2009

RAMP METERING ANNUAL REPORT

DEPARTMENT OF TRANSPORTATION
DISTRICT 07

Los Angeles and Ventura Counties

Michael Miles
DISTRICT 07 DIRECTOR

FRANK QUON, DEPUTY DISTRICT DIRECTOR
DIVISION OF OPERATIONS

MARCO RUANO, CHIEF
OFFICE OF FREEWAY OPERATIONS

AFSANEH RAZAVI, CHIEF
RAMP METERING BRANCH
The 2009 Ramp Metering Annual Report has been prepared by the Office of Freeway Operations Ramp Metering Branch in District 07. The information in this report encompasses all of the work performed by the Ramp Metering Branch on the on-ramp and connector meters in Los Angeles and Ventura Counties.

Prepared by:

Afsaneh M. Razavi, Chief
Ramp Metering Branch

Approval Recommended by:

Marco Ruano, Chief
Office of Freeway Operations

Approved by:

Marco Ruano, Deputy Director, Acting
Division of Operations
ACKNOWLEDGEMENTS

Team Leader

Mohamed Iqbal Toorawa
Transportation Engineer, P.E.
Ramp Metering Branch

Special thanks and recognition to the Ramp Metering Branch engineers for their assistance in the compilation of this report:

Allan Dumaplin
Behdad Sepanj
Bob Masatsugu
Fady Al-Awar
Hamid Kalkatechi
Jack Kao
Jeff Le
Kazem Atefyekta
Nabil Eskander
Rafael Benitez-Lopez
Reza Akramian
Rody Torchin
Wahib G. Jreij
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Subject</th>
<th>Page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. EXECUTIVE SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>II. DISTRICT 07 SYSTEM MANAGEMENT VISION</td>
<td>2</td>
</tr>
<tr>
<td>III. DISTRICT 07 RAMP METERING HISTORY</td>
<td>3</td>
</tr>
<tr>
<td>IV. RAMP METERING BASICS</td>
<td>5</td>
</tr>
<tr>
<td>A. RAMP METERING BENEFITS</td>
<td>6</td>
</tr>
<tr>
<td>B. TYPES OF RAMP METERING</td>
<td>6</td>
</tr>
<tr>
<td>1. FIXED TIME / TIME OF DAY METERING</td>
<td>7</td>
</tr>
<tr>
<td>2. LOCAL MAINLINE TRAFFIC RESPONSIVE METERING</td>
<td>7</td>
</tr>
<tr>
<td>3. SYSTEM WIDE ADAPTIVE RAMP METERING (SWARM)</td>
<td>7</td>
</tr>
<tr>
<td>V. RAMP METERING TECHNOLOGY</td>
<td>8</td>
</tr>
<tr>
<td>A. ADVANCED TRANSPORTATION MANAGEMENT SYSTEM (ATMS)</td>
<td>8</td>
</tr>
<tr>
<td>B. SYSTEM WIDE ADAPTIVE RAMP METERING (SWARM)</td>
<td>9</td>
</tr>
<tr>
<td>1. SWARM 1</td>
<td>9</td>
</tr>
<tr>
<td>2. SWARM 2A</td>
<td>10</td>
</tr>
<tr>
<td>3. SWARM 2B</td>
<td>10</td>
</tr>
<tr>
<td>4. SWARM COMBINATIONS</td>
<td>11</td>
</tr>
<tr>
<td>5. ADVANTAGES OF SWARM</td>
<td>11</td>
</tr>
<tr>
<td>6. DISADVANTAGES OF SWARM</td>
<td>11</td>
</tr>
<tr>
<td>7. SWARM TESTING</td>
<td>11</td>
</tr>
<tr>
<td>C. SATMS 3.0</td>
<td>11</td>
</tr>
<tr>
<td>D. UNIVERSAL RAMP METERING SYSTEM (URMS)</td>
<td>13</td>
</tr>
<tr>
<td>VI. ROLES AND RESPONSIBILITES</td>
<td>14</td>
</tr>
<tr>
<td>A. RAMP METERING BRANCH</td>
<td>14</td>
</tr>
<tr>
<td>B. ELECTRICAL MAINTENANCE BRANCH</td>
<td>14</td>
</tr>
<tr>
<td>C. INTELLIGENT TRANSPORTATION SYSTEMS (ITS) BRANCH</td>
<td>15</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (CONT’D)

VII. RAMP METERING BRANCH PRODUCTION ... 16

A. SURVEILLANCE AND MONITORING OF RAMP OPERATION 16

FIGURES DESCRIBING RAMP METERING PRODUCTION:

- Operation & Inspection Of Ramp Metering Cabinets (Figure 1) 17
- Issues Reported To ITS Or Electrical Maintenance (Figure 2) 18
- Ramp Metering Traffic Data Collection (Figure 3) .. 19
- Modify Ramp Meter Software Programs (Figure 4) .. 20
- Ramp Metering Projects Reviewed (Figure 5) ... 21
- Complaints & Inquiries (Figure 6) ... 22
- ATMS Modifications (Figure 7) ... 23

B. ROUTE 210 STRATEGIC GROWTH PLAN – CONGESTION RELIEF PROJECT 24
C. RAMP METER TRAFFIC DATA COLLECTION .. 25
D. CAPITAL PROJECT REVIEW .. 26
E. PERMIT PROJECT REVIEW .. 26
F. METERED RAMP DATA SUMMARY ... 27
G. RAMP METER DEVELOPMENT PLAN (RMDP) ... 27
H. RAMP METERING PROCEDURE MANUAL ADDENDUM 27
I. CONVERT EXISTING RAMP HOV BYPASS LANE TO A METERED HOV OR MIX FLOW LANE ... 28
J. MAJOR RAMP METERING OPERATIONAL STUDIES 28
K. TRAFFIC OPERATIONS MANAGEMENT INFORMATION SYSTEM (TOMIS) 28

VIII. REFERENCES .. 31

IX. ATTACHMENTS ... 32

1. Route Responsibilities
2. Deputy Directive 35 – Ramp Metering
3. Ramp Metering Policy Procedures
4. Contents of Exceptions to Ramp Metering Policy Fact Sheet
5. Ramp Metering Policy on High Occupancy Vehicle (HOV)
6. Traffic Operations Management Information System (TOMIS)
I. EXECUTIVE SUMMARY

Caltrans District 07 Ramp Metering Annual Report highlights the major tasks performed and documents the accomplishments achieved in Los Angeles and Ventura Counties by the Ramp Metering Branch during the 2009 calendar year.

Some of the tasks performed by the Ramp Metering Branch include:

- 2456 Operation and functionality inspection of ramp metering systems
- 379 trouble ticket issues reported to ITS and/or Electrical Maintenance
- 366 ATMS modifications
- 334 RAM Pages (ramp meter programs) modifications
- 328 projects reviews
- 389 ramp metering inquiries received
- 100 public complaints and/or inquiries responded

In addition to the above tasks, the Ramp Metering Branch has been involved in the Interstate Route 210 Strategic Growth Plan – Congestion Relief Project, which was initiated by Governor Arnold Schwarzenegger. Route 210 was identified as the “test bed” for implementing Ramp Metering and Connector Metering in conjunction with the application of System Wide Adaptive Ramp Metering (SWARM) software algorithm to improve the existing traffic congestion without a major construction project.

The remaining responsibilities of the Ramp Metering Branch were to:

- Conduct manual traffic engineering data collections,
- Perform traffic engineering analyses at various ramps and connectors,
- Perform traffic engineering analyses to convert various existing ramp HOV bypass lanes to metered HOV or mix flow lanes,
- Review Capital Outlay Support (COS) and permit projects, and
- Review and update the Ramp Metering Development Plan (RMDP).

Ramp Metering Branch works with District 07 Intelligent Transportation System (ITS) Branch in testing new vehicle detection technologies to be installed at new ramp meter locations.

District 07 Ramp Metering Branch plays a very important role in the preparation, update and outline of the Traffic Operations Management Information System (TOMIS). TOMIS is a data reporting system that captures work expenditures for Traffic Operations Program activities. It enables production of a monthly report comparing workload output (production) to work effort (expenditure). It is administered by Caltrans headquarters and is supported by all districts throughout the state.
II. DISTRICT 07 SYSTEM MANAGEMENT VISION

District 07 is committed to using numerous traffic management strategies to maintain an efficient freeway system by keeping it operating at, or at least near, capacity. Ramp Metering is an integral part of the system management concept that focuses on implementing operational strategies to reduce congestion and increase safety on California’s state highway system with the help of advanced technologies.

The Advanced Transportation Management System (ATMS), located in the new Los Angeles Regional Transportation Management Center (LARTMC), has been an important tool for the ramp metering operation. ATMS provides both historical and real-time traffic data for on-ramps, off-ramps, freeway-to-freeway connectors, and freeway mainline. Such data constitutes a vital and often is the primary source in determining the appropriate metering rates that are unique to each and every ramp meter location. In addition, District 07 ramp-metering engineers, using the ATMS display map and field video cameras, can quickly and effectively modify numerous ramp meter parameters including, but not limited to, time of metering operation and metering rates in the LARTMC. This feature is often used when responding to a scheduled construction project, a major traffic incident, or an emergency lane closure due to an unforeseen event. Thus, the use of ATMS in District 07 results in an increase in traffic flow efficiency by allowing faster response to dynamic field conditions. Furthermore, the Media and various agencies currently use the ATMS real-time traffic data and display map to report traffic conditions via Radio, Television, and the Internet.

District 07 continues to develop adaptive ramp metering strategies to improve traffic management. The continual research and development of the SWARM is being tested on the 210 Freeway, which is part of the Route 210 Strategic Growth Plan – Congestion Relief Project. This innovative metering technology promises to improve the efficiency of our metering system by operating various ramp meters through a corridor in an integrated manner. This approach is consistent with the Department's shift toward integrated corridor management, which is mandated through the Corridor Management Improvement Account. The Corridor Management Improvement Account is the centerpiece of the infrastructure bonds, which were approved by voters in 2006 as Proposition 1B. Proposition 1B is an obligation bond to fund the state for safety improvements and repairs to state highways, upgrades freeways to reduce congestion, repairs local streets and roads, upgrades highways along major transportation corridors, improves seismic safety of local bridges, expands public transit, helps complete the state's network of car pool lanes, reduces air pollution, and improves anti-terrorism security at shipping ports by providing for a bond issue not to exceed nineteen billion nine hundred twenty-five million dollars ($19,925,000,000). SWARM, and other adaptive metering strategies, will continue to be researched, evaluated, tested, and implemented, as we move forward in 2010 and beyond.
III. DISTRICT 07 RAMP METERING HISTORY

In 1965, the Freeway Operations Department, as it was called, was created in District 07 to locate, analyze and solve operational deficiencies on the existing freeway system. The first experimentation with ramp metering in District 07 occurred on the Labor Day weekend in the midst of 1960’s on the Southbound Route 14 to the Southbound Route 5 Freeway connector. The connector was manually metered with temporary signals to prevent the Southbound Route 5 freeway from breaking down. The metering operation was a complete, instant success.

