Table of Contents

Introduction to the Transportation Concept Report ... 4
Executive Summary ... 5

MERCED COUNTY

Merced County Summary ... 6
Segment Fact Sheets ... 7

APPENDICES

Appendix A: Glossary ... 16
Appendix B: Acronyms .. 17
What is a Transportation Concept Report?

A Transportation Concept Report (TCR) is a long-term planning document that each Caltrans District prepares for every State highway, or portion thereof, in its jurisdiction, and is where long-range corridor planning in Caltrans usually begins. The purpose of a TCR is to determine how a highway will be developed and managed so that it delivers the targeted level of service (LOS) and quality of operations that are feasible to attain over a twenty-year period as indicated in the route concept.

The concept facility will provide the amount of vehicle-carrying capacity necessary to achieve the concept LOS and, in some cases, people-carrying capacity will also be incorporated. Auxiliary lanes are not considered a part of the mainline roadway and, therefore, are not included in the number of travel lanes indicated in a concept.

In addition to the 20-year route concept, the TCR includes an ultimate concept, which is the ultimate goal for the route beyond the twenty-year planning horizon. Ultimate concepts must be used cautiously however, because unforeseen changes in land use and other variables make forecasting beyond twenty years difficult.

How does the TCR fit in with local and regional planning efforts?

As owner/operator of the State Highway System (SHS), Caltrans establishes a long-range vision for its highways and determine overall strategies for their management. This is achieved by taking into consideration the numerous factors encompassed in the human and natural environments in which a particular route exists. During development of a TCR, Caltrans’ objective is to have local, regional, and State consensus on corridor concepts, planning strategies, and improvement priorities.

State highways within the jurisdiction should be recognized and included in the circulation element of the General Plan. The jurisdiction should also adopt the concept LOS standard (the minimum level or quality of operations that is appropriate for each route segment and is considered to be reasonably attainable within the 20-year planning period) indicated in the TCR, along with the concept improvements described in the TCR as necessary to meet the concept LOS. The jurisdiction has the option of adopting a higher LOS standard and acknowledging the inconsistency with the TCR and the associated funding participation limitations by the State for State highway improvements. Typical concept LOS standards in District 10 are LOS ‘C’ in rural areas and LOS ‘D’ in urban areas.

Unanticipated safety projects and routine roadway maintenance are not included in route concept improvements, although both will occur throughout the corridor as needed.

Because a highway is but one part of an interconnected transportation network, District 10 takes a corridor approach to developing TCRs. The corridor may include additional transportation systems, such as bus or rail transit service, bicycle and pedestrian facilities, heavy rail, ports, airports, interregional bus service, local roadways, and facilities for neighborhood electric vehicles, used occasionally by older citizens for local mobility. All of these systems reduce excess highway demand by providing travelers and shippers of goods with non-highway or non-driving options. Expansion of those that can provide a notable improvement to mobility within the corridor are included as concept improvements.

Where a concept LOS is ‘F’, the TCR recommends general operational improvements and alternate modes of travel as starting places for further study. Because the number of route segments with a concept LOS ‘F’ are expected to increase, operational improvements become the primary strategy to optimize the segment efficiency. To fully integrate this strategy, future TCRs will include an operational analysis of heavily-congested urban route segments. The results of this analysis will determine which specific operational improvements will become concept improvements.

District 10 strives to improve the quality and usefulness of its TCRs. Future updates will be expanded to include performance measures and, if available, plans that help incorporate specific, context-sensitive features into highway projects.

How does the TCR fit in with local and regional planning efforts?

As owner/operator of the State Highway System (SHS), Caltrans establishes a long-range vision for its highways and determine overall strategies for their management. This is achieved by taking into consideration the numerous factors encompassed in the human and natural environments in which a particular route exists. During development of a TCR, Caltrans’ objective is to have local, regional, and State consensus on corridor concepts, planning strategies, and improvement priorities.

State highways within the jurisdiction should be recognized and included in the circulation element of the General Plan. The jurisdiction should also adopt the concept LOS standard (the minimum level or quality of operations that is appropriate for each route segment and is considered to be reasonably attainable within the 20-year planning period) indicated in the TCR, along with the concept improvements described in the TCR as necessary to meet the concept LOS. The jurisdiction has the option of adopting a higher LOS standard and acknowledging the inconsistency with the TCR and the associated funding participation limitations by the State for State highway improvements. Typical concept LOS standards in District 10 are LOS ‘C’ in rural areas and LOS ‘D’ in urban areas.

Does the TCR have to be read from cover to cover in order to get pertinent information about a route segment?

Caltrans does not intend for TCRs to be read from cover to cover as one would read a book. Rather, the TCR is a reference document with segment-specific information presented in a concise and readable format that allows the user to easily access, in one place in the document, all the necessary data and information that pertains to a particular segment of the route.

This format creates a certain amount of repetition in the TCR, as the route is divided into segments for analysis. Each segment’s fact sheet contains a variety of technical, statistical, cultural, environmental and other useful information that provide a deeper understanding of the route and a context for the concepts developed for it.

TCRs also include estimated right-of-way widths, and a scan of environmental resources and issues known to exist in the vicinity of the highway. Right-of-way and environmental information provided in a TCR are relative to the route or route segment and are not to be considered project specific. Precise right-of-way needs and environmental resources cannot be defined until the appropriate environmental and engineering studies are completed.

In the back of the TCR is a glossary of terms and acronyms used for this report.

Concept Improvements

The range of improvements available to achieve a route concept is heavily influenced by environmental, political, and fiscal conditions. In many areas, planned projects are subject to meeting air quality conformity standards.
The TCR provides long range system planning for highways, and identifies the potential future need for capacity increasing improvements. Employing Highway Capacity Manual (HCM 2010) methodologies, the TCR projects current traffic volumes twenty years into the future and compares future outcomes with the current facility and concept LOS, recommends future concept facilities, and defines the Ultimate Transportation Corridor (UTC) needed for the preservation of future right of way beyond its twenty year planning horizon.

Within Merced County, State Route 59 (SR-59) is not on the Interregional Road System. The concept LOS standard for facilities without the IRRS designation in District 10 is ‘D’. As a component of the Freeway and Expressway System, SR-59’s minimal concept facility is expressway. SR-59 is not on the National Highway System, is not designated or eligible for state or federal scenic highway status, and, is both bicycle and pedestrian accessible.

The current or future concept LOS for four segments (segments two, six, seven, and eight) will be exceeded by 2030. The concept facilities to address these deficiencies would employ a four lane expressway on a new alignment consistent with local planning. The anticipated UTC remains similar to the concept facility at this time.

Initial planning documents do not consider costs, design, or prioritization, and are subject to refinement and revision as better information or methods become available. The information provided reflects best practices and do not necessarily constitute standards, specifications or regulations. Every effort has been made by the District 10 Planning Division to ensure the accuracy and precision of the data presented.
Overall, freight in Merced County moves north and south via I-5 or SR-99. Freight movement along SR-59 arises either as a local truck route, or as an alternative route to I-5 or SR-99 from SR-152. As a truck route, the dairy industry in the southern portion of the County contributes to truck traffic between El Nido and Merced on SR-59. Seasonal agricultural products (almonds, corn and alfalfa) also contribute to truck traffic on SR-59 north of Merced. In addition, there are several gravel/rock and concrete plants that contribute to truck traffic between Merced and Snelling.

