Long Life Concrete Pavements (LLCP) –
Consideration of Design & Construction Features

Shiraz Tayabji
FHWA CPTP Implementation Team (CTL)
Caltrans/WSCAPA Concrete Pavement Workshop
October 18, 20 & 21, 2004
Presentation Outline

- LLCP Background
- LLCP Requirements
- LLCP Design & Construction Features
 - Thickness
 - Dowels
 - Base Type - lean concrete base typical in CA
 - Smoothness (best practice for constructing smooth pavements)
- Summary/Recommendations
Common PCCP Types (US)

JPCP
- 4.3 to 5.5 m joint spacing
- $t = 150$ to 200 mm (streets); 200 to 250 mm (secondary roads); 300 to 350 mm (primary and interstate systems)
- Dowels & stabilized base for medium/heavy volume of truck traffic

CRCP
- Steel: 0.65 to 0.80%
- Cracking at 0.8 to 2 m, tight cracks
- Terminal joints at structures
Widened Slab/Tied Shoulder

- **Widened Lane**
 - Slab paved 0.6 m wider than usual
 - Lane striped at normal 3.65 m width
 - Reduces edge and corner stress/deflections

- **Tied cement concrete shoulder**
 - Reduces edge stress/deflections
 - Reduces moisture infiltration
 - Emergency/future traffic lane
PCC P Evolution – A Long Journey

1900’s
Life – 1 season

1920’s
Life – 10+ years (?)

Resulting from improvements in design, construction & material technologies

2004
Life – 30 to 40+ years
LLCP Performance Requirements

- Structural performance
 - Long life - no major distresses
 - Routine M&R only

- Functional performance
 - Safety – no wet weather accidents
 - Smoothness – good ride

- Lower life cycle cost
 - Lower agency costs
 - Lower user operating costs
 - Very few delays & accidents

(Long Life Requires Optimization of Design Features, Construction Techniques & Materials)
Pavement Performance

- Time or Traffic
- Serviceability
 - Deficient
 - Standard D&C
 - Long Life Design & Construction

Threshold Level

Performance Benefit vs. Incremental Cost
Pavement Design Considerations

- Minimize failure conditions & costs

- Understand typical failure mechanisms
 - How does a concrete pavement crack?
 - How does a concrete pavement fault?
 - How does a concrete pavement get rough?
 - Are there other local failure conditions that need to be addressed?

- Understand impact of design features
 - Minimize costs by optimizing design features
How do Concrete Pavements Fail?

Transverse Cracking

Faulting

Smoothness (IRI)

And, localized distresses (spalling) and materials related distresses (ASR, etc.)
Allowable Distress/Performance

- At end of service life
 - 40 years for primary system
 - 20+ years for secondary system

<table>
<thead>
<tr>
<th>Distress</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cracked Slabs, %</td>
<td>10 - 15</td>
</tr>
<tr>
<td>Faulting, mm</td>
<td>6 – 7</td>
</tr>
<tr>
<td>Smoothness (IRI), m/km</td>
<td>2.5 to 3.0</td>
</tr>
<tr>
<td>Spalling (length, severity)</td>
<td>Minimal?</td>
</tr>
<tr>
<td>Materials Related Distress</td>
<td>None</td>
</tr>
</tbody>
</table>
LLCP Premise

- LLCP is not a “gimmick” or a “Cadillac” design, but a necessity for high volume highways.
- LLCP is a serious on-going effort by DOTs, engineers, contractors, and materials suppliers to design & construct the best concrete pavements for long term service keeping LCC in mind.
- LLCP includes the optimization of all components of design, materials & construction to produce cost-effective long-lasting (40+ years) concrete pavements.
LLCP - FHWA/DOT LLCP Goals

- Increased service life - 40 to 60 years
- Lower life cycle cost
- Decreased construction time
- Fewer maintenance closures
- Construction of better initial ride
- Use of efficient construction equipment & procedures (Get in & Get Out AQAP; sustainability)
- Use of improved QA/QC procedures
 - To monitor quality as paving progresses, not days or weeks later
LLCP - Caltrans Directions

