CHAPTER 80
APPLICATION OF DESIGN STANDARDS

Topic 81 - Project Development Overview

Index 81.1 - Philosophy

The Project Development process seeks to provide a degree of mobility to users of the transportation system that is in balance with other values. In the development of transportation projects, social, economic, and environmental effects must be considered fully along with technical issues so that final decisions are made in the best overall public interest. Attention should be given to such considerations as:

(a) Need to provide transportation for all users (motorists, bicyclists, transit riders, and pedestrians) of the facility and transportation modes.

(b) Attainment of community goals and objectives.

(c) Needs of low mobility and disadvantaged groups.

(d) Costs and benefits of eliminating or minimizing adverse effects on natural resources, environmental values, public services, aesthetic values, and community and individual integrity.

(e) Planning based on realistic financial estimates.

(f) The cost, ease, and safety of maintaining whatever is built.

Proper consideration of these items requires that a facility be viewed from the perspectives of the user, the nearby community, and larger statewide interests. For the user, efficient travel, mode selection, and safety are paramount concerns. At the same time, the community often is more concerned about local aesthetic, social, and economic impacts. The general population, however, tends to be interested in how successfully a project functions as part of the overall transportation system and how large a share of available capital resources it consumes. Therefore, individual projects must be selected for construction on the basis of overall system benefits as well as community goals, plans, and values.

Decisions must also emphasize the connectivity between the different transportation modes so that they work together effectively.

The goal is to increase person and goods throughput, highway mobility and safety in a manner that is compatible with, or which enhances, adjacent community values and plans.

81.2 Highway Context

The context of a highway is a critical factor when developing the purpose and need statement for a project in addition to making fundamental design decisions such as its typical cross section and when selecting the design elements and aesthetic features such as street furniture and construction materials. Designing a highway that is sensitive to, and respectful of, the surrounding context is critical for project success in the minds of the Department and our stakeholders.

A “one-size-fits-all” design philosophy is not Departmental policy. Designers need to be aware of and sensitive to land use, community context and the associated user needs of the facility. In some instances, the design criteria and standards in this manual are based on the land use contexts in which the State highway is located, for instance: large population areas and downtowns in urban areas, small rural towns and communities, suburban commercial/residential areas, and rural corridors. This approach ensures the standards are flexible, and the approach allows and encourages methods to minimize impacts on scenic, historic, archaeological, environmental, and other important resources.

Beyond their intended transportation benefits, State highways can significantly impact the civic, social and economic conditions of local communities. Designing transportation facilities that integrate the local transportation and land uses while making the design responsive to the other needs of the community support the livability of the community and are usually a complementary goal to meeting the transportation needs of the users of the State highway system.

To do this successfully, the designer needs to have an understanding of the area surrounding the
highway and the users of the highway, its function within the regional and State transportation systems, (which includes all transportation modes), and the level of access control needed. To gain this understanding, the designer must consult the Transportation Concept Reports and work with the planning division and the local agencies.

In this manual, the following concepts are used to discuss the context of a highway:

- **Place Type** - the surrounding built and natural environment;
- **Type of Highway** - the role the highway plays in terms of providing regional or interregional connectivity and local access; and,
- **Access Control** - the degree of connection or separation between the highway and the surrounding land use.

A “Main Street” design is not specific to a certain place type, but is a design philosophy to be applied on State highways that also function as community streets. A “Main Street” design serves pedestrians, bicyclists, businesses and public transit with motorized traffic operating at speeds of 20 to 40 miles per hour. See the Department’s “Main Street, California” document for more information.

81.3 Place Types

A place type describes the area’s physical environment and the land uses surrounding the State highway. The place types described below are intentionally broad. Place types should be agreed upon in partnership with all of the project stakeholders; however, there likely may be more than one place type within the limits of a project. Ultimately, the place types selected can be used to determine the appropriate application of the guidance provided in this manual. These place type definitions are independent of the Federal government definitions of urban and rural areas. See Title 23 United States Code, Section 13 for further information.

Identifying the appropriate place type(s) involves discussions with the project sponsors, ideally through the Project Development Team (PDT) process, and requires coordination with the land use planning activities associated with the on-going local and regional planning activities. Extensive community engagement throughout both the project planning and project development processes helps to formulate context sensitive project alternatives and transportation facilities that coordinate with the local land uses.

The following place types are used in this manual:

1) **Rural Areas**. Rural areas are typically sparsely settled and developed. They can consist of protected federal and State lands, agricultural lands, and may include tourist and recreational destinations. However, as rural lands transition into rural communities, they can become more developed and suburban and urban-like by providing for a mixture of housing, commercial, industrial and public institutions. For the use of this manual, rural areas have been subcategorized as Natural Corridors, Developing Corridors and City/Town Centers (Rural Main Streets).

a) **Natural Corridors**. Typically, the desire in these corridors is to preserve the natural and scenic countryside while at the same time provide transportation services to support the travel and tourism that occurs when visiting these locations. Examples of this place type are: National/State Forests and Parklands; agricultural lands with scattered farm buildings and residences; and, low density development. See Topic 109 for additional information.

b) **Developing Corridors**. State highways traveling through these lands tend to be increasingly clustered with industrial, commercial, and residential areas as they lead into a rural city or town center. These corridors can be a transition zone among the aforementioned areas. Highways associated with these locations help to deliver tourists, but they also need to support the local communities and their local economies. In addition, these highways also serve a role and should be efficient at moving people and goods between regions.

Industrial, commercial and retail buildings tend to be located separately from housing and are typically set back from the highway with parking areas placed in front. Truck traffic on these highways...
tends to serve the needs of these industrial, commercial and retail buildings; however, there will be a component of the truck traffic that is transporting their loads inter-regionally. Therefore, corridors in areas that are in transition may need to accommodate design vehicles.

(c) City or Town Centers (Rural Main Streets). State highways in this scenario are usually a conventional main street through the rural city or town, or they may be the only main street. The use of the State highway in this environment varies depending upon the individual community, as does the mix of buildings, services, businesses, and public spaces. Transit is often present and should be incorporated into the transportation system as appropriate. Transportation improvement projects on these main street highways can be more complicated and costly than similar projects in more rural settings. A balance usually needs to be maintained between the needs of the through traffic and those of the local main street environment. Thus, analyzing the pedestrian and bicyclist needs early in the development of the project and then following through on the agreements during the design of highway projects in these locations can be especially important. Accommodating the pedestrian and bicyclist needs concurrently in projects leads to greater efficiency in the use of funding.

(2) Suburban Areas. Suburban areas lead into and can completely surround urban areas. A mixture of land uses is typical in suburban areas. This land use mixture can consist of housing, retail businesses and services, and may include regional centers such as shopping malls and other similar regional destinations; which are usually associated with suburban communities (cities and towns) that can be connected with larger urban centers and cities. Assessing the needs of pedestrians, bicyclists, and transit users in concert with the vehicular needs of motorists and truck drivers is necessary during the project planning, development and design of highway projects in these locations. Accommodating all of these needs concurrently into a project leads to greater efficiency in the use of funding. For the use of this manual, suburban areas have been categorized as either Lower Density/Residential Neighborhoods or Higher Density/Regional Community Centers (Suburban Main Streets).

(a) Lower Density / Residential Neighborhoods. State highways typically do not cross through this place type. This place type usually feeds users onto the State highway system and is typically under the jurisdiction of a local entity. State highways, if they do interact with this place type, usually just connect at the edges of them where the pedestrians, bicyclists, and motor vehicle operators integrate into the highway system that includes transit facilities.

