Yerba Buena Island Ramps Improvement Project
SAN FRANCISCO COUNTY, CALIFORNIA
EA-04-3A640K

Final Environmental Impact Report/Environmental Impact Statement and Final Section 4(f) Evaluation

VOLUME I

Prepared for the
State of California Department of Transportation
and San Francisco County Transportation Authority

The environmental review, consultation, and any other action required in accordance with applicable Federal laws for this project is being, or has been, carried out by Caltrans under its assumption of responsibility pursuant to 23 U.S.C. 327.

October 2011
General Information About This Document

For individuals with sensory disabilities, this document can be made available in Braille, large print, on audiocassette, or on computer disk. To obtain a copy in one of these alternate formats, please call or write to Department of Transportation, Attn: Charles Wahnon, ADA/Section 5041 Disability Program, 1120 N Street, Sacramento, CA 94273-0001; (916) 324-1353 Voice, or use the California Relay Service (800) 735-2929 (TTY), (800) 735-2929 (Voice) or 711.
Yerba Buena Island Ramps Improvement Project

FINAL ENVIRONMENTAL IMPACT REPORT/ENVIRONMENTAL IMPACT STATEMENT and FINAL SECTION 4(f) EVALUATION

Submitted Pursuant to:

California Environmental Quality Act, Division 13, California Public Resources Code and the National Environmental Policy Act 42 U.S.C. 4332(2)(C), and 49 U.S.C. 303

By the

SAN FRANCISCO COUNTY TRANSPORTATION AUTHORITY

and

STATE OF CALIFORNIA DEPARTMENT OF TRANSPORTATION

and the Cooperating Agency

UNITED STATES COAST GUARD

10/12/11

Date of Approval

Jose Luis Moscovich
Executive Director
San Francisco County Transportation Authority

10/12/2011

Date of Approval

Bijan Sartipi
District Director, District 4
California Department of Transportation

Capt. P. M. McMillin
U. S. Coast Guard
Chief, Product Line Division
By Direction of the Commander

The following persons may be contacted for additional information concerning this document:

Eric Cordoba
Project Manager
San Francisco County Transportation Authority
100 Van Ness Avenue, 26th Floor
San Francisco, CA 94102
(415) 522-4800

Melanie Brent
Office of Environmental Analysis
Caltrans District 4
111 Grand Avenue
Oakland, CA 94612
(510) 286-5231

Abstract: The San Francisco County Transportation Authority and the California Department of Transportation propose to replace the existing westbound on- and off-ramps located on the east side of Yerba Buena Island with new westbound on- and off-ramps. The purpose of the project is to improve the traffic safety, geometric configuration, and operations of the ramps. Proposed alternatives include the No Build Alternative and two build alternatives that would replace the existing ramps. Potential project impacts include the removal of historic structures, existing vegetation, visual impacts, hazardous wastes, and temporary noise and traffic impacts associated with construction activities. However, with implementation of proper mitigation measures, most of these impacts would be reduced or eliminated. Alternative 2b was identified as the preferred alternative.
This page intentionally left blank.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>S-1</td>
</tr>
<tr>
<td>CHAPTER 1 – PROPOSED PROJECT</td>
<td>1-1</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1-1</td>
</tr>
<tr>
<td>1.2 Project Background and History</td>
<td>1-1</td>
</tr>
<tr>
<td>1.3 Related Plans and Projects</td>
<td>1-5</td>
</tr>
<tr>
<td>1.3.1 Past and Present Projects</td>
<td>1-5</td>
</tr>
<tr>
<td>1.3.2 Reasonably Forseeable Projects</td>
<td>1-7</td>
</tr>
<tr>
<td>1.4 Environmental and Engineering Analysis</td>
<td>1-7</td>
</tr>
<tr>
<td>1.5 Purpose and Need</td>
<td>1-9</td>
</tr>
<tr>
<td>1.5.1 Project Purpose</td>
<td>1-9</td>
</tr>
<tr>
<td>1.5.2 Project Need</td>
<td>1-9</td>
</tr>
<tr>
<td>1.6 Logical Termini and Independent Utility</td>
<td>1-10</td>
</tr>
<tr>
<td>1.7 Funding</td>
<td>1-11</td>
</tr>
<tr>
<td>1.8 Environmental Process</td>
<td>1-11</td>
</tr>
<tr>
<td>CHAPTER 2 – PROJECT ALTERNATIVES</td>
<td>2-1</td>
</tr>
<tr>
<td>2.1 Project Description</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2 Alternatives</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2.1 No Build Alternative</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2.2 Alternative 2b</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2.3 Alternative 4</td>
<td>2-2</td>
</tr>
<tr>
<td>2.2.4 Tree and Sensitive Plant Replacement</td>
<td>2-4</td>
</tr>
<tr>
<td>2.2.5 Comparison of Alternatives</td>
<td>2-5</td>
</tr>
<tr>
<td>2.3 Construction Costs and Staging</td>
<td>2-7</td>
</tr>
<tr>
<td>2.4 Construction Activities and Schedule</td>
<td>2-7</td>
</tr>
<tr>
<td>2.4.1 Construction Staging</td>
<td>2-7</td>
</tr>
<tr>
<td>2.4.2 Construction Methods</td>
<td>2-7</td>
</tr>
<tr>
<td>2.4.3 Construction Timing</td>
<td>2-7</td>
</tr>
<tr>
<td>2.4.4 Construction Schedule</td>
<td>2-10</td>
</tr>
<tr>
<td>2.4.5 Temporary Roadway Closures</td>
<td>2-10</td>
</tr>
<tr>
<td>2.4.5.1 Stage 1 – Macalla Road Closure</td>
<td>2-10</td>
</tr>
<tr>
<td>2.4.5.2 Stage 2</td>
<td>2-11</td>
</tr>
<tr>
<td>2.4.5.3 Stage 3</td>
<td>2-11</td>
</tr>
<tr>
<td>2.4.5.4 Stage 4</td>
<td>2-11</td>
</tr>
<tr>
<td>2.4.5.5 Stage 5</td>
<td>2-11</td>
</tr>
<tr>
<td>2.5 Identification of a Preferred Alternative</td>
<td>2-14</td>
</tr>
<tr>
<td>2.5.1 Alternatives Considered but Eliminated from Further Discussion</td>
<td>2-14</td>
</tr>
<tr>
<td>2.5.2 Nonviable Build Alternatives</td>
<td>2-26</td>
</tr>
<tr>
<td>2.6 Permits or Consistency Determinations Needed</td>
<td>2-39</td>
</tr>
<tr>
<td>CHAPTER 3 – AFFECTED ENVIRONMENT, ENVIRONMENTAL CONSEQUENCES, AND AVOIDANCE, MINIMIZATION, AND/OR MITIGATION MEASURES</td>
<td>3-1</td>
</tr>
<tr>
<td>3.1 Land Use</td>
<td>3-1</td>
</tr>
<tr>
<td>3.1.1 Regulatory Setting</td>
<td>3-1</td>
</tr>
<tr>
<td>3.1.2 Affected Environment</td>
<td>3-1</td>
</tr>
</tbody>
</table>

Yerba Buena Island Ramps EIR/EIS October 2011
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.3</td>
<td>Existing Land Uses</td>
<td>3.1-1</td>
</tr>
<tr>
<td>3.1.3.2</td>
<td>U.S. Coast Guard</td>
<td>3.1-4</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Development Trends</td>
<td>3.1-5</td>
</tr>
<tr>
<td>3.1.4.1</td>
<td>Treasure Island/Yerba Buena Island Project</td>
<td>3.1-5</td>
</tr>
<tr>
<td>3.1.4.2</td>
<td>Associated Land Transfer</td>
<td>3.1-6</td>
</tr>
<tr>
<td>3.1.5</td>
<td>Future Land Use</td>
<td>3.1-7</td>
</tr>
<tr>
<td>3.1.5.1</td>
<td>San Francisco-Oakland Bay Bridge (SFOBB)</td>
<td>3.1-7</td>
</tr>
<tr>
<td>3.1.6</td>
<td>Land Use Plans and Policies</td>
<td>3.1-7</td>
</tr>
<tr>
<td>3.1.7</td>
<td>Environmental Consequences</td>
<td>3.1-8</td>
</tr>
<tr>
<td>3.1.7.1</td>
<td>Existing Land Use Impacts</td>
<td>3.1-8</td>
</tr>
<tr>
<td>3.1.7.2</td>
<td>Future Land Use Impacts</td>
<td>3.1-9</td>
</tr>
<tr>
<td>3.1.7.3</td>
<td>Plans and Policies</td>
<td>3.1-9</td>
</tr>
<tr>
<td>3.1.8</td>
<td>Avoidance, Minimization, and/or Mitigation Measures</td>
<td>3.1-10</td>
</tr>
<tr>
<td>3.2</td>
<td>Parks and Recreation</td>
<td>3.2-1</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Regulatory Setting</td>
<td>3.2-1</td>
</tr>
<tr>
<td>3.2.1.2</td>
<td>Applicable Plans and Policies</td>
<td>3.2-1</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Affected Environment</td>
<td>3.2-2</td>
</tr>
<tr>
<td>3.2.2.1</td>
<td>TI/YBI Project</td>
<td>3.2-3</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Environmental Consequences</td>
<td>3.2-4</td>
</tr>
<tr>
<td>3.2.3.1</td>
<td>Temporary Impacts</td>
<td>3.2-4</td>
</tr>
<tr>
<td>3.2.3.2</td>
<td>Permanent Impacts</td>
<td>3.2-5</td>
</tr>
<tr>
<td>3.2.3.3</td>
<td>Avoidance, Minimization, and/or Mitigation Measures</td>
<td>3.2-5</td>
</tr>
<tr>
<td>3.3</td>
<td>Growth</td>
<td>3.3-1</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Regulatory Setting</td>
<td>3.3-1</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Affected Environment</td>
<td>3.3-1</td>
</tr>
<tr>
<td>3.3.2.1</td>
<td>San Francisco</td>
<td>3.3-1</td>
</tr>
<tr>
<td>3.3.2.2</td>
<td>Alameda County</td>
<td>3.3-2</td>
</tr>
<tr>
<td>3.3.2.3</td>
<td>TI and YBI</td>
<td>3.3-2</td>
</tr>
<tr>
<td>3.3.2.3</td>
<td>Yerba Buena Island (Proposed Land Uses)</td>
<td>3.3-3</td>
</tr>
<tr>
<td>3.3.2.4</td>
<td>Treasure Island (Proposed Land Use)</td>
<td>3.3-4</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Environmental Consequences</td>
<td>3.3-5</td>
</tr>
<tr>
<td>3.3.3.1</td>
<td>Temporary Impacts</td>
<td>3.3-5</td>
</tr>
<tr>
<td>3.3.3.2</td>
<td>Permanent Impacts</td>
<td>3.3-5</td>
</tr>
<tr>
<td>3.3.3.3</td>
<td>Avoidance, Minimization, and/or Mitigation Measures</td>
<td>3.3-7</td>
</tr>
<tr>
<td>3.4</td>
<td>Community Impacts</td>
<td>3.4-1</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Regulatory Setting</td>
<td>3.4-1</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Affected Environment</td>
<td>3.4-1</td>
</tr>
<tr>
<td>3.4.2.1</td>
<td>Community Character</td>
<td>3.4-1</td>
</tr>
<tr>
<td>3.4.2.2</td>
<td>Community Cohesion</td>
<td>3.4-2</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Environmental Consequences</td>
<td>3.4-2</td>
</tr>
<tr>
<td>3.4.3.1</td>
<td>Avoidance, Minimization, and/or Mitigation Measures</td>
<td>3.4-2</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Relocations</td>
<td>3.4-3</td>
</tr>
<tr>
<td>3.4.4.1</td>
<td>Regulatory Setting</td>
<td>3.4-3</td>
</tr>
<tr>
<td>3.4.4.2</td>
<td>Affected Environment</td>
<td>3.4-3</td>
</tr>
<tr>
<td>3.4.4.3</td>
<td>Environmental Consequences</td>
<td>3.4-3</td>
</tr>
<tr>
<td>3.4.4.4</td>
<td>Avoidance, Minimization, and/or Mitigation Measures</td>
<td>3.4-4</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Environmental Justice</td>
<td>3.4-4</td>
</tr>
<tr>
<td>3.4.5.1</td>
<td>Regulatory Setting</td>
<td>3.4-4</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Pages</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>3.4.5.2</td>
<td>Affected Environment</td>
<td>3.4-4</td>
</tr>
<tr>
<td>3.4.5.3</td>
<td>Environmental Consequences</td>
<td>3.4-5</td>
</tr>
<tr>
<td>3.4.5.4</td>
<td>Avoidance, Minimization, and/or Mitigation Measures</td>
<td>3.4-5</td>
</tr>
<tr>
<td>3.5</td>
<td>Emergency Services and Utilities</td>
<td>3.5-1</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Affected Environment</td>
<td>3.5-1</td>
</tr>
<tr>
<td>3.5.1.1</td>
<td>Fire Protection</td>
<td>3.5-1</td>
</tr>
<tr>
<td>3.5.1.2</td>
<td>Police Protection</td>
<td>3.5-1</td>
</tr>
<tr>
<td>3.5.1.3</td>
<td>Emergency Medical Services</td>
<td>3.5-2</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Environmental Consequences</td>
<td>3.5-3</td>
</tr>
<tr>
<td>3.5.2.1</td>
<td>Temporary Impacts</td>
<td>3.5-3</td>
</tr>
<tr>
<td>3.5.2.2</td>
<td>Permanent Impacts</td>
<td>3.5-3</td>
</tr>
<tr>
<td>3.5.2.3</td>
<td>Avoidance, Minimization, and/or Mitigation Measures</td>
<td>3.5-3</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Utilities</td>
<td>3.5-4</td>
</tr>
<tr>
<td>3.5.3.1</td>
<td>Affected Environment</td>
<td>3.5-4</td>
</tr>
<tr>
<td>3.5.3.2</td>
<td>TI/YBI Project</td>
<td>3.5-6</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Environmental Consequences</td>
<td>3.5-6</td>
</tr>
<tr>
<td>3.5.4.1</td>
<td>Temporary Impacts</td>
<td>3.5-6</td>
</tr>
<tr>
<td>3.5.4.2</td>
<td>Permanent Impacts</td>
<td>3.5-6</td>
</tr>
<tr>
<td>3.5.4.3</td>
<td>Avoidance, Minimization, and/or Mitigation Measures</td>
<td>3.5-7</td>
</tr>
<tr>
<td>3.6</td>
<td>Traffic and Transportation/Pedestrian and Bicycle Facilities</td>
<td>3.6-1</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Regulatory Setting</td>
<td>3.6-3</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Affected Environment</td>
<td>3.6-3</td>
</tr>
<tr>
<td>3.6.2.1</td>
<td>Historical Traffic Volumes</td>
<td>3.6-3</td>
</tr>
<tr>
<td>3.6.2.2</td>
<td>Existing Traffic Volumes</td>
<td>3.6-3</td>
</tr>
<tr>
<td>3.6.2.3</td>
<td>Existing Levels of Service</td>
<td>3.6-4</td>
</tr>
<tr>
<td>3.6.2.4</td>
<td>Pedestrian and Bicycle Facilities</td>
<td>3.6-9</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Environmental Consequences</td>
<td>3.6-9</td>
</tr>
<tr>
<td>3.6.3.1</td>
<td>Temporary Impacts</td>
<td>3.6-9</td>
</tr>
<tr>
<td>3.6.3.2</td>
<td>Permanent Impacts</td>
<td>3.6-11</td>
</tr>
<tr>
<td>3.6.4</td>
<td>Avoidance, Minimization, and/or Mitigation Measures</td>
<td>3.6-20</td>
</tr>
<tr>
<td>3.6.4.1</td>
<td>Temporary Impacts</td>
<td>3.6-20</td>
</tr>
<tr>
<td>3.6.4.2</td>
<td>Permanent Impacts</td>
<td>3.6-21</td>
</tr>
<tr>
<td>3.7</td>
<td>Visual/Aesthetics</td>
<td>3.7-1</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Regulatory Setting</td>
<td>3.7-1</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Affected Environment</td>
<td>3.7-1</td>
</tr>
<tr>
<td>3.7.2.1</td>
<td>Visual Setting</td>
<td>3.7-1</td>
</tr>
<tr>
<td>3.7.2.2</td>
<td>Existing Visual Character</td>
<td>3.7-2</td>
</tr>
<tr>
<td>3.7.2.3</td>
<td>Project Viewshed</td>
<td>3.7-4</td>
</tr>
<tr>
<td>3.7.2.4</td>
<td>Landscape Units</td>
<td>3.7-4</td>
</tr>
<tr>
<td>3.7.2.5</td>
<td>Existing Viewer Groups, Viewer Exposure, and Viewer Awareness</td>
<td>3.7-5</td>
</tr>
<tr>
<td>3.7.2.6</td>
<td>Existing Visual Quality</td>
<td>3.7-7</td>
</tr>
<tr>
<td>3.7.2.7</td>
<td>Identification of Key Viewpoints</td>
<td>3.7-8</td>
</tr>
<tr>
<td>3.7.2.8</td>
<td>Description of Key Viewpoints</td>
<td>3.7-9</td>
</tr>
<tr>
<td>3.7.3</td>
<td>Environmental Consequences</td>
<td>3.7-21</td>
</tr>
<tr>
<td>3.7.3.1</td>
<td>Temporary Impacts</td>
<td>3.7-21</td>
</tr>
<tr>
<td>3.7.3.2</td>
<td>Permanent Impacts</td>
<td>3.7-21</td>
</tr>
<tr>
<td>3.7.4</td>
<td>Summary of Project Impacts</td>
<td>3.7-38</td>
</tr>
<tr>
<td>3.7.5</td>
<td>Avoidance, Minimization, and/or Mitigation Measures</td>
<td>3.7-39</td>
</tr>
</tbody>
</table>
Table of Contents

3.7.5.1 Alternative 2b ... 3.7-39
3.7.5.2 Alternative 4 ... 3.7-41

3.8 Cultural Resources ... 3.8-1
3.8.1 Regulatory Setting ... 3.8-1
3.8.1.1 National Historic Preservation Act 3.8-1
3.8.1.2 Native American Graves Protection and Repatriation Act of 1990 .. 3.8-1
3.8.1.3 Archaeological Resources Protection Act of 1979 ... 3.8-2
3.8.1.4 Section 4(f) .. 3.8-2
3.8.1.5 California Environmental Quality Act 3.8-2

3.8.2 Affected Environment ... 3.8-2
3.8.2.1 Quarters 8 ... 3.8-7
3.8.2.2 Quarters 10/Building 267 3.8-7
3.8.2.3 Quarters 1/Nimitz House 3.8-7
3.8.2.4 Senior Officers’ Quarters Historic District 3.8-8
3.8.2.5 San Francisco Oakland Bay Bridge 3.8-8
3.8.2.6 CA-SFR-4/H .. 3.8-9

3.8.3 Environmental Consequences ... 3.8-10
3.8.3.1 Temporary Impacts ... 3.8-10
3.8.3.2 Permanent Impacts .. 3.8-10

3.8.4 Avoidance, Minimization, and/or Mitigation Measures 3.8-13
3.8.4.1 Mitigation Stipulated Under MOA 3.8-13

3.9 Hydrology and Floodplains ... 3.9-1
3.9.1 Regulatory Setting .. 3.9-1
3.9.1.1 Federal Emergency Management Agency 3.9-1
3.9.2 Affected Environment .. 3.9-2
3.9.2.1 Existing Hazards .. 3.9-2
3.9.3 Environmental Consequences .. 3.9-5
3.9.3.1 No Build Alternative .. 3.9-5
3.9.3.2 Alternative 2b and Alternative 4 3.9-5

3.9.4 Avoidance, Minimization, and/or Mitigation Measures 3.9-6
3.9.4.1 Alternatives 2b and 4 .. 3.9-6

3.10 Water Quality and Storm Water Runoff 3.10-1
3.10.1 Regulatory Setting ... 3.10-1
3.10.1.1 Federal Requirements: Clean Water Act 3.10-1
3.10.1.2 State Requirements: Porter-Cologne Water Quality Control Act .. 3.10-2
3.10.1.3 State Requirements: California Department of Fish and Game .. 3.10-2
3.10.1.4 State Water Resources Control Board and Regional Water Quality Control Boards 3.10-3

3.10.2 Affected Environment .. 3.10-5
3.10.2.1 Surface Water .. 3.10-5
3.10.2.2 Groundwater ... 3.10-5

3.10.3 Environmental Consequences ... 3.10-6
3.10.3.1 Temporary Impacts ... 3.10-6
3.10.3.2 Permanent Impacts ... 3.10-8

3.10.4 Avoidance, Minimization, and/or Mitigation Measures 3.10-9

3.11 Geology/Soils/Seismic/Topography .. 3.11-1
3.11.1 Regulatory Setting ... 3.11-1
3.11.2 Affected Environment .. 3.11-1
3.11.2.1 Regional Geologic Setting 3.11-1
Table of Contents

3.11.2.2 Regional Seismic Setting and Seismicity3.11-2
3.11.2.3 Geology and Geotechnical Conditions in the Project Area ...3.11-3
3.11.3 Environmental Consequences ..3.11-8
3.11.4 Avoidance, Minimization, and/or Mitigation Measures3.11-9
 3.11.4.1 Alternatives 2b and 4 ..3.11-9
3.12 Paleontology ..3.12-1
 3.12.1 Regulatory Setting ..3.12-1
 3.12.2 Affected Environment ..3.12-1
 3.12.3 Environmental Consequences3.12-5
 3.12.3.1 No Build Alternative ..3.12-7
 3.12.3.2 Alternative 2b and Alternative 43.12-7
 3.12.4 Avoidance, Minimization, and/or Mitigation Measures3.12-8
 3.12.4.1 Alternatives 2b and 43.12-8
3.13 Hazardous Waste/Materials ..3.13-1
 3.13.1 Regulatory Setting ..3.13-1
 3.13.2 Methodology ..3.13-2
 3.13.3 Study Limitations ..3.13-2
 3.13.4 Affected Environment ...3.13-3
 3.13.5 Environmental Consequences3.13-3
 3.13.5.1 U.S. Navy Investigations3.13-3
 3.13.5.2 Regulatory Database Search3.13-9
 3.13.6 Temporary Impacts ...3.13-11
 3.13.6.1 No Build Alternative3.13-11
 3.13.6.2 Alternative 2b ..3.13-11
 3.13.6.3 Alternative 4 ..3.13-12
 3.13.7 Permanent Impacts ...3.13-12
 3.13.8 Avoidance, Minimization, and/or Mitigation Measures3.13-13
 3.13.8.1 Alternatives 2b and 43.13-13
 3.13.8.2 Additional Measures for Alternative 2b3.13-14
3.14 Air Quality ...3.14-1
 3.14.1 Regulatory Setting ..3.14-1
 3.14.1.1 National ..3.14-4
 3.14.1.3 Local ...3.14-7
 3.14.2 Affected Environment ...3.14-10
 3.14.2.1 Topography, Meteorology, and Climate3.14-10
 3.14.2.2 Monitoring Station Data3.14-11
 3.14.2.3 Attainment Status ...3.14-12
 3.14.2.4 Existing Air Quality — Criteria Air Pollutants3.14-14
 3.14.2.5 Existing Sensitive Receptors3.14-17
 3.14.2.6 Existing Emission Sources3.14-18
 3.14.3 Environmental Consequences3.14-19
 3.14.3.1 Temporary Impacts3.14-19
 3.14.3.2 Permanent Impacts3.14-23
 3.14.3.3 Regional Air Quality3.14-24
 3.14.3.4 Local Air Quality3.14-24
 3.14.3.5 Other Permanent Impacts3.14-33
 3.14.4 Climate Change ...3.14-33
 3.14.5 Avoidance, Minimization, and/or Mitigation Measures3.14-33
3.15 Noise ...3.15-1
 3.15.1 Regulatory Setting ..3.15-1
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.15.1.1 California Environmental Quality Act</td>
<td>3.15-1</td>
</tr>
<tr>
<td>3.15.1.2 National Environmental Policy Act and 23 C.F.R. 772</td>
<td>3.15-1</td>
</tr>
<tr>
<td>3.15.2 Affected Environment</td>
<td>3.15-3</td>
</tr>
<tr>
<td>3.15.2.1 Noise Receivers</td>
<td>3.15-4</td>
</tr>
<tr>
<td>3.15.3 Environmental Consequences</td>
<td>3.15-13</td>
</tr>
<tr>
<td>3.15.3.1 Traffic Noise Impacts</td>
<td>3.15-13</td>
</tr>
<tr>
<td>3.15.3.2 Construction Noise Impacts</td>
<td>3.15-16</td>
</tr>
<tr>
<td>3.15.4 Avoidance, Minimization, and/or Abatement Measures</td>
<td>3.15-18</td>
</tr>
<tr>
<td>3.15.4.1 Traffic Noise Abatement</td>
<td>3.15-18</td>
</tr>
<tr>
<td>3.15.4.2 Construction Noise Abatement</td>
<td>3.15-18</td>
</tr>
<tr>
<td>3.16 Energy</td>
<td>3.16-1</td>
</tr>
<tr>
<td>3.16.1 Regulatory Setting</td>
<td>3.16-1</td>
</tr>
<tr>
<td>3.16.2 Affected Environment</td>
<td>3.16-1</td>
</tr>
<tr>
<td>3.16.3 Environmental Consequences</td>
<td>3.16-1</td>
</tr>
<tr>
<td>3.16.4 Avoidance, Minimization, and/or Mitigation Measures</td>
<td>3.16-2</td>
</tr>
<tr>
<td>3.17 Biological Environment</td>
<td>3.17-1</td>
</tr>
<tr>
<td>3.17.1 Natural Communities</td>
<td>3.17-1</td>
</tr>
<tr>
<td>3.17.1.1 Affected Environment</td>
<td>3.17-1</td>
</tr>
<tr>
<td>3.17.1.2 Environmental Consequences</td>
<td>3.17-3</td>
</tr>
<tr>
<td>3.17.1.3 Avoidance, Minimization, and/or Mitigation Measures</td>
<td>3.17-3</td>
</tr>
<tr>
<td>3.17.2 Wetlands and Other Waters</td>
<td>3.17-4</td>
</tr>
<tr>
<td>3.17.2.1 Regulatory Setting</td>
<td>3.17-4</td>
</tr>
<tr>
<td>3.17.2.2 Affected Environment</td>
<td>3.17-5</td>
</tr>
<tr>
<td>3.17.2.3 Environmental Consequences</td>
<td>3.17-8</td>
</tr>
<tr>
<td>3.17.2.4 Avoidance, Minimization, and/or Mitigation Measures</td>
<td>3.17-9</td>
</tr>
<tr>
<td>3.17.3 Plant Species</td>
<td>3.17-12</td>
</tr>
<tr>
<td>3.17.3.1 Regulatory Setting</td>
<td>3.17-12</td>
</tr>
<tr>
<td>3.17.3.2 Affected Environment</td>
<td>3.17-12</td>
</tr>
<tr>
<td>3.17.3.3 Environmental Consequences</td>
<td>3.17-15</td>
</tr>
<tr>
<td>3.17.3.4 Avoidance, Minimization, and/or Mitigation Measures</td>
<td>3.17-27</td>
</tr>
<tr>
<td>3.17.4 Animal Species</td>
<td>3.17-27</td>
</tr>
<tr>
<td>3.17.4.1 Regulatory Setting</td>
<td>3.17-27</td>
</tr>
<tr>
<td>3.17.4.2 Affected Environment</td>
<td>3.17-28</td>
</tr>
<tr>
<td>3.17.4.3 Environmental Consequences</td>
<td>3.17-43</td>
</tr>
<tr>
<td>3.17.4.4 Avoidance, Minimization, and/or Mitigation Measures</td>
<td>3.17-49</td>
</tr>
<tr>
<td>3.17.5 Threatened and Endangered Species</td>
<td>3.17-57</td>
</tr>
<tr>
<td>3.17.5.1 Regulatory Setting</td>
<td>3.17-57</td>
</tr>
<tr>
<td>3.17.5.2 Affected Environment</td>
<td>3.17-57</td>
</tr>
<tr>
<td>3.17.5.3 Environmental Consequences</td>
<td>3.17-64</td>
</tr>
<tr>
<td>3.17.5.4 Avoidance, Minimization, and/or Mitigation Measures</td>
<td>3.17-70</td>
</tr>
<tr>
<td>3.17.6 Invasive Species</td>
<td>3.17-71</td>
</tr>
<tr>
<td>3.17.6.1 Regulatory Setting</td>
<td>3.17-71</td>
</tr>
<tr>
<td>3.17.6.2 Affected Environment</td>
<td>3.17-71</td>
</tr>
<tr>
<td>3.17.6.3 Environmental Consequences</td>
<td>3.17-72</td>
</tr>
<tr>
<td>3.17.6.4 Avoidance, Minimization, and/or Mitigation Measures</td>
<td>3.17-74</td>
</tr>
</tbody>
</table>
Table of Contents

3.18 Relationship between Local Short-Term Uses of the Human Environment and the Maintenance and Enhancement of Long-Term Productivity .. 3.18-1
 3.18.1 Alternatives 2b and 4 .. 3.18-1
 3.18.2 No Project .. 3.18-1
3.19 Irreversible and Irretrievable Commitments of Resources That Would Be Involved in the Proposed Project .. 3.19-1
3.20 Cumulative Impacts .. 3.20-1
 3.20.1 Regulatory Setting .. 3.20-1
 3.20.2 Cumulative Actions and Processes Considered 3.20-1
 3.20.3 Methodology/Approach .. 3.20-2
 3.20.4 Impact Analysis ... 3.20-3
 3.20.4.1 Visual Resources .. 3.20-3
 3.20.4.2 Cultural Resources .. 3.20-4
 3.20.4.3 Plant Species .. 3.20-12
 3.20.4.4 Animal Species .. 3.20-14
 3.20.4.5 Threatened and Endangered Species 3.20-16
 3.20.5 Cumulative Impacts Results Summary 3.20-20
 3.20.6 Mitigation of Cumulative Impacts 3.20-20
3.21 Additional Analysis for the Quarters 10/Building 267 Relocation Site .. 3.21-1
 3.21.1 Land Use ... 3.21-4
 3.21.2 Parks and Recreation .. 3.21-4
 3.21.3 Growth ... 3.21-6
 3.21.4 Community Impacts .. 3.21-6
 3.21.5 Emergency Services ... 3.21-6
 3.21.6 Utilities ... 3.21-7
 3.21.7 Traffic and Transportation/Pedestrian and Bicycle Facilities .. 3.21-7
 3.21.8 Visual/Aesthetics .. 3.21-8
 3.21.9 Cultural Resources .. 3.21-8
 3.21.10 Hydrology and Floodplains ... 3.21-8
 3.21.11 Water Quality and Storm Water Runoff 3.21-9
 3.21.12 Geology/Soils/Seismicity/Topography 3.21-9
 3.21.13 Paleontology .. 3.21-10
 3.21.14 Hazardous Waste/Materials ... 3.21-11
 3.21.15 Air Quality .. 3.21-13
 3.21.16 Noise .. 3.21-14
 3.21.17 Energy .. 3.21-15
 3.21.18 Biological Environment .. 3.21-15

CHAPTER 4 – CALIFORNIA ENVIRONMENTAL QUALITY ACT (CEQA) EVALUATION .. 4-1
 4.1 Determining Significance under CEQA 4-1
 4.2 Discussion of Impact Significance .. 4-2
 4.3 No Impacts of the Proposed Project 4-2
 4.3.1 Parks and Recreation .. 4-2
 4.3.2 Community ... 4-3
 4.3.3 Emergency Services and Utilities 4-3
 4.3.4 Energy .. 4-3
 4.4 Less-Than-Significant Effects of the Proposed Project 4-4
 4.4.1 Land Use .. 4-4
Table of Contents

4.4.2 Growth .. 4-5
 4.4.2.1 Temporary Impacts .. 4-5
 4.4.2.2 Permanent Impacts ... 4-5
4.4.3 Traffic .. 4-5
 4.4.3.1 Future Trip Demand on YBI and TI .. 4-6
4.4.4 Hydrology/Water Quality ... 4-7
 4.4.4.1 Flooding .. 4-7
 4.4.4.2 Hydrology .. 4-7
 4.4.4.3 Water Quality ... 4-8
4.4.5 Geology and Soils ... 4-8
4.4.6 Paleontology ... 4-10
4.4.7 Hazardous Waste/Materials .. 4-10
4.4.8 Air Quality .. 4-13
 4.4.8.1 Temporary Impacts ... 4-13
 4.4.8.2 Permanent Impacts ... 4-15
4.4.9 Noise .. 4-16
4.4.10 Biological Resources ... 4-16
 4.4.10.1 Natural Communities .. 4-16
 4.4.10.2 Wetlands and Other Waters ... 4-17
 4.4.10.3 Plant Species ... 4-19
 4.4.10.4 Animal Species .. 4-20
 4.4.10.5 Threatened and Endangered .. 4-29
 4.4.10.6 Invasive Species .. 4-30
4.5 Unavoidable Significant Environmental Effects of the Proposed Project under CEQA ... 4-31
 4.5.1 Cultural Resources ... 4-31
 4.5.2 Visual ... 4-34
4.6 Climate Change ... 4-34
 4.6.1 Regulatory Setting .. 4-35
 4.6.2 Project Analysis .. 4-37
4.7 Mitigation Measures for Significant Impacts under CEQA 4-45
 4.7.1 Biological Resources .. 4-45
 4.7.1.1 Plant Species ... 4-45
 4.7.1.2 Animal Species .. 4-46
 4.7.2 Cultural Resources ... 4-47
 4.7.3 Visual ... 4-48
 4.7.3.1 Alternative 2b ... 4-48
 4.7.3.2 Alternative 4 ... 4-49
4.8 Mandatory Findings of Significance .. 4-49

CHAPTER 5 – COMMENTS AND COORDINATION ... 5-1
 5.1 Coordination Plan ... 5-1
 5.2 Scoping Process ... 5-21
 5.3 Consultation and Coordination with Public Agencies 5-23
 5.4 Public Participation on the Draft EIR/EIS .. 5-26
 5.5 Summary of Public and Agency Comments on the Draft EIR/EIS 5-32
 5.6 Comment Letters on the Draft EIR/EIS and Responses 5-32

CHAPTER 6 – LIST OF PREPARERS ... 6-1

CHAPTER 7 – REFERENCES .. 7-1

CHAPTER 8 – DISTRIBUTION LIST .. 8-1
Appendices

Volume I: Appendices

Appendix A: CEQA Checklist
Appendix B: Section 4(f)
Appendix C: Title VI
Appendix D: Summary of Mitigation and Minimization Measures
Appendix E: List of Acronyms
Appendix F: USFWS Species List
Appendix G: Floodplain Form

Volume II: Appendices

Appendix H: YBI Traffic Forecast and Operations Report
Appendix I: Visual Impact Assessment
Appendix J: YBI HPSR, HRER, and FOE and Supplemental HPSR
Appendix K: Water Quality Report
Appendix L: Air Quality Analysis and RTP and TIP Consistency
Appendix M: Noise Study
Appendix N: Natural Environment Study
Appendix O: Phase I ISA Report
Appendix P: Paleontological Identification Report
Appendix Q: Preliminary Foundation Memorandum
Appendix R: Memorandum of Agreement
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1-1</td>
<td>Regional Map</td>
</tr>
<tr>
<td>Figure 1-2</td>
<td>Vicinity Map</td>
</tr>
<tr>
<td>Figure 1-3</td>
<td>Existing Ramp Layout</td>
</tr>
<tr>
<td>Figure 1-4</td>
<td>Influence Footprints of the SFOBB ESSSP, YBITS, and Redevelopment Projects</td>
</tr>
<tr>
<td>Figure 2-1</td>
<td>Alternative 2b</td>
</tr>
<tr>
<td>Figure 2-2</td>
<td>Alternative 4</td>
</tr>
<tr>
<td>Figure 2-3a</td>
<td>Alternative 2b Construction Staging Areas and Access Route</td>
</tr>
<tr>
<td>Figure 2-3b</td>
<td>Alternative 4 Construction Staging Areas and Access Route</td>
</tr>
<tr>
<td>Figure 2-4</td>
<td>Alternative 2b Construction Stages</td>
</tr>
<tr>
<td>Figure 2-5</td>
<td>Alternative 4 Construction Stages</td>
</tr>
<tr>
<td>Figure 2-6</td>
<td>Yerba Buena Island Ramps Alternative 1</td>
</tr>
<tr>
<td>Figure 2-7</td>
<td>Yerba Buena Island Ramps Alternative 1a</td>
</tr>
<tr>
<td>Figure 2-8</td>
<td>Yerba Buena Island Ramps Alternative 2</td>
</tr>
<tr>
<td>Figure 2-9</td>
<td>Yerba Buena Island Ramps Alternative 2a</td>
</tr>
<tr>
<td>Figure 2-10</td>
<td>Yerba Buena Island Ramps Alternative 2b</td>
</tr>
<tr>
<td>Figure 2-11</td>
<td>Yerba Buena Island Ramps Alternative 3</td>
</tr>
<tr>
<td>Figure 2-12</td>
<td>Yerba Buena Island Ramps Alternative 4</td>
</tr>
<tr>
<td>Figure 2-13</td>
<td>Yerba Buena Island Ramps Alternative 5</td>
</tr>
<tr>
<td>Figure 2-14</td>
<td>Yerba Buena Island Ramps Alternative 6</td>
</tr>
<tr>
<td>Figure 3.1-1</td>
<td>Existing Land Uses</td>
</tr>
<tr>
<td>Figure 3.1-2</td>
<td>Proposed Land Use</td>
</tr>
<tr>
<td>Figure 3.6-1</td>
<td>Existing Peak-Hour Volume</td>
</tr>
<tr>
<td>Figure 3.6-2</td>
<td>Peak-Hour Travel Speed</td>
</tr>
<tr>
<td>Figure 3.6-3</td>
<td>Future (2035) No Build Peak-Hour Volumes</td>
</tr>
<tr>
<td>Figure 3.6-4</td>
<td>Future (2035) Build Peak-Hour Volumes</td>
</tr>
<tr>
<td>Figure 3.7-1</td>
<td>Yerba Buena Island Image Types</td>
</tr>
<tr>
<td>Figure 3.7-2</td>
<td>Key Viewpoint Locations</td>
</tr>
<tr>
<td>Figure 3.7-3</td>
<td>Alternative 2b Key Viewpoint 1: Macalla Road at North Gate Road Intersection</td>
</tr>
<tr>
<td>Figure 3.7-4</td>
<td>Alternative 2b Key Viewpoint 2: Nimitz House</td>
</tr>
<tr>
<td>Figure 3.7-5</td>
<td>Alternative 2b Key Viewpoint 3: Officers’ Quarters Open Space</td>
</tr>
<tr>
<td>Figure 3.7-6</td>
<td>Alternative 2b Key Viewpoint 4: North Gate Road Staging Area</td>
</tr>
<tr>
<td>Figure 3.7-7</td>
<td>Alternative 2b Key Viewpoint 5: Treasure Island</td>
</tr>
<tr>
<td>Figure 3.7-8</td>
<td>Alternative 2b Key Viewpoint 6: Eastern Yerba Buena Island Waterborne Approach</td>
</tr>
<tr>
<td>Figure 3.7-9</td>
<td>Alternative 2b Key Viewpoint 7: Oakland Touchdown</td>
</tr>
<tr>
<td>Figure 3.7-10</td>
<td>Alternative 2b Key Viewpoint 8: San Francisco-Oakland Bay Bridge Transition Structure</td>
</tr>
<tr>
<td>Figure 3.7-11</td>
<td>Alternative 4 Key Viewpoint 1: Macalla Road at North Gate Road Intersection</td>
</tr>
<tr>
<td>Figure 3.7-12</td>
<td>Alternative 4 Key Viewpoint 2: Nimitz House</td>
</tr>
<tr>
<td>Figure 3.7-13</td>
<td>Alternative 4 Key Viewpoint 3: Officers’ Quarters Open Space</td>
</tr>
<tr>
<td>Figure 3.7-14</td>
<td>Alternative 4 Key Viewpoint 4: North Gate Road Staging Area</td>
</tr>
<tr>
<td>Figure 3.7-15</td>
<td>Alternative 4 Key Viewpoint 5: Treasure Island</td>
</tr>
<tr>
<td>Figure 3.7-16</td>
<td>Alternative 4 Key Viewpoint 6: Eastern Yerba Buena Island Waterborne Approach</td>
</tr>
<tr>
<td>Figure 3.7-17</td>
<td>Alternative 4 Key Viewpoint 7: Oakland Touchdown</td>
</tr>
</tbody>
</table>

Yerba Buena Island Ramps EIR/EIS x October 2011
Table of Contents

Figure 3.7-18 Alternative 4 Key Viewpoint 8: San Francisco-Oakland Bay Bridge Transition Structure ... 3.7-40
Figure 3.8-1 Architectural Area of Potential Effect ... 3.8-4
Figure 3.8-2 Alternative 2b Archaeological Area of Potential Effects .. 3.8-5
Figure 3.8-3 Alternative 4 Archaeological Area of Potential Effects .. 3.8-6
Figure 3.9-1 YBI FEMA Identification Map .. 3.9-2
Figure 3.9-2 Hydrologic Unit ... 3.9-4
Figure 3.13-1 Potential Contaminant Sources ... 3.13-5
Figure 3.13-2 ERIIS Site Information Map .. 3.13-10
Figure 3.15-1 Noise Measurement and Receiver Locations ... 3.15-7
Figure 3.15-2 Alternative 2b and Receiver Locations ... 3.15-8
Figure 3.15-3 Alternative 4 and Receiver Locations ... 3.15-9
Figure 3.17-1 Biological Study Area ... 3.17-6
Figure 3.17-2 Vegetation Communities .. 3.17-7
Figure 3.17-3 Alternative 2b Impacts to Vegetation Communities and Aquatic Habitats ... 3.17-10
Figure 3.17-4 Alternative 4 Impacts to Vegetation Communities and Aquatic Habitats .. 3.17-11
Figure 3.17-5 Special Status Species (Plants) ... 3.17-16
Figure 3.17-6 Alternative 2b Impacts to Special Status Plants ... 3.17-24
Figure 3.17-7 Alternative 4 Impacts to Special Status Plants ... 3.17-25
Figure 3.17-8 Special Status Species (Animals) ... 3.17-33
Figure 3.21-1 Quarters 10/Building 267 Relocation Site .. 3.21-3
Figure 3.21-2 TI and YBI Parks and Open Space Plan – Beach Park Plan ... 3.21-5
Figure 3.21-3 Quarters 10/Building 267 Relocation Site Habitat Map .. 3.21-19
Figure 4-1 California Greenhouse Gas Forecast .. 4-38
Figure 4-2 Possible Effect of Traffic Operation Strategies in Reducing On-Road CO2 Emission .. 4-39
Figure 4-3 Mobility Pyramid ... 4-41

List of Tables

Table Table Page

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table S–1: Project Impacts</td>
<td>S-8</td>
</tr>
<tr>
<td>Table S–2: Permits and Approvals Needed</td>
<td>S-11</td>
</tr>
<tr>
<td>Table 1–1: YBI Ramps Improvement Project Alternatives Capital Cost Estimate</td>
<td>1-12</td>
</tr>
<tr>
<td>Table 2–1: Comparison of Alternatives</td>
<td>2-5</td>
</tr>
<tr>
<td>Table 2–2a: Alternative 2b</td>
<td>2-10</td>
</tr>
<tr>
<td>Table 2–2b: Alternative 4</td>
<td>2-10</td>
</tr>
<tr>
<td>Table 2–3: Alternatives Screening Analysis Summary Yerba Buena Island Ramps EIR/EIS</td>
<td>2-17</td>
</tr>
<tr>
<td>Table 2–4: Permits and Approvals Needed</td>
<td>2-40</td>
</tr>
<tr>
<td>Table 3–1: Environmental Resources</td>
<td>3-1</td>
</tr>
<tr>
<td>Table 3.6–1: Accident Statistics (April 1, 2003 – March 31, 2006)</td>
<td>3.6-2</td>
</tr>
<tr>
<td>Table 3.6–2: Collision Types (April 1, 2003 – March 31, 2006)</td>
<td>3.6-2</td>
</tr>
<tr>
<td>Table 3.6–3: LOS Criteria for Merge and Diverge Areas</td>
<td>3.6-6</td>
</tr>
<tr>
<td>Table 3.6–4: Existing Ramp Junction Analysis</td>
<td>3.6-6</td>
</tr>
<tr>
<td>Table 3.6–5: Location of Travel Time Measurements</td>
<td>3.6-9</td>
</tr>
<tr>
<td>Table 3.6–6: Treasure Island and Yerba Buena Island Project Trip Generation by Mode (Baseline Transit Scenario)</td>
<td>3.6-12</td>
</tr>
</tbody>
</table>
SUMMARY

The San Francisco County Transportation Authority (SFCTA) and the California Department of Transportation (Caltrans) are proposing to improve the traffic safety, geometric design, and traffic operation levels of service of the westbound on- and off-ramps located on the east side of Yerba Buena Island (YBI). The SFCTA is the lead agency under the California Environmental Quality Act (CEQA) and Caltrans is the lead agency under the National Environmental Policy Act (NEPA). In cooperation with Caltrans, the SFCTA has prepared this Final Environmental Impact Report/Environmental Impact Statement (EIR/EIS) pursuant to the NEPA and CEQA for the proposed YBI Ramps Improvement Project.

Overview of Project Area

Yerba Buena Island (YBI) is located in the San Francisco Bay, approximately halfway between Oakland and San Francisco, and is accessible by vehicles only via the San Francisco-Oakland Bay Bridge (SFOBB), which is part of Interstate 80 (I-80). The SFOBB is a critical link in the interstate network, providing access between San Francisco and the East Bay. YBI and the SFOBB also provide access to Treasure Island (TI), which lies to the north of YBI. YBI and TI are accessed by on-and off-ramps located on the upper and lower decks of the SFOBB. The SFOBB and the associated on- and off-ramps provide the only land access to the active USCG facilities located on the southern side of YBI.

The proposed project would replace the existing westbound on-ramp and the westbound off-ramp located on the eastern side of YBI with a new westbound on-ramp and a new westbound off-ramp that would improve the functional roles of the current ramps.

Build alternatives have been proposed to address the geometric and operational deficiencies of the existing on- and off-ramps and their effects on the SFOBB (I-80) mainline without degrading the Bridge operation as compared to no action. This YBI Ramps Improvement Project is separate and independent of the SFOBB East Span Seismic Safety Project (ESSSP), which is currently under construction. Of the six ramps on YBI, the ESSSP will replace the eastbound on- and off ramps on the east side of YBI. The proposed new westbound ramps would improve operations and provide connections between YBI and the transition structure of the new SFOBB. The proposed project is located between Kilometer Post (KP) 12.3 and 13.2, Post Mile (PM) 7.6 and PM 8.1 starting at the east portal of the YBI tunnel and ending before the SFOBB Transition Structure.

Purpose and Need

The purpose of the proposed project is to improve:

- Traffic safety for drivers using the westbound on- and off-ramps
- Geometric design of the westbound on- and off-ramps on the east side of YBI to and from I-80
- Traffic operation levels of service (LOS) on the westbound on- and off-ramps.
The proposed project is needed for the reasons listed below and explained in subsequent paragraphs:

- **Safety**: The accident rate for the on- and off-ramps is higher than the statewide rate for similar facilities.

- **Geometric Design**: The westbound on-ramp merge lengths and off-ramp deceleration lengths on the east side of YBI do not meet current Caltrans standards.

- **Operations**: Projections of 2035 traffic volumes indicate ramp operations at a failing LOS F on both the on- and off-ramps in both the morning and evening peak hours.

Safety: The accident rate for the existing on- and off-ramps is higher than the statewide rate for similar facilities. The accident rate based on data collected over a 3-year period between April 1, 2003 and March 31, 2006 on YBI exceeded the statewide average rate (per million vehicle miles) for total collisions (sum of fatalities, injuries, and property damage) (TASAS Selective Accident Retrieval, Table B). This 3-year period is the latest data available for the existing on- and off-ramps because these ramps have been closed for the construction of the SFOBB ESSSP project. The Actual Accident Rate for the existing westbound on-ramp is 0.75 per million vehicle miles compared to a rate of 0.60 for similar facilities statewide. For the existing westbound off-ramp, the accident rate is 1.4 rate per million vehicle miles compared to a 1.15 for similar facilities statewide. The distance available for westbound on-ramp traffic to merge with Bridge traffic is very short and results in abrupt maneuvers of westbound on-ramp and Bridge traffic. These factors affect the traffic operations of the facilities and motorists traveling on the freeway Bridge and on-ramp. The proposed ramps have been designed to accommodate future traffic operations for the 20-year design horizon as required by Caltrans standards HDM Section 103.2. This would improve the LOS and is anticipated to decrease the accident rate potential. In particular, the potential for rear end collisions on the westbound on-ramp are expected to decrease under the proposed project, which has been the predominant type of accident that has occurred in the past.

Geometric Design: The existing westbound on-ramp merge lengths and off-ramp deceleration lengths on the east side of YBI do not meet current Caltrans standards. The existing westbound on-ramp on the east side of YBI has a very short merge distance of approximately 43 meters (141 feet) which calculates to a 1:11 transition rate. It has a steep entrance grade of approximately 10 percent leading to a 122-meter (400 feet) long crest vertical curve, resulting in a 30 km/h (18.6 mph) design speed. Therefore, traffic cannot accelerate to a proper mainline speed of 80 km/h (50 mph) to merge with through traffic. The existing westbound off-ramp diverges from the left-side freeway lane. The left-side exit lane is nonstandard (Highway Design Manual Section 504.2) and is signed for 48 km/h (20 mph). Its geometry includes a short deceleration length and sharp curve upon exiting the Bridge, and presents challenges for motorists and large vehicles to maneuver. The proposed ramps would meet Caltrans standards by providing standard

1 TASAS Table B reports for accident data calculations are available for any highway or section of highway, any or all ramps, any or all intersections for any time period specified. The report shows both actual and average rates. The report also shows total accidents, fatalities, injuries, multi-vehicles, wet, dark, persons killed and injured and the significance. Table B was generated for all six ramps on YBI and included in the Draft Project Report (DPR) prepared for this project.
lane and shoulder widths and other geometric features such as the divergence angle, acceleration length, and turning radius that would improve the LOS and safety of the ramp. LOS is a qualitative description of a ramp segment or intersection performance based on the criteria outlined in the Highway Capacity Manual (HCM). LOS ranges from A, which indicates free flow or excellent conditions with short delays, to F, which indicates congested or overloaded conditions with extremely long delays. Caltrans criteria are used to establish a goal of LOS C, when possible.