- New -- Corridors with 20-year traffic > 150,000 vpd or > 15,000 tpd
- Rehab -- Corridors with current traffic > 150,000 vpd or > 15,000 tpd
 (Rehab policy under review)

- Added initial cost ~ 3 to 5 % ($25K to $50K/lane-mile)
Caltrans Concrete Pavement Policy
(Highway Design Manual – Chapter 600)

- Structural design
 - Base – stabilized (LCB or ATB) if TI > 10
 - Other bases – free draining ATPB/CTPB or aggregate base
 - No bonding between PCC & LCB
 - PCC thickness = 300 mm (max shown in tables for TI > 14)
 - Tied-concrete shoulder or widened lane with AC shoulder

- Drainage design guidelines

- Cross-section design guidelines

- Pavement selection process guidelines
LLCP Directions - Other DOTs

- MinnDOT -- 60 year design - Jointed (Twin Cities)
 - Durable concrete aggregate (D-cracking concerns)
 - Higher specified air – 8.5 +/- 1.5 % (75% entrained air)
 - 35% GGBF Slag; w/cm < 0.40
 - 1.5 in. diam. stainless steel clad dowels from UK (cost > $12/bar)
 - Slab thickness – 34 mm (vs. standard of 32 mm)
 - Cost: placement - $6/sy; concrete - $75/cy; clad dowels - $12/bar

- Illinois DOT -- 30+ year CRCP (I-70 demo & Chicago area)
 - Higher steel content
 - 33 to 36 mm thickness
 - 150 mm ATB over 300 mm aggregate subbase
 - Durable concrete aggregate (D-cracking concerns)
 - Epoxy-coated steel & tie-bars
LLCP Elements – Structural Design

- **Design features**
 - Thickness
 - Widened lane and/or tied concrete shoulder
 - Joint layout (spacing)
 - Base type & drainage considerations
 - Load transfer mechanism (dowels)

- **Design details**

- **Plans & specifications**
 - Clearly defined requirements
 - Requirements must support design objectives
 - May require supplementary provisional specs

Eliminate Early Age Distress
LLCP Elements - Materials

Concrete
- Durable – no MRD; Low shrinkage
- Desired structural properties (f, E, α)

Joint system
- Dowel bars – corrosion resistant
- Sealant – 12 to 15 + years service life; minimize no. of re-sealing (re-facing) intervals

Base/Subbase
- Non-erodible (moisture insensitive system)
- Desired structural properties (f, E, a)

Subgrade
- Need for a “solid” foundation & construction platform
- Protection from swelling & freezing
LLCP Elements - Construction

- Concrete production & delivery
 - Uniform production & consistency
- Concrete placement & consolidation
 - Dowel bar/tie-bar placement
 - Consolidation monitoring
- Concrete finishing, texturing & curing
 - Minimal manual finishing
 - Durable/low-noise texture
- Concrete sawing & sealing
 - Single vs. double cut
 - Longer re-sealing intervals
- QA/QC features - continuous monitoring

Eliminate Early Age Distress
LLCP Structural Design Issues

- Needed improvements
 - Improved understanding of failure modes
 - Cracking, faulting, spalling
 - Optimization of key design features
 - Possible “out-of-the-box” design concepts for LLCP
 -- provide smoother, safer, longer-lasting CP at lower LCC

Implementation time period - Next 10 to 15 years
Critical Loading Positions

Fatigue

- Midslab loading away from transverse joint produces critical edge stresses

Erosion/faulting

- Corner loading produces critical pavement deflections
Load Transfer for LLCP

- Load-transfer is a slab’s ability to transfer part of its load to the adjacent slab
- Poor load transfer leads to:
 - Pumping & Faulting
- Also, need to consider dowel bearing stresses:
 - Dowel looseness over time
 - Dowel size important

\[\Delta L = x \]
\[\Delta U = 0 \]

Load Transfer = 0% (Poor)

\[\Delta L = x \]
\[\Delta U = x \]

Load Transfer = 100% (Good)