(b) Higher Density / Regional Community Centers (Suburban Main Streets). As suburban areas grow they tend to merge together into each other’s boundaries. Growth in some locations can create “Megacommunities.” While these megacommunities seem to function as individual cities, they typically have multiple distinct community centers that require highways with the capacity to serve not only each center, but the center-to-center traveler needs. These areas typically require the State highway to serve not only the originally urbanized area, but also the newer suburban areas that have been created where the housing, shopping and employment opportunities are all centered. Anticipating and accommodating growth in this place type can be a challenge. State and local governments, the business community and citizens groups, and metropolitan planning organizations all need to agree on how to meet the community needs, and at times the interregional needs of the highway.

(3) Urban and Urbanized Areas. Urban areas generally are the major population centers in the State. Large numbers of people live in
these urbanized areas where growth is expected to continue. Bicycling, transit, and walking are important transportation modes in these areas and as the facilities for pedestrians, transit and bicyclists expand in these areas, the percentage and number of travelers walking, using transit and bicycling is also likely to increase. State agencies and the local governmental entities, the business community and citizens groups, congestion management agencies and the local/regional metropolitan planning organization (MPO) need to all agree upon the concept of the transportation facilities being provided so that the community needs can be met.

Urban areas are typically high-density locations such as central business districts, downtown communities, and major activity centers. They have a full range of land uses and are associated with a large diversity of activities. For the use of place types in this manual, urban areas have been categorized as Lower Density Parklands and Residential Neighborhoods and Higher Density Urban Main Streets. Higher Density Urban Main Streets have been further characterized as Community Centers and Downtown Cores.

(a) Lower Density Parklands and Residential Neighborhoods. Large numbers of people live in these urbanized areas and bicycling, transit and walking are important transportation modes in these areas. Parklands can enhance these neighborhoods and parkland preservation is a concern, as well as, access to support travel and tourism to the parklands.

(b) High Density Urban Main Streets.

- Community Centers or Corridor. Strategically improving the design and function of the existing State highways that cross these centers is typically a concern. Providing transportation options to enhancing these urban neighborhoods that combine highway, transit, passenger rail, walking, and biking options are desirable, while they also help promote tourism and shopping.

- Downtown Cores. Similar to community centers, much of the transportation system has already been built and its footprint in the community needs to be preserved while its use may need to be reallocated. Successfully meeting the mobility needs of a major metropolitan downtown core area requires a balanced approach. Such an approach is typically used to enhance the existing transportation network’s performance by adding capacity to the highways, sidewalks, and transit stations for all of the users of the system, and/or adding such enhancement features as HOV lanes, BRT, walkable corridors, etc. Right of way is limited and costly to purchase in these locations. Delivery truck traffic that supports the downtown core businesses can also create problems.

The HEPGIS tool on the FHWA website is available to determine if the project is in an urban area. Urban areas are found on the Highway Information tab of the tool.

81.4 Type of Highway

Much of the following terminology is either already discussed in Chapter 20 or defined in Topic 62. The additional information in this portion of the manual is being provided to connect these terms with the guidance that is being provided.

(1) **Functional Classification.** One of the first steps in the highway design process is to define the function that the facility is to serve. The two major considerations in functionally classifying a highway are access and throughput. Access and mobility are inversely related; as access is increased, mobility decreases. In the AASHTO “A Policy on Geometric Design of Highways and Streets”, highways are functionally classified first as either urban or rural. The hierarchy of the functional highway system within either an urban or rural area consists of the following:
• Principal arterial - main movement (high mobility, limited access) Typically 4 lanes or more;
• Minor arterial - interconnects principal arterials (moderate mobility, limited access) Typically 2 or 3 lanes with turn lanes to benefit through traffic;
• Collectors - connects local roads to arterials (moderate mobility, moderate access) with few businesses; and,
• Local roads and streets - permits access to abutting land (high access, limited mobility).

The California Road System (CRS) maps are the official functional classification maps approved by Federal highway Administration. These maps show functional classification of roads.

(2) Interstate Highways. The interstate highway system was originally designed to be high-speed interregional connectors and it is a portion of the National Highway System (NHS). In urban and suburban areas, a large percentage of vehicular traffic is carried on the interstate highway system, rather than on the local arterials and streets.

(3) State Routes. The State highway system is described in the California Streets and Highway Code, Division 1, Chapter 2 and they are further defined in this manual in Topic 62.3, Highway Types which provides definitions for freeways, expressways, and highways.

81.5 Access Control
Index 62.3 defines a controlled access highway and a conventional highway. The level of access control plays a part in determining the design standards that are to be utilized when designing a highway. See Index 405.6 for additional access control guidance.

81.6 Design Standards and Highway Context
The design standards were initially established to increase highway mobility and development, promoting a State transportation system that operated at selected levels of service consistent with projected traffic volumes and highway classification. Design standards revolved around FHWA’s controlling criteria, evolving over time to more fully consider adjacent community values, local decisions making, and area context.

The design guidance and standards in this manual have been developed with the intent of ensuring that:
• Designers have the ability to design for all modes of travel (vehicular, bicycle, pedestrian, truck and transit); and,
• Designers have the flexibility to tailor a project to the unique circumstances that relate to it and its location, while meeting driver expectation to achieve established project goals.

Designers should balance the interregional transportation needs with the needs of the communities they pass through. The design of projects should, when possible, expand the options for biking, walking, and transit use. In planning and designing projects, the project development team should work with locals that have any livable policies as revitalizing urban centers, building local economies, and preserving historic sites and scenic country roads. The “Main Streets: Flexibility in Planning, Design and Operations” published by the Department should be consulted for additional guidance as should the FHWA publication “Flexibility in Highway Design”.

Early consultation and discussion with the Project Delivery Coordinator and the District Design Liaison during the Project Initiation Document (PID) phase is also necessary to avoid issues that may arise later in the project development process. Design Information Bulletin 78 “Design Checklist for the Development of Geometric Plans” is a tool that can be used to identify and discuss design features that may deviate from standard.

Topic 82 - Application of Standards

82.1 Highway Design Manual Standards

(1) General. The highway design criteria and policies in this manual provide a guide for the engineer to exercise sound judgment in applying standards, consistent with the above Project Development philosophy, in the design of projects. This guidance allows for flexibility in applying design standards and documenting design decisions that take the context of the
project location into consideration; which enables the designer to tailor the design, as appropriate, for the specific circumstances while maintaining safety.

The design standards used for any project should equal or exceed the minimum given in the Manual to the maximum extent feasible, taking into account costs (initial and life-cycle), traffic volumes, traffic and safety benefits, project goals, travel modes, facility type, right of way, socio-economic and environmental impacts, maintenance, etc. Because design standards have evolved over many years, many existing highways do not conform fully to current standards. It is not intended that current manual standards be applied retroactively to all existing State highways; such is neither warranted nor economically feasible. However, when warranted, upgrading of existing roadway features such as guardrail, lighting, superelevation, roadbed width, etc., should be considered, either as independent projects or as part of larger projects. A record of the decision not to upgrade existing non-standard design features are to be provided through the process described in Index 82.2.

This manual does not address temporary construction features. It is recognized that the construction conditions encountered are so diverse and variable that it is not practical to set geometric criteria. Guidance for use of traffic control devices for temporary construction zones can be found in Part 6 – Temporary Traffic Control of the California Manual on Uniform Traffic Control Devices (California MUTCD). Guidance for the engineering of pavements in temporary construction zones is available in Index 612.6. In this manual, design standards and guidance are described as follows (see Index 82.4 for other procedural requirements):

(2) Absolute Requirements. Design guidance related to requirements of law, policy, or statute that do not allow exception are phrased by the use of “is required”, “without exception”, “are to be”, “is to be”, “in no event”, or a combination of these terms.