On April 11, 1967, the District’s first two permanent fixed-time ramp meters were installed on the northbound Hollywood Freeway (Route 101) at Sunset Boulevard and Hollywood Boulevard. The project was successful in relieving congestion on the freeway mainline without seriously affecting surface street operations. Freeway delay was reduced by about 75%.

In the early 1970’s, District 07 created the Los Angeles Area Freeway Surveillance and Control Project (LAAFSCP). The Harbor Freeway (Route 110), Santa Monica Freeway (Route 10) and the San Diego Freeway (Route 405) highlighted this experimental project, known as the 42-mile loop. The system had two objectives. The first objective was to test and evaluate various techniques for improving movement of people and goods on the freeway system by reducing traffic delay and increasing traffic safety. The second objective was to integrate those techniques that can show a great promise into an effective traffic management system.

The LAAFSCP consisted of a vast network of traffic sensors, telemetry equipment, and a computer workstation. The computer workstation was merely a map display and an operator’s console. 24-hour real-time traffic data, including freeway mainline volumes, speeds, occupancies, ramp volumes, travel time and traffic delay, was the outcome. From this humble beginning, the current high tech LARTMC has evolved to be on the right track for success. District 07 is vigorously and continually working to further improve the system.

Traffic responsive ramp metering was also tested in the LAAFSCP project. The traffic responsive logic showed a great improvement over the existing fixed-time traffic controllers.

Also in the early 1970’s, District 07 had developed a “Program to Upgrade and Control the Los Angeles Freeway Network”. This program monitored sections of freeways that needed to be widened due to very heavy traffic demand. It was noted that as projects were completed, freeway congestion disappeared. However, as time went on, congestion returned since many motorists that were formerly taking city streets discovered the faster-moving freeways. Ramp meters were then installed to control the tremendous inflow of traffic into the freeway system and to discourage local short trips.

In 1992, the first connector meter in District 07 was installed on the Southbound Route 5 connector to the Southbound Route 110 Freeway. In 1994, Route 105 (Glenn Anderson

2009 Ramp Metering Annual Report
Freeway) was opened to traffic. Design and construction of the Route 105 included on-ramp meters and freeway-to-freeway connector meters. Implementation of connector metering was possible on Route 105, due to long and wide connectors providing adequate storage and sufficient sight distance for fast approaching vehicles, especially on heavy volume connectors. Route 105 has a total of 19 connector meters in District 07, 17 are currently in operation, and the other 2 were turned off due to a lack of heavy traffic demand and consistent free flow conditions on the receiving freeway (downstream from these connector meters).

Today, ramp metering represents an important element of the Traffic Management System (TMS). The focal point of TMS is maximizing traffic flow on the freeway system by reducing congestion. Other elements of TMS include:

- Freeway Surveillance Equipment – Provides essential traffic data to the LARTMC for early detection of incidents and locates areas of traffic congestion. Freeway surveillance equipment is part of the ramp meter detection system and is installed and maintained by the Ramp Metering Branch, the ITS (Intelligent Transportation Systems) Branch and the Electrical Maintenance Branch.

- Close Circuit Television (CCTV) – Cameras with pan, tilt and zoom capabilities are used to confirm the exact location, nature and severity of freeway incidents.

- Changeable Message Signs (CMS) – The LARTMC manages 114 signs in District 07, located at strategic points on the freeway system. The LARTMC updates the display of CMS messages to provide major incident information affecting traffic conditions and severe weather advisories. Estimated travel times are now displayed on selected CMSs district wide. In the event of child abduction, CMSs are used by law enforcement to display Amber Alert messages.

- Highway Advisory Radio (HAR) – A short-range broadcast radio with transmitters located within the freeway right-of-way to provide motorists with updated informational messages such as directional advisories, traffic control restrictions as well as general information. HAR messages are remotely activated from the LARTMC.

- Freeway Service Patrol (FSP) – A team of 152 tow trucks patrolling 474 miles of Los Angeles County freeways to provide help to stranded motorists and quickly repair or remove disabled vehicles to relieve freeway congestion. Typical hours of operation are Monday through Friday between 6:00 AM and 7:00 PM, Saturday and Sunday from 10:00 AM until 6:30 PM.
IV. RAMP METERING BASICS

Ramp meters are traffic signals placed on freeway entrance ramps or freeway connectors to control the flow of vehicles entering the freeway or moving from one freeway to another. They are designed to decrease congestion and improve the average speed of vehicles traveling on the freeway, by controlling vehicular flow at most inputs onto the mainline. By installing a traffic signal at the on-ramp, Caltrans can control the rate at which vehicles enter the freeway. Vehicles entering at short intervals are less likely to slow down flowing traffic and can merge onto the freeway without causing the traditional bottlenecks, associated with heavy on-ramp traffic volumes. In addition, metering has been proven to reduce rear end and sideswipe traffic collisions, especially during congestion periods.

The capacity of a freeway, in free-flow conditions, could easily reach 2000 vehicles per hour per lane (v/h/l). However, during congestion periods, this number often drops below 1500 v/h/l. Thus, a free-flowing traffic lane can carry 33% more cars than a congested lane. It is in the public interest to maintain the freeways moving at near capacity; therefore, by dispersing vehicular platoons entering the mainline, ramp metering helps to decrease traffic delays.

Vehicles with two or more occupants may use the High Occupancy Vehicle (HOV) by-pass lane (where available) to access the freeway mainline without stopping at the ramp meter. This practice promotes carpooling that reduces the overall number of vehicles on the freeway. On the other hand, since the freeway traffic demand continues to rise, the need to meter the carpool by-pass lane is anticipated. Currently, District 07 is evaluating the possibility of metering the existing HOV by-pass lanes.

Additionally, ramp meters are used to discourage short distance travelers from using the freeway, especially, during the congestion periods where many parallel arterial streets can be utilized. Thus, the option to use local arterials might be better than waiting at ramp meters. As a result, mainline traffic congestion will improve due to less freeway demand.
The following documents were prepared by Caltrans as a guide in implementing ramp metering policy throughout the State:

- Deputy Directive DD-35 defines Caltrans’ policy on Ramp Metering. See Attachment 3.
- Design of Ramp Metering Facilities is governed by the “Ramp Meter Design Manual”, also part of Highway Design Manual. Refer to REFERENCES, Item No. 1.

A. RAMP METERING BENEFITS

The effectiveness of ramp meter systems has always been called into question. It is difficult to quantify ramp metering benefits, without conducting a detailed study to compare with and without effects of ramp metering implementation.

In 2000, Minnesota Legislature passed a bill that required the Minnesota Department of Transportation (MnDOT) to study ramp metering effects in their state. Thus, MnDOT, responsible for managing freeway access in the Twin Cities (Minneapolis and St. Paul) metropolitan area, conducted a four-month study aimed towards capturing these benefits. Data was collected during two different time periods; ramp meters were turned on in the first period then turned off in the second. After analyzing the data from both periods, it was concluded that ramp metering was a cost-effective investment. The study revealed the following ramp metering benefits:

- 21% reduction in accidents
- 8% increase in speed
- 22% reduction in travel time
- 16.3% increase in throughput capacity

For detailed information, please refer to REFERENCES, Item No. 11.

B. TYPES OF RAMP METERING

There are three types of ramp meter operations in District 07:

1. Type 1 – Fixed Time/Time of Day (TOD)
2. Type 2 – Local Mainline Responsive (LMR)
3. Type 3 – System Wide Adaptive Ramp Metering (SWARM)

It should be noted that all three types of metering operation could be implemented according to the following two modes:

- One Car per Cycle Metering - One vehicle per cycle per lane is permitted to enter the freeway. Assuming that green time is typically 2 seconds, the remaining cycle is red time,
varying from 2 to 18 seconds. In District 07, the typical maximum metering cycle (Red + Green) time does not exceed 10 seconds or 360 vehicles per hour per lane (v/h/l), in order to minimize meter violations and to minimize vehicle back-up onto local city streets.

- **Platoon Metering** - Two to three vehicles per cycle per lane are permitted to enter the freeway. Theoretically, it is possible to meter up to 1,200 v/h/l for two vehicles per cycle and 1,320 v/h/l for three vehicles per cycle. Typically, platoon metering is used at freeway connectors or high-traffic ramps, where traffic volumes exceed 900 v/h/l. However, when feasible, widening is the better option.

1 - Fixed Time/Time of Day (TOD) Metering

Fixed time ramp metering is the simplest form of ramp metering that disperses platoons of vehicles entering the freeway. The ramp meter is programmed to operate based on a single or multiple fixed metering rates, for a pre-set metering period, based on historically averaged traffic conditions. Thus, the primary drawback of this metering type is that the cycle length is “fixed” and does not change or respond to real-time freeway mainline traffic conditions. In addition, if the on-ramp gets congested, vehicle backup (Queue) reaches near city street, the Queue loop, usually located at the entrance of the ramp, will be triggered and the meter rate will increase to the maximum rate of 15 vehicles/minute/lane until traffic back-up at the ramp is relieved. Metering rates can vary from 180 to 900 v/h/l for single-vehicle metering and 600 to 1320 v/h/l for platoon metering. This practice allows more vehicles to enter the freeway mainline regardless of what the freeway traffic conditions are. Therefore, this type of ramp metering is used only on a limited basis when mainline loops are malfunctioning or during construction.

2 - Local Mainline Responsive (LMR) Metering

In addition to all the features of fixed time metering, local mainline traffic-responsive metering is directly influenced by the dynamic traffic conditions at the on-ramp and on the freeway mainline adjacent to the on-ramp. If the traffic volume and occupancy on the mainline freeway drop below a set critical volume and critical occupancy, the ramp meter software would override the programmed meter rates to allow more vehicles to enter onto the freeway; thus relieving traffic congestion on local streets. Local mainline responsive metering is widely used in District 07.

The primary drawback of this type of local mainline responsive metering operation is that it reacts only to local mainline traffic conditions immediately adjacent to the ramp and does not take into account the conditions of the rest of the freeway corridor. Thus, the need to improve the Local Mainline Responsive Metering had brought the concept of System Wide Adaptive Ramp Metering (SWARM).