Inadequacies in the local traffic monitoring and reporting network have led to programmed upgrades that include additional traffic monitoring stations (TMS), congestion monitoring stations (CMS), closed circuit television (CCTV) cameras and remote weather information systems (RWIS) along the route.

Future forecast volumes were obtained through three linear projections, from twenty year previous to present, the local transportation planning jurisdiction's travel demand model (TDM), and a twenty year state-wide growth projection from present. Comparison is made between the three projections for consistency, and may result in one projection being dropped, usually because it markedly overestimates or underestimates future growth compared to a transportation planning jurisdiction's TDM.

SR-59 travels concurrently over SR-99 and SR-140 in the City of Merced. The assessment of the LOS for this route may not be consistent with other TCRs for the time period under consideration. Planning efforts specific to the SR-99 may require additional analytical rigor to address changes in speed limits and traffic volumes. It is outside the purpose of this document to address future planning needs for these segments other than to assess if current or future conditions exceed concept LOS.

A provisional decision was made to include the couplets (segment five) as components of SR-59, although SR-140 and SR-99 run concurrent along the same alignment (the couplets were originally constructed as operational improvements to SR-99 by reducing the number of off-ramps and on-ramps, and should be seen as modified ramps to the ‘R’ and ‘V’ Street interchanges). As no analysis and evaluation of couplets were undertaken, the status of these being components of SR-59 should be understood as temporary, with assignment to SR-99 likely, once the matter is addressed by the Traffic Accident Surveillance and Analysis System (TASAS) branch, which administers the route and post miles assignments for the SHS.

Analysis of segment six required employing evaluation techniques consistent with HCM (2010) guidance on evaluating interrupted flow in Chapters 16 and 17. As the HCS urban streets module is currently unavailable, only the Florida DOT ARTPLAN was employed. For the facility, the lane drop on the signalized portion between Auto Center Drive and Sixteenth Street constrained LOS. Traffic progression between signals in the peak hour direction currently understood as ‘poor’ appear to have a role in the deficient LOS currently ascribed to the segment. Modeling suggests that better traffic coordination, coupled with increased left turn storage, and capacity increasing improvements will best address this need. It should be noted that ARTPLAN does not allow for evaluation of at grade railroad crossings on LOS. Further analysis and evaluation would be necessary.

Future forecast volumes were obtained through three linear projections, from twenty year previous to present, the local transportation planning jurisdiction's travel demand model (TDM), and a twenty year state-wide growth projection from present. Comparison is made between the three projections for consistency, and may result in one projection being dropped, usually because it markedly overestimates or underestimates future growth compared to a transportation planning jurisdiction's TDM.

SR-59 serves three communities: the City of Merced, El Nido, and Snelling. These communities have a strong agricultural base (orchard crops, dairy and beef, silage and animal feeds). Two of the early settled communities in Merced County, Snelling and Merced were connected by the Yosemite Valley Railroad that roughly follows the current northern alignment of SR-59. For the communities of Snelling and El Nido, SR-59 functions both as a work and freight connection to other communities but also as the local ‘Main Street.’ Within the City of Merced, SR-59 comprises a portion of the downtown commercial district.

Although multimodal opportunities are at their greatest within the City of Merced, SR-59 primarily serves as a transit connection to other communities in the County. Interegional transit connections can be made to Amtrak, Merced County’s “The Bus,” Yosemite Area Regional Transportation System (YARTS) to Yosemite National Park, or Greyhound. Future access to High Speed Rail (HSR) may be available. State Route 59 is a Class III bicycle accessible route. Sidewalks are present as part of the urban streetscape in Merced, but are missing in the rural portions of the route.
State Route 59

Transportation Concept Report

Caltrans Department of Transportation District 10

MERCED COUNTY FACT SHEETS—SEGMENT 1

<table>
<thead>
<tr>
<th>Post Mile</th>
<th>55.59/11.33</th>
<th>13.130</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Collector</td>
<td>Two Lane</td>
<td>Width: 11-12 ft.</td>
</tr>
<tr>
<td>Level Right of Way Width</td>
<td>N/A</td>
<td>Width: 60-100 ft.</td>
</tr>
<tr>
<td>Shoulder Width</td>
<td>Yes</td>
<td>Width: 0 ft.</td>
</tr>
<tr>
<td>Distressed Lane Miles</td>
<td>21.30</td>
<td></td>
</tr>
<tr>
<td>Present Servicability Rating</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Bridge Name</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Route Designations

<table>
<thead>
<tr>
<th>Post Mile</th>
<th>Location</th>
<th>Degree of Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00-13.13</td>
<td>Merced/Madera County Line to Dickenson Road (Left)/Mission Avenue (Right)</td>
<td>Low</td>
</tr>
</tbody>
</table>

Travel Forecast Data

<table>
<thead>
<tr>
<th>Volume/Capacity</th>
<th>Average Daily Traffic</th>
<th>Peak Hour Volume</th>
<th>Peak Hour Directional Split</th>
<th>Level of Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>R0.114 PM</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>R0.306 PM</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Existing Transportation Network

<table>
<thead>
<tr>
<th>Bicycle Facility</th>
<th>Airports</th>
<th>Intermodal Freight Facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes/No</td>
<td>Yes/No</td>
<td>Yes/No</td>
</tr>
</tbody>
</table>

Intelligent Transportation System (ITS) Elements & Detection

<table>
<thead>
<tr>
<th>Post Mile</th>
<th>ITS Element</th>
<th>Status</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>R0.114</td>
<td>TMS</td>
<td>Existing</td>
<td>SB</td>
</tr>
<tr>
<td>R0.306</td>
<td>TMS</td>
<td>Existing</td>
<td>NB</td>
</tr>
<tr>
<td>12.2</td>
<td>Flashing Beacon</td>
<td>Existing</td>
<td>NB</td>
</tr>
</tbody>
</table>

Concept Level of Service

<table>
<thead>
<tr>
<th>Post Mile</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R0.114</td>
<td>From SR-152 to Mission Avenue</td>
<td>Install Left Turn Channelization.</td>
</tr>
<tr>
<td>12.800-13.000</td>
<td>Mission Avenue/Dickenson Ferry Road Intersection</td>
<td>Install TMS in both directions.</td>
</tr>
<tr>
<td>13.13</td>
<td>Mission Avenue/Dickenson Ferry Road Intersection to Butchac Road</td>
<td>Install TMS in both directions.</td>
</tr>
<tr>
<td>0.000</td>
<td>SR-9 in both directions</td>
<td>Install TMS in both directions.</td>
</tr>
<tr>
<td>13.13</td>
<td>South of the Dickinson and Mission Avenues intersection</td>
<td>Install TMS in both directions.</td>
</tr>
</tbody>
</table>

Note: This information is for overview purposes only and does not replace a full report from Right of Way, Environmental, or any other Branch or Division.
Segment Location

Description:
- Project: California State Route 59 (SR-59)
- Location: Merced County
- Type: Urban
- Route: State Route 59
- Milepost: 13.13
- Classification: Two Lane Highway

Functional Classification:
- Type: Conventional Highway

Environmental Status:
- Limited Development

Existing Transportation Network
- Transit: Bus
- Bicycle Facility: No
- Pedestrian Facility: No
- Freight Distribution: No
- Park and Ride: No

Air Quality
- Ozone: Non-attainment
- Particulate Matter 10 m: Non-attainment
- Particulate Matter 2.5 m: Non-attainment
- Carbon Monoxide: Non-attainment