(3) Controlling Criteria. The FHWA has designated the following ten controlling criteria for projects on the National Highway System (NHS) as comprehensive design standards which cover a multitude of design characteristics, allowing flexibility in application:

- Design Speed
- Lane Width
- Shoulder Width
- Horizontal Curve Radius
- Superelevation Rate
- Stopping Sight Distance
- Maximum Grade
- Cross Slope
- Vertical Clearance
- Design Loading Structural Capacity (non-geometric)

Design loading structural capacity criteria applies to all NHS facility types. See the Technical Publications – DES Manuals for further information.

The remaining geometric criteria listed above are applicable to the NHS as follows: (1) On high-speed roadways (Interstate highways, other freeways, and roadways with design speeds of greater than or equal to 50 mph), all the geometric criteria apply. The stopping sight distance criteria applies to horizontal alignments and vertical alignments except for sag vertical curves; and (2) On low-speed roadways (non-freeways with design speeds less than 50 mph), only the design speed criteria applies.

The two speed categories stated above that FHWA designates match the high- and low-speed definitions in Index 62.8(13) when considering that design speed and posted speed are set in 5 mph increments.

The design standards related to the geometric criteria are identified in Table 82.1A among other important geometric standards in this manual regardless of the design speed of the
roadway and whether or not the roadway is part of the NHS.

(4) Standards. Design standards are those considered most essential to achievement of overall design objectives. Many pertain to requirements of law or regulations such as those embodied in the FHWA's ten controlling criteria (see Index 82.1(3)). In addition to the FHWA's ten controlling criteria are “Caltrans-only” standards that have been identified by Caltrans as most essential pertaining to requirements of State law, policy or objectives. The design standards are shown in this manual as either **Boldface** type (listed in Table 82.1A) or *Underlined* type (listed in Table 82.1B) to indicate the approval authority for nonstandard design according to Index 82.2.

(5) Decision Requiring Other Approvals. There are design criteria decisions that are not bold or underlined text which require specific approvals from individuals to whom such decisions have been delegated. These individuals include, but are not limited to, District Directors, Project Delivery Coordinators or their combination as specified in this manual. These decisions should be documented as the individual approving desires.

(6) Permissive Standards. All guidance other than absolute requirements, standards, or decisions requiring other approvals, whether indicated by the use of “should”, “may”, or “can” are permissive.

(7) Other Caltrans Publications. In addition to the design standards in this manual, see Index 82.7 for general information on the Department’s traffic engineering policy, standards, practices and study warrants.

Caution must be exercised when using other Caltrans publications which provide guidelines for the design of highway facilities, such as HOV lanes. These publications do not contain design standards; moreover, the designs suggested in these publications do not always meet Highway Design Manual Standards. Therefore, all other Caltrans publications must be used in conjunction with this manual.

(9) Transportation Facilities Under the Jurisdiction of Others. Generally, if the local road or street is a Federal-aid route it should conform to AASHTO standards; see Topic 308 – Cross Sections for Roads Under Other Jurisdictions. Occasionally though, projects on the State highway system involve work on adjacent transportation facilities that are under the jurisdiction of cities and counties. Some of these local jurisdictions may have published standards for facilities that they own and operate. The guidance in this manual may be applicable, but it was prepared for use on the State highway system. Thus, when project work impacts adjacent transportation facilities that are under the jurisdiction of cities and counties, local standards and AASHTO guidance must be used in conjunction with this manual to encourage designs that are sensitive to the local context and community values. Agreeing on which standards will be used needs to be decided early in the project delivery process and on a project by project basis.

82.2 Approvals for Nonstandard Design

(1) **Boldface Standards.** Design features or elements which deviate from standards indicated in boldface type require the approval of the Chief, Division of Design. This approval authority has been delegated to the District Directors for projects on conventional highways and expressways, and for certain other facilities in accordance with the current District Design Delegation Agreement. Approval authority for design standards indicated in boldface type on all other facilities has been delegated to the Project Delivery Coordinators except as noted in Table 82.1A where: (a) the standard has been delegated to the District Director, (b) the standards in Chapters 600 through 670 requires the approval of the State Pavement Engineer, and (c) specifically delegated to the District Director
per the current District Design Delegation Agreements and may involve coordination with the Project Delivery Coordinator. See the HQ Division of Design website for the most current District Design Delegation Agreements.

The current procedures and documentation requirements pertaining to the approval process for deviation from design standards indicated in boldface type as well as the dispute resolution process are contained in Chapter 21 of the Project Development Procedures Manual (PDPM).

Design exception approval must be obtained pursuant to the instructions in PDPM Chapter 9.

The Moving Ahead for Progress in the 21st Century Act (MAP-21) of 2012 allowed significant delegation to the states by FHWA to approve and administer portions of the Federal-Aid Transportation Program. MAP-21 further allowed delegation to the State DOT’s and in response to this a Stewardship and Oversight Agreement (SOA) document between FHWA and Caltrans was signed. The SOA outlines the process to determine specific project related delegation to Caltrans. In general, the SOA delegates approval of deviations from design standards related to the ten controlling criteria on all Interstate projects whether FHWA has oversight responsibilities or not to Caltrans. Exceptions to this delegation would be for projects of FHWA Division Interest, which are determined on a project by project basis. See Index 43.2 for additional information. Consultation with FHWA should be sought as early in the project development process as possible. However, formal FHWA approval, if applicable, shall not be requested until the appropriate Caltrans representative has approved the design decision document.

FHWA approval is not required for deviations from "Caltrans-only" standards. Table 82.1.A identifies these “Caltrans-only” standards. Where FHWA approval of a deviation from a design standard is required, only cite the standards that are identified by the FHWA as ten controlling criteria, see Index 82.1(3).

For local facilities crossing the State right of way see Index 308.1.

(2) Underlined Standards. The authority to approve deviations from standards indicated in underlined type has been delegated to the District Directors. A list of these standards is provided in Table 82.1B. Proposals for deviations from these standards can be discussed with the District Design Liaison during development of the approval documentation. The responsibility for the establishment of procedures for review, documentation, and long term retention of approved design decisions from these standards has also been delegated to the District Directors.

(3) Decisions Requiring Other Approvals. The authority to approve specific decisions identified in the text are also listed in Table 82.1.C. The form of documentation or other instructions are provided as directed by the approval authority.

(4) Permissive Standards. A record of deviation from permissive standards and the disclosure of the engineering decisions in support of the deviation should be documented and placed in the project file. This principle of documentation also applies when following other Division of Design guidance, e.g., Design Information Bulletins and Design Memos. The form of documentation and other instructions on long term retention of these engineering decisions are to be provided as directed by the District approval authority.

(5) Local Agencies. Cities and counties are responsible for the design decisions they make on transportation facilities they own and operate. The responsible local entity is delegated authority to exercise their engineering judgment when utilizing the applicable design guidance and standards, including those for bicycle facilities established by Caltrans pursuant to the Streets and Highways Code Sections 890.6 and 890.8 and published in this manual. For further information on this delegation and the delegation process, see the Caltrans Local Assistance Procedures Manual, Chapter 11.
82.3 FHWA and AASHTO Standards and Policies

The standards in this manual generally conform to the standards and policies set forth in the AASHTO publications, "A Policy on Geometric Design of Highways and Streets" (2011) and "A Policy on Design Standards-Interstate System" (2005). A third AASHTO publication, the latest edition of the "Roadside Design Guide", focuses on creating safer roadsides. These three documents, along with other AASHTO and FHWA publications cited in 23 CFR Ch 1, Part 625, Appendix A, contain most of the current AASHTO policies and standards, and are approved references to be used in conjunction with this manual.

