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The primary focus of this paper is to demonstrate that the diagram known as the “Fundamental Diagram of Traffic Flow”, first 

proposed some 50 years ago by Newell, and widely referenced in the most prevalent studies of traffic engineering, can be analytically 

derived, and unified with the kinematic wave propagation of traffic known as LWR model, first proposed by disparate researchers 

more than 60 years ago, by adhering to a simple tenet that the behavior of the driver in confines of the freeway is predictable. We will 

also derive an expression for the backward travelling wave of the fluid dynamics model of traffic commonly known as the phantom 

wave consistent with observation. Also we will apply the same calculus to everyday traffic engineering problems to replicate complete 

highway traffic flow including the roadway capacity and demonstrate the ability to predict traffic in situations of lane convergence, on-

ramp influx, lane drop and lane additions. We will show that instability of traffic flow arises out of this very predictable behavior 

proving that adhering to the behavioral tenet provides a model for the entire traffic flow field consistent with the publicly accessible 

California’s real time traffic data. 

 

 
Index Terms— Fluid Model, Fundamental Diagram, Newell, Unification  

 

I. INTRODUCTION 

In our findings we demonstrate through existing real time 

field data from publicly accessible California Department of 

Transportation Performance Measurement System (PeMS) [1] 

that highway flow, to a notable extent, is governed by the 

predictability of human behavior in the confines of freeway 

and is independent of all other variables that are currently 

being applied in some of the highly complex parametric 

models used for analyzing traffic.  

This study presents a mathematical model for traffic flow 

theory that is based on a singular variable: the driver behavior. 

We claim that it is the only required element essential for 

formulating and predicting all traffic patterns; that all drivers, 

either mostly adhere to the posted legal speed limits, or when 

necessary, adjust their speed to maintain a constant time of 

impact with the vehicle in front of them. 

The retained time of impact varies from region to region, 

nevertheless it remains constant regionally. This constancy 

dictates both the capacity and the flow of the freeway [2]. 

The central assumption of this paper is based on our 

observations that the driver mode of behavior within the 

confines of the highway is to a great degree predictable; that 

the autonomous human agency, behind the wheel of an 

automobile, is forced to behave with a logical uniformity that 

is capable of preventing collision almost all the time (car 

accidents are rare occurrences.)  

In lower traffic density situations (vehicular density 

cnn <  critical density, measured in vehicles/mile) the driver 

behavior is governed by the posted speed limit, and the 

vehicle’s speed is maintained close to the speed limit. Under 

more congested conditions (vehicular density cnn > critical 

density), the speed is lowered and continuously adjusted by 

the driver to preserve an approximately 2 seconds of impact 

time with the vehicle ahead, therefore the behavior is 

controlled by the desire to avoid collision. Figure 1 depicts 

that the measured traffic data fall on loci of a particular time 

of impact contour. 

 

 
Figure 1: The plot of the loci of measured traffic data 

 

We assert that he driver’s adherence to a constant impact 

time regardless of the distance between two consecutive 

vehicles leads to the observed traffic patterns verifiable by the 

real time field data from aforementioned PeMS. Our simple 

assumption of predictability of driver behavior allows our 

calculus to replicate complete highway traffic flow (consistent 

with the Newell’s diagram) and demonstrates the ability to 

predict traffic patterns in situations of lane convergence, on-

ramp influx, lane drop and lane additions, congestion wave 
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back propagation and frontal wave dispersion, in short it 

provides a model for the entire traffic flow field. We will also 

demonstrate that highway capacity is governed by the 

vehicular length and the prevalent speed and the impact time 

rather than the dimensions of the roadway. We will also 

demonstrate that a freeway may operate unstably for a short 

time at flow rates above the capacity and inevitably collapse 

into the congested but stable state at the slightest disturbance. 

(Lyoponov instability amplifies the effect of one tap on the 

breaks.) 

II. REVIEW OF CURRENT LITERATURE 

Many attempts to specify a relation among traffic flow, 

density, and speed have been made. A macroscopic traffic 

model to correlate them forms the so-called fundamental 

diagrams of traffic flow. Greenshields [3] derived a parabolic 

fundamental diagram between flow and density. Lighthill, 

Whitham [4] and Richards [5] used Greenshields’ hypothesis 

and a conservation law of vehicles to provide a concave 

fundamental diagram, which is called the first order LWR 

model. 

Newel [6] proposed a triangular flow-density fundamental 

diagram as a simpler alternative to solve the LWR model. 

Only two velocities characterize this model: a maximum free-

flow velocity in a free-flow regime and a propagation velocity 

for a congestion area. However, he did not explain the 

correlation between propagation velocity and driving patterns. 

Banks [7] considered the time-gap which is the time required 

to travel the distance between the front-end of a vehicle to the 

back-end of its leading vehicle, and showed the relation 

between the time-gap and speed using real traffic data in the 

USA. He found that during congested times, the average time-

gap is relatively constant, while it diverges with large 

deviation during free-flow periods. However, he did not derive 

a fundamental diagram from the time-gap nor an analysis 

method to estimate the time-gap from raw traffic data. Cho, 

Cruz, Rao and Badii derived an analytic equation for the speed 

of freeway as a function of density in the congested state 

consistent with Newell’s diagram. 