Operations: The existing westbound off-ramp diverges from the left lane of I-80. This left-lane exit requires exiting vehicles to travel in and across the “fast” lanes to exit the freeway. These maneuvers negatively affect the flow of Bridge traffic. The distance available for westbound on-ramp traffic to merge with Bridge traffic is very short and results in abrupt maneuvers of westbound on-ramp and Bridge traffic. Projections of 2035 traffic volumes indicate ramp operations at a failing LOS F on both the on- and off-ramps in both the morning and evening peak hours. Currently, the westbound left-lane off-ramp operates at LOS D in the morning peak hour and at LOS C in the evening peak hour. The existing westbound, on-ramp operates at LOS D in both the morning and the evening peak hours. In the future (2035) no build condition, both the westbound off-ramp and on-ramp would operate at LOS F in both the morning and the evening peak hours. Under the 2035 build condition without ramp meters for, the westbound off-ramp would operate at LOS F in both peak hours, and the westbound on-ramp would operate at LOS F in the morning peak hour and LOS E in the evening peak hour. In the 2035 build condition with ramp meters, the proposed westbound on-ramp would operate at LOS C in both peak hours. The proposed westbound off-ramp without meters would operate at LOS E in both peak hours.

Related Plans and Projects

In addition to the proposed YBI Ramps Improvement Project, other plans and projects on the islands are also underway. These include the approved TI/YBI Project, the San Francisco Bicycle Plan, the West Span Bay Bridge Bicycle and Pedestrian Pathway, and the SFOBB ESSSP.

The Treasure Island Development Authority and the San Francisco Board of Supervisors endorsed the Development Plan and Term Sheet for the Redevelopment of Former Naval Station Treasure Island in December 2006. The TI/YBI Project underwent its own environmental review process under CEQA. The TI/YBI Project EIR was certified on April 21, 2011.

The San Francisco Bicycle Plan was adopted in June 2009. The plan includes updated goals and objectives to encourage bicycle use in the city, describes the existing bicycle route network, and identifies improvements to achieve the plan’s goals and objectives. The future bikeway path planned for the perimeter of Treasure Island would fall under the same footprint as the TI/YBI Project.

California Senate Bill 1061 (Hancock), “San Francisco-Oakland Bay Bridge: capital projects” was passed by the state Assembly Committee on Transportation on June 22, 2010. This bill would allow a portion of Bay Bridge toll funds to be spent on the West Span Bay Bridge Bicycle and Pedestrian Pathway, connecting YBI to San Francisco.
The Final EIS for the SFOBB ESSSP was approved in April 2001 and the Federal Highway Administration (FHWA) and Caltrans selected the preferred alternative in July of that year. Construction of the project began in January 2002 and is ongoing.

USCG Sector San Francisco is an active military installation and as such various facility and operational projects are underway at any given time. These activities are ongoing 24 hours a day, 7 days a week, 365 days a year (365/24/7).

Proposed Action

Typically the environmental process includes a range of reasonable build alternatives. A No Build Alternative represents the existing condition. All other alternatives are compared to the No Build. For this document, alternatives advanced for further study included the No Build Alternative and two build alternatives. Alternatives were selected based on the purpose and need for this project—to increase traffic safety and to improve geometric and operations of the westbound on- and off-ramps. The No Build Alternative, Alternative 2b, and Alternative 4 are described below.

No Build (No Action) Alternative

With the exception of the eastbound on- and off-ramps, which are part of the SFOBB East Span Seismic Safety Project, the No Build Alternative assumes that the existing westbound on- and off-ramps would remain in place and no further action or improvements would occur.

Alternative 2b

Alternative 2b includes removal of the existing westbound on- and off-ramps on the east side of YBI, construction of a westbound hook on-ramp from Macalla Road on the east side of YBI, and construction of a westbound off-ramp to Macalla Road on the east side of YBI.

This alternative proposes to reconstruct two of the existing six on- and off-ramps at the I-80/YBI interchange. The proposed on- and off-ramps would provide standard lane and shoulder widths, and would include the following features:

- Westbound on-ramp on the east side of YBI. This ramp would begin at a “T” intersection at Macalla Road, loop right with a tight radius, and merge on to the north side of the Bay Bridge. The length of this ramp would be approximately 267 meters (867 feet). This ramp would have two traffic lanes, merging into one as it connects to the SFOBB. One lane would be a high occupancy vehicle (HOV) lane\(^2\) and the other a mixed-flow\(^3\) lane.

- Westbound off-ramp on the east side of YBI. This ramp would diverge from the new SFOBB Transition Structure between bents W3 and W4 and terminate at a “T” intersection at Macalla Road. The length of this ramp would be approximately 340 meters (1,115 feet). A stop sign is proposed at the ramp terminus.

\(^2\) Under the Treasure Island Transportation Management Act (Assembly Bill 981, signed into law in September 2008), high occupancy vehicles would be able to exit or enter Treasure Island free of charge.

\(^3\) A mixed-flow lane is a general purpose travel lane with no traffic restrictions.
Summary

- Macalla Road would be widened for approximately 202 meters (662 feet) adjacent to the terminus of the westbound on- and off-ramps. The existing roadway is about 6 meters (20 feet) wide near the ramp terminus. The roadway widening is required to accommodate a future 3.7-meter (12 feet) wide multi-use pedestrian/bike path and two 3.7-meter (12 feet) wide lanes within the Caltrans right-of-way. A retaining wall would be constructed adjacent to Macalla Road to provide the required width. The height of the retaining wall would vary from 1.2 to 4.9 meters (4 to 16 feet) and would retain the hillside above Macalla Road. The stairway adjacent to the Caltrans substation would be relocated to the west side of the building to make room for the new retaining wall. The roadway width would vary around the curve at South Gate Road to provide proper width for truck turning movements.

- The westbound on- and off-ramps would terminate at Macalla Road where Quarters 10/Building 267 are currently located, requiring their removal.

Alternative 4

Alternative 4 includes the removal of the existing westbound on- and off-ramps on the east side of YBI, construction of the westbound on-ramp from South Gate Road, and construction of the westbound off-ramp to Macalla Road on the east side of YBI.

This alternative proposes to reconstruct two of the existing six on- and off-ramps at the I-80/YBI interchange. The proposed on- and off-ramps would provide a standard lane with standard shoulder widths and would include the following features:

- Westbound on-ramp on the east side of YBI. This ramp would begin at South Gate Road, proceed east paralleling the eastbound on-ramp, loop under the new SFOBB Transition Structure near its eastern end to provide adequate merging distances, and cross over the westbound off-ramp along the north side of the Bay Bridge. The length of this ramp would be approximately 879 meters (2,883.8 feet). An HOV lane would not be provided.

- Westbound off-ramp on the east side of YBI. This ramp would diverge from the new SFOBB Transition Structure between bents W2 and W3, parallel the Transition Structure, cross under the westbound on-ramp, and terminate at a “T” intersection at North Gate Road. The length of this ramp would be approximately 356 meters (1,168 feet). A stop sign is proposed at the ramp terminus. An HOV lane would not be provided.

- Pavement reconstruction on Macalla Road and South Gate Road at the ramp intersections is proposed to ensure a proper pavement conform and truck turning movements.

- Quarters 10/Building 267 and associated landscaping would remain in place.

Identification of the Preferred Alternative

The Draft EIR/EIS was released on February 25, 2011 and a Public Hearing was held on March 16, 2011. Five comment letters were received during the 45-day comment period. The YBI Ramps Improvement Project Development Team (PDT), which is comprised of
the lead, cooperating, and responsible agencies, along with Caltrans and the SFCTA held a meeting on April 12, 2011 to consider and identify the preferred alternative. A unanimous decision was made identifying Alternative 2b as the best alternative that meets the purpose and need of the YBI Ramps Improvement Project. Alternative 2b requires the relocation of Quarters 10/Building 267 as part of the mitigation described in Section 3.8.4. An evaluation of the relocation site is included in this Final Environmental Impact Report/Environmental Impact Statement (Final EIR/EIS) as Section 3.21.

In accordance with CEQA, the SFCTA shall certify that the project complies with CEQA, and shall prepare findings for all significant impacts identified, prepare a Statement of Overriding Considerations for impacts that will not be mitigated below a level of significance, and certify that the findings and Statement of Overriding Considerations have been considered prior to project approval. After the SFCTA approves the project, they will file a Notice of Determination (NOD) with the State Clearinghouse that will identify whether the project will have significant impacts, whether mitigation measures were included as conditions of project approval, whether findings were made, and whether a Statement of Overriding Considerations was adopted. With respect to NEPA, Caltrans, as assigned by FHWA, will document and explain its decision regarding the selected alternative, project impacts, and mitigation measures in a Record of Decision (ROD) in accordance with NEPA. Following the project approval process, the SFCTA and Caltrans will move forward with final design and permit preparation. Based on available funding, permitting and construction could begin as early as 2012.

Joint CEQA/NEPA Document

The proposed project is subject to Federal and state environmental review requirements since the SFCTA proposes the use of Federal funds from the FHWA and/or the project requires a FHWA approval action. Project documentation, therefore, has been prepared in compliance with both CEQA and NEPA. The SFCTA is the project sponsor and lead agency under CEQA. FHWA’s responsibility for environmental review, consultation, and any other action required in accordance with applicable Federal laws for this project is being, or has been, carried out by Caltrans under its assumption of responsibility pursuant to Section 6005 of SAFETEA-LU codified at 23 United States Code (U.S.C) 327(a)(2)(A). Effective July 1, 2007, FHWA has assigned, and Caltrans has assumed, all the USDOT Secretary’s responsibilities under NEPA. The assignment applies to all projects on the State Highway System (SHS) and all Local Assistance Projects off the SHS within the State of California, with the exception of the responsibilities concerning certain categorical exclusions, which were assigned to Caltrans under the June 7, 2007 MOU, projects excluded by definition and specific project exclusions. Refer to Chapter 38 of the SER for more information.

One of the primary differences between NEPA and CEQA is the way significance is determined. Under NEPA, significance is used to determine whether an EIS, or some lower level of documentation such as an EA, will be required. NEPA requires that an EIS be prepared when the proposed Federal action (project) as a whole has the potential to “significantly affect the quality of the human environment.” The determination of significance is based on context and intensity. Some impacts determined to be significant under CEQA may not be of sufficient magnitude to be determined significant under NEPA. Under NEPA, once a decision is made regarding the need for an EIS, it is the magnitude of the impact that is evaluated and no judgment of its individual significance is deemed important for the text. NEPA does not require that a determination of significant impacts be stated in the environmental documents.
CEQA, on the other hand, does require the lead agency to identify each “significant effect on the environment” resulting from the project and ways to mitigate each significant effect. If the project may have a significant effect on any environmental resource, then an EIR must be prepared. Each and every significant effect on the environment must be disclosed in the EIR and mitigated if feasible. In addition, the CEQA Guidelines list a number of mandatory findings of significance, which also require the preparation of an EIR. There are no types of actions under NEPA that parallel the findings of mandatory significance of CEQA.

Following receipt of public comments on the Draft EIR/EIS and circulation of the Final EIR/EIS, the lead agencies will be required to take actions regarding the environmental document. The SFCTA will determine whether to certify the EIR and issue Findings and a Statement of Overriding Considerations. If the decision is made to approve the project, an NOD will be published for compliance with CEQA. Caltrans will issue a ROD for compliance with NEPA following circulation of the Final EIR/EIS.

Project Partners

A number of agencies are participating in the YBI Ramps Improvement Project environmental process. These agencies and their roles are discussed below.

Federal Lead Agency

A NEPA document is required for most Federal actions. A Federal action can include funding a project, building a project on Federal land, or issuing a Federal permit. The Federal agency that takes this action is typically the lead NEPA agency. A lead agency is the agency with the main responsibility for complying with Federal environmental regulations. For the YBI Ramps Improvement Project, Caltrans, under its assumption of responsibility pursuant to 23 U.S.C. 327, is the lead Federal agency for the purposes of NEPA.

State Lead Agency

Similar to NEPA regulations, CEQA requires that a state, regional, or local agency take responsibility for complying with state environmental regulations if a governmental (state, regional, or local) action is being taken. The lead CEQA agency for the YBI Ramps Improvement Project is the SFCTA.

Project Impacts

Major project impacts that would require avoidance, minimization, and/or mitigation measures as a result of the proposed YBI Ramps Improvement would occur for Traffic and Transportation/Pedestrian and Bicycle Facilities, Visual/Aesthetics, Cultural Resources, Geology/Soils/Seismic/Topography, Paleontological Resources, Hazardous Waste/Materials, Air Quality, Noise, and Biological Environment. A summary of the measures is included in Table S-1 below.
Table S–1: Project Impacts

<table>
<thead>
<tr>
<th>Resource Area</th>
<th>Avoidance, Minimization, and/or Mitigation Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic and Transportation/Pedestrian and Bicycle Facilities</td>
<td>Construction activities would result in temporary detours and single-lane closures. These impacts would be minimized through coordination with the USCG and emergency service providers. Efforts would be made to concentrate the majority of road closures and construction activity during off-peak hours to reduce traffic impacts. Traffic would be diverted to one side of the road and traffic would be controlled by flaggers stationed at both ends of the closure. Similar traffic handling is currently being used on Macalla Road with the ongoing SFOBB construction by Caltrans. Macalla Road primarily serves the USCG facility. After construction, ramp metering will be in effect, which may cause long delays and queues are expected on the approaches to the on-ramp. With ramp metering, the metering rates can be coordinated such that the number of vehicles entering the Bridge would be based on the number of vehicles exiting the Bridge. Additionally, the Bridge metering lights for westbound traffic (just west of the toll booths) could be coordinated with the on-ramp, such that the traffic entering the SFOBB could be reduced while the metering rate for the on-ramp is increased, and vice versa.</td>
</tr>
<tr>
<td>Visual/Aesthetics</td>
<td>Construction of the build alternatives would in some cases have significant impacts on the visual quality of some areas when these areas are observed from certain viewpoints. This would be noticeable in cases where views toward or from the Senior Officers’ Quarters Historic District would be dominated and/or obstructed by the ramp structures. To promote a seamless interaction between the ramps and the SFOBB Transition Structure, the ramps under Alternative 2b would utilize a ribbed design that is consistent with the structural form and architectural vocabulary of the new SFOBB East Span. A landscaping plan for the project area would be developed in cooperation with the District Landscape Architect. The landscaping plan would incorporate the use of native plants, and would be implemented in a manner that is consistent with the Treasure Island/Yerba Buena Island Project. The landscaping plan would be in compliance with the invasive species provisions outlined in the Biological Resources section of this EIR/EIS.</td>
</tr>
<tr>
<td>Cultural Resources</td>
<td>Mitigation measures stipulated under the MOA, include preparation of Historic Structure Reports (HSRs), preparation of a historic landscape report and landscaping plan, relocation of Quarters 10/Building 267 and post construction reevaluation of historical integrity, installation of interpretive signs, stabilization/monitoring/security during construction, interpretation of historic properties, and repair of inadvertent damage that may result from construction.</td>
</tr>
<tr>
<td>Geology/Soils/Seismicity/Topography</td>
<td>Caltrans would retain California-licensed geologists and geotechnical engineers to assist in final design and review of the final construction plans and specifications to confirm inclusion of recommendations from the Foundation Report. Caltrans would document compliance with this measure prior to the final project design. The geotechnical engineer would conduct inspections and testing during the stages of construction.</td>
</tr>
</tbody>
</table>
Resource Area | Avoidance, Minimization, and/or Mitigation Measures
--- | ---
Paleontology | Caltrans would retain a qualified principal paleontologist (MS or PhD in paleontology or geology familiar with paleontological procedures and techniques). The paleontologist would review the selected alternative alignment and design, once a preferred project alternative is identified; develop a Paleontological Mitigation Plan (PMP); determine the potential for discovery of significant fossils; and identify specific avoidance, minimization, and/or mitigation measures as needed. In addition, onsite training and monitoring of project-related, ground-disturbing activities within the Franciscan Complex and Colma formation should occur.

Hazardous Waste/Materials | Determination of specific construction activities planned on or near a potential contaminant source would occur once a preferred project alternative is identified. Additional site-specific delineation of any remaining areas of unabated contamination would be performed to finalize details of construction, to detail procedures for handling of contaminated media, and to ensure worker safety during construction.

Air Quality | The contractor would be required to implement these “Basic Control Measures” during all construction activities. The abatement measures listed in the Yerba Buena Island Ramps Improvement Project Air Quality Analysis (Appendix L) are also required to be implemented during construction activities. In addition, the project site is approximately 1.62 hectares (4 acres); therefore, according to the BAAQMD CEQA Guidelines, the contractor is required to implement the BAAQMD’s “Enhanced Control Measures.”

Noise | Construction noise abatement would be implemented as required by the Caltrans’ Standard Specification 14-8.02, “Noise Control”

Biological Environment | Prior to the onset of construction activities, a qualified biologist would conduct focused surveys for animal species, threatened and endangered species identified in Chapter 3.17 – Biological Environment. In addition, all avoidance, minimization, and compensatory measures outlined in Chapter 3.17 and/or included in permits and regulatory concurrence letters would be implemented.

Coordination with Public and Other Agencies

In accordance with 23 Code of Federal Regulations (C.F.R.) 771.105(a) and 771.133 and with CEQA and the implementing regulations, Caltrans and the SFCTA will comply with all applicable Federal and state environmental laws, regulations, and Federal executive orders applicable to the proposed project during the environmental review process. These requirements may include, but are not limited to, the regulations of the Council on Environmental Quality and Caltrans implementing NEPA (40 C.F.R. parts 1500–1508, and 23 C.F.R. Part 771); Caltrans, under its assumption of responsibility pursuant to Section 6005 of SAFETEA-LU codified at 23 U.S.C. 327(a)(2)(A), is the lead Federal agency for the purposes of NEPA; the project-level air quality conformity regulation of the U.S. Environmental Protection Agency (USEPA) (40 C.F.R. part 93); the Section 404(b)(1) guidelines of USEPA (40 C.F.R. part 230); the regulation implementing Section 106 of the National Historic Preservation Act (36 C.F.R. Part 800); the regulation implementing Section 7 of the Endangered Species Act (50 C.F.R. part 402); Section 4(f) of the 1966 Department of Transportation Act (23 C.F.R. 771.135; 49 U.S.C. 303); Section 401 and 404 of the Clean Water Act; Section 10 U.S. Army Corps of Engineers; USCG Section 9 permit requirements, determination of consistency with
the Federal Coastal Zone Management Act by the San Francisco Bay Conservation and Development Commission; Federal Executive Orders 12898 on environmental justice, 11988 on floodplain management, and 11990 on wetlands; and the CEQA laws and regulations.

In September 2008, Caltrans prepared a SAFETEA-LU Coordination Plan for the project and invited agencies to become participating or cooperating agencies during the NEPA environmental review process. This plan is required by Section 6002 of SAFETEA-LU, which is codified in 23 U.S.C. Sec. 139. Letters inviting agencies to become participating or cooperating agencies were sent out on September 5, 2008. The U.S. Coast Guard (USCG), U.S. Environmental Protection Agency (USEPA), U.S. Army Corps of Engineers (USACE), U.S. Fish and Wildlife Service (USFWS), California Department of Fish and Game (CDFG), San Francisco Regional Water Quality Control Board (SFRWQCB), Treasure Island Development Authority (TIDA), and San Francisco Municipal Transportation Agency (SFMTA) accepted the invitation to participate. Letters describing the proposed action and soliciting comments were sent to appropriate Federal, state, participating agencies (including federally recognized tribal governments, if any), and local agencies, and to private organizations and citizens who have previously expressed or are known to have interest in the proposed project.

In November 2010, Caltrans contacted and sent out an invitation to agencies and local interest groups for an opportunity to hear an update on the project alternatives and potential environmental impacts, which was held on December 7, 2010.

To ensure that the full range of issues related to the proposed action were addressed and all significant issues identified, comments and suggestions were invited from all interested parties.

(1) List of Permits and Approvals Needed

Collaborative efforts have taken place throughout the planning process with key agency representatives from as early as 2002 when the initial conceptual alternatives were presented until recently when the alternatives were further refined. Coordination on potential key environmental issues has occurred, including Section 4(f) historic properties with SHPO, and waters of the U.S. with USACE. On-going coordination has occurred with the CCSF, TIDA and the USCG to ensure construction and operation of the project would not conflict with existing use and future plans.

Permit and consistency determinations that are anticipated to be required for project implementation are listed below in Table S-2.

(2) Unresolved Issues

No unresolved issues have been identified for this project.
Table S–2: Permits and Approvals Needed

<table>
<thead>
<tr>
<th>Approval Agency</th>
<th>Permit/Approval/Determination</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCDC</td>
<td>Consistency Determination</td>
<td>Anticipate After ROD</td>
</tr>
<tr>
<td>CDFG</td>
<td>Streambed Alteration Agreement (1602 Permit)</td>
<td>After ROD</td>
</tr>
<tr>
<td>SHPO</td>
<td>Section 106 concurrence and MOA</td>
<td>Occurred between Draft and Final</td>
</tr>
<tr>
<td>Regional Water Quality Control Board</td>
<td>NPDES Statewide Permit (Order No. 99-06-DWQ)</td>
<td>After ROD</td>
</tr>
<tr>
<td></td>
<td>Dewatering permit (R2-2007-0033)</td>
<td>After ROD</td>
</tr>
<tr>
<td></td>
<td>401 Water Quality Certification Permit</td>
<td>After ROD</td>
</tr>
<tr>
<td>Air Pollution Control District</td>
<td>Permit to Construct</td>
<td>After ROD</td>
</tr>
<tr>
<td>USACE</td>
<td>404 Nationwide Permit (NWP 14)</td>
<td>Pre-construction notification</td>
</tr>
<tr>
<td>USCG</td>
<td>Section 9 Permit Requirements</td>
<td>After ROD</td>
</tr>
<tr>
<td></td>
<td>MOU to ensure existing MOA and license criteria currently in effect with the SFOBB ESSSP will apply to the YBI Ramps Improvement Project</td>
<td>Occurred between Draft and Final</td>
</tr>
<tr>
<td></td>
<td>Encroachment Permit</td>
<td>After ROD</td>
</tr>
<tr>
<td>MTC</td>
<td>Air Quality PM$_{2.5}$</td>
<td>Occurred between Draft and Final</td>
</tr>
</tbody>
</table>

(3) Areas of Controversy

The NEPA Notice of Intent (NOI) and CEQA Notice of Preparation (NOP) were published on September 5, 2008, announcing the intent to prepare and distribute an EIR/EIS. Based on public comments on the NOI/NOP, the following areas were carefully analyzed to address potential controversy related to the project:

- Air Quality;
- Historic and cultural resources;
- Water quality;
- Biological resources;
- Traffic and transportation; and
- Bicycle and pedestrian access.

Environmental Process

This Final Environmental Impact Report/Environmental Impact Statement (EIR/EIS) evaluates the environmental effects of the proposed project and when warranted, identifies mitigation measures to reduce project effects.

After publishing and circulating the Draft EIR/EIS for public review and comment, the lead agencies followed typical CEQA/NEPA procedures and:

- conducted a public hearing on the Draft EIR/EIS (March 16, 2011);
Summary

- provided a public comment period where interested parties submitted written comments on this Draft EIR/EIS (February 25 through April 11, 2011);

- identified Alternative 2b as the Preferred Alternative with PDT (April 12, 2011);

- the SFCTA Board adopted a resolution (Resolution No. 11-56) identifying Alternative 2b as the Locally Preferred Alternative, signed on May 26, 2011. The identification of Alternative 2b as the Locally Preferred Alternative does not constitute an approval of the project for the purposes of CEQA and the approval of any alternative is subject to certification of the Final EIR and compliance with other requirements of CEQA; and

- prepared and distributed a Final EIR/EIS. This Final EIR/EIS includes responses to comments received on the Draft EIR/EIS; and identifies the Preferred Alternative.

The next steps will include issuance of a CEQA NOD and a NEPA ROD. The ROD will allow the SFCTA and Caltrans to move forward with final design and permitting.

Alternatives Considered

Alternatives considered in the EIR/EIS included:

1. No Build Alternative, which assumes that the existing on- and off-ramps would remain in place and no further action or improvements would occur;

2. Alternative 2b, which would include removal of the existing westbound on- and off-ramps on the east side of YBI, construction of a westbound loop on-ramp from Macalla Road on the east side of YBI, and construction of a westbound off-ramp to Macalla Road on the east side of YBI.

3. Alternative 4, which would include the removal of the existing westbound on- and off-ramps on the east side of YBI, construction of the westbound on-ramp from South Gate Road, and construction of the westbound off-ramp to Macalla Road on the east side of YBI.

Throughout the planning process several avoidance configurations were explored in order to attempt to avoid Section 4(f) resources, consisting of listed historic properties in close proximity to the ramp project locations. Alternative 6 was developed in an attempt to avoid the three known resources, the Senior Officers’ Historic District, the Quarters 1/Nimitz House and Quarters 10 (including building 267).

Please refer to Chapter 2.0, Alternatives, for a description of nonviable build alternatives, including Alternative 6 which was an alternative to avoid 4(f) properties, and Appendix B, Section 4(f), for further information.

Summary of Public and Agency Comments

During the comment period of the Draft EIR/EIS, 5 individual comment letters were received from the public which consist of a total of 13 comments. The major categories the comments fall under included:
Summary

- Cultural and Historic Resources;
- Air Quality;
- Water Quality; and
- Selection of the Preferred Alternative.

Responses to the comments are provided in Section 5.6 of this Final EIR/EIS.

Next Steps

This Final EIR/EIS evaluates the environmental impacts of the proposed YBI Ramps Improvement Project during the construction and operational phases. When warranted, mitigation measures are proposed to address project impacts.

Once this Final EIR/EIS has been accepted, the lead agencies will follow the typical NEPA/CEQA procedures. Under NEPA, a Notice of Availability will be published in the Federal Register and the document will be distributed to all federal, state, and local agencies and private organizations, and members of the public who provided substantive comments on the Draft EIS or who requested a copy.

Pursuant to 23 CFR 771.127, following release of the Final EIR/EIS, Caltrans, under its responsibility pursuant to 23 U.S.C. 327, can complete and sign a Record of Decision (ROD) no sooner than 30 days after publication of the Final EIS notice in the Federal Register. The ROD is the document which explains the reasons for the project decision, summarizes the mitigation measures to be incorporated, and documents any required Section 4(f) approvals.

Under CEQA procedures, the State lead agency, SFCTA, will approve the project and include a Statement of Overriding Consideration in the record of project approval. The Statement of Overriding Consideration is necessary for projects which will result in unavoidable significant effects as identified in the Final EIR/EIS and it will state the specific reasons why the agency supports its decision. Within five days after approval of the project, the lead agency will file a Notice of Determination (NOD) with the San Francisco County clerk. The NOD will be available for public inspection for at least 30 days. Following the project approval process the SFCTA and Caltrans will move forward with preparation of the final design and permits. Based on available funding and permitting, construction could begin as early as 2012.

In addition, both CEQA and NEPA regulations require an enforceable mitigation monitoring and reporting program (MMRP) for the project. Per CEQA Guideline 15907(a), "In order to ensure that the mitigation measures and project revisions identified in the EIR are implemented, the public agency shall adopt a program for monitoring or reporting on the revisions which it has required in the project and the measures it has imposed to mitigate or avoid significant environmental effects." Under NEPA regulations, "A monitoring and enforcement program shall be adopted and summarized where applicable for any mitigation" (Section 1505.2(c)). A minimization and mitigation summary has been prepared and incorporates all of the mitigation measures included in this Final EIR/EIS (Appendix D).
Summary

Project Costs

The estimated total costs for each of the alternatives have been developed. The No Build Alternative would have no cost. Alternative 2b would cost approximately $79 million, of which approximately $256,000 is for right-of-way acquisition, approximately $58 million is for construction, and $21 million is for engineering costs. Alternative 4 would cost approximately $159 million, of which $3.6 million is for right-of-way acquisition, $125 million is for construction, and $33.7 million is for engineering costs. The right-of-way capital costs include temporary and permanent easements from the USCG for both alternatives.
1.1 Introduction

The San Francisco County Transportation Authority (SFCTA) and the California Department of Transportation (Caltrans) are proposing to improve traffic safety, geometric design, and traffic operation levels of service of the westbound on- and off-ramps located on the east side of Yerba Buena Island (YBI).

The YBI Ramps, built in the early 1960s, provide access to YBI and Treasure Island (TI) for motorists traveling to and from the San Francisco-Oakland Bay Bridge (SFOBB) portion of Interstate 80 (I-80). The ramps need to be upgraded to meet current safety standards. The nonstandard features of the ramps, current accident safety records, and the projected build-out growth have increased the need to reconstruct the ramps.

The project is located along I-80 and extends 0.5 mile from the east end of the YBI Tunnel to the beginning of the self-anchored suspension (SAS) structure of the new SFOBB East Span. Figures 1-1 and 1-2 show the project location and vicinity maps.

This Final EIR/EIS incorporates the entire Yerba Buena Island Ramps Improvement Project Draft EIR/EIS which was released for public review on February 25, 2011. Modifications are indicated with a solid vertical line along the left margin of this document. In addition, this document includes the public and agency comments and responses to those comments and identification of the preferred alternative (Alternative 2b) and an analysis of a building relocation site required for mitigation related to the Alternative 2b. Section 5.6 presents public comments received on the Draft EIR/EIS and the responses. Section 3.21 includes an analysis of the relocation site of Quarters 10/Building 267.

The project is included in the Metropolitan Transportation Commission’s (MTC’s) 2009 Regional Transportation Plan as project reference number 230555, Transportation 2035 Plan for the San Francisco Bay Area available at http://www.mtc.ca.gov/planning/2035_plan/FINAL/T2035_Plan-Final.pdf (MTC 2009). The project is also included in the MTC’s 2009 Transportation Improvement Program (TIP), with a TIP identification number SF-070027 available at http://www.mtc.ca.gov/funding/tip/2009/final/Project_Listings_Final.pdf (MTC 2008).

1.2 Project Background and History

The SFOBB is a critical link in the interstate network, providing access between San Francisco and the East Bay. The SFOBB currently serves approximately 350,000 people in the 272,000 vehicles that use the bridge each day. The SFOBB and the YBI Tunnel opened to traffic in 1936 and were the world’s longest vehicular bridge and the largest bore tunnel of their time.

The original SFOBB carried two-way traffic on its upper deck and provided an on-ramp and an off-ramp to YBI. These ramps are the existing westbound on- and off-ramps east of the YBI tunnel. Timber structures were built on the west side of the island in the late 1930s to add on- and off-ramps to the upper and lower decks and to provide additional access to the SFOBB from the island. In 1960, the passenger rail line on the lower deck of the SFOBB was removed and converted to eastbound traffic only and the upper deck
was dedicated to westbound traffic only. In 1962, the timber ramps were removed and four additional ramps were constructed: the westbound on-ramp and eastbound off-ramp west of the YBI tunnel; and the eastbound on- and off-ramps east of the YBI tunnel.

In April 1941, during World War II, all of TI and portions of YBI, including the SFOBB on- and off-ramps, were allocated to the U.S. Navy for use as a military facility called Naval Station Treasure Island (NSTI). The USCG has also maintained a presence on YBI since 1872 though its property is separate from that of the larger NSTI. After serving as a center for receiving, training, and dispatching service personnel during World War II, NSTI was subsequently used for more than 50 years as a location for naval training and as an administrative center. In 1993, NSTI was selected for closure. In 1997, the U.S. Navy closed its military operations on the base. The U.S. Navy is the current owner of the former NSTI, but has transferred interim control of most of its property to the Treasure Island Development Authority (TIDA) via a cooperative agreement, with the intention of transferring all property to TIDA. In 2000 and 2004, the U.S. Government, acting through the Federal Highway Administration (FHWA), transferred to Caltrans all permanent property rights and temporary construction easements, respectively, required for both the existing SFOBB and the new East Span, including all ramps east of the YBI tunnel, including all rights required for construction of the East Span Seismic Safety Project (ESSSP). The U.S. Navy is expected to transfer the remaining NSTI property to TIDA, including the areas required for the YBI Ramps Improvement Project. Upon completion of the YBI Ramps Improvement Project, TIDA would transfer ownership of the new YBI Ramps and associated rights-of-way and necessary easements to Caltrans, subject to approval by the California Transportation Commission.

Currently, the YBI interchange consists of six single-lane ramps: two ramps (an eastbound off-ramp and a westbound on-ramp) west of the YBI tunnel and four ramps east of the tunnel (eastbound on- and off-ramps and westbound on- and off-ramps). Figure 1-3 shows the configuration of the existing ramps.
Figure 1-1
Regional Map
Figure 1-2
Vicinity Map

Source: Google, 2009
1.3 Related Plans and Projects

1.3.1 Past and Present Projects

The existing East Span of the SFOBB is in the process of being replaced as part of a legislatively mandated seismic retrofit program adopted January 1, 1991, in response to the damage caused by the October 17, 1989, Loma Prieta Earthquake. The existing East Span must be replaced because it is not expected to meet the required lifeline criteria for providing emergency relief access following a magnitude 8 earthquake (Richter Scale) on the San Andreas Fault, or a magnitude 7.25 earthquake on the Hayward Fault.

The SFOBB ESSSP is composed of several segments and will be constructed via several construction contracts. The first segment is the construction of the concrete viaduct known as the Skyway. This segment began in 2002 and was completed in 2007. This structure extends across the San Francisco Bay and connects the bridge with the Oakland Touchdown structure, which ties into existing I-80.

The second segment constructed the Replacement Viaduct Structure, which was completed in 2007. The structure begins approximately 60.96 meters (200 feet) east of the entrance to the YBI tunnel. The Replacement Viaduct Structure provides a link between the YBI tunnel and a temporary traffic bypass structure. At project completion, this structure will provide the connection between the YBI tunnel and the YBI Transition Structures (YBITS).

The third segment constructed the temporary structure known as the Temporary Bypass Structure and was completed 2009. This structure provides traffic bypass during the construction of the YBITS.

The fourth segment will construct the SAS bridge, which will be erected over the navigational channel immediately east of YBI. This SAS bridge connects the YBITS to the Skyway structure.

The fifth segment will construct the YBITS. The construction of the YBITS is divided into two phases. YBITS 1 will construct the mainline structure, which will transition traffic from the existing double deck configuration of the YBI tunnel to the new side-by-side, single deck configuration of the proposed East Span of the SFOBB. The construction of YBITS 1 is scheduled to start in early 2010. YBITS 2 will construct the eastbound on- and off-ramps and is scheduled to start in late 2012.
Figure 1-3
Existing Ramp Layout
1.3.2 Reasonably Forseeable Projects

In addition to the SFOBB ESSSP that is currently under construction, an additional planning effort for future development on TI and YBI is in progress. This includes plans for the Treasure Island and Yerba Buena Island (Ti/YBi) Project, which underwent its own environmental review process under the California Environmental Quality Act (CEQA). The Ti/YBi Project EIR was certified on April 21, 2011. The YBI Ramps Improvement Project is separate and independent of both the SFOBB ESSSP and Ti/YBi Project. The reasonably forseeable projects were included in the land use analysis and cumulative impact assessment for the project.

On the USCG property, a new command center was completed in 2011. The Vessel Traffic Service (VTS) personnel now occupy space in the new building. The USCG will reuse the existing spaces vacated by VTS at the top of YBI. In the long term, an approved problem statement (PS) is in place to relocate 70 personnel from Sector San Francisco’s Prevention Department from the USCG Island to new facilities on YBI.

The San Francisco Bicycle Plan was adopted in June 2009. The plan includes updated goals and objectives to encourage bicycle use in the City, describes the existing bicycle route network, and identifies improvements to achieve the plan’s goals and objectives. The bikeway path planned for the perimeter of Treasure Island would fall under the same footprint as the Ti/YBi Project.

California Senate Bill 1061 (Hancock), “San Francisco-Oakland Bay Bridge: capital projects” was passed by the state Assembly Committee on Transportation on June 22, 2010. This bill would allow a portion of Bay Bridge toll funds to be spent on the West Span Bay Bridge Bicycle and Pedestrian Pathway, connecting YBI to San Francisco.

Figure 1-4 illustrates the location and potential influence of these related plans and projects on the YBI Ramps Improvement Project.

1.4 Environmental and Engineering Analysis

This environmental document has been initiated as the next step in the progression of approvals necessary for the proposed YBI Ramps Improvement Project. Under the National Environmental Policy Act (NEPA), an environmental analysis must be performed if the proposed action is being implemented by a Federal agency, requires a Federal permit, has Federal funding, or requires a Federal approval action. At the state level, any agency that proposes a major action is required to comply with CEQA.

Effective July 1, 2007, FHWA assigned, and Caltrans assumed, NEPA environmental responsibilities for highway projects pursuant to 23 United States Code (U.S.C.) 327. Given Caltrans’ NEPA environmental responsibilities and initiation of the YBI Ramps Improvement Project by the SFCTA (county agency), it must follow Federal and state environmental laws (NEPA and CEQA). In cooperation with Caltrans, the SFCTA prepared this joint Final EIR/EIS for the proposed YBI Ramps Improvement Project. Pursuant to these environmental regulations, this Final EIR/EIS contains a discussion of proposed project alternatives, existing environmental resources, potential permanent and temporary impacts, and proposed mitigation. In addition, this document provides the comments received on the Draft EIR/EIS and responses to them and identification of the preferred Alternative 2b.
Yerba Buena Island Ramps EIR/EIS

Influence Footprints of the SFOBB ESSSP, YBITS, and TI/YBI Projects

Figure 1-4

Source: Google, 2009
1.5 Purpose and Need

1.5.1 Project Purpose

The purpose of the proposed project is to improve:

- Traffic safety for drivers using the westbound on- and off-ramps
- Geometric design of the westbound on- and off-ramps on the east side of YBI to and from I-80
- Traffic operation levels of service (LOS) on the westbound on- and off-ramps.

1.5.2 Project Need

The proposed project is needed for the reasons listed below and explained in subsequent paragraphs:

- **Safety**: The accident rate for the on- and off-ramps is higher than the statewide rate for similar facilities.
- **Geometric Design**: The westbound on-ramp merge lengths and off-ramp deceleration lengths on the east side of YBI do not meet current Caltrans standards.
- **Operations**: Projections of 2035 traffic volumes indicate ramp operations at a failing LOS F on both the on- and off-ramps in both the morning and evening peak hours.

Safety: The accident rate for the existing on- and off-ramps is higher than the statewide rate for similar facilities. The accident rate based on data collected over a 3-year period between April 1, 2003 and March 31, 2006 on YBI exceeded the statewide average rate (per million vehicle miles) for total collisions (sum of fatalities, injuries, and property damage) (TASAS Selective Accident Retrieval, Table B).\(^4\) This 3-year period is the latest data available for the existing on- and off-ramps because these ramps have been closed for the construction of the SFOBB ESSSP project. The Actual Accident Rate for the existing westbound on-ramp is 0.75 per million vehicle miles compared to a rate of 0.60 for similar facilities statewide. For the existing westbound off-ramp, the accident rate is 1.4 rate per million vehicle miles compared to a 1.15 for similar facilities statewide. The distance available for westbound on-ramp traffic to merge with Bridge traffic is very short and results in abrupt maneuvers of westbound on-ramp and Bridge traffic. These factors affect the traffic operations of the facilities and motorists traveling on the Bridge freeway mainline and on-ramp. The proposed ramps have been designed to accommodate future traffic operations for the 20-year design horizon as required by Caltrans standards HDM Section 103.2. This would improve the LOS and is anticipated to decrease the accident rate.

\(^4\) TASAS Table B reports for accident data calculations are available for any highway or section of highway, any or all ramps, any or all intersections for any time period specified. The report shows both actual and average rates. The report also shows total accidents, fatalities, injuries, multi-vehicles, wet, dark, persons killed and injured and the significance. Table B was generated for all six ramps on YBI and included in the Draft Project Report (DPR) prepared for this project.
rate potential. In particular, the potential for rear end collisions on the westbound on-ramp are expected to decrease under the proposed project, which has been the predominant type of accident that has occurred in the past.

Geometric Design: The existing westbound on-ramp merge lengths and off-ramp deceleration lengths on the east side of YBI do not meet current Caltrans standards. The existing westbound on-ramp on the east side of YBI has a very short merge distance of approximately 43 meters (141 feet) which calculates to a 1:11 transition rate. It has a steep entrance grade of approximately 10 percent leading to a 122-meter (400 feet) long crest vertical curve, resulting in a 30 km/h (18.6 mph) design speed. Therefore, traffic cannot accelerate to a proper mainline speed of 80 km/h (50 mph) to merge with through traffic. The existing westbound off-ramp diverges from the left-side freeway lane. The left-side exit lane is nonstandard (Highway Design Manual Section 504.2) and is signed for 48 km/h (20 mph). Its geometry includes a short deceleration length and sharp curve upon exiting the Bridge, and presents challenges for motorists and large vehicles to maneuver. The proposed ramps would meet Caltrans standards by providing standard lane and shoulder widths and other geometric features such as the divergence angle, acceleration length, and turning radius that would improve the LOS and safety of the ramp. LOS is a qualitative description of a ramp segment or intersection performance based on the criteria outlined in the Highway Capacity Manual (HCM). LOS ranges from A, which indicates free flow or excellent conditions with short delays, to F, which indicates congested or overloaded conditions with extremely long delays. Caltrans criteria are used to establish a goal of LOS C, when possible.

Operations: The existing westbound off-ramp diverges from the left lane of I-80. This left-lane exit requires exiting vehicles to travel in and across the “fast” lanes to exit the freeway. These maneuvers negatively affect the flow of Bridge traffic. The distance available for westbound on-ramp traffic to merge with Bridge traffic is very short and results in abrupt maneuvers of westbound on-ramp and Bridge traffic. Projections of 2035 traffic volumes indicate ramp operations at a failing LOS F on both the on- and off-ramps in both the morning and evening peak hours. Currently, the westbound left-lane off-ramp operates at LOS D in the morning peak hour and at LOS C in the evening peak hour. The existing westbound, on-ramp operates at LOS D in both the morning and the evening peak hours. In the future (2035) no build condition, both the westbound off-ramp and on-ramp would operate at LOS F in both the morning and the evening peak hours. Under the 2035 build condition without ramp meters for, the westbound off-ramp would operate at LOS F in both peak hours, and the westbound on-ramp would operate at LOS F in the morning peak hour and LOS E in the evening peak hour. In the 2035 build condition with ramp meters, the proposed westbound on-ramp would operate at LOS C in both peak hours. The proposed westbound off-ramp without meters would operate at LOS E in both peak hours.

1.6 Logical Termini and Independent Utility

FHWA regulations (23 Code of Federal Regulations [C.F.R.] 771.111 [f]) require that the proposed action:

- Connect logical termini and be of sufficient length to address environmental matters on a broad scope,
b. Have independent utility or independent significance (be usable and be a reasonable expenditure even if no additional transportation improvements in the area are made), and

c. Not restrict consideration of alternatives for other reasonably foreseeable transportation improvements.

The termini of the project are logical because the project intends only to construct the westbound on- and off-ramps in the same area as the existing ramps, i.e., between the northeastern end of YBI and east of the YBI tunnel. The build alternatives carried forward limit the impacts to the Senior Officers’ Quarters Historic District to the extent feasible. Evaluation of these alternatives was performed during the PSR and PR stages, and considered both traffic functionality and geometric impacts.

Transportation projects must also have independent utility and the project must be a reasonable expenditure even if no additional transportation improvements are made in the area. The two build alternatives considered in this environmental document represent transportation improvements that would meet the project’s purpose and need and would not require additional improvements that would have additional environmental impacts, nor would it restrict consideration of alternatives for other reasonably foreseeable transportation improvements.

1.7 Funding

Funding for the proposed project is anticipated to come from local, state, and Federal sources. The majority of the project would be funded through the state’s Highway and Bridge Program with 11.47% of the project costs to be provided by matching funds from the Local Bridge Seismic Retrofit Account for Proposition 1B. The RTP estimate for this project is $183 million with a TIP allocation of $215,450 (MTC 2009).

Table 1-1 below shows the projected capital cost estimate for both alternatives.

1.8 Environmental Process

This Final EIR/EIS evaluates the environmental impacts of the proposed YBI Ramps Improvement Project during the construction and operational phases. When warranted, mitigation measures are proposed to address project impacts.

Once this Final EIR/EIS has been accepted, the SFCTA and Caltrans will follow the typical NEPA/CEQA procedures. Under NEPA, a Notice of Availability will be published in the Federal Register and the document will be distributed to all federal, state, and local agencies and private organizations, and members of the public who provided substantive comments on the Draft EIS or who requested a copy.

Typically, pursuant to 23 CFR 771.127, following release of the Final EIR/EIS, Caltrans, under its responsibility pursuant to 23 U.S.C. 327, can complete and sign a Record of Decision (ROD) no sooner than 30 days after publication of the Final EIS notice in the Federal Register. The ROD is the document which explains the reasons for the project decision, summarizes the mitigation measures to be incorporated, and documents any required Section 4(f) approvals.
Table 1–1: YBI Ramps Improvement Project Alternatives Capital Cost Estimate

<table>
<thead>
<tr>
<th>Capital Cost</th>
<th>Alt 2b</th>
<th>Alt 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Cost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roadway</td>
<td>$7,370,000</td>
<td>$6,400,000</td>
</tr>
<tr>
<td>Structures</td>
<td>$50,600,000</td>
<td>$114,830,000</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$57,970,000</td>
<td>$121,230,000</td>
</tr>
<tr>
<td>Right-of-Way Cost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right-of-Way</td>
<td>$500,000</td>
<td>$3,407,000</td>
</tr>
<tr>
<td>Relocate Utilities</td>
<td>$500,000</td>
<td>$200,000</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$1,000,000</td>
<td>$3,607,000</td>
</tr>
<tr>
<td>Total Capital Outlay</td>
<td>$58,970,000</td>
<td>$124,837,000</td>
</tr>
<tr>
<td>Engineering Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering (PAED, PS&E)</td>
<td>$12,000,000</td>
<td>$15,500,000</td>
</tr>
<tr>
<td>Construction Administration @ 15%</td>
<td>$8,695,500</td>
<td>$18,184,500</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$20,695,500</td>
<td>$33,684,500</td>
</tr>
<tr>
<td>Total</td>
<td>$79,665,500</td>
<td>$158,521,500</td>
</tr>
</tbody>
</table>

1. The right-of-way capital cost includes temporary and permanent easements from the USCG for both alternatives.

Under CEQA procedures, the State lead agency, SFCTA, will approve the project and include a Statement of Overriding Consideration in the record of project approval. The Statement of Overriding Consideration is necessary for projects which will result in unavoidable significant effects as identified in the Final EIR/EIS and it will state the specific reasons why the agency supports its decision. Within five days after approval of the project, the lead agency will file a Notice of Determination (NOD) with the San Francisco County clerk. The NOD will be available for public inspection for at least 30 days. Following the project approval process the sponsor agencies will move forward with preparation of final design and permits. Based on available funding, permitting and construction could begin as early as 2012.

In addition, both CEQA and NEPA regulations require an enforceable mitigation monitoring program be developed for the project. Per CEQA Guideline 15907(a), “In order to ensure that the mitigation measures and project revisions identified in the EIR are implemented, the public agency shall adopt a program for monitoring or reporting on the revisions which it has required in the project and the measures it has imposed to mitigate or avoid significant environmental effects.” Under NEPA regulations, “A monitoring and enforcement program shall be adopted and summarized where applicable for any mitigation” (Section 1505.2(c)).” A minimization and mitigation summary has been prepared and incorporates all of the mitigation measures included in this Final EIR/EIS (Appendix D).
CHAPTER 2 – PROJECT ALTERNATIVES

2.1 Project Description

This section describes the proposed action and the design alternatives that were developed by a multidisciplinary team to achieve the project purpose and need while avoiding or minimizing environmental impacts. The alternatives analyzed in this Final EIR/EIS include the No Build Alternative, Alternative 2b, and Alternative 4.

The project is located in the City and County of San Francisco on I-80 on the east side of YBI. The SFCTA and Caltrans propose to replace the existing westbound on- and off-ramps located on the east side of YBI with new westbound on- and off-ramps. The other four ramps on YBI would not be closed or result in diminished capacity as a result of the project. Therefore no further analysis of potential impacts to these ramps is needed.

The YBI ramps, built in the early 1960s, provide access to YBI and TI for motorists traveling to and from the SFOBB portion of I-80. The existing ramps need to be upgraded to improve safety, the geometric configurations and traffic operations between YBI and westbound I-80. The total length of the project area is 0.805 kilometer (0.5 mile), and the project’s limits are on I-80 from the end of the SFOBB West Span to the beginning of the SAS Structure of the new SFOBB East Span.

2.2 Alternatives

Typically the environmental process includes a range of reasonable build alternatives. A No Build Alternative represents the existing condition. All other alternatives are compared to the No Build. For this document, alternatives advanced for further study included the No Build Alternative and two build alternatives. Alternatives were selected based on the purpose and need for this project—to improve the geometric configuration, operations, and safety of the westbound on- and off-ramps. The No Build Alternative, Alternative 2b, and Alternative 4 are described below.

2.2.1 No Build Alternative

The No Build Alternative assumes that the existing westbound on- and off-ramps on the east side of YBI would remain in place and no further action or improvements would occur. The westbound on- and off-ramps would continue to operate as they are under the No Build Alternative. The eastbound on- and off-ramps on the east side of YBI are part of the SFOBB ESSSP and were evaluated and approved as part of the SFOBB project.

2.2.2 Alternative 2b

Alternative 2b includes removal of the existing westbound on- and off-ramps on the east side of YBI, construction of a westbound loop on-ramp from Macalla Road on the east side of YBI, and construction of a westbound off-ramp to Macalla Road on the east side of YBI.

This alternative proposes to reconstruct two of the existing six on- and off-ramps at the I-80/YBI interchange. The proposed on- and off-ramps would provide standard lane and shoulder widths, and would include the following features:
Westbound on-ramp on the east side of YBI. This ramp would begin at a “T” intersection at Macalla Road, loop right with a tight radius, and merge onto the north side of the Bay Bridge. The length of this ramp would be approximately 267 meters (876 feet). This ramp would have two traffic lanes, merging into one as it connects to the SFOBB. One lane would be a high occupancy vehicle (HOV) lane\(^5\) and the other a mixed-flow\(^6\) lane.