AASHTO policies and standards, which are established as nationwide standards, do not always satisfy California conditions. When standards differ, the instructions in this manual govern, except when necessary for FHWA project approval (Index 108.7, Coordination with the FHWA).

The use of publications and manuals that are developed by organizations other than the FHWA and AASHTO can also provide additional guidance not covered in this manual. The use of such guidance coupled with sound engineering judgment is to be exercised in collaboration with the guidance in this manual.

82.4 Mandatory Procedural Requirements

Required procedures and policies for which Caltrans is responsible, relating to project clearances, permits, licenses, required tests, documentation, value engineering, etc., are indicated by use of the word "must". Procedures and actions to be performed by others (subject to notification by Caltrans), or statements of fact are indicated by the word "will".

82.5 Effective Date for Implementing Revisions to Design Standards

Revisions to design standards will be issued with a stated effective date. It is understood that all projects will be designed to current standards unless a design decision has been approved in accordance with Index 82.2 or otherwise noted by separate Design Memorandum.

On projects where the project development process has started, the following conditions on the effective date of the new or revised standards will be applied:

- For all projects where the PS&E has not been finalized, the new or revised design standards shall be incorporated unless this would impose a significant delay in the project schedule or a significant increase in the project engineering or construction costs. The Project Delivery Coordinator or individual delegated authority must make the final determination on whether to apply the new or previous design standards on a project-by-project basis for roadway features.

- For all projects where the PS&E has been submitted to Headquarters Office Engineer for advertising or the project is under construction, the new or revised standards will be incorporated only if they are identified in the Change Transmittal as requiring special implementation.

For locally-sponsored projects, the Oversight Engineer must inform the funding sponsor within 15 working days of the effective date of any changes in design standards as defined in Index 82.2.

82.6 Design Information Bulletins and Other Caltrans Publications

In addition to the design standards in this manual, Design Information Bulletins (DIBs) establish policies and procedures for the various design specialties of the Department that are in the Division of Design. Some DIBs may eventually become part of this manual, while others are written with the intention to remain as design guidance in the DIB format. References to DIBs are made in this manual by the “base” DIB number only and considered to be the latest version available on the Department Design website. See the Department Design website for further information concerning DIB numbering protocol and postings.

Caution must be exercised when using other Caltrans publications, which provide guidelines for the design of highway facilities, such as HOV lanes. These publications do not contain design standards; moreover, the designs suggested in these publications do not always meet Highway Design Manual Standards. Therefore, all other Caltrans publications must be used in conjunction with this manual.
The Division of Traffic Operations maintains engineering policy, standards, practices and study warrants to direct and guide decision-making on a broad range of design and traffic engineering features and systems, which are provided to meet the site-specific safety and mobility needs of all highway users.

The infrastructure within a highway or freeway corridor, segment, intersection or interchange is not “complete” for drivers, bicyclists and pedestrians unless it includes the appropriate traffic control devices; traffic safety systems; operational features or strategies; and traffic management elements and or systems. The presence or absence of these traffic elements and systems can have a profound effect on safety and operational performance. As such, they are commonly employed to remediate performance deficiencies and to optimize the overall performance of the “built” highway system.

For additional information visit the Division of Traffic Operations website at http://www.dot.ca.gov/trafficops/
Table 82.1A
Boldface Standards

<table>
<thead>
<tr>
<th>CHAPTER 100</th>
<th>BASIC DESIGN POLICIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic 101</td>
<td>Design Speed</td>
</tr>
<tr>
<td>Index 101.1</td>
<td>Technical Reductions of Design Speed</td>
</tr>
<tr>
<td></td>
<td>Selection of Design Speed - Local Facilities</td>
</tr>
<tr>
<td></td>
<td>Selection of Design Speed - Local Facilities - with Connections to State Facilities</td>
</tr>
<tr>
<td></td>
<td>Design Speed Standards</td>
</tr>
</tbody>
</table>

| Topic 104 | Control of Access |
| Index 104.4| Protection of Access Rights(1) |

<table>
<thead>
<tr>
<th>CHAPTER 200</th>
<th>GEOMETRIC DESIGN AND STRUCTURE STANDARDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic 201</td>
<td>Sight Distance</td>
</tr>
<tr>
<td>Index 201.1</td>
<td>Stopping Sight Distance Standards</td>
</tr>
</tbody>
</table>

Topic 202	Superelevation
Index 202.2	Standards for Superelevation
	Superelevation on City Streets and County Roads

Topic 203	Horizontal Alignment
Index 203.1	Horizontal Alignment - Local Facilities
	Horizontal Alignment and Stopping Sight Distance
	Standards for Curvature – Minimum Radius
	Standards for Curvature – Lateral Clearance

Topic 204	Grade
Index 204.1	Standards for Grade - Local Facilities
	Standards for Grade
	Vertical Falsework Clearances(1)

| Topic 205 | Road Connections and Driveways |
| Index 205.1 | Sight Distance Requirements for Access Openings on Expressways |

Topic 208	Bridges, Grade Separation Structures, and Structure Approach Embankment
Index 208.1	Bridge Width(1)
208.4	Bridge Sidewalk (Width)(1)
208.10	Barriers on Structures with Sidewalks(1)
208.10	Bridge Approach Railings(1)

<table>
<thead>
<tr>
<th>CHAPTER 300</th>
<th>GEOMETRIC CROSS SECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic 301</td>
<td>Traveled Way Standards</td>
</tr>
<tr>
<td>Index 301.1</td>
<td>Lane Width</td>
</tr>
<tr>
<td>301.2</td>
<td>Class II Bikeway Lane Width(1)</td>
</tr>
<tr>
<td>301.3</td>
<td>Cross Slopes – New Construction</td>
</tr>
<tr>
<td>301.3</td>
<td>Cross Slopes – Resurfacings or widening</td>
</tr>
<tr>
<td>301.3</td>
<td>Cross Slopes – Unpaved Roadway</td>
</tr>
<tr>
<td>301.3</td>
<td>Algebraic Differences in Cross Slopes</td>
</tr>
</tbody>
</table>

Topic 302	Shoulder Standards
Index 302.1	Shoulder Width
302.1	Shoulder Width with Rumble Strip
302.2	Shoulder Cross Slopes - Bridge
302.2	Shoulder Cross Slopes – Left
302.2	Shoulder Cross Slopes – Paved Median
302.2	Shoulder Cross Slopes - Right

Topic 305	Median Standards
Index 305.1	Median Width – Conventional Highways(1)
305.1	Median Width – Freeways and Expressways(1)

Design exception approval of Boldface Standards for nonfreeway facilities, including local streets and roads at interchanges, has been delegated to the Districts. In addition, some District delegations included Boldface Standards applicable to freeways. See your District Design Delegation Agreement for specific delegation.

(1) Caltrans-only Boldface Standard.

(2) Authority to approve deviations from this Boldface Standard is delegated to the State Pavement Engineer.
Table 82.1A
Boldface Standards (Cont.)