III. THE TRAFFIC MODEL 

For the sake of continuity in argument, Let us define 

density n in the English system as 

 

	� = 5280
	
�� + �			 

 

where 5280 is the number of feet in a mile, L���	is the typical 

vehicular length, and D is inter vehicular distance, in feet.  

 

Solving for D and dividing by the speed v, we can infer 

that for every density n there is a corresponding speed v 

measured in ft/sec and headway	τ measured in seconds such 

that 

� = �
� = 5280 − �	
��

�� 			 
subject to: 

��
�� = 0	, � = �� 							∀	� < �� 

which imposes the legal speed limit for values of density 

below a critical density and  

 ��
�� = 0,							� = 5280 − �	
��

�� 						∀	� > ��	 
 

which imposes safe driving headway at constant τ. In the 

above equation ��  is the forward speed and may be interpreted 

as legally allowable speed limit. Systematic measurements of 

the headway τ, affirms that the value of τ very rapidly 

converges to a constant. 

The only unknown in the above equations is �� which 

will be derived from intersecting the line � = ��� ,	 where � is 

the flow volume measured in vehicles per hour with � =
� � !"#$%&'()%*�̅ ,	 and solving for �, where -=̅5280/3600 is the 

conversion factor from mph to ft/sec.  

 

�� = 5280
	
�� + ���-̅ 

 

The maximum capacity of the freeway per lane will then 

be �./0 = ���� . More important observation may be made 

that the downward slope of � = � !"#$%&'()%*�̅ , 	� computes to be 

�− &'()
* ,. 

 

It is noteworthy that this derivation is universal and 

applies to any roadway regardless of condition, and since the 

roadway capacity is a function	��  and �, it can dramatically 

vary, for example in a situation like NASCAR where ��  is 

very large and �		is very small, the capacity is more than 

20,000 veh/hr. 

Also the freeway has been observed to operate above the 

capacity; this is due to a temporary smaller	� among a group 

of vehicles and the lack of ��		 enforcement. Regardless of the 

reasons, the time gap based model is inherently unstable (in 

the Lyoponov sense of stability) and temporary, and it will 

inevitably collapse to the congested region of Newell diagram. 

It is also noteworthy that the reason that NASCAR is able to 

retain stability is due to the closed loop course. Perry Y. Li 

and Ankur Shrivastava [8], while studying a policy for 

automated cruise control investigated the stability of time gap 

based model and concluded that it was unstable on an open 

course and stable on a closed loop.  

Applying our assertions (Cho, Cruz, Rao and Badii) to the 

LWR wave equation we may write the number of vehicles N 

in the system between two measuring stations A at upstream 

and B at downstream may be written as  

 
23(5)
25 = �7(8, 5) − �9(:, 5) 

 

On the other hand we may express N in terms of density 

 

3(5) = ; �(<, 5)25
7

9
 

Substituting  
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23(5)
25 = 2

25 ; �(<, 5)25
7

9
= �7(8, 5) − �9(:, 5) 

 

by Leibniz axiom we may write		�7(8, 5) − �9(:, 5) as	
 

; �
�< �(<, 5)2<

7

9
 

 

Substituting  

2
25 ; �(<, 5)25

7

9
= ; �

�< �(<, 5)2<
7

9
 

 

Dropping the integrals, we may write the above as 

 ��(<, 5)
�5 − ��(<, 5)

�< = 0 

 

But �(<, 5) = �(<, 5)�(�) with �  itself having dependence on 

�, i.e: � = �(�(<, 5))  
 

��(<, 5)
�5 − �(�) ��(<, 5)�< − �(<, 5) ��(�)�< = 0 

 

Expanding the last term 

 
��(<, 5)

�5 − �(�) ��(<, 5)�< − �(<, 5) ��(�)��
��(<, 5)
�< = 0 

 

Substituting  

�(�) = =>< ?�� , 5280 − �	
��
�� 	@ 

And 
��(�)
�� = =A� B0, 5280�!� C 

 

Applying the two flow regime concepts  ��
�� = 0	>�2	� = ��	∀	� < �� 

 

we end up with a wave equation of the form  

 
��(<, 5)

�5 − D��E	��(<, 5)�< = 0								∀	� < 	�� 

 

which describes a density wave travelling in forward direction 

with the speed D��E	  
And as for the case where 

 

� = 5280 − �	
��
�� 													∀	� > ��	 

 

We may write ��
�5 − B5280 − �	
��

�� − 5280
�!� �C ���< = 0 

 

Leading to 

 
��(<, 5)

�5 + B	
��� C	��(<, 5)�< = 0							∀	� > 	�� 

 

which describes a wave travelling at speed of �&'()* ,	backward, 

consistent with observations of scientists at the Nagoya 

University in Japan [9]. The appearance of �&'()* ,	 unifies the 

Newell model with LWR fluid model. 