Westbound off-ramp on the east side of YBI. This ramp would diverge from the new SFOBB Transition Structure between bents W3 and W4 and terminate at a “T” intersection at Macalla Road. The length of this ramp would be approximately 340 meters (1,115.5 feet). A stop sign is proposed at the ramp terminus and meets the 20-year design needs.

Macalla Road would be widened for approximately 202 meters (662.7 feet) adjacent to the terminus of the westbound on- and off-ramps. The existing roadway is about 6 meters (19.7 feet) wide near the ramp terminus. The roadway widening is required to accommodate a future 3.7-meter-wide (12.1 feet) multiuse pedestrian/bike path and two 3.7-meter-wide (12.1 feet) lanes within the Caltrans right-of-way. A retaining wall would be constructed adjacent to Macalla Road to provide the required width. The height of the retaining wall would vary from 1.2 to 4.9 meters (3.9 to 16.1 feet) and would retain the hillside above Macalla Road. The stairway adjacent to the Caltrans substation would be relocated to the west side of the building to make room for the new retaining wall. The roadway width would vary around the curve at South Gate Road to provide proper width for truck turning movements.

The westbound on- and off-ramps would terminate at Macalla Road where Quarters 10/Building 267 are currently located, requiring their removal.

Figure 2-1 illustrates the proposed YBI ramp features associated with Alternative 2b.

2.2.3 Alternative 4

Alternative 4 includes the removal of the existing westbound on- and off-ramps on the east side of YBI, construction of a new westbound on-ramp from South Gate Road, and construction of a new westbound off-ramp to Macalla Road on the east side of YBI.

This alternative proposes to reconstruct two of the existing six on- and off-ramps at the I-80/YBI interchange. The proposed on- and off-ramps would provide a standard lane and shoulder widths, and would include the following features:

\(^5\) Under the Treasure Island Transportation Management Act (Assembly Bill 981, signed into law in September 2008), high occupancy vehicles (defined as THREE passengers or more) would be able to exit or enter Treasure Island free of charge.

\(^6\) A mixed-flow lane is a general purpose travel lane with no traffic restrictions.
Quarters 10 and Building 267 Relocation Site

Alternative 2b Proposed Ramps
- Proposed West Bound Off-Ramp
- Proposed Macalla Road Improvements
- Proposed West Bound On-Ramp

Area of Potential Effect
- Quarters 10 and Building 267 Relocation Site

Separate Project Currently Under Construction
- San Francisco-Oakland Bay Bridge East Span Seismic Safety Project
- Transition Structure Portion of SFOBB

Figure 2-1

Alternative 2b
Westbound on-ramp on the east side of YBI. This ramp would begin at South Gate Road, proceed east paralleling the eastbound on-ramp, loop under the new SFOBB Transition Structure near its eastern end to provide adequate merging distances, and cross over the westbound off-ramp along the north side of the Bay Bridge. The length of this ramp would be approximately 879 meters (2,883.9 feet). An HOV lane would not be provided.

Westbound off-ramp on the east side of YBI. This ramp would diverge from the new SFOBB Transition Structure between bents W2 and W3, parallel the Transition Structure, cross under the westbound on-ramp, and terminate at a “T” intersection at North Gate Road. The length of this ramp would be approximately 356 meters (1,168 feet). A stop sign is proposed at the ramp terminus and meets the 20-year design needs. An HOV lane would not be provided.

Pavement reconstruction on Macalla Road and South Gate Road at the ramp intersections is proposed to ensure a proper pavement conform and truck turning movements.

Quarters 10/Building 267 and associated landscaping would remain in place.

A use permit and/or a permanent aerial easement would be required from the USCG to construct the westbound on-ramp over USCG property.

Figure 2-2 illustrates the proposed YBI ramp features associated with Alternative 4.

2.2.4 Tree and Sensitive Plant Replacement

As part of Alternative 2b and Alternative 4, the SFCTA will plant replacement trees and vegetation to benefit aesthetics. The Yerba Buena Island Habitat Management Plan (of the TI/YBI Project) will be considered in the development of a woodland habitat revegetation plan. In addition, replanting efforts would benefit native plant and wildlife habitat values on YBI post-construction.

Temporarily disturbed woodland and forested areas would be restored after completion of construction activities. Trees removed in temporary disturbance areas would be replaced utilizing native species appropriate to the island. Native trees that are removed, such as 2 Coast live oak trees, would be replaced at a 3:1 ratio. Other permanently affected woodland and forest habitat will be replanted at a location identified in coordination with stakeholder agencies and utilizing native species appropriate to the location. Stakeholder agencies may include Caltrans, the SFCTA (CEQA lead agency), and/or CDFG. A sensitive, native plant species, stinging phacelia (Phacelia malvifolia), has been documented within the mixed broadleaf conifer and eucalyptus woodland forest habitat in the biological study area (BSA). A portion of the population will be affected by construction activities. This plant is considered a Rare, Unusual, or Significant plant of local concern (A2) by the East Bay Chapter of the CNPS. Stinging phacelia plants temporarily and/or permanently removed during project construction will be replanted as part of the woodland habitat revegetation effort. Stinging phacelia plants temporarily and/or permanently removed during project construction will be replanted at a 1:1 ratio as part of the woodland habitat revegetation effort. This species is not listed as a sensitive statewide species, by CDFG, or CNPS, and does not qualify for protection. Stinging phacelia is not listed nor on the statewide CNPS List. However, stinging
phacelia is on the East Bay Chapter of the CNPS List A2, indicating that it is currently found in three to five regions of the two-county area (Lake 2004).⁷

SFCTA will develop a woodland habitat revegetation plan 30 days prior to construction that outlines an implementation strategy, monitoring plan, performance standards, and long-term management to facilitate and document success of the revegetation effort. The revegetation plan will be implemented under the oversight of a qualified biologist.

2.2.5 Comparison of Alternatives

Alternatives 2b and 4 both include the construction of a westbound on-ramp and westbound off-ramp. The alternatives would have the following unique features as shown in Table 2-1 below:

<table>
<thead>
<tr>
<th>Table 2–1: Comparison of Alternatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative 2b</td>
</tr>
<tr>
<td>Westbound On-Ramp</td>
</tr>
<tr>
<td>• 267 meters (876 feet)</td>
</tr>
<tr>
<td>• Beings at “T” intersection at Macalla Road.</td>
</tr>
<tr>
<td>• Right loop merge onto north side of Bay Bridge</td>
</tr>
<tr>
<td>• Two traffic lanes, merging into one as it connects to SFOBB. One lane would be HOV lane, and one lane would be mixed-flow.</td>
</tr>
<tr>
<td>Westbound Off-Ramp</td>
</tr>
<tr>
<td>• 340 meters (1,115.5 feet)</td>
</tr>
<tr>
<td>• Diverses from SFOBB Transition Structure between bents W3 and W4.</td>
</tr>
<tr>
<td>• Terminates at “T” intersection at Macalla Road.</td>
</tr>
<tr>
<td>Macalla Road</td>
</tr>
<tr>
<td>• Widening of Macalla Road approximately 202 meters (662.7 feet) adjacent to the terminus of the westbound on- and off-ramps.</td>
</tr>
<tr>
<td>Quarters 10/Building 267</td>
</tr>
<tr>
<td>• Quarters 10/Building 267 will be relocated to the north end of YBI.</td>
</tr>
<tr>
<td>Tree and Sensitive Plant Replacements</td>
</tr>
<tr>
<td>• Replacement trees and vegetation will be planted post-construction</td>
</tr>
</tbody>
</table>

⁷ The East Bay Chapter of the CNPS only covers Alameda and Contra Costa counties.
Figure 2-2
Alternative 4

Alternative 4 Proposed Ramps
- Proposed Westbound Off-Ramp
- Proposed Westbound On-Ramp
- Proposed Macalla Road Improvements

Separate Project Currently Under Construction
- San Francisco-Oakland Bay Bridge East Span Seismic Safety Project
- Transition Structure Portion of SFOBB

Source: Nima/USGS 2004; 2009

Not To Scale
2.3 Construction Costs and Staging

The estimated total construction costs for Alternative 2b is approximately $59 million and for Alternative 4 is approximately $125 million.

2.4 Construction Activities and Schedule

The following discussion provides an overview of the construction activities.

2.4.1 Construction Staging

The staging areas for both Alternative 2b and Alternative 4 would be the same. Both alternatives would utilize the staging areas used for the SFOBB ESSSP. The primary staging area is located east of the Officer’s Quarters Historic District and north of the SFOBB. Each alternative would use a secondary staging area south of the SFOBB and north of the U.S. Coast Guard (USCG) facilities. Storage of equipment and materials on-site would be limited to the staging and construction areas to minimize ground disturbance. Access for construction vehicles and equipment would be via Macalla Road, South Gate Road, and North Gate Road. Figures 2-3a and 2-3b illustrate the staging and storage areas and construction access route for Alternative 2b and 4, respectively.

2.4.2 Construction Methods

Both build alternatives would involve standard construction techniques and require large-scale construction equipment and labor-intensive activities. General activities would include demolition, excavation, grading, vegetation removal, utility relocation, temporary falsework erection, roadway/structure construction, landscaping, and demobilization.

The contractor will determine the means and methods of construction but typical construction equipment would include drill rigs, backhoes, cranes, concrete trucks, forklifts, paving vehicles, and delivery trucks. The construction period is estimated to be 2 years for both build alternatives.

2.4.3 Construction Timing

The Transportation Management Plan (TMP) guides construction staging and provides traffic handling information. Construction staging for the build alternatives assumes that a typical construction schedule would be used for the YBI Ramps Improvement Project. Efforts would be made to concentrate construction activities during off-peak hours. In addition, construction hours are subject to USCG restrictions. Scheduling construction activities during off-peak hours would ensure that roadways in the construction area are open during the peak traffic times to minimize disruption. The two primary types of construction activities that may occur during low traffic periods are:

- Erection of falsework for construction of ramp structures; and,
- Construction of Macalla Road and adjacent retaining wall.
Figure 2-3a
Alternative 2b Construction Staging Areas and Access Route

Yerba Buena Island Ramps EIR/EIS
P:\2008\08080090 Yerba Buena Island Interchange\5.0 Graphics (Non-CAD)\5.7 Report Graphics\Figures\Jason project Appendices\Figure 2-3a staging.ai (dbrady) 10/28/10
Figure 2-3b
Alternative 4 Construction Staging Areas and Access Route

Alternative 4 Proposed Ramps
- Proposed West Bound Off-Ramp
- Proposed West Bound On-Ramp
- Proposed Macalla Road Improvements

Separate Project Currently Under Construction
- San Francisco-Oakland Bay Bridge East Span Seismic Safety Project
- Transition Structure Portion of SFOBB

Source: Nima/USGS 2004; 2009

Yerba Buena Island Ramps EIR/EIS
P:\2008\08080090 Yerba Buena Island Interchange\5.0 Graphics (Non-CAD)\5.7 Report Graphics\Figures\Jason project Appendices\Figure 2-3b staging.ai (dbrady) 10/28/10
2.4.4 Construction Schedule

A breakdown of Alternative 2b and 4 primary stages anticipated for construction by activity and month is reflected in Table 2-2a and Table 2-2b below. Figure 2-4 and 2-5 illustrates the construction stages graphically for Alternatives 2b and 4, respectively.

Table 2–2a: Alternative 2b

<table>
<thead>
<tr>
<th>Stage</th>
<th>Construction Activities</th>
<th>Estimated Timeframe</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Construct falsework over Macalla Road, foundations, and superstructure</td>
<td>January 2012 - October 2013</td>
<td>10 Months</td>
</tr>
<tr>
<td>2</td>
<td>Construct retaining wall, paving at retaining wall, and superstructure</td>
<td>May 2013 - March 2013</td>
<td>11 Months</td>
</tr>
<tr>
<td>3</td>
<td>Construct abutment, superstructure, and Macalla Road improvements</td>
<td>April 2013 - March 2014</td>
<td>12 Months</td>
</tr>
<tr>
<td>4</td>
<td>Construct sidewalk and off-ramp transition structure widening</td>
<td>November 2013 - August 2014</td>
<td>10 Months</td>
</tr>
<tr>
<td>5</td>
<td>Construct viaduct structure widening</td>
<td>May 2014 - January 2015</td>
<td>9 Months</td>
</tr>
</tbody>
</table>

The total construction duration for Alternative 2b would be approximately 3 years (January 2012 to January 2015).

Table 2–2b: Alternative 4

<table>
<thead>
<tr>
<th>Stage</th>
<th>Construction Activities</th>
<th>Estimated Timeframe</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Construct WB on-ramp foundation and superstructure</td>
<td>January 2012 - June 2013</td>
<td>18 months</td>
</tr>
<tr>
<td>2</td>
<td>Construct Macalla Road Improvements</td>
<td>July 2013 - August 2013</td>
<td>2 months</td>
</tr>
<tr>
<td>3</td>
<td>Construct WB off-ramp</td>
<td>September 2013 - August 2014</td>
<td>12 months</td>
</tr>
<tr>
<td>4</td>
<td>Construct WB on-ramp tie in</td>
<td>September 2014 - June 2015</td>
<td>10 months</td>
</tr>
</tbody>
</table>

The total construction duration for Alternative 4 would be approximately 3.5 years (January 2012 to June 2015).

2.4.5 Temporary Roadway Closures

The following temporary road closures would occur for both Alternatives 2b and 4.

2.4.5.1 Stage 1 – Macalla Road Closure

Stage 1 would involve the construction of westbound on-ramp falsework over Macalla Road from Bent W10AL to E8. During falsework construction, the existing westbound on-ramp and the portion of Macalla Road would result in temporary detours and single-lane closures. These impacts would be minimized through coordination with the USCG and emergency service providers. Access to the islands would be maintained throughout project construction. Temporary traffic control would be implemented. The westbound on-ramp traffic will be detoured to the other on-ramp on the west side of the YBI tunnel.
via Treasure Island Road. Once falsework is completed, the westbound on-ramp structure from Bent W9L to W7 and westbound off-ramp structure from Bent W5L to W8 would be constructed. These construction activities would not involve any traffic impacts. The existing westbound on-ramp and Macalla Road would remain open during this phase.

2.4.5.2 Stage 2

Stage 2 would involve construction of a retaining wall on the west side of Macalla Road and new pavement in front of the retaining wall. During construction, one lane of Macalla Road would be closed while the other lane (east side of the roadway) would provide “controlled” two-way traffic. Temporary traffic control would be installed and flaggers would be stationed within the construction limits to guide motorists through the construction zone. The existing substation concrete stairway on the west side of the roadway would be relocated to the west side of the substation prior to the retaining wall construction. The existing westbound on-ramp would remain open to traffic during this phase.

2.4.5.3 Stage 3

Stage 3 would involve construction of the westbound off-ramp structure from Bent W8 to Abutment W11, westbound on-ramp structure from Bent W7 to abutment W11, and the remainder of Macalla Road adjacent to the terminus of the on- and off-ramps. During the construction, one lane would accommodate two-way traffic on Macalla Road (outside the hairpin curve), which would be diverted to the west side of the roadway. Temporary traffic control would be installed and flaggers would be stationed within the construction limits to guide motorists through the construction zone. The existing westbound on-ramp would remain open to traffic during this phase.

2.4.5.4 Stage 4

Stage 4 would involve construction of a sidewalk on Macalla Road in front of the new retaining wall. One lane would accommodate two-way traffic on Macalla Road (inside the hairpin curve), which would be diverted to the east side of the roadway. Temporary traffic control would be installed and flaggers would be stationed within the construction limits to guide motorists through construction area with precaution and safety. The existing westbound on-ramp would remain open to traffic during this phase.

2.4.5.5 Stage 5

Stage 5 would involve the construction of the last segment of the westbound on-ramp structure-viaduct and structure widening. During the construction, the right shoulder of the westbound transition structure would be closed from the YBI tunnel to Sta “W” 51+20. Temporary traffic control systems would be implemented and the duration and schedule of the shoulder closure would be confirmed by the RE together with the CTM. The temporary traffic control systems would comply with the Caltrans bridge standard shoulder closure charts to reduce the risk of any impacts. These construction activities would require closure of the existing westbound on-ramp. A detour to the westbound on-ramp on the west side of YBI would be provided. Macalla Road would remain open to traffic.
Figure 2-4
Alternative 2b Construction Stages

Source: 2010

Yerba Buena Island Ramps EIR/EIS

Not to Scale
Figure 2-5
Alternative 4 Construction Stages

Source: 2010
Not to Scale
2.5 Identification of a Preferred Alternative

Following release of the Draft EIR/EIS on February 25, 2011, 5 letters were received representing 13 separate comments regarding the environmental analysis and project alternatives. The YBI Ramps Improvement PDT, which is comprised of the lead agencies (SFCTA and Caltrans), cooperating (USCG), and participating agencies (TIDA), held a meeting on April 12, 2011 to consider and identify the preferred alternative. The unanimous decision was that Alternative 2b would best meet the purpose and need of the YBI Ramps Improvement Project. The Locally Preferred Alternative, Alternative 2b was adopted by the SFCTA on May 19, 2011 (Resolution 11-56). The relocation site of Quarters 10/Building 267 was determined following the identification of the preferred alternative. Additional analysis of the relocation site is included in this Final EIR/EIS as Section 3.21.

In accordance with CEQA, the SFCTA would certify that the project complies with CEQA, prepare findings for all significant impacts identified, prepare a Statement of Overriding Considerations for impacts that would not be mitigated below a level of significance, and certify that the findings and Statement of Overriding Considerations have been considered prior to project approval. If the SFCTA approves the project, it would then file a Notice of Determination with the State Clearinghouse that would identify whether the project would have significant impacts, whether mitigation measures were included as conditions of project approval, whether findings were made, and whether a Statement of Overriding Considerations was adopted. With respect to NEPA, Caltrans, as assigned by FHWA, would consider comments and document its decision regarding the selected alternative, project impacts, and mitigation measures in a Record of Decision (ROD) in accordance with NEPA. Following the project approval process, the sponsor agencies will move forward with preparation of the final design and permits. Based on available funding, permitting and construction could begin as early as 2012.

2.5.1 Alternatives Considered but Eliminated from Further Discussion Prior to Draft EIR/EIS

CEQA Guidelines Section 15126.6 requires the lead agency to identify the alternatives that were considered but rejected, and to briefly explain the reasons why the lead agency found them to be infeasible.

In September 2008, Caltrans prepared a SAFETEA-LU Coordination Plan for the project and invited agencies to become participating or cooperating agencies during the NEPA environmental review process. The goals are to make the environmental review process more efficient and timely, provide a process for resolving interagency disagreements, protect environmental and community resources, and expedite approvals of urgently needed transportation improvements. The Coordination Plan included a notice of initiation and letters were sent to stakeholder agencies and local interest groups to become cooperating or participating agencies in the YBI Ramps Improvement Project environmental process. Please refer to Chapter 5, Comments and Coordination for additional description of coordination efforts.

Combined documentation addressing both CEQA and NEPA is the most efficient means to comply with state and Federal requirements. This allows for one document to be prepared and circulated for public review. The alternatives considered and eliminated during the planning process also took into account Section 4(f) of the U.S. Department of Transportation Act which requires the analysis to consider that no prudent and feasible
alternative exists that would avoid the use of protected resource. Appendix B discusses the relevance of 4(f) resources to the alternatives eliminated as well as details on the alternatives carried through this EIR/EIS.

The planning process for identifying, designing and screening alternatives began with the study of many alternatives from a conceptual feasibility perspective in 2002. A number of build alternatives were presented to stakeholders and the public during several meetings by the project development team to solicit comments and suggestions on the design. Nonstandard features of the design were discussed and the results were used to further refine the alternatives in the Project Study Report (PSR) prepared by Caltrans in December 2007. The PSR included a summary of the results of the alternatives evaluation.

Throughout the planning process, several potential avoidance configurations were explored in order to attempt to avoid Section 4(f) properties, consisting of listed and eligible historic properties in close proximity to the ramp project locations. Alternative 6 described in this section represents the Avoidance Alternative that was created in an attempt to avoid the three known 4(f) resources, the Senior Officers’ Historic District, Quarters 1/Nimitz House and Quarters 10 (including Building 267). Alternative 6 proposes to construct both off- and on-ramps as depicted in Figure 2-14, and would be positioned inside a tunnel system mined through this portion of Yerba Buena Island. This Avoidance Alternative introduces additional safety and operational concerns that would result in additional environmental impacts. In addition, the overall estimated cost of Alternative 6 would range from seven to thirteen times as much as the other alternatives. Therefore, the Avoidance Alternatives is not feasible and prudent and could not be selected. This determination is described in more detail in Appendix B, Section 4(f).

After many conceptual planning refinements, the PSR recommended that two of the alternatives, Alternatives 2b and 4, be carried forward for analysis in this EIR/EIS. The remaining seven build alternatives were determined to be nonviable and were eliminated from further study for various reasons. These alternatives are included in the Alternatives Screening Analysis Summary presented in Table 2-3 along with the recommended alternatives for comparison purposes. A brief summary of environmental effects of each alternative is included in Table 2-3 along with a color coded ranking of green=low, yellow=medium and red=high. Low in this case represents less potential for an environment effect and High means a greater potential for an environmental effect. The reasons for the elimination of the nonviable alternatives are briefly summarized below.

The range of alternatives discussed in the PSR was limited to the design and reconstruction of the ramps on the east side of the YBI tunnel. Nonviable alternatives considered reconstructing the eastbound off-ramp but it was deemed infeasible due to the mandatory closure of the SFOBB, geometric challenges, effects on land use, excessive cost and safety concerns. The ramps west of the YBI tunnel have not been considered for reconstruction because the space available is insufficient to provide enough room for the ramps to be designed and reconstructed to meet current geometric standards.
This page intentionally left blank.
<table>
<thead>
<tr>
<th>Screening Level / Criteria</th>
<th>Alternative 1 Nonviable Figure 2-6</th>
<th>Alternative 1A Nonviable Figure 2-7</th>
<th>Alternative 2 Nonviable Figure 2-8</th>
<th>Alternative 2A Nonviable Figure 2-9</th>
<th>Alternative 2B Analyzed in EIR/EIS Figure 2-10</th>
<th>Alternative 3 Nonviable Figure 2-11</th>
<th>Alternative 4 Analyzed in EIR/EIS Figure 2-12</th>
<th>Alternative 5 Nonviable 4(f) Avoidance Figure 2-13</th>
<th>Alternative 6 Nonviable 4(f) Avoidance Figure 2-14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Eastbound (EB) off-ramp east side of YBI begins in “T” intersection at Hillcrest Road, parallel to EB on-ramp, loops left under Transition Structure near east end, crosses over both WB on- and off-ramps, merges with West Tie-in structure.</td>
<td>EB off-ramp east side of YBI diverges from Transition Structure eastern end, curves right, and terminates in “T” intersection at Macalla Road.</td>
<td>Shorter ramp length than Alternative 1.</td>
<td>EB on-ramp east side of YBI diverges from Macalla Road, south of its terminus location on Alternative 1.</td>
<td>Similar to Alternative 2 except for the following:</td>
<td>Similar to Alternative 2 except for the following:</td>
<td>WB on-ramp begins at “T” intersection at South Gate Road, proceeds west, loops under SFOBB, and terminates at “T” intersection at South Gate Road.</td>
<td>Alternative proposes a standard tight diamond intersection with minimal nonstandard design features and would have minor impacts on USCG access and operations.</td>
<td>Alternative would avoid all 4(f) resources, however, geometric design flaws, operational issues and safety problems would be present.</td>
</tr>
<tr>
<td>YBI diverges from Transition Structure near eastern end, crosses over the westbound on-ramp, crosses under WB on-ramp, curves right, and terminates in “T” intersection at Macalla Road.</td>
<td>Similar to Alternative 1A except for the following:</td>
<td>EB on-ramp east side of YBI diverges from West Tie-in structure, loops right, and terminates at Macalla Road.</td>
<td>EB on-ramp east side of YBI diverges from West Tie-in structure, loops right, and terminates at Macalla Road.</td>
<td>EB on-ramp east side of YBI diverges from West Tie-in structure, loops right, and terminates at Macalla Road.</td>
<td>EB on-ramp begins at “T” intersection at Macalla Road, merges onto north side of Bay Bridge.</td>
<td>EB on-ramp begins at “T” intersection at Macalla Road, merges onto north side of Bay Bridge.</td>
<td>WB on-ramp begins at South Gate Road, proceeds east, loops under new SFOBB, and crosses over WB off-ramp along north side of SFOBB. No HOV lane would be provided.</td>
<td>WB on-ramp begins at South Gate Road, proceeds east, loops under new SFOBB, and terminates at “T” intersection at North Gate Road. Pavement reconstruction on Macalla Road and South Gate Road at ramp intersections proposed to ensure proper pavement conforms and truck turning movements can be accommodated.</td>
<td>WB on-ramp begins at South Gate Road, proceeds east, loops under new SFOBB, and terminates at “T” intersection at North Gate Road. Pavement reconstruction on Macalla Road and South Gate Road at ramp intersections proposed to ensure proper pavement conforms and truck turning movements can be accommodated.</td>
</tr>
<tr>
<td>Widening of Macalla Road would be necessary adjacent to the terminus of the WB on- and off-ramps.</td>
<td>This alternative attempts to avoid two historic properties in this area (Senior Officers’ Quarters Historic District and Quarters 1/Nimitz House).</td>
<td>YBI begins in “T” intersection at Hillcrest Road, travels east, loops right, crosses over westbound off-ramp, and merges with Transition Structure.</td>
<td>This alternative attempts to avoid two historic properties in this area (Senior Officers’ Quarters Historic District and Quarters 1/Nimitz House).</td>
<td>This alternative attempts to avoid two historic properties in this area (Senior Officers’ Quarters Historic District and Quarters 1/Nimitz House).</td>
<td>This alternative attempts to avoid two historic properties in this area (Senior Officers’ Quarters Historic District and Quarters 1/Nimitz House).</td>
<td>This alternative attempts to avoid two historic properties in this area (Senior Officers’ Quarters Historic District and Quarters 1/Nimitz House).</td>
<td>This alternative attempts to avoid two historic properties in this area (Senior Officers’ Quarters Historic District and Quarters 1/Nimitz House).</td>
<td>This alternative attempts to avoid two historic properties in this area (Senior Officers’ Quarters Historic District and Quarters 1/Nimitz House).</td>
<td>This alternative would require extensive excavation that would require daylighting the existing YBI tunnel to allow for construction of WB on-ramp and EB off-ramp. This tunnel is also a historic 4(f) property.</td>
</tr>
</tbody>
</table>

EB off-ramp east side of YBI diverges from the West Tie-in structure, loops left under the Transition Structure, terminates in “T” intersection at Macalla Road.

EB on-ramp east side of YBI begins at Hillcrest Road, south of its terminus location on Alternative 1.

EB on-ramp east side of YBI diverges from West Tie-in structure, loops right, and terminates at Macalla Road.

WB on-ramp begins at “T” intersection at Macalla Road, merges onto north side of Bay Bridge.

Two traffic lanes, merging into one as it connects to SFOBB. One lane would be HOV lane, and one lane would be mixed-flow.

Figure 2-8

Figure 2-9

Figure 2-10

Figure 2-14

Figure 2-12

Figure 2-13

Figure 2-14

Figure 2-12

Figure 2-13

Figure 2-14

Figure 2-12

Figure 2-13
Table 2–3: Alternatives Screening Analysis Summary

<table>
<thead>
<tr>
<th>Screening Level / Criteria</th>
<th>Alternative 1 Nonviable Figure 2-6</th>
<th>Alternative 1A Nonviable Figure 2-7</th>
<th>Alternative 2 Nonviable Figure 2-8</th>
<th>Alternative 2A Analyzed in EIR/EIS Figure 2-9</th>
<th>Alternative 3 Nonviable Figure 2-10</th>
<th>Alternative 4 Analyzed in EIR/EIS Figure 2-12</th>
<th>Alternative 5 Nonviable 4(f) Avoidance Figure 2-13</th>
<th>Alternative 6 Nonviable Figure 2-14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening Level : Purpose and Need</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Meets Caltrans requirements to the greatest extent practicable (feasible) to improve on- and off-ramp safety, design and operation standards for vehicular traffic to and from Yerba Buena Island and Treasure Island.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EiB on-ramp – Horseshoe-shaped ramp is undesirable for traffic safety reasons resulting in reduced stopping sight distance due to horizontal obstructions from bridge columns and reduced design speeds at the off-ramp. The 45 meter (150 foot) radius for the off-ramp crosses under the transition structure.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EiB on-ramp – Length of ramp is 898 meters (2,946 feet). Ramp has a reduced design speed of 40.2 km/h (25 mph) due to radius of horizontal curve at loop location (loop under main line). Restricted sight distance due to horizontal obstructions at bridge columns. Undesirable reverse curves, short tangent transitions for super elevation. May accommodate HOV lane with additional cost for widening structure and ROW.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EiB off-ramp – Horseshoe-shaped ramp is undesirable for traffic safety reasons resulting in reduced stopping sight distance and design speeds at the EB off-ramp. The 53 meter (175 foot) radius for the off-ramp meets recommendations for ramp radii. Both on ramps can accommodate HOV bypass lanes.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EiB off-ramp – Length of ramp is 898 meters (2,946 feet). Ramp has a reduced design speed of 40.2 km/h (25 mph) due to horizontal curve at loop location (loop under main line). Restricted sight distance due to horizontal obstructions at bridge columns. Undesirable reverse curves, short tangent transitions for super elevation. Similar geometry as alternative 1A.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EiB off-ramp – undesirable reverse curve before Macalla Rd. approach. Length of ramp is 1,061 feet (324 meters). Length of ramp is constrained by west limit of self anchored suspension bridge and inability to initiate ramp widening on</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevated WB on- and off-ramps through historic district put more traffic further into the site. Requires additional ROW north of the existing SFOBB marina.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB on-ramp – ramp requires reduced design speed to 32.2 km/h (20 mph) at the loop location. Length of ramp is 546 meters (1,791 feet). Similar geometry as alternative 2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB off-ramp – short tangent transition for the reverse curve. Length of ramp is 412 meters (1,352 feet). Similar geometry as alternative 2. Length of ramp is constrained by west limit of self anchored suspension bridge and inability to initiate ramp widening on self anchored suspension bridge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geometry and Safety</td>
<td>Elevated WB on- and off-ramps through historic district put more traffic further into the site. Requires additional ROW north of the existing SFOBB marina.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB on-ramp – ramp requires reduced design speed to 32.2 km/h (20 mph) at the loop location. Length of ramp is 267 meters (873 feet). Requires additional ROW north of the existing SFOBB marina.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB off-ramp – short tangent transition for the reverse curve. Length of ramp is 267 meters (873 feet). Requires additional ROW north of the existing SFOBB marina.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The length of the WB on-ramp would be approximately 287 meters (941 feet). The WB off-ramp would have two traffic lanes, merging into one as it connects to the SFOBB. One lane would be a high occupancy vehicle (HOV) lane and the other a non-HOV lane.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yerba Buena Island Ramps EIR/EIS 2-18 October 2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Yerba Buena Island Ramps EIR/EIS 2-18 October 2011
<table>
<thead>
<tr>
<th>Screening Level / Criteria</th>
<th>Alternative 1 Nonviable Figure 2-6</th>
<th>Alternative 1A Nonviable Figure 2-7</th>
<th>Alternative 2 Nonviable Figure 2-8</th>
<th>Alternative 2A Nonviable Figure 2-9</th>
<th>Alternative 2B Analyzed in EIR/EIS Figure 2-10</th>
<th>Alternative 3 Nonviable Figure 2-11</th>
<th>Alternative 4 Analyzed in EIR/EIS Figure 2-12</th>
<th>Alternative 5 Nonviable Figure 2-13</th>
<th>Alternative 6 Nonviable 4/I Avoidance Figure 2-14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access, Traffic Circulation and Safety</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EB and WB off-ramps are isolated and both terminate at Macalla Road. May create driver confusion and some increased potential for wrong-way movements onto the off ramps, particularly the EB off ramp. Location of WB on ramp is intuitive relative to the EB off ramp. Access to USCG is impeded by off ramps locations.</td>
<td>EB and WB off-ramps are isolated and both terminate at Macalla Road. May create driver confusion and some increased potential for wrong-way movements onto the off ramps. EB off-ramp on east side of YBI may cause driver confusion and some increased potential for wrong-way movements onto this off-ramp.</td>
<td>The EB off-ramp is isolated and each terminates at Macalla Road. The EB off-ramp is shifted further south when compared to Alternatives 1 and 1B. The isolated location of the EB off-ramp may create driver confusion and some increased potential for wrong-way movements onto this off-ramp.</td>
<td>Two traffic lanes, merging into one as it connects to SFOBB. One lane would be HOV lane, and one lane would be mixed-flow. EB and WB off-ramps are isolated and both terminals at Macalla Road. Traffic circulation may cause driver confusion and some increased potential for wrong-way movements onto the off ramp. The on ramp would be traffic metered, mitigating the merge related congestion impacts to mainline traffic; minimizing the potential for congested related accidents. Proper pavement markings and directional signage would provide additional guidance, minimizing the potential for wrong way movements.</td>
<td>EB and WB off-ramps eventually both terminate at Macalla Road. May create driver confusion and increased potential for wrong-way movements onto the off-ramps. Eastbound on-ramp would be reconfigured to allow vertical clearance under EB off-ramp. Vehicular traffic would transit above the 50.5 meter (165 feet) shoreline band and above the S.F. Bay. WB on ramp has an initial radius of 75 meters (250 feet) followed by a radius of 30 meters (100 feet). These decreasing radius curves may not meet driver expectations resulting in a higher potential for accidents.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The WB on and off-ramps are separate. This may cause confusion for drivers regarding location of WB on-ramp. The on-ramp is a short 5-curve with two tight turning radii making acceleration onto the ramp difficult. Tunnels take up a portion of each on and off ramp on the curved portion reducing the sight distance making it less safe for drivers increasing potential for accidents.</td>
</tr>
<tr>
<td>Bridge Structure Area and Material Quantity</td>
<td>11,241.27 square meters (121,000 square feet) Bridge Structure (WB only)</td>
<td>11,384.5 square meters (125,000 square feet) Bridge Structure (WB only)</td>
<td>8,361.27 square meters (89,000 square feet) Bridge Structure (WB only)</td>
<td>7,896.76 square meters (85,000 square feet) Bridge Structure (WB only)</td>
<td>6,317.41 square meters (68,000 square feet) Bridge Structure (WB only)</td>
<td>6,105.46 square meters (67,000 square feet) Bridge Structure (WB only)</td>
<td>12,263.20 square meters (132,000 square feet) Bridge Structure (WB only)</td>
<td>6,410.31 square meters (69,000 square feet) Bridge Structure (WB only)</td>
<td>7,246.44 square meters (78,000 square feet) Bridge Structure (WB only)</td>
</tr>
</tbody>
</table>
Table 2–3: Alternatives Screening Analysis Summary
Yerba Buena Island Ramps EIR/EIS

<table>
<thead>
<tr>
<th>Screening Level / Criteria</th>
<th>Alternative 1 Nonviable Figure 2-6</th>
<th>Alternative 1A Nonviable Figure 2-7</th>
<th>Alternative 2 Nonviable Figure 2-8</th>
<th>Alternative 2A Nonviable Figure 2-9</th>
<th>Alternative 2B Analyzed in EIR/EIS Figure 2-10</th>
<th>Alternative 3 Nonviable Figure 2-11</th>
<th>Alternative 4 Analyzed in EIR/EIS Figure 2-12</th>
<th>Alternative 5 Nonviable Figure 2-13</th>
<th>Alternative 6 Nonviable 4(f) Avoidance Figure 2-14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening Level:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Considerations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land Use</td>
<td>Land use of historic district impacted by relocating Quarters 1/Nimitz House. Ramps pass over a portion of the historic district, a planned mix-use area and institutional areas planned for future under the TI/YBI Project. Requires land acquisition and ROW transfer. Structure directly above San Francisco Bay Conservation and Development Commission’s (BCDC) jurisdictional 30.5 meter (100-foot) band.</td>
<td>Land use impacted where Quarters 10 (and Building 267) would change due to relocation and addition of ramps at Macalla Road grade. Ramps pass over a portion of the historic district, a planned mix-use area and institutional areas planned for future under the TI/YBI Project. Requires land acquisition and ROW transfer. Aerial structure directly above BCDC jurisdictional 30.5 meter (100-foot) band.</td>
<td>Land use impacted where Quarters 10 (and Building 267) would change due to relocation and addition of ramps at Macalla Road grade. Ramps pass over a portion of the historic district, a planned mix-use area, institutional areas and open space land planned for future under the TI/YBI Project.</td>
<td>Land use would change where ramps meet Macalla Road grade. Ramps pass over a portion of the historic district, an area planned for mixed use in future under the TI/YBI Project. However, the ramps would be directly above BCDC jurisdictional 30.5 meter (100-foot) band and the S.F Bay.</td>
<td>Ramps pass over a portion of the historic district and planned mix-use, institutional, and open space areas intended for future use under the TI/YBI Project. Ramps pass over mixed institutional and open space areas planned for future use under the TI/YBI Project.</td>
<td>Ramps pass over a small portion of the historic district, a planned mix-use, institutional, and open space area for future use under the TI/YBI Project. Existing structures would be removed and the site would be divided, limiting development potential.</td>
<td>Ramps and a tunnel would be constructed through residential and open space areas planned for future use under the TI/YBI Project.</td>
<td>Ramps and a tunnel would be constructed through residential and open space areas planned for future use under the TI/YBI Project.</td>
<td></td>
</tr>
</tbody>
</table>
Table 2–3: Alternatives Screening Analysis Summary

<table>
<thead>
<tr>
<th>Screening Level / Criteria</th>
<th>Alternative 1 Nonviable Figure 2-6</th>
<th>Alternative 1A Nonviable Figure 2-7</th>
<th>Alternative 2 Nonviable Figure 2-8</th>
<th>Alternative 2A Analyzed in EIR/EIS Figure 2-9</th>
<th>Alternative 2B Analyzed in EIR/EIS Figure 2-10</th>
<th>Alternative 3 Nonviable Figure 2-11</th>
<th>Alternative 4 Analyzed in EIR/EIS Figure 2-12</th>
<th>Alternative 5 Nonviable Figure 2-13</th>
<th>Alternative 6 Nonviable 4(f) Avoidance Figure 2-14</th>
</tr>
</thead>
<tbody>
<tr>
<td>4(f) : Historic Properties</td>
<td>Elevated EB and WB off- ramps would directly impact and adversely affect two historic properties: Senior Officers’ Quarters Historic District and Quarters 1/Nimitz House. This alternative eliminates isolated ramps scenario. Ramps crossing over two resources would require aerial easements from within properties, and two columns would be located within boundaries. There would be a direct impact to Quarters 1/Nimitz House, requiring its removal and relocation.</td>
<td>Elevated WB on- and off- ramps would directly impact and adversely affect two historic properties: Senior Officers’ Quarters Historic District, Quarters 1/Nimitz House, Quarters 10 (and Building 267). Ramps crossing over first two resources would require aerial easements from within properties, and two columns would be located within boundaries. Quarters 1/Nimitz House would be acquired, removed, and relocated.</td>
<td>Elevated EB on- and off- ramps would directly impact and adversely affect three historic properties: Senior Officers’ Quarters Historic District, Quarters 1/Nimitz House, Quarters 10 (and Building 267). Ramps crossing over first two resources would require aerial easements from within properties, and two columns would be located within boundaries. Quarters 1/Nimitz House, Quarters 10 (and Building 267) would be acquired, removed, and relocated.</td>
<td>Elevated WB on- and off- ramps would directly impact and adversely affect three historic properties: Senior Officers’ Quarters Historic District, Quarters 1/Nimitz House, Quarters 10 (and Building 267). Ramps crossing over four resources would require aerial easements from within properties, and four columns would be located within boundaries. Quarters 1/Nimitz House, Quarters 10 (and Building 267) would be acquired, removed, and relocated.</td>
<td>Elevated WB on- and off- ramps would directly impact and adversely affect three historic properties: Senior Officers’ Quarters Historic District and Quarters 1/Nimitz House, creating an adverse effect. Ramps crossing over two resources would require aerial easements from within properties and one column would be located within boundaries. Quarters 1/Nimitz House, Quarters 10 (and Building 267) would remain in place.</td>
<td>Total area of 4(f) Use – 0.09 hectare (0.22 acre)</td>
<td>Aerial easement – 0.04 hectare (0.1 acre)</td>
<td>Ramps would not physically impact any 4(f) resources.</td>
<td></td>
</tr>
<tr>
<td>Aerial easement – 0.15 hectare (0.36 acre)</td>
<td>Total area of 4(f) Use – 0.40 hectare (1.0 acre)</td>
<td>Total area of 4(f) Use – 0.40 hectare (1.0 acre)</td>
<td>Total area of 4(f) Use – 0.40 hectare (1.0 acre)</td>
<td>Total area of 4(f) Use – 0.40 hectare (1.0 acre)</td>
<td>Total area of 4(f) Use – 0.40 hectare (1.0 acre)</td>
<td>Total area of 4(f) Use – 0.40 hectare (1.0 acre)</td>
<td>Total area of 4(f) Use – 0.40 hectare (1.0 acre)</td>
<td>Total area of 4(f) Use – 0.40 hectare (1.0 acre)</td>
<td>Total area of 4(f) Use – 0.40 hectare (1.0 acre)</td>
</tr>
<tr>
<td>Aerial easement – 0.15 hectare (0.36 acre)</td>
<td>Total area of 4(f) Use – 0.90 hectare (2.25 acre)</td>
<td>Total area of 4(f) Use – 0.90 hectare (2.25 acre)</td>
<td>Total area of 4(f) Use – 0.90 hectare (2.25 acre)</td>
<td>Total area of 4(f) Use – 0.90 hectare (2.25 acre)</td>
<td>Total area of 4(f) Use – 0.90 hectare (2.25 acre)</td>
<td>Total area of 4(f) Use – 0.90 hectare (2.25 acre)</td>
<td>Total area of 4(f) Use – 0.90 hectare (2.25 acre)</td>
<td>Total area of 4(f) Use – 0.90 hectare (2.25 acre)</td>
<td>Total area of 4(f) Use – 0.90 hectare (2.25 acre)</td>
</tr>
<tr>
<td>Visual</td>
<td>Substantial negative visual changes to setting of the resources, including views to and from resources, as well as removal of resources. Introduces 22 support columns into the landscape, obstructing views.</td>
<td>Substantial negative visual changes to setting of the resources, including views to and from resources, as well as removal of resources. Introduces 18 support columns into the landscape, obstructing views.</td>
<td>Substantial negative visual changes to setting of the resources, including views to and from resources, as well as removal of resources. Introduces 18 support columns into the landscape, obstructing views.</td>
<td>Substantial negative visual changes to setting of the resources, including views to and from resources, as well as removal of resources. Introduces 18 support columns into the landscape, obstructing views.</td>
<td>Substantial negative visual changes to setting of the resources, including views to and from resources, as well as removal of resources. Introduces 13 support columns into the landscape, obstructing views.</td>
<td>Substantial negative visual changes to setting of the resources, including views to and from resources, as well as removal of resources. Introduces 23 support columns into the landscape, obstructing views.</td>
<td>Substantial negative visual changes to setting of the resources, including views to and from resources, as well as removal of resources. Introduces 23 support columns into the landscape, obstructing views.</td>
<td>Substantial negative visual changes to setting of the resources, including views to and from resources, as well as removal of resources. Introduces 23 support columns into the landscape, obstructing views.</td>
<td>Negative visual changes to the setting around the 4(f) resources.</td>
</tr>
<tr>
<td></td>
<td>Introduces 22 support columns into the landscape, obstructing views.</td>
<td>Introduces 18 support columns into the landscape, obstructing views.</td>
<td>Introduces 18 support columns into the landscape, obstructing views.</td>
<td>Introduces 13 support columns into the landscape, obstructing views.</td>
<td>Visual effect of the ramp and support columns along the S.F Bay edge is adverse.</td>
<td>Visual effect of the ramp and support columns along the S.F Bay edge is adverse.</td>
<td>Visual effect of the ramp and support columns along the S.F Bay edge is adverse.</td>
<td>Visual effect of the ramp and support columns along the S.F Bay edge is adverse.</td>
<td>Visual effect of the ramp and support columns along the S.F Bay edge is adverse.</td>
</tr>
</tbody>
</table>

Yerba Buena Island Ramps EIR/EIS 2-21 October 2011
Chapter 2 – Project Alternatives

Table 2-3: Alternatives Screening Analysis Summary

<table>
<thead>
<tr>
<th>Screening Level Criteria</th>
<th>Alternative 1 Nonviable Figure 2-6</th>
<th>Alternative 1A Nonviable Figure 2-7</th>
<th>Alternative 2 Nonviable Figure 2-8</th>
<th>Alternative 2A Nonviable Figure 2-9</th>
<th>Alternative 2B Analyzed in EIR/EIS Figure 2-10</th>
<th>Alternative 3 Nonviable Figure 2-11</th>
<th>Alternative 4 Analyzed in EIR/EIS Figure 2-12</th>
<th>Alternative 5 Nonviable 4(f) Avoidance Figure 2-13</th>
<th>Alternative 6 Nonviable 4(f) Avoidance Figure 2-14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise</td>
<td>Construction impacts for limited time to noise. Some minor change in operational noise anticipated due to location through the site.</td>
<td>Construction impacts for limited time to noise. Some minor change in operational noise anticipated due to location through the site.</td>
<td>Construction impacts for limited time to noise. Operational noise changes anticipated due to location through the site. Some cars would be queuing on the ramps adding more noise.</td>
<td>Construction impacts for limited time to noise. Operational noise changes anticipated due to location through the site. More cars would be queuing on the ramps adding more noise.</td>
<td>Construction impacts for limited time to noise. Minimal change in operational noise anticipated. 0-1 dBA Leq modeled noise increase at receivers.</td>
<td>Noise construction impacts anticipated to take longer compared to other alternatives. Operational noise changes anticipated due to location through the site. Some cars would be queuing on the ramps adding more noise.</td>
<td>Construction noise impacts anticipated to take longer compared to other alternatives. Change in operational noise anticipated due to opening of tunnel which would add more traffic noise.</td>
<td>Construction noise impacts anticipated to take longer compared to other alternatives due to the amount of excavation and construction material required. Change in operational noise changes anticipated due to location through the site and addition of two tunnels.</td>
<td>Construction noise impacts anticipated to take longer compared to other alternatives due to the amount of excavation and construction material required.</td>
</tr>
<tr>
<td>Air Quality</td>
<td>Construction impacts for limited time. No change in operational air quality anticipated.</td>
<td>Construction impacts for limited time. No change in operational air quality anticipated.</td>
<td>Construction impacts for limited time. Operational air quality changes anticipated due to location through the site. Some cars would be queuing on the ramps adding more emissions.</td>
<td>Construction impacts for limited time. Operational air quality changes anticipated due to location through the site. Some cars would be queuing on the ramps adding more emissions.</td>
<td>Construction impacts for limited time. No change in operational air quality anticipated.</td>
<td>Air quality construction impacts anticipated to last longer than other alternatives. Operational air quality changes anticipated due to location through the site. Some cars would be queuing on the ramps adding more emissions.</td>
<td>Construction impacts for limited time. No change in operational air quality anticipated.</td>
<td>Air quality construction impacts anticipated to last longer than other alternatives. Change in operational air quality anticipated due to the effects of design change, however levels difficult to predict.</td>
<td>Air quality construction impacts anticipated to last longer than other alternatives. Operational air quality changes anticipated due to location through the site and design change with addition of two tunnels.</td>
</tr>
<tr>
<td>Biological Resources</td>
<td>Potential impacts on biological resources north of I-80 within shoreline band, adjacent to S.F.Bay.</td>
<td>Potential impacts on biological resources north of I-80 within shoreline band, adjacent to S.F.Bay.</td>
<td>Limited impacts on biological resources north of I-80 due to ramp location through vegetated communities.</td>
<td>Limited impacts on biological resources north of I-80 due to ramp location through vegetated communities.</td>
<td>Limited impacts on biological resources north of I-80 within an area due to ramp design.</td>
<td>Impacts on biological resources north of I-80 due to effect of change. Potential adverse impacts on biological resources north of I-80, including the S.F.Bay. Potential impacts on biological resources north of I-80 and above the shoreline due to extensive excavation.</td>
<td>Potential impacts on biological resources north of I-80 as a result of excavation of fill material.</td>
<td>Potential impacts on biological resources north of I-80 due to extensive excavation of fill. Potential impacts on biological resources north of I-80 due to extensive excavation of fill.</td>
<td></td>
</tr>
</tbody>
</table>

Stakeholder Considerations:

- **BCDC – Public Access (Bay Trail):**
 - Encroaches onto BCDC’s 30.5 meter (100-foot) shoreline band, creating additional environmental concerns.
 - Limited encroachment onto BCDC’s 30.5 meter (100-foot) shoreline band.
 - Limited encroachment onto BCDC’s 30.5 meter (100-foot) shoreline band.
 - No encroachment onto BCDC’s 100-foot shoreline band and 30.5 meter (100-foot) shoreline band.
 - Encroachment onto BCDC’s 30.5 meter (100-foot) shoreline band.
 - Limited encroachment onto BCDC’s 30.5 meter (100-foot) shoreline band.
 - Limited encroachment onto BCDC’s 30.5 meter (100-foot) shoreline band.
 - No encroachment onto BCDC’s 100-foot shoreline band and 30.5 meter (100-foot) shoreline band.
 - Encroachment onto BCDC’s 30.5 meter (100-foot) shoreline band.
 - No encroachment onto BCDC’s 30.5 meter (100-foot) shoreline band.

- **Community Considerations (Including Island Users):**
 - Interruption to access conditions and noise during construction. Permanent impact of aerial structure above 30.5 meter (100-foot) shoreline band.
 - Interruption to access conditions and noise during construction. Permanent impact of aerial structure above 30.5 meter (100-foot) shoreline band.
 - Interruption to access conditions and noise during construction. Permanent impact of aerial structure above 30.5 meter (100-foot) shoreline band and S.F. Bay.
 - Interruption to access conditions and noise during construction. Change to historic tunnel and alteration of fill to allow for future development.
 - Interruption to access conditions and noise during construction. Alteration of fills land use divides into, limiting future development.