Travel Forecast Data
- Year: 2010, 2020, 2030
- Average Daily Traffic: 12,150, 13,400, 16,700
- Volume/Capacity: 0.38, 0.34, 0.50
- Peak Hour Volume: 1,150, 1,340, 1,700
- Peak Hour Directional Split: 57/43
- Track Volume % of Total ADT: 12%
- Peak Hour % of Trucks: 10%

Peak Hour % of Trucks
- Year: 2010, 2020, 2030
- Percentage: 10%

Geometry and Right of Way
- Lane Width: 12-13 ft.
- Right of Way Width: 60 ft.
- Shoulder Width: 0-12 ft.
- Median Width: 0-12 ft.
- Distressed Lane Miles: 3.54
- Bridge Needs: N/A
- Bridge: N/A

Interregional Road System
- Major Collector
- Accessible to Bicycles: Yes
- Additional Restrictions: No

Proposed Projects
- Planned
- Programmed

Concept Level of Service
- D2020-12.80
- D2020-13.13
- D2020-13.9
- D2020-14.13

Concept Facility
- Four Lane Conventional

Ultimate Transportation Corridor
- Four Lane Expressway

Intelligent Transportation System (ITS) Elements & Detection
- No ITS Element Present

Notes
- This information is for overview purposes only and does not replace a full report from Right of Way, Environmental, or any other Branch or Division.
State Route 59 Transportation Concept Report

Segment Location: MERCED COUNTY

####Description:
- Childs Avenue to Martin Luther King Jr. Blvd/SR-99

Post Mile:
- 14.13-14.77

Functional Classification:
- Principal Arterial
- Scenic Highway (Eligible)

Length: 0.640

Width:
- Lane Width: 12 ft.
- Shoulder Width: 8-0 ft.
- Median Width: 0-12 ft.

Principal Arterial Scenic Highway (Eligible):
- Conventional Highway
- Yes

Interregional Road System:
- National Network, Terminal Access
- California Legal
- Yes

Freeway Expressway System:
- Yes

Strategic Highway Network:
- Yes

Freeway Agreement:
- No

Within City Limits:
- Focus Route/Gateway Route: Surface Transportation Assistance Act (STAA)

Facility Type:
- No

Functional Classification:
- Principal Arterial
- Scenic Highway (Eligible)

Bridge Needs:
- Distressed Lane Miles: 1.54

Compliance with National Handicapped Access.

Functional Classification:
- Conventional Highway
- Yes

National Highway System:
- Yes

Interregional Road System:
- Yes

Facility Type:
- No

High Emphasis Route:
- No

Interregional Road System:
- No

Freeway Expressway System:
- Yes

Urbanized Route Designation:
- No

Environmental Status

Degree of Impact:
- Air Quality:
 - Ozone: Low
 - Carbon Monoxide: Non-attainment

Level of Service:
- Peak Hour Volume: 1,700
- Average Daily Traffic: 12,750

Volume/Capacity:
- 0% 0% 0%

Existing Facility: Five Lane Conventional Highway

Level of Service:
- Peak Hour Volume: 1,700
- Average Daily Traffic: 12,750
- Vehicle Volume % of Total ADT: 12%
- Peak Hour Directional Split: 57/43
- Truck Volume % of Total ADT: 12%
- Peak Hour % of Trucks: 10%

Peak Hour % of Trucks:
- 10%

Peak Hour Directional Split:
- 57/43

Level of Service (LOS) calculated using Florida Department of Transportation ARTPLAN 2009 software. Analysis for Conceptual Planning and Preliminary Engineering Version Data. 7/17/2010. All LOS reflects vehicles only. LOS does not reflect multimodal at this time.

Pedestrian/Facility

Peak Hour % of Trucks:
- 10%

Peak Hour % of Trucks:
- 10%

Peak Hour Directional Split:
- 57/43

Level of Service (LOS) calculated using Florida Department of Transportation ARTPLAN 2009 software. Analysis for Conceptual Planning and Preliminary Engineering Version Data. 7/17/2010. All LOS reflects vehicles only. LOS does not reflect multimodal at this time.

Programmed Projects

Planned Projects:
- None

Location:
- Junction of SR-59 with SR-99

Description:
- There are no programmed projects for this segment.
MERCED COUNTY FACT SHEETS— SR 99/140 CONCURRENT SEGMENT 4

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post Mile</td>
<td>14.686/15.416</td>
</tr>
<tr>
<td>Length</td>
<td>0.730</td>
</tr>
<tr>
<td>Functional Classification</td>
<td>Principal Arterial</td>
</tr>
<tr>
<td>Local Planning Jurisdiction</td>
<td>City of Merced</td>
</tr>
</tbody>
</table>

Roadway Information

Number of Lanes	Four
Right of Way Width	N/A
Shoulder Width	0-8 ft.
Median Width	46 ft.
Distressed Lane Miles	1.44

Functional Classification

- Level
- Right of Way Width: 100-150 ft.
- Median Width: N/A
- Shoulder Width: N/A
- Distressed Lane Miles: N/A

Access to Intermodal Freight Facility

- Low to Moderate
- Low
- Moderate
- Moderate

Bridge Needs

- Principal Arterial
- Scenic Highway: Freeway
- Scenic Highway: Eligible: Yes
- Gateway: Yes
- Strategic Highway Network: Yes
- Access to Intermodal Freight Facility: No

Environmental Status

- Noise: Moderate
- Land Use: Moderate
- Cultural Resources: High
- Possible Hazardous Waste: High

Existing Transportation Network

- Existing Facility: Four Lane Freeway
- Volume/Capacity: 52,000
- Average Daily Traffic: 66,800
- Peak Hour Volume: 8,600
- Peak Hour Directional Split: 57/43
- Peak Hour % of Trucks: 10%

Level of Service (LOS) Calculation

- LOS calculated using Highway Capacity Software (HCS+T7F) Freeways and Florida Department of Transportation FREEPLAN 2009 software.
- All LOS reflects vehicles only.
- LOS does not reflect multimodal at this time.

Proposed Transportation Corridor

- Ultimate Transportation Corridor: Six Lane Freeway

Intelligent Transportation System (ITS) Elements & Detection

- No ITS Element Present

Notes

- This information is for overview purposes only and does not replace a full report from Right of Way, Environmental, or any other Branch or Division.
State Route 59 Transportation Concept Report

Merced County

Segment 5

Description: Three lane couplet 14th Street from R Street SR-99 to V Street

<table>
<thead>
<tr>
<th>Description</th>
<th>2010</th>
<th>2020</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routing Speed Limit (Mph)</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Conventional Highway</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Level of Service</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Peak Hour Volume</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Peak Hour % of Total ADT</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Truck Volume % of Total ADT</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>LOS</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Functional Classification:

- Principal Arterial
- Scenic Highway (Designated): Conventional Highway
- Interregional Road System: Yes
- National Highway System: Yes
- Strategic Highway Network: Yes
- Freeway Agreement: Yes

Distressed Lane Miles

- 2.30

Bridge Needs

- N/A

Functional Classification:

- Principal Arterial
- Scenic Highway (Eligible): Low

Environmental Status

- Degree of Impact: Low
 - Flood Plains: Low
 - Cultural Resources: Low
 - Wetlands: High
 - Special Status Species: High
 - Possible Hazardous Waste: High

Air Quality

- Ozone: Non-attainment
- Particulate Matter 10 m: N/A
- Particulate Matter 2.5 m: N/A
- Carbon Monoxide: N/A

Travel Forecast Data

- Posted Speed Limit: 30 MPH
- Average Daily Traffic: N/A
- Peak Hour Volume: N/A
- Peak Hour % of Total ADT: N/A
- Truck Volume % of Total ADT: N/A
- LOS: N/A

Intelligent Transportation System (ITS) Elements & Detection

- No ITS Element Present

Notes:

1. This information is for overview purposes only and does not replace a full report from Right of Way, Environmental, or any other Branch or Division.
2. Most transportation information on these segments is unavailable, the inclusion of this fact sheet is informational only.