Although traffic waves travelling forward and backward 

are interesting as a phenomenon, they are of little value to 

practitioners of traffic engineering who deal on day to day 

basis with congestion. However we can take advantage of the 

constancy of impact time 	� = F

  and provide a new 

methodology for day to day traffic engineering problems that 

have confounded traffic engineers since the dawn of 

congestion, for the past eighty years. Toward this goal we 

introduce the state equation for states G and H for traffic 

conditions where there is a change of density from �I to �J 

∀	� 
 

If �J			 < �� then:  

2�
2� = 0	, � = ��	; � = �J��  

 

However if �J			 > �� then the inter-vehicular distance	�J  for 

the state H 

�J = 5280 − �J	
��
�J  

 

And by assertion of constancy of � we may write 

 

� = �I
�I = �J

�J  

Eliminating � we may write the transition of speed from 

state	G to H and vice versa 

�J = �I �J�I  

 

The immediate application of our findings to day to day traffic 

engineering is presented below. 

 

A. Merging Traffic 

An on-ramp traffic is merged with outermost lane. The 

merging occurs at the speed of the outermost lane with �L 

representing on-ramp volume and �M and �M representing the 

volume and the speed on the outermost freeway lane. The 

density of the outermost lane can be calculated  

�M = �M
�M	 

The inter vehicular distance in the outermost lane 

 

�M = 5280 − �M	
��
�M  
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The density of the ramp 

�L = �L
�M	 

 

The total density at the merge is then 

 

�.�LN = �M + �L  

 

When nO�PQ > nR one may compute the inter vehicular 

distance at merging point 

 

�.�LN = 5280 − �.�LN	
��
�.�LN

 

 

The speed after merging 

�.�LN = �M �.�LN
�M 	 

 

The flow after merging 

 

�.�LN = (�M + �L)�.�LN = �.�LN�.�LN 

 

Similarly the problem of contraction or expansion in the 

number of lanes may be addressed. 

 

B. Lane Convergence 

Let NT and NU represent the number of lanes upstream 

and downstream of a section. The resulting density after the 

transition 

�V = 3W
3V

�W			 
where	nU and nT are downstream density and upstream density 

values. 

 

When �V > ��, one may compute the inter vehicular distance 

at merging point 

�V = 5280 − �V	
��
�V 	 

 

and downstream speed as 

�V = �W �V�W 

 

Then the downstream flow 

�V = �V�V 			 
 

The traffic engineering practitioners may be more interested in 

calculating the time of congestion building. The flow rate at 

any segment in the system is 

 

X = Y�WZ[\L�/. − �V]^%[\L�/._ 

 

The number of vehicles accumulating per unit time (here in 

seconds) will be 

3 = X
3600			 

 

The distance accumulated in unit time is then 

 2<
25 = 3(	 + �V) 

 

Substituting the corresponding values 

 

2<
25 =

Y�WZ[\L�/. − �V]^%[\L�/._(	
�� + �V)
3600  

 

By definition 

(	
�� + �V) = 5260
�V  

Substituting 

2<
25 =

Y�WZ[\L�/. − �V]^%[\L�/._-̅
�V  

2<
25 =

�V]^%[\L�/.Y�WZ[\L�/. − �V]^%[\L�/._-̅
�V]^%[\L�/.  

 

Then the distance x at which the upstream space is depleted in 

time t 
< = 1

3W
3(	
�� + �V) × 5					 

 

Replacing (	
�� + �V) and N with their equivalents, the rate 

of depletion of space will be proportional to the speed of 

upstream vehicles and is 

 
2<
25 =

-̅
3W

	(�WZ[\L�/. − �V]^%[\L�/.)
�V

=	�V]^%[\L�/.Y�WZ[\L�/. − �V]^%[\L�/._-̅
3W�V]^%[\L�/. 	 

 

The time in seconds for the upstream densities, and speed to 

equalize with downstream density and speed is 

 

5			 = 3600e3W�V]^%[\L�/.
	�V]^%[\L�/.(�WZ[\L�/. − �V]^%[\L�/.)				 

 

where X, the segment length, is the distance between the 

upstream and the downstream measurement stations in miles. 

Conversely, when X = �WZ[\L�/. − �V]^%[\L�/.  is a negative 

number, it implies a reduction in density as a result of net gain 

in space. 

IV. CONCLUSION 

We derived the Newell diagram from a simple tenet of 

human behavior. Applying our results we were able to 

compute the capacity of the roadway. Also we derived the 

LWR equation for both regions of Newell diagram consistent 

with observation by applying the driver behavior. We also 

referred that the human behavior is inherently unstable and 

unsuitable to mimic for the purposes of designing automated 
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cruise control as is suggested by Berthold Horn of MIT [10] 

and other researchers. 

We provided a simple computational method for day to 

day traffic engineering calculations that is new and consistent 

with traffic observations. 
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