Yerba Buena Island Ramps EIR/EIS

October 2011

2-22
Table 2-3: Alternatives Screening Analysis Summary

<table>
<thead>
<tr>
<th>Screening Level / Criteria</th>
<th>Alternative 1 Nonviable Figure 2-6</th>
<th>Alternative 1A Nonviable Figure 2-7</th>
<th>Alternative 2 Nonviable Figure 2-8</th>
<th>Alternative 2A Analyzed in EIR/EIS Figure 2-9</th>
<th>Alternative 2B Analyzed in EIR/EIS Figure 2-10</th>
<th>Alternative 3 Nonviable Figure 2-11</th>
<th>Alternative 4 Analyzed in EIR/EIS Figure 2-12</th>
<th>Alternative 5 Nonviable 4(f) Avoidance Figure 2-13</th>
<th>Alternative 6 Nonviable 4(f) Avoidance Figure 2-14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Impacts During Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction of EB and WB off-ramps</td>
<td>Access rerouted. Delays anticipated. WB on-ramp traffic would be detoured to other on-ramp on east side of YBI tunnel via Treasure Island Road. Traffic at Macalla Rd would be restricted to one lane during paving operations.</td>
<td>Access rerouted. Delays anticipated. WB on-ramp traffic would be detoured to other on-ramp on east side of YBI tunnel via Treasure Island Road. Traffic at Macalla Rd would be restricted to one lane during paving operations.</td>
<td>Access rerouted. Delays anticipated. WB on-ramp traffic would be detoured to other on-ramp on east side of YBI tunnel via Treasure Island Road. Traffic at Macalla Rd would be restricted to one lane during paving operations.</td>
<td>Access rerouted. Delays anticipated. WB on-ramp traffic would be detoured to other on-ramp on east side of YBI tunnel via Treasure Island Road. Traffic at Macalla Rd would be restricted to one lane during paving operations.</td>
<td>Access rerouted. Delays anticipated. WB on-ramp traffic would be detoured to other on-ramp on east side of YBI tunnel via Treasure Island Road. Traffic at Macalla Rd would be restricted to one lane during paving operations.</td>
<td>Access rerouted. Delays anticipated. WB on-ramp traffic would be detoured to other on-ramp on east side of YBI tunnel via Treasure Island Road. Traffic at Macalla Rd would be restricted to one lane during paving operations.</td>
<td>Access rerouted. Delays anticipated. WB on-ramp traffic would be detoured to other on-ramp on east side of YBI tunnel via Treasure Island Road. Traffic at Macalla Rd would be restricted to one lane during paving operations.</td>
<td>Access rerouted. Delays anticipated. WB on-ramp traffic would be detoured to other on-ramp on east side of YBI tunnel via Treasure Island Road. Traffic at Macalla Rd would be restricted to one lane during paving operations.</td>
<td>Access rerouted. Delays anticipated. WB on-ramp traffic would be detoured to other on-ramp on east side of YBI tunnel via Treasure Island Road. Traffic at Macalla Rd would be restricted to one lane during paving operations.</td>
</tr>
<tr>
<td>Construction of EB off-ramps adjacent to Quarters 1/Nimitz House</td>
<td>Phasing challenges from detour to other on-ramp on west side of YBI tunnel of YBI Tunnel, described above.</td>
<td>Phasing challenges from detour to other on-ramp on west side of YBI tunnel of YBI Tunnel, described above.</td>
<td>Phasing challenges from detour to other on-ramp on west side of YBI tunnel of YBI Tunnel, described above.</td>
<td>Phasing challenges from detour to other on-ramp on west side of YBI tunnel of YBI Tunnel, described above.</td>
<td>Phasing challenges from detour to other on-ramp on west side of YBI tunnel of YBI Tunnel, described above.</td>
<td>Phasing challenges from detour to other on-ramp on west side of YBI tunnel of YBI Tunnel, described above.</td>
<td>Phasing challenges from detour to other on-ramp on west side of YBI tunnel of YBI Tunnel, described above.</td>
<td>Phasing challenges from detour to other on-ramp on west side of YBI tunnel of YBI Tunnel, described above.</td>
<td>Phasing challenges from detour to other on-ramp on west side of YBI tunnel of YBI Tunnel, described above.</td>
</tr>
<tr>
<td>Phasing/Staging</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard roadway construction, however building the ramps to minimize impact on the surrounding historic resource would be difficult.</td>
<td>Standard roadway construction, however building the ramps to minimize impact on the surrounding historic resource would be difficult.</td>
<td>Standard roadway construction, however building the ramps to minimize impact on the surrounding historic resource would be difficult.</td>
<td>Standard roadway construction, however building the ramps to minimize impact on the surrounding historic resource would be difficult.</td>
<td>Standard roadway construction, however building the ramps to minimize impact on the surrounding historic resource would be difficult.</td>
<td>Standard roadway construction, however building the ramps to minimize impact on the surrounding historic resource would be difficult.</td>
<td>Standard roadway construction, however building the ramps to minimize impact on the surrounding historic resource would be difficult.</td>
<td>Standard roadway construction, however building the ramps to minimize impact on the surrounding historic resource would be difficult.</td>
<td>Standard roadway construction, however building the ramps to minimize impact on the surrounding historic resource would be difficult.</td>
<td></td>
</tr>
<tr>
<td>Constructability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard roadway construction, however building the ramps to minimize impact on the surrounding historic resource would be difficult.</td>
<td>Standard roadway construction, however building the ramps to minimize impact on the surrounding historic resource would be difficult.</td>
<td>Standard roadway construction, however building the ramps to minimize impact on the surrounding historic resource would be difficult.</td>
<td>Standard roadway construction, however building the ramps to minimize impact on the surrounding historic resource would be difficult.</td>
<td>Standard roadway construction, however building the ramps to minimize impact on the surrounding historic resource would be difficult.</td>
<td>Standard roadway construction, however building the ramps to minimize impact on the surrounding historic resource would be difficult.</td>
<td>Standard roadway construction, however building the ramps to minimize impact on the surrounding historic resource would be difficult.</td>
<td>Standard roadway construction, however building the ramps to minimize impact on the surrounding historic resource would be difficult.</td>
<td>Standard roadway construction, however building the ramps to minimize impact on the surrounding historic resource would be difficult.</td>
<td></td>
</tr>
<tr>
<td>Project Duration</td>
<td>4 years</td>
<td>4 years</td>
<td>4 years</td>
<td>3.5 years</td>
<td>3 years</td>
<td>5 years</td>
<td>5 years</td>
<td>5 years</td>
<td>5 years</td>
</tr>
<tr>
<td>Access rerouted. Delays anticipated. WB on-ramp traffic would be detoured to other on-ramp on east side of YBI tunnel via Treasure Island Road. Traffic at Macalla Rd would be restricted to one lane during paving operations.</td>
<td>Access rerouted. Delays anticipated. WB on-ramp traffic would be detoured to other on-ramp on east side of YBI tunnel via Treasure Island Road. Traffic at Macalla Rd would be restricted to one lane during paving operations.</td>
<td>Access rerouted. Delays anticipated. WB on-ramp traffic would be detoured to other on-ramp on east side of YBI tunnel via Treasure Island Road. Traffic at Macalla Rd would be restricted to one lane during paving operations.</td>
<td>Access rerouted. Delays anticipated. WB on-ramp traffic would be detoured to other on-ramp on east side of YBI tunnel via Treasure Island Road. Traffic at Macalla Rd would be restricted to one lane during paving operations.</td>
<td>Access rerouted. Delays anticipated. WB on-ramp traffic would be detoured to other on-ramp on east side of YBI tunnel via Treasure Island Road. Traffic at Macalla Rd would be restricted to one lane during paving operations.</td>
<td>Access rerouted. Delays anticipated. WB on-ramp traffic would be detoured to other on-ramp on east side of YBI tunnel via Treasure Island Road. Traffic at Macalla Rd would be restricted to one lane during paving operations.</td>
<td>Access rerouted. Delays anticipated. WB on-ramp traffic would be detoured to other on-ramp on east side of YBI tunnel via Treasure Island Road. Traffic at Macalla Rd would be restricted to one lane during paving operations.</td>
<td>Access rerouted. Delays anticipated. WB on-ramp traffic would be detoured to other on-ramp on east side of YBI tunnel via Treasure Island Road. Traffic at Macalla Rd would be restricted to one lane during paving operations.</td>
<td>Access rerouted. Delays anticipated. WB on-ramp traffic would be detoured to other on-ramp on east side of YBI tunnel via Treasure Island Road. Traffic at Macalla Rd would be restricted to one lane during paving operations.</td>
<td>Access rerouted. Delays anticipated. WB on-ramp traffic would be detoured to other on-ramp on east side of YBI tunnel via Treasure Island Road. Traffic at Macalla Rd would be restricted to one lane during paving operations.</td>
</tr>
</tbody>
</table>
Chapter 2 – Project Alternatives

Table 2-3: Alternatives Screening Analysis Summary

<table>
<thead>
<tr>
<th>Screening Level / Criteria</th>
<th>Alternative 1 Nonviable Figure 2-6</th>
<th>Alternative 1A Nonviable Figure 2-7</th>
<th>Alternative 2 Nonviable Figure 2-8</th>
<th>Alternative 2A Nonviable Figure 2-9</th>
<th>Alternative 2B Analyzed in EIR/EIS Figure 2-10</th>
<th>Alternative 3 Nonviable Figure 2-11</th>
<th>Alternative 4 Analyzed in EIR/EIS Figure 2-12</th>
<th>Alternative 5 Nonviable 4(f) Avoidance Figure 2-13</th>
<th>Alternative 6 Nonviable 4(f) Avoidance Figure 2-14</th>
</tr>
</thead>
<tbody>
<tr>
<td>USCG Right of Way Impacts (East Side)</td>
<td>1.99 hectares (4.92 acres)</td>
<td>1.99 hectares (4.92 acres)</td>
<td>0.94 hectares (2.33 acres)</td>
<td>No USCG Right of Way Impacts</td>
<td>No USCG Right of Way Impacts</td>
<td>1.21 hectares (2.98 acres)</td>
<td>0.92 hectare (2.28 acres)</td>
<td>0.62 hectare (1.53 acres)</td>
<td>No USCG Right of Way Impacts</td>
</tr>
<tr>
<td>Estimated Initial Cost</td>
<td>$100 million</td>
<td>$ 135 million</td>
<td>$ 95 million</td>
<td>$ 70 million</td>
<td>$60 million</td>
<td>$100 million</td>
<td>$125 million</td>
<td>$680 million</td>
<td>$770 million</td>
</tr>
<tr>
<td>Retain for Analysis in EIR/EIS? (Yes or No)</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

- **Green = Low**
- **Yellow = Medium**
- **Red = High**
TSM AND TDM

In addition to the build alternatives, transportation projects often explore alternatives to further increase operational efficiency to the existing road network and configuration or manage the demand. These techniques can be cost effective and environmentally friendly when they enable efficient use of available resources and when safety is not a factor. The goal is still the same to reduce congestion and enable existing and future capacity to be accommodated through the implementation of the Project.

The two most common methods to manage the demand include Transportation Systems Management (TSM) and Transportation Demand and Management (TDM) techniques. TSM techniques support making existing transportation systems operate in a more efficient manner. Typical techniques include improved traveler information, signal system coordination and improved response time to incidents. TDM techniques support a reduction in the number of vehicles using the transportation system. Typical techniques may include fringe parking with shuttle busses, encouraging transit oriented development, pricing strategies for parking, and ridesharing. Improvement of pedestrian and bicycle access, and transit services are also demand management techniques. Neither TSM nor TDM techniques work as a stand-alone alternative. They would not solve the problem that the ramps do not meet current standards and does not resolve the need to improve the geometry of the existing ramps to improve circulation and safety.

TSM and TDM are discussed further in Section 3.6, Traffic and Transportation/Pedestrian and Bicycle Facilities.

Future traffic demand volumes for the TI project and the SFOBB were estimated using two different methods and then integrated to ensure consistency. Future demand volumes for the TI project were estimated based on the full build-out of the TI/YBI Project without enhanced TDM measures or transit service improvements. The demand analysis also does not consider any of the constraining effects of the ramp metering. The TI/YBI Project proposes a number of TDM measures (including congestion pricing, residential transit subsidies, bicycle sharing, etc.) and a high level of transit service during peak hours, including:

- New ferry service to San Francisco every 10 minutes,
- New bus service to Downtown Oakland every 7 minutes,
- Maintenance of existing bus service to the San Francisco Transbay Terminal (Muni Route 108-Treasure Island) every 5 minutes, and
- New bus service to the San Francisco Civic Center area every 12 minutes.

This level of mass transit services and TDM measures is expected to result in a substantial shift from automobile transit to use of the new mass transit services. However, funding and/or operating details for all of this service has not yet been resolved. Therefore, the transportation analysis for the YBI Ramps Improvement Project is based on a scenario with limited TDM measures (no congestion pricing, for example) and the following reduced transit service assumptions:

- New ferry service to San Francisco every 50 minutes,
Chapter 2 – Project Alternatives

- New bus service to downtown Oakland every 7 minutes,
- Maintenance of the existing bus service to the San Francisco Transbay Terminal (Muni Route 108-Treasure Island) every 15 minutes, and
- No new bus service to the San Francisco Civic Center area.

As a result, this analysis is based on the assumption of substantially reduced mass transit services, from what is ultimately proposed by the full TI project with TDM measures. Therefore this analysis represents a conservative worst-case scenario in terms of peak hour vehicle trips using the proposed ramps.

2.5.2 Nonviable Build Alternatives

A summary of the Alternatives considered and eliminated are included in the Alternatives Screening Analysis Table 2-3 which is a matrix that was used to guide the decision process for selecting the Alternatives, 2b and 4, which were carried through the EIR/EIS analysis. A drawing of each nonviable alternative is provided in Figures 2-5 through 2-13, at the end of this section. The future proposed land use for the TI/YBI Project and existing historic resources are included on the figures. The screening levels included a review of the Purpose and Need, engineering considerations, environmental considerations, stakeholder considerations, construction considerations, right-of-way impacts and feasible financial cost. As mentioned above a brief summary of environmental effects of each alternative is included in Table 2-3 along with a color coded ranking of green=low, yellow=medium and red=high. A synopsis of the non-viable alternatives and some of the primary reasons they were eliminated is described below.

Alternative 1 (Figure 2-6) was removed from consideration for the following reasons:

Engineering: The ramps require reduced stopping sight distance and design speeds. The access and circulation contains potentially confusing driver situations at the entrances and exits to the ramp that could result in potential wrong-way movements.

Environmental: The off-ramps would adversely affect the historic Nimitz House, a Section 4(f) resource, and affecting the larger historic district. Aerial structure of the ramp would be located within the San Francisco Bay Conservation and Development Commission’s (BCDC’s) 30.5 meter (100-foot) shoreline band. Structure would require approximately 22 support columns which would intrude into the landscape and obstruct views. Three of the support columns would be within the Senior Officers’ Quarters Historic District. Minor changes in operational noise levels would be anticipated.

Construction: Operational impacts would be expected including rerouting access, reduction in lanes and road closures, causing delays. Offshore access may be required to construct in soft soils at the San Francisco Bay edge.

Right-of-Way and Cost: Requires the largest acquisition of USCG property to construct the westbound on-ramp. Cost is nearly double Alternative 2B.

Alternative 1A (Figure 2-7) – Similar to Alternative 1, this Alternative was removed for the following reasons:
Engineering: The ramps require reduced stopping sight distance and design speeds. The access and circulation contains potentially confusing driver situations at the entrances and exits to the ramp that could result in potential wrong-way movements.

Environmental: The east bound off-ramp would adversely affect and disturb the archaeologically sensitive area underneath the future SFOBB. The aerial structure of the ramp would affect the visual integrity of historic district and a portion would be located within the BCDC’s 30.5 meter (100-foot) shoreline band. The structure would require approximately 22 support columns which would intrude into the landscape and obstruct views. Three of the support columns would be within the Senior Officers’ Quarters Historic District. Minor changes in operational noise levels are anticipated.

Construction: Operational impacts would be expected including rerouting access, reduction in lanes and road closures, thereby causing delays. Offshore access may be required to construct in soft soils at the San Francisco Bay edge.

Right-of-Way and Cost: Requires the largest acquisition of USCG property to construct the westbound on-ramp. Cost is more than double Alternative 2B.

Alternative 2 (Figure 2-8) – This alternative is similar to Alternative 1A and was removed for the following reasons:

Engineering: The ramps require reduced stopping sight distance and design speeds than Alternatives 1 and 1A. The access and circulation contains potentially confusing driver situations at the entrances and exits to the ramp that could result in potential wrong-way movements.

Environmental: Aerial structure of the ramp passes above historic district affecting the visual integrity. Structure would require approximately 18 support columns which would intrude into the landscape and obstruct views. Five of the support columns would be within the Senior Officers’ Quarters Historic District. Additional operational noise and air quality emissions may be present from vehicles traveling further into the site.

Construction: Operational impacts would be expected including rerouting access, reduction in lanes and road closures, causing delays. Constructing through the historic district requires complex phasing and staging.

Right-of-Way and Cost: Requires additional right-of-way north of the existing SFOBB mainline and aerial easement for eastbound off-ramp. Cost is nearly double Alternative 2B.
Figure 2-6
Yerba Buena Island Ramps Alternative 1
Figure 2-7
Yerba Buena Island Ramps Alternative 1A

Source: 2010
Not to Scale
Alternative 2A (Figure 2-9) – This alternative is similar to Alternative 2 and was eliminated for the following reasons:

Engineering: The ramps require reduced stopping sight distance and design speeds compared to Alternatives 1 and 1A. The eastbound hook ramp has a short, nonstandard length which has a higher potential for accidents.

Environmental: Aerial structure of the ramp passes above historic district affecting its visual integrity. Structure would require approximately 18 support columns which would intrude into the landscape and obstruct views. Five of the support columns would be within the Senior Officers’ Quarters Historic District. Additional operational noise and air quality emissions may be present from vehicles traveling further into the site.

Construction: Operational impacts would be expected including rerouting access, reduction in lanes and road closures, causing delays. Constructing through the historic district requires complex phasing and staging.

Alternative 3 (Figure 2-11) – Similar to Alternative 2, this Alternative was eliminated for the following reasons:

Engineering: The ramps require reduced stopping sight distance and design speeds than Alternatives 1 and 1A. The access and circulation contains decrease radius curves that could create driver difficulty resulting in potential for accidents.

Environmental: Aerial structure of the ramp passes above the historic district affecting its visual integrity. The structure would require approximately 23 support columns which would intrude into the landscape and obstruct views. Four of the support columns would be within the Senior Officers’ Quarters Historic District. Eastbound on-ramp would encroach into an archaeologically sensitive area. Ramp passes over San Francisco Bay with more potential to adversely impact biological resources Additional operational noise and air quality emissions may be present from vehicles traveling further into the site.

Construction: Operational impacts would be expected including rerouting access, reduction in lanes and road closures, causing delays. Constructing over the San Francisco Bay, the 100-foot shoreline band and around the historic district requires very complex phasing and staging.

Right-of-Way and Cost: Requires additional right-of-way north of the existing SFOBB mainline and aerial easement for off-ramp. Cost is nearly double Alternative 2B.
Figure 2-9
Yerba Buena Island Ramps Alternative 2A

Source: 2010

Not to Scale
Figure 2-10
Yerba Buena Island Ramps Alternative 2B
Figure 2-12
Yerba Buena Island Ramps Alternative 4
Alternative 5 (Figure 2-13) – This Alternative was eliminated for the following reasons:

Engineering: Elimination of the tunnel and retention of the double deck viaduct would require additional seismic tie-in considerations. Widening of the historic YBI tunnel, and relocation of structures would require excavating and daylighting the existing YBI tunnel, a historic 4(f) resource. The bridge connecting Hillcrest Drive to TI located on east side of YBI would have to be replaced. The WB on and off-ramps are separate and may cause confusion for drivers.

Environmental: Aerial structure of the ramp passes above the historic district impacting a 4(f) resource. Structure would require approximately 10 support columns which would intrude into the landscape and obstruct views. One of the support columns would be within the Senior Officers’ Quarters Historic District. Modification of hillside and alteration to historic tunnel will be an impact to a historic 4(f) resource. Challenging visual impacts to tie into bridge structure.

Construction: Construction period would take longer than other alternatives due to complex tie into bridge. Major delays expected due to amount of excavation and alteration to the tunnel.

Right-of-Way and Cost: Requires additional right-of-way north of the existing SFOBB mainline and aerial easement for off-ramp. Cost is nearly fourteen times as much as Alternative 2B and is not feasible and prudent due to the impacts described above and cost is estimated at $680 million, which is substantially higher than the estimated costs for the other build alternatives.

Alternative 6 – Avoidance (Figure 2-14) This Alternative was eliminated for the following reasons:

Engineering: This alternative would require construction of westbound on and off-ramps that would dramatically alter the hillside and effect future development proposed for residential use by the TI/YBI Project. More importantly the design has a number of geometry and resulting safety issues. The westbound off-ramp would start its descent after passing over the Historic District boundary and would require a steep grade ranging from 10-16 percent which is over the standard maximum of 8 percent. This would require a lower design speed down to 24.1-32.2 km/h (15-20 mph) on the approach to Macalla Road, due to a non-standard deceleration length of 61 meters (200 feet). The other non-standard feature of the off-ramp would include a reduced horizontal sight distance before the Macalla Road approach. The divergence angle for the ramp would be 1.5 times greater than the standard in 504.2B of the HDM criteria. The westbound on-ramp would have an S-curve which is an undesirable geometry with a reduced length and tight turning radius. The horizontal curve radius requires slowing to 24.1-32.2 km/h (15-20 mph) maximum speed and there would be a short merge onto the main lanes of the SFOBB. An abrupt departure angle would be needed so the westbound off-ramp could gain enough separation from the mainline to reach the elevation and climb of the entrance ramp tunnel. The reduction in length to less than 30 percent of the standard would require drivers to merge quickly onto the mainline freeway, similar to the existing ramp condition. The available space only allows for a transition ratio of 10:1, in contrast to the design standard minimum ratio of 50:1. Macalla Road would require widening the road to allow for two full lanes, the introduction of a traffic signal, as well as the removal of building 53 to make room for the interchange termini.
Figure 2-14
Yerba Buena Island Ramps Alternative 6

Not to Scale
Environmental: The aerial structure of the westbound off-ramp would start right after passing above the historic district and would therefore not impact any 4(f) resource. Seven support columns would be required to support the structure which would intrude into the landscape and obstruct views; however none would be located within a 4(f) resource. This alternative proposes westbound on and off-ramps that would divide the site, require removal of existing buildings and limit proposed land uses planned for future residential development. Potential visual impacts would also result from the tie-in connection with the design of the bridge structure.

Construction: Construction period would take longer than other alternatives due to complex excavation, amount of material and challenging construction techniques that would be required to build two new tunnels into steep hillside and the tie into new bridge structure which would cause major delays.

Right-of-Way and Cost: Cost is nearly thirteen times greater than Alternative 2b and is not viable due to the impacts described above and cost is estimated to be $770 million dollars. The cost estimate comparison to other alternatives can be referenced in Table 2-3 of the EIR/EIS.

2.6 Permits or Consistency Determinations Needed

Collaborative efforts have taken place throughout the planning process with key agency representatives from as early as 2002 when the initial conceptual alternatives were presented until recently when the alternatives were further refined. Coordination on potential key environmental issues has occurred including Section 4(f) historic properties with SHPO, and waters of the U.S. with USACE. On-going coordination has occurred with the CCSF, TIDA and the USCG to ensure construction and operation of the project would not conflict with existing use and future plans. TIDA agrees with the selection of the relocation site for Quarters 10 - Building 267, which is required for the Preferred Project Alternative 2b. TIDA has included a designated area for these structures in the Treasure Island and Yerba Buena Island Parks and Open Space Plan, Exhibit GG to the Disposition and Development Agreement approved by the TIDA Board of Directors and the San Francisco Board of Supervisors in April and June 2011, respectively. Upon transfer of the land, the City of San Francisco and TIDA will be responsible for determining the future use of the site.

Permit and consistency determinations that would be required for project construction are listed below in Table 2-4.
Table 2–4: Permits and Approvals Needed

<table>
<thead>
<tr>
<th>Approval Agency</th>
<th>Permit/Approval/Determination</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCDC</td>
<td>Consistency Determination</td>
<td>Anticipate After ROD</td>
</tr>
<tr>
<td>CDFG</td>
<td>Streambed Alteration Agreement (1602 Permit)</td>
<td>After ROD</td>
</tr>
<tr>
<td>SHPO</td>
<td>Section 106 concurrence and MOA</td>
<td>Occurred between Draft and Final</td>
</tr>
<tr>
<td>Regional Water Quality Control Board</td>
<td>NPDES Statewide Permit (Order No. 99-06-DWQ)</td>
<td>After ROD</td>
</tr>
<tr>
<td></td>
<td>Dewatering permit (R2-2007-0033)</td>
<td>After ROD</td>
</tr>
<tr>
<td></td>
<td>401 Water Quality Certification Permit</td>
<td>After ROD</td>
</tr>
<tr>
<td>Air Pollution Control District</td>
<td>Permit to Construct</td>
<td>After ROD</td>
</tr>
<tr>
<td>USACE</td>
<td>404 Nationwide Permit (NWP 14)</td>
<td>Pre-construction notification</td>
</tr>
<tr>
<td>USCG</td>
<td>Section 9 Permit Requirements</td>
<td>After ROD</td>
</tr>
<tr>
<td></td>
<td>MOU to ensure existing MOA and license criteria currently in effect with the SFOBB ESSSP will apply to the YBI Ramps Improvement Project</td>
<td>Occurred between Draft and Final</td>
</tr>
<tr>
<td></td>
<td>Encroachment Permit</td>
<td>After ROD</td>
</tr>
<tr>
<td>MTC</td>
<td>Air Quality PM$_{2.5}$</td>
<td>Occurred between Draft and Final</td>
</tr>
</tbody>
</table>
CHAPTER 3 – AFFECTED ENVIRONMENT, ENVIRONMENTAL CONSEQUENCES, AND AVOIDANCE, MINIMIZATION, AND/OR MITIGATION MEASURES

The purpose of this chapter is to provide a discussion of the natural and built environment, including many of the community features within the YBI project area. Potential impacts and proposed avoidance, minimization, and mitigation measures, by alternative, are also summarized. Data sources and methodology used for this analysis are briefly discussed with each resource.

A detailed listing of sources can be found in Chapter 7, References. The respective technical reports prepared in support of this Final EIR/EIS are available from the SFCTA and Caltrans.

GENERAL ENVIRONMENTAL REVIEW PROCESS

This chapter presents results of the analysis of social, economic, and environmental issues relevant to this project. Issues were identified through an initial screening using generally available information about the project and its environmental setting. This chapter covers resource areas where the initial screening identified a possibility for adverse impact. These resource areas are listed in Table 3-1.

Table 3–1: Environmental Resources

<table>
<thead>
<tr>
<th>Human Environment</th>
<th>Land Use</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Parks and Recreation</td>
</tr>
<tr>
<td></td>
<td>Growth</td>
</tr>
<tr>
<td></td>
<td>Community Impacts</td>
</tr>
<tr>
<td></td>
<td>Utilities/Emergency Services</td>
</tr>
<tr>
<td></td>
<td>Traffic and Transportation/Pedestrian and Bicycle Facilities</td>
</tr>
<tr>
<td></td>
<td>Visual/Aesthetics</td>
</tr>
<tr>
<td></td>
<td>Cultural Resources (archaeological and historic resources)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physical Environment</th>
<th>Hydrology and Floodplain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Water Quality and Storm Water Runoff</td>
</tr>
<tr>
<td></td>
<td>Geology/Soils/Seismic/Topography</td>
</tr>
<tr>
<td></td>
<td>Paleontology</td>
</tr>
<tr>
<td></td>
<td>Hazardous Waste/Materials</td>
</tr>
<tr>
<td></td>
<td>Air Quality</td>
</tr>
<tr>
<td></td>
<td>Noise</td>
</tr>
<tr>
<td></td>
<td>Energy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Biological Environment</th>
<th>Natural Communities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wetlands and Other Waters</td>
</tr>
<tr>
<td></td>
<td>Plant Species</td>
</tr>
<tr>
<td></td>
<td>Animal Species</td>
</tr>
<tr>
<td></td>
<td>Threatened and Endangered Species</td>
</tr>
<tr>
<td></td>
<td>Invasive Species</td>
</tr>
</tbody>
</table>

8 A Preliminary Environmental Analysis Report (PEAR) was prepared for the Project Study Report (PSR) of this project and determined that the anticipated environmental document would be a combined EIR/EIS.
As part of the scoping and environmental analysis conducted for the project, the following environmental issues were considered but no adverse impacts were identified. Consequently, there is no further discussion regarding these issues in this document:

- **Wild and Scenic Rivers**: The project site is located on YBI, where there are no Federally or state-designated wild and scenic rivers.

- **Farmlands/Timberlands**: The project site is located on YBI, where there are no farmlands or timberlands.

- **6(f)**: There are no Section 6(f) properties in the project site. No Land and Water Conservation Fund Act (L&WCF) grants are used in this project, and therefore not discussed any further.
3.1 Land Use

3.1.1 Regulatory Setting

Both state and Federal laws and regulations govern the review and analysis of land use. These laws and regulations are:

National Environmental Policy Act of 1969 (NEPA) – requires all Federal agencies to assess the environmental impacts of proposed projects and disclose the impacts of the project to the public to promote efforts that would prevent or reduce damage to the environment. The President's Council on Environmental Quality (CEQ) was established to provide NEPA implementation guidance for all Federal agencies. Following the CEQ Guidelines, this analysis has been prepared to document the impacts of the proposed project on the environment.

California Environmental Quality Act of 1970 (CEQA) – requires California public agencies to identify the significant environmental effects of their actions, and either avoid or mitigate them, where feasible. This analysis has been prepared following CEQA Guidelines to document the potential impacts of the project on the environment.

3.1.2 Affected Environment

The study area for land use includes the footprint of all project alternatives plus construction staging areas, equipment storage areas, and temporary detour routes on YBI. Existing land uses and proposed land use per the separate TI/YBI Project are shown in Figures 3.1-1 and 3.1-2, respectively.

3.1.3 Existing Land Uses

YBI is surrounded by San Francisco Bay waters; the San Francisco mainland is about 3.22 kilometers (2 miles) to the west and Oakland is about 3.22 kilometers (2 miles) to the east. YBI is a natural island that has been used by private parties and the U.S. Army, U.S. Navy, and USCG since the 1840s; the island is steeply sloped and highly vegetated. There are currently about 80 occupiable housing units out of a total of about 105 housing units and 10 nonresidential buildings. The USCG occupies about 19.39 hectares (47.9 acres) of land on the southeast side of YBI, and Caltrans occupies about 8.09 hectares (20 acres) of YBI with portions of the SFOBB and tunnel (City and County of San Francisco 2008a:3). Current land uses on YBI consists of open space, mixed use, public services, and residential (see Figure 3.1-1).
Figure 3.1-1
Existing Land Uses

Source: 2010
3.1.3.1 U.S. NAVY

TI and YBI are the sites of the former Naval Station Treasure Island (NSTI). TI and YBI encompass approximately 197 hectares of land. NSTI was operational from the 1940s until 1997, when it was decommissioned. There are approximately 10 buildings previously used by the military primarily for storage, communications, fire safety, and administrative purposes on YBI. In addition, there are 105 housing units, 10 of which are large single-family residences originally built for officers; the remainder consists of two-, three-, and four-unit multifamily residential buildings, most of which are single story. Of these 105 units, about 80 housing units, located on the western and central parts of YBI, are currently occupied as market-rate civilian housing (City and County of San Francisco 2008a). Land uses on the eastern side of YBI in the vicinity of the project site include the Senior Officers’ Quarters Historic District, which is listed in the National Register of Historic Places (NRHP), and consists of seven residences (Quarters 1–7), two apartments over garages, one five-car garage, and the surrounding landscape. Quarters 1–7 were built in the early 1900s as officers’ quarters and are currently leased by TIDA for events and meetings. Two other buildings (Buildings 213 and 262) are located on the eastern side of YBI. Building 213 is currently vacant; however, a fire truck owned by City and County of San Francisco is stored inside. Building 262, known as the Torpedo Building, was constructed in 1891 and is listed in the NRHP. This building is vacant (City and County of San Francisco 2001:3-5). These facilities are discussed in greater detail in Chapter 3.8, Cultural Resources and the Section 4(f) evaluation included in Appendix B.

Treasure Island currently includes approximately 720 occupiable housing units out of about 900 units total, and approximately 91 buildings containing approximately 2.3 million square feet of present and former nonresidential uses. These former military buildings served a broad range of functions, including medical/dental offices, a fire training facility, prison, administrative offices, a conference center, restaurants, and barracks, as well as storage for equipment and other miscellaneous items (City and County of San Francisco 2008a).

The U.S. Navy closed NSTI military operations in 1997. The U.S. Navy is the current owner of the former NSTI, but has transferred interim control of most of its property to TIDA via a cooperative agreement, with the intention of transferring all of the property to TIDA. TIDA in turn has made the former military housing available for short-term lease to the general public; currently there are about 3,000 residents in approximately 800 dwelling units on the two islands. There are also limited commercial activities via short-term leases to businesses and community organizations, and the islands host small to medium special events regularly. As part of its closure, the U.S. Navy also transferred 14.57 hectares on TI to the U.S. Department of Labor, who in turn operates a residential-based job training program for at-risk youth. There are approximately 500 residents on the Job Corps Campus today.

3.1.3.2 U.S. COAST GUARD

USCG Sector San Francisco occupies approximately 19.39 hectares (47.9 acres) and is located on the southeast side of YBI. Sector San Francisco is important to the region’s safety, as it is both the primary Homeland Security base for the entire Bay Area and the primary Vessel Traffic Service (VTS) for the area’s waterways. The VTS is responsible for the safe movement of approximately 214.04 kilometers (133 miles) of waterway from offshore to the ports of Stockton and Sacramento, and averages 250 vessel movements
a day. Sector San Francisco also oversees operations of the Stations from Bodega Bay south to Monterey. The USCG Sector San Francisco facilities include housing, administrative, open storage, and docks, and buoy maintenance facilities. USCG Sector San Francisco also includes a lighthouse built by the Department of Treasury in 1875 on the southeastern side of YBI, and it was operated by the Lighthouse Service until 1939, at which point the Service was transferred into the USCG. USCG Sector San Francisco also includes Navigation Light No. 6, which is located at the tip of the breakwater on the northern end of TI, is a USCG facility. The Lighthouse Service gradually transitioned into the USCG when it merged with the Cutter Service. The USCG took direct ownership of the lighthouse and the older Sector Buildings in 1939. During the Department of Defense (DoD) and Federal agency screening process, approximately 4.05 additional hectares (10 acres) in the central portion of YBI were granted to the USCG.

3.1.4 Development Trends

3.1.4.1 Treasure Island/Yerba Buena Island Project

TIDA, and Treasure Island Community Development (TICD), as the prospective master developer, have completed the environmental review under CEQA and have certified an EIR and approved a Development Agreement and plan for the TI/YBI Project, as previously mentioned in Section 1.3, Related Plans and Projects.

The TI/YBI Project consists of a number of sub-plans to guide and manage the development. These plans that are part of the larger TI/YBI Project include: YBI Habitat Management Plan, Transportation Plan, Sustainability Plan, and Treasure Island Yerba Buena Island Parks and Open Space Plan.

Between the Draft EIR and Final EIR certification, a number of revisions occurred to the TI/YBI Project. The Planning Department issued a memorandum to the San Francisco Planning Commission dated April 12, 2011 describing these changes (City and County of San Francisco 2011). These changes included a Treasure Island/Yerba Buena Island Area Plan rather than a Redevelopment Plan, and establishing a Special Use District to implement the Area Plan. The revisions to the project resulted in a reduction in the number of affordable housing units, reduction in tower height limits, and reduction in maximum amounts of parking for hotel, office, and flex uses. The total number of residential units would remain at 8,000, however the number of affordable residential units would be reduced from approximately 2,400 to 2,000, shifting 400 units from affordable to market rate. The overall land uses (including the development program and type and amount of allowable uses) would not change (City and County of San Francisco 2011; see http://sftreasureisland.org/index.aspx?page=283).

The land use plan for TI/YBI includes development of up to 8,000 dwelling units (including 2,000 below market housing units); up to approximately 13,006 square meters (140,000 square feet) of new commercial and retail space; adaptive reuse of Buildings 1, 2, and 3 with up to 28,893 square meters (311,000 square feet) of commercial space; and approximately 500 hotel rooms; geotechnical stabilization of TI and the causeway connecting it to YBI; new/upgraded public facilities, public utilities, and streets and public ways. TIDA and the City shall retain the Senior Officer's Quarters Historic District and has no plans to demolish any structures within the District, which is described in further detail in the Treasure Island + Yerba Buena Island Design for Development, approved by the San Francisco Planning Commission in April 2011, and approved as referenced...
in the San Francisco Planning Code Section 249.52, approved by the San Francisco Board of Supervisors in June 2011.

The islands include areas subject to the Tidelands Trust, which generally prohibits residential, general office, nonmaritime industrial and certain recreational uses shown in Figure 3.1-2.9 The statutory trust created by the Conversion Act and Tidelands Trust Doctrine are collectively referred to as the “Tidelands Trust.”10 None of the 150 acres of land on Yerba Buena Island is subject to the Tidelands trust except less than 2 acres of existing tidelands. The purpose of the Tidelands Trust is to ensure that land which adjoins the State’s waterways or is actually covered by those waters remains available for water-oriented uses that benefit and attract the greatest number of people to the waterfront. The California Attorney General and the California State Lands Commission retain oversight.

Any future development in the southeastern half of YBI, on USCG property, would likely be improvements to base facilities and amenities exclusively for USCG personnel, including new residential and light industrial uses. The USCG completed a Space Management Report (SMR) for its facilities on YBI. This internal report provides the USCG a room level review of space utilization. Based on existing and known missions, a series of notional projects were developed to improve space utilization at its facilities. Potential projects include renovation of VTS spaces, expansion to galley facilities, and a small facility to adequately accommodate the relocations of Sector San Francisco Prevention Department to YBI.

3.1.4.2 Associated Land Transfer

On October 25, 2000, and pursuant to 23 U.S.C. 107(d), FHWA executed a Federal Land Transfer of some land on YBI formerly owned by the United States. The right-of-way for the Interstate System was required over lands owned by the Department of the Navy. FHWA transferred land to Caltrans to give the state adequate right-of-way and control of access for construction of the ESSSP. Any rights-of-way not required for the ESSSP would revert to the United States after project completion. The deed for conveyance of property was recorded on October 26, 2000, with the City and County of San Francisco County Records Office.

The U.S. Navy executed a land transfer with FHWA, who in turn transferred property to Caltrans for construction of the replacement span for the SFOBB. The transfer included the granting of ownership to the agencies as well as the granting of temporary construction easements for the construction period. These transfers, however, may not transfer the entire fee and, even where the fee is transferred, the property may revert to the U.S. Navy or its designee, in this case TIDA, when the need for the interest no longer exists. The ESSSP is not a part of NSTI transfer and reuse.

10 In 1997, the Treasure Island Conversion Act (Assembly Bill 699, amending California Health and Safety Codes Sections 33492.5 and adding Section 2.1 to Chapter 1333, Statutes of 1968) authorized the City and County of San Francisco to establish TIDA as the redevelopment agency with jurisdiction over the redevelopment of Naval Station Treasure Island (NSTI). Under the Treasure Island Conversion Act, TIDA was also granted the authority to administer and control Tidelands Trust property located on or about NSTI.
3.1.5 Future Land Use

Some existing land uses in the project area would continue following the TI/YBI Project including the U.S. Department of Labor Job Corps site for educational and training programs on approximately 14.57 hectares (36 acres) in the center of TI; the USCG station on YBI; and the SFOBB and tunnel structures on YBI. The new east span of the SFOBB will connect to YBI and completion is expected by 2013. Currently, pedestrians and bicyclists use some roads on YBI for access, however, these are not designated paths and bikeways. Pedestrian and bikeway paths are proposed as part of the TI/YBI Project on YBI. The details will be determined in the future.

3.1.5.1 San Francisco-Oakland Bay Bridge (SFOBB)

The SFOBB and tunnel structures occupy about 4.05 hectares (10 acres) of YBI. Caltrans maintains an easement for the bridge and structures and is currently constructing the new east span of the SFOBB and will demolish the old one as part of the SFOBB ESSSP.

3.1.6 Land Use Plans and Policies

In addition to Caltrans, the public agencies with jurisdiction over land use in the project area include the U.S. Navy, TIDA, USCG, and BCDC. This section summarizes their existing policies and planning documents and identifies the guiding principles that relate to the proposed project.

U.S. Navy. The U.S. Navy is the current owner of the former NSTI, but has transferred interim control of most of its property to TIDA in accordance with the Base Closure and Realignment Commission (BRAC) process via a cooperative agreement. The U.S. Navy is expected to transfer the NSTI property to TIDA (U.S. Navy 2011).

Treasure Island Development Authority. In 1997, the California Legislature passed AB 699, the Treasure Island Conversion Act, vesting TIDA with full redevelopment authority for NSTI. In April 1997, the City and County of San Francisco Board of Supervisors adopted Resolution 380-97 establishing TIDA as a nonprofit public benefit corporation responsible for the redevelopment of TI and YBI.

- TIDA began the process to acquire ownership of TI and portions of YBI in the year 2003. A cooperative agreement between TIDA and the U.S. Navy defines responsibilities for maintenance on TI and portions of YBI during the transfer and conveyance process, as well as defines funding and service responsibilities.

- In December 2006, the Development Plan and Term Sheet for the Redevelopment of Naval Station Treasure Island (2006 Development Plan) with Treasure Island Community Development, LLC (TICD) which outlined the plans regarding land uses, phasing infrastructure, transportation, sustainability, housing, including affordable housing, parks and open space, jobs and equal opportunity programs, community facilities and project financing.

- In December 2009, TIDA and the U.S. Navy reached agreement on the basic financial terms before the NSTI property is transferred to TIDA. The 2006 Development Plan was updated in 2010 with adjustments and updates to include the economic terms of the U.S. Navy, development program consistent with the
CEQA review, current infrastructure scope and budget, affordable housing, and an updated financing plan.

- The Draft EIR for the TI/YBI Project was issued on July 12, 2010. The 45-day comment period closed on August 26, 2010. The Final EIR was certified on April 21, 2011 (Available at: http://www.sfplanning.org).

United States Coast Guard. The USCG completed a Space Management Report (SMR) for its facilities on YBI. This internal report provides the USCG a room level review of space utilization. Based on existing and known missions, a series of notional projects were developed to improve space utilization at its facilities. Potential projects include renovation of VTS spaces, expansion to galley facilities, and planning effort for the future relocation of Sector San Francisco Prevention Department to YBI. Information confirming their projects and plans was provided by the USCG in November 2010. Close coordination has been occuring between Caltrans, SFCTA and the USCG regarding the SFOBB ESSSP and YBI Ramps Improvement Project, with representatives present at most of the monthly meetings throughout the project duration.

The San Francisco Bay Conservation and Development Commission (BCDC). The BCDC is a state agency that functions as the Federal Coastal Zone Management Agency for San Francisco Bay to regulate development in and around San Francisco Bay in accordance with the Federal Coastal Zone Management Act. The BCDC has jurisdiction over the entire Bay and a shoreline band 30.5 meters (100 feet) shoreward of the mean high tide line. As part of its statutory mandate, the BCDC prepared the San Francisco Bay Plan as its master planning document for San Francisco Bay. The Plan, adopted in 1969, as amended, outlines policies to guide future uses of the bay and shoreline. The BCDC has given YBI a Park Priority designation and has jurisdiction over development within the 30.5 meter (100 foot) shoreline band around the edge of YBI. These “priority use” areas are designated for ports, water-related industry, water-oriented recreation, airports and wildlife refuges. The Bay Plan includes maps that apply these policies to the present bay and shoreline.

The following Bay Plan policy is applicable to YBI:

- “YBI - If and when not needed by Navy or Coast Guard, redevelop released areas for recreational use.”
- The proposed project would require a consistency determination from BCDC.

3.1.7 Environmental Consequences

3.1.7.1 Existing Land Use Impacts

NO BUILD ALTERNATIVE

Under the No Build Alternative, the existing on- and off-ramps would remain and no new ramps would be built. No conflict with existing land uses would occur.

ALTERNATIVE 2B AND ALTERNATIVE 4

The proposed project build Alternatives 2b and 4 would occur within existing or proposed Caltrans right-of-way. The project build alternatives would replace existing on- and off-
ramps that occupy some of the same land. Some additional land would be necessary to allow for the column foundations for the ramp structure. Additional land for Alternative 2b includes approximately 100 square meter (1,076.4 square foot) drainage easement from the USCG and 7,100 square meter (76,423.8 square foot) fee simple from the U.S. Navy/City of San Francisco. Additional land for Alternative 4 includes approximately 750 square meters (8,072.9 square feet) for an easement to place 6 footings from the USCG, a 8,200 square meter (88,264.1 square foot) aerial easement from the USCG, a 100 square meter (1,076.4 square foot) drainage easement from the USCG, and a 5,800 square meter (62,430.7 square foot) aerial easement from the U.S. Navy/City of San Francisco. For Alternative 2b, Quarters 10 (and Building 267) would be removed and relocated. No other conflicts with existing land uses would occur.

Consistent with objectives in the City of San Francisco General Plan, both build alternatives would not affect the shoreline. The build alternatives would not conflict with the BCDC park priority designation as it would not affect public access within the 30.5 meter (100 foot) shoreline band. Water-oriented recreational facilities would continue to be accessible to the public and consistent with the BCDC’s The Bay Plan and park priority use designation.

3.1.7.2 Future Land Use Impacts

NO BUILD ALTERNATIVE

Under the No Build Alternative, the existing on- and off-ramps would remain and no new ramps would be built. No land use changes would occur under the No Build Alternative; therefore no conflicts with future land uses would result.

ALTERNATIVE 2B AND ALTERNATIVE 4

Future land uses including, institutional, open space and mixed-use classifications are planned but not designated at locations beneath the proposed on- and off-ramps in the TI/YBI Project, which underwent its own environmental review in the form of an EIR. These land uses would only be affected at areas where the columns would be located and where the ramp would meet the grade along Macalla Road. The YBI Ramps project is necessary to improve the functional roles of the current ramps and requires adequate land to build a new facility. No other major land use changes would occur as a result of either build Alternative 2b or 4 and the project alternatives would not result in any other conflicts with future land uses of the TI/YBI Project.

3.1.7.3 Plans and Policies

NO BUILD ALTERNATIVE

Under the No Build Alternative, the existing on- and off-ramps would remain and no new ramps would be built. No land use changes would occur under the No Build Alternative and would not conflict with any land use plans or policies.

ALTERNATIVE 2B AND ALTERNATIVE 4

The proposed project build Alternatives 2b and 4 would not conflict with any land use plans or policies. Additionally, the project and alternatives would not conflict with the
policies of the McAteer-Petris Act as they would not require any portion of the bay or shoreline to be filled. As such, no conflicts with land use plans or policies would occur.

3.1.8 Avoidance, Minimization, and/or Mitigation Measures

There is no need to implement any avoidance minimization, or mitigation measures as a result of project-related impacts to existing or future land uses on YBI or TI. Coordination with TIDA, USCG, and other agencies regarding location and duration of construction activities and their potential temporary influence on existing operations and uses has occurred and would continue prior to the initiation of construction. Coordination with the USCG shall occur as outlined in an MOU, or similar document, that will be in effect prior to and for the duration of construction. Construction activities are discussed in Section 2.4. Most of the area is currently impeded by the construction of the SFOBB project.
3.2 Parks and Recreation

This section addresses potential impacts resulting from implementation of the proposed project to recreational activities and facilities that currently exist within the project area. Existing project area recreational features are described for YBI and TI, as well as applicable regulatory plans and policies.

3.2.1 Regulatory Setting

NEPA and CEQA both require the analysis of potential impacts to parks and recreational facilities. An impact can be physical in nature (actual taking or encroachment on the facility) or it can be related to the user’s enjoyment of the facility (increased noise, decreased safety, etc.). In addition to these analyses, FHWA also requires a separate impacts analysis of parks, recreational facilities, and historic sites if certain conditions are met.

Specifically, Section 4(f) of the U.S. Department of Transportation (USDT) Act of 1966 provides protection to certain publicly used lands and historic sites. Under Section 4(f), FHWA would not approve any program or project that requires the use of any publicly owned public park, recreation area, or wildlife or waterfowl refuge, or a site of any land from a historic site or national, state, or local significance unless:

- There is no feasible and prudent alternative to the use, and
- All possible planning to minimize harm resulting from such use is included.

Section 6(f) of the Land and Water Conservation Funds Act requires that any park or recreational land that was purchased with Land and Water Conservation Funds be replaced in-kind. There are no Section 6(f) lands in the YBI study area.

3.2.1.2 Applicable Plans and Policies

Applicable objectives from the San Francisco General Plan Recreation and Open Space Element are presented below:

- **Objective 2**: Develop and maintain a diversified and balanced city-wide system of high quality open space.

- **Objective 3**: Provide continuous public open space along the shoreline unless public access clearly conflicts with maritime uses or other uses requiring a waterfront location.

Applicable policies from the San Francisco Bay Conservation and Development Commission’s The Bay Plan include:

Policy 1. Diverse and accessible water-oriented recreational facilities, such as marinas, launch ramps, beaches, and fishing piers, should be provided to meet the needs of a growing and diversifying population, and should be well distributed around the Bay and improved to accommodate a broad range of water-oriented recreational activities for people of all races, cultures, ages, and income levels. Periodic assessments of water-oriented recreational needs that forecast demand into the future and reflect changing recreational preferences should be made to ensure that sufficient, appropriate water-
oriented recreational facilities are provided around the Bay. Because there is no practical estimate of the acreage needed on the shoreline of the Bay, waterfront parks should be provided wherever possible.

Policy 2. Waterfront land needed for parks and beaches to meet future needs should be reserved now, because delay may mean that needed shoreline land could otherwise be preempted for other uses. However, recreational facilities need not be built all at once; their development can proceed over time. Interim use of a waterfront park priority use area prior to its development as a park should be permitted, unless the use would prevent the site from being converted to park use or would involve investment in improvements that would preclude the future use of the site as a park.

An applicable action from the San Francisco Metropolitan Transit Authority’s Bicycle Plan includes: Action 3.11. Work with Caltrans and the Golden Gate Bridge, Highway and Transportation District (GGBHTD) to provide improved bicycle access to and upon all San Francisco bridges wherever feasible and appropriate.

