Degradation in the Secant Friction Angles of Circles Tangent to a Curvilinear

    Envelope of Sand Due to the Increase in the Confining Pressure (Elfass, 2001) 
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Fig. 4-4 Changes of Friction Angle (j) with the Confining Pressure 
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Fig. 4-5  Soil Deformation in the Vicinity of Axially Loaded Pile. 
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Fig. 4-6 Shear Stress/Strain at Soil-Pile Interface. 
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Fig. 4-7 Shear and Displacement Attenuation with the Radial Distance from the Pile Wall. 
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Fig. 4-8 Growth of Shear Stress at the Soil-Pile Contact Surface (Pile Wall)
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Fig. 4-9 Mohr Circles that Represent the Radial Attenuation of Shear and Normal Stresses

 For a Given Displacement z at the Pile Wall 
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Fig. 4-10  Soil Rings Around the Pile and the Applying forces on Each Soil Ring (Slice) 
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Fig. 4-11  Forces and Stresses Applied on the Soil Ring (Slice) Number 1 
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Fig. 4-12 Forces and Stresses Applied on the Soil Ring (Slice) Number 2
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Fig. 4-13 Modeling Axially Loaded Pile Divided into Segments 
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Fig. 4-14  Results of the Standard Penetration Tests (SPT) at

     Different Locations (Vesic, 1970) 

Fig. 4-15  Particle Size Distribution of Sands at Test Site 
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Fig. 4-16  A Comparison Between Measured and Computed Axial Pile

       Load at Different Depths (After Vesic, 1970) 
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