Comments:

- There are no planned projects for this segment.
- There are no programmed projects for this segment.
MERCED COUNTY FACT SHEETS—SEGMENT 6

STATE ROUTE 59 TRANSPORTATION CONCEPT REPORT

MERCED COUNTY SEGMENT 6

Description	SECTION 6
Description	99th Street and 139th Street to Snelling Highway
Post Mile	14.988-15.350
Length	0.570
Functional Classification	Principal Arterial
Local Planning Jurisdiction	City of Merced
Number of Lanes	Five
Lane Width	10-13 ft.
Accessible to Bicycles	Yes
Bridge Needs	Distressed Lane Mile: 2.25
Facilities	N/A
Bridge Location	N/A

Roadway Information

- **Number of Lanes**: Five
- **Lane Width**: 10-13 ft.
- **Shoulder Width**: ~180 ft.
- **Bridge Needs**: Distressed Lane Mile: 2.25
- **Facilities**: N/A
- **Bridge Location**: N/A

Environmental Status

- **Degree of Impact**: No
- **Degree of Impact**: No
- **Cultural Resources**: Yes
- **Leaking Underground Tanks**: Moderate
- **Special Status Species**: Possible
- **Hazardous Waste**: Moderate
- **Wetlands**: Moderate
- **Flood Plains**: Low
- **Strategic Highway Network**: No
- **National Highway System**: No
- **Freeway Agreement**: No
- **Highway Maintenance Route**: Yes
- **National Network, Terminal Access**: No
- **Surface Transportation Assistance Act (STAA)**: Yes
- **Trucking Network**: Yes
- **Terminal Access**: Yes

Air Quality

- **Ozone**: Non-attainment
- **Carbon Monoxide**: Yes
- **Particulate Matter 2.5 m**: Yes
- **Particulate Matter 10 m**: Yes

Peak Hour Volume

- **2010**: 2,600
- **2020**: 3,700
- **2030**: 5,400

Travel Forecast Data

- **Average Daily Traffic**: 25,933
- **Peak Hour Directional Split**: 57/43
- **Peak Hour Volume % of Total ADT**: 4.0%

Bicycle Facility

- **Existing Facility**: Four Lane
- **Mode of Service**: Conventional Highway
- **Level of Service**: N/A

Pedestrian Facility

- **Existing Facility**: Four Lane
- **Mode of Service**: Conventional Highway
- **Level of Service**: N/A

Environmental Status

- **Degree of Impact**: No
- **Degree of Impact**: No
- **Cultural Resources**: Yes
- **Leaking Underground Tanks**: Moderate
- **Special Status Species**: Possible
- **Hazardous Waste**: Moderate
- **Wetlands**: Moderate
- **Flood Plains**: Low
- **Strategic Highway Network**: No
- **National Highway System**: No
- **Freeway Agreement**: No
- **Highway Maintenance Route**: Yes
- **National Network, Terminal Access**: No
- **Surface Transportation Assistance Act (STAA)**: Yes
- **Trucking Network**: Yes
- **Terminal Access**: Yes

Air Quality

- **Ozone**: Non-attainment
- **Carbon Monoxide**: Yes
- **Particulate Matter 2.5 m**: Yes
- **Particulate Matter 10 m**: Yes

Peak Hour Volume

- **2010**: 2,600
- **2020**: 3,700
- **2030**: 5,400

Travel Forecast Data

- **Average Daily Traffic**: 25,933
- **Peak Hour Directional Split**: 57/43
- **Peak Hour Volume % of Total ADT**: 4.0%

Bicycle Facility

- **Existing Facility**: Four Lane
- **Mode of Service**: Conventional Highway
- **Level of Service**: N/A

Pedestrian Facility

- **Existing Facility**: Four Lane
- **Mode of Service**: Conventional Highway
- **Level of Service**: N/A

Environmental Status

- **Degree of Impact**: No
- **Degree of Impact**: No
- **Cultural Resources**: Yes
- **Leaking Underground Tanks**: Moderate
- **Special Status Species**: Possible
- **Hazardous Waste**: Moderate
- **Wetlands**: Moderate
- **Flood Plains**: Low
- **Strategic Highway Network**: No
- **National Highway System**: No
- **Freeway Agreement**: No
- **Highway Maintenance Route**: Yes
- **National Network, Terminal Access**: No
- **Surface Transportation Assistance Act (STAA)**: Yes
- **Trucking Network**: Yes
- **Terminal Access**: Yes

Air Quality

- **Ozone**: Non-attainment
- **Carbon Monoxide**: Yes
- **Particulate Matter 2.5 m**: Yes
- **Particulate Matter 10 m**: Yes

Peak Hour Volume

- **2010**: 2,600
- **2020**: 3,700
- **2030**: 5,400

Travel Forecast Data

- **Average Daily Traffic**: 25,933
- **Peak Hour Directional Split**: 57/43
- **Peak Hour Volume % of Total ADT**: 4.0%

Bicycle Facility

- **Existing Facility**: Four Lane
- **Mode of Service**: Conventional Highway
- **Level of Service**: N/A

Pedestrian Facility

- **Existing Facility**: Four Lane
- **Mode of Service**: Conventional Highway
- **Level of Service**: N/A

Environmental Status

- **Degree of Impact**: No
- **Degree of Impact**: No
- **Cultural Resources**: Yes
- **Leaking Underground Tanks**: Moderate
- **Special Status Species**: Possible
- **Hazardous Waste**: Moderate
- **Wetlands**: Moderate
- **Flood Plains**: Low
- **Strategic Highway Network**: No
- **National Highway System**: No
- **Freeway Agreement**: No
- **Highway Maintenance Route**: Yes
- **National Network, Terminal Access**: No
- **Surface Transportation Assistance Act (STAA)**: Yes
- **Trucking Network**: Yes
- **Terminal Access**: Yes

Air Quality

- **Ozone**: Non-attainment
- **Carbon Monoxide**: Yes
- **Particulate Matter 2.5 m**: Yes
- **Particulate Matter 10 m**: Yes

Peak Hour Volume

- **2010**: 2,600
- **2020**: 3,700
- **2030**: 5,400

Travel Forecast Data

- **Average Daily Traffic**: 25,933
- **Peak Hour Directional Split**: 57/43
- **Peak Hour Volume % of Total ADT**: 4.0%

Bicycle Facility

- **Existing Facility**: Four Lane
- **Mode of Service**: Conventional Highway
- **Level of Service**: N/A

Pedestrian Facility

- **Existing Facility**: Four Lane
- **Mode of Service**: Conventional Highway
- **Level of Service**: N/A