3.2.2 Affected Environment

The proposed project site is located on YBI, a natural island with a land area covering approximately 61 hectares (150.7 acres). The recreational setting of the project area includes surrounding areas such as TI and the waters of the San Francisco Bay. Situated halfway along the SFOBB between San Francisco and Oakland, YBI and TI provide recreational amenities that often emphasize views of the Bay. In addition, the islands themselves serve as popular sightseeing landmarks, as recreationalists in and around the bay may experience views of YBI and TI’s features.

Despite being located in proximity to the large population centers of San Francisco and Oakland, YBI is primarily open space consisting of steeply sloped and highly vegetated terrain. Approximately 30.35 hectares (75 acres) of YBI is open space with 6.47 hectares (15.9 acres) reserved in easements for the SFOBB and utilities and communications equipment (City and County of San Francisco 2006:3-6). Considerable soil erosion and disturbance are visible in the vicinity of the ramps and causeway on the steep west-facing slopes of the island (City and County of San Francisco 2006:3-11). Due to the dense vegetation and Federal land use restrictions, existing recreational opportunities on the island are limited, but nearby recreational uses primarily provide water-oriented activities on the San Francisco Bay. The waters surrounding YBI and TI include recreational uses such as boating, kayaking, windsurfing, jet skiing, fishing, and swimming. For the most part, outdoor marine facilities are centered around an area known as Clipper Cove (see Figure 1-2), a protected area on the east side of the causeway connecting YBI with TI (City and County of San Francisco 2006:3-11).

There are no recreational facilities within the area where the ramps are proposed. The SF Bicycle Plan would fall under the footprint of the TI/YBI Project footprint, however no bicycle facilities are proposed in the ramp area. There are no parks or recreational facilities within the area where the ramps are proposed, therefore no Section 4(f) recreational resources would be affected in this area. The USCG facility located south of the site, used to have outdoor tennis, basketball, and volleyball courts and a barbeque pit located adjacent to Building 75 for use by USCG personnel (Caltrans 2001b). These recreational amenities have been removed and this area is currently being used as parking and staging areas for Caltrans during construction of the SFOBB South-South Detour project, and would also be used for staging of the YBI Ramps Improvement
Project construction. Once construction was complete, it is anticipated that the recreation facilities would be restored (Ressio 2008). However, the USCG recreational facilities would be exclusively for USCG employees and not available for public recreation. In addition, there is a variety of recreation facilities on TI managed by TIDA under a cooperative agreement with the U.S. Navy (Sullivan 2009).

Recreation and open space uses at TI include water-related recreation and boating facilities; indoor and outdoor recreation facilities; and a variety of walking, bike trails, and picnic areas (City and County of San Francisco 2006:3-5). However, there are currently no formally designated trails. Due to its unique location, TI is commonly used as a launching site for windsurfers providing them with access to the waters between TI, Angel Island, and Alcatraz (San Francisco Boardsailing Association 2007).

As mentioned above, water-related recreational facilities are concentrated around Clipper Cove, which is a public marina often utilized as a sailing venue for events such as regattas for dinghies and small keel boats (2009). On the cove’s south side, a wooden staircase leads down to a narrow sandy beach on YBI. On the TI side of the cove are Pier 2 and the Treasure Isle Marina (City and County of San Francisco 2006:3-11). Pier 2 is a floating structure used by recreational watercraft (City and County of San Francisco 2006:3-11). Treasure Isle Marina, located at #1 First Street on Clipper Cove, is a recreation marina with approximately 103 slips that offers guest slips for small boats. This marina is in the initial stages of a major renovation program, separate from the TI/YBI Project, that includes the expansion of the existing marina (Treasure Isle Marina 2009). Other water recreation-related organizations that operate facilities out of Clipper Cove on TI include the Treasure Island Yacht Club and Club House and the Treasure Island Sailing Center. The Treasure Island Sailing Center is a nonprofit organization that offers sailing lessons through sponsored sailing clinics and events (Treasure Island Sailing Center 2009). A number of sailing competitions such as the Summer Sailstice Celebration take place on Clipper Cove each year.

Other boating facilities include two recreational boat ramps (Piers 11 and 12) on the southern edge of TI and a fishing pier (Pier 23) on the west side of TI (City and County of San Francisco 2006:3-5). Outdoor recreation facilities include baseball fields, a pitching green, miniature golf course, two tennis courts, basketball courts, and two playgrounds concentrated in the interior of TI. Open space areas on TI include four parks and picnic areas, and walking and bike trails. However, the trails are not formally designated. The dike around TI is also used as a jogging trail (City and County of San Francisco 2006:3-5). YBI and TI open space areas are accessible for public use at all times. However, certain appropriately marked areas of the islands are considered off-limits to the public due to SFOBB-related construction and ongoing environmental remediation (City and County of San Francisco 2010). The YBI Ramps Improvement Project would not impact parks and recreational areas as none of the facilities described above fall within the project area.

3.2.2.1 TI/YBI Project

The TI/YBI Project EIR was certified on April 21, 2011 and its recreational component intends to further establish YBI and TI as a visitor destination by creating a variety of recreational opportunities in the future. The TI/YBI Project includes the creation of a new waterfront system of parks and open spaces on approximately 121 hectares (300 acres) of land. The plan includes the development of a shoreline path as an extension of the Bay Trail connecting to the ESSSP’s new pedestrian and bike path around the perimeter.
of TI, neighborhood parks and playgrounds, outdoor sport courts and playing fields, a Hilltop Park on YBI with hiking trails and improved natural areas, a new pedestrian promenade along Clipper Cove marina, and an improved Clipper Cove Beach Park area (City and County of San Francisco 2010 and 2011).

As described in Section 3.1.4.1, a number of revisions occurred to the TI/YBI Project, however these do not result in overall land use changes (City and County of San Francisco 2011). TIDA has been coordinating with SFCTA and Caltrans on the YBI Ramps Improvement project EIR/EIS throughout the planning and environmental review process. TIDA agrees with the selection of the relocation site for Quarters 10 - Building 267, which is required for the Preferred Project Alternative 2b. The land use discussed in the YBI Ramps Improvement Project EIR/EIS regarding parks and recreation is accurate. TIDA has included a designated area for these structures in the Treasure Island and Yerba Buena Island Parks and Open Space Plan, Exhibit GG to the Disposition and Development Agreement approved by the TIDA Board of Directors and the San Francisco Board of Supervisors in April and June 2011, respectively (see Figure 3.21-2 TI and YBI Parks and Open Space Plan – Beach Park Plan). Based on the figures included in the TI/YBI Project and current location of the build alternatives of this project, this project will not have any direct impacts on the shoreline path, pedestrian and bike bath around TI, neighborhood parks and playgrounds, outdoor sport courts and playing fields. The YBI Ramps Improvement Project will not impact the planned Hilltop Park on YBI with hiking trails and improved natural areas, pedestrian promenade along Clipper Cove marina or any other planned parks and recreational facilities of the TI/YBI Project.

3.2.3 Environmental Consequences

3.2.3.1 Temporary Impacts

Temporary impacts to park and recreational resources on TI/YBI and their users would be related to temporary detours and noise levels due to construction activities associated with the build alternatives. Although there would be an increase in noise levels at the project site and at the nearby USCG facility, the use of this area would not be impaired (see Section 3.15, Noise).

NO BUILD ALTERNATIVE

Under the No Build Alternative, no construction activities would occur and therefore there would be no direct or indirect temporary impacts on park and recreational uses.

ALTERNATIVE 2B AND ALTERNATIVE 4

Temporary impacts would be the same for both build alternatives. Construction activities would result in temporary detours and single-lane closures, which may delay access to park and recreational resources on TI/YBI. These impacts would be minimized through coordination with the USCG and emergency service providers. Efforts would be made to concentrate the majority of road closures and construction activity during off-peak hours to reduce traffic impacts. Signage would be provided to direct bicyclists and pedestrians on YBI and recreational users driving to TI/YBI to take alternate routes. The existing westbound on-ramp on the east side of YBI would also be closed and traffic would be diverted to the westbound on-ramp on the west side of YBI. Access to YBI and TI would be maintained during construction. The build alternatives therefore would not have an
impact on recreational facilities. As previously described, the USCG’s recreational areas are currently used as a parking area for Caltrans’ SFOBB South-South Detour construction. The build alternatives would have no impact on these facilities as a result of construction activities and these facilities would not be considered for purposes of Section 4(f).

3.2.3.2 Permanent Impacts

NO BUILD ALTERNATIVE

The No Build Alternative would not result in any direct or indirect park and recreational impacts. The existing ramps would remain in place and access to and from YBI and TI recreational facilities would not change.

ALTERNATIVE 2B AND ALTERNATIVE 4

The project site is not within an existing park and does not include any recreational facilities. The proposed build alternatives would not interfere with the City’s plans for a balanced park system. The Macalla Road improvement would include a 3.66-meter-wide (12-foot-wide) multiuse pedestrian/bike path that would provide a direct connection to the future planned SFOBB ESSSP multiuse path.

Consistent with objectives in the City of San Francisco General Plan, both build alternatives would not affect the shoreline. The provision of this open space would meet the goals of the Development Plan for YBI and TI, which aims to redevelop 121 hectares (300 acres) of open space on TI/YBI with waterfront promenades, bicycle and pedestrian paths, recreational and entertainment facilities, restaurants, shops, hotels, residences, and other public uses. Water-oriented recreational facilities would continue to be accessible to the public and consistent with the BCDC’s *The Bay Plan* and park priority use designation.

Neither build alternative would induce growth as discussed in Section 3.3, Growth; therefore, they would not generate a greater demand for existing or future recreational facilities at YBI and TI. The build alternatives would not remove existing recreational facilities or preclude the future development of recreational opportunities set forth in the TI/YBI Project. However, Alternative 2b would require the relocation of Quarters 10/Building 267 to an area above the south side of the Clipper Cove area. Please see Section 3.21.2 for additional discussion of the relocation site. The relocation of the buildings to the area above the Clipper Cove area is the only permanent impact to parks and recreational areas. The planned multiuse pedestrian/bike path would provide an alternative means of accessing YBI and TI in the future.

3.2.3.3 Avoidance, Minimization, and/or Mitigation Measures

The project alternatives would not result in impacts to parks and recreational uses and facilities on YBI and TI and thus would not a need to implement avoidance, minimization, or mitigation measures. Coordination with TIDA, the USCG, and other agencies regarding location and duration of construction activities and their potential temporary influence on existing operations and uses would occur prior to the initiation of construction.
This page intentionally left blank.
3.3 Growth

3.3.1 Regulatory Setting

The Council on Environmental Quality (CEQ) regulations, which established the steps necessary to comply with NEPA, require evaluation of the potential environmental consequences of all proposed Federal activities and programs. This provision includes a requirement to examine indirect consequences, which may occur in areas beyond the immediate influence of a proposed action and at some time in the future. The CEQ regulations, 40 C.F.R. 1508.8, refer to these consequences as secondary impacts. Secondary impacts may include changes in land use, economic vitality, and population density, which are all elements of growth.

CEQA also requires the analysis of a project’s potential to induce growth. CEQA Guidelines, Section 15126.2(d), require that environmental documents “…discuss the ways in which the proposed project could foster economic or population growth, or the construction of additional housing, either directly or indirectly, in the surrounding environment…”

3.3.2 Affected Environment

San Francisco and Alameda counties comprise the region of influence (ROI) for growth impacts. The existing condition for population, employment, and housing is 2008, as reflected by 2000 census data and updated by 2007 Association of Bay Area Governments (ABAG) projections. It is expected that most future workers as a result of the TI/YBI Project would commute from these two counties, which are connected to the site by the SFOBB. The direct changes to employment, population, housing, and schools would occur within San Francisco, where the project site is located, and Alameda County, due to proximity and since one or more future ferry terminals serving the TI/YBI Project would be located there. Socioeconomic characteristics of NSTI are described below. Reuse of TI/YBI would result in an almost complete replacement of both its jobs and its population.

3.3.2.1 San Francisco

San Francisco’s economy was affected by the recession of the early 1990s but recovered steadily through the mid-1990s. Employment increased by roughly 1,000 jobs per year between 1993 and 1995, and revenues from retail sales also began to grow again (approximately 6 percent per year) during this same period. Construction activity also increased during the mid-1990s, after a period of recession.

San Francisco’s economy was affected by the technology boom of the late 1990s. While the growth in high-tech manufacturing jobs centered in the Silicon Valley, San Francisco experienced heated competition among startup and internet-based companies for office space, employees, housing, and services. This economic expansion slowed significantly with the technology downturn after 2000. The City, region, state, and nation are in another recession cycle which began in December of 2007.

San Francisco is likely to continue to reflect regional cyclical patterns of strong growth and periodic recessions. People will continue to be attracted to San Francisco and the Bay Area because of the mild climate, physical beauty, recreation opportunities, excellent universities, and other living amenities. These factors will be tempered by
others—such as traffic congestion, and the lack of affordable housing—to slow potential economic growth.

3.3.2.2 Alameda County

The 1980s were a period of continued economic diversification, as well as job growth, for Alameda County. The southern portion of the county attracted numerous high technology industries, while the eastern section became a center for office employment and communications-related industries. In the northern portion of the county, the economy shifted from one dominated by manufacturing industries to a mixture of office employment, government service centers, transportation, and biotechnology (ABAG 2007b).

Alameda County experienced flat job growth between 1990 and 1995—reflecting the economic slowdown throughout California, as well as base closures in Oakland and Alameda—then returned to strong job growth during the second half of the decade, adding 80,000 jobs between 1995 and 2000. Between 2000 and 2005, there was a decrease of 19,890 jobs (ABAG 2007b). ABAG estimates that Alameda County will continue to have strong job growth through the next two decades, adding approximately 369,280 jobs between 2005 and 2025 (ABAG 2007b).

3.3.2.3 TI and YBI

YBI is composed primarily of open space, utilities facilities, and military housing. An additional 10 nonresidential buildings were used by the U.S. Navy in 1993 primarily for storage, communications, fire safety, and administration. Non-Navy land uses on YBI include the USCG station and the San Francisco-Oakland Bay Bridge, which bisects the island. USCG Sector San Francisco occupies about 19.39 hectares (47.9 acres) of land on the southeast side of YBI, and Caltrans occupies about 8.09 hectares (20 acres) of YBI with portions of the SFOBB and tunnel (City and County of San Francisco 2008a:3).

There are currently about 80 occupiable housing units out of a total of about 105 housing units on YBI (not including USCG Sector San Francisco housing), 10 of which are large single-family residences with the remainder being two-, four-, and eight-unit buildings, generally single-story, although there are some two-story buildings. Housing is concentrated in the interior of the island, north of the SFOBB and southeast of Treasure Island Road.

The 163 hectares (402.8 acres) at TI support 150 former military buildings and 904 housing units. The military buildings served a broad range of functions, including medical/dental offices, a fire training facility, prison, administrative offices, a conference center, restaurants, and barracks, as well as storage for equipment and other miscellaneous items for a total of 232,257.6 square meters (2.5 million square feet).

The U.S. Navy closed NSTI military operations in 1997 and transferred interim control of most of its property to TIDA via a cooperative agreement. Following the interim transfer, TIDA made most of the former military housing available for lease to the general public, and currently there are about 2,000 residents in about 820 units on the two islands. There are also limited commercial activities via leases to businesses and community organizations, and the islands regularly host small to medium special events regularly. In December 2009, the U.S. Navy transferred permanent control of all of the property to TIDA.
The project study area for the analysis of community impacts is composed of Census Tract 179.02, which encompasses both TI and YBI. Based on 2000 U.S. Census data, Tract 179.02 had a population of 1,453. Thirty-two percent of residents were between the ages of 25 and 34. The majority of residents, 65%, are White, 12% are Black or African American, 11% are Asian, and 12% represent all other races. Less than 1%, 0.6%, of residents are 65 years and older. In 2000, there were 460 households on the islands with 35%, or 159, being family households. The majority of housing on the Islands is rental, 99.6%. Housing has been used by U.S. Navy and USCG personnel in the past. However, as mentioned above, housing on TI has been made available for lease to the general public.

3.3.2.3 Yerba Buena Island (Proposed Land Uses)

In December 2006, TIDA and the Board of Supervisors endorsed a Development Plan and Term Sheet, for the redevelopment of TI and YBI. The Development Plan was updated in 2010 and the Draft EIR for the TI/YBI Project was issued on July 12, 2010 for a 45-day comment period ending on August 26, 2010. The Final EIR was certified on April 21, 2011. The overall purpose of the TI/YBI Project is the conversion of approximately 162 hectares (400.3 acres) on TI and approximately 61 hectares (150.7 acres) on YBI from a former U.S. Navy base to a dense, mixed-use development of residential, commercial, cultural, hotel, and retail uses centered around an Intermodal Transit Hub, with supporting infrastructure, public services and utilities, and a substantial amount of open space. Approximately 150 to 300 housing units are proposed on YBI. The USCG facility on YBI would remain in its current location.

The islands include areas subject to the Tidelands Trust, which generally prohibits residential, general office, nonmaritime industrial and certain recreational uses shown in Figure 3.1-2.11 The statutory trust created by the Conversion Act and Tidelands Trust Doctrine are collectively referred to as the “Tidelands Trust.”12 None of the 150 acres of land on Yerba Buena Island is subject to the Tidelands trust except less than 2 acres of existing tidelands. The purpose of the Tidelands Trust is to ensure that land which adjoins the State’s waterways or is actually covered by those waters remains available for water-oriented uses that benefit and attract the greatest number of people to the waterfront. The California Attorney General and the California State Lands Commission retain oversight.

The land use plan would allow for the planned development of YBI with approximately 300 dwelling units, 464.5 square meters (5,000 square feet) of retail, hotel, Hilltop Park, Clipper Cove Beach Park, managed natural open space and public/community use of historic district including the Nimitz House and Senior Officers’ Quarters. Any development would be phased to account for Caltrans’ completion of the portion of the

12 In 1997, the Treasure Island Conversion Act (Assembly Bill 699, amending California Health and Safety Codes Sections 33492.5 and adding Section 2.1 to Chapter 1333, Statutes of 1968) authorized the City and County of San Francisco to establish TIDA as the redevelopment agency with jurisdiction over the redevelopment of Naval Station Treasure Island (NSTI). Under the Treasure Island Conversion Act, TIDA was also granted the authority to administer and control Tidelands Trust property located on or about NSTI.
construction of the new eastern span of the Bay Bridge that impacts the Senior Officers' Quarters.

Any proposed development in the southeastern half of YBI, owned by USCG, would be intended to improve existing base facilities and amenities. The USCG completed a Space Management Report (SMR) for its facilities on YBI. This internal report provides the USCG a room level review of space utilization. Based on existing and known missions, a series of notional projects were developed to improve space utilization at its facilities. Potential projects include renovation of VTS spaces, expansion to galley facilities, and planning effort for the future relocation of Sector San Francisco Prevention Division to YBI.

The proposed redevelopment of YBI set forth in the Development Plan is subject to review and approval by BCDC under Federal and state law to determine whether the proposed transfer of the NSTI property as part of the TI/YBI Project to the City and County of San Francisco and the proposed redevelopment of YBI are consistent with the Park Priority Use designation for YBI in the BCDC Bay Plan. Alternative 4 proposed for the YBI Ramps Improvement project would encroach into BCDC’s 30.5 meter (100-foot) shoreline band because the structure would be located directly above. Alternative 2b would stay out of the BCDC band.

Land uses on YBI that are expected to remain unchanged include USCG Sector San Francisco on YBI; and the SFOBB and tunnel structures on YBI. Caltrans is currently constructing the SFOBB ESSSP, which will connect to YBI. The new span is expected to be complete by 2013.

3.3.2.4 Treasure Island (Proposed Land Use)

The land use plan for TI includes development of up to 8,000 residential units (including 2,000 below market rate housing units); up to approximately 140,000 square feet of new commercial and retail space; adaptive reuse of Buildings 1, 2, and 3 with up to 311,000 square feet of commercial space; and approximately 500 hotel rooms; geotechnical stabilization of TI and the causeway connecting it to YBI; new/upgraded public facilities, public utilities, and streets and public ways.

Land uses on TI that are expected to remain unchanged include the U.S. Department of Labor Job Corps site for educational and training program on approximately 14.57 hectares (36 acres) in the center of TI.

The Land Use and Community Impacts sections of this Final EIR/EIS present additional summaries of general social, economic, and land use conditions in the project area. The discussion of growth inducement for each alternative addresses the following questions:

1. What is the reasonably foreseeable growth and land use change with and without the project?
2. To what extent would the project influence the overall amount, type, location, or timing of that growth?
3. Would project-related growth put pressure on or cause impacts on environmental resources of concern?
Chapter 3.3 – Growth

3.3.3 Environmental Consequences

3.3.3.1 Temporary Impacts

NO BUILD ALTERNATIVE

Under the No Build Alternative, the YBI Ramps Improvement project would not occur; therefore, no short-term, project-related growth would occur in the project area.

ALTERNATIVE 2B AND ALTERNATIVE 4

Implementation of either build alternative would induce a minimal amount of temporary growth at the project site. Over the short term, project construction activities would take place that would require the establishment of temporary small-scale office facilities at the project site used by construction personnel during working hours. These facilities would comprise the extent of growth (on a temporary basis) that would result from implementation of the YBI Ramps Improvement Project. These facilities would be used during the project implementation period and removed from the site once construction activities were completed. Workers would be from the existing employment pool within the bay area and would not require the relocation or influx of additional population to staff the construction efforts. As such, the build alternatives would not result in temporary growth.

3.3.3.2 Permanent Impacts

NO BUILD ALTERNATIVE

Under this alternative, the YBI ramps would remain in their current state and no ramp construction-related growth would occur in the project area. The No Build Alternative would potentially inhibit the growth potential allowed under the TI/YBI Project due to the limited capacity of the existing ramps.

ALTERNATIVE 2B AND ALTERNATIVE 4

Implementation of either build alternative would not result in the inducement of direct or indirect unplanned growth in the area. The growth that will occur in the project area is a result of the TI/YBI Project; the TI/YBI Project has been analyzed, planned and approved under a separate and independent documentation process. The TI/YBI Project includes 8,000 residential units and would result in growth and increase in traffic volume in the area if the components under that project were implemented as planned. The TI/YBI Project Final EIR was certified on April 21, 2011.

The TI/YBI project has been planned such that there will not be any “significant excess capacity that would encourage additional local growth beyond that already planned.”

The TI/YBI Project would “improve the on-site infrastructure and transit services but

would not build or expand the infrastructure or public services that could encourage additional local growth beyond that already planned. The Redevelopment Plan Project Area is physically separated from the other development sites in the region by San Francisco Bay and is not situated next to land that could accommodate new large-scale or infill development.” The EIR for the TI/YBI project also makes it clear that the proposed YBI Ramps Improvement Project and the TI/YBI Project are independent by including in its Traffic Section (Chapter IV.E) two analyses for future traffic—one with the ramp improvement project and one without. The TI/YBI Project and any growth associated with it will occur regardless of whether this proposed project is ever constructed.

In addition, in the Revised Draft Treasure Island/Yerba Buena Island Sustainability Plan that was approved as final on July 12, 2011, there are several strategies advanced for transportation that seek to further inhibit growth and reduce travel. These include but are not limited to: comprehensive transit passes built into housing and hotel costs; parking disincentives and pricing programs; ramp metering; parking caps (1 space per residential unit); and congestion pricing for drivers who choose to use their automobiles during peak travel hours.

The most important fact to note with this ramp improvement project is that it would improve the functional roles of the current ramps and would not place a new permanent facility in an undeveloped area. The project does not provide new access to an area that has previously not been accessible; there are on- and off-ramps currently on the Island. The YBI Ramps Improvement Project would, however, improve traffic safety, geometric design, and traffic operation levels of service on the westbound on- and off-ramps on the east side of YBI. In the absence of the YBI Ramps Improvement Project, the vehicles associated with the TI/YBI Project would use the existing on- and off-ramps on the east side of YBI. With the YBI Ramps Improvement Project, the growth associated with the TI/YBI project would have improved acceleration and deceleration distances to and from the westbound lanes of the SFOBB.

As stated in Section 3.6, Traffic and Transportation/Pedestrian and Bicycle Facilities, of this Final EIR/EIS, the build alternatives would increase the capacity of the existing westbound on- and off-ramps; however, the increase would be constrained by ramp metering and the minimal length of the ramps. The HOV bypass included with Alternative 2b is approximately 300 feet long and would eventually merge into a single lane before entering the Bridge traffic. Caltrans would set the metering rate for the westbound on-ramp based on the traffic volume on the existing SFOBB mainline at the westbound off-ramp. With the ramp metering, the overall effect would not result in an increase in operational capacity.

Although the build alternatives would improve safety, geometric, and operations of the ramps that connect YBI and TI, as discussed above, growth is expected for the islands due to the TI/YBI Project. Regardless of whether the YBI Ramps Improvement Project is built or not, the TI/YBI Project could proceed. The build alternatives would accommodate existing and projected future traffic volumes, however the YBI Ramps Improvement Project is separate and independent of the TI/YBI Project.

Therefore, because of the nature of this proposed project and the constraints caused both by the geography and the planning approvals in the project area, neither Alternative 2b nor Alternative 4 would result in the inducement of direct or indirect permanent unplanned growth in the project area.

3.3.3.3 Avoidance, Minimization, and/or Mitigation Measures

The No Build and two build alternatives would not result in a need to implement avoidance minimization, or mitigation measures resulting from project-related impacts to growth on YBI and TI. Implementation of the No Build Alternative would potentially inhibit the development potential allowed under the TI/YBI Project and would not cause impacts to resources of concern.
This page intentionally left blank.
3.4 Community Impacts

3.4.1 Regulatory Setting

NEPA established that the Federal government use all practicable means to ensure for all Americans safe, healthful, productive, and aesthetically and culturally pleasing surroundings (42 U.S.C. 4331[b][2]). FHWA in its implementation of NEPA (23 U.S.C. 109[h]) directs that final decisions regarding projects are to be made in the best overall public interest. This requires taking into account adverse environmental impacts, such as destruction or disruption of human-made resources, community cohesion, and the availability of public facilities and services.

Under CEQA, an economic or social change by itself is not to be considered a significant effect on the environment. However, if a social or economic change is related to a physical change, then social or economic change may be considered in determining whether the physical change is significant. Since this project would result in physical change to the environment, it is appropriate to consider changes to community character and cohesion in assessing the significance of the project’s effects.

3.4.2 Affected Environment

3.4.2.1 Community Character

YBI is composed primarily of open space, utilities facilities, and military housing. An additional 10 nonresidential buildings were used by the U.S. Navy in 1993 primarily for storage, communications, fire safety, and administration. Non-Navy land uses on YBI include the USCG station and the San Francisco-Oakland Bay Bridge, which bisects the island. USCG Sector San Francisco occupies about 19.39 hectares (47.9 acres) of land on the southeast side of YBI, and Caltrans occupies about 8.09 hectares (20 acres) of YBI with portions of the SFOBB and tunnel (City and County of San Francisco 2008a:3).

There are currently about 80 occupiable housing units out of a total of about 105 housing units on YBI (not including USCG Sector San Francisco housing), 10 of which are large single-family residences with the remainder being two-, four-, and eight-unit buildings, generally single-story, although there are some two-story buildings. Housing is concentrated in the interior of the island, north of the SFOBB and southeast of Treasure Island Road.

The 163 hectares (402.8 acres) at TI support 150 former military buildings and 904 housing units. The military buildings served a broad range of functions, including medical/dental offices, a fire training facility, prison, administrative offices, a conference center, restaurants, and barracks, as well as storage for equipment and other miscellaneous items for a total of 232,257.6 square meters (2.5 million square feet).

The U.S. Navy closed NSTI military operations in 1997 and transferred interim control of most of its property to TIDA via a cooperative agreement. Following the interim transfer, TIDA made most of the former military housing available for lease to the general public, and currently there are about 2,000 residents in about 820 units on the two islands. There are also limited commercial activities via leases to businesses and community organizations, and the islands regularly host small to medium special events regularly. In December 2009, the U.S. Navy transferred permanent control of all of the property to TIDA.
The project study area for the analysis of community impacts is composed of Census Tract 179.02, which encompasses both TI and YBI. Based on 2000 U.S. Census data, Tract 179.02 had a population of 1,453. Thirty-two percent of residents were between the ages of 25 and 34. The majority of residents, 65%, are White, 12% are Black or African American, 11% are Asian, and 12% represent all other races. Less than 1%, 0.6%, of residents are 65 years and older. In 2000, there were 460 households on the islands with 35%, or 159, being family households. The majority of housing on the Islands is rental, 99.6%. Housing has been used by U.S. Navy and USCG personnel in the past. However, as mentioned above, housing on TI has been made available for lease to the general public.

Land uses on the islands that are expected to remain unchanged include the U.S. Department of Labor Job Corps site for educational and training program on approximately 14.57 hectares (36 acres) in the center of TI; USCG Sector San Francisco on YBI; and the SFOBB and tunnel structures on YBI. Caltrans is currently constructing the SFOBB ESSSP, which will connect to YBI. The new span is expected to be complete by 2013.

3.4.2.2 Community Cohesion

TI and YBI have low degrees of cohesion due to the following indicators:

- a high percentage of single-person households, 65%;
- a relatively young population, only 0.6% of population is 65 years and older;
- the majority of occupied housing being rental, 100%;
- Current and historic use of land on the islands by U.S. Navy and USCG.

A redevelopment plan is being prepared for the islands that would foster growth and the development of new communities by developing a transit hub, and commercial, residential, and recreational uses in the future. The TI/YBI Project underwent its own environmental review process and the Final EIR was certified on April 21, 2011.

3.4.3 Environmental Consequences

NO BUILD ALTERNATIVE

The No Build Alternative would not result in any changes that would affect the character or cohesion of the islands.

ALTERNATIVE 2B AND ALTERNATIVE 4

The build alternatives (Alternatives 2b and 4) would occur on YBI within existing or proposed Caltrans right-of-way. Additional easements required for the ramps are discussed in Section 3.1.7.1. The proposed project would replace existing on- and off-ramps and would not impact existing businesses, homes, or activity centers. Although the build alternatives would accommodate future planned development of the islands in accordance with the goals of the TI/YBI Project, the character and cohesion of YBI and TI would not be altered as a result of the ramps improvement project.
3.4.3.1 Avoidance, Minimization, and/or Mitigation Measures

No avoidance, minimization, or mitigation measures are necessary since there would be no community character- or cohesion-related impacts as a result of the proposed build alternatives.

3.4.4 Relocations

3.4.4.1 Regulatory Setting

Caltrans’ Relocation Assistance Program (RAP) is based on the Federal Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970 (as amended) and Title 49 C.F.R. Part 24. The purpose of RAP is to ensure that persons displaced as a result of a transportation project are treated fairly, consistently, and equitably so that such persons will not suffer disproportionate injuries as a result of projects designed for the benefit of the public as a whole. All relocation services and benefits are administered without regard to race, color, national origin, or sex in compliance with Title VI of the Civil Rights Act (42 U.S.C. 2000d, et seq.).

3.4.4.2 Affected Environment

As discussed above, YBI contains utilities facilities, military housing, the USCG station, the SFOBB, and additional vacant buildings. TI contains 150 former military buildings and 904 housing units formerly used by U.S. Navy and USCG personnel. However, as mentioned above, housing on TI has been made available for lease to the general public. There are approximately 2,000 residents in about 820 units on the two islands. There are also limited commercial activities via leases to businesses and community organizations. Based on 2000 U.S. Census data, 32% of residents were between the ages of 25 and 34 with less than 1%, 0.6%, over the age of 65. The majority of residents, 65%, are White, 12% are Black or African American, 11% are Asian, and 12% represent all other races. In 2000, there were 460 households on the islands with 35%, or 159, being family households. The majority of housing on the Islands is rental, 99.6%.

3.4.4.3 Environmental Consequences

NO BUILD ALTERNATIVE

Under the No Build Alternative, the existing on- and off-ramps would remain and no new ramps would be built. No temporary and/or permanent removal of occupied buildings in the project area would occur. No residents would be displaced or need to be relocated.

ALTERNATIVE 2B AND ALTERNATIVE 4

Neither of the two build alternatives would result in the temporary and/or permanent removal of occupied buildings in the project area. However, Alternative 2b would require the relocation of Quarters 10 and Building 267, which are unoccupied buildings. The cost of this relocation is estimated at approximately $2 million and was made with preliminary design drawings. Specific details regarding building removal would not be finalized until a preferred alternative was adopted and designed. Please refer to Section 3.8, Cultural Resources, for a detailed discussion of the relocation of Quarters 10 and Building 267 for Alternative 2b.
Chapter 3.4 – Community Impacts

No residents would be displaced or need to be relocated. The build alternatives would replace existing on- and off-ramps and would not impact existing businesses, homes, or activity centers. USCG personnel would continue to occupy housing on YBI and would not be temporarily or permanently relocated as a result of implementation of either build alternative.

3.4.4.4 Avoidance, Minimization, and/or Mitigation Measures

No avoidance, minimization, or mitigation measures are necessary since no relocation impacts to existing businesses, residential structures, or activity centers would occur. Mitigation has been identified in Section 3.8, Cultural Resources, regarding relocation of Quarters 10 and Building 267, but these impacts relate to the historic significance of the structures and not to impacts on residents.

3.4.5 Environmental Justice

Environmental justice analysis considers project impacts on minority and/or low-income populations. Determination of the presence of environmental justice populations and the potential effects on those populations largely rely on analysis of demographic information, such as the U.S. Census data, and information gathered through public involvement and outreach activities.

3.4.5.1 Regulatory Setting

All projects involving a Federal action (funding, permit, or land) must comply with Executive Order (EO) 12898, Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations, signed by President Clinton on February 11, 1994. EO 12898 directs Federal agencies to take the appropriate and necessary steps to identify and address disproportionately high and adverse effects of Federal projects on the health or environment of minority and low-income populations to the greatest extent practicable and permitted by law. Low income is defined based on the Department of Health and Human Services poverty guidelines. For 2009, this was $22,050 for a family of four.

All considerations under Title VI of the Civil Rights Act of 1964 and related statutes prohibit discrimination on the basis of race, color, and national origin in programs and activities receiving Federal financial assistance. Caltrans’ commitment to upholding the mandates of Title VI is evidenced by its Title VI Policy Statement, signed by the Director.

3.4.5.2 Affected Environment

TI and YBI have a minority population of 35%, or 485 residents. The minority population consists of 12% Black or African American, 11% Asian, and 12% other races. The 2000 U.S. Census data defines a family as two or more people living together and does not provide a breakdown of household income by size. Accordingly, it is not possible to determine the number of four-person households that fall under the poverty guidelines in accordance with the poverty guidelines described above. However, according to 2000 U.S. Census data, 26% of the population of the project area census tract had incomes that fall below poverty level. Over 45% of two-or-more-person families earned less than $74,999 in 1999, which would be considered low-income based on California State Income Limits for 2009 according to the poverty guidelines described above. However, because there are no residents in the project area, no minority or low-income
populations have been identified that would be adversely affected by the proposed project. Therefore, this project is not subject to the provisions of EO 12898.

3.4.5.3 Environmental Consequences

NO BUILD ALTERNATIVE

Under the No Build Alternative, the existing on- and off-ramps would remain and no new ramps would be built. There are no residents in the project area and minority or low-income populations would not be affected.

ALTERNATIVE 2B AND ALTERNATIVE 4

The build alternatives would occur within existing and proposed Caltrans right-of-way. As discussed, no occupied structures would be removed or relocated either temporarily or permanently as part of either build alternative. As such, there are no residents in the project area and minority or low-income populations would not be affected.

Alternatives 2b and 4 would not have disproportionately high or adverse impacts on low-income or minority populations in the project area.

3.4.5.4 Avoidance, Minimization, and/or Mitigation Measures

Based on the above discussion and analysis, the build alternatives would not cause disproportionately high and adverse effects on any minority or low-income populations per EO 12898 regarding environmental justice. Therefore, no avoidance, minimization, or mitigation measures are necessary.
This page intentionally left blank.
Chapter 3.5 – Emergency Services and Utilities

3.5 Emergency Services and Utilities

This section describes emergency services at YBI and on the San Francisco mainland, including fire protection, police protection, and emergency medical services. Utilities at YBI addressed in this section include potable water and wastewater collection and treatment, storm water collection, energy, telecommunications, and solid waste.

3.5.1 Affected Environment

3.5.1.1 Fire Protection

The San Francisco Fire Department (SFFD) provides fire suppression services and emergency medical services to the City of San Francisco. The SFFD operates out of 48 fire stations and is headquartered at 698 Second Street, in the South of Market (SOMA) neighborhood of San Francisco. The department’s resources include 42 engine companies, 19 truck companies, multiple ambulances, two heavy rescue squads, two fireboats, and multiple special purpose units. Emergency response operations include fire suppression; tactical rescue; emergency medical care; fire prevention; arson investigation; response to natural disasters, mass-casualties, and hazardous materials incidents; and fire and EMS dispatch supervision (San Francisco Fire Department 2009a). Staffing levels at the SFFD includes approximately 1,619 uniformed members and 74 civilians. The daily operational strength is approximately 315 staff members (LSA 2007).

The SFFD is organized into three divisions with YBI and TI falling within the operational jurisdiction of Division 3. Division 3 is divided into five Battalions and comprises the SOMA area of San Francisco and runs to the southwestern City limits (San Francisco Fire Department 2009b). Within its boundaries are the San Francisco International Airport, TI and YBI, and the Hunters Point Naval Shipyard. Although there is no fire station on YBI, the fire station closest to the project area is Station 48 (Battalion 3), located on TI. The next nearest is Station 35 (Battalion 3) located at Pier 22½ at the Embarcadero on the San Francisco waterfront. Station 35 also serves as the Fire Boat Headquarters providing access to the islands by fireboat. Both stations 48 and 35 provide services to YBI (San Francisco Fire Department 2009c). The SFFD’s average response time is 3 minutes and 22 seconds (San Francisco Fire Department 2009c).

3.5.1.2 Police Protection

The San Francisco Police Department (SFPD) provides police protection services to the City of San Francisco. The SFPD is headquartered at 850 Bryant Street, in the SOMA neighborhood in San Francisco. The SFPD divides the City into two areas (Metro and Golden Gate), which are each divided into five districts, totaling 10 District Stations. The Metro Division encompasses downtown San Francisco, while the Golden Gate Division includes the outer areas and neighborhoods of the City (San Francisco Police Department 2008, 2009). In June 2007, the SFPD had staffing of 2,296 sworn and 350 civilians working in 1 of the 10 District Stations, specialty divisions, the airport, or the department headquarters (San Francisco Police Department 2008).

YBI and TI are within the jurisdictional boundary of the Southern District, within the SFPD’s Metro Division. The Southern District incorporates the area around the Ferry Building, extending south from Market Street to 16th Street and east to the Bay, including YBI and TI (San Francisco Police Department, Field Operations Bureau, 2009).
Located at 850 Bryant Street, the Southern District Station is approximately 4.83 kilometers (3 miles) west of the islands with access via I-80. Police protection facilities near the project area also include a police station on TI, which was taken over from the U.S. Navy and has been operated by the SFPD since late 1997 (Caltrans 2001b). This facility occupies the TI Substation located in Building 1 of NSTI.

In the event of large-scale emergency situations, the San Francisco Police Department is assisted by the California Highway Patrol (CHP). The CHP has jurisdiction over I-80 and the SFOBB for matters involving both traffic and emergency services. The Oakland CHP office is located at 3601 Telegraph Avenue, close to the interchange of I-580, State Route 24, and I-980 and approximately 1.6 kilometers (1 mile) east of I-80 and the approach to the SFOBB. The CHP office in San Francisco is located on Eighth Street adjacent to the on- and off-ramps for the SFOBB (City and County of San Francisco 2001).

3.5.1.3 Emergency Medical Services

The San Francisco Office of Emergency Services (OES) is responsible for strategic emergency planning for the City and County of San Francisco. TI and YBI residents have created two community-based programs dedicated to disaster preparedness. The Disaster Preparedness Committee and the Neighborhood Emergency Response Team (NERT) work closely with OES and other disaster-related organizations such as the Red Cross. These organizations are involved in a coordinated effort, including many island groups that aim to self-activate as a neighborhood team in the event of a disaster (Treasure Island Online 2009). An Emergency Preparedness and Response Plan is currently being updated by the OES and local agencies on the islands (City and County of San Francisco 2009a).

The delivery of fire and emergency services within the project area is shared by several jurisdictions, due to the complexity of access to the various segments of the SFOBB and the YBI tunnel. The fire department at TI (Station 48) has first response duties for emergency medical calls on the islands (City and County of San Francisco 2006). The San Francisco Department of Public Health provides paramedic services to San Francisco, including YBI and TI. The nearest medical facility includes a clinic on TI that employs approximately 12 paramedics trained in basic life support (City and County of San Francisco 2006). If a situation requires transporting injured persons, an ambulance unit is requested. The nearest major emergency hospital is the Saint Francis Memorial Hospital located approximately 5 kilometers (3.1 miles) west at 1150 Bush Street in San Francisco.

YBI's USCG Sector San Francisco has helicopter landing facilities that could be used for transport services and Pier 1 is structurally available to serve as a landing location for helicopters. Use of this area as a landing facility and emergency access would require coordination with USCG Sector San Francisco. In addition, USCG Sector San Francisco on YBI provides another source of emergency medical care via waterborne vessels (City and County of San Francisco 2009a). In the event of bridge or causeway failure, the SFFD can access the perimeter of YBI and TI by fireboat (City and County of San Francisco 2006).
3.5.2 Environmental Consequences

3.5.2.1 Temporary Impacts

NO BUILD ALTERNATIVE

The No Build Alternative would not impact emergency services or response times.

ALTERNATIVE 2B AND ALTERNATIVE 4

Temporary impacts would be the same for both build alternatives. During the construction period, temporary road detours would be required to route traffic around construction areas. Construction activities would result in temporary detours and single-lane closures. These impacts would be minimized through review and coordination with USCG Sector San Francisco and San Francisco emergency service providers. The proposed detour would be part of the final Transportation Management Plan (TMP), which would be required to be reviewed and approved by the SFFD. All detours would be designed to ensure emergency vehicle access. Temporary impacts to response times would be minimized by close coordination with the emergency services providers and familiarity with any detours or road closures. The expected detoured traffic of 110 vehicles in the AM peak hour and 130 vehicles in the PM peak hour (approximately 2 vehicles per minute) is not expected to degrade roadway segment LOS, would not require construction of new facilities, nor would it degrade service levels (response times) below adopted performance objectives of the emergency service providers. Any temporary closures would be addressed in the final TMP prepared as part of this project.

3.5.2.2 Permanent Impacts

NO BUILD ALTERNATIVE

The geometric configuration of the existing ramps has not been updated since the 1960s. The existing ramps act as a traffic operational constraint on the SFOBB due to nonstandard entrances and exits.

ALTERNATIVE 2B AND ALTERNATIVE 4

The proposed new ramps would provide improved access for emergency vehicles to and from the SFOBB. As discussed in Section 3.6, accident rates for the six on- and off-ramps to the SFOBB exceed the statewide average rate for similar facilities. Because the proposed project would modify the geometric configuration of the existing on- and off-ramps on the east side of the tunnel, accident rates at the two ramps would be reduced. Additionally, the westbound on-ramp west of the tunnel would be reserved exclusively for the use of buses and emergency vehicles. As a result, emergency vehicles would more safely and quickly arrive at their destinations. For that reason, either alternative would have beneficial effects to existing emergency service routes and response times.

3.5.2.3 Avoidance, Minimization, and/or Mitigation Measures

Implementation of the No Build Alternative would not result in any temporary impacts to emergency services. However, future development and planning efforts in coordination with emergency service providers would be required because response times would
continue to increase with an increase in the population of the islands and traffic loads on the SFOBB. The No Build Alternative scenario does not propose avoidance, minimization, and/or mitigation measures beyond the planning and coordination efforts identified above. Implementation of the build alternatives would result in temporary detours and road closures. Impacts to emergency service access and detours would be minimized through review and coordination with emergency service providers and USCG Sector San Francisco. An alternate emergency access plan will also be in place that establishes YBI access routes within a set time period (currently 1 hour) in the event the advertised access routes experience failure or blockage. These avoidance and minimization measures would ensure that access to the islands would be maintained throughout project construction.

3.5.3 Utilities

Since 1997, the San Francisco Public Utilities Commission (SFPUC) has been managing and operating the potable water, wastewater, storm water, electrical, and natural gas systems on YBI and TI under a cooperative agreement with the U.S. Navy. This section describes the current condition of utility systems in the project area.

3.5.3.1 Affected Environment

WATER SUPPLY

The San Francisco Water Department (SFWD) supplies water to YBI and TI through its 25.4-centimeter-diameter steel pipe attached to the western span of the SFOBB. The water is pumped across the bridge by a pumping station located at 475 Spear Street in San Francisco (City and County of San Francisco 2006). According to the SFPUC staff, the condition of the line is being evaluated and upgrades are being performed as necessary as part of the ongoing SFOBB ESSSP. A second source is another SFWD-owned 30.48-centimeter-diameter (12 inch) pipe on YBI adjacent to the lower deck of the exit ramp. Emergency backup water service is provided by the East Bay Municipal Utility District (EBMUD) through a U.S. Navy-owned, 30.48-centimeter (12 inch), cement-lined steel pipe attached to the eastern span of the SFOBB (City and County of San Francisco 2006). Water from both sources is pumped to four concrete reservoirs with a capacity of 24.6 million liters (6.5 million gallons) that provide potable and fire protection water supplies for the two islands (Caltrans 2001b). Two of the four reservoirs on YBI are currently operational, with reservoirs 242 and 162 receiving water from the San Francisco main (City and County of San Francisco 2006). Caltrans has the right to free use of the EBMUD water line in return for allowing the line to be on the bridge (Caltrans 2001b).

SEWER AND SEWAGE TREATMENT

All wastewater generated on YBI and TI is treated at the sewage treatment plant located at the northeast corner of TI (Caltrans 2001b). The wastewater collection system contains approximately 17,069 linear meters (56,000.5 feet) of 10.16-centimeter (4 inch) to 40.64-centimeter- (16 inch) diameter pipes that operate through both gravity and forced lines (City and County of San Francisco 2006). The collection system at YBI is linked to TI by an underwater 15.24-centimeter (6 inch) force main. There is also a sewer line connecting the two islands along the causeway.
The plant, constructed in 1990, provides secondary treatment and has a design capacity of approximately 7.57 million liters per day (2 million gallons per day), wet weather capacity of approximately 30.28 million liters per day (8 million gallons per day), and storage tanks that provide 757,082 liters (200,000 gallons) of pretreatment storage. The plant is capable of providing service to a residential population of about 22,000 people. Following treatment, residual solids are disposed of at the Redwood Landfill in Marin County (City and County of San Francisco 2006).

STORM DRAINS

Storm drains throughout YBI and TI collect storm water and convey it via 10.16-centimeter (4 inch) to 106.68-centimeter (42 inch) pipelines to outfalls that discharge directly into the San Francisco Bay. There are 26 outfalls at the perimeter of YBI and 49 at TI. The capacity, condition, and operation of the system are largely unknown (City and County of San Francisco 2006).

ELECTRICAL INFRASTRUCTURE

Electricity is supplied to YBI and TI through a U.S. Navy-owned, 12.5-kilovolt (kV) underwater cable, which originates at the Port of Oakland’s Davis Substation, located at the former Fleet and Industrial Supply Center in Oakland. Previously, the Pacific Gas and Electric Company (PG&E) provided secondary electrical power to the Islands via two 12.5-kV underwater cables, one originating in San Francisco and the other from PG&E Substation P in Oakland. The underwater cable originating from San Francisco has faulted and is not scheduled for repair or return to service. The main electrical substation is in Building 3 on TI. From that location, four underground 12.5-kV feeders extend to the NSTI distribution system. In addition, two 4.16-kV feeders supply power to YBI. According to the *NSTI Transfer and Reuse Plan Final Environmental Impact Report* (2006), the YBI distribution system is aging and in need of replacement.

TELECOMMUNICATION INFRASTRUCTURE

Telecommunications service is provided to YBI and TI from San Francisco via a conduit system located on the SFOBB, installed in 1989, which consists of basic T-1 trunk lines grouped in cables of 100 to 1,200 copper pairs. The copper cable, consisting of 9,375 cable pairs, is in excellent condition (City and County of San Francisco 2006). The telecommunication system on YBI and TI was designed for the specific requirements of the U.S. Navy and tenant organizations. Telecommunications on YBI and TI were divided into three independent systems, including the residential system, the Consolidated Area Telephone System (CATS), and a classified system. The residential system is operated by Pacific Bell; the CATS and classified system were owned and operated by the U.S. Navy but are no longer in operation.

NATURAL GAS INFRASTRUCTURE

Natural gas is provided to TI and YBI by PG&E via a 25.4-centimeter-diameter (10 inch), high-pressure submarine gas main from Oakland. A metering station is located near the steam plant (Building 455) on TI. This main has a capacity of 19,821.8 cubic meters (700,000 cubic feet) per hour, which is 130% of the current load.
SOLID WASTE

Solid waste is collected either by the U.S. Navy or a private contractor and transported to the Altamont Landfill. The landfill receives an average of 6,000 tons per day from all customers and can accept a maximum of approximately 11,150 tons per day. The landfill was recently expanded and will reach capacity in approximately 30 years (City and County of San Francisco 2006).

3.5.3.2 TI/YBI Project

All on-island infrastructure systems on TI and YBI would be replaced as part of the TI/YBI Project. This would include the electrical, gas, telecommunications, and potable water, wastewater, and storm water systems (City and County of San Francisco 2009a).

3.5.4 Environmental Consequences

3.5.4.1 Temporary Impacts

NO BUILD ALTERNATIVE

The No Build Alternative would not result in any direct impacts to the existing utility infrastructure.

ALTERNATIVE 2B AND ALTERNATIVE 4

It is anticipated that certain components of the utility system on YBI and TI would need to be temporarily relocated as part of the YBI Ramps Improvement Project. In those instances, temporary facilities would be provided during construction to maintain continuous utility operations. There would be no impacts to the utility system under the build alternatives as continuous service is planned to be maintained during construction. In some cases, where allowable, utility elements may be relocated before the initial construction phase.

3.5.4.2 Permanent Impacts

NO BUILD ALTERNATIVE

The No Build Alternative would not result in any direct impacts to the existing utility infrastructure.