Load transfer (dowels) essential for LLCP

\[P < \sim 2,500 \text{ lbf} \]
LLCP – Slab Thickness

- Thickness, edge treatment (widened lane/tied shoulder), base type & load transfer at joints are inter-related

- For LLCP, consider
 - Slab thickness > 300 mm (f(truck traffic))
 - Shorter joint spacing ~ 4.5 m works well
 - Widened outside lane and possible tied shoulder
 - Corrosion resistant dowel bars
 - May use 9 (5&4) or 10 (5&5) to reduce cost
 - Stabilized base
LLCP – Load Transfer (Dowels)

- Corrosion resistant dowels a must
 - Stainless steel clad (~$10 to $12)
 - FRP – but effectiveness not proven yet
 - Epoxy coated (low cost option) (~$4 to $5)
- 38 mm diameter minimum for t = or > 300 mm
- Can reduce no. of dowels – middle 2 to 3 dowels not necessary
 - May use 9 (5&4) or 10 (5&5) to reduce cost
- Length = 450 mm
Alternative Dowel Bars
(FHWA, DOTs, Canada, HITEC, etc)

- A number of dowel types are under study
 - Solid stainless steel; stainless steel clad; solid FRP; FRP tubes filled with concrete, elliptical shaped dowels, etc
- How do we extrapolate short-term test results to 40+ year service life?
LLCP - Base

- Non-erodible base if rainfall > ~400 mm/year
- Stabilized base – LCB/CTB or ATB for medium to heavy truck traffic
 - Very high strength LCB/CTB not necessary
- Drainable base – stability more important than high porosity – 150 to 300 m/day permeability fine
- PCC/LCB interface treatment (early age concerns)
 - Bonded/monolithic most effective, but not practical
 - Debonding treatment – 2 coats of curing, asphalt emulsion, 1 in. HMAC, or plastic/geotextile membrane
 - Joint spacing & timing of sawing critical
PCC/LCB Interface Treatment

Plastic Membrane – Indian National highways, 2004

Geotextile – Denver Airport, 2002
LLCP - Smoothness

- PCCP constructed smooth remains smoother
- Measures of smoothness for acceptance
 - IRI - < ~1.2 m/km (How to measure?)
 - PI – zero band
- Smoothness over service life ~ 2 to 3.0 m/km
 - “Low” rate of degradation in ride quality over time
 - IRI increase/year < ~ 0.05 m/km (av. Over 40 years)
Factors Affecting Initial Smoothness

- Base/subbase track-line support
 - Extend Track-line by 1m
 - Stable materials
 - Trim to grade
 - Keep track clean

- Horizontal & vertical alignment
 - String-line management

- Embedded reinforcement and fixtures
Factors Affecting Initial Smoothness Construction Operations

- Avoid stop & go operation
- Maintain uniform speed
 - > 1.5 m/minute
- Maintain uniform head
- Manage/monitor vibration
 - Check for vibrator trails
 - Use Smart Vibrator System
- Maintain steady concrete delivery
Finishing Operations

- Minimal finishing – do not over-finish – pavement does NOT have to be super-smooth
- Longer straight edges produce smoother ride
 - Kansas projects – 5 to 6 m straightedge
- Do not add water to facilitate finishing or texturing
- Finishers have final say on PCCP smoothness
LLCP - Future Directions

- Continue to improve
 - Understanding of pavement behavior
 - Design feature optimization
 - Concrete mixture optimization
 - Construction practices

- Need to perform accelerated structural & durability testing under simulated conditions
 - Cannot wait for 30 years to find out if some innovations will lead to LLCP

- End result – Well-designed & well-constructed PCCP can provide 40 to 50 year low maintenance service life with low life cycle cost!!!
Accelerated Testing/Instrumented Test Highways

<<Accelerated testing to validate design features

Instrumented Test Sections to calibrate/validate analysis models >>
Summary

➢ Future M-E procedures will allow more optimum designs
 o Will address high levels of truck traffic
 o Design life of 40 to 50+ years more reliable
 o Will consider many design features

➢ Also, major materials related improvements and construction innovations are expected in near future

➢ And, instead of “hoping for” long life, we will be designing for long life with 90+% reliability
Thank You!