Environmental Status

- **Degree of Impact**: No
- **Degree of Impact**: No
- **Cultural Resources**: Yes
- **Leaking Underground Tanks**: Moderate
- **Special Status Species**: Possible
- **Hazardous Waste**: Moderate
- **Wetlands**: Moderate
- **Flood Plains**: Low
- **Strategic Highway Network**: No
- **National Highway System**: No
- **Freeway Agreement**: No
- **Highway Maintenance Route**: Yes
- **National Network, Terminal Access**: No
- **Surface Transportation Assistance Act (STAA)**: Yes
- **Trucking Network**: Yes
- **Terminal Access**: Yes

Air Quality

- **Ozone**: Non-attainment
- **Carbon Monoxide**: Yes
- **Particulate Matter 2.5 m**: Yes
- **Particulate Matter 10 m**: Yes

Peak Hour Volume

- **2010**: 2,600
- **2020**: 3,700
- **2030**: 5,400

Travel Forecast Data

- **Average Daily Traffic**: 25,933
- **Peak Hour Directional Split**: 57/43
- **Peak Hour Volume % of Total ADT**: 4.0%

Bicycle Facility

- **Existing Facility**: Four Lane
- **Mode of Service**: Conventional Highway
- **Level of Service**: N/A

Pedestrian Facility

- **Existing Facility**: Four Lane
- **Mode of Service**: Conventional Highway
- **Level of Service**: N/A

Environmental Status

- **Degree of Impact**: No
- **Degree of Impact**: No
- **Cultural Resources**: Yes
- **Leaking Underground Tanks**: Moderate
- **Special Status Species**: Possible
- **Hazardous Waste**: Moderate
- **Wetlands**: Moderate
- **Flood Plains**: Low
- **Strategic Highway Network**: No
- **National Highway System**: No
- **Freeway Agreement**: No
- **Highway Maintenance Route**: Yes
- **National Network, Terminal Access**: No
- **Surface Transportation Assistance Act (STAA)**: Yes
- **Trucking Network**: Yes
- **Terminal Access**: Yes

Air Quality

- **Ozone**: Non-attainment
- **Carbon Monoxide**: Yes
- **Particulate Matter 2.5 m**: Yes
- **Particulate Matter 10 m**: Yes

Peak Hour Volume

- **2010**: 2,600
- **2020**: 3,700
- **2030**: 5,400

Travel Forecast Data

- **Average Daily Traffic**: 25,933
- **Peak Hour Directional Split**: 57/43
- **Peak Hour Volume % of Total ADT**: 4.0%
State Route 59 Transportation Concept Report

Segment Location: MERCED COUNTY

Description: Scenic Highway to Buena Vista Road

Post Mile: 15.35-16.7

Rural/Urban/Urbanized: Urban

Length: 1.250

Within City Limits: Yes

Functional Classification: Principal Arterial

Local Planning Jurisdiction: City of Merced

Number of Lanes: Two

Lane Width: 10-14 ft.

Grade %: N/A

Shoulder Width: 0-8 ft.

Access to Bicycles: Yes

Median Width: 0 ft.

Bridge Needs: Intersected Lane Miles: 2.50

Bridge#: 39 (0059)

Bridge Location: Bear Creek

Distressed Lane Miles: 2.50

Air Quality:

Ozone: Non-attainment

Particulate Matter 10 m: Non-attainment

Particulate Matter 2.5 m: Non-attainment

Carbon Monoxide: Attainment/Unclassified

Traffic Forecast Data

Travel Forecast Rate

2010 2020 2030

Volume/Capacity:

Conventional Highway

Peak Hour Volume: 9,000

Average Daily Traffic: 11,690

Peak Hour Directional Split: 57/43

Peak Hour % of Total ADT: 7%

Volume/Capacity:

HCS LOS PLAN HCS LOS PLAN HCS LOS PLAN

In

Class III

Location

Location

Location

Peak Hour % of Trucks:

Peak Hour Volume: 1,600

Average Daily Traffic: 13,700

Peak Hour Directional Split: 57/43

Peak Hour % of Total ADT: 7%

Travel Forecast Data

Travel Forecast Rate

2010 2020 2030

Volume/Capacity:

Conventional Highway

Peak Hour Volume: 9,000

Average Daily Traffic: 11,690

Peak Hour Directional Split: 57/43

Peak Hour % of Total ADT: 7%

Travel Forecast Data

Travel Forecast Rate

2010 2020 2030

Volume/Capacity:

Conventional Highway

Peak Hour Volume: 9,000

Average Daily Traffic: 11,690

Peak Hour Directional Split: 57/43

Peak Hour % of Total ADT: 7%

Environmental Status

Degree of Impact

Postmile

Location

Bridge#

Present Serviceability Rating: 3

Programmed Projects

Install TMS in both directions from north of 16th Street to north of Merced Avenue.

Interim Transportation Corridor: Four Lane Expressway

From 16th Street to Buena Vista Road

Interchange on SR-99, new alignment

Comments:

Note: This information is for overview purposes only and does not replace a full report from Right of Way, Environmental, or any other Branch or Division.
State Route 59 Transportation Concept Report

Segment 8

Description: Surface Veado Road to West Cardella Road

<table>
<thead>
<tr>
<th>Post Mile</th>
<th>16.6-18.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>1.400</td>
</tr>
<tr>
<td>Functional Classification</td>
<td>Major Collector</td>
</tr>
<tr>
<td>Within City Limits</td>
<td>Yes/No: City ends at PM 16.38</td>
</tr>
</tbody>
</table>

Roadway Information

Number of Lanes	Two
Grade %	N/A
Shoulder Width	0.8 ft.
Median Width	0 ft.
Distressed Mile	3.70
Bridge Needs	N/A
Bridge Rating	4
Bridge Location	N/A

Functional Classification

- Major Collector
- Scenic Highway (Designated): No
- Trucking Network: No

Highway Network

- California Statewide Network: Within City Limits: Yes/No: City ends at PM 16.38
- California Local: Yes
- California Freeway Expressway System: No
- Strategic Highway Network: No

Highway Access

- Access to Intermodal Freight Facility: No

Freight Distribution

- Downtown: No
- Park and Ride: No
- Intermodal Freight Distribution: No

Intermodal Commuter Facilities

- Yes/No
- Planners
- CSX
- Amtrak
- Metrolink

Air Quality

- Ozone: Non-attainment
- Particulate Matter 10 m: Non-attainment
- Particulate Matter 2.5 m: Non-attainment
- Carbon Monoxide: Attainment/Unclassified

Environmental Status

- Flood Plains: Low
- Cultural Resources: Low
- Wetlands: Low
- Leaking Underground Tanks: Low to Moderate
- Special Status Species: Low
- Possible Hazardous Waste: Low to Moderate

Wetlands

- Leaking Underground Tanks: Low to Moderate
- Strategic Highway Network: No

National Highway System

- California Legal: Yes
- Interstate: Yes
- National Highway System: Yes

Additional Restrictions

- High Emphasis Route: Yes
- High Traffic Route: Yes
- High Emphasis Route: Yes
- High Traffic Route: Yes

Legal

- Public/State: Yes
- Local Planning Jurisdiction: City of Merced/County of Merced
- Terminal Access: Yes
- Terminal Access: Yes

Non-attainment

- Post Mile: 7/17/2010
- LOS: 7/17/2010

Peak Hour Volume

- 900
- 1,300
- 1,800

Level of Service (LOS)