ALTERNATIVE 2B AND ALTERNATIVE 4

Both alternatives would include the permanent relocation of gas and sewer lines. All utility relocations would be conducted in coordination with the applicable provider. Acquisition of a utility easement within USCG right of way is needed for only Alternative 2b and the cost of that easement is approximately $56,000. No utility easements within USCG right of way are needed for Alternative 4. As such, no impacts related to utility relocations would occur.
3.5.4.3 Avoidance, Minimization, and/or Mitigation Measures

The No Build and two build alternatives would not result in a need to implement avoidance minimization, or mitigation measures resulting from project-related impacts to utilities on YBI and TI; therefore, no direct or indirect adverse effects would occur. Implementation of the No Build Alternative would not require any utility relocations. Implementation of the build alternatives and potential relocations of utilities would be conducted in coordination with the applicable utility providers.
This page intentionally left blank.
3.6 Traffic and Transportation/Pedestrian and Bicycle Facilities

This section documents traffic operations on the SFOBB (Bridge) and its six on- and off-ramps to and from YBI in the eastbound and westbound directions. This section also analyzes the operational difference between the existing and projected build and No Build alternatives in the year 2035. With the exception of the HOV bypass on the westbound on-ramp under Alternative 2b, there are no operational differences between Alternative 2b and Alternative 4, the two build alternatives, so they are referred to in this section as the Build Alternative.

The current geometric configuration of the ramps has remained mostly unchanged since the 1960s. The on-ramp merge lengths and off-ramp deceleration lengths for the six ramps, and the entrances and exits at the I-80/YBI interchange are nonstandard. All of these conditions create operational constraints. By replacing the existing low-speed westbound on-ramp (which is yield-controlled) with a 267-meter-long (867-foot-long) ramp, rear-end collisions on this ramp are expected to decrease since it will be easier to merge onto the SFOBB. Also, by replacing the westbound left-side off-ramp (which is currently signed for only 32.2 km/h [20 mph]) with a right-side off-ramp that is 340 meters (1,115 feet) long, hit object collisions (involving the guide barrier) on this existing ramp will be eliminated.

A review of the accident data obtained from Caltrans (TASAS Selective Accident Retrieval, Table B) for a 3-year period (between April 1, 2003 and March 31, 2006) indicate that the accident rates (per million vehicle miles traveled) on the Bay Bridge exceeded the statewide average for a similar facility (1.33 vs. 0.8 in the eastbound direction, and 1.30 vs. 0.8 in the westbound direction). Five fatalities were reported in the eastbound direction and one fatality was reported in the westbound direction. Of the total 2,136 accidents in both directions on the Bay Bridge, 24 percent were fatality and injury accidents (513). The predominant type of accident is rear end (1,327 or 62 percent), followed by side swipe (497 or 23 percent), and hit object (254 or 12 percent). Tables 3.6-1 and 3.6-2 illustrate the accident statistics and types of accidents in additional detail.

With regards to the collision types for the westbound on and off-ramps that are being replaced on the east side of YBI, a detailed investigation determined the accidents involved motorists who were under the influence of alcohol, speeding, or driving improperly.
Table 3.6–1: Accident Statistics (April 1, 2003 – March 31, 2006)

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>NUMBER OF ACCIDENTS</th>
<th>ACTUAL RATES (per million vehicle miles)</th>
<th>AVERAGE RATES (per million vehicle miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fatality Fatality + Injury Total</td>
<td>Fatality Fatality + Injury Total</td>
<td>Fatality Fatality + Injury Total</td>
</tr>
<tr>
<td>Bay Bridge (I-80) Eastbound</td>
<td>5 236 1,077</td>
<td>0.006 0.29 1.33</td>
<td>0.004 0.25 0.80</td>
</tr>
<tr>
<td>Bay Bridge (I-80) Westbound</td>
<td>1 277 1,059</td>
<td>0.001 0.34 1.30</td>
<td>0.004 0.25 0.80</td>
</tr>
<tr>
<td>Eastbound off-ramp (West of tunnel)</td>
<td>- 1 8</td>
<td>0.000 0.41 3.24</td>
<td>0.005 0.39 1.15</td>
</tr>
<tr>
<td>Eastbound off-ramp (East of tunnel)</td>
<td>- - 2</td>
<td>0.000 0.00 2.77</td>
<td>0.003 0.31 0.90</td>
</tr>
<tr>
<td>Eastbound on-ramp (East of tunnel)</td>
<td>- 1 7</td>
<td>0.000 0.59 4.12</td>
<td>0.002 0.32 0.80</td>
</tr>
<tr>
<td>Westbound on-ramp (East of tunnel)</td>
<td>- - 2</td>
<td>0.000 0.00 0.75</td>
<td>0.002 0.20 0.60</td>
</tr>
<tr>
<td>Westbound off-ramp (East of tunnel)</td>
<td>- 3 4</td>
<td>0.000 1.05 1.40</td>
<td>0.005 0.39 1.15</td>
</tr>
<tr>
<td>Westbound on-ramp (West of tunnel)</td>
<td>- 1 1</td>
<td>0.000 1.94 1.94</td>
<td>0.003 0.22 0.60</td>
</tr>
</tbody>
</table>

Source: Caltrans

Table 3.6–2: Collision Types (April 1, 2003 – March 31, 2006)

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>TYPE OF COLLISION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rear End Sidewipe Hit Object Overturn Broadside Head-On Auto-Pedestrian Other-Not Stated</td>
</tr>
<tr>
<td>Bay Bridge (I-80) Eastbound</td>
<td>611 285 148 7 5 3 1 17</td>
</tr>
<tr>
<td>Bay Bridge (I-80) Westbound</td>
<td>716 212 106 3 8 - - 14</td>
</tr>
<tr>
<td>Eastbound off-ramp (West of tunnel)</td>
<td>- 1 7 - - - - -</td>
</tr>
<tr>
<td>Eastbound off-ramp (East of tunnel)</td>
<td>- - 1 - 1 - - -</td>
</tr>
<tr>
<td>Eastbound on-ramp (East of tunnel)</td>
<td>7 - - - - - - -</td>
</tr>
<tr>
<td>Westbound on-ramp (East of tunnel)</td>
<td>1 - - - - - - -</td>
</tr>
<tr>
<td>Westbound off-ramp (East of tunnel)</td>
<td>2 - 2 - - - - -</td>
</tr>
<tr>
<td>Westbound on-ramp (West of tunnel)</td>
<td>1 - 1 - - - - -</td>
</tr>
</tbody>
</table>

Source: Caltrans
3.6.1 Regulatory Setting

Caltrans, as assigned by FHWA, directs that full consideration should be given to the safe accommodation of pedestrians and bicyclists during the development of Federal-aid highway projects (see 23 C.F.R. 652). It further directs that the special needs of the elderly and the disabled must be considered in all Federal-aid projects that include pedestrian facilities. When current or anticipated pedestrian and/or bicycle traffic presents a potential conflict with motor vehicle traffic, every effort must be made to minimize the detrimental effects on all highway users who share the facility.

In July 1999, the USDT issued an Accessibility Policy Statement pledging a fully accessible multimodal transportation system. Accessibility in Federally assisted programs is governed by the USDT regulations (49 C.F.R. part 27) implementing Section 504 of the Rehabilitation Act (29 U.S.C. 794). The FHWA has enacted regulations for the implementation of the 1990 Americans Disabilities Act (ADA), and Caltrans is committed to following these regulations by building transportation facilities that provide equal access to all persons, including those with disabilities. These regulations require application of the ADA requirements to Federal-aid projects, including Transportation Enhancement Activities.

3.6.2 Affected Environment

The following technical reports, included in Appendix H, were consulted:

The analysis of traffic operations of the existing ramp configuration was completed using the methodologies described in the Highway Capacity Manual (Transportation Research Board 2000). Ramp analysis was completed using methods from Chapter 25, Ramps and Ramp Junctions, of the HCM.

3.6.2.1 Historical Traffic Volumes

A review of historical data published by the Metropolitan Transportation Commission (MTC) in 2007 showed that traffic volumes during the AM peak period were effectively the same in 2001 as in 1991 in both the eastbound and westbound directions. However, traffic volumes during the PM peak period increased in both eastbound and westbound directions during the same time period. A report prepared by the MTC in 2005 shows a reduction of 4 percent in average daily traffic on the SFOBB in the westbound direction.

3.6.2.2 Existing Traffic Volumes

Figure 3.6-1 presents the existing traffic volumes on the SFOBB and ramps in both the eastbound and westbound directions, during both the AM and PM peak hours, respectively. Existing SFOBB ramp traffic volumes were collected from Sunday, May 4 to Saturday, May 10, 2008. Average traffic volumes for the three midweek weekdays (Tuesday, May 6, 2008, to Thursday, May 8, 2008) were selected for the analysis. The AM peak hour was identified as 8:00 a.m. to 9:00 a.m. and the PM peak hour was identified as 4:00 to 5:00 p.m. The SFOBB traffic volumes were obtained from the Freeway Performance Measurement System (PeMS) database for the same 3 days and...
during the same peak hour to ensure consistency. The data point used to obtain the volumes is located approximately 701 meters (2,297 feet) west of the SFOBB westbound metering lights. It should be noted that SFOBB traffic volumes do not represent actual demand; they represent the actual volumes counted at that location.

Westbound traffic volumes at this location are constrained by the number of vehicles controlled by metering lights during both the AM and PM peak periods. Although capacity of the Bay Bridge is 9,500 vehicles per hour (vph), it is Caltrans’ general practice to maintain acceptable operations on the SFOBB by limiting the traffic entering the bridge. This allowable traffic volume is determined by actual traffic volumes recorded at the monitoring station immediately west of the metering lights. Average weekday traffic volume recorded at this monitoring station for the past three years (2006–2008) is approximately 8,600 vph in the morning. There are no metering lights in the eastbound direction in the SFOBB corridor. Therefore, the eastbound SFOBB capacity was assumed to be 9,500 vph for morning and afternoon operational analysis.

3.6.2.3 Existing Levels of Service

Traffic operating characteristics of intersections are described by the level of service (LOS). LOS is a qualitative description of a ramp segment or intersection performance based on the criteria outlined in the Highway Capacity Manual (HCM). LOS ranges from A, which indicates free flow or excellent conditions with short delays, to F, which indicates congested or overloaded conditions with extremely long delays. Caltrans criteria are used to establish a goal of LOS C, when possible. A project resulting in LOS E or F is considered to have an adverse impact. LOS results for the SFOBB on- and off-ramps were determined by using methods described in Chapter 25 of the HCM for ramps and ramp junctions.

Table 3.6-3 summarizes the LOS criteria for merge and diverge areas and freeway weaving segments. The travel density, LOS, and average speed for each existing ramp junction are shown in Table 3.6-4.

The existing traffic density and LOS for the existing ramps are summarized in Table 3.6-4. Analysis of the eastbound and westbound SFOBB ramp junctures indicates that all study sections operate at LOS D or better for the AM and PM peak hours.

A capacity of 330 vph for the existing westbound on-ramps is assumed. This value was developed based on a combination of the highest volume measured, and gap analysis, as documented in the Disposal and Reuse of NSTI Administrative Final EIS (City and County of San Francisco 2006). The capacity of the Bridge was assumed to be 1,900 vehicles per hour per lane (vphpl) based on existing traffic data, as described in Section 3.6.2.2, and methods for field conditions adjustments outlined in the HCM, Chapter 22, Basic Freeway Segments. The capacity of the existing eastbound off-ramps is assumed to be 1,800 vph in accordance with the HCM, Chapter 25, Ramps and Ramp Junctions, Exhibit 25-3, Approximate Capacity of Ramp Roadways. The capacity of the proposed diagonal on- and off-ramps was also assumed to be 1,500 vph and 1,800 vph, respectively, based on free-flow speed. The capacity of the proposed loop on-ramp is assumed to be 1,200 vph based on free-flow speed.
1. The volume and capacity are shown as xx (yy).
2. Bay Bridge westbound traffic volumes are controlled by metering lights during both the AM and PM peak periods, and Caltrans sets a limit of 9,600 vehicles per hour onto the Bay Bridge.
3. Bay Bridge eastbound capacity is constrained by the ramps and mainline configuration near First Street. The highest volume counted between 2005 and 2007 was approximately 9,500 vehicles per hour.

Figure 3.6-1
Existing Peak-Hour Volume
Table 3.6–3: LOS Criteria for Merge and Diverge Areas

<table>
<thead>
<tr>
<th>LOS</th>
<th>Merge and Diverge Areas (passenger car/mile/lane)</th>
<th>Freeway Weaving Segments (passenger car/mile/lane)</th>
<th>Traffic Flow Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>≤ 10.0</td>
<td>≤ 10.0</td>
<td>Free flow operation. Vehicles are almost completely unimpeded in their ability to maneuver within the traffic stream.</td>
</tr>
<tr>
<td>B</td>
<td>> 10.0 – 20.0</td>
<td>> 10.0 - 20.0</td>
<td>Reasonably free flow. Vehicles maneuver within the traffic stream is only slightly restricted.</td>
</tr>
<tr>
<td>C</td>
<td>> 20.0 – 28.0</td>
<td>> 20.0 - 28.0</td>
<td>Freedom to maneuver within the traffic stream is noticeably restricted.</td>
</tr>
<tr>
<td>D</td>
<td>> 28.0 – 35.0</td>
<td>> 28.0 - 35.0</td>
<td>Freedom to maneuver within the traffic stream is more noticeably limited, and the driver experiences reduced physical and psychological comfort level.</td>
</tr>
<tr>
<td>E</td>
<td>> 35.0</td>
<td>> 35.0 - 43.0</td>
<td>Vehicles are closely spaced, leaving little room to maneuver within the traffic stream at speeds that still exceed 49 mph.</td>
</tr>
<tr>
<td>F</td>
<td>Demand exceeds capacity</td>
<td>> 43.0</td>
<td>Breakdowns in vehicular flow.</td>
</tr>
</tbody>
</table>

Table 3.6–4: Existing Ramp Junction Analysis

<table>
<thead>
<tr>
<th></th>
<th>Existing AM</th>
<th></th>
<th>Existing PM</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOS</td>
<td>Density (pc/mi/ln)</td>
<td>Speed (mph)</td>
<td>LOS</td>
</tr>
<tr>
<td>Westbound</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off-Ramp (left side ramp)</td>
<td>D</td>
<td>28</td>
<td>65</td>
<td>C</td>
</tr>
<tr>
<td>On-Ramp</td>
<td>D</td>
<td>31</td>
<td>56</td>
<td>D</td>
</tr>
<tr>
<td>Eastbound</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off-Ramp (left side ramp)</td>
<td>C</td>
<td>25</td>
<td>65</td>
<td>D</td>
</tr>
<tr>
<td>Off-Ramp</td>
<td>C</td>
<td>25</td>
<td>62</td>
<td>D</td>
</tr>
<tr>
<td>On-Ramp</td>
<td>D</td>
<td>27</td>
<td>61</td>
<td>D</td>
</tr>
</tbody>
</table>

Notes: 1. pc/mi/ln = passenger car / mile / lane
2. Speed based on travel time runs conducted on SFOBB on October 7, 2008.
3. mph = miles per hour

SFOBB TRAVEL TIME

Travel time runs for the SFOBB were performed during the morning and evening peak periods on October 7, 2008. The morning peak period fell between 6:30 a.m. and 9:30 a.m., and the evening peak period hours fell between 3:30 p.m. and 6:30 p.m. A test car study method (also known as a floating car technique) was used to collect travel time data. The test car method is a common and accepted practice in traffic engineering.
(Transportation Research Board 2007). The method involves the use of a test vehicle that is driven along the study route and the driver floats with the traffic by passing as many vehicles as pass the test car. This technique is preferred for capturing the typical driver behavior and vehicular operation of a selected study roadway. During the AM and PM peak periods for the eastbound direction, speeds were fairly consistent between runs (ranging from 90 to 104 km/h [56 to 65 mph]), indicating minimal congestion and a low occurrence of reduced speed areas. In the eastbound direction, travel speeds for the morning peak period (ranging from 98 to 104 km/h [61 mph to 65 mph]) were greater on average than the evening peak period (ranging from 90 to 104 km/h [56 mph to 65 mph]).

The results indicated that vehicles heading westbound, in the rightmost lanes (4 and 5) operate with slower speeds than leftmost lanes (1, 2, and 3) at the approaches to the Fremont Street off-ramp during the peak period. The slower speeds of lanes 4 and 5 are caused by queuing of cars on the Fremont Street off-ramp, due to the lack of capacity, which existed before the closure of the Harrison Street off-ramp. The slower operational speed typically begins at approximately midspan on the bridge and continues in the San Francisco. Occasionally, slower speed traffic extends to the vicinity of the westbound on-ramp junction on the west side of the SFOBB. At the time the measurements were taken, during non-peak periods, the retrofit construction activity occurring farther to the east near Fifth Street causes traffic to slow down on the SFOBB. The information collected from these measurements were used as a basis for the analysis of proposed alternative designs.

TEST CAR STUDY SECTIONS

The beginning and end points of each test car run on the SFOBB were consistent during the travel time runs. However, the study sections for each period varied slightly. In the eastbound direction, the data collection starting point was the merge onto the SFOBB from the First Street/Harrison Street on-ramp location, while the end point was 7.4 kilometers (4.6 miles) from the start, just before the turnaround location at the toll plaza. In the westbound direction, the data collection starting point was an overhead sign located west of the toll plaza, while the end point location was 8.2 kilometers (5.1 miles) from start at the intersection of Fremont Street and Howard Street. The interim data location points were typically mile markers, as well as the on- and off-ramp locations on YBI.

On October 7, 2008 the travel time runs were conducted for the SFOBB during the morning and evening peak periods, the results in terms of speed and distance are identified in Figure 3.6-2. Each test car run is shown as an interpolation of the calculated travel speeds versus post mile. Travel speed was calculated based on how long it took to travel between the post miles listed in Table 3.6-5. Note that travel times were calculated only for the eastbound AM peak hour and westbound PM peak hour because these are the major commute directions and, thus, the most critical conditions to assess. Since the bridge is most congested in the major commute directions, analyzing the eastbound AM peak hour and westbound PM peak hour directions represent the “worst-case” scenario on non-commute directions would operate at better levels of service.
Westbound AM Peak Period

![Graph showing speed vs postmile for the Westbound AM Peak Period.](image1)

Eastbound PM Peak Period

![Graph showing speed vs postmile for the Eastbound PM Peak Period.](image2)

Note: The peak hour travel speed is the average speed between two observed locations. Note: Eastbound AM and westbound PM peak hours are major commute directions.

Table 3.6–5: Location of Travel Time Measurements

<table>
<thead>
<tr>
<th>Westbound Location Description</th>
<th>Post Mile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>6.69</td>
</tr>
<tr>
<td>1 Mile</td>
<td>5.69</td>
</tr>
<tr>
<td>2 Mile</td>
<td>4.69</td>
</tr>
<tr>
<td>Off-Ramp 1 (left side)</td>
<td>4.33</td>
</tr>
<tr>
<td>On-Ramp 1</td>
<td>4.24</td>
</tr>
<tr>
<td>On-Ramp 2</td>
<td>4.06</td>
</tr>
<tr>
<td>3 Miles</td>
<td>3.69</td>
</tr>
<tr>
<td>End</td>
<td>2.69</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eastbound Location Description</th>
<th>Post Mile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>2.14</td>
</tr>
<tr>
<td>1 Mile</td>
<td>3.14</td>
</tr>
<tr>
<td>Off-Ramp 1 (left side)</td>
<td>4.14</td>
</tr>
<tr>
<td>Off-Ramp 2</td>
<td>4.39</td>
</tr>
<tr>
<td>On-Ramp 1</td>
<td>4.51</td>
</tr>
<tr>
<td>3 Miles</td>
<td>5.14</td>
</tr>
<tr>
<td>4 Miles</td>
<td>6.14</td>
</tr>
<tr>
<td>End</td>
<td>6.69</td>
</tr>
</tbody>
</table>

The locations and post miles indicated in Table 3.6-5 are locations where travel times were recorded during the test car study runs.

3.6.2.4 Pedestrian and Bicycle Facilities

Though pedestrians and bicyclists use some portions of YBI, there are no officially designated pedestrian or bicycle facilities on YBI in the project area.

3.6.3 Environmental Consequences

3.6.3.1 Temporary Impacts

Construction traffic is expected to access the project site from the SFOBB, using Treasure Island Road and Macalla Road. During the construction period, construction vehicles, equipment, and workers would traverse the project area, resulting in temporary traffic and circulation impacts. Project construction would involve demolition, excavation, construction of new bridge structures, a roadway, sidewalk, retaining wall, landscaping, and signage. Vehicles involved in construction activities would include trucks hauling debris and delivering construction materials and supplies, graders and heavy earthmoving and paving equipment, and commuter vehicles driven by construction workers.

It is anticipated the surrounding traffic circulation will be slower than usual with enforcement of single-lane road closures, flaggers, detours, and temporary traffic controls during project construction for both Alternative 2b and 4. Some queuing is anticipated dependent upon the amount of construction activities. Efforts would be made to concentrate construction activities during off-peak hours. In addition, construction hours are subject to USCG restrictions. Scheduling construction activities during off-peak hours would ensure that roadways in the construction area are open during the peak traffic times to minimize disruption. The two primary types of construction activities that may occur during low traffic periods are:

- Erection of falsework for construction of ramp structures; and,
- Construction of Macalla Road and adjacent retaining wall.
During final design, Caltrans and other affected agencies would be consulted to define specific construction procedures and routes and to implement the Transportation Management Plan (TMP) prepared for the YBI Ramps Improvement Project. A TMP typically is prepared during the PS&E stage of a project and includes information such as contractor work hours, times when lane and/or street closures are permitted, proposed detour signing and routing, construction zone traffic control, and use of flag persons. This section identifies potential impacts that may occur during construction of Alternative 2b and Alternative 4.

ALTERNATIVE 2B

Construction is proposed to be completed in the following five stages:

Stage 1: The first stage would involve construction of bridge substructure followed by construction of westbound on-ramps falsework over Macalla Road. During falsework construction, the existing westbound on-ramp and Macalla Road would result in temporary detours and single-lane road closures. These impacts would be minimized through coordination with the USCG and emergency service providers. Temporary traffic control systems will be utilized during construction to provide guidance to motorists. The next step would consist of completing falsework construction for the ramp bridge portions that will tie into the new SFOBB structure. Once this falsework is completed, that portion of the westbound on- and off-ramp bridge structures can be completed. The existing westbound on-ramp and Macalla Road will remain open during this phase.

Stage 2: Construct the retaining wall on the west side of Macalla Road and temporary pavement for travel lane in front of the wall. The temporary pavement lane will accommodate two-way traffic on Macalla Road. Temporary traffic controls will be installed and flaggers will be stationed within the construction limits to guide motorists through the construction zone. The existing substation concrete stairway on the west side of the roadway will be relocated to the west side of the substation prior to the retaining wall construction. The existing westbound on-ramp will remain open to traffic during this phase.

Stage 3: The third stage would involve construction of the abutment for the westbound entrance and exit ramps and Macalla Road. Once the abutment is constructed remaining portion of the westbound ramp bridge deck can be constructed. Temporary traffic controls will be installed and flaggers will be stationed within the construction limits to guide motorists through the construction zone. The existing westbound on-ramp will remain open to traffic during this phase.

Stage 4: Upon completion of the bridge structures, a sidewalk will be constructed on Macalla Road in front of the new retaining wall. Temporary traffic controls will be installed and flaggers will be stationed within the construction limits to guide motorists through construction area. The existing westbound on-ramp will remain open to traffic during this phase.

Stage 5: Construction of the last segment of the westbound on-ramp structure-viaduct structure widening. During construction, the right-hand shoulder of the westbound transition structure will be closed from the YBI Tunnel to approximately Station “W” 51+20. The existing westbound on-ramp will be closed to traffic during this phase. Traffic will be detoured to the existing westbound entrance ramp on the west side of YBI. This
Chapter 3.6 – Traffic and Transportation/Pedestrian and Bicycle Facilities

detour is expected to shift on-ramp traffic (110 vehicles in AM peak hour and 130 vehicles in PM peak hour) from northbound Macalla Road (on the east side of YBI) to southbound Treasure Island Road (on the west side of YBI). About one month prior to this proposed detour, changeable message signs (as well as standard signage) would be placed at appropriate locations to notify motorists about the upcoming closure of the westbound on-ramp on the west side of YBI.

ALTERNATIVE 4

Construction is proposed to be completed in the following four stages:

Stage 1: The first stage would involve construction of bridge substructure followed by construction of falsework over the Macalla Road which will support proposed westbound on-ramp bridge tie-in to the new SFOBB superstructure. During falsework construction, Macalla Road would result in temporary detours and single-lane road closures. These impacts would be minimized through coordination with the USCG and emergency service providers. The next step will be to complete falsework construction for entire westbound on-ramp structure. Once falsework is completed, a majority of the westbound on-ramp bridge can be constructed. The existing westbound on-ramp and Macalla Road will remain open during this phase.

Stage 2: During this stage, pavement improvements on Macalla Road will be constructed. The existing substation concrete stairway on westerly side of the roadway will be relocated to the westerly side of the building. Temporary traffic controls will be installed and flaggers will be stationed within construction zone. The existing westbound on-ramp will remain open to traffic during this stage.

Stage 3: Upon removal of falsework under the existing westbound on-ramp, construction of the proposed westbound off-ramp that crosses under westbound entrance ramp will begin. Falsework, abutment at South Gate Road, and bridge construction will also be done during this stage. Temporary traffic controls will be installed and flaggers will be stationed within construction zone. The existing westbound on-ramp will remain open to traffic during this stage.

Stage 4: This stage involves construction of last segment of the westbound entrance ramp structure viaduct widening. During this stage right shoulder of westbound SFOBB will be closed from YBI tunnel to approximately Station “W” 51+20. The existing westbound on-ramp will be closed to traffic during this phase. Traffic will be detoured to the existing westbound on-ramp on the west side of YBI. As described above, this detour is expected to shift 110 vehicles in AM peak hour and 130 vehicles in PM peak hour from northbound Macalla Road to southbound Treasure Island Road.

3.6.3.2 Permanent Impacts

FUTURE TRIP DEMAND ON YERBA BUENA ISLAND AND TREASURE ISLAND

Future trip demand volumes were estimated for baseline transit investments only (only those funded improvements were included in the modal split analysis). Table 3.6–6 presents the proposed land use program for the TI/YBI Project and estimated person and vehicle trips for the TI/YBI Project under the baseline transit scenario. The table shows that the TI/YBI Project would generate approximately 2,416 vehicle trips during the AM peak hour (1,062 inbound and 1,354 outbound vehicle trips) and approximately
3,835 vehicle trips during the PM peak hour (2,136 inbound and 1,699 outbound vehicle trips) during the PM peak hour.

It should be noted that the TI/YBI redevelopment configuration detailed in Table 3.6-6 was accurate as of the time in mid-2009 when traffic generation for the project was calculated. The TI/YBI Project continues to undergo refinement as part of its own planning and environmental approval processes. While the mix of planned land uses is subject to change, TIDA has made the assurance that the reconfiguration would result in land uses that would generate fewer trips than the land use mix assumed in this analysis and expressed in Table 3.6-6. The traffic analysis contained herein is therefore a “worst-case” scenario. Actual traffic generation would ultimately be less than the projected volumes included in this analysis.

The vehicle trips presented in Table 3.6-6 are total vehicle trips that would be generated by the proposed developments on TI and YBI at build-out, and include vehicles currently accessing the islands. These trips represent full implementation of the TI/YBI Project. The net increase in vehicle volumes would be 1,664 vehicles during the AM peak hour and 2,909 vehicles during the PM peak hour. More specifically, projected traffic volumes for 2035 indicate 319 (=313+6) during the AM peak hour and 583 (=568+15) vph during the PM peak hour on northbound Macalla Road. These volumes are well below the Federal Highway Administration estimated capacity of 800 vph for one lane on a rural highway (FHWA 2008). With the great majority of this traffic expected to be right turns from the westbound off-ramp onto Macalla Road, the stop-controlled off-ramp is expected to operate at LOS B during the PM peak hour (which is busier than the AM peak hour) and therefore this intersection does not warrant signalization.

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Total Use</th>
<th>Person Trips</th>
<th>Vehicle Trips²</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ferry</td>
<td>Bus</td>
<td>Auto</td>
</tr>
<tr>
<td>Residential</td>
<td>6,000 units</td>
<td>431</td>
<td>526</td>
<td>1,405</td>
</tr>
<tr>
<td>Hotel</td>
<td>500 rooms</td>
<td>100</td>
<td>126</td>
<td>352</td>
</tr>
<tr>
<td>Retail</td>
<td>270,000 sf</td>
<td>131</td>
<td>222</td>
<td>858</td>
</tr>
<tr>
<td>Open Space</td>
<td>121.4 hectares</td>
<td>9</td>
<td>15</td>
<td>59</td>
</tr>
<tr>
<td>Marina³</td>
<td>400</td>
<td>6</td>
<td>8</td>
<td>34</td>
</tr>
<tr>
<td>Flex</td>
<td>325,000 sf</td>
<td>41</td>
<td>50</td>
<td>134</td>
</tr>
<tr>
<td>Police/Fire</td>
<td>135,000 sf</td>
<td>33</td>
<td>40</td>
<td>107</td>
</tr>
<tr>
<td>School</td>
<td>91</td>
<td>111</td>
<td>296</td>
<td>291</td>
</tr>
<tr>
<td>Total</td>
<td>842</td>
<td>1,098</td>
<td>3,245</td>
<td>3,045</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Total Use</th>
<th>Person Trips</th>
<th>Vehicle Trips²</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ferry</td>
<td>Bus</td>
<td>Auto</td>
</tr>
<tr>
<td>Residential</td>
<td>6,000 units</td>
<td>510</td>
<td>623</td>
<td>1,534</td>
</tr>
<tr>
<td>Hotel</td>
<td>500 rooms</td>
<td>50</td>
<td>63</td>
<td>165</td>
</tr>
<tr>
<td>Retail</td>
<td>270,000 sf</td>
<td>397</td>
<td>669</td>
<td>2,418</td>
</tr>
<tr>
<td>Open Space</td>
<td>121.4 hectares</td>
<td>17</td>
<td>29</td>
<td>107</td>
</tr>
</tbody>
</table>
Chapter 3.6 – Traffic and Transportation/Pedestrian and Bicycle Facilities

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Total Use</th>
<th>Person Trips</th>
<th>Vehicle Trips²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ferry</td>
<td>Bus</td>
</tr>
<tr>
<td>Marina³</td>
<td>400</td>
<td>9</td>
<td>14</td>
</tr>
<tr>
<td>Flex</td>
<td>325,000 sf</td>
<td>237</td>
<td>289</td>
</tr>
<tr>
<td>Police/Fire</td>
<td>135,000 sf</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>School</td>
<td></td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1,317</td>
<td>1,786</td>
</tr>
</tbody>
</table>

¹ Pedestrian and bicycle trips would be internal to TI.
² Vehicle-trips include passenger vehicles and vans.
³ The marina use has already been approved and is not part of the TI/YBI Project (although the land-side services associated with the marina are included). The trip generation associated with the marina is presented for informational purposes because it would be used to assess cumulative conditions.

FUTURE 2035 SFOBB CONDITION ANALYSES

The future 2035 SFOBB condition analysis considers 20-year growth following the completion of the YBI Ramps Improvement Project and includes expected volume from buildout of the TI/YBI Project. Future traffic demand for the SFOBB was evaluated for the following scenarios regarding the YBI ramps:

- 2035 No Build Condition,
- 2035 Build Condition, and
- 2035 Build Condition with Ramp Metering.

Future traffic demand volumes for the TI project and the SFOBB were estimated using two different methods which were then integrated to ensure consistency. Future demand volumes for the TI project were estimated based on the proposed land use program for the TI/YBI Project based on a full build-out of the TI baseline project, but without its enhanced Travel Demand Management (TDM) measures or any of its proposed transit service improvements. The demand analysis also does not consider any of the constraining effects of the ramp metering. The TI/YBI Project proposes a number of TDM measures, including congestion pricing (reducing vehicle use by charging higher tolls for drivers traveling during peak periods), residential transit subsidies, and bicycle sharing. The proposed TDM measures also include a high level of transit service during peak periods including:

- New ferry service to San Francisco every 10 minutes,
- New bus service to Downtown Oakland every 7 minutes,
- Maintenance of existing bus service to the San Francisco Transbay Terminal (Muni Route 108-Treasure Island) every 5 minutes, and
- New bus service to the San Francisco Civic Center area every 12 minutes.

This level of mass transit services and TDM measures is expected to result in a substantial shift from automobile transit to use of new mass transit services.
However, funding and/or operating details for all of this service has not yet been resolved or identified and so the improvements cannot be assumed. Therefore, the transportation analysis for the YBI Ramps Improvement Project is based on a scenario with limited TDM measures (no congestion pricing, for example) and the following reduced transit service assumptions (which are based on current funding levels):

- New ferry service to San Francisco every 50 minutes,
- New bus service to downtown Oakland every 7 minutes,
- Maintenance of the existing bus service to the San Francisco Transbay Terminal (Muni Route 108-Treasure Island) every 15 minutes, and
- No new bus service to the San Francisco Civic Center area.

As a result, to be conservative, this analysis is based on the assumption of substantially reduced mass transit services from what is ultimately proposed by the full buildout of the TI/YBI Project, with TDM measures. The analysis included in this study represents a worst-case scenario in terms of peak-hour vehicle trips using the proposed ramps. Future demand volumes for the SFOBB were based on the MTC’s travel forecasting model (BAYCAST 2009 RTP) for the morning peak period and the SFCTA’s travel forecasting model for the evening peak period. Two different travel demand models were used as a cross check because the MTC model was not validated for the evening peak period. The following discussion includes a description of both forecasting methods and integration procedures for future traffic demand, as well as future SFOBB volumes. Also, the performance results are discussed comparing the base condition to the proposed alternatives.

FUTURE 2035 SFOBB MAINLINE TRAFFIC VOLUMES

Future traffic volumes for the Bridge were estimated using the MTC’s travel forecasting model (BAYCAST 2009 RTP) for the morning peak period and using the SFCTA’s travel forecasting model (Champ 3.2) for the evening peak period. Table 3.6-7 summarizes existing Bridge mainline volumes as well as future volumes for year 2035. Table 3.6-7 shows that future volumes will be greater than existing conditions.

<table>
<thead>
<tr>
<th></th>
<th>Existing (2008)</th>
<th>Future Volumes (2035)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eastbound (from SF to East Bay)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM Demand</td>
<td>8,557</td>
<td>8,769</td>
</tr>
<tr>
<td>AM Volumes</td>
<td>7,273</td>
<td>8,769</td>
</tr>
<tr>
<td>PM Demand</td>
<td>10,402</td>
<td>12,002</td>
</tr>
<tr>
<td>PM Volumes</td>
<td>9,011</td>
<td>9,500</td>
</tr>
<tr>
<td>Westbound (from East Bay to SF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM Demand</td>
<td>12,652</td>
<td>16,385</td>
</tr>
<tr>
<td>AM Volumes</td>
<td>8,740</td>
<td>9,500</td>
</tr>
<tr>
<td>PM Demand</td>
<td>9,087</td>
<td>10,462</td>
</tr>
<tr>
<td>PM Volumes</td>
<td>7,340</td>
<td>9,500</td>
</tr>
</tbody>
</table>

Source: YBI Ramps Project Traffic Operations Report, 2009b
Chapter 3.6 – Traffic and Transportation/Pedestrian and Bicycle Facilities

Notes: 1. AM peak hour demands were based on the MTC model and PM peak hour demands were based on the SFCTA’s model.
2. Year 2008 volumes are 85 percentile volumes obtained from the PeMS database.

FUTURE 2035 NO BUILD CONDITION ANALYSIS

The 2035 No Build Condition consists of future 2035 traffic volumes that take into account the TI/YBI Project, and existing ramp configurations and their respective capacities. Figure 3.6-3 illustrates future 2035 peak hour traffic demand volumes in both directions of travel, as well as ramp configurations and capacities. During the morning peak hour, the SFOBB mainline demand volumes are expected to reach 16,385 and 8,769 vph in the westbound and eastbound directions, respectively. The evening peak hour Bridge mainline demand volumes are expected to reach 10,462 and 12,202 vph in the westbound and eastbound directions, respectively. However, these demand volumes would be constrained to 9,500 vph in both directions due to the maximum throughput rates.

Table 3.6-8 below summarizes results of the future No Build ramp junction analysis. The No Build condition yields a degraded LOS as compared to the existing condition. In addition, the No Build condition would yield lower average speeds ranging from 61.2 km/h (38 miles per hour [mph]) to 80.5 km/h (50 mph) as compared to 90.1 to 104.6 km/h (56 mph to 65 mph) under existing conditions. The capacity of both westbound on-ramps is assumed to remain at 330 vph under this scenario which is so low that it is unlikely ramp meters would be installed to lower the rate even further. Additionally, the existing ramps do not have the ability for ramp metering to be installed. A “with ramp metering” scenario was not analyzed under the 2035 No Build Condition as this condition does not meet the need for improving geometric and operational deficiencies of the project and safety would continue to be a concern with or without ramp metering. There is currently no approved ramp metering plan for the existing ramp because it would not make a difference to the poor traffic flow conditions.

Table 3.6–8: 2035 No Build Condition Ramp Junction Analysis – No Ramp Metering

<table>
<thead>
<tr>
<th></th>
<th>2035 No Build AM (No Ramp Metering)</th>
<th>2035 No Build PM (No Ramp Metering)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOS</td>
<td>Density (pc/mi/ln)</td>
</tr>
<tr>
<td>Westbound</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off-Ramp (left side)</td>
<td>F</td>
<td>49</td>
</tr>
<tr>
<td>On-Ramp (Post Mile 4.24)</td>
<td>F</td>
<td>49</td>
</tr>
<tr>
<td>On-Ramp (Post Mile 4.06)</td>
<td>E</td>
<td>41</td>
</tr>
<tr>
<td>Eastbound</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off-Ramp (left side)</td>
<td>D</td>
<td>34</td>
</tr>
<tr>
<td>Off-Ramp</td>
<td>D</td>
<td>33</td>
</tr>
<tr>
<td>On-Ramp</td>
<td>E</td>
<td>40</td>
</tr>
</tbody>
</table>

Source: YBI Ramps Project Traffic Operations Report, 2009b
Notes: 1. Existing capacity level is so low that it is unlikely that meters would be installed to lower the rate even further, and the existing ramps do not have the ability for metering to be installed; therefore, a “with ramp metering” scenario was not analyzed under the 2035 No Build Condition.
2. Speeds shown correspond to mainline speed at ramp junctions.
3. pc/mi/ln = passenger car / mile / lane
4. mph = miles per hour
1. The demand volume and capacity are shown as xx (yy).
2. In future scenario, there would be 4 bus trips to San Francisco and 9 bus trips from Oakland.

* Constrained Volumes

Figure 3.6-3
Future (2035) No Build Peak-Hour Volumes
FUTURE 2035 BUILD CONDITION ANALYSIS

The 2035 Build Condition, assuming no constraints (ramp metering), consists of the same 2035 traffic volumes used in the No Build scenario. However, the westbound off-ramp on the left side would be replaced with an off-ramp on the right side and the westbound on-ramp east of the YBI tunnel would be modified to improve its geometry. Figure 3.6-4 illustrates future 2035 Build Condition peak hour traffic demand volumes in both directions of travel, as well as ramp configurations and capacities. In addition to modifications of the ramps east of the tunnel, the westbound on-ramp west of the tunnel would be reserved exclusively for buses and emergency vehicles. The existing configuration of the off-ramps in the eastbound direction would remain unchanged.

Table 3.6-9 summarizes results of the 2035 Build Condition analysis for the ramp junctions. Compared to the No Build Condition, average operating speeds on the SFOBB would be lower. This is due to the increased capacity of the new on-ramp on the east side (1,200 vph) compared to the existing on-ramp (330 vph) which would improve traffic flow conditions. Most of the westbound on-ramp traffic would be allowed to enter the Bridge unimpeded. Therefore, no on-ramp queuing would result.

2035 BUILD CONDITION WITH RAMP METERING

Caltrans would require ramp metering for the westbound on-ramp on the east side of the Yerba Buena Island. Based on extensive coordination and discussions with Caltrans staff, it was determined that the methodology used to set the metering rate for the westbound on-ramp would be based on the amount of traffic exiting the SFOBB at the off-ramp. Therefore, for the purposes of this study, the westbound on-ramp metering rate would be approximately 323 vph and 578 vph in the AM and PM peak periods, respectively.

The one key distinction in the operations of Alternative 2b versus Alternative 4 is the inclusion of an HOV bypass lane on the westbound on-ramp under Alternative 2b. HOV bypass lanes are a special-use ramp treatment. According to Chapter 10 of the FHWA Ramp Management and Control Handbook:

Adding an HOV bypass lane not only encourages HOV use, but also proportionately reduces the ramp meter queues (HOVs typically make up anywhere from 10 to 25 percent of the traffic volume). This separate lane is typically designed to allow HOVs to bypass the general purpose lane(s) and the ramp meter.16

Furthermore, Chapter 1, Section H of the Caltrans Ramp Meter Design Manual (January 2000), states that “An HOV preferential lane shall be provided at all ramp meter locations.”17 Again, only Alternative 2b allows for the inclusion of such a HOV bypass lane.

17 Caltrans Ramp Meter Design Manual (January 2000) can be found at: http://www.dot.ca.gov/hq/traffops/systemops/ramp_meter/.
Figure 3.6-4
Future (2035) Build Peak-Hour Volumes

1. The demand volume and capacity are shown as xx (yy).
2. In future scenario, there would be 4 bus trips to San Francisco and 9 bus trips from Oakland.
* Constrained Volumes

Table 3.6–9: 2035 Build Condition Ramp Junction Analysis - No Ramp Metering

<table>
<thead>
<tr>
<th></th>
<th>2035 Build AM (No Ramp Metering)</th>
<th>2035 Build PM (No Ramp Metering)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOS</td>
<td>Density (pc/mi/ln)</td>
</tr>
<tr>
<td>Westbound</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off-Ramp (new, on right side)</td>
<td>F</td>
<td>53</td>
</tr>
<tr>
<td>On-Ramp (Post Mile 4.24)</td>
<td>F</td>
<td>45</td>
</tr>
<tr>
<td>On-Ramp (Post Mile 4.06)</td>
<td>E</td>
<td>40</td>
</tr>
<tr>
<td>Eastbound</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off-Ramp (left side ramp)</td>
<td>D</td>
<td>34</td>
</tr>
<tr>
<td>Off-Ramp</td>
<td>D</td>
<td>33</td>
</tr>
<tr>
<td>On-Ramp</td>
<td>E</td>
<td>40</td>
</tr>
</tbody>
</table>

Source: YBI Ramps Project Traffic Operations Report, 2009b
Notes: 1. Speeds shown correspond to mainline speed at ramp junctions.
 2. pc/mi/ln = passenger car / mile / lane
 3. mph = miles per hour

It was also noted that ultimately, Caltrans SFOBB Operations would use a combination of Bridge and ramp metering rates. In other words, there might be times when Caltrans deems it appropriate to lower the allowable limit entering the Bridge while increasing the metering rate of the ramps, and vice versa. “Increasing the metering rate of the ramp” means having more green time for the ramp, or that more on-ramp vehicles can enter the Bridge at a higher rate (e.g., more vehicles per hour) because of improved traffic flow conditions. Likewise, the flow of traffic from the ramp can be constrained by increasing the amount of time that the meter is red. This may be done to control traffic congestion on the Bridge.

Under the 2035 Build Condition with Ramp Metering, long delays and queues would be expected on the island. However, additional roadway improvements would not be implemented to accommodate these queues, which would occur only on the approaches to the meters and thus would not substantially impair circulation on YBI. Therefore, island roadways, such as Macalla Road and Treasure Island Road, would not need to be widened to accommodate projected traffic volumes. Table 3.6-10 below summarizes the results of the 2035 Build Condition analysis for the ramp junctions with ramp metering. When compared with the results in Table 3.6-9, the project with ramp metering is expected to improve conditions at the westbound on-ramps to LOS C (from LOS E/F) during both the AM and PM peak hours.
Table 3.6–10: 2035 Build Condition Ramp Junction Analysis - With Ramp Metering

<table>
<thead>
<tr>
<th></th>
<th>2035 Build AM</th>
<th>2035 Build PM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(With Ramp Metering)</td>
<td>(With Ramp Metering)</td>
</tr>
<tr>
<td></td>
<td>LOS</td>
<td>Density (pc/mi/ln)</td>
</tr>
<tr>
<td>Westbound</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off-Ramp (new, on right side)</td>
<td>E</td>
<td>35</td>
</tr>
<tr>
<td>On-Ramp (Post Mile 4.24)</td>
<td>C</td>
<td>40</td>
</tr>
<tr>
<td>On-Ramp (Post Mile 4.06)</td>
<td>C</td>
<td>40</td>
</tr>
<tr>
<td>Eastbound</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off-Ramp (left side ramp)</td>
<td>D</td>
<td>34</td>
</tr>
<tr>
<td>Off-Ramp</td>
<td>D</td>
<td>33</td>
</tr>
<tr>
<td>On-Ramp</td>
<td>E</td>
<td>40</td>
</tr>
</tbody>
</table>

Source: YBI Ramps Project Traffic Operations Report, 2009b
Notes: 1. Speeds shown correspond to mainline speed at ramp junctions.
2. pc/mi/ln = passenger car / mile / lane
3. mph = miles per hour

Pedestrian and Bicycle Facilities

The future SFOBB East Span has been designed to incorporate a pedestrian/bicycle path connecting the East Bay with YBI. The SFOBB ESSSP will coordinate connection of the pedestrian/bicycle path at its terminus at the landing area onto South Gate Road for connectivity to other non-motorized improvements on YBI. A component of the YBI Ramps Improvement Project would facilitate this connection by constructing a westward sidewalk and bike lane on Macalla Road.

3.6.4 Avoidance, Minimization, and/or Mitigation Measures

3.6.4.1 Temporary Impacts

No Build Alternative

Under the No Build Alternative the existing on- and off-ramps would remain and no new ramps would be built. No construction would occur; therefore, road closures due to construction activity would not occur.

Alternative 2B and Alternative 4

The temporary impacts for both of the alternatives would be similar during construction and changes in traffic conditions can be managed to reduce potential impacts to users traveling to and from Treasure and Yerba Buena Island.

Construction activities would result in temporary detours and single-lane closures. These impacts would be minimized through coordination with the USCG and emergency service providers, as necessary. Efforts would be made to concentrate the majority of road closures and construction activity during off-peak hours to reduce traffic impacts. Traffic would be diverted to one side of the road and traffic would be controlled by flaggers stationed at both ends of the closure. Similar traffic handling is currently being used on Macalla Road with the ongoing SFOBB construction by Caltrans. Macalla Road
Chapter 3.6 – Traffic and Transportation/Pedestrian and Bicycle Facilities

primarily serves the USCG and access to their facilities will be maintained at all times before, during, and after construction.

Construction is expected to be completed in five stages. For the first four stages, the existing westbound entrance ramp on the east side of YBI would remain open and therefore little impact is expected on traffic. The last stage of construction is expected to require the closure of the existing westbound entrance ramp (by Macalla Road) on the east side of YBI and thus would require a detour to the existing westbound entrance on the west side of YBI via Treasure Island Road. This proposed detour would be part of the final TMP, which would need to be reviewed and approved by the Fire Department. The anticipated traffic detour of 110 vehicles in the AM peak hour and 130 vehicles in the PM peak hour (about 2 vehicles per minute) is not expected to degrade roadway segment LOS or substantially increase response time for emergency services on YBI.

3.6.4.2 Permanent Impacts

NO BUILD ALTERNATIVE

As discussed above, the No Build Alternative would yield a lower LOS as compared to the existing condition. In addition, the No Build condition would yield lower average speeds ranging from 61.2 to 80.5 km/h (38 to 50 mph), as compared to 90 to 104.6 km/h (56 to 65 mph) under existing conditions. Since demand volumes would exceed this capacity, delays and queues on YBI would be expected.

ALTERNATIVE 2B AND ALTERNATIVE 4

The permanent impacts for both of the alternatives would be similar during operations, resulting in improved traffic flow and queuing conditions for users traveling to and from Treasure Island and Yerba Buena Island.

The YBI Ramps Improvement Project would result in the construction of westbound on- and off-ramps on the east side of YBI. The other four ramps would not have their capacity limited, therefore, no further analysis of impacts or issues is needed pertaining to the remaining ramps.

The analysis of the ramps on the east side of YBI without ramp metering concludes that the average operating speed on the SFOBB would be lower because the capacity of the new on-ramp would increase to 1,200 vph from 330 vph. Without ramp metering, on-ramp traffic would be allowed to enter the Bridge unimpeded, thus improving traffic flow conditions and reducing queuing on the on-ramp.

After construction, during operations, ramp metering will be in effect, which may cause long delays and queues on the approaches to the on-ramp. With ramp metering, the metering rates can be coordinated such that the number of vehicles entering the Bridge would be based on the number of vehicles exiting the Bridge. Additionally, the Bridge metering lights for westbound traffic (just west of the toll booths) could be coordinated with the on-ramp, such that the traffic entering the SFOBB could be reduced while the metering rate for the on-ramp is increased, and vice versa.

Volumes on the northbound Macalla Road approach to the westbound loop on-ramp are expected to be 879 vehicles in the AM peak hour and 1,119 vehicles (with 1,104 turning right onto ramp) in the PM peak hour in 2035. If the metering rate is set to the expected
off-ramp volume of only 578 vph during the PM peak hour, a queue is expected to form on the Macalla Road approach to the on-ramp. To reduce such a queue, the metering rate may need to be increased to about 1,100 vph (which is still less than the 1,200 vph capacity assumed for the loop on-ramp).

The southbound South Gate Road approach to the eastbound loop on-ramp is expected to be 490 in the AM peak hour and 604 in the PM peak hour in 2035. If the metering rate is set to the expected off-ramp volume of only 255 vph during the AM peak hour and 533 during the PM peak hour, the on-ramp queue is expected to be extensive on South Gate Road (especially during the AM peak hour). To reduce these queues, the metering rate may need to be increased to about 500 vph during the AM peak hour and 600 vph during the PM peak hour (which is still less than the 1,500 vph capacity assumed for this loop on-ramp).
Chapter 3.7 – Visual/Aesthetics

3.7 Visual/Aesthetics

A Visual Impact Assessment (VIA) for the YBI Ramps Improvement Project was conducted in accordance with guidelines provided in the publication *Visual Impact Assessment for Highway Projects* (FHWA 1981). The VIA is included as Appendix I of this Final EIR/EIS. The EIR visual analysis characterizes the project area in terms of “landscape units,” which are distinct segments of the project site and its vicinity that have a consistent or cohesive visual or physical character, and identifies visual quality within the landscape units. Selected viewpoints at the project site and its vicinity where the project could affect existing visual quality are identified and evaluated. In addition, physical changes attributable to the proposed project that would cause changes to views currently experienced by freeway travelers, YBI residents, recreational users, and event attendees are evaluated. Avoidance, minimization, and mitigation measures to address visual effects are also described.