Topic 307 Cross Sections for State Highways Topic 310 Frontage Roads
Index 307.2 Shoulder Standards for Two-lane Index 310.1 Frontage Road Width Cross Section
Cross Sections for New Construction

Topic 308 Cross Sections for Roads Under Other Jurisdictions
Index 308.1 Cross Section Standards for City Streets and County Roads without Connection to State Facilities

308.1 Minimum Width of 2-lane Overcrossing Structures for City Streets and County Roads without Connection to State Facilities\(^{(1)}\)

308.1 Cross Section Standards for City Streets and County Roads with Connection to State Facilities

308.1 Two-Lane Local Road Lane Width for City Streets and County Roads within Interchange

308.1 Multi-Lane Local Road Lane Width for City Streets and County Roads within Interchange

308.1 Shoulder Width Standards for City Streets and County Roads Lateral Obstructions

308.1 Shoulder Width Standards for City Streets and County Roads with Curbs and Gutter

308.1 Minimum Width for 2-lane Overcrossing at Interchanges\(^{(1)}\)

Topic 309 Clearances
Index 309.1 Horizontal Clearances and Stopping Sight Distance

309.1 Horizontal Clearances\(^{(1)}\)

309.2 Vertical Clearances - Major Structures

309.2 Vertical Clearances - Minor Structures

309.2 Vertical Clearances - Rural and Single Interstate Routing System

309.3 Horizontal Tunnel Clearances\(^{(1)}\)

309.3 Vertical Tunnel Clearances

309.4 Lateral Clearance for Elevated Structures\(^{(1)}\)

309.5 Structures Across or Adjacent to Railroads - Vertical Clearance

CHAPTER 400 INTERSECTIONS AT GRADE

Topic 404 Design Vehicles
Index 404.2 Design Vehicle–Traveled Way\(^{(1)}\)

Topic 405 Intersection Design Standards
Index 405.2 Left-turn Channelization - Lane Width

405.2 Left-turn Channelization - Lane Width – Restricted Urban

405.2 Two-way Left-turn Lane Width

405.3 Right-turn Channelization – Lane and Shoulder Width

CHAPTER 500 TRAFFIC INTERCHANGES

Topic 501 General
Index 501.3 Interchange Spacing\(^{(1)}\)

Topic 502 Interchange Types
Index 502.2 Isolated Off-Ramps and Partial Interchanges\(^{(1)}\)

502.3 Route Continuity\(^{(1)}\)

Topic 504 Interchange Design Standards
Index 504.2 Location of Freeway Entrances & Exits\(^{(1)}\)

504.2 Ramp Deceleration Lane and “DL” Distance\(^{(1)}\)

Design exception approval of Boldface Standards for nonfreeway facilities, including local streets and roads at interchanges, has been delegated to the Districts. In addition, some District delegations included Boldface Standards applicable to freeways. See your District Design Delegation Agreement for specific delegation.

(1) Caltrans-only Boldface Standard.

(2) Authority to approve deviations from this Boldface Standard is delegated to the State Pavement Engineer.
Table 82.1A
Boldface Standards (Cont.)

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>504.3</td>
<td>Ramp Lane Width</td>
</tr>
<tr>
<td>504.3</td>
<td>Ramp Shoulder Width</td>
</tr>
<tr>
<td>504.3</td>
<td>Ramp Lane Drop Taper Past the Limit Line(1)</td>
</tr>
<tr>
<td>504.3</td>
<td>Metered Multi-Lane Ramp Lane Drop Taper Past the Limit Line(1)</td>
</tr>
<tr>
<td>504.3</td>
<td>Ramp Meters on Connector Ramps(1)</td>
</tr>
<tr>
<td>504.3</td>
<td>Metered Connector Lane Drop(1)</td>
</tr>
<tr>
<td>504.3</td>
<td>Distance Between Ramp Intersection and Local Road Intersection(1)</td>
</tr>
<tr>
<td>504.4</td>
<td>Freeway-to-freeway Connections – Shoulder Width – 1 and 2-Lane</td>
</tr>
<tr>
<td>504.4</td>
<td>Freeway-to-freeway Connections – Shoulder Width – 3-Lane</td>
</tr>
<tr>
<td>504.7</td>
<td>Minimum Weave Length(1)</td>
</tr>
<tr>
<td>504.8</td>
<td>Access Control along Ramps(1)</td>
</tr>
<tr>
<td>504.8</td>
<td>Access Control at Ramp Terminal(1)</td>
</tr>
<tr>
<td>504.8</td>
<td>Access Rights Opposite Ramp Terminals(1)</td>
</tr>
</tbody>
</table>

CHAPTER 610 PAVEMENT ENGINEERING CONSIDERATIONS

<table>
<thead>
<tr>
<th>Topic 612</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>612.2</td>
<td>Design Life for New Construction and Reconstruction(1),(2)</td>
</tr>
<tr>
<td>612.3</td>
<td>Pavement Design Life for Widening Projects(1),(2)</td>
</tr>
<tr>
<td>612.5</td>
<td>Pavement Design Life for Pavement Roadway Rehabilitation Projects(1),(2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topic 613</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>613.5</td>
<td>Shoulder Traffic Loading Considerations(1),(2)</td>
</tr>
<tr>
<td>613.5</td>
<td>Depth of Shoulder Pavement Structural Section(1),(2)</td>
</tr>
</tbody>
</table>

CHAPTER 620 RIGID PAVEMENT

<table>
<thead>
<tr>
<th>Topic 622</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>622.5</td>
<td>Transitions and Terminal Anchors for CRCP(1),(2)</td>
</tr>
<tr>
<td>622.7</td>
<td>Dowel Bars and Tie Bars(1)(2)</td>
</tr>
</tbody>
</table>

Topic 625 Engineering Procedures for Pavement Rehabilitation

- **Index 625.2** Limits of Paving on Resurfacing Projects(1),(2)

Topic 626 Other Considerations

- **Index 626.2** Tied Rigid Shoulder Standards(1),(2)

CHAPTER 630 FLEXIBLE PAVEMENT

<table>
<thead>
<tr>
<th>Topic 635</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>635.2</td>
<td>Limits of Paving on Resurfacing Projects(1),(2)</td>
</tr>
</tbody>
</table>

CHAPTER 700 MISCELLANEOUS STANDARDS

<table>
<thead>
<tr>
<th>Topic 701</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>701.2</td>
<td>Fences on Freeways and Expressways(1)</td>
</tr>
</tbody>
</table>

CHAPTER 900 LANDSCAPE ARCHITECTURE

<table>
<thead>
<tr>
<th>Topic 902</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>902.3</td>
<td>Large Tree Setback Requirements on Conventional Highways – Median with Curb(1)</td>
</tr>
<tr>
<td>902.3</td>
<td>Large Tree Setback Requirements on Conventional Highways – Median with Barrier(1)</td>
</tr>
<tr>
<td>902.3</td>
<td>The Planting of Trees From Manholes on Conventional Highway Medians(1)</td>
</tr>
</tbody>
</table>

Design exception approval of Boldface Standards for nonfreeway facilities, including local streets and roads at interchanges, has been delegated to the Districts. In addition, some District delegations included Boldface Standards applicable to freeways. See your District Design Delegation Agreement for specific delegation.

(1) Caltrans-only Boldface Standard.

(2) Authority to approve deviations from this Boldface Standard is delegated to the State Pavement Engineer.
Table 82.1A
Boldface Standards (Cont.)