- HCS
- LOSPLAN
- Planned: 11.2 ft.
- Programmed Projects: 11.2 ft.
MERCED COUNTY FACT SHEETS—SEGMENT 9

STATE ROUTE 59 TRANSPORTATION CONCEPT REPORT

<table>
<thead>
<tr>
<th>Description: West Cardella Road to La Grange Road</th>
<th>Segment Location: County of Merced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional Classification: Major Collector</td>
<td>Local Planning Jurisdiction: County of Merced</td>
</tr>
<tr>
<td>Number of Lanes: Two</td>
<td>Number of Lanes: Two</td>
</tr>
<tr>
<td>Lane Width: 10-14 ft.</td>
<td>Lane Width: 10-14 ft.</td>
</tr>
<tr>
<td>Accessible to Bicyclists: Yes</td>
<td>Accessible to Bicyclists: Yes</td>
</tr>
<tr>
<td>Shoulder Width: 0 ft.</td>
<td>Shoulder Width: 0 ft.</td>
</tr>
<tr>
<td>Distressed Lane Miles: 14.40</td>
<td>Distressed Lane Miles: 14.40</td>
</tr>
<tr>
<td>Bridge Needs:</td>
<td>Bridge Needs:</td>
</tr>
<tr>
<td>Grade %:</td>
<td>Grade %:</td>
</tr>
<tr>
<td>Level Right of Way Width:</td>
<td>Level Right of Way Width:</td>
</tr>
<tr>
<td>Median Width: 0 ft.</td>
<td>Median Width: 0 ft.</td>
</tr>
</tbody>
</table>

| Note: This information is for overview purposes only and does not replace a full report from Right of Way, Environmental, or any other Branch or Division. |
APPENDIX A: GLOSSARY

Annual Average Daily Traffic (AADT): AADT consists of Caltrans, District 10 annual traffic counts as measured at approved count station locations.

ARTPLAN: see Highway Capacity Manual.

Bicycle Routes: Refers to travelways specific to users employing bicycles. There are three general classifications: ‘III’—bicycles share street with automobiles without separation; ‘II’—bicycles share street within their own designated lane; and ‘I’—bicycles travel independent of automobile traffic, often sharing right of way with pedestrians or equestrians.

California Environmental Quality Act (CEQA): Passed in 1971, CEQA provides the framework in which undertakings that may affect the environment are evaluated and if found to be adverse are to be mitigated for, as part of the governmental decision making process. For local governments, implementation of general plans and land use designations became a requirement and a benchmark for which changes in zoning or land uses could be assessed.

Census Designation: The designation of rural (population below 5,000), or urbanized (population between 5,000 and 50,000), or urban (populations of 50,000 or greater) highways are obtained from the California Road System Maps published by FHWA. These are based upon the most recent census.

Concept Facility: Highway facility that best maintains the Concept LOS at the end of the twenty year planning period.

Concept Level of Service: see Level of Service.

Conventional Highway: Highway which permits direct access by both road intersections and driveways.

Expressway: Highway, usually an arterial, typically with access limited to at grade road intersections.

Federal Highway System: Designated by the Federal Highway Administration, these segments of state highways serve to either support interstate commerce, national defense, or other responsibilities of the federal government. As such they are eligible for federal funding, and subject to the National Environmental Policy Act (NEPA).

Focus Route: see Interregional Road System.

FREEPLAN: see Highway Capacity Manual.

Freeway: A divided arterial highway with full access control and grade separations at intersections.

Highway Capacity Manual (HCM): Published by the National Research Council’s Transportation Research Board, the HCM is the national standard for methodologies to evaluate and estimate highway performance. Approved software packages developed to reduce the computation effort associated with the HCM are Highway Capacity Software’s (HCS) various modules and the Florida Department of Transportation’s (FDOT) transportation planning software—ARTPLAN (urban arterials), FREEPLAN (freeways), and HIGHPLAN (two or four lane highways). FDOT’s softwares incorporate features unavailable in HCS, and specifically address multimodal components other than the automobile. The most recent update of HCM is for 2010, though several of the software interfaces are not yet currently available. Analyses performed for this document were consistent with the previous version of HCM (2000).

High Emphasis Route: see Interregional Road System.

HIGHPLAN: see Highway Capacity Manual.

Interregional Road System (IRRS): A State planning effort that emphasized highways within the Freeway and Expressway system that provided network connections to urban places statewide, but were not yet constructed to freeway or expressway standards. The most recent expression of this plan (1998) discussed Focus and High Emphasis routes, and established short term and long term improvements for these specific routes.

Level: see Terrain.

Level of Service (LOS): A qualitative performance measure that describes the perception of the commuter (driver, bicyclist, pedestrian, transit) of the operational conditions within a traffic stream on a highway segment. Generally scaled in a range from A through F, and historically as a performance measure for automobiles, the LOS targets optimal utility expressed as the concept LOS (C for rural highways on the IRRS, D for urban highways on the IRRS and all routes not on the IRRS). Although the current version of the Highway Capacity Manual includes LOS calculations for users other than drivers, standards have yet to be established by the State.

Mountainous: see Terrain.

National Environmental Policy Act (NEPA): Established in 1971, this environmental policy applies to federal undertakings or efforts that have a federal nexus. Federal agencies were tasked to develop policies and standards to evaluate and assess the environmental impacts of federal undertakings, while the Act established general policies regarding public notification and report standards.

Rolling: see Terrain.

Rural: see Census Designation.

Surface Transportation Assistance Act (STAA): Federal highway legislation that included federal design standards and requirements for trucks (see Truck Routes).

Terrain: Refers to topography specific to its affect on trucks and other heavy vehicle operation (see HCM). Level terrain contains any combination of grades or horizontal or vertical alignments that permit heavy vehicles to maintain the same speed as passenger cars; rolling terrain contains any combination of grades or horizontal or vertical alignments that causes heavy vehicles to reduce their speed substantially below that of passenger car speeds, but not to where they crawl for a significant length of time; mountainous terrain is any combination of horizontal or vertical alignment that causes heavy vehicles to operate at crawl speed for significant distances or at frequent intervals. HCM methodologies address highway segments with level or rolling terrain with a set of constant values. Mountainous terrain requires separate upgrade or downgrade analysis and recommends that any segment with grades between 2% and 3% with a length of more than half a mile be considered a separate segment.

Truck Routes: may refer to either federal standards (contained in STAA) or California standards. Routes with an STAA designation permit travel by tractor trailers with a fifty five foot long trailer, or tandems with trailers no greater than twenty eight and a half feet, while California legal routes permit the overall truck length to sixty five feet total for single and seventy five feet for tandems. Advisory truck routes usually possess highway geometrics that limit truck length for safe operation. Restricted truck routes have legal restrictions on the type of truck or activity.

Urbanized: see Census Designation.
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AADT</td>
<td>Annual Average Daily Traffic</td>
</tr>
<tr>
<td>AB</td>
<td>Assembly Bill</td>
</tr>
<tr>
<td>ADA</td>
<td>Americans with Disabilities Act of 1990</td>
</tr>
<tr>
<td>ADT</td>
<td>Automated Daily Traffic</td>
</tr>
<tr>
<td>AHS</td>
<td>Automated Highway System</td>
</tr>
<tr>
<td>AME</td>
<td>Atwater Merced Expressway</td>
</tr>
<tr>
<td>APE</td>
<td>Area of Potential Effects</td>
</tr>
<tr>
<td>ATIS</td>
<td>Advance Transportation Information System</td>
</tr>
<tr>
<td>ATSD</td>
<td>Advanced Transportation System Development</td>
</tr>
<tr>
<td>AVI</td>
<td>Automated Vehicle Identification</td>
</tr>
<tr>
<td>BN&SF</td>
<td>Burlington Northern and Santa Fe Railroad</td>
</tr>
<tr>
<td>BRT</td>
<td>Bus Rapid Transit</td>
</tr>
<tr>
<td>BTA</td>
<td>Bicycle Transportation Account</td>
</tr>
<tr>
<td>CAWS</td>
<td>Caltrans Automated Warning System</td>
</tr>
<tr>
<td>CBD</td>
<td>Central Business District</td>
</tr>
<tr>
<td>CCAA</td>
<td>California Clean Air Act</td>
</tr>
<tr>
<td>CCTV</td>
<td>Closed Circuit Television</td>
</tr>
<tr>
<td>CEQA</td>
<td>California Environmental Quality Act</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>CHIN</td>
<td>California Highway Information Network</td>
</tr>
<tr>
<td>CHP</td>
<td>California Highway Patrol</td>
</tr>
<tr>
<td>CIP</td>
<td>Congestion Improvement Program</td>
</tr>
<tr>
<td>CMAQ</td>
<td>Congestion Mitigation and Air Quality</td>
</tr>
<tr>
<td>CMIA</td>
<td>Corridor Mobility Improvement Account</td>
</tr>
<tr>
<td>CMP</td>
<td>Congestion Management Plan</td>
</tr>
<tr>
<td>CMS</td>
<td>Changeable Message Sign</td>
</tr>
<tr>
<td>CNDDB</td>
<td>California Natural Diversity Data Base</td>
</tr>
<tr>
<td>CO</td>
<td>Carbon Monoxide</td>
</tr>
<tr>
<td>COG</td>
<td>Council of Governments</td>
</tr>
<tr>
<td>CSIP</td>
<td>Corridor Safety Improvement Program</td>
</tr>
<tr>
<td>CSMP</td>
<td>Corridor System Management Plan</td>
</tr>
<tr>
<td>CSS</td>
<td>Context Sensitive Solutions</td>
</tr>
<tr>
<td>CTC</td>
<td>California Transportation Commission</td>
</tr>
<tr>
<td>CTIS</td>
<td>California Transportation Investment Strategy</td>
</tr>
<tr>
<td>DBE</td>
<td>Disadvantaged Business Enterprise</td>
</tr>
<tr>
<td>DOT</td>
<td>Department of Transportation</td>
</tr>
<tr>
<td>DSMP</td>
<td>District System Management Plan</td>
</tr>
<tr>
<td>DVHD</td>
<td>Daily Vehicle Hours of Delay</td>
</tr>
<tr>
<td>EB</td>
<td>Eastbound</td>
</tr>
<tr>
<td>EEO</td>
<td>Equal Employment Opportunity</td>
</tr>
<tr>
<td>EIS</td>
<td>Environmental Impact Statement</td>
</tr>
<tr>
<td>EIR</td>
<td>Environmental Impact Report</td>
</tr>
<tr>
<td>E/O</td>
<td>East Of</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>ESA</td>
<td>Environmental Sensitivity Area</td>
</tr>
<tr>
<td>EXPW</td>
<td>Expressway</td>
</tr>
<tr>
<td>FAHP</td>
<td>Federal-aid Highway Program</td>
</tr>
<tr>
<td>FES</td>
<td>Freeway and Expressway System</td>
</tr>
<tr>
<td>FAT</td>
<td>Fatalities</td>
</tr>
<tr>
<td>FB</td>
<td>Flashing Beacon</td>
</tr>
<tr>
<td>FEMA</td>
<td>Federal Emergency Management Administration</td>
</tr>
<tr>
<td>FHWA</td>
<td>Federal Highway Administration</td>
</tr>
<tr>
<td>FHS</td>
<td>Federal Highway System</td>
</tr>
<tr>
<td>FSP</td>
<td>Freeway Service Patrol</td>
</tr>
<tr>
<td>FTA</td>
<td>Federal Transit Administration</td>
</tr>
<tr>
<td>FTIP</td>
<td>Federal Transportation Improvement Program</td>
</tr>
<tr>
<td>FY</td>
<td>Fiscal Year</td>
</tr>
<tr>
<td>GMAP</td>
<td>Goods Movement Action Plan</td>
</tr>
<tr>
<td>GVC</td>
<td>Great Valley Center</td>
</tr>
<tr>
<td>HAR</td>
<td>Highway Advisory Radio</td>
</tr>
<tr>
<td>HBP</td>
<td>Highway Bridge Program</td>
</tr>
<tr>
<td>HCM</td>
<td>Highway Capacity Manual</td>
</tr>
<tr>
<td>HCS</td>
<td>Highway Capacity Software</td>
</tr>
<tr>
<td>HICOMP</td>
<td>State Highway Congestion Monitoring Program</td>
</tr>
<tr>
<td>HOV</td>
<td>High Occupancy Vehicle</td>
</tr>
<tr>
<td>I/C</td>
<td>Interchange</td>
</tr>
<tr>
<td>ICES</td>
<td>Inter-modal Corridor of Economic Significance</td>
</tr>
<tr>
<td>IIP</td>
<td>Interregional Improvement Program</td>
</tr>
<tr>
<td>IRRS</td>
<td>Interregional Road System</td>
</tr>
<tr>
<td>ISTEA</td>
<td>Intermodal Surface Transportation Efficiency Act</td>
</tr>
<tr>
<td>IT</td>
<td>Information Technology</td>
</tr>
<tr>
<td>ITMS</td>
<td>Intermodal Transportation Management System</td>
</tr>
<tr>
<td>ITSP</td>
<td>Interregional Transportation Strategic Plan</td>
</tr>
<tr>
<td>LD/IGR</td>
<td>Local Development Intergovernmental Review</td>
</tr>
<tr>
<td>LOS</td>
<td>Level of Service</td>
</tr>
<tr>
<td>LROP</td>
<td>Long Range Operations Plan</td>
</tr>
<tr>
<td>LRT</td>
<td>Light Rail Transit</td>
</tr>
<tr>
<td>LTAP</td>
<td>Local Technical Assistance Program</td>
</tr>
<tr>
<td>LU</td>
<td>Legacy for Users</td>
</tr>
<tr>
<td>MCAG</td>
<td>Merced County Association of Governments</td>
</tr>
<tr>
<td>METS</td>
<td>Materials Engineering and Testing Service</td>
</tr>
<tr>
<td>MIS</td>
<td>Major Investment Study</td>
</tr>
<tr>
<td>MOU</td>
<td>Memorandum of Understanding</td>
</tr>
<tr>
<td>MSL</td>
<td>Maintenance Service Level</td>
</tr>
<tr>
<td>MVTM</td>
<td>Million Vehicle Miles Traveled</td>
</tr>
<tr>
<td>NAAQS</td>
<td>National Ambient Air Quality Standards</td>
</tr>
<tr>
<td>NAFTA</td>
<td>North American Free Trade Agreement</td>
</tr>
<tr>
<td>NB</td>
<td>Northbound</td>
</tr>
<tr>
<td>NBIS</td>
<td>National Bridge Inspection Standards</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Policy Act</td>
</tr>
<tr>
<td>NHS</td>
<td>National Highway System</td>
</tr>
<tr>
<td>ACRONYM</td>
<td>DEFINITION</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>NAC</td>
<td>Noise Abatement Criteria</td>
</tr>
<tr>
<td>N/O</td>
<td>North Of</td>
</tr>
<tr>
<td>NTN</td>
<td>National Truck Network</td>
</tr>
<tr>
<td>OC</td>
<td>Over-crossing</td>
</tr>
<tr>
<td>OH</td>
<td>Overhead</td>
</tr>
<tr>
<td>OSTS</td>
<td>Office of Traffic Safety</td>
</tr>
<tr>
<td>OWP</td>
<td>Overall Work Program</td>
</tr>
<tr>
<td>PA&ED</td>
<td>Project Approval and Environmental Document (phase)</td>
</tr>
<tr>
<td>PCS</td>
<td>Pavement Condition Survey</td>
</tr>
<tr>
<td>PeMS</td>
<td>Performance Measurement System (detection)</td>
</tr>
<tr>
<td>PG&E</td>
<td>Pacific Gas and Electric Company</td>
</tr>
<tr>
<td>PHV</td>
<td>Peak Hour Volume</td>
</tr>
<tr>
<td>PIF</td>
<td>Public Interest Finding</td>
</tr>
<tr>
<td>PM</td>
<td>Post Mile</td>
</tr>
<tr>
<td>PMS</td>
<td>Pavement Management System</td>
</tr>
<tr>
<td>PM-2.5</td>
<td>2.5 Micron Diameter Particulate Matter (diesel exhaust)</td>
</tr>
<tr>
<td>PM-10</td>
<td>10 Micron Diameter Particulate Matter (dust)</td>
</tr>
<tr>
<td>PR</td>
<td>Project Report</td>
</tr>
<tr>
<td>PS&E</td>
<td>Plans, Specifications and Estimates</td>
</tr>
<tr>
<td>PSR</td>
<td>Project Study Report</td>
</tr>
<tr>
<td>PTOC</td>
<td>Primary Traffic Operations Center</td>
</tr>
<tr>
<td>RAQS</td>
<td>Regional Air Quality Strategy</td>
</tr>
<tr>
<td>RAS</td>
<td>Regional Arterial System</td>
</tr>
<tr>
<td>RCMP</td>
<td>Regional Congestion Management Plan</td>
</tr>
<tr>
<td>RCR</td>
<td>Route Concept Report</td>
</tr>
<tr>
<td>RIP</td>
<td>Regional Improvement Plan</td>
</tr>
<tr>
<td>ROW</td>
<td>Right-of-Way</td>
</tr>
<tr>
<td>RT</td>
<td>Regional Transit</td>
</tr>
<tr>
<td>RPA</td>
<td>Rural Planning Assistance</td>
</tr>
<tr>
<td>RSTP</td>
<td>Regional Surface Transportation Program</td>
</tr>
<tr>
<td>RTE</td>
<td>Route</td>
</tr>
<tr>
<td>RTIP</td>
<td>Regional Transportation Improvement Plan</td>
</tr>
<tr>
<td>RTIF</td>
<td>Regional Transportation Impact Fee</td>
</tr>
<tr>
<td>RTL</td>
<td>Ready to List</td>
</tr>
<tr>
<td>RTP</td>
<td>Regional Transportation Plan</td>
</tr>
<tr>
<td>RTPA</td>
<td>Regional Transportation Planning Agency</td>
</tr>
<tr>
<td>R/W</td>
<td>Right of Way</td>
</tr>
<tr>
<td>RWIS</td>
<td>Roadside Weather Information System</td>
</tr>
<tr>
<td>SAFETEA-LU</td>
<td>Safe, Accountable, Flexible, Efficient, Transportation Equity Act: A Legacy for Users</td>
</tr>
<tr>
<td>SB</td>
<td>Southbound</td>
</tr>
<tr>
<td>SGP</td>
<td>Strategic Growth Plan</td>
</tr>
<tr>
<td>SHOPP</td>
<td>State Highway Operations Protection Program</td>
</tr>
<tr>
<td>SHS</td>
<td>State Highway System</td>
</tr>
<tr>
<td>SIP</td>
<td>State Implementation Plan</td>
</tr>
<tr>
<td>SJV</td>
<td>San Joaquin Valley</td>
</tr>
<tr>
<td>SJVUAPCD</td>
<td>San Joaquin Valley Unified Air Pollution Control District</td>
</tr>
<tr>
<td>S/O</td>
<td>South of</td>
</tr>
<tr>
<td>SOP</td>
<td>Status of Projects</td>
</tr>
<tr>
<td>SOV</td>
<td>Single Occupancy Vehicle</td>
</tr>
<tr>
<td>SPR</td>
<td>State Planning and Research</td>
</tr>
<tr>
<td>SPRR</td>
<td>Southern Pacific Railroad</td>
</tr>
<tr>
<td>SR</td>
<td>State Route</td>
</tr>
<tr>
<td>STAA</td>
<td>Surface Transportation Assistance Act</td>
</tr>
<tr>
<td>StanCOG</td>
<td>Stanislaus County Council of Governments</td>
</tr>
<tr>
<td>STIP</td>
<td>State Transportation Improvement Program</td>
</tr>
<tr>
<td>STRAHN</td>
<td>Strategic Highway Network</td>
</tr>
<tr>
<td>STRAIN</td>
<td>Structures Replacement and Improvement Needs</td>
</tr>
<tr>
<td>TDM</td>
<td>Transportation Demand Management</td>
</tr>
<tr>
<td>TEA-21</td>
<td>Transportation Equity Act of the 21st Century</td>
</tr>
<tr>
<td>TIP</td>
<td>Transportation Improvement Plan</td>
</tr>
<tr>
<td>TMC</td>
<td>Transportation Management Center</td>
</tr>
<tr>
<td>TMP</td>
<td>Transportation Management Plan</td>
</tr>
<tr>
<td>TMS</td>
<td>Traffic Monitoring Station/Transportation Management System</td>
</tr>
<tr>
<td>TOS</td>
<td>Traffic Operations System</td>
</tr>
<tr>
<td>TPA</td>
<td>Transportation Planning Agency</td>
</tr>
<tr>
<td>TSDP</td>
<td>Transportation System Development Plan</td>
</tr>
<tr>
<td>TSI</td>
<td>Transportation System Information</td>
</tr>
<tr>
<td>TSM</td>
<td>Transportation System Management</td>
</tr>
<tr>
<td>UAPCD</td>
<td>Unified Air Pollution Control Districts</td>
</tr>
<tr>
<td>UC</td>
<td>Under-crossing</td>
</tr>
<tr>
<td>UPRR</td>
<td>Union Pacific Rail-Road</td>
</tr>
<tr>
<td>USC</td>
<td>United States Code</td>
</tr>
<tr>
<td>UTC</td>
<td>Ultimate Transportation Corridor</td>
</tr>
<tr>
<td>VIC</td>
<td>Volume to Capacity</td>
</tr>
<tr>
<td>VMT</td>
<td>Vehicle Miles Traveled</td>
</tr>
<tr>
<td>WB</td>
<td>Westbound</td>
</tr>
<tr>
<td>W/O</td>
<td>West of</td>
</tr>
<tr>
<td>YARTS</td>
<td>Yosemite Area Regional Transportation System</td>
</tr>
</tbody>
</table>