3.7.1 Regulatory Setting

NEPA establishes that the Federal government use all practicable means to ensure all Americans safe, healthful, productive, and aesthetically (emphasis added) and culturally pleasing surroundings (42 U.S.C. 4331[b][2]). To further emphasize this point, FHWA in its implementation of NEPA (23 U.S.C. 109[h]) directs that final decisions regarding projects are to be made in the best overall public interest taking into account adverse environmental impacts, including among others, the destruction or disruption of aesthetic values.

Likewise, CEQA establishes that it is the policy of the state to take all action necessary to provide the people of the state “with…enjoyment of aesthetic, natural, scenic and historic environmental qualities” (CA Public Resources Code Section 21001[b]).

3.7.2 Affected Environment

3.7.2.1 Visual Setting

The regional landscape establishes the general visual environment of the project, but the specific visual environment upon which this section will focus is determined by defining landscape units and the project viewshed.

The San Francisco Bay Area extends more than 96.56 kilometers (59.4 miles) from the Sacramento River Delta in Benicia to the marshlands of Santa Clara County, a total of more than 1,000 square kilometers (386.1 square miles). The Bay is a rich marine resource providing navigable waterways for commerce, and habitat for countless wildlife species. The Bay Area combines water, islands, skylines, bridges, and mountains into vistas both picturesque and impressive. Seven different bridges span the Bay, each one constituting a significant visual resource in its own right. The Golden Gate Bridge is known around the world for its grace and beauty. However, all seven bridges span significant stretches of open water and are highly visible from vantage points around the Bay.

Roughly midway between the northern and southern ends of the Bay, the cities of Oakland and San Francisco are located across the Bay from one another. For viewers both on and off the water, the area between these two cities is particularly scenic. Four major islands (Alcatraz, Angel, Treasure, and Yerba Buena) are found in this region,
while Mt. Tamalpais and the hills of Marin County tower to the west. The skylines of Oakland and San Francisco provide a vivid and unique visual image. Preservation of this region’s aesthetic quality is of particular importance to the millions of people who live in and visit the Bay Area each year.

YBI is a 59.49-hectare (147 acre) natural island that sits in San Francisco Bay between San Francisco and Oakland. The island’s high point is located 103 meters (337.9 feet) above mean sea level, and large portions of it are undeveloped, with steep wooded hillsides leading down to the shoreline.

A large amount of the island’s surface area is covered with thick vegetation consisting mostly of stands of large, mature eucalyptus trees; smaller ornamental landscape trees; shrubs; and lawn areas. Developed areas of the island are scattered throughout, almost “embedded” within its less developed areas. Consequently, when a person is located in a developed area of YBI, it appears that much of the surrounding area is undeveloped, though other buildings and/or roads are located nearby. Views to these visual elements are obstructed by existing thick vegetation.

The eastern fringe of the island, however, where the USCG installation is located, is mostly flat and open with less vegetation cover. The USCG buildings, mostly small one- and two-story structures, are clustered in groups along the eastern shore of the island. This part of the island, more so than the western side of YBI, is visually dominated by the western terminus of the SFOBB East Span. Users of the island situated in this area are able to see the elevated roadway superstructure of the western terminus in almost any direction.

3.7.2.2 Existing Visual Character

The YBI landscape unit has a certain visual character based upon the land uses that comprise it. These smaller scale uses and landforms within the landscape unit are called image types. These image types give the landscape unit its character. A cross section of image types found on YBI is shown in photographs presented in Figure 3.7-1. The following four general image types can be identified on YBI:

RESIDENTIAL

Older Residential. This image type refers to various single-family residential structures built on the island during the early to middle part of the twentieth century and includes historically significant buildings.

High-Density Residential. This image type refers to newer late twentieth century residential buildings.

Woodland/Open Space. This image type refers to the many areas of the island covered in vegetation. Vegetation includes open lawns, ornamental shrubbery and ornamental trees, to large stands of mature eucalyptus and pine trees.

Infrastructure. This image type refers to bridge and surface road facilities on YBI.
Figure 3.7-1
Yerba Buena Island Image Types
Institutional. This image type refers to USCG property on YBI. Due to security concerns, no close range photographs of this property are shown, with the exception of one key viewpoint analyzed in this VIA.

Photos “A” and “B” and “C” in Figure 3.7-1 illustrate views of residential, woodland/open space, and infrastructure image types. The photographs show older single-family residential buildings initially used by the U.S. Navy during the early part of the twentieth century. The buildings are situated along narrow roads, in an area where the undulating landform is covered by low shrubs, mature trees, lawn areas, and non-native stands of mature eucalyptus woodland.

Photo “D” in Figure 3.7-1 illustrates the type of high-density residential structures found on YBI, many of which were built during the 1960s and 1970s.

In terms of infrastructure, several of the photos in Figure 3.7-1 provide examples of infrastructure image types on YBI. Photos “D”, “E,” and “F” illustrate the undulating landforms that exist on YBI, a landform that predominates on the island. Owing to this natural landform, roads often undulate and curve as they travel throughout the island, and much of the island’s developed areas conform to the island’s natural topography.

3.7.2.3 Project Viewshed

A viewshed is a subset of a landscape unit and is composed of all the surface areas visible from an observer’s viewpoint. The limits of a viewshed are defined as the visual limits of the views located from the proposed project. The viewshed also includes the locations of viewers likely to be affected by visual changes brought about by project features.

Due to the location of YBI at the geographical center of the Bay Area, the project’s conceptual viewshed is vast. The project area is visible from many Bay Area locations at sea level, and from locations at higher elevations. Similarly, YBI offers vast and often unobstructed view opportunities of large parts of the Bay Area. For practical purposes, the analysis focuses on three primary viewing distance viewshed zones: immediate, moderate and long distance. These distance zones are subsets of the larger conceptual project viewshed.

The immediate distance viewshed zone encompasses the project site and the area of YBI immediately around it. This area offers close views of the SFOBB and the YBI ramps, as well as isolated views to the Bay. From the moderate distance viewshed zone, which extends up to 0.8 kilometer (0.5 mile) away from YBI, the project area is still visible though less well defined. The island’s vegetation begins to obscure some project features and the island as a whole appears as a singular, intact landmass. From the long distance viewshed zone, which extends up to 3.2 kilometers (2 miles) away to the Oakland Touchdown area, project site features are not clearly defined. Sightlines to the various viewsheds from the project site are for the most part unobstructed.

3.7.2.4 Landscape Units

A landscape unit is a portion of the regional landscape and can be thought of as an outdoor room that exhibits a distinct visual character. A landscape unit often corresponds to a place or district that is commonly known among local viewers. The
following three landscape units have been identified for the project site and its vicinity. They are shown graphically in Figure 3.7-2.

Northeast YBI Landscape Unit. The SFOBB touches down on the northeastern tip of YBI. This location is visually distinct from other parts of the island due to the bridge structure’s dominating effect on views toward the area as well as on views from the area. The area’s topography is mostly flat relative to the rest of the island and is also less vegetated. Current SFOBB ESSSP construction activity and construction staging areas associated with that project have affected the area’s visual character, in that views of construction materials and equipment are common in this part of the island. Views from this landscape unit include Bay waters, TI, and the East Bay.

Greater YBI Landscape Unit. This landscape unit is visually distinct from the northeast YBI landscape unit. Though from some locations the SFOBB has a strong visual presence, it is less dominant when compared to its effect in the northeastern part of the island. This area is vegetated predominantly with mature eucalyptus trees that grow across the island’s hilly landform. Views from this landscape unit are expansive and include Bay waters, TI, the East Bay, South Bay, San Francisco, and Marin.

Bay Water/Shoreline Landscape Unit. This landscape unit encompasses Bay waters near YBI, as well as the shorelines of TI and the Oakland Touchdown area, from which views of YBI are proximate and clear. The visual character of this area is influenced by the expanse of Bay waters that is visible from many vantage points, as well as by the shorelines of nearby land masses.

3.7.2.5 Existing Viewer Groups, Viewer Exposure, and Viewer Awareness

Freeway Travelers. Approximately 275,000 vehicles that use the SFOBB each day pass through YBI. Many of these vehicles contain commuters traveling between San Francisco and the East Bay. Daily commuters may have an increased awareness of views from the road due to their frequency of travel through YBI. Those that experience congested traffic conditions as they travel through YBI tend to focus on views of the island itself. Drivers traveling at normal freeway speeds usually focus attention on long-range nonperipheral views. This viewer group has a heightened awareness of a wide range of views.

YBI Residents (including USCG personnel stationed on island). Upon decommissioning of the Naval base on YBI by the U.S. Navy in 1996, much of the housing stock on the island became occupied by civilian, rather than military residents. Currently, residents that live on YBI in housing of various types are located throughout the island. These residents use the existing YBI on-ramp and off-ramp infrastructure relatively frequently as they arrive at and leave the island and therefore constitute an important viewer group. Some YBI residents also have views from their homes toward the YBI on-ramp and off-ramp infrastructure. USCG personnel are stationed on YBI for extended periods of time and are therefore also an important viewer group.

Recreational Users and Event Attendees. Recreational opportunities abound around the Bay and many of them center upon either the use of the Bay or upon views of the Bay. Activities such as sailing, kayaking, windsurfing, and fishing make use of the Bay itself, while activities such as sightseeing, hiking, biking, and walking often incorporate a view
Figure 3.7-2

Key Viewpoint Locations

Viewpoint #7 is located 1.25 miles east, see map below.
of the Bay. Recreationalists involved in these activities may at various times experience views of YBI and its features. The island is also host to events such as weddings, which bring visitors to YBI.

3.7.2.6 Existing Visual Quality

Eight key viewpoints were identified to represent the visual character of the project site and used to define visual quality. The existing visual quality for each of the viewpoints was evaluated based on indicators of the level of visual relationships, rather than judgments of physical landscape components. This approach provides a set of three evaluative criteria: vividness, intactness, and unity. These criteria are defined as follows:

- **Vividness** is the visual power or memorability of landscape components as they combine in striking and distinctive visual patterns.

- **Intactness** is the visual integrity of the natural and human-made landscape of the immediate environs and its freedom from encroaching elements.

- **Unity** is the visual coherence and compositional harmony of the viewshed. The viewshed entails all natural and human-made features found within the normal view range. In man-altered landscapes, it frequently attests to the careful design or fit of individual components in the landscape.

Existing visual quality on YBI is moderately high. The island is located in a natural setting that is very vivid when seen from a variety of vantage points. Simply due to being one of a few islands located on San Francisco Bay, YBI is a very vivid landform that is memorable to people that observe it from near and far. People viewing YBI as they approach the island from the East Bay, or from San Francisco while traveling on the SFOBB, note the strikingly dense land cover found on the island, as well as how it visually interacts with the SFOBB. Other human-made development on the island, such as the well-preserved, distinctive, early-twentieth-century U.S. Navy structures, is quite memorable to island visitors. Viewers located on the San Francisco mainland and to a greater degree, viewers in the East Bay, see YBI in a less defined manner. It is more difficult for these distant viewers to discern the island’s variations in topography, its varied vegetation types, and developed areas that contain its residential and institutional buildings.

The overall visual intactness of YBI is moderate, given the effect the SFOBB has had on the island’s natural state. In some areas of YBI, the bridge is quite omnipresent and visually dominates other features on the island such as vegetated open spaces and human-made development. Visual intactness of these areas is therefore considered low. From other locations on YBI, the bridge is not visible at all, since it is obstructed by hilly landforms and vegetation, lending these areas a higher degree of intactness. Though these areas may be developed with residential structures and/or infrastructure, these objects blend in with the natural environment to a greater degree than does the SFOBB. When viewed from a distance, or from areas of YBI that are at a higher elevation than the SFOBB, the visual intactness and unity of YBI is higher than when viewed from the island’s lower elevations. From higher elevations, the island’s landform interacts elegantly with surrounding Bay waters and the SFOBB gracefully meets the YBI land mass. In views from the San Francisco mainland, YBI and the SFOBB together form an intact and unified image consisting of two large structures—one natural and one human made.
3.7.2.7 Identification of Key Viewpoints

Because it is not feasible to analyze all the views in which the proposed project would be seen, it was necessary to select a number of key viewpoints that would most clearly display the visual effects of the project. Key viewpoints also represent the primary viewer groups that would potentially be affected by the project.

A total of eight key viewpoint locations were identified. The viewpoints are identified as the following:

1. Macalla Road at North Gate Road Intersection
2. Nimitz House
3. Officers Quarters Open Space
4. North Gate Road Staging Area
5. Treasure Island
6. Eastern YBI Waterborne Approach
7. SFOBB Oakland Touchdown
8. SFOBB Transition Structure

This chapter discusses two renderings prepared for the Alternative 2b design pertaining to Key Viewpoints 1 and 8, and a discussion of six photo-simulations prepared for the Alternative 2b design related to Key Viewpoints 2 through 7. This is followed by a discussion of two renderings prepared for the Alternative 4 design pertaining to Key Viewpoints 1 and 8, and a discussion of six photo-simulations prepared for the Alternative 4 design related to Key Viewpoints 2 through 7. Key viewpoint locations are listed above.

In addition to “before and after” images of the viewpoints that are illustrated through the use of photo-simulations, the figures also illustrate where a hypothetical observer of each viewpoint would be located geographically relative to the YBI ramps. The images also help the reader distinguish between structural elements associated with the YBI Ramps Improvement Project and elements of the separate SFOBB ESSSP. When evaluating the potential visual impacts of the proposed YBI ramps, it is important to recognize to what degree visual impacts in the project area would be caused by the YBI Ramps Improvement Project compared to impacts resulting from the separate SFOBB ESSSP. This is done through the use of graphical insets that clearly distinguish which structures in each viewpoint are associated with the YBI Ramps Improvement Project and which are a part of the SFOBB ESSSP. In these insets, structures associated with the YBI Ramps Improvement Project appear in color (blue for Alternative 2b insets, orange for Alternative 4 insets), while the rest of the image is shown in black and white.

The photo-simulations and renderings presented for Alternative 2b illustrate ramp designs that incorporate ribbing on road deck undersides, while Alternative 4 photo-simulations and renderings present ramp designs without ribbing. A ribbed design is dramatically distinct from a nonribbed design. Therefore, it is necessary to separately consider the visual effects of each design technique. To facilitate analysis of this design feature in an effective manner, the ribbed design technique is presented only for Alternative 2b, while the nonribbed design technique is presented only for Alternative 4.
Rather than compare the visual effects of a ribbed design with a nonribbed design for each alternative and each viewpoint, it is useful to discuss the effects of each technique on a more holistic scale that would apply to both alternatives and all viewpoints.

The rib design technique proposed for the YBI ramps involves installation of semi-rectangular-shaped concrete elements on the lateral undersides of the road decks. Each rib would measure about 9 meters (29.5 feet) in length from the outside edge of the ramp to near its center, and 61 centimeters (2 feet) wide when viewed in profile from below the ramp. The ribs would be spaced about 3 meters (9.8 feet) apart from each other.

3.7.2.8 Description of Key Viewpoints

The key viewpoints are typical views that people would have of or from the project, as described below:

KEY VIEWPOINT 1 – MACALLA ROAD AT NORTH GATE ROAD INTERSECTION

Orientation. This key viewpoint, shown in Figure 3.7-3, is toward the northeast from the intersection of Macalla Road and North Gate Drive. Implementation of Alternative 2b would require removal of Building 267 (a garage located in the center of the view), to provide right-of-way for the YBI ramps. Analysis of this viewpoint is based on a rendering rather than a photo-simulation. Implementation of Alternative 2B would require removal of Quarters 10 (a US Navy residential structure) and Building 267 (a garage associated with Quarters 10), in order to provide right-of-way for the proposed ramps. Quarters 10 is not visible from this vantage point. Therefore, it would be inaccurate to present a “before” image of the vantage point when a structure that would be drastically affected by the project is not visible in the image. For this reason, a rendering was chosen as a means to illustrate the visual effect of the ramps at the intersection of Macalla Road and North Gate Road.

Landscape Unit. Greater YBI landscape unit.

Viewer Groups. This viewpoint represents a typical view experienced by YBI residents.

Existing Visual Quality/Character. This area of the island is dominated by the presence of the double-deck structure of the SFOBB East Span as it nears the YBI tunnel. The view presented in this viewpoint is a vivid microcosm of the island itself, in that on YBI there is often an inter-play between the natural environment and the SFOBB. In this view, the bridge’s intactness and unity are relatively low, due to the large scale and omnipresence of the road decks when viewed from such close proximity. Overall unity and intactness of the view are low when all of its elements are taken together. The substation on the left side of the view, Building 267, the mature vegetation, and the road decks present a cluttered image in which natural features and human-made features do not visually complement each other.

KEY VIEWPOINT 2 – NIMITZ HOUSE

Orientation. This key viewpoint looks northeast from the patio of the Nimitz House, one of the historic U.S. Navy structures located on the island. Figure 3.7-4 depicts a view of existing conditions from this viewpoint.
Landscape Unit. Greater YBI landscape unit.

Viewer Groups. This viewpoint represents a typical view experienced by recreational users and event attendees.

Existing Visual Quality/Character. Like Viewpoint 1, Viewpoint 2 also illustrates a close-up of the SFOBB alongside mature vegetation. However, this viewpoint has higher vividness than the image presented in Viewpoint 1. In this view, the bridge’s structural lines combine in distinct visual patterns, contrasting dramatically with the foliage of the mature eucalyptus trees nearby, the San Francisco Bay, and portions of the East Bay Hills somewhat visible in the background.

From this viewpoint the bridge and trees frame a distant view of the East Bay Hills. This view illustrates a low degree of unity and intactness, given that since construction of the SFOBB ESSSP began, it has been markedly diminished by the presence of SFOBB Transition Structure construction activity occurring in the center of the view.

KEY VIEWPOINT 3 – OFFICERS’ QUARTERS OPEN SPACE

Orientation. This key viewpoint looks southeast from a large open space area between Quarters 4 and Quarters 7 toward other historic U.S. Navy structures that include the Nimitz House (Quarters 1), Quarters 2, Building 83, and Building 205. Figure 3.7-5 depicts a view of existing conditions from this viewpoint.

Landscape Unit. Greater YBI landscape unit.

Viewer Groups. This viewpoint represents a typical view experienced by YBI residents and recreational users.

Existing Visual Quality/Character. This viewpoint presents a moderate to highly vivid scene. Various former U.S. Navy structures stand among lush vegetation, while a segment of the SFOBB East Span is visible in the background. In the view, design elements of the U.S. Navy structures can be clearly distinguished and the lines of the SFOBB East Span structure are also vivid.

From this viewpoint, the U.S. Navy structures and the SFOBB East Span are moderately intact and unified. They overlap and obscure each other in space, but not in a way that is inharmonious. The existing vegetation also significantly obscures the buildings and the SFOBB East Span, but the result is that these objects appear to visually complement each other. The area’s visual quality is also enhanced by a large open space area, visible in the viewpoint’s foreground.
Alternative 2B Ramp Components: Blue highlighting distinguishes Alternative 2B ramp components from SFO88 East Span project components.
Figure 3.7-4
Alternative 2b Key Viewpoint 2: Nimitz House

Simulated View

Existing View

Geographic Context
Indicates distance from viewpoint to Alternative 2B ramp components

Alternative 2B Ramp Components: Blue highlighting distinguishes Alternative 2B ramp components from SFOBB East Span project components
Figure 3.7-5

Alternative 2b Key Viewpoint 3: Officer’s Quarters Open Space

Simulated View

Existing View

Geographic Context
Indicates distance from viewpoint to Alternative 2B ramp components

Alternative 2B Ramp Components: Blue highlighting distinguishes Alternative 2B ramp components from SFOBB East Span project components

Yerba Buena Island Ramps EIR/EIS
© 2008/2009 Yerba Buena Island Schoonhoven/1A Graphics (New CAD) 5.7 Report Graphics Figure/Appendix
Chapter 3.7 – Visual/Aesthetics

KEY VIEWPOINT 4 – NORTH GATE ROAD STAGING AREA

Orientation. This key viewpoint looks southwest across a construction staging area just northeast of North Gate Road that is being used for the SFOBB ESSSP. The Nimitz House and thick vegetation in its vicinity are visible in the background. Figure 3.7-6 depicts a view of existing conditions from this viewpoint.

Landscape Unit. Northeast YBI landscape unit.

Viewer Groups. This viewpoint represents a typical view experienced by YBI residents and recreational users.

Existing Visual Quality/Character. Viewpoint 4 presents a low to moderately vivid image of a construction staging area in the foreground and the Nimitz House situated among mature vegetation visible in the background. Though the image of the Nimitz House and thick vegetation is scenic, the scattered construction materials in the foreground detract from the more vivid features of the scene. The new piling visible in the left side of the frame and the fragmented view of the East Span also detract from the more scenic parts of the view.

In its present state, this viewpoint is characterized as having low unity and intactness. The disturbed nature of the area, due to the presence of the SFOBB ESSSP construction staging area, has degraded the intactness and unity of the view.

KEY VIEWPOINT 5 – TREASURE ISLAND

Orientation. Viewpoint 5 is a view of YBI looking southeast from the southern shore of TI. Figure 3.7-7 depicts a view of existing conditions from this viewpoint.

Landscape Unit. Bay Water/Shoreline landscape unit.

Viewer Groups. This viewpoint represents a typical view experienced by recreational users (users of TI marina).

Existing Visual Quality/Character. The view from TI to YBI from this location is moderately vivid. Due to the distance from the bridge, its structural lines are not as evident compared to views seen from locations on YBI. Also, the island’s vegetation appears more homogeneous because it is not possible to distinguish between different types of vegetation from this distance. However, the contrast between the form of YBI and the line of the Bay shore touching the island is a vivid characteristic of this view, as is the image of the SFOBB touching down on the island.

From this viewpoint, the island has moderate intactness and unity. Only portions of the island and the SFOBB East Span are visible to the viewer. However, the Bay waters do provide a sense of visual coherence and compositional harmony, balancing the lack of complete images of the island and the SFOBB.

KEY VIEWPOINT 6 – EASTERN YBI WATERBORNE APPROACH

Orientation. This viewpoint illustrates a westward view of YBI as if on a waterborne approach to the island. This viewpoint is based about 152 meters (498.7 feet) east of the island. Figure 3.7-8 depicts a view of existing conditions from this viewpoint.
Landscape Unit. Bay Water/Shoreline landscape unit.

Viewer Groups. This viewpoint represents a typical view experienced by recreational users and USCG personnel.

Existing Visual Quality/Character. This view of a waterborne approach to the part of YBI occupied by the USCG provides a high level of vividness for the viewer. From this vantage point, it is possible to very clearly see the structural lines of the SFOBB East Span as it connects to YBI, and it is also possible to observe the structural lines of the temporary Transition Structure currently being built as part of the SFOBB ESSSP. This is a dramatic view of the connection between YBI and the SFOBB.

However, this view does not offer the observer a very unified or intact image of the island, of the bridge, or of the USCG facility. Each of these objects is truncated for the viewer, with little visual context to provide information about what lies beyond the frame.

KEY VIEWPOINT 7 – SFOBB OAKLAND TOUCHDOWN

Orientation. This key viewpoint looks west toward YBI from the SFOBB Oakland Touchdown area, which is located about 2 kilometers (1.24 miles) from the island. Figure 3.7-9 depicts a photo-simulation of Alternative 2b from this viewpoint.

Landscape Unit. Bay Water/Shoreline landscape unit.

Viewer Groups. This viewpoint represents a typical view experienced by recreational users.

Existing Visual Quality/Character. This long-range view of the project site from the SFOBB Oakland Touchdown is a vivid perspective of YBI in the context of its surroundings. From this vantage point, the viewer's attention is focused in large part on the SFOBB East Span crossing the Bay from Oakland to San Francisco. YBI is visible, but only as a distant landmass at the end of the SFOBB East Span. From this point of view it is not even clear that YBI is an island, but it is possible to place it visually in the context of setting elements in its vicinity.

This is a highly unified and intact perspective of YBI. From the Oakland Touchdown, an observer can clearly see a large part of the island's landmass, though as mentioned before, an uninitiated viewer would not necessarily realize it is an island. Nevertheless, the presence of a large part of the SFOBB East Span in the frame, as well as small glimpses of the West Span, downtown San Francisco skyscrapers, and buildings on TI, results in a very intact and unified scene.

KEY VIEWPOINT 8 – SFOBB TRANSITION STRUCTURE

Orientation. This viewpoint, shown in Figure 3.7-10 is toward the southwest from the future roadway of the SFOBB East Span as it approaches the YBI tunnel. No image of existing conditions is shown, given that this viewpoint does not currently exist.

Landscape Unit. Bay Water/Shoreline landscape unit.

Viewer Groups. This viewpoint represents a typical view experienced by freeway travelers.
Simulated View

Existing view is a composite of two images, resulting in natural lens and perspective distortion. Perspective correction was used to produce the simulated view.

Alternative 2B Ramp Components: Blue highlighting distinguishes Alternative 2B ramp components from SFO88 East Span project components.

Figure 3.7-6
Alternative 2b Key Viewpoint 4: North Gate Road Staging Area
Alternative 2b Key Viewpoint 5: Treasure Island

Figure 3.7-7

Simulated View

Existing View

Geographic Context
Indicates distance from viewpoint to Alternative 2B ramp components

Alternative 2B Ramp Components: Blue highlighting distinguishes Alternative 2B ramp components from SFO88 East Span project components

Yerba Buena Island Ramps EIR/EIS

F:\2008\08080090 Yerba Buena Island Interchange\5.0 Graphics (Non-CAD)\5.7 Report Graphics\Figure 3.7-7 Appendix/Appendix.pdf
Figure 3.7-8

Simulated View

Existing View

Geographic Context
Indicates distance from viewpoint to Alternative 2B ramp components

Alternative 2B Ramp Components: Blue highlighting distinguishes Alternative 2B ramp components from SFOBB East Span project components

Figure 3.7-9
Alternative 2b Key Viewpoint 7: Oakland Touchdown
Alternative 2B Ramp Components: Blue highlighting distinguishes Alternative 2B ramp components from SFOBB East Span project components.
Chapter 3.7 – Visual/Aesthetics

Existing Visual Quality/Character. Because construction of the new SFOBB East Span is not yet complete, and this vantage point is from the future East Span roadway, it is not possible to describe the existing visual character of this viewpoint.

3.7.3 Environmental Consequences

3.7.3.1 Temporary Impacts

NO BUILD ALTERNATIVE

Under the No Build Alternative the existing on- and off-ramps would remain and no new ramps would be built. Existing landscaping and vegetation would not be removed and no construction would occur. The No Build Alternative would not result in an adverse change in the visual character of the study area.

ALTERNATIVE 2B AND ALTERNATIVE 4

During the project’s construction period, both build alternatives would result in an adverse change in the visual character of the study area. All build alternatives would require the removal of existing landscaping and vegetation during construction, resulting in a substantial visual impact. For all build alternatives, construction equipment, including portable construction lighting, may be present during the construction period. At times, residents living near the construction area may experience increased light and glare from temporary lighting sources at night due to the scheduling of nighttime construction work. This light and glare could be more visible due to the removal of existing vegetation. Light and glare from nighttime construction lighting would have an adverse effect, given that it would be temporary in duration. In addition, portable construction lighting would be required to be down-focused and oriented away from residential areas whenever feasible to reduce potential nighttime disturbance.

3.7.3.2 Permanent Impacts

The criteria used to determine effects on viewers include: visual dominance of the project; view obstruction or view expansion; effects on community disruption; viewer orientation; and design quality issues, such as changes in vividness, intactness and unity. For purposes of this analysis, changes in visual character are categorized as:

- **Strongly Beneficial:** substantial visual change and considerable increase in the overall visual quality, with the likelihood of strongly positive viewer responses.
- **Beneficial:** moderate degrees of visual change and an increase in the overall visual quality, with the likelihood of positive viewer responses.
- **Minimally Beneficial:** tangible visual changes and a minimal increase in overall visual quality, with the likelihood of moderately positive viewer responses.
- **Negligible:** little or no visual change and no tangible reduction or increase in visual quality, without negative or positive viewer responses expected.
- **Minimally adverse:** a tangible degree of visual change and a minimal reduction in overall visual quality, with the likelihood of some moderately negative viewer responses.
• Adverse: moderate degrees of visual change and a reduction in the overall visual quality, with the likelihood of negative viewer responses.

• Strongly Adverse: substantial visual change and considerable reduction in the overall visual quality, with the likelihood of strongly negative viewer responses.

NO BUILD ALTERNATIVE

Under the No Build Alternative the existing on- and off-ramps would remain and no new ramps would be built. Existing landscaping and vegetation would not be removed and no construction would occur. The No Build Alternative would not result in a permanent adverse change in the visual character of the study area.

ALTERNATIVE 2B

The following section discusses the impacts of Alternative 2b at each of the eight viewpoints.

Key Viewpoint 1 – Macalla Road at North Gate Intersection

Proposed Project Features. Implementation of Alternative 2b would require the removal of some vegetation currently visible in the view (in the area immediately right of Building 267) to provide right-of-way for the ramps. A viewer at this location would see the on-ramp overhead as it descends toward Macalla Road. Figure 3.7-3 depicts a rendering of Alternative 2b from this viewpoint.

Change to Visual Quality/Character. Though the ramps would be somewhat obstructed by existing foreground vegetation, they nevertheless would be the dominant visual feature of this viewpoint. From this vantage point, the ramps' massing would be visible immediately overhead as well as in the distance as they loop across the viewer's line of sight, though portions would be obscured by existing vegetation and the existing substation building.

Though the ramps' massing would be considerable, they would not be out of character with the current visual setting. Construction of the ramps would involve clearing of some vegetation from the area, which would open up partial views of San Francisco Bay. Though this clearing would provide new views of the Bay, the ramps would also partially obstruct these views.

Though new views of the Bay would become available and the ramps would be partially obstructed by the site's existing vegetation, a significant portion of their massing would tower over viewers situated at this location. Although the project would cause an adverse change, it would not be substantial, given the nature of the existing visual setting. The change in visual quality and character would be minimally adverse and overall viewer response would not be substantially affected.

Key Viewpoint 2 – Nimitz House

Proposed Project Features. Project features visible in this view would include two columns in the right foreground that would support the off-ramp. A portion of the off-ramp would also be visible overhead. Figure 3.7-4 depicts a photo-simulation of Alternative 2b from this viewpoint.
Chapter 3.7 – Visual/Aesthetics

Change to Visual Quality/Character. The structural elements added under Alternative 2b would contribute to the overall dominance of the new SFOBB Transition Structure. However, elements of the new SFOBB Transition Structure would comprise most of the new right-of-way visible from this viewpoint, while a smaller visually subordinate portion, visible in the foreground, would form a part of the YBI off-ramp. The off-ramp would be visually subordinate to other elements in the setting.

Implementation of Alternative 2b would result in a partial increase in view obstruction. Two new support columns for the off-ramp and a portion of the off-ramp roadway would partially obstruct views to the east. However, this obstruction would be minimal relative to elements of the SFOBB Transition Structure that would also obstruct eastward views.

Changes to the vividness of the view resulting from construction of the off-ramp would be minimal compared to the effect the future SFOBB Transition Structure would have on this viewpoint’s vividness. Changes to the view resulting from Alternative 2b would not substantially affect the compositional harmony of the larger viewshed, and very little change in the unity and intactness of the area would result.

Viewers at this location would tend to linger for relatively extended periods of time, given that a good number of them would be at the location to attend special events such as weddings. However, this alternative’s relatively minor effect on the view’s visual quality would not be substantial. Against the backdrop of the SFOBB, the visual change of the project would be minimally adverse.

Key Viewpoint 3 – Officers’ Quarters Open Space

Proposed Project Features. Project features visible in this view include a northern portion of the on-ramp, a southern portion of the off-ramp, and a total of eight support columns. Figure 3.7-5 depicts a photo-simulation of Alternative 2b from this viewpoint.

Change to Visual Quality/Character. The structural elements added under Alternative 2b would contribute to the overall dominance of the new SFOBB Transition Structure. The project’s on-ramp and off-ramp structures would visually dominate other objects in the setting.

New columns and other structural elements of the on-ramp and off-ramp built as part of this alternative would obstruct views of the SFOBB East Span structure, but would not obstruct views of the U.S. Navy structures, which would remain visible in the foreground.

Changes associated with this alternative would result in a negative effect on the existing vividness of the area, due to the necessary removal of mature vegetation that would be replaced by the ramp structures. The addition of the off-ramp and on-ramp to this view would result in a lowering of the view’s intactness and unity. The on-ramp and off-ramp structures would reduce the level of visual harmony that is currently visible from this viewpoint, resulting in an overall strongly adverse change to visual quality. Viewers at this location would tend to travel through the area at a relatively slow speed, given that they would be walking or bicycling, or they would remain relatively stationary as they recreate in the open space area. Therefore, this alternative’s adverse visual effects would be felt strongly by people at this location.

Overall viewer response and change in visual character would be strongly adverse and the resulting visual impact would be strongly adverse.
Key Viewpoint 4 – North Gate Road Staging Area

Proposed Project Features. Project features that would be visible from this viewpoint include large portions of the semicircular on-ramp and off-ramp structures, along with seven ramp support columns placed in the near vicinity of the Nimitz House. The Macalla Road retaining wall would not be visible from this viewpoint due to the low viewing angle relative to Macalla Road. Figure 3.7-6 depicts a photo-simulation of Alternative 2b from this viewpoint.

Change to Visual Quality/Character. The structural elements of the off-ramp and on-ramp would be equally dominant with elements of the SFOBB East Span. The YBI ramp structures would tower over and visually overshadow the Nimitz House.

The proposed ramps would result in a partial obstruction of views toward the Nimitz House, but none of the ramps’ structural elements would obstruct the Nimitz House.

Changes associated with this alternative would moderately affect the area’s existing vividness, due to the partial blockage of views toward the Nimitz House and the loss of a significant amount of mature vegetation behind the Nimitz House. The ramp structures associated with this alternative would further reduce the already low level of intactness and unity in this area. This alternative would result in an overall adverse change to the area’s visual quality.

Overall viewer response and change in visual character would be adverse and the resulting visual impact would be adverse. Currently, relatively few people observe this view. However, over the long term, once construction activity ends and the TI/YBI Project is implemented, more people may see the area from this viewpoint (the area is proposed as Open Space). These viewers would be adversely affected by the low visual quality of the area.

Key Viewpoint 5 – Treasure Island

Proposed Project Features. From this vantage point, about 0.8 kilometer (0.5 mile) from the project site, visible project features would include a thin ribbon-like portion of the off-ramp and four support columns. From this perspective, it would not be possible to see features of the on-ramp. Figure 3.7-7 depicts a photo-simulation of Alternative 2b from this viewpoint.

Change to Visual Quality/Character. The off-ramp would be visually subordinate in this viewpoint when compared to other elements in the area, and the on-ramp would not be evident. Though the off-ramp support columns and road deck would be noticeable, they would be less dominant than the future SFOBB Transition Structure, the temporary Transition Structure, SFOBB East Span, San Francisco Bay waters, and the YBI land mass.

The ramp structures proposed as part of Alternative 2b would result in a minimal obstruction of elements currently visible from this vantage point. The ramps and columns would be situated such that their profile would nearly mirror the profile of the future SFOBB Transition Structure. To the casual observer, the YBI ramps would not stand out in a distinctive way.
This alternative would have a negligible effect on the area’s overall visual quality. Overall viewer response and change in visual character would be negligible. The resulting visual impact would be negligible.

Key Viewpoint 6 – Eastern YBI Waterborne Approach

Proposed Project Features. From this vantage point, a viewer would see a portion of the future SFOBB East Span Transition Structure in the foreground as it approaches the northeastern tip of YBI. In the background, behind the Transition Structure and its support columns, some portions of the YBI off-ramp and on-ramp and several columns would be visible. Figure 3.7-8 depicts a photo-simulation of Alternative 2b from this viewpoint.

Change to Visual Quality/Character. The YBI ramps design for Alternative 2b would be visually subordinate in this viewpoint when compared to other elements in the area. Though the YBI ramp columns and road decks would be noticeable, they would be less dominant than the future SFOBB Transition Structure, primarily because the ramps would be partially obstructed by it.

From this viewpoint, the ramp structures would be largely obstructed by the island’s landmass and by the SFOBB Transition Structure. Against the backdrop of the SFOBB, the visual change of the project would be minimal. The ramps would obstruct existing vegetation and the U.S. Navy buildings in the background.

Implementation of this alternative would not result in a high degree of change to the area’s vividness. The YBI ramps would be noticeable but not dominant from this viewpoint. Overall change in viewer response and visual character and the resulting visual impact would be minimally adverse.

Key Viewpoint 7 – SFOBB Oakland Touchdown

Proposed Project Features. At such a distance from YBI, viewers at the Oakland Touchdown area would have difficulty discerning the ramp project’s features, though some ramp features would be slightly visible among a grouping of SFOBB Transition Structure columns and the SFOBB East Span. Figure 3.7-9 depicts a photo-simulation of Alternative 2b from this viewpoint.

Change to Visual Quality/Character. Alternative 2b’s ramps would not be evident from the Oakland Touchdown area, due to the relatively long distance to YBI. From this vantage point, the ramps would be difficult to discern by the casual viewer. As shown in the Alternative 2b Ramp Components inset of Figure 3.7-9, the ramps would be so indiscernible that the blue highlighting used to distinguish the ramps is not visible.

The ramp structures designed for this alternative would result in very minimal view obstruction. From this vantage point, the ramps would be difficult to discern by the casual viewer, yet they would nevertheless contribute to the partial obstruction of YBI that the SFOBB produces for Oakland Touchdown viewers. From this vantage point, elements of the YBI ramps and the SFOBB, especially their support columns, appear to meld together in a dense cluster, making it difficult to distinguish elements of the ramps from elements of the SFOBB. Obstruction that is attributable to the YBI ramps would be minimal.
From this vantage point, the structural elements associated with Alternative 2b would be difficult for the casual viewer to discern. Therefore, the overall change in visual quality resulting from this alternative would be negligible.

Overall change in viewer response and visual character would be negligible. The resulting visual impact would be negligible.

Key Viewpoint 8 – SFOBB Transition Structure

Proposed Project Features. From this vantage point, a motorist approaching YBI would see only a very small portion of the off-ramp and five of its light standards near the viewer’s line of sight vanishing point. No portion of the on-ramp would be visible. Figure 3.7-10 depicts a photo-simulation of Alternative 2b from this viewpoint.

Expected Visual Quality/Character. From this viewpoint, the project would have a subordinate visual effect from the perspective of motorists approaching the ramp structures. A small sliver of the off-ramp would be visible in the center of the view. The most dominant features visible to the viewer would be the SFOBB Transition Structure roadway as it extends into the distance, as well as the YBI landmass.

The off-ramp would be almost imperceptible from this vantage point and any view obstruction attributable to the ramp would be negligible.

This is a view illustrating the perspective of a motorist crossing the SFOBB East Span Transition Structure and approaching the YBI Tunnel. From this location, the off-ramp would not be a prominent element of the view seen by motorists. The off-ramp would be a subordinate element in the view, and any effect this alternative would have on the overall visual quality of the area would be negligible.

Overall change in viewer response and visual character would be negligible. The resulting visual impact would be negligible.

ALTERNATIVE 4

The following section discusses the impacts of Alternative 4 at each of the eight viewpoints.

Key Viewpoint 1 – Macalla Road at North Gate Road Intersection

Proposed Project Features. Project features visible from this vantage point include the terminus of the off-ramp as it touches down onto the island at the intersection of Macalla Road and North Gate Road, as well as a short stretch of the on-ramp running over the terminus of the off-ramp. Figure 3.7-11 depicts a rendering of Alternative 4 from this viewpoint.
Alternative 4 Ramp Components: Orange highlighting distinguishes Alternative 4 ramp components from SFO88 East Span project components.

Alternative 4 Key Viewpoint 1: Macalla Road at North Gate Road Intersection
Change to Visual Quality/Character. The ramp elements associated with Alternative 4 would be equally dominant in the view relative to other area features, in that the substation, existing vegetation and the ramps would all vie for the viewer’s attention.

Construction of the ramps would involve clearing of some vegetation from the area, which would open up partial (very minimal) views of San Francisco Bay. Though this clearing would provide new views of the Bay, the ramps would also partially obstruct these views.

On the whole, this alternative would have a minimally adverse effect on visual quality, given that overall viewer response would not be substantially affected. Construction of the ramps would do little to harmonize the relationship between the transportation infrastructure of YBI and its surrounding natural environment, but the ramps would not reduce existing visual quality. In addition, new views of the Bay would become available, though these would be quite minimal. The resulting visual impact would be minimally adverse.

Key Viewpoint 2 – Nimitz House

Proposed Project Features. Project features visible in this view include a large portion of the on-ramp as its passes underneath the future SFOBB Transition Structure from right to left making its way toward the Nimitz House. Also visible is a short stretch of the off-ramp as it descends on its path to the intersection of Macalla Road and North Gate Road, out of view behind the Nimitz House. The on-ramp is the leftmost road deck visible in the viewpoint, while the off-ramp is situated immediately to the right of the on-ramp. Figure 3.7-12 depicts a photo-simulation of Alternative 4 from this viewpoint.

Change to Visual Quality/Character. The future SFOBB Transition Structure would extend farther left into the viewer’s line of sight than the existing SFOBB East Span structure. The YBI on-ramp would loop under the SFOBB Transition Structure and travel toward the viewer as it makes its way in a southwesterly direction toward an eventual connection with the Transition Structure. (The viewer would need to turn completely around to see this connection.) From this viewpoint, the off-ramp and on-ramp would be equally dominant with the future SFOBB Transition Structure.

This alternative would result in a partial obstruction of views toward the East Bay Hills. However, the level of obstruction would be considered less than that caused by the road decks and columns of the SFOBB ESSSP visible from this vantage point.

This alternative would result in an overall adverse effect on the visual quality of the viewpoint. Though most viewers observing from this viewpoint would experience it on a temporary basis, the type of special events they would attend at the Nimitz House would usually benefit from an ambience of high visual quality. This alternative would lead to a further reduction of visual quality in addition to the reduction that is attributable to the physical elements of SFOBB ESSSP.

Overall change in viewer response and visual character would be minimally adverse based on the much larger change in visual character attributable to the physical elements of the SFOBB ESSSP. The resulting visual impact would be minimally adverse.
Key Viewpoint 3 – Officers’ Quarters Open Space

Proposed Project Features. Project features visible in this view include a short stretch of the on-ramp as it passes over North Gate Road on the east side of the SFOBB Transition Structure. A larger portion of the on-ramp located west of the Transition Structure would also be visible, as would a small stretch of the off-ramp as it nears its terminus at North Gate Road and Macalla Road. Portions of three YBI ramp columns supporting the ramps would also be visible. Figure 3.7-13 depicts a photo-simulation of Alternative 4 from this viewpoint.

Change to Visual Quality/Character. The structural additions associated with this alternative would be equally dominant with other features of the view. The massing of the off-ramp and on-ramp would pass across the viewer’s line of sight, roughly paralleling the massing of the double-decked SFOBB Transition Structure. The visual dominance of the YBI ramps would be fairly equal to the dominance of the Transition Structure.

New columns and other structural elements of the on-ramp and off-ramp would obstruct views of the SFOBB East Span structure, but would not obstruct views of the U.S. Navy structures, which would remain visible in the foreground.

This alternative would result in an overall minimally adverse effect on the visual quality of the viewpoint. Under current conditions, the SFOBB East Span passes over and behind the U.S. Navy structures, with a left-to-right movement of massing that appears to float elegantly in midair. The Alternative 4 design would involve construction of ramp road decks and columns behind and in front of the SFOBB Transition Structure that would not on the whole present a bulkier image. However, elements of the new design would lend it an overall wider horizontal (ramp decks) and vertical (columns) profile when compared to the image presented by the current bridge structure.

Overall change in viewer response and visual character would be strongly adverse. The resulting visual impact would be strongly adverse.

Key Viewpoint 4 – North Gate Road Staging Area

Proposed Project Features. This viewpoint presents a southwestern view of project features, including nine columns that would support portions of the on-ramp and off-ramp. Portions of the ramp decks are visible, though less prominent, than the dominant massing of the columns. Figure 3.7-14 depicts a photo-simulation of Alternative 4 from this viewpoint.

Change to Visual Quality/Character. Compared to the existing view, the structures proposed in this alternative would markedly dominate the viewer’s line of sight. As described above, the ramp support columns would have the most visually dominating effect, while the ramp decks would play a less dominant role.

This alternative would result in a partial, though very large obstruction of the view. The currently unobstructed view of the Nimitz House and the mature vegetation in its vicinity would be considerably obstructed by the columns supporting the proposed ramp decks.
Figure 3.7-12

Alternative 4 Key Viewpoint 2: Nimitz House
Alternative 4 Ramp Components: Orange highlighting distinguishes Alternative 4 ramp components from SFO88 East Span project components

Existing View

Simulated View

Geographic Context
Indicates distance from viewpoint to Alternative 4 ramp components

Figure 3.7-13
Alternative 4 Key Viewpoint 3: Officers’ Quarters Open Space
Simulated View

Existing view is a composite of two images, resulting in natural lens and perspective distortion. Perspective correction was used to produce the simulated view.

Geographic Context
Indicates distance from viewpoint to Alternative 4 ramp components

Alternative 4 Ramp Components: Orange highlighting distinguishes Alternative 4 ramp components from SFO88 East Span project components

Figure 3.7-14

Yerba Buena Island Ramps EIR/EIS

Alternative 4 Key Viewpoint 4: North Gate Road Staging Area
This viewpoint presents a view of the project site that encompasses an area currently used for the SFOBB ESSSP construction staging, and is therefore not a place where many users of the Island tend to linger for long periods of time. However, the viewpoint is near North Gate Road, which is a public right-of-way that is accessible to automobiles, bicycles, and pedestrians. Over the long term, after SFOBB ESSSP construction activities end, the construction staging area would be converted to another use. If the new use of the facilities encourages the presence of motorists, bicyclists, pedestrians, or permanent residents, users would be considerably affected by the visually disruptive and the strongly adverse effects of Alternative 4.

The ramp structures would result in a strongly adverse visual effect for viewers observing the area. The scene’s visual quality is already at a low level, given the adverse effect produced by the SFOBB ESSSP construction staging area. The view’s vividness, intactness, and unity would decline further upon implementation of Alternative 4. Over the long term, upon implementation of the TI/YBI Project, the construction staging area would be converted to Open Space. It is unlikely that visitors to the Open Space area would be able to avoid views of the YBI ramps. Therefore, it is expected that visual quality in this area would remain at a low level over the long term. Future users of the area would be adversely affected.

Overall change in viewer response and visual character would be adverse. The resulting visual impact would be adverse.

Key Viewpoint 5 – Treasure Island

Proposed Project Features. This viewpoint, compared to others that illustrate the proposed Alternative 4 ramp designs, allows the viewer to observe the ramps nearly in their entirety. From this perspective, the viewer would see almost the entire profile of the off-ramp as it descends from the Transition Structure, as well as almost the entire profile of the on-ramp as it loops underneath the Transition Structure. Figure 3.7-15 depicts a photo-simulation of Alternative 4 from this viewpoint.

Change to Visual Quality/Character. The ramp structures associated with Alternative 4 would be equally dominant in the visual setting. From the southern shore of TI, the viewer would have a nearly “head-on” perspective of the ramps and the ramps would be as visually dominant from this perspective as the SFOBB East Span and the YBI land mass.

The ramp structures would partially obstruct views of the mature vegetation located on the northeastern tip of YBI and would also partially block views of the future SFOBB Transition Structure.

Alternative 4 would adversely affect the visual quality of the area as seen from this vantage point. The view is currently considered moderately vivid, and its unity and intactness are low. As discussed above, the view’s positive attributes are counteracted by its negative characteristics, resulting in a relatively neutral level of visual quality. However, the ramp structures associated with this alternative would tip the balance, lessening the area’s visual quality. Viewers in this area currently consist of people who work at the Sailing Center facility located along the shoreline and other visitors that pass through this publicly accessible location. The former group would have frequent, long duration views of the project area, and would be susceptible to the adverse effects of this alternative. Visitors would be more transient, though it is assumed they would most
likely be in the area for recreational purposes and would also be adversely affected by the view’s low visual quality. Over the long term, this area is designated by the TI Development Plan to be the site of recreational open space and residential land uses. These future uses would be adversely affected by the project’s visual impact, given that viewers at this location would tend to spend long amounts of time viewing the YBI ramps.

However, when considering the effect of Alternative 4 within the context of changes associated with the SFOBB project, changes in viewer response and visual character resulting from Alternative 4 would be considered negligible. The resulting visual impact would be negligible.

Key Viewpoint 6 – Eastern Yerba Buena Island Waterborne Approach

Proposed Project Features. Project features visible from this viewpoint include a section of the on-ramp located on the southern side of the Transition Structure, a section of the off-ramp structure located on the northern side of the Transition Structure, and support columns. From this viewpoint it is possible to see the on-ramp passing alongside and just below the level of the Transition Structure. The small section of the off-ramp that is visible is descending from the Transition Structure as it makes its way to the intersection of Macalla Road and North Gate Road. Figure 3.7-16 depicts a photo-simulation of Alternative 4 from this viewpoint.

Change to Visual Quality/Character. On a waterborne approach to the USCG facility at YBI, the ramp structures would be equally dominant with other elements of the setting. The on-ramp, visible in front of the SFOBB Transition Structure, and the off-ramp, visible behind it, would visually parallel the equally dominant Transition Structure.

The ramp structures would partially obstruct views of the Transition Structure and would also partially obstruct scant existing views of the Nimitz House and Quarters 2.

Alternative 4 would adversely affect the visual quality of the area. From a viewer’s perspective, the on-ramp would cross their line of sight from left to right in front of the SFOBB Transition Structure while the off-ramp would pass behind the Transition Structure. The movement of the ramps has the effect of cluttering and “crowding out” the thin, simple lines of the Transition Structure. Compared to other viewpoints, relatively few people would observe this view. However, a number of these people would be involved in recreational boating activities that would necessitate relatively long exposure to views of the ramps, and their enjoyment of the area would be diminished by the structural elements of Alternative 4.