<table>
<thead>
<tr>
<th>902.3</th>
<th>The Planting of Trees From the Longitudinal End of Conventional Highway Medians(1)</th>
</tr>
</thead>
</table>

Topic 903
Safety Roadside Rest Area Design Standards and Guidelines

| Index 903.5 | Rest Area Ramp Design |

Topic 904
Vista Point Standards and Guidelines

| Index 904.3 | Vista Point Ramp Design |

CHAPTER 1000
BICYCLE TRANSPORTATION DESIGN

Topic 1003
Design Criteria

<table>
<thead>
<tr>
<th>Index 1003.1</th>
<th>Class I Bikeway Widths(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1003.1</td>
<td>Class I Bikeway Shoulder Width(1)</td>
</tr>
<tr>
<td>1003.1</td>
<td>Class I Bikeway Horizontal Clearance(1)</td>
</tr>
<tr>
<td>1003.1</td>
<td>Class I Bikeway Structure Width(1)</td>
</tr>
<tr>
<td>1003.1</td>
<td>Class I Bikeway Vertical Clearance(1)</td>
</tr>
<tr>
<td>1003.1</td>
<td>Class I Bikeway Minimum Separation From Edge of Traveled Way(1)</td>
</tr>
<tr>
<td>1003.1</td>
<td>Physical Barriers Adjacent to Class I Bikeways(1)</td>
</tr>
<tr>
<td>1003.1</td>
<td>Class I Bikeway in Freeway Medians(1)</td>
</tr>
<tr>
<td>1003.1</td>
<td>Class I Bikeway Design Speeds(1)</td>
</tr>
<tr>
<td>1003.1</td>
<td>Stopping Sight Distance</td>
</tr>
<tr>
<td>1003.1</td>
<td>Bikeway Shoulder Slope(1)</td>
</tr>
<tr>
<td>1003.1</td>
<td>Obstacle Posts or Bollards in Bicycle Paths(1)</td>
</tr>
</tbody>
</table>

CHAPTER 1100
HIGHWAY TRAFFIC NOISE ABATEMENT

Topic 1102
Design Criteria

<table>
<thead>
<tr>
<th>Index 1102.2</th>
<th>Horizontal Clearance to Noise Barrier(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1102.2</td>
<td>Noise Barrier on Safety Shape Concrete Barrier(1)</td>
</tr>
</tbody>
</table>

Design exception approval of Boldface Standards for non-freeway facilities, including local streets and roads at interchanges, has been delegated to the Districts. In addition, some District delegations included Boldface Standards applicable to freeways. See your District Design Delegation Agreement for specific delegation.

(1) Caltrans-only Boldface Standard.

(2) Authority to approve deviations from this Boldface Standard is delegated to the State Pavement Engineer.
Table 82.1B
Underlined Standards

<table>
<thead>
<tr>
<th>CHAPTER 100</th>
<th>BASIC DESIGN POLICIES</th>
<th>Topic 203</th>
<th>Horizontal Alignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic 101</td>
<td>Design Speed</td>
<td>Index 203.1</td>
<td>Horizontal Alignment – Local Facilities</td>
</tr>
<tr>
<td>Index 101.1</td>
<td>Selection of Design Speed – Local Facilities</td>
<td>203.3</td>
<td>Alignment Consistency and Design Speed</td>
</tr>
<tr>
<td>101.1</td>
<td>Selection of Design Speed – Local Facilities – with Connections to State Facilities</td>
<td>203.5</td>
<td>Compound Curves</td>
</tr>
<tr>
<td>101.2</td>
<td>Design Speed Standards</td>
<td>203.5</td>
<td>Compound Curves on One-Way Roads</td>
</tr>
<tr>
<td>Topic 104</td>
<td>Control of Access</td>
<td>203.6</td>
<td>Reversing Curves – Transition Length</td>
</tr>
<tr>
<td>Index 104.5</td>
<td>Relation of Access Opening to Median Opening</td>
<td>203.6</td>
<td>Reversing Curves – Transition Rate</td>
</tr>
<tr>
<td>Topic 105</td>
<td>Pedestrian Facilities</td>
<td>Index 204.1</td>
<td>Standards for Grade – Local Facilities</td>
</tr>
<tr>
<td>Index 105.2</td>
<td>Minimum Sidewalk Width – Next to a Building</td>
<td>204.3</td>
<td>Standards for Grade</td>
</tr>
<tr>
<td>105.2</td>
<td>Minimum Sidewalk Width – Not Next to a Building</td>
<td>204.3</td>
<td>Ramp Grades</td>
</tr>
<tr>
<td>105.5</td>
<td>Curb Ramp for each Crossing</td>
<td>204.4</td>
<td>Vertical Curves – 2 Percent and Greater</td>
</tr>
<tr>
<td>Topic 107</td>
<td>Roadside Installations</td>
<td>204.4</td>
<td>Vertical Curves – Less Than 2 Percent</td>
</tr>
<tr>
<td>Index 107.1</td>
<td>Standards for Roadway Connections</td>
<td>204.5</td>
<td>Decision Sight Distance at Climbing Lane Drops</td>
</tr>
<tr>
<td>107.1</td>
<td>Number of Exits and Entrances Allowed at Roadway Connections</td>
<td>204.6</td>
<td>Horizontal and Vertical Curves Consistency in Mountainous or Rolling Terrain</td>
</tr>
<tr>
<td>CHAPTER 200</td>
<td>GEOMETRIC DESIGN AND STRUCTURE STANDARDS</td>
<td>Topic 205</td>
<td>Road Connections and Driveways</td>
</tr>
<tr>
<td>Topic 201</td>
<td>Sight Distance</td>
<td>Index 205.1</td>
<td>Access Opening Spacing on Expressways</td>
</tr>
<tr>
<td>Index 201.3</td>
<td>Stopping Sight Distance on Sustained Grades</td>
<td>205.1</td>
<td>Access Opening Spacing on Expressways – Location</td>
</tr>
<tr>
<td>201.7</td>
<td>Decision Sight Distance</td>
<td>Topic 206</td>
<td>Pavement Transitions</td>
</tr>
<tr>
<td>Topic 202</td>
<td>Superelevation</td>
<td>Index 206.3</td>
<td>Lane Drop Transitions</td>
</tr>
<tr>
<td>Index 202.2</td>
<td>Superelevation on Same Plane for Rural Two-lane Roads</td>
<td>206.3</td>
<td>Lane Width Reductions</td>
</tr>
<tr>
<td>202.5</td>
<td>Superelevation Transition</td>
<td>Topic 208</td>
<td>Bridges, Grade Separation Structures, and Structure Approach Embankment</td>
</tr>
<tr>
<td>202.5</td>
<td>Superelevation Runoff</td>
<td>Index 208.3</td>
<td>Decking of Bridge Medians</td>
</tr>
<tr>
<td>202.5</td>
<td>Superelevation in Restrictive Situations</td>
<td>208.6</td>
<td>Minimum width of Walkway of Pedestrian Overcrossings</td>
</tr>
<tr>
<td>202.6</td>
<td>Superelevation of Compound Curves</td>
<td>208.6</td>
<td>Minimum Vertical Clearance of Pedestrian Undercrossings</td>
</tr>
<tr>
<td>202.7</td>
<td>Superelevation on City Streets and County Roads</td>
<td>208.6</td>
<td>Class I Bikeways Exclusive Use</td>
</tr>
</tbody>
</table>
Table 82.1B
Underlined Standards (Cont.)