3 - System Wide Adaptive Ramp Metering (SWARM)

System Wide Adaptive Ramp Metering (SWARM) seeks to optimize traffic flow on the mainline by being responsive to a whole freeway corridor. For additional information, please refer to the “SYSTEM WIDE ADAPTIVE RAMP METERING” section of this report.
V. RAMP METERING TECHNOLOGY

A. ADVANCED TRANSPORTATION MANAGEMENT SYSTEM (ATMS)

The Advanced Transportation Management System (ATMS), located in the new Los Angeles Regional Transportation Management Center (LARTMC), is a computer system that was designed to assist in the collection and dissemination of traffic information in order to effectively manage the existing District 07 Transportation System. Refer to REFERENCES, Items No. 6, 7, and 14 for more detail. The LARTMC was designed with the intention to reduce congestion and increase safety through the rapid detection of, response to, and removal of incidents on the freeway. Using ATMS, Ramp Metering engineers manage recurring congestion by remotely controlling the ramp meter operation and analyzing freeway system efficiency.

Another additional ATMS enhanced feature includes incident detection, which is integrated with the closed circuit television (CCTV) cameras to view dynamic traffic conditions, and changeable message signs (CMS) and highway advisory radio (HAR) to inform motorists of existing freeway conditions and estimated travel times.
ATMS gets its data from field hardware. The vehicle loop detector system, located on freeway mainlines, on-ramps, off-ramps, connectors, etc., is connected to traffic controllers enabling data to be sent to the ATMS.

Ramp Metering, Intelligent Transportation Systems (ITS) and Electrical Maintenance personnel are responsible for new installations as well as maintaining, operating, and upgrading or modifying existing field elements.

In October 2006, Caltrans District 07 Ramp Metering Branch and ITS Branch entered into a contract with Delcan Technologies to modify the existing ATMS software. The goal of the modification was to improve the ATMS to be more user-friendly and to be able to easily deploy the SWARM algorithm.

B. SYSTEM WIDE ADAPTIVE RAMP METERING (SWARM)

System Wide Adaptive Ramp Metering (SWARM) is a ramp meter operating system, developed by National Engineering Technology (NET) Corporation (Currently known as DELCANCAN TECHNOLOGIES), based on the recommendations and input of District 07 Ramp Metering Branch.

SWARM seeks to optimize traffic flow on the mainline by being responsive to actual and future forecasted traffic conditions throughout the system and to recurrent and non-recurrent congestion.

Types of SWARM

There are three basic types of SWARM: SWARM 1 operates system wide to predict congestion, SWARM 2a and SWARM 2b operate locally and are based on headway and storage capacity respectively.

1. SWARM 1

SWARM 1 is system wide adaptive and based on a freeway network divided into SWARM sections. Each section begins and ends at a mainline vehicle detection station (VDS)
identified as a bottleneck. SWARM 1 algorithm operates at designated and dynamic bottleneck locations and controls vehicle flow of all upstream on-ramp locations linked to that bottleneck.

Since it is directly related to congestion, density is monitored at each bottleneck location. The algorithm requires a nominal saturation density threshold for each mainline VDS in the network.

2. **SWARM 2a**

SWARM 2a is local responsive based on headway (time between consecutive vehicles). It uses the density function to compute local metering rates and attempts to maintain headway such that the maximum flow can be obtained.

3. **SWARM 2b**

SWARM 2b is local responsive based on storage. It computes the number of vehicles stored between two VDS stations and compares it to a maximum storage value. Metering rates are computed to maintain level of service (LOS) D as long as possible.
4. **SWARM Combinations**

SWARM can be used in combinations, i.e., SWARM 1 and 2b. The controller uses the more restrictive rates of those recommended. Within a bottleneck segment, some controllers can be programmed to be on local Time of Day (TOD) mode while others are programmed to be on one of the SWARM modes. The use of the local Time of Day mode is especially useful at on-ramps that are experiencing heavy traffic volumes and cannot be further restricted.

5. **Advantages of SWARM**

- It predicts future traffic conditions.
- It maximizes traffic flow on the mainline.
- It is responsive to actual traffic conditions throughout the freeway corridor.
- It is responsive to recurring and non-recurring congestion.

6. **Disadvantages of SWARM**

- Ramp control and traffic surveillance devices must be connected to a computerized communications center.
- Communication lines have to be maintained at all times in order for SWARM to operate properly.
- SWARM requires accurate data from mainline and on and off-ramp detectors in order to work effectively.
- It is more complicated than local traffic responsive metering.

7. **SWARM Testing**

SWARM was originally tested in 2001 and 2002 on Routes 210 and 405. Results of the Route 210 study were published in the “PRELIMINARY SWARM STUDY REPORT” dated November 2001 and the “SWARM STUDY FINAL REPORT” dated October 2002. A brief summary was prepared following the Route 405 study in 2002. Please refer to REFERENCES, Item Nos. 4, 5 and 16. SWARM is being tested on Route 210. SWARM is being tested on both Eastbound and Westbound Route 210, from Baseline Road at the Los Angeles / San Bernardino County line (PM 52.00) to Marengo Avenue in the City of Pasadena just east of the Route 134 Interchange (PM 26.00). This current SWARM testing is the first since the Route 405 study in January 2002. Data of the testing will be compiled and analyzed as part of the Route 210 Growth Plan – Congestion Relief Project.

C. **SATMS 3.0**

SATMS (Semi-Automatic Traffic Management System) 3.0 is a new computer processor chip developed recently by the Caltrans ITS Branch to upgrade the existing ramp metering software.
The previous versions were SATMS 1, used only at on-ramps, and SATMS C, used for both connector and on-ramp locations.

The primary goal of the SATMS 3.0 upgrade is to improve the compatibility with the new ramp metering SWARM algorithm. Furthermore, other features were also added in order to enhance the overall ramp meter operation.

In 2002, the SATMS 3.0 chip was tested at several locations in District 07. Once the testing phase was successfully completed, the updated chip was installed at all on-ramp controller cabinets. By the end of 2003, ramp meter operation was universal district wide as the SATMS 3.0 chip replaced the obsolete model.

The new features in the SATMS 3.0 chip are:

- The controller 170 initiation reset time following a power failure to reduce the watchdog blackout problem is sped up. Thus, variation or brief interruption in power voltage level will have less effect on the operation of the ramp meter.

- The loss of communication Cycle Time is increased from one cycle (approximately 30 seconds) to ten cycles (around five minutes) in order to minimize frequent changes between SWARM and local Time of Day modes. Thus, communication losses lasting no more than ten cycles would not affect the implementation of SWARM in the field; the controller would meter for up to five minutes, according to the last SWARM rate before communication failure occurred.

- The Queue override maximum rate can be set by a ramp meter engineer to be lower than 15 vehicles per minute per lane. In addition, the new chip provides the ability of linking the activation of the Queue override mode to mainline traffic condition by setting a threshold speed level (normally 35 mph) to control Queue activation.

- The Queue override mode, created to speed up the metering rate when vehicular back up reaches the entrance of the on-ramp, can be used with the SWARM mode. If activated, the Queue override mode will gradually increase the metering rate, dictated by SWARM, up to the maximum rate of 15 vehicles per minute per lane; thus, reducing the overflow of vehicles onto city streets.

- Whenever metering is initiated or terminated by SWARM or loss of communication cycle time exceeds ten cycles, the controller will apply one-minute “Green” light at the beginning and at the end of each metering phase.

- Set default values for the SATMS 3.0 chip are improved over the older versions.

- The traffic responsive feature is improved.

- Q2 loop operation (for connectors only) is enhanced as follows:
1. Q2 can be programmed to operate independently of Q1 to trigger “Green” light when backup occurs.
2. Similarly to on-ramps, the Queue 1 Override maximum rate can be set at a rate lower than 15 vehicles per minute per lane. In addition, the Queue 1 and 2 activation modes can be controlled by mainline threshold speed level set by the engineer.

Continually and currently, Ramp Metering Branch and ITS Branch are jointly improving the SATMS 3.0 microchip. These expected improvements may include:

- Normalizing the real-time occupancy reading by averaging the last two occupancy readings.
- Smoothing off the gradual increase in the Traffic Responsive Rate according to a settable integral. This feature will delay the rest in the “Green” mode and greatly reduce any unnecessary occurrences.
- Linking the watchdog safety switch to address “0F4” so it can be detected by ATMS.
- Testing of the new SATMS microchip started in spring 2008.
- Requesting to making modifications to rest meters in the ‘dark mode’ for energy conservation.

D. UNIVERSAL RAMP METERING SYSTEM (URMS)

Several ramp metering software packages are being used by different districts within Caltrans. They include the San Diego Ramp Metering System (SDRMS), which was deployed in Districts 3, 6, 8, 10, and 11, the Semi-Automatic Traffic Management System (SATMS), which was deployed in District 07, and the Traffic Operations System (TOS), which was deployed in District 4. District 8 has just deployed Revision 8 of the SDRMS. District 11 is in the process of testing a dynamic ramp metering system. A variation of SATMS, named Orange County Ramp Metering System (OCRMS), was deployed in District 12 to allow staggered ramp metering.

While the ramp metering algorithms implemented in these other software packages react to rather than to prevent bottlenecks, SWARM may have the capability of preventing bottleneck activation, instead of just reacting to it, by integrating traffic predictive capabilities into the metering logic.

Caltrans strives to unify the ramp metering operating software systems to minimize the operations and maintenance costs. A software package, called Universal Ramp Metering System (URMS), was therefore developed and is currently being evaluated statewide. URMS is deemed the future of ramp metering operations software.

District 7 has been successfully implementing the URMS for the past 2 years at 2 on-ramp locations (San Rafael to WB Rte 134 and Holy to NB Rte 2). In addition, over 20 URMS will be installed at all ramp meter locations along Rte 405, between Rte 10 and Rte 101, as part Rte 405 HOV project, EA 120303. Currently efforts are being made to incorporate the URMS, operating on the 2070 controller hardware, with the ATMS software so that remote integration between the field and the TMC could be achieved.
VI. ROLES AND RESPONSIBILITIES

Ramp Metering Branch, Intelligent Transportation System (ITS), and Electrical Maintenance Branch work as a team in respect to ramp metering. Ramp Metering Branch is responsible for the operation of ramp meters district-wide. ITS Branch provides technical support for the LARTMC. Electrical Maintenance Branch is responsible for the maintenance of hardware and electrical equipment. To maintain and to improve the cooperation, these groups meet on a quarterly basis.

A. RAMP METERING BRANCH

The ramp metering system in the District is inspected and regularly observed through routine field surveillance and frequent ATMS observation. Ramp Metering Engineers are responsible for the ramp meter programmed software as well as the proper operation of ramp meters district-wide. Ramp Metering operation software consists of a “RAM (Random Access Memory) Map” package which includes a program sheet, Time of Day (TOD) table and a detailed loop detector (sensor) diagram layout, in addition to an electrical as-built plan showing all of the hardware. Ramp Meter hardware includes signals, controllers, loop detectors, signing, striping and advance warning devices. Area Engineers (lead workers) are assigned ramp meters by routes or segments of routes. Other engineers within the Ramp Metering Branch assist the Area Engineers. For more details, please refer to ATTACHMENT 3 and Ramp Metering Branch Production Section on page 12.

B. ELECTRICAL MAINTENANCE BRANCH

Electrical Maintenance responds to ramp meter malfunctions reported by CHP, Ramp Metering Branch, ITS Branch and the general public, if related to hardware and electrical problems. As a routine procedure, Electrical Maintenance performs a 120-day check of all ramp metering equipment. The following main actions are performed by the Electrical Maintenance technician during this check:

- Maintenance of Freeway Meter Signals

Meter signals should be checked for damage, proper operation, and timing every 120 days. This check should include the following items as a minimum:

(A) Field Inspection

(1) Visual check of indications.
(2) Signal indication alignment.
(3) Hardware (hand-hole covers, signs, poles, backplates, etc.).
(4) Pull box covers (broken, missing, and clear of dirt or debris).
(5) Visual check of service cabinet and equipment locks.

(6) Visual check of loops in roadway (if possible).

(B) Cabinet Interior

(1) Controller unit indicator lights and display.
(2) Function and timing.
(3) Detector indicator lights and operation.
(4) Check output devices, including interconnect systems.
(5) Thermostat and ventilation system including filter.
(6) Clean cabinet and interior components.
(7) Check documentation (timing sheets, schematics, wiring plans, etc, and inspection noted on cabinet login card).

(C) Cabinet Exterior

(1) Condition of surface (paint, damage, graffiti).
(2) Condition of locks and handles.
(3) Operation of Police panel switches.

- Meter Timing and Operation

Initial timing of ramp meter signals and any subsequent changes in timing are the sole responsibility of the Ramp Metering Branch.

Maintaining the meters is the responsibility of the Division of Maintenance or the district Electrical Maintenance Branch.

C. INTELLIGENT TRANSPORTATION SYSTEMS (ITS) BRANCH

ITS Branch provides technical support for the LARTMC. This includes ramp metering and ATMS. ITS main duties are:

1. Test and develop new software related to metering operation.
2. Set up the configuration of ATMS.
3. Review electrical design plans for new projects.
4. Monitor and correct any discrepancies found on the ATMS data reports such as icons, loop configuration, etc.
5. Check system electrical operation and final compliance in accordance to the contract documents or as-built plans on all new and replacement equipment.
6. Test and maintain communication lines between field equipment and LARTMC.
VII. RAMP METERING BRANCH PRODUCTION

Ramp Metering Branch production was divided into work categories as follows:

A. Surveillance and Monitoring of Ramp Metering Operation.
 Charts describing Ramp Metering production:
 1. Operation and Inspection of Ramp Metering Cabinets (Figure 1)
 2. Issues Reported to ITS or Electrical Maintenance (Figure 2)
 3. Ramp Meter Traffic Data Collections (Figure 3)
 4. Modify Ramp Metering Software Programs (Figure 4)
 5. Ramp Metering Projects Reviewed (Figure 5)
 6. Complaints & Inquiries (Figure 6)

B. Route 210 Strategic Growth Plan – Congestion Relief Project

C. Ramp Meter Data Collections
 1. Various Routes
 2. Route 210, Congestion Relief Project

D. Capital Project Review
E. Permit Project Review
F. Metered Ramp Data Summary
G. Ramp Meter Development Plan (RMDP)
H. Testing of new Vehicle Detection Technologies
I. Convert existing ramp HOV bypass lane to a metered HOV or mix flow lane.
J. Major Ramp Metering Operational study
K. New Ramp Meters

The following sections summarize in depth the amount of work performed for each of these categories. All data included in the sections below was obtained from Weekly Ramp Meter Reports filed by all Ramp Metering Engineers.

A. Surveillance and Monitoring of Metering Operation

Currently, District 07 has 971 metered on-ramps and 28 freeway to freeway connector meters (95% of these locations are operational), making it the largest ramp metering district in Caltrans. The Ramp Metering Branch periodically performs field surveillance and corrects minor software and hardware problems associated with the metering operation. Staff observed traffic backups on the ramp, verify appropriate metering rates and check for any malfunctions with signal lights or advanced warning signs. If the meter is off during metering hours, the controller software program and cabinet hardware will be checked in order to diagnose the problem; minor issues will be corrected, while major problems are reported to Electrical Maintenance or ITS Branch for repairs.
During the course of 2009, the Ramp Metering Branch inspected ramp-meter controller cabinets 2041 times. The reason for checking these controller cabinets varied from simply verifying the operations of the ramp meter to performing corrections or updates to the programmed software, and in some cases, resetting or replacing cabinet hardware. This may involve reopening the ramp meter controller cabinets numerous times to solve occurring problems.

![Operation and Inspection of Ramp Metering Cabinets](image)

Figure 1

Note: Some of these ramp-meter controller cabinets have been inspected more than once during the year.

In 2009, a total of 2456 ramp-meter controller cabinets were inspected.
In 2009, a total of 379 ramp-metering problems were reported.
The Ramp Metering Branch performed a total of 381 traffic data collection in 2009: 301 routine ramp metering traffic data collections and 80 traffic data collections for COS projects.
The Ramp Metering Branch modified 334 ramp meter software files in 2009. Ramp meter software programs, also known as RAM (Random Access Memory) Map, contain numerical values programmed into the SATMS 3.0 software to properly operate the ramp meters.
The Ramp Metering Branch reviewed 328 projects in different stages of design and construction in 2009. This may include reviewing the same projects at 35%, 65%, 95% and 100% submittals.
Figure 6

The Ramp Metering Branch provided traffic data, which may include manual queue and demand data collections; ATMS generated reports, and as-built plans, to various District 07 Offices, Public Agencies, and the general public. In 2009, the Ramp Metering Branch received 389 inquiries. In addition, the Ramp Metering Branch recorded and responded to 73 public complaints in 2009.
The Ramp Metering Branch monitored ramp meters both by performing field surveillance and by using the ATMS. ATMS allows engineers to monitor and modify ramp-metering data remotely from the LARTMC. In 2009, the Ramp Metering Branch performed 366 ATMS modifications.
B. Route 210 Strategic Growth Plan – Congestion Relief Project

Route 210 Congestion Relief Projects primarily focused on the development and implementation of enhanced on-ramp and freeway-to-freeway connector metering strategies designed to improve the ability for effective traffic management along Route 210 corridor.

Route 210 Strategic Growth Plan consists of 2 congestion relief projects. The first project, EA 257404, extends over the eastern segment of Route 210 corridor from post mile 26.00 (City of Pasadena) to post mile 52.00 (San Bernardino County Line), while the second, EA 258004, covers the western segment from post mile 0.31 (Route 5) to post mile 24.92 (Route 134).

The deployment and testing of these strategies should provide the opportunity to evaluate the potential impacts of different aspects of the improvements. These main aspects are highlighted below:

1. The installation of 41 new traffic responsive ramp meters at existing non-metered on-ramp locations, bringing the total to 107 ramp metering stations throughout the corridor.

2. Addition of 24 microwave vehicle detection stations, along brief remote sections in the western end of Route 210 corridor: This new technology was installed within a rural section along the western segment of the corridor.

3. Installation of 9 freeway-to-freeway connector meters along five major interchanges (Routes 2, 57, 118, 134 and 605 with Route 210 corridor): The purpose of this strategy is to regulate the flow of vehicles, from connecting freeways, onto Route 210.

4. Introducing High Occupancy Vehicle (HOV) bypass lane metering at 9 existing and 20 new ramp metering locations. This strategy is intended to better manage the previously uncontrolled flow of HOV vehicles onto the Freeway mainline.

5. Conversion of 23 existing non-metered HOV by-pass lane to metered on-ramp mix flow lanes: This conversion was required in order to provide additional vehicular storage capacity needed to effectively implement ramp metering operation.

6. System Wide Adaptive Ramp Metering (SWARM): This advanced metering strategy works by evaluating real-time traffic situations at dynamic bottlenecks throughout the corridor, in order to predict future congestion and properly set upstream ramp metering rates helping to reduce congestion. This methodology improves the ability to maximize and maintain efficiency of traffic flow throughout the corridor. It represents an innovation over current metering capabilities, by implementing ramp metering on a system wide basis, thus, responding to both recurring and non-recurring traffic congestion.
The addition of these strategies also required many supporting implementations including the addition of signage (both extinguishable and static), re-striping, the addition or repositioning of traffic detectors, and ramp reconfiguration.

Early in 2008, and following the completion of Construction in 2007, all ramp meters along the eastern segment of Route 210, in addition to four connector meters, between Route 210 and Routes 57 and 605 within the same limits of the corridor, were activated. Traffic data was collected, analyzed and compared to the before condition in 2006. The evaluation revealed positive impact due to the ramp and connector metering installation. A detailed report highlighting the overall benefits and detailing all the positive improvements was released on July 31, 2009.

In June 2009, all ramp meters along the western segment of Route 210 corridor were activated, however the five connector meters from Routes 2, 118 and 134 onto Route 210, remain inactive awaiting a detailed traffic study and observation of the overall traffic condition in the area.

C. Ramp Meter Data Collections

There are three types of traffic data collections conducted by the Ramp Metering Branch:

1. Queue and Demand (Q & D) traffic data collection
2. High Occupancy Vehicle (HOV) traffic data collection
3. Violation Rates traffic data collection

"Queue and Demand" traffic data collection are performed to study the operation of metered ramps, which include time and extent of traffic backup (Queue) due to ramp metering. In addition to measuring the peak and total traffic demand at the ramp, the types of vehicles using the ramp are also recorded.

Queue and Demand information helps to implement an effective ramp metering strategy. Metering rates are implemented according to type and volume of traffic demand at the on-ramp in relation to mainline traffic conditions.

"HOV" traffic data collection is conducted at metered on-ramps with an HOV lane. The purpose of this data collection is to determine time intervals, types of vehicles (truck, buses, and motorcycles), peak and total HOV traffic demand, vehicle occupancy (2, 3 ...persons per vehicle). The percentage of usage of the HOV lane, in relation to the metered mix-flow lane, is calculated with this information. In addition, the number of HOV lane violations is recorded. If the violation rate is determined to be high, this information is forwarded to the California Highway Patrol for enforcement.

These three types of traffic data collection should be conducted, on a yearly basis at all active ramp meter locations. However, due to time constraints and limited resource allocations, these traffic data collection activities are currently performed as a result of public complaints,
upcoming projects and developments impacting the operation of the ramp meter. See Figure 3 for detail. Thus, if a public complaint related to excessive back-up on the ramp is received, a field review and a “Q and D” data collection might be conducted to properly investigate the problem and adjust the metering rate if needed. In addition, if a project to construct a new ramp or modify an existing one is being proposed, then a traffic data collection will be conducted, in order to assist in the new design. On-ramp traffic data collections might also be conducted during major studies (SWARM testing) or large-scale projects such as the Route 5 Widening and HOV project.

1. Various Routes

 During the 2009 calendar year, the Ramp Metering Branch had conducted 301 traffic data collection along various routes.

2. Route 210 Congestion Relief Project

 Manual Queue and Demand, and HOV traffic data collection activities were performed on the entire stretch of Route 210 between 4/25/2006 and 06/06/2006. Data collection was conducted at all 107 on-ramp locations, located within the two project limits.

D. Capital Project Review

The Ramp Metering Branch reviews numerous projects and gets involved in ramp meter related issues, during the following stages of a project (see Figure 5):

1. PID (Project Initiation Document)
2. PSR (Project Study Report)
3. PR (Project Report)
4. All stages of PS&E (Plans, Specifications and Estimate)

In addition, the Ramp Metering engineers also keep track of the project’s progress throughout the construction stage.

E. Permit Project Review

The Ramp Metering engineers review and comment on ramp meter related issues involved in permit projects, and oversight projects, which are usually prepared by consultants on behalf of local cities, counties or other agencies.

F. Metered Ramp Data Summary

The Ramp Metering personnel collect information for the METERED RAMP DATA SUMMARY. Information gathered includes but is not limited to the following items:
• Ramp type and configuration
• Number of lanes
• Ramp storage length
• “Meter On” signs
• HOV
• Metering hours
• Metering rates
• Inventory of loops & loop detectors
• Signing
• Striping
• Maintenance Vehicle Pullout (MVP) locations

The above information is useful for the following purposes:

• To provide a database for the “RAMP METER DEVELOPMENT PLAN” report.
• To generate a master list detailing all deficiencies and to forward it to the ITS group for repairs.
• To replace on-ramp detector loops, vehicle detector cards and to reconfigure detector loop connections (DLC), when needed, at numerous traffic controller cabinets.

G. Ramp Meter Development Plan (RMDP)

The first 10-year RMDP report was completed in 1997 and was due to be updated by 2008. However, an updated RMDP report was initiated in 2004 and published in July of 2005. This 10-year report contained an inventory of all on-ramps (metered and non-metered), metered connectors, in addition to a listing of on-ramps proposed or funded to be metered, within the next 10 years. The last RMDP was published in January 2009 and it will be published every two years.. For detailed information, please refer to REFERENCES, Item No. 2.

H. Ramp Metering Procedure Manual and Addendum

I. Convert Existing Ramp HOV Bypass Lane to a Metered HOV OR Mix Flow Lane

As part of Route 210 Congestion Relief project, 26 non-metered HOV by-pass lanes along various on-ramps were converted to metered mix flow lanes, while 10 other HOV by-pass lanes were transformed to metered on-ramp HOV lanes.

J. Major Ramp Metering Operational Studies

- **I-405 Sepulveda Pass Widening Project**
 Ramp metering personnel have been involved this year in preparation of technical specifications and in reviewing design plans at the various stages of this design build project. This 10 mile long project from Route 90 to Route 101 will improve ramps, bridges and sound walls on San Diego freeway. This $1.03 billion dollar project will reduce commuter time, improve safety, reduce air pollution and improve the links with the state and regional transportation network.

- **Route 118 widening in Ventura County**
 A major widening project was completed on Eastbound 118 in Ventura County this year. The project included sound walls, fiber-optic construction, new ramp meters and ramp metering elements on EB and WB directions. Ramp metering personnel conducted a traffic study for AM and PM periods for the on-ramps that were off for long time during construction. These on-ramps were as follows:

 1. NB and SB Tapo Canyon Rd. On-ramp to EB and WB Route 118.
 2. NB and SB Stearns On-ramp to EB and WB Route 118.
 3. NB and SB Yosemite Ave On-ramp to EB and WB Route 118.
 4. Kuehner Dr. On-ramp to EB and WB Route 118.

K. Traffic Operations Management Information System (TOMIS)

Traffic Operations Management Information System (TOMIS) is a data reporting system that captures work expenditures for Traffic Operations Program activities. TOMIS enables production of a monthly report comparing workload output (production) to work effort (expenditure). Ramp Metering Branches throughout Caltrans in all 12 districts have adopted TOMIS. In TOMIS, there are six subjobs that are related to ramp metering activities. These are EA 936501, subjob 3RACT, 3RSUR, 3RPNT, and 3RTRV; and EA 936602, subjob 3RFAS and 3TRVL. The detailed descriptions of these subjobs are tabulated in the following Table 3. On a monthly basis, production units for each subjob are reported to Headquarters. These production units are also defined in Table 3. Currently, the workload standard (See Attachment 7) for 3RSUR, 3RPNT is 49 and 15 hours per widget, respectively. The workload standards for other subjobs are under development.
VIII. REFERENCES

15. “Basic Ramp Control”, M.K. Kim, Caltrans

IX. ATTACHMENTS
ROUTE RESPONSIBILITIES

Afsaneh Razavi (Ramp Metering Branch Chief)
Phone (323) 259-1841

<table>
<thead>
<tr>
<th>AREA ENGINEER: Wahib Jreij</th>
<th>Phone: (323) 259-1842</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co/Rte</td>
<td>PM Limits</td>
</tr>
<tr>
<td>LA-10</td>
<td>18.39/48.30</td>
</tr>
<tr>
<td>LA-210</td>
<td>26.00/52.00</td>
</tr>
<tr>
<td>LA-57</td>
<td>0.00/12.00</td>
</tr>
<tr>
<td>LA-60</td>
<td>0.00/30.50</td>
</tr>
<tr>
<td>LA-71</td>
<td>0.30/4.80</td>
</tr>
<tr>
<td>LA-210 Connector</td>
<td>NB Rte 57 to EB Rte 210</td>
</tr>
<tr>
<td>LA-210 Connector</td>
<td>NB Rte 57 to WB Rte 210</td>
</tr>
<tr>
<td>LA-210 Connector</td>
<td>NB Rte 605 to EB Rte 210</td>
</tr>
<tr>
<td>LA-210 Connector</td>
<td>NB Rte 605 to WB Rte 210</td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AREA ENGINEER: Iqbal Toorawa</th>
<th>Phone: (323) 259-1858</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co/Rte</td>
<td>PM Limits</td>
</tr>
<tr>
<td>LA-91</td>
<td>6.01/20.74</td>
</tr>
<tr>
<td>LA-110</td>
<td>0.00/20.36</td>
</tr>
<tr>
<td>LA-110</td>
<td>20.36/31.91</td>
</tr>
<tr>
<td>LA-110 Connector</td>
<td>S/B 5 to S/B 110</td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AREA ENGINEER: Jeff Le</th>
<th>Phone: (323) 259-1850</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co/Rte</td>
<td>PM Limits</td>
</tr>
<tr>
<td>LA-5</td>
<td>0.00/20.54</td>
</tr>
<tr>
<td>LA-710</td>
<td>6.80/27.38</td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

2009 Ramp Metering Annual Report

ATTACHMENT 1
ROUTE RESPONSIBILITIES

Afsaneh Razavi (Ramp Metering Branch Chief)
Phone (323) 259-1841

AREA ENGINEER: Rafael Benitez
Phone: (323) 259-1856

<table>
<thead>
<tr>
<th>Co/Rte</th>
<th>PM Limits</th>
<th>Limits</th>
<th>Assigned</th>
<th>Ph. Ext</th>
<th>Meters</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA-10</td>
<td>1.88/18.33</td>
<td>PCH to East LA I/C</td>
<td>Benitez</td>
<td>1856</td>
<td>46</td>
</tr>
<tr>
<td>LA-105</td>
<td>0.00/18.14</td>
<td>Sepulveda (LAX) - 605</td>
<td>Benitez</td>
<td>1856</td>
<td>28</td>
</tr>
<tr>
<td>LA-110</td>
<td>(E/W)/B 105 to N/B 110</td>
<td></td>
<td>Benitez</td>
<td>1856</td>
<td>1</td>
</tr>
<tr>
<td>LA-110</td>
<td>E/B 105 to S/B 110</td>
<td></td>
<td>Benitez</td>
<td>1856</td>
<td>1</td>
</tr>
<tr>
<td>LA-110</td>
<td>W/B 105 to S/B 110</td>
<td></td>
<td>Benitez</td>
<td>1856</td>
<td>1</td>
</tr>
<tr>
<td>LA-105</td>
<td>N/B 405 to E/B 105</td>
<td></td>
<td>Benitez</td>
<td>1856</td>
<td>1</td>
</tr>
<tr>
<td>LA-105</td>
<td>S/B 405 to E/B 105</td>
<td></td>
<td>Benitez</td>
<td>1856</td>
<td>1</td>
</tr>
<tr>
<td>LA-105</td>
<td>N/B 110 to E/B 105</td>
<td></td>
<td>Benitez</td>
<td>1856</td>
<td>1</td>
</tr>
<tr>
<td>LA-105</td>
<td>S/B 110 to W/B 105</td>
<td></td>
<td>Benitez</td>
<td>1856</td>
<td>1</td>
</tr>
<tr>
<td>LA-105</td>
<td>S/B 110 to E/B 105</td>
<td></td>
<td>Benitez</td>
<td>1856</td>
<td>1</td>
</tr>
<tr>
<td>LA-105</td>
<td>N/B 710 to W/B 105</td>
<td></td>
<td>Benitez</td>
<td>1856</td>
<td>1</td>
</tr>
<tr>
<td>LA-105</td>
<td>N/B 710 to E/B 105</td>
<td></td>
<td>Benitez</td>
<td>1856</td>
<td>1</td>
</tr>
<tr>
<td>LA-105</td>
<td>S/B 710 to E/B 105</td>
<td></td>
<td>Benitez</td>
<td>1856</td>
<td>1</td>
</tr>
<tr>
<td>LA-105</td>
<td>S/B 710 to W/B 105</td>
<td></td>
<td>Benitez</td>
<td>1856</td>
<td>1</td>
</tr>
<tr>
<td>LA-405</td>
<td>E/W 105 to S/B 405</td>
<td></td>
<td>Benitez</td>
<td>1856</td>
<td>1</td>
</tr>
<tr>
<td>LA-405</td>
<td>W/B 105 to N/B 405</td>
<td></td>
<td>Benitez</td>
<td>1856</td>
<td>1</td>
</tr>
<tr>
<td>LA-605</td>
<td>E/B 105 to N/B 605</td>
<td></td>
<td>Benitez</td>
<td>1856</td>
<td>1</td>
</tr>
<tr>
<td>LA-605</td>
<td>E/B 105 to S/B 605</td>
<td></td>
<td>Benitez</td>
<td>1856</td>
<td>1</td>
</tr>
<tr>
<td>LA-710</td>
<td>E/W 105 to S/B 710</td>
<td></td>
<td>Benitez</td>
<td>1856</td>
<td>1</td>
</tr>
<tr>
<td>LA-710</td>
<td>E/W 105 to N/B 710</td>
<td></td>
<td>Benitez</td>
<td>1856</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td>92</td>
</tr>
</tbody>
</table>

AREA ENGINEER: Hamid Kalkatechi
Phone: (323) 259-1843

<table>
<thead>
<tr>
<th>Co/Rte</th>
<th>PM Limits</th>
<th>Limits</th>
<th>Assigned</th>
<th>Ph. Ext</th>
<th>Meters</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA-5</td>
<td>20.54/88.61</td>
<td>Rte 110 to Kern County</td>
<td>Kalkatechi</td>
<td>1843</td>
<td>60</td>
</tr>
<tr>
<td>Ven-33</td>
<td>0.00/5.66</td>
<td>Route 101 to Casitas Vista Road</td>
<td>Kalkatechi</td>
<td>1843</td>
<td>0</td>
</tr>
<tr>
<td>LA-101</td>
<td>11.60/38.19</td>
<td>Rte 101/134/170 Int. to Ventura Co.</td>
<td>Kalkatechi / Sepanj</td>
<td>6306</td>
<td>55</td>
</tr>
<tr>
<td>Ven-101</td>
<td>0.00/43.62</td>
<td>L.A. County to Santa Barbara Co.</td>
<td>Kalkatechi</td>
<td>1843</td>
<td>13</td>
</tr>
<tr>
<td>Ven-126</td>
<td>0.00/13.24</td>
<td>Route 101 to Hallock Drive</td>
<td>Kalkatechi</td>
<td>1843</td>
<td>0</td>
</tr>
<tr>
<td>LA-138</td>
<td>0.00/1.80</td>
<td>Route 5 to Gorman Post</td>
<td>Kalkatechi</td>
<td>1843</td>
<td>0</td>
</tr>
<tr>
<td>LA-170</td>
<td>14.57/20.55</td>
<td>Route 101 to Route 5</td>
<td>Kalkatechi</td>
<td>1843</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td>138</td>
</tr>
</tbody>
</table>
ROUTE RESPONSIBILITIES

Afsaneh Razavi (Ramp Metering Branch Chief)

Phone (323) 259-1841

AREA ENGINEER: Jack Kao
Phone: (323) 259 - 1845

<table>
<thead>
<tr>
<th>Co/Rte</th>
<th>PM Limits</th>
<th>Limits</th>
<th>Assigned</th>
<th>Ph. Ext</th>
<th>Meters</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA-2</td>
<td>14.08/23.44</td>
<td>Glendale Blvd to Route 210</td>
<td>Kao / Atefyekta</td>
<td>1857</td>
<td>7</td>
</tr>
<tr>
<td>LA-134</td>
<td>0.0/13.34</td>
<td>Route 170 to Route 210</td>
<td>Kao / Akramian</td>
<td>1847</td>
<td>30</td>
</tr>
<tr>
<td>LA-605</td>
<td>0.00/26.00</td>
<td>Orange County to Route 210</td>
<td>Kao / Dumaplin</td>
<td>1846</td>
<td>56</td>
</tr>
</tbody>
</table>

Total 93

AREA ENGINEER: Fady Al-Awar
Phone: (323) 259 - 1844

<table>
<thead>
<tr>
<th>Co/Rte</th>
<th>PM Limits</th>
<th>Limits</th>
<th>Assigned</th>
<th>Ph. Ext</th>
<th>Meters</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA-14</td>
<td>24.79/77.01</td>
<td>Route 5 to Kern County</td>
<td>Al-Awar</td>
<td>1844</td>
<td>0</td>
</tr>
<tr>
<td>LA-101</td>
<td>0.18/11.60</td>
<td>Mission Rd to 101/134/170 Inter.</td>
<td>Al-Awar</td>
<td>1844</td>
<td>32</td>
</tr>
<tr>
<td>LA-118</td>
<td>0.00/14.08</td>
<td>Ventura County to Route 210</td>
<td>Al-Awar</td>
<td>1844</td>
<td>20</td>
</tr>
<tr>
<td>Ven-118</td>
<td>18.20/32.60</td>
<td>Route 23 to Los Angeles County</td>
<td>Al-Awar</td>
<td>1844</td>
<td>34</td>
</tr>
<tr>
<td>Ven-23</td>
<td>3.20/11.60</td>
<td>Route 101 to Route 118</td>
<td>Al-Awar / Sepanj</td>
<td>6303</td>
<td>23</td>
</tr>
<tr>
<td>LA-405</td>
<td>48.64/39.40</td>
<td>Route 05 to Route 101</td>
<td>Al-Awar</td>
<td>1844</td>
<td>19</td>
</tr>
<tr>
<td>LA-405</td>
<td>39.40/21.44</td>
<td>Route 101 to Route 105</td>
<td>Al-Awar / Torchin</td>
<td>1859</td>
<td>41</td>
</tr>
<tr>
<td>LA-90</td>
<td>0.92/3.28</td>
<td>Route 1 to Slauson Ave</td>
<td>Al-Awar / Torchin</td>
<td>1859</td>
<td>0</td>
</tr>
</tbody>
</table>

Total 169

AREA ENGINEER: Nabil Eskander
Phone: (323) 259 - 1869

<table>
<thead>
<tr>
<th>Co/Rte</th>
<th>PM Limits</th>
<th>Limits</th>
<th>Assigned</th>
<th>Ph. Ext</th>
<th>Meters</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA-405</td>
<td>0.00/12.95</td>
<td>Orange County to Route 110</td>
<td>Eskander/Atefyekta</td>
<td>1857</td>
<td>37</td>
</tr>
<tr>
<td>LA-405</td>
<td>12.95/21.44</td>
<td>Route 110 to Route 105</td>
<td>Eskander / Torchin</td>
<td>1859</td>
<td>23</td>
</tr>
<tr>
<td>LA-210</td>
<td>00.00/26.00</td>
<td>Route 134 to Rte 5</td>
<td>Eskander</td>
<td>1869</td>
<td>45</td>
</tr>
<tr>
<td>LA-210 Connector</td>
<td>EB Rte 118 to EB Rte 210</td>
<td>Eskander</td>
<td>1869</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>LA-210 Connector</td>
<td>EB Rte 118 to WB Rte 210</td>
<td>Eskander / Benitez</td>
<td>1869</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>LA-210 Connector</td>
<td>NB Rte 2 to EB Rte 210</td>
<td>Eskander / Benitez</td>
<td>1869</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>LA-210 Connector</td>
<td>NB Rte 2 to WB Rte 210</td>
<td>Eskander / Benitez</td>
<td>1869</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>LA-210 Connector</td>
<td>EB Rte 134 to WB Rte 210</td>
<td>Eskander / Benitez</td>
<td>1869</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Total 110

2009 Ramp Metering Annual Report
ATTACHMENT 1
California Department of Transportation

DEPUTY DIRECTIVE

Number: DD-35

Refer to
Director’s Policy: 08-Freeway System Management

Effective Date: 1-3-95

Supersedes: P&P 91-01

Title: Ramp Metering

POLICY
Caltrans is committed to using ramp metering as an effective traffic management strategy to maintain an efficient freeway system and protect the investment made in constructing freeways to keeping them operating at or near capacity flow rates.

DEFINITION/BACKGROUND
Ramp metering is the common method of ramp entry control. It has been an effective tool in reducing congestion on California freeways since the late 1960s. Caltrans has installed over 1300 ramp meters throughout the state and proposes their installation on all urban freeway entrance ramps where metering will improve or maintain effective operations along freeway corridors.

RESPONSIBILITIES
The Traffic Operations Program Manager is responsible for the development, review and dissemination of policies, guidelines, and procedures for ramp metering (see Ramp Metering Policy Procedures).

The State and Local Project Development Program Manager is responsible for the development and review of geometric design standards for ramp metering and supports the inclusion of ramp metering in projects within freeway segments identified in the Ramp Meter Development Plan.

District Directors are responsible for developing local agency support for ramp metering; implementing ramp metering policies and procedures; and providing justification for deviation from established policy and procedures.

APPLICABILITY
Any employees involved with ramp metering activities.

ORIGINAL SIGNED BY
LEE F. DETER
Deputy Director
Maintenance and Operations
RAMP METERING POLICY PROCEDURES

State of California
Business, Housing and Transportation Agency
Department of Transportation
Traffic Operations
August 1997
RAMP METERING POLICY PROCEDURES

I. PURPOSE

The purpose of these procedures is to provide guidelines for implementing the Department’s ramp metering policy (DD-35).

II. BACKGROUND

Metering has proven to be an effective traffic operations tool to maximize the efficiency of a corridor. The primary objective of metering is to reduce congestion and the overall travel time of the total traffic stream - on both freeway and surface streets. Ramp metering reduces congestion by:

- Maintaining more consistent freeway throughput.
- Utilizing the capacity of the freeway corridor more efficiently.
- Providing incentives for increased use of carpools, vanpools, and public transit by including preferential lanes, which offer time savings to High Occupancy Vehicles (HOV) at ramp meters.

Secondary benefits include the reduction of congestion-related accidents and air pollution. Ramp meters operate most effectively when upstream mainline traffic is controlled. This control can be accomplished by installing additional ramp meters, metering freeway to freeway connectors or mainline control. These procedures focus on the implementation of ramp metering systems through a coordinated effort involving Caltrans planners, designers, operations personnel, local agency staff, the California Highway Patrol (CHP), and the public.

III. PROCEDURES

A. It is the District’s responsibility to maintain an acceptable level of service on the freeway system, to make the most effective use of each transportation corridor, and to protect the public’s investment in the system.

Each District that currently operates, or expects to operate, ramp meters within the next ten years shall prepare a Ramp Meter Development Plan (RMDP) identifying the freeway segments, including freeway to freeway connectors, that are expected to be metered within this period. The RMDP should also identify freeway segments where upstream mainline control is necessary to maintain effective overall freeway operations. The RMDP shall be updated biennially and be included in local Congestion Management Plans.
B. Projects, which propose the modification of an existing interchange or the construction of a new interchange within the freeway segments identified in the RMDP, regardless of funding source, should include provisions for ramp meters. This applies to all projects that have an approved Project Study Report dated July 1991 or later (the date of the original Policy and Procedure). These provisions, as defined in the Ramp Meter Design Guidelines, should include right of way, geometric to accommodate vehicle storage and HOV bypass lanes, ramp meter equipment, and CHP enforcement areas. Projects which propose additional capacity within freeway segments identified in the RMDP shall include provisions for ramp meters and shall implement the ramp meters at all entrance ramps within the project limits. In freeway segments identified in the RMDP where mainline control is necessary to maintain effective overall freeway operation, additional freeway capacity should not be constructed without an analysis of the operational impacts to downstream segments. Districts are responsible for performing appropriate environmental studies for ramp metering projects.

C. The District will work in partnership with metropolitan planning organizations; regional transportation planning agencies, and congestion management agencies to program ramp metering projects and develop implementation plans. Coordination and consultation should be documented and concurrence may be obtained in any form the District considers appropriate.

D. The Ramp Meter Design Guidelines prepared by the Division of Traffic Operations, in cooperation with the Division of State and Local Project Development, and the CHP shall be used when designing ramp metering facilities. This document is a compilation of design information and operational practices used statewide.

E. HOV preferential lanes shall be considered wherever ramp meters are installed. The need for HOV bypass lanes should be included in the Project Study Report, Project Information Report, Project Report, and Environmental Document. If an HOV preferential lane is not included in a proposal to ramp meter, the reasons should be addressed in the appropriate document.

The District is responsible for consulting with the CHP on project features, which affect enforcement activities such as HOV lane violations, enforcement pads, etc. Coordination and consultation should be documented.

F. When selecting the appropriate metering method for the HOV preferential lane, the following criteria should be used:

Control: An analysis of HOV traffic volumes shall be made to determine the impact on mainline traffic flows. Where adverse impacts exist, consideration should include metering the HOV preferential lane and/or more restrictive metering of the SOV lane(s). Consideration should be given to metering the HOV preferential lane if platoons from local signalized intersections adversely affect
the operation of the freeway. Storage capacity and effects to local arterials should also be addressed.

Merge Conditions: Prior to entering the freeway, all vehicles on the on-ramp should be provided with adequate space to safely merge with each other. The safest merge condition is when the speeds of the merging vehicles are identical. When the speed differentials between HOVs and SOVs are excessive, consideration should be given to metering the HOV lane. All ramps should be designed in accordance with the Ramp Meter Design Guidelines, which detail adequate merging distances.

Enforcement: The ability to safely enforce occupancy violations of HOV lanes is essential. The CHP should be consulted for their recommendation of enforcement operations at each HOV preferential lane location.

Corridor Operations: In corridors where ramp meters are already operational, the existing metering method may be used as criteria for additional installations in the same corridor. Should alternate metering methods be proposed along a corridor, local agencies should be consulted.

The criteria listed above can be applied to new and existing ramp meter installations. If it is being applied to an existing ramp meter, the following criteria should also be used:

Accident History: The accident history of the ramp needs to be investigated. If either the ramp or any portion of the freeway within 500 feet of the ramp gore has been flagged as a high accident concentration location (Table C), each accident report should be reviewed in detail to determine whether or not the HOV operation during the metered period was a contributing factor. If evidence suggests that it could have been a contributing factor to the accident, consideration should be given to metering the HOV preferential lane.

G. Districts shall provide justification for deviation from the policy and these procedures and concurrence shall be obtained from the Headquarters Traffic Operations District Liaison. Deviations from design standards require the approval of the Project Development Coordinator in the Office of Project Planning and Design.

H. The Division of Traffic Operations provides District personnel with technical assistance and support on the design and operation of ramp meter systems and assists in the preparation of the District’s RMDP.
CONTENTS OF EXCEPTION TO RAMP METERING POLICY FACT SHEET

PROJECT DESCRIPTION

Briefly describe the project. Note the type of project and/or major elements of work to be done.

RAMP METERING POLICY NON-COMPLIANCE FEATURES

Describe the proposed or existing ramp metering policy non-compliance feature(s). (Note: Deviations from advisory or mandatory design standards shall be addressed as required by the Project Development Procedures Manual, the Highway Design Manual and applicable District Directives.) Design exceptions to standards to be attached to Ramp Meter Policy Fact Sheet.

REASON FOR THE EXCEPTION

Be thorough but brief. Supportive factors may include right-of-way or space constraints, environmental concerns, inordinate costs, etc. Show an estimate of the added cost above the proposed project cost that would be required to conform to the ramp metering policy for which exception is being documented. The estimate does not have to be highly developed but must be realistic.

FUTURE CONSTRUCTION

Describe any planned future projects in the immediate vicinity of the requested ramp meter exception, but do not make any commitments (e.g., ramp metering as part of future projects) unless there is a certainty that they can be followed through.

PROPOSED EXCEPTION REVIEWS AND CONCURRENCE

Note reviews by HQ Traffic Operations, the District Liaison and District Office of Traffic Systems. Give dates of reviews and discuss any comments that were made and their disposition.

REMARKS

Note clarifying remarks. Discuss impacts on project delivery schedule and project costs, if any. Discuss impacts of ramp metering policy non-compliance features.

ATTACHMENTS

Provide a locations map and/or vicinity map for the project, indicating the location of the requested exception(s) to the ramp metering policy. Also provide cross-sections and/or special details as necessary to illustrate the policy non-compliance condition. Letters, resolutions, traffic studies, etc., which help to clarify the reasons for the exception request, may be attached.

SIGNATURE SHEET

The Fact Sheet signature page shall conform to the attached.
FACT SHEET

EXCEPTION TO
RAMP METERING POLICY

(Insert Registered C.E. Seal)

Prepared by:

(Name), Registered C.E. Date Telephone

Approval recommended by:

(Name), Project Manager Date Telephone

Concurrence by:

(Name), District Liaison
HQ Traffic Operations Date Telephone

Approved by:

(Name), District Division Chief, Operations Date

2009 Ramp Metering Annual Report ATTACHMENT 4
Memorandum

To: DISTRICT DIVISION CHIEFS – Operations
 DISTRICT DIVISION CHIEFS – Design
 DISTRICT DIVISION CHIEFS – Planning

Date: July 31, 2000

From: DEPARTMENT OF TRANSPORTATION
 Traffic Operations
 Mail Station 36

Subject: Ramp Metering Policy on High Occupancy Vehicle (HOV) Preferential Lanes

The purpose of this memorandum is to clarify and re-affirm the California Department of Transportation (Caltrans) policy on HOV preferential lanes at ramp meter locations. Caltrans is committed to its current policy:

An HOV preferential lane shall be provided at all ramp meter locations.

The January 2000 edition of the Ramp Meter Design Manual now addresses the circumstances under which exceptions to this policy may be warranted. See ‘Modifications to Existing HOV Preferential Lanes’ located in Section ‘I’ of Chapter One:

- Underutilization of an existing lane plus the need for additional right-of-way for storage
- The availability of an alternate HOV entrance ramp within 2 Km
- The availability of a direct HOV access (drop) ramp

Exceptions shall be handled on a location-by-location basis. Conversions may require Federal Highway Administration actions or concurrence. The District Division Chief for Operations, in consultation with the Headquarters Traffic Operations Liaison, is responsible for approving and documenting decisions to remove HOV preferential lanes. These policies and exceptions also apply to new and reconstruction projects. Districts should refer to the “Exception to Ramp Metering Policy” located in the Appendix of the Ramp Meter Design Manual or contact your Headquarters Traffic Operations Liaison for assistance.

Original Signed By

KIM NYSTROM
Program Manager
Traffic Operations

cc: Mr. Robert Buckley
 Program Manager
 Design and Local Programs

 Ms. Joan Sollenberger
 Program Manager
 Transportation Planning

2009 Ramp Metering Annual Report
ATTACHMENT 5
DIVISION OF TRAFFIC OPERATIONS
OFFICE OF SYSTEM MANAGEMENT OPERATIONS
EA 936501

SUB JOB: 3RACT

ACTIVATION OF NEW, INACTIVE OR REPLACED RAMP METERS

DESCRIPTION: This work segment captures production and timesheet charges for activating new ramp metering field elements when a capital outlay support EA is NOT available.

TYPICAL TASKS (District):
- Public awareness
- Notification of the California Highway Patrol (CHP) and request support, if necessary
- Notification of the affected local agencies and request support, if necessary
- Notification of the Caltrans Headquarters Division of Traffic Operations and Division of Maintenance
- Field walk-through before turn-on
- Activation of ramp meters
- Fine tuning of field elements and metering rates, if necessary
- Conduct before and after studies
- Ramp metering operations support during construction
- Coordinate with TMC support, electrical maintenance, and construction prior to activation
- Negotiate inter-agency protocols and agreements
- Respond to inquiries (internal and external)
- Participate in specification development and procurement process

TYPICAL TASKS (Headquarters):
- None.

TASKS NOT INCLUDED:
- Activation of new, inactive or replaced ramp meters for Encroachment Permit, Capital Outlay Project, or Maintenance (use EA XXXXXX – XXXXX and Sub Job XXXX or WBS XXXXX or Family Code respectively)
- Surveillance and adjustment of existing ramp meters (use EA 936501, Sub Job 3RSUR)
- Data collection and analysis related to Operational Investigations (use EA XXXXXX, Sub Job 3OPIN)
- Project development activities, including construction of new signals (use COS Project EA with appropriate WBS activity code)
- Travel time to complete activation (use Travel EA 936603 and Sub Job 3RACT)
- Surveillance and adjustment of traffic signals other than ramp meters (use EA XXXXX, Sub Job XXXXX – XXXXX)

PRODUCTION STANDARDS:
Production Unit:
- Number of ramp meters activated

Workload Standard:
- 40 hours per activation

Performance Measure:
- TBD

PREVIOUS EA: 936501 Ramp Metering, Sub Job 3RAMP

NOTES: None.

DATE MODIFIED: 1-31-2008
Division of Traffic Operations
Office of System Management Operations
EA 936501
Sub Job: 3RSUR

SURVEILLANCE AND ADJUSTMENT OF EXISTING RAMP METERS

DESCRIPTION: This work segment captures production and time sheet charges for the surveillance and adjustment of existing ramp metering office and field elements.

<table>
<thead>
<tr>
<th>TYPICAL TASKS (District):</th>
</tr>
</thead>
<tbody>
<tr>
<td>• CONDUCT FIELD/OFFICE ELEMENT SURVEILLANCE</td>
</tr>
<tr>
<td>- Monitor ramp meter functionality in the field</td>
</tr>
<tr>
<td>- Monitor ramp meter functionality through a central system in the office</td>
</tr>
<tr>
<td>- Review & adjust corridor ramp metering hours (am, pm, or all day for both weekdays & weekends).</td>
</tr>
<tr>
<td>- Inspect firmware (SATMS/SDRMS/TOS) and hardware in the field.</td>
</tr>
<tr>
<td>- Report hardware or communication problems to appropriate functional units such as TMC support, electrical maintenance and TMS support.</td>
</tr>
<tr>
<td>- Investigate and respond to inquiries/complaints</td>
</tr>
<tr>
<td>- Respond to inquiries (internal and external)</td>
</tr>
<tr>
<td>- Respond to legal claims inquiries</td>
</tr>
<tr>
<td>• COLLECT TRAFFIC DATA</td>
</tr>
<tr>
<td>- Occupancy counts</td>
</tr>
<tr>
<td>- Queue and demand</td>
</tr>
<tr>
<td>- ramp geometry</td>
</tr>
<tr>
<td>- ramp volumes</td>
</tr>
<tr>
<td>- Mainline volumes</td>
</tr>
<tr>
<td>- Turning movements at the ramp termini</td>
</tr>
<tr>
<td>- meter violation rates</td>
</tr>
<tr>
<td>- HOV (Bypass) counts</td>
</tr>
<tr>
<td>- HOV (Bypass) Violation rates</td>
</tr>
<tr>
<td>- Maintain and update log of surveillance results</td>
</tr>
<tr>
<td>• ANALYZE TRAFFIC DATA</td>
</tr>
<tr>
<td>- Analyze traffic data</td>
</tr>
<tr>
<td>- HOV (Bypass) analysis</td>
</tr>
<tr>
<td>- Corridor analysis</td>
</tr>
<tr>
<td>- Analyze violation rates</td>
</tr>
<tr>
<td>- Develop recommendations and implementation plans</td>
</tr>
<tr>
<td>- Conduct before and after studies</td>
</tr>
<tr>
<td>• ADJUST FIELD ELEMENTS</td>
</tr>
<tr>
<td>- Adjust ramp meter equipment such as detector settings.</td>
</tr>
<tr>
<td>- Adjust metering parameters (rate, traffic responsive thresholds, holiday timing plans, etc.)</td>
</tr>
<tr>
<td>- Maintain log of ramp metering changes (including meter timing)</td>
</tr>
<tr>
<td>- Efforts & coordination with maint. and other internal/external offices To restore the knock-downs</td>
</tr>
<tr>
<td>• SUPPORT OPERATIONAL IMPROVEMENT</td>
</tr>
<tr>
<td>- Obtain data from ATMS, RMIS or other sources</td>
</tr>
<tr>
<td>- Develop ramp meter operational study for each freeway</td>
</tr>
<tr>
<td>- Develop plans for operational improvement</td>
</tr>
<tr>
<td>- Generate the improvement report</td>
</tr>
<tr>
<td>- Implement and evaluate the improvement</td>
</tr>
<tr>
<td>• CONDUCT YEARLY INVENTORY</td>
</tr>
<tr>
<td>- Conduct inventory of each RMS and VDS/TMS</td>
</tr>
<tr>
<td>- Report findings to TMC support and/or electrical maintenance, Headquarters</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPICAL TASKS (Headquarters):</th>
</tr>
</thead>
</table>
TASKS NOT INCLUDED:
- Activation of new, inactive or replaced ramp meters (use EA 936501, Sub Job 3RACT)
- Data collection and analysis related to Operational Investigations (use EA XXXXXX, Sub Job 3OPIN)
- Project development activities, including developing metering plans for new metered systems (use COS Project EA with appropriate WBS activity code)
- Travel time to conduct the surveillance and adjustment (use travel EA 936603 Sub Job 3RSUR)
- Surveillance or adjustment of signals other than ramp meters (use EA XXXX, Sub Job XXXXX – XXXXX)

PRODUCTION STANDARDS:

Production Unit:
- Number of production units adjusting/reviewing ramp meters

Workload Standard:
- 49 hours per production unit

Performance Measure:
- TBD

PREVIOUS EA: 936501 Ramp Metering, Sub Job 3RAMP

NOTES: None.

DATE MODIFIED: 1-31-2008
DESCRIPTION: This work segment captures production and timesheet charges for support of corridor- or system-level ramp metering system planning and new technology implementation support effort, such as simulation and algorithm and field element testing.

TYPICAL TASKS (District):
- Corridor- or system-level intelligent ramp metering strategy studies
- Street traffic signal and ramp metering operation coordination studies
- Testing of new ramp metering algorithms and new field elements
- Provide support for District System Management Plan (DSMP)
 - Provide congestion/Delay data
 - Provide field element inventory data
 - Coordination with planning/local agencies/externals
 - Develop system-wide strategies in coordination with Planning (and other Caltrans Districts/Divisions)
- Consultant service oversight
- Update Ramp Metering Development Plan
- Ramp meter annual report
- Prepare and monitor budget, resource allocations and expenditures
- Develop and monitor workload standards, performance indicators, and outcomes
- Develop and or participate in training
- Participate in statewide meetings
- Other studies

TYPICAL TASKS (Headquarters):
- Coordinate statewide activities
- Review workload data
- Report statewide activities

TASKS NOT INCLUDED:
- Activation of new, inactive or replaced ramp meters, supported by either COS EA or EA 936501 3RACT
- Surveillance and adjustment of ramp meters (use EA 936501, Sub Job 3SUR)
- The Congestion Monitoring Component of the DSMP (use EA XXXXXX, Sub Job XXXXX)
- Data collection and analysis related to Operational Investigations (use EA XXXXXXX, Sub Job XXXXXX)
- Project development activities, including construction of new ramp meters (use COS Project EA with appropriate WBS activity code)
- Travel time to complete planning and implementation of new technologies (use Travel EA 936603 and Sub Job 3RPNT)
- Surveillance or adjustment of signals (use EA XXXXX, Sub Job XXXXX)

PRODUCTION STANDARDS:

Production Unit:
- Number of production units implementing new technologies

Workload Standard:
- 15 hours per production unit

Performance Measure:
- TBD

PREVIOUS EA: 936501 Ramp Metering, Sub Job 3RAMP

NOTES: None.

DATE MODIFIED: 1-31-2008
DIVISION OF TRAFFIC OPERATIONS
OFFICE OF ITS
EA 936602
SUB JOB: 3RFAS
RAMP METER FIRMWARE AND CENTRAL APPLICATION SUPPORT

DESCRIPTION: This work segment captures production and time sheet charges for the ramp metering firmware and application support effort, such as the ramp metering firmware and central system control, monitoring, testing, calibrating, maintaining and upgrading.

TYPICAL TASKS:
Central Application Support
- Diagnose, troubleshoot, configure, optimize and maintain system.
- Provide System and Database Administration.
- Develop and maintain system documentation for future expansion, system integration and support.
- Specify, procure and coordinate equipment upgrades.
- Contract Management for hardware and software support.
- Data validation, archiving, performance testing and report generation.
- Develop and support Configuration Management plan.
- Develop operational instructions and provide training for TMC operators and support staff.
- Sustaining Engineering.
- Support MPOs, HQ and other districts.
- Develop and document system design.
- Prepare and update Policies and Guidelines
- Maintain a Statewide Inventory.
- Regional and National ITS Architecture support.
- Standardize and Develop system specifications.
- Participate in statewide system planning activities and develop/maintain a district plan.
- Coordinate with HQ-IT and other Caltrans' Divisions

Firmware Support
- Maintain and support process control firmware applications
- Add new features and updates.
- Test and troubleshoot new features.
- Coordinate statewide testing and implementation.
- Develop and provide training workshops and classes.
- Investigate new technologies and coordinate technology upgrades.
- Coordinate with other districts/HQ traffic operations

TASKS NOT INCLUDED:
- All activities captured by EA 936501 subjob 3RACT, 3RSUR, and 3RPNT
- Travel time to conduct firmware and central application support (use travel EA 936603 subjob 3RFAS)
- All activities captured by any EA other than ramp metering support

PRODUCTION STANDARDS:
Output:

Production Unit:
- Ramp metering firmware and central system support.

Workload Standard:
- 2 PY a year

Performance Measure:
- TBD

PREVIOUS EA: 936501 Ramp Metering, Sub Job 3RAMP

NOTES: None.

DATE MODIFIED: 1-31-2008
DESCRIPTION: This work segment captures time sheet charges for travel to and from the field related to ramp metering activities such as ramp meter activation, surveillance and new technology implementation. Any travel time that is longer than 15 minutes should be captured. Travel time hopping between work activities shall be captured as work time instead of travel time, unless it is longer than 15 minutes.

TYPICAL TASKS:
• Travel from origin (District Office) to the closest field site and back

TASKS NOT INCLUDED:
• Time to conduct ramp metering activities which should be charged to EA 936501 other than the traveling.

PRODUCTION STANDARDS:

Production Unit:
• Travel required to and from field site to perform ramp metering activities.

Workload Standard:
• Total annual travel hours

Performance Measure:
• TBD

PREVIOUS EA: 936501 Ramp Metering, Sub Job 3RAMP

NOTES: None.

DATE MODIFIED: 1-31-2008
DESCRIPTION: This work segment captures time sheet charges for travel to and from the field related to ramp meter firmware and central application support.

TYPICAL TASKS:
- Travel from origin (District Office) to the closest field site and back

TASKS NOT INCLUDED:
- Time to conduct ramp metering activities which should be charged to EA 936501 other than the traveling.

PRODUCTION STANDARDS:

Production Unit:
- Travel required to and from field site to perform ramp metering activities.

Workload Standard:
- Total annual travel hours

Performance Measure:
- TBD

PREVIOUS EA: 936501 Ramp Metering, Sub Job 3RAMP

NOTES: None.

DATE MODIFIED: 1-31-2008
DESCRIPTION:
This work segment captures production and time sheet charges for the ramp-metering program.

TYPICAL TASKS:
- Activating New Ramp Meter which includes:
 - Public Awareness
 - Negotiation with locals and/or Law enforcement agencies
 - Corridor data collection, monitoring, evaluation, adjustment and documentation
- Monitoring, evaluating, adjusting and documenting operation of existing ramp metering systems and operating systems.
- Operational Improvement
- Conduct Yearly inventory
- Developing and maintaining Ramp Meter Development Plan.
- Diagnosing and troubleshooting /reporting electrical problems related to ramp metering systems
- Participate in Development of District System Management Plan:
 - Coordination with external agencies
 - Develop system-wide strategies in coordination with planning and other Caltrans Districts/Divisions
 - Data Collection and Analysis
- Data collection, analysis, and negotiation with local agencies related to corridor ramp metering plans
- Respond to inquiries from elected officials, external/internal agencies and the public

TASKS NOT INCLUDED:
- Project development activities, including developing metering plans for new meter systems, preparation of PSRs, PSSRs, PRs, and PS&E for specific projects (use COS Project EA, with appropriate WBS activity code).
- Construction of ramp meters (use COS Project EA, with appropriate WBS activity code).
- Maintenance of ramp meters (Maintenance).

WORKLOAD STANDARDS:
- **Production Units** = Number of ramp meter locations inspected.
- **Workload Standard** = 50 hours per ramp meter/ramp meter location reviewed and /or adjusted.
- **Performance Indicator** = Travel time, Travel time reliability, number of incidents

Sub job Descriptions:
- **3RAMP** - All above mentioned and otherwise routine Ramp Metering activities including all training, travel and administrative activities directly related to Ramp Metering.

PREVIOUS EXPENDITURE AUTHORIZATIONS:
- 936203 Work Segment OP11 Ramp Metering

NOTES:
1. Software/Hardware development charges for this activity should include Special Designation “6SOFTWARE”.

2009 Ramp Metering Annual Report
ATTACHMENT 6