Overall change in viewer response and visual character would be minimally adverse. The resulting visual impact would be minimally adverse.

Key Viewpoint 7 – SFOBB Oakland Touchdown

Proposed Project Features. Alternative 4 project features are somewhat difficult to discern from features of the SFOBB and its Transition Structure, due to the relatively long distance between the viewer and the YBI ramp structures. Nevertheless, a viewer would be able to identify the on-ramp as it loops underneath and around the Transition Structure. Figure 3.7-17 depicts a photo-simulation of Alternative 4 from this viewpoint.
Simulated View

Geographic Context
indicates distance from viewpoint to Alternative 4 ramp components

Existing View

Alternative 4 Ramp Components: Orange highlighting distinguishes Alternative 4 ramp components from SP88 East Span project components

Figure 3.7-15
Alternative 4 Key Viewpoint 5: Treasure Island
Figure 3.7-16

Yerba Buena Island Ramps EIR/EIS
P:\2008\08080090 Yerba Buena Island Interchange\5.0 Graphics (Non-CAD)\5.7 Report Graphics (Figure)\Jason project Appendices

Alternative 4 Ramp Components: Orange highlighting distinguishes Alternative 4 ramp components from 3PO88 East Span project components

Geographic Context
Indicates distance from viewpoint to Alternative 4 ramp components

Simulated View

Existing View
Figure 3.7-17

Alternative 4 Key Viewpoint 7: Oakland Touchdown
Change to Visual Quality/Character. From this viewpoint, the Alternative 4 ramp structures would not be evident to the casual viewer. Though the ramps would be visible, the viewer’s attention would be drawn to more dominant features of the view, including the SFOBB East Span, YBI, the San Francisco skyline partially visible behind YBI, TI, a portion of Angel Island, and San Francisco Bay.

The ramp structures would minimally obstruct views of the northeastern tip of YBI, but not to a greater extent than obstruction attributable to the existing SFOBB East Span or the future SFOBB East Span structure.

The ramp structures would have an overall negligible effect on the visual quality of the view from the SFOBB Oakland Touchdown. Though the ramps would be visible, they would result in little or no visual change and no tangible reduction or increase in visual quality. No negative or positive viewer response would be expected.

Overall change in viewer response and visual character would be negligible. The resulting visual impact would be negligible.

Key Viewpoint 8 – SFOBB Transition Structure

Proposed Project Features. As motorists approach the YBI tunnel while driving in a westerly direction, from this viewpoint they would see a small portion of the on-ramp as it ascends onto the SFOBB. Figure 3.7-18 depicts a rendering of Alternative 4 from this viewpoint.

Expected Visual Quality/Character. The on-ramp would be visible on the right side of the view as a motorist travels on the SFOBB East Span. From this location, the ramp would be visible but subordinate to other elements of the setting.

The on-ramp would partially obstruct views toward YBI. However, the level of obstruction attributable to the ramp would be relatively minimal compared to the obstruction caused by the SFOBB East Span.

The on-ramp would have an overall negligible effect on the visual quality of the view. Though the ramp would be visible, it would result in little or no visual change and no tangible reduction or increase in visual quality.

Overall change in viewer response and visual character would be negligible. The resulting visual impact would be negligible.

3.7.4 Summary of Project Impacts

Table 3.7-1 provides a concise description of the visual impacts associated with Alternative 2b and Alternative 4 for each viewpoint. Review of the table indicates that Alternative 2b would have a less adverse visual impact on the project area than Alternative 4.
Table 3.7–1: Summary of Project’s Visual Quality Impacts

<table>
<thead>
<tr>
<th>Key Viewpoint</th>
<th>Alternative 2b</th>
<th>Alternative 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Viewpoint 1</td>
<td>Minimally Adverse</td>
<td>Minimally Adverse</td>
</tr>
<tr>
<td>Key Viewpoint 2</td>
<td>Minimally Adverse</td>
<td>Minimally Adverse</td>
</tr>
<tr>
<td>Key Viewpoint 3</td>
<td>Strongly Adverse</td>
<td>Strongly Adverse</td>
</tr>
<tr>
<td>Key Viewpoint 4</td>
<td>Adverse</td>
<td>Adverse</td>
</tr>
<tr>
<td>Key Viewpoint 5</td>
<td>Negligible</td>
<td>Negligible</td>
</tr>
<tr>
<td>Key Viewpoint 6</td>
<td>Minimally Adverse</td>
<td>Minimally Adverse</td>
</tr>
<tr>
<td>Key Viewpoint 7</td>
<td>Negligible</td>
<td>Negligible</td>
</tr>
<tr>
<td>Key Viewpoint 8</td>
<td>Negligible</td>
<td>Negligible</td>
</tr>
</tbody>
</table>

In general, ramp features associated with Alternative 2b would have a lesser visual impact than the ramp features associated with Alternative 4.

The project site is not located within a State-designated scenic corridor. Implementation of either build alternative would potentially affect the visual quality of the project site and its vicinity, including neighboring historic structures. Please refer to Section 3.8, Cultural Resources, of this Final EIR/EIS to learn more about the project's potential impacts on these resources.

3.7.5 Avoidance, Minimization, and/or Mitigation Measures

Caltrans and FHWA mandate that a qualitative/aesthetic approach should be taken to mitigate for visual quality loss in the project area. This approach fulfills the letter and the spirit of FHWA requirements because it addresses the actual cumulative loss of visual quality that would occur in the project viewshed if the project was implemented along with the SFOBB. It also constitutes mitigation that can more readily generate public acceptance of the project.

Visual mitigation for adverse project impacts addressed in the key viewpoint assessments and summarized in the previous section would consist of adhering to the following design requirements in cooperation with the District Landscape Architect.

3.7.5.1 Alternative 2b

Construction of the Alternative 2b design would in some cases have substantial impacts on the visual quality of some areas when these areas are observed from certain viewpoints. This would be noticeable in cases where views toward or from the Senior Officers’ Quarters Historic District would be dominated and/or obstructed by the ramp structures.

Alternative 2b would require the removal of woodland vegetation, mostly mature eucalyptus trees, within the project’s construction limits. Most of the trees that would be removed are located in the area southwest of the Nimitz House, which is where the off-ramp would end and the on-ramp would begin. These are mature tall trees that add to the island’s appearance and shield the ramps partially from view. The removal of this vegetation would constitute a substantial visual impact, and a number of years would be required before the vegetation could reestablish itself to the density that exists today.
Alternative 4 Ramp Components: Orange highlighting distinguishes Alternative 4 ramp components from SFOBB East Span project components

Figure 3.7-18
Alternative 4 Key Viewpoint 8: San Francisco-Oakland Bay Bridge Transition Structure
Given the large scale of the ramps, it would be difficult to screen or sufficiently offset their visual impacts without in the process causing secondary substantial visual impacts. Design requirements including ribbing to match the existing and proposed adjacent structures would be implemented under Alternative 2b. To promote a seamless interaction between the ramps and the SFOBB Transition Structure, the ramps would utilize a ribbed design that is consistent with the structural form and architectural vocabulary of the new SFOBB East Span. The intent is to blend the structure such that both components appear to be integrated as one project.

A landscaping plan for the project area would be developed in cooperation with Caltrans’ District 4 Landscape Architect and is still being designed. While the goal would be to aesthetically enhance the project site, bridge security may limit the range of options that can be considered. However, some new vegetation will be planted in appropriate locations. The landscaping alone will not fully mitigate the visual impact. The landscaping plan would incorporate the use of native plants such as Coast live oak, Toyon, Coyote brush, Snowberry, Blue elderberry, California blackberry, and Miner’s lettuce, and would be developed in coordination with Caltrans’ SFOBB landscape plan. In addition TIDA’s best management practices (BMPs) identified in the Yerba Buena Island Habitat Management Plan would also be considered. The BMPs consist of revegetation, protection of sensitive resource areas, invasive plant removal and prevention, and hazard tree removal. The landscaping plan would be in compliance with the invasive species provisions outlined in the Biological Resources section of this EIR/EIS. In compliance with EO 13112 and subsequent guidance from FHWA, the landscaping and erosion control measures included in the project would not use species listed as noxious or invasive weeds by the California Department of Food and Agriculture.

Construction lighting will be oriented away from nearby uses and portable construction lighting would be required to be down-focused whenever feasible to reduce potential nighttime disturbance.

3.7.5.2 Alternative 4

Construction of the Alternative 4 design would in some cases have substantial impacts on the visual quality of some areas when these areas are observed from certain viewpoints. This would be noticeable in cases where views toward or from the Senior Officers’ Quarters Historic District would be dominated and/or obstructed by the ramp structures.

Alternative 4 would require the removal of woodland vegetation, mostly mature eucalyptus trees, within the project’s construction limits. Most of the trees that would be removed are located in the area at the northeastern tip of YBI southwest. These are mature tall trees that add to the island’s appearance and shield the ramps partially from view. The removal of this vegetation would constitute a substantial visual impact, and a number of years would be required before the vegetation could reestablish itself to the density that exists today.

Design requirements including ribbing to match the existing and proposed adjacent structures would be implemented under Alternative 4. To promote a seamless interaction between the ramps and the SFOBB Transition Structure, the ramps would utilize a ribbed design that is consistent with the structural form and architectural vocabulary of
Chapter 3.7 – Visual/Aesthetics

the new SFOBB East Span. The intent is to blend the structure such that both components appear to be integrated as one project.

Given the large scale of the ramps, it would be difficult to screen or sufficiently offset their visual impacts without in the process causing secondary substantial visual impacts. As described in Section 2.2.4, trees and sensitive plants removed during construction would be replaced with the intent to restore disturbed areas with similar landscape that would screen portions of the ramp structure (i.e. columns, column foundations) from surrounding viewpoints over time, to the extent feasible.

A landscaping plan for the project area would be developed in cooperation with Caltrans’ District 4 Landscape Architect and is still being designed. While, the goal would be to aesthetically enhance the project site, bridge security may limit the range of options that can be considered. However, some new vegetation will be planted in appropriate locations. The landscaping plan alone will not fully mitigate the visual impact. The landscaping plan would improve the overall appearance and soften the structure of the ramp and shall incorporate the use of native plants such as Coast live oak, Toyon, Coyote brush, Snowberry, Blue elderberry, California blackberry, and Miner’s lettuce, and would be developed in coordination with Caltrans’ SFOBB landscape plan. In addition, best management practices (BMPs) identified in the Yerba Buena Island Habitat Management Plan would also be considered. The BMPs consist of revegetation, protection of sensitive resource areas, invasive plant removal and prevention, and hazard tree removal. The landscaping plan would be in compliance with the invasive species provisions outlined in the Biological Resources section of this EIR/EIS. In compliance with EO 13112 and subsequent guidance from FHWA, the landscaping and erosion control measures included in the project would not use species listed as noxious or invasive weeds by the California Department of Food and Agriculture.

Construction lighting will be oriented away from nearby uses and portable construction lighting would be required to be down-focused whenever feasible to reduce potential nighttime disturbance.
3.8 Cultural Resources

Cultural and historic resources provide information about people from the past and establish important connections to the present. They also provide evidence about important historical trends and events; reflect people's everyday lives and accomplishments; and illustrate distinctive architectural, landscape, and engineering designs.

The YBI Ramps Improvement Project area contains a rich collection of cultural resources, including archaeological sites, historic buildings, structures and objects, and cultural landscape features. These include the former Military Base on YBI and its contributing elements, the San Francisco-Oakland Bay Bridge, and a prehistoric archaeological site known as CA-SFR-04/H.

3.8.1 Regulatory Setting

The term “cultural resources” as used in this document refers to all historical and archaeological resources, regardless of significance. Laws and regulations dealing with cultural resources for the Yerba Buena Ramps Improvement Project include the following.

3.8.1.1 National Historic Preservation Act

The National Historic Preservation Act of 1966, as amended, (NHPA) sets forth national policy and procedures regarding historic properties, defined as districts, sites, buildings, structures, and objects included in or eligible for the NRHP. Section 106 of NHPA requires Federal agencies to take into account the effects of their undertakings on such properties and to allow the Advisory Council on Historic Preservation the opportunity to comment on those undertakings, following regulations issued by the Advisory Council (36 C.F.R. 800). On January 1, 2004, a Section 106 Programmatic Agreement (PA) between the Advisory Council, FHWA, State Historic Preservation Officer (SHPO), and Caltrans went into effect for Caltrans projects, both state and local, with FHWA involvement. The PA implements the Advisory Council's regulations, 36 C.F.R. 800, streamlining the Section 106 process and delegating certain responsibilities to Caltrans. The FHWA’s responsibilities under the PA have been assigned to Caltrans as part of the Surface Transportation Project Delivery Pilot Program (23 C.F.R. 773) (July 1, 2007).

3.8.1.2 Native American Graves Protection and Repatriation Act of 1990

The Native American Graves Protection and Repatriation Act (NAGPRA) governs the treatment of prehistoric Native American human remains discovered on Federal land and the disposition of such remains in possession of the Federal government. Because YBI is a Federal military installation, NAGPRA would govern the treatment of human remains discovered during implementation of the project. NAGPRA provides a process for museums and Federal agencies to return certain Native American cultural items—human remains, funerary objects, sacred objects, or objects of cultural patrimony—to lineal descendants, and culturally affiliated Indian tribes and Native Hawaiian organizations. NAGPRA includes provisions for unclaimed and culturally unidentifiable Native American cultural items, intentional and inadvertent discovery of Native American cultural items on Federal and tribal lands, and penalties for noncompliance and illegal trafficking. In addition, NAGPRA authorizes Federal grants to Indian tribes, Native Hawaiian organizations, and museums to assist with the documentation and repatriation
of Native American cultural items, and establishes the Native American Graves Protection and Repatriation Review Committee to monitor the NAGPRA process and facilitate the resolution of disputes that may arise concerning repatriation under NAGPRA. All Federal agencies are subject to NAGPRA. All public and private museums that have received Federal funds, other than the Smithsonian Institution, are subject to NAGPRA.

3.8.1.3 Archaeological Resources Protection Act of 1979

The Archaeological Resources Protection Act (ARPA) applies when a project may involve archaeological resources located on Federal or tribal land. The Archaeological Resources Protection Act of 1979 (ARPA) established uniform definitions, standards, and procedures to be followed by all Federal land managers in providing protection for archaeological resources, located on public lands and Indian lands of the United States. These regulations enable Federal land managers to protect archaeological resources, taking into consideration provisions of the American Indian Religious Freedom Act (92 Stat. 469; 42 U.S.C. 1996), through permits authorizing excavation and/or removal of archaeological resources, through civil penalties for unauthorized excavation and/or removal, through provisions for the preservation of archaeological resource collections and data, and through provisions for ensuring confidentiality of information about archaeological resources when disclosure would threaten the archaeological resources. ARPA mandates that no person shall excavate archaeological sites on public lands without a permit from the relevant Federal agency (16 U.S.C. Section 470ee). Public lands are defined as lands held in fee by the United States (16 U.S.C. Section 470bb). If excavation of an archaeological site would be required to complete cultural resources management necessary for the YBI project, a permit would thus be required.

3.8.1.4 Section 4(f)

Historic properties may also be covered under Section 4(f) of the USDT Act, which regulates the “use” of land from historic properties. See Appendix B for specific information regarding Section 4(f).

3.8.1.5 California Environmental Quality Act

Historical resources are considered under the California Environmental Quality Act (CEQA), as well as California Public Resources Code (PRC) Section 5024.1, which established the California Register of Historical Resources (CRHR). PRC Section 5024 requires state agencies to identify and protect state-owned resources that meet NRHP listing criteria. It further specifically requires Caltrans to inventory state-owned structures in its rights-of-way. Sections 5024(f) and 5024.5 require state agencies to provide notice to and consult with the SHPO before altering, transferring, relocating, or demolishing state-owned historical resources that are listed on or are eligible for inclusion in the National Register or are registered or eligible for registration as California Historical Landmarks.

3.8.2 Affected Environment

A number of cultural resource studies were completed prior to preparation of this environmental document. These included an archaeological survey report (ASR) (Archaeological Survey Report, Yerba Buena Islands Ramps Improvement Project, September, 2009a), a Historic Resources Evaluation Report (HRER) (Historical
Resources Evaluation Report, Yerba Buena Island Ramps Improvement Project, San Francisco, California, May, 2009), and an HPSR (Historic Property Survey Report, Yerba Buena Islands Ramps Improvement Project. September, 2009b). A Finding of Effect (FOE) document was completed in October 2009. These combined reports document the known resources in the multiple areas of potential effects (APEs) that were established for the project and discuss the impacts associated with the undertaking.

Caltrans (under its authority delegated by FHWA in the 2004 PA and NEPA delegation in 2007), with assistance from other agencies, established that the YBI Ramps Improvement Project is an undertaking for the purposes of Section 106 of the NHPA and that the project has potential to cause effects to historic properties. Caltrans identified appropriate interested parties and Native American participants for input regarding resources in the project’s APE. This was followed by a program to identify historic properties in the APE. These efforts were documented in a Historic Property Survey Report (HPSR) that was accepted by Caltrans on October 22, 2009. The HPSR was submitted to SHPO in 2009, who concurred with the FOE (see Appendix J for a copy of the SHPO letter):

- All properties in the APE that were previously listed in or determined eligible for listing in the NRHP, either individually or as contributors to a historic district, remain eligible for listing in the NRHP under criteria established by 36 C.F.R. 60.4. A contributor is a building, structure, object, or site that may lack individual distinction and is, consequently, not individually eligible for the NRHP. Although such resources may lack individual distinction, if they add to the character of a historic district, they are considered to be contributors to that historic district, and are treated as historic properties.

- There are four historic properties within the Focused Area of Potential Effects (APE) for the built environment: Senior Officers’ Quarters Historic District; Quarters 10/Building 267; Quarters 8; and a portion of the East Span of the SFOBB (Figures 3.8 1 through 3.8 3). One focused APE was for architectural resources and two were for archaeological resources (Alternatives 2b and 4). All focused APEs meet the definition of an APE set forth in 36 C.F.R. 800.16(d). While the East Span of the SFOBB will be replaced as part of a separate project, a general APE was established for the YBI Ramps project in order to show the full extent of the historic resource.

- Because the current project proposes the construction of new ramps that would connect to the new East Bay Span currently under construction, the proposed project has no potential to affect the existing SFOBB historic property. Therefore, no further study of the SFOBB as a historic resource is required for this project.

- Archaeological site CA-SFR-04/H is individually eligible for inclusion in the NRHP under Criterion D as set forth in 36 C.F.R. 60.4.

18 An APE is the geographic area or areas within which an undertaking may directly or indirectly cause alterations in the character or use of historic properties, if any such properties exist. The area of potential effects is influenced by the scale and nature of an undertaking and may be different for different kinds of effects caused by the undertaking (36 C.F.R. Section 800.16(d)). The extent of the study area is dependent upon potential historic or archaeological resources in the general area. Under Caltrans policy, in accordance with guidance in Attachment 3 of the PA, different APEs can be established for different types of cultural resources. Two APEs were established for this undertaking. One encompasses archaeological resources and the other encompasses architectural/engineering resources that may be potentially affected by the YBI Ramps Improvement Project.
Figure 3.8-1
Architectural Area of Potential Effect

Source: Image: Nima/USGS 2004
Data: 2009

Yerba Buena Island Ramps EIR/EIS
P:\2008\08080090 Yerba Buena Island Interchange\5.0 Graphics (Non-CAD)\5.7 Report Graphics\Figures\Jason project Appendices\Figure 3.8-1 architectural APE.ai (dbrady) 9/3/09
Figure 3.8-2
Alternative 2b
Archaeological Area of Potential Effects
Figure 3.8-3

Alternative 4

Archaeological Area of Potential Effects
Chapter 3.8 – Cultural Resources

The Senior Officers’ Historic District (including Quarters 1/Nimitz House), Quarters 10, and Quarters 8 was previously inventoried and evaluated for the U.S. Navy in 1997 as part of the U.S. Navy’s Base Realignment and Closure program. The following year, Caltrans evaluated Quarters 10 (and Building 267) for the SFOBB ESSSP. In 2003, NRHP nominations and Historic American Building Survey (HABS) reports were prepared for the both the Senior Officers’ Historic District and Quarters 10/Building 267.

The earliest evaluation of the SFOBB was completed in 1977 and resulted in SHPO’s determination of eligibility for listing in the NRHP. The bridge was evaluated again in 1983 as part of the I-280 Transfer Concept Program, which was followed in 1999 by a 273-page Historic American Engineering Record (HAER) report.

An FOE was then prepared for agency review and was accepted by Caltrans in October 2009 (see Appendix J for the SHPO letter regarding the FOE received in February 2010). The FOE assesses the potential for this project to cause adverse effects on historic properties and initiates the process to resolve those adverse effects. Letters to interested parties were distributed on November 4, 2009 to describe the report findings as they pertain to cultural resources under the proposed project and alternatives.

Measures taken to mitigate adverse effects of the project are being addressed in the Memorandum of Agreement (MOA), which is included as Appendix R in this Final EIR/EIS. The MOA was developed in coordination with FHWA, the SHPO, SFCTA, the United States Navy, the United States Coast Guard, and TIDA.

Whereas the proposed project falls under the jurisdiction of FHWA, a Section 4(f) analysis of the project was conducted (see Appendix B).

3.8.2.1 Quarters 8

Quarters 8 is a symmetrical three-story, wood-frame, Mediterranean-style residence constructed in 1905. The building is significant under NRHP Criterion A within the context of military history, and under Criterion C, as an unusual example of Mediterranean-style architecture and as the work of the master architectural firm of the Reid Brothers.

3.8.2.2 Quarters 10/Building 267

Quarters 10/Building 267 was constructed in 1948 and is a mixture of three modern architectural styles: Moderne, International, and Bay Region. Building 267, a garage associated with Quarters 10, is similar in design and construction. The property is significant at the local level under Criterion C, as a significant example of mid-twentieth-century residential architecture.

3.8.2.3 Quarters 1/Nimitz House

Quarters 1/Nimitz House is one of eleven contributing elements to the Senior Officers’ Quarters Historic District (described below). Quarters 1 is also listed in the National Register as an individual property and is significant under Criterion A, for its association with the development of West Coast military facilities, and under Criterion C, as an important example of Classical Revival architecture. Its period of significance is identified as 1898–1916.
Quarters 1/Nimitz House is also individually eligible under Criterion A for its association with the development of West Coast military facilities as well as an under Criterion C as an important example of Classical Revival architecture.

3.8.2.4 Senior Officers’ Quarters Historic District

The Senior Officers’ Quarters Historic District includes 11 contributing elements: seven residences (Quarters 1 through 7), two apartments/garages (Buildings 83 and 230), a five-car garage (Building 205), and the landscape that surrounds the district. The district is generally bounded by Northgate Road on the west and north, the greensward on the east, the SFOBB and hillside on the south, and the southern edge of the informal landscaping south of Building 230 and directly west of Quarters 1/Nimitz House. The majority of these wood-frame buildings were constructed around the turn of the twentieth century, with the exception of Buildings 83, 230, and 205, which were built in 1918, 1936, and 1944, respectively. The property is significant at the local level under Criterion A, for its association with the early development of military facilities on the west coast, and under Criterion C, as significant examples of Classical Revival/Colonial Revival residential architecture.

As described above, Quarters 1/Nimitz House is also individually eligible under Criterion A for its association with the development of West Coast military facilities as well as an under Criterion C as an important example of Classical Revival architecture.

TIDA and the City shall retain the Senior Officer’s Quarters Historic District and has no plans to demolish any structures within the District, which is described in further detail in the Treasure Island + Yerba Buena Island Design for Development, approved by the San Francisco Planning Commission in April 2011, and approved as referenced in the San Francisco Planning Code Section 249.52, approved by the San Francisco Board of Supervisors in June 2011.

3.8.2.5 San Francisco Oakland Bay Bridge

The SFOBB is significant at the national level under Criterion A, for its important influence on transportation in San Francisco Bay Area and the state as a whole. The bridge is also significant for its engineering design (Criterion C). The SFOBB consists of 15 contributing elements. The six contributing buildings include the Transbay Transit Terminal Building (San Francisco), Key System Electrical Substation (San Francisco), Key System Electrical Substation (YBI), SFOBB Firehouse (also known as the Caltrans Garage, YBI), Bay Bridge Substation (also known as the Caltrans substation, Oakland), and the Key Pier Substation (Oakland). The Firehouse and Key System Electrical Substation, which were once located within the Focused APE, have been demolished. The nine contributing structures consist of individual components of the bridge itself and include approaches, San Francisco approach on and off-ramps, street overcrossings (bus ramps in San Francisco), the main bridge spans (West and East Bay spans) and the YBI tunnel for the SFOBB ESSPP. Of these structures, only a short, westernmost section of the East Bay Span (Bridge No. 33-025) is located within the Focused APE. A new East Span of the SFOBB has been under construction since 2002 and construction activity continues within the Focused APE. The SFOBB within the project area will be replaced as part of a preceding project and thus would not exist to be affected by the project that is the subject of this study.
3.8.2.6 CA-SFR-4/H

One prehistoric archaeological site, CA-SFR-4/H, is located within the Yerba Buena Ramps Improvement Project APE. In 1997 the Caltrans Toll Bridge Program, in conjunction with the FHWA, began conducting cultural resource studies for their proposed SFOBB ESSSP. The project would replace the bridge’s east span between YBI in San Francisco Bay and Oakland on the Bay’s east shore. Prehistoric and historic-period archaeological site CA-SFR-4/H lay within the project APE on YBI. The site had been recorded previously as a buried prehistoric shell midden and an assemblage of historic-period structural remains associated with nineteenth- and early twentieth-century military use of the island. SHPO concurred with FHWA’s determination that the prehistoric component of the site was eligible for the NRHP under Criterion D, for its potential to yield important data about Bay region prehistory. SHPO also concurred that the surface elements of the historic Naval Training Station component of CA-SFR-4/H did not contribute to the site’s eligibility due to lack of integrity; however, there was a potential for buried, unevaluated American-period features or deposits associated with early settlers of the island and/or the U.S. Army post and depot.

Preconstruction assessments of the effects of the ESSSP on CA-SFR-4/H determined that about half the site area would be destroyed by project construction. Far Western Anthropological Group reported on the data recovery excavations in 2008 to address adverse effects from the bridge replacement project to the prehistoric component of CA-SFR-4/H and, secondarily, to provide for the compressed evaluation and treatment (consistent with Section 106 of the NHPA) of any historic-period features that might be uncovered during data recovery at the site.

The Research Design and Treatment Plan (Plan) developed for the archaeological investigations at CA-SFR-4/H by URS, was designed to mitigate effects to any components of the site determined to be eligible to the NRHP. All fieldwork under the Plan was conducted within the project’s Area of Direct Impacts (ADI). Because human remains were likely to be present at the site, the Plan called for complete excavation of all midden deposits within the ADI, to ensure that any burials present would be recovered prior to construction.

An ARPA permit was required for archaeological excavation in the portion of the APE on Federal land. Phase III data recovery excavations were conducted in the fall of 2002, an additional auger program for boundary delineation was conducted at the site in January 2003, and a second phase of archaeological data recovery excavation was carried out in the summer of 2004, focusing on USCG lands.

Although the shell midden and overlying fill included an admixture of late nineteenth- and early-twentieth-century materials in some areas, no historic-era deposits or features were uncovered that could be attributed to specific occupations, individuals, or uses (e.g., Dowling, one of the first American-period settlers of the island; or U.S. Army post and depot occupation). The paucity of historic-era materials confirms that the historic component of CA-SFR-4/H is not a contributing element to the site’s eligibility to the NRHP or the CRHR.

Native American representatives were contacted as part of the current archaeological analysis for the proposed project. The Native American Heritage Commission (NAHC) was solicited for a list of appropriate persons on November 7, 2008. The NAHC checked their database and provided the list of contacts on November 13, 2008, and letters and
Chapter 3.8 – Cultural Resources

phone calls were conducted between December 17, 2008, and February 18, 2009. This correspondence is appended to the ASR (Archaeological Survey Report, Yerba Buena Islands Ramps Improvement Project. September, 2009a). Additionally, Native American representatives were contacted by the SFCTA regarding proposed protection measures and FOE on November 4, 2009 (Moscovich 2009).

If cultural materials are discovered during construction, all earth-moving activity within and around the immediate discovery area will be diverted until a qualified archaeologist can assess the nature and significance of the find.

3.8.3 Environmental Consequences

3.8.3.1 Temporary Impacts

ALL ALTERNATIVES

It has been determined that there would not be any temporary impacts on cultural resources.

3.8.3.2 Permanent Impacts

The following section discusses the potential permanent impacts by alternative on cultural resources that may result from the Yerba Buena Ramps Improvement Project. These impacts include the primary construction activities as well as secondary effects such as impacts to historic buildings from vibration or work in proximity to historic properties that could affect their structural integrity.

Permanent impacts may result from the following activities:

- Preconstruction staging and storage of equipment;
- Utilities relocation;
- Geotechnical studies;
- Construction of haul roads;
- Excavation, grading, and stockpiling of soil;
- Construction of aerial structures and substructures, including vibration impacts during pile driving;
- Construction and demolition of temporary detours;
- Removal of vegetation and removal of existing buildings; and
- Temporary bracing and shoring, roadway construction, placement of reinforced concrete and precast concrete, landscaping, and demobilization.

NO BUILD ALTERNATIVE

The No Build Alternative would have no effect on historic buildings, structures, objects, sites, districts, or the cultural landscape because it represents the existing condition with no project-related activities.
ALTERNATIVE 2B

Alternative 2b would cause indirect and direct adverse effects to the Senior Officers’ Quarters Historic District, as well as to individual historic properties (including Quarters 1/Nimitz House, Quarters 10/Building 267. Alternative 2b would cause a direct adverse effect to Quarters 10/Building 267 as a historic property, as the footprint of Alternative 2b occurs within the footprint of the buildings and requires that they be removed. This alternative would also cause a direct adverse effect to Senior Officers’ Quarters Historic District as one of the proposed support columns would be constructed immediately southeast of Quarters 1/Nimitz House and would remove and/or damage a portion of the district’s historic landscape, including grass and border hedge of the greensward in front of Quarters 1–3, and paved driveway and curbing southeast of Quarters 1/Nimitz House. Another proposed support column would be constructed within the formal terraced garden behind Quarters 1/Nimitz House and would destroy much of the third level of the terrace garden, which is a contributing element of the historic district.

Alternative 2b may also cause an indirect adverse effect on the historic district and Quarters 1/Nimitz House by introducing a potential risk of damage to the historic properties’ significant features from construction vibration as well as by the introduction of visual or atmospheric elements that diminish the integrity of the properties’ significant historic features. The construction of the ramps, which would rise between approximately 17 and 30.5 meters (55.8 and 100 feet) above the historic district, and its structural members that would be built immediately adjacent to contributing features, would alter the view of the historic property (see Figures 3.7-4 and 3.7-6).

Alternative 2b would have no adverse effect on the known archaeological site CA-SFR-4/H. Caltrans established ESAs as part of the SFOBB replacement project to protect the site during ground-disturbing activities. The currently proposed project was designed to avoid these ESAs where they pertain to archaeological materials.

ALTERNATIVE 4

Alternative 4 would cause indirect adverse effects to the Senior Officers’ Quarters Historic District, as well as to individual historic properties (including Quarters 1/Nimitz House, Quarters 10/Building 267). Alternative 4 may cause an indirect adverse effect to the Senior Officers’ Quarters Historic District, Quarters 1/Nimitz House, Quarters 10/Building 267 by potentially causing damage to the historic properties’ significant features through construction vibration.

Alternative 4 would also cause an indirect adverse effect on the historic district by the introduction of visual elements that diminish the integrity of the property’s significant historic features. The size and scale of the proposed structure is not consistent with the historic setting of Quarters 1/Nimitz House or the historic district and would constitute introduction of a new visual element. The ramp deck and support columns would obstruct the eastward view from Quarters 1/Nimitz House, and because the view from this building is a character-defining feature, Alternative 4 would diminish the integrity of Quarters 1/Nimitz House (see Figure 3.7-12 and 3.7-14). Thus, the introduction of the ramp structures would cause an adverse effect to both the district and Quarters 1/Nimitz House.

Alternative 4 would have no adverse effect on the known archaeological site CA-SFR-4H. Caltrans established ESAs as part of the SFOBB replacement project to protect the
Chapter 3.8 – Cultural Resources

site during ground-disturbing activities. The currently proposed project was designed to avoid these ESAs where they pertain to archaeological materials.

4(f)

Both Alternative 2b and Alternative 4 would use Section 4(f) historic properties. Alternative 2b requires the permanent use of land from three resources: Senior Officers’ Quarters Historic District, Quarters 1/Nimitz House, and Quarters 10/Building 267. Alternative 4 requires the use of two resources: Senior Officers’ Quarters Historic District and the Quarters 1/Nimitz House. The Section 4(f) analysis for the project is located in Appendix B, “Section 4(f) Evaluation.”

COMPARISON OF EFFECTS

The completed structures and alignment of Alternative 2b would more closely resemble the existing facility. Alternative 2b would adversely affect contributing features in geographically smaller areas than Alternative 4, thus having less impact on the integrity of the Senior Officers’ Quarters Historic District. However, Alternative 2b would require the removal of Quarters 10/Building 267, which are individually listed in the NRHP. These buildings would be relocated to another location on YBI; however, this action would still be an adverse effect. The preferred alternative has been identified as Alternative 2b and these buildings would be relocated to an area above the south side of the Clipper Cove area. See Section 3.21 for additional discussion.

Alternative 2b has the potential to cause an indirect adverse effect on the Senior Officers’ Quarters Historic District through construction vibration damages or through the introduction of visual elements that may diminish the integrity of the property’s significant historic features. Alternative 4 may cause an indirect adverse effect to the Senior Officers’ Quarters Historic District, Quarters 1/Nimitz House, Quarters 10/Building 267 by potentially causing damage to the historic properties’ significant features through construction vibration. Additionally, Alternative 4 would cause an indirect adverse effect on the historic district by the introduction of visual elements that diminish the integrity of the property’s significant historic features.

Although Figure 2-1 for Alternative 2b and Figure 2-2 for Alternative 4 appear to show the project alternatives crossing over a portion of the ESA for CA-SFr-04/H, it is important to note that no columns supporting the elevated ramps are proposed within or in the immediate vicinity of the site boundaries. In summary, although considerable effort was made to retain historic structures, both alternatives could cause effects to the built-environment resources on YBI through construction vibration. However, Caltrans provides construction staff and requires contractors to follow specific guidance regarding on-site monitoring of vibrations caused by construction, which includes special provisions for historic structures and buildings. This monitoring procedure allows Caltrans (or the contractor) to respond to any potential damage caused by construction vibrations by modifying work methods or using different equipment, in order to avoid adverse effects (Hendricks 2002: 10-11). Alternative 2b would require that two historic buildings be permanently removed to accommodate construction, although they would be relocated to a location that is determined appropriate through consultation with the Office of Historic Preservation and stipulated in the MOA (Appendix R).
3.8.4 Avoidance, Minimization, and/or Mitigation Measures

The SFCTA and Caltrans worked closely with SHPO to ensure appropriate measures were developed under a Memorandum of Agreement (MOA), which was signed by SHPO on April 14, 2011 (Appendix R). The Advisory Council on Historic Preservation (ACHP) was also notified of the adverse impact to cultural resources and has declined to participate (Johnson 2010). The MOA describes the procedures that would be followed to ensure that the one known archaeological site (CA-SFR-04/H) is protected and how any inadvertent discoveries of archaeological sites will be addressed (see 3.8.4.1 below). Additionally, the MOA describes how adverse effects to historically significant buildings and cultural landscapes will be addressed (see 3.8.4.2 below).

3.8.4.1 Mitigation Stipulated Under MOA

The MOA has been developed with input from SHPO (Appendix R). It dictates a variety of tasks intended to avoid, minimize, or mitigate for impacts to the built environment. The MOA includes the following mitigation measures:

DEVELOP PROTECTIVE MEASURES FOR HISTORIC BUILDINGS

Prior to the commencement of any construction activity, measures will be developed for the protection of the buildings of the Senior Officers’ Quarters Historic District (including the Quarters 1/Nimitz House) and Quarters 10/Building 267 from potential damage due to construction activities. Existing analysis derived from the SFOBB ESSSP could be used to inform the need for changes in construction methodology, shoring, and/or building stabilization, if consultation among the SHPO, SFCTA, and Caltrans/FHWA requires it. Caltrans will also ensure that any damage to historic properties resulting from the project or the relocation of Quarters 10/Building 267 will be repaired in accordance with the Secretary of the Interior’s standards for the treatment of historic properties.

PREPARE HISTORIC STRUCTURES REPORTS AND CONDITIONS ASSESSMENTS

Historic Structure Reports (HSRs) will be prepared for Quarters 1/Nimitz House and Quarters 10/Building 267. Detailed information is needed to assess what avoidance and protection measures are required to prevent adverse effects. The HSRs would include a history of the property/building, construction history, archaeology, architectural evaluation, conditions assessment, maintenance requirements, recommendations for proposed work, copies of original drawings and specifications if available, current drawings if different from the original, and historic and current photographs. Such information would also help facilitate future owners or operators’ adaptive reuse of these buildings and structures.

INTERPRETATION OF HISTORIC PROPERTIES

SFCTA, in consultation with Caltrans, will develop and install interpretive signs incorporating narrative and images relating to the historic Navy buildings on Yerba Buena Island. Interpretive signage would be coordinated with that already planned by Caltrans as mitigation for the SFOBB ESSSP to avoid duplication or redundancy.
RELOCATION

With the identification of Alternative 2b as the Preferred Alternative, Quarters 10/Building 267 shall be relocated and reconstructed in accordance with the Secretary of the Interior’s Standards for the Treatment of Historic Properties: Standards for Preservation, Rehabilitation, Restoration, and Reconstruction (1995). The process for moving these buildings would follow the approach outlined in Moving Historic Buildings (Curtis 1979). In addition, Quarters 10/Building 267 would be relocated by a professional mover with demonstrated experience in the successful movement of historic buildings.

Appropriate steps will also be taken to ensure that buildings will be protected prior to moving to accommodate construction. Quarters 10/Building 267 will be protected in place until they are relocated. Measures taken for Quarters 10/Building 267 will include providing security before, during, and following its relocation for a period of time agreed to by Caltrans and the SFCTA.

HISTORIC LANDSCAPE REPORT AND LANDSCAPING PLAN

To aid in planning for future use and landscaping of the properties within the Senior Officers’ Quarters Historic District, a Historic Landscape Report will be prepared. The scope will be developed in consultation with Caltrans, the Navy, and TIDA and will generally follow the guidelines for the Historic American Landscape Survey described in the National Park Service publication “HALS Guidelines.” In addition, a landscaping plan for the Senior Officers’ Quarters Historic District will be prepared to address areas where the existing landscaping features will be disturbed by construction activities.

CONDUCT POSTCONSTRUCTION CONDITION ASSESSMENT, AND A REEVALUATION OF RESOURCES

Following completion of construction of the YBI Ramps, a postconstruction conditions assessment and reevaluation will be conducted to determine whether NRHP-listed resources continued to adequately meet listing criteria. This reevaluation will apply to Quarters 10/Building 267 to assess whether the property still retains sufficient historical integrity to convey its significance. This reevaluation will take place prior to the Yerba Buena Ramps Improvement Project completion.

ARCHAEOLOGICAL MONITORING

In order to avoid potentially adverse effects on archaeological site CA-SFR-04/H, an Environmentally Sensitive Area (ESA) will be established around the boundary of the site. The ESA will be established and maintained in accordance with the detailed implementation measures included in the ESA Action Plan (attached to the MOA) and will be thoroughly described on the final construction plans for the project. No construction activity or related ground disturbance will take place within the ESA.
3.9 Hydrology and Floodplains

3.9.1 Regulatory Setting

EO 11988 (Floodplain Management) directs all Federal agencies to refrain from conducting, supporting, or allowing actions in floodplains unless it is the only practicable alternative. FHWA requirements for compliance are outlined in 23 C.F.R. 650 Subpart A.

To comply, the following must be analyzed:

- The practicability of alternatives to any longitudinal encroachments,
- Risks of the action,
- Impacts on natural and beneficial floodplain values,
- Support of incompatible floodplain development, and
- Measures to minimize floodplain impacts and to preserve/restore any beneficial floodplain values impacted by the project.

The base floodplain is defined as “the area subject to flooding by the flood or tide having a 1% chance of being exceeded in any given year.” An encroachment is defined as “an action within the limits of the base floodplain.”

3.9.1.1 Federal Emergency Management Agency

Flood protection guidance is provided by the Federal Emergency Management Agency (FEMA) and is implemented at the state and local level through legislation and local flood protection ordinances. In 1968, Congress created the National Flood Insurance Program (NFIP) in response to the rising cost of taxpayer-funded disaster relief for flood victims and the increasing amount of damage caused by floods. FEMA administers the NFIP to provide subsidized flood insurance to communities that comply with FEMA regulations to limit development in floodplains. FEMA also issues Flood Insurance Rate Maps (FIRMs) that identify which land areas are subject to flooding. These maps provide flood information and identify flood hazard zones in the community. FEMA has established a minimum level of flood protection for new development as the 1-in-100 Annual Exceedance Probability (AEP) (i.e., 100-year flood event).

FEMA released a preliminary FIRM for the City and County of San Francisco on September 21, 2007. The map provides flood risk information that is used for flood insurance and floodplain management purposes under the NFIP. FEMA identified Special Flood Hazard Areas (SFHA) along the city’s shoreline and along San Francisco Bay, consisting of Zone A (as areas subject to inundation by tidal surge) and Zone V (areas of coastal flowing subject to wave hazards) at portions of waterfront piers, Mission Bay, Bayview Hunters Point, Hunters Point Shipyard, Candlestick Point, and Treasure Island (City and County of San Francisco, 2008c). YBI was identified as Zone X, which is an area of minimal flood hazard, and outside the 500-year flood level. The City submitted comments on the preliminary FIRM to FEMA.

In 2008, the San Francisco Board of Supervisors enacted a floodplain management ordinance (Floodplain Management Ordinance) to govern new construction and substantial improvements in flood zones of San Francisco, and authorized the City’s
participation in the NFIP. Specifically, the Floodplain Management Ordinance includes a requirement that any new construction or substantial improvement of structures in a designated flood zone must meet the flood damage minimization requirements in the ordinance. The City Administrator has published floodplain maps for the city. The project site is not located within a designated flood zone on the city’s floodplain maps (City and County of San Francisco, 2008d).

3.9.2 Affected Environment

3.9.2.1 Existing Hazards

YBI has not yet been mapped by FEMA. YBI has FEMA community identification number 060298 (Figure 3.9-1). However, as described above, the project site is not located within a designated flood zone on the city’s floodplain maps. With its location in the San Francisco Bay, YBI may potentially experience various coastal hazards such as tsunamis, extreme high tides, or sea level rise. EO 11988 (Floodplain Management) requires that proposed Federally funded projects that could affect established floodplains be evaluated and impacts minimized. The current YBI ramps have not experienced flooding problems during historic severe storm events.

![Figure 3.9-1 YBI FEMA Identification Map](image)

The island’s high point is located 103 meters (337.9 feet) above mean sea level, and large portions of the island are undeveloped, with steep wooded hillsides leading down to the shoreline. Within the project area, the area just north and south of I-80 on the far east of the project area has an 8% representative slope. The area farther east has a lower representative slope of 1% and the area west along I-80 toward the YBI tunnel has a 40% representative slope. Finally, lands located farther to the north and south of I-80 in the west side of the project area have a representative slope of 53% (Natural Resources Conservation Service 2008).

19 The slope gradient is recorded as three separate values: a low value, a high value, and a “representative” value. The representative value indicates the expected value.
EXTREME HIGH TIDES

In California, extreme high tides occur during summer and winter. The highest tide ever recorded in San Francisco Bay (between 1855 and 1983) occurred on December 3, 1983 (tide elevation of 1.83 meters [6 feet] National Geodetic Vertical Datum of 1929 [NGVD]). The estimated elevation of the 100-year tide in the proximity of the project site is approximately 1.83 to 2.04 meters (6 to 6.7 feet) above NGVD (BCDC 1988).

TSUNAMIS

Tsunamis are sea waves produced by an offshore earthquake, large landslide, or volcanic eruption. As a tsunami travels across the open ocean, it has a relatively low wave height but travels very quickly and increases dramatically in size and height upon entering shallow water. The wave can reach heights of 30 meters (98.4 feet) and cause extensive damage to coastal areas. San Francisco Bay is partially protected from the effects of tsunamis due to the restricted hydraulic access at the Golden Gate. The predicted wave run-up at the bay front in the proximity of the project site has been estimated to range between 2.4 and 2.5 meters (7.9 to 8.2 feet) NGVD for the 100-year tsunami (SFCTA 2008).

SEA LEVEL RISE

Measurements from around the world indicate that the sea level is rising relative to the land surface. It is a widely held belief that the increase in global warming will continue to contribute to the rising sea levels. Based on the most recent predictions from USEPA, the expected total sea level rise at the project site would be 16 centimeters (0.5 feet) by the year 2050 and 37 centimeters (1.2 feet) by the year 2100 (USEPA 1995). More recent data provided by the California Environmental Protection Agency (Cal/EPA) are consistent with the USEPA predictions (Cal/EPA 2009).

SURFACE WATER

The existing project site is located in a developed area surrounded by the San Francisco Bay. The proposed project is located in the San Francisco Bay watershed in the Bay Bridges Hydrologic Unit (Hydrologic Subarea 203.10) (Figure 3.9-2). The watershed area is approximately 21,461 hectares (53,031.3 acres) and the average rainfall is 536 millimeters (1.8 feet).

In general, YBI’s soil classification is dense to very dense silty sand with a slow to very slow rate of water infiltration (Water Quality Report for Yerba Buena Islands Ramps Improvement Project. August 21, 2009c). Unlike most of mainland San Francisco, TI and YBI are served by separate storm water and wastewater systems (SFPUC 2004). As a result, surface runoff from the project area flows untreated to the San Francisco Bay via the non-contiguous San Francisco Municipal Separate Storm Sewer System (MS4). The MS4 within the project area is not connected to San Francisco City’s MS4 or combined sewer systems.

GROUNDWATER

YBI does not have an existing designated groundwater basin in the Basin Plan. The presence of subsurface water is dependent upon seasonal rain, upslope irrigation, or
possible leaks in utility lines. In general, groundwater is not likely to be encountered
during the dry season, but it may be encountered during the rainy season near the
interface between the soil and rock (Long Form – Storm Water Data Report. Prepared
for SFCTA and Caltrans. June, 2009d). Boring logs did not indicate if the depth to
groundwater was measured in any of the borings; however, four borings were classified
as “wet,” which indicates that it was saturated, two borings were classified as “dry to
damp,” and all other borings classified the material overlying the bedrock as “moist.”

Due to the absence of long-term monitoring of water levels, the natural groundwater
depth is uncertain. Packer testing indicated that the bedrock was nearly impermeable
below the weathered zone and therefore water introduced into the boreholes and in
fractures of this material is not likely to drain away. This leaves the possibility that the
measured water depths are not normal and the natural groundwater table should
generally be expected near adjacent Bay levels.

3.9.3 Environmental Consequences

3.9.3.1 No Build Alternative

Under the No Build Alternative, the existing on- and off-ramps would remain and no new
ramps would be built. The existing ramps are above an elevation of 2.7 meters (8.85
feet) and therefore it is not likely that the roadway could be inundated during a 100-year
tsunami wave run-up event. There would be no increase in impervious surface and no
increase in surface runoff because no new ramps would be built under this alternative.
There would not be a significant encroachment as defined at in the Federal Code of
Regulations (23 CFR 650.105).

3.9.3.2 Alternative 2b and Alternative 4

EXTREME HIGH TIDES, TSUNAMIS, OR SEA LEVEL RISE

As described above, the estimated elevation of the 100-year tide in the vicinity of the
project site is 1.83 to 2.04 meters (6 to 6.7 feet) above NGVD. The surface elevation of
the proposed ramps is above an elevation of 2.7 meters (8.85 feet) NGVD. Therefore the
floodplain associated with the extreme adopted high tide level would not encroach into
the project area (based on evaluation of existing topography and the elevation of the
adopted 100-year high tide level).

“Significant encroachment” as defined at 23 CFR 650.105 is a highway encroachment
and any direct support of likely base floodplain development that would: involve a
significant potential for interruption or termination of a transportation facility that is
needed for emergency vehicles or provides a community’s only evacuation route; a
significant risk to life or property; or a significant adverse impact on natural and
beneficial floodplain values. There is no action within the limits of the base floodplain and
therefore no encroachment. There would not be a significant encroachment as defined
in the Federal Code of Regulations (23 CFR 650.105) (see Appendix G).

As described above, any roadways below 2.5 meters (8.2 feet) NGVD could be
inundated during the 100-year tsunami wave run-up event. By the year 2050, the
inundation elevation is expected to rise incrementally to 2.7 meters (8.85 feet) NGVD.
Based on review of available topographic data, the surface elevations of the proposed
ramps are above an elevation of 2.7 meters (8.85 feet) NGVD. In low-laying areas and
dips along YBI, the roadway ramps are raised via pile foundations well above an elevation of 2.7 meters (8.85 feet) for both alternatives. Therefore, it is not likely that the roadway could be inundated during one of these unusual and extreme events.

The expected sea level rise at the project site would be 16 centimeters (0.5 feet) by year 2050 and 37 centimeters (1.2 feet) by the year 2100. While portions of YBI below the extreme high tide or tsunami wave run-up elevations may experience flooding if one of these events occurs, the proposed ramps would be above these elevations and not likely to be inundated or experience flooding if these events occur.

Relatively shallow groundwater conditions may be encountered in the project area, especially in the lower elevation areas of YBI where the westbound on- and off-ramps are proposed (2007). Please refer to Section 3.10.3 for a discussion of groundwater impacts.

HYDROLOGY

Alternative 2b would add 0.79 hectares (1.95 acres) of additional surface paving area compared with existing conditions. This additional impervious surface would increase surface runoff by 0.021 cubic meters per second (m³/s) (0.75 cubic feet per second [ft³/s]).

Alternative 4 would add 1.78 hectares (4.40 acres) of additional surface paving area compared with existing conditions. This additional impervious surface would increase surface runoff flows by 0.024 m³/s (0.85 ft³/s).

3.9.4 Avoidance, Minimization, and/or Mitigation Measures

3.9.4.1 Alternatives 2b and 4

Alternatives 2b and 