<table>
<thead>
<tr>
<th>Topic 208.10</th>
<th>Protective Screening on Overcrossings</th>
<th>309.5 Structures Across or Adjacent to Railroads – Vertical Clearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic 208.10</td>
<td>Bicycle Railing Locations</td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER 300 GEOMETRIC CROSS SECTION

<table>
<thead>
<tr>
<th>Topic 303.1</th>
<th>Use of Curb with Posted Speeds of 40 mph and Greater</th>
<th>309.1 Horizontal Clearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic 303.3</td>
<td>Dike Selection</td>
<td>309.1 Safety Shaped Barriers at Retaining, Pier, or Abutment Walls</td>
</tr>
<tr>
<td>Topic 303.4</td>
<td>Bulbout Design</td>
<td>309.1 High Speed Rail Clearance</td>
</tr>
</tbody>
</table>

CHAPTER 400 INTERSECTIONS AT GRADE

<table>
<thead>
<tr>
<th>Topic 403.3</th>
<th>Angle of Intersection</th>
<th>404.1 STAA Design Vehicles on the National Network, Terminal Access, California Legal, and Advisory routes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic 403.6</td>
<td>Optional Right-Turn Lanes</td>
<td>404.1 California Legal Design Vehicle Accommodation</td>
</tr>
<tr>
<td>Topic 403.6</td>
<td>Right-Turn-Only Lane and Bike Lane</td>
<td>404.1 45-Foot Bus and Motorhome Design Vehicle</td>
</tr>
</tbody>
</table>

Topic 405 Intersection Design Standards

<table>
<thead>
<tr>
<th>Topic 405.1</th>
<th>Corner Sight Distance – Driver Set Back</th>
<th>404.1 Corner Sight Distance at Signalized Public Road Intersections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic 405.1</td>
<td>Corner Sight Distance Equation and Design Vehicle Rear Wheel Location</td>
<td>404.1 Corner Sight Distance at Unsignalized Public Road Intersections</td>
</tr>
<tr>
<td>Topic 405.1</td>
<td>Corner Sight Distance – Private Road Intersections</td>
<td>404.1 Decision Sight Distance at Intersections</td>
</tr>
<tr>
<td>Topic 405.1</td>
<td>Curve Radius for Free Right-Turn with Pedestrian Crossing</td>
<td>404.1 Pedestrian Refuge by Area Place Type</td>
</tr>
<tr>
<td>Topic 405.5</td>
<td>Emergency Openings and Sight Distance</td>
<td>404.1 Emergency Openings and Sight Distance</td>
</tr>
</tbody>
</table>
Table 82.1B
Underlined Standards (Cont.)

<table>
<thead>
<tr>
<th>Topic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>405.5</td>
<td>Median Opening Locations</td>
</tr>
<tr>
<td>405.10</td>
<td>Entry Speeds – Single and Multilane Roundabouts</td>
</tr>
</tbody>
</table>

CHAPTER 500
TRAFFIC INTERCHANGES

<table>
<thead>
<tr>
<th>Index</th>
<th>Topic 504</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>504.2</td>
<td>Ramp Entrance Design Standards</td>
<td></td>
</tr>
<tr>
<td>504.2</td>
<td>Collector-Distributor Deceleration Lane and “DL” Distance</td>
<td></td>
</tr>
<tr>
<td>504.2</td>
<td>Paved Width at Gore</td>
<td></td>
</tr>
<tr>
<td>504.2</td>
<td>Contrast Surface Treatment</td>
<td></td>
</tr>
<tr>
<td>504.2</td>
<td>Auxiliary Lanes</td>
<td></td>
</tr>
<tr>
<td>504.2</td>
<td>Freeway Exit Nose Design Speed</td>
<td></td>
</tr>
<tr>
<td>504.2</td>
<td>Decision Sight Distance at Exits and Branch Connections</td>
<td></td>
</tr>
<tr>
<td>504.2</td>
<td>Design Speed and Alignment Consistency at Inlet Nose</td>
<td></td>
</tr>
<tr>
<td>504.2</td>
<td>Freeway Ramp Profile Grades</td>
<td></td>
</tr>
<tr>
<td>504.2</td>
<td>Differences in Pavement Cross Slopes at Freeway Entrances and Exits</td>
<td></td>
</tr>
<tr>
<td>504.2</td>
<td>Vertical Curves Beyond Freeway Exit Nose</td>
<td></td>
</tr>
<tr>
<td>504.2</td>
<td>Crest Vertical Curves at Freeway Exit Terminal</td>
<td></td>
</tr>
<tr>
<td>504.2</td>
<td>Sag Vertical Curves at Freeway Exit Terminal</td>
<td></td>
</tr>
<tr>
<td>504.2</td>
<td>Ascending Entrance Ramps with Sustained Upgrades</td>
<td></td>
</tr>
<tr>
<td>504.3</td>
<td>Ramp Terminus Design Speed</td>
<td></td>
</tr>
<tr>
<td>504.3</td>
<td>Ramp Lane Drop Taper At 6-foot Separation Point</td>
<td></td>
</tr>
<tr>
<td>504.3</td>
<td>Ramp Lane Drop Location</td>
<td></td>
</tr>
<tr>
<td>504.3</td>
<td>Metered Entrance Ramps (1 GP + 1 HOV Preferential Lane) Auxiliary Lane</td>
<td></td>
</tr>
<tr>
<td>504.3</td>
<td>Metered Entrance Ramps (1 GP + 1 HOV Preferential Lane) Auxiliary Lane on Sustained Grades and Certain Truck Volumes</td>
<td></td>
</tr>
<tr>
<td>504.3</td>
<td>HOV Preferential Lane Restrictive Condition Auxiliary Lane</td>
<td></td>
</tr>
<tr>
<td>504.3</td>
<td>Metered Multi-Lane Entrance Ramps Lane Drop</td>
<td></td>
</tr>
<tr>
<td>504.3</td>
<td>Metered Multi-Lane Entrance Ramps Auxiliary Lane</td>
<td></td>
</tr>
<tr>
<td>504.3</td>
<td>Metered Multi-Lane Entrance Ramps Auxiliary Lane on Sustained Grades and Certain Truck Volumes</td>
<td></td>
</tr>
<tr>
<td>504.3</td>
<td>Metered Freeway-to-Freeway Connector Lane Drops</td>
<td></td>
</tr>
<tr>
<td>504.3</td>
<td>Ramp Terminals and Grade</td>
<td></td>
</tr>
<tr>
<td>504.3</td>
<td>Ramp Terminals and Sight Distance</td>
<td></td>
</tr>
<tr>
<td>504.3</td>
<td>Distance between Ramp Intersection and Local Road Intersection</td>
<td></td>
</tr>
<tr>
<td>504.3</td>
<td>Entrance Ramp Lane Drop</td>
<td></td>
</tr>
<tr>
<td>504.3</td>
<td>Single-Lane Ramp Widening for Passing</td>
<td></td>
</tr>
<tr>
<td>504.3</td>
<td>Two-lane Exit Ramps</td>
<td></td>
</tr>
<tr>
<td>504.3</td>
<td>Two-lane Exit Ramps and Auxiliary Lanes</td>
<td></td>
</tr>
<tr>
<td>504.3</td>
<td>Distance Between Successive On-ramps</td>
<td></td>
</tr>
<tr>
<td>504.3</td>
<td>Distance Between Successive Exits</td>
<td></td>
</tr>
<tr>
<td>504.4</td>
<td>Freeway-to-freeway Connections Design Speed</td>
<td></td>
</tr>
<tr>
<td>504.4</td>
<td>Profile Grades on Freeway-to-freeway Connectors</td>
<td></td>
</tr>
<tr>
<td>504.4</td>
<td>Single-lane Freeway-to-freeway Connector Design</td>
<td></td>
</tr>
<tr>
<td>504.4</td>
<td>Single-lane Connector Widening for Passing</td>
<td></td>
</tr>
<tr>
<td>504.4</td>
<td>Volumes Requiring Branch Connectors</td>
<td></td>
</tr>
<tr>
<td>504.4</td>
<td>Merging Branch Connector Design</td>
<td></td>
</tr>
<tr>
<td>504.4</td>
<td>Diverging Branch Connector Design</td>
<td></td>
</tr>
<tr>
<td>504.4</td>
<td>Merging Branch Connector Auxiliary Lanes</td>
<td></td>
</tr>
<tr>
<td>504.4</td>
<td>Diverging Branch Connector Auxiliary Lanes</td>
<td></td>
</tr>
<tr>
<td>504.4</td>
<td>Freeway-to-freeway Connector Lane Drop Taper</td>
<td></td>
</tr>
<tr>
<td>504.6</td>
<td>Mainline Lane Reduction at Interchanges</td>
<td></td>
</tr>
<tr>
<td>504.8</td>
<td>Access Control at Ramp Terminal</td>
<td></td>
</tr>
</tbody>
</table>
Table 82.1B
Underlined Standards (Cont.)

<table>
<thead>
<tr>
<th>CHAPTER 610</th>
<th>PAVEMENT ENGINEERING CONSIDERATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic 612</td>
<td>Pavement Design Life</td>
</tr>
<tr>
<td>Index 612.6</td>
<td>Traffic Loading for Temporary Pavements and Detours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 620</th>
<th>RIGID PAVEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic 625</td>
<td>Engineering Procedures for Pavement Rehabilitation</td>
</tr>
<tr>
<td>Index 625.2</td>
<td>Rigid Pavement Rehabilitation Strategies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 640</th>
<th>COMPOSITE PAVEMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic 645</td>
<td>Engineering Procedures for Pavement Rehabilitation</td>
</tr>
<tr>
<td>Index 645.1</td>
<td>Empirical Method</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 700</th>
<th>MISCELLANEOUS STANDARDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic 701</td>
<td>Fences</td>
</tr>
<tr>
<td>Index 701.2</td>
<td>Fences on Freeways and Expressways</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 900</th>
<th>LANDSCAPE ARCHITECTURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic 902</td>
<td>Planting Guidance</td>
</tr>
<tr>
<td>Index 902.2</td>
<td>Clear Recovery Zone Planting of Large Trees on Freeways and Expressways, Including Interchanges</td>
</tr>
<tr>
<td>902.2</td>
<td>Minimum Tree Setback</td>
</tr>
<tr>
<td>Table 902.3</td>
<td>Large Tree Setback Requirements on Conventional Highways - Roadside</td>
</tr>
<tr>
<td>Topic 904</td>
<td>Vista Point Standards and Guidelines</td>
</tr>
<tr>
<td>Index 904.3</td>
<td>Road Connections to Vista Points</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 1000</th>
<th>BICYCLE TRANSPORTATION DESIGN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic 1003</td>
<td>Bikeway Design Criteria</td>
</tr>
<tr>
<td>Index 1003.1</td>
<td>Class I Bikeway Horizontal Clearance</td>
</tr>
</tbody>
</table>
Table 82.1C
Decision Requiring Other Approvals

CHAPTER 100	BASIC DESIGN POLICIES	Topic 208.10	Bridge Barriers and Railing
Topic 103	Design Designation	Index 208.10	Barrier Separation and Bridge Rail Selection
Index 103.2	Design Period	208.10	Concrete Barrier Type 80
Topic 108	Coordination With Other Agencies	208.10	Concrete Barrier Type 80SW
Index 108.2	Transit Loading Facilities – Location	208.11	Deviations from Foundation and Embankment Recommendations
108.2	Transit Loading Facilities - ADA	210.4	Cost Reduction Incentive Proposals
108.3	Rail Crossings*	* Authority to approve deviations from this “Decision Requirement” is delegated to the District Director.	
108.3	Parallel Rail Facilities*		
108.5	Bus Rapid Transit – Location and ADA		
108.7	Coordination With the FHWA - Approvals		
Topic 110	Special Considerations		
Index 110.1	Overload Category		
110.8	Safety Review Items and Employee Exposure		
110.10	Proprietary Items		
110.10	Proprietary Items – On Structure		
110.10	Proprietary Items – National Highway System		
Topic 111	Material Sites and Disposal Sites		
Index 111.1	Mandatory Material Sites on Federal-aid Projects		
111.6	Mandatory Material Sites and Disposal Sites on Federal-aid Projects		
Topic 116	Bicyclists and Pedestrians on Freeway		
Index 116	Bicycles and Pedestrians on Freeways		
Topic 204	Grade		
Index 204.8	Grade Line of Structures – Temporary Vertical Clearances		
Topic 205	Road Connections and Driveways		
Index 205.1	Conversion of a Private Opening		
Table 82.1C
Decision Requiring Other Approvals (Cont.)

<table>
<thead>
<tr>
<th>Decision</th>
<th>Chapter</th>
<th>Topic</th>
<th>Index</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>504.3</td>
<td>800</td>
<td>805</td>
<td>805.1</td>
<td>Requires FHWA Approval</td>
</tr>
<tr>
<td>504.6</td>
<td>800</td>
<td>805</td>
<td>805.2</td>
<td>Bridge Preliminary Report</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>805</td>
<td>805.4</td>
<td>Unusual Hydraulic Structures</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>805</td>
<td>805.5</td>
<td>Levees and Dams Formed by Highway Fills</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>805</td>
<td>805.6</td>
<td>Geotechnical</td>
</tr>
<tr>
<td></td>
<td>820</td>
<td>829</td>
<td>829.9</td>
<td>Dams</td>
</tr>
<tr>
<td></td>
<td>830</td>
<td>837</td>
<td>837.2</td>
<td>Inlet Types</td>
</tr>
<tr>
<td></td>
<td>850</td>
<td>853</td>
<td>853.4</td>
<td>Alternative Pipe Liner Materials</td>
</tr>
<tr>
<td></td>
<td>870</td>
<td>872</td>
<td>872.3</td>
<td>Site Consideration</td>
</tr>
<tr>
<td></td>
<td>870</td>
<td>873</td>
<td>873.1</td>
<td>Introduction</td>
</tr>
<tr>
<td></td>
<td>870</td>
<td>873</td>
<td>873.3</td>
<td>Armor Protection</td>
</tr>
<tr>
<td></td>
<td>900</td>
<td>901</td>
<td>901.1</td>
<td>Landscape Architecture Program - Approvals</td>
</tr>
</tbody>
</table>

* Authority to approve deviations from this “Decision Requirement” is delegated to the District Director.
Table 82.1C

Decision Requiring Other Approvals (Cont.)

<table>
<thead>
<tr>
<th>Topic 902</th>
<th>Planting Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index 902.3</td>
<td>Plant Selection, Setback and Spacing</td>
</tr>
<tr>
<td>Table 902.3</td>
<td>Large Tree Setback Requirements on Conventional Highway Medians in Main Street Context</td>
</tr>
<tr>
<td>Table 902.3</td>
<td>Planting of Large Trees on Conventional Highway Medians – With Barrier and Posted Speed Greater Than 45mph</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topic 903</th>
<th>Safety Roadside Rest Areas Standards and Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index 903.1</td>
<td>Deviation From Minimum Standard</td>
</tr>
<tr>
<td>903.6</td>
<td>Wastewater Disposal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topic 904</th>
<th>Vista Point Standards and Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index 904.1</td>
<td>Site Selection</td>
</tr>
<tr>
<td>904.3</td>
<td>Sanitary Facilities</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topic 905</th>
<th>Park and Ride Standards and Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index 905.1</td>
<td>Site Selection</td>
</tr>
</tbody>
</table>

CHAPTER 1000

BICYCLE TRANSPORTATION DESIGN

<table>
<thead>
<tr>
<th>Topic 1003</th>
<th>Miscellaneous Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index 1003.5</td>
<td>Bicycle Path at Railroad Crossings</td>
</tr>
</tbody>
</table>

CHAPTER 1100

HIGHWAY TRAFFIC NOISE ABATEMENT

<table>
<thead>
<tr>
<th>Topic 1101</th>
<th>General Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index 1101.2</td>
<td>Objective – Extraordinary Abatement</td>
</tr>
</tbody>
</table>

* Authority to approve deviations from this “Decision Requirement” is delegated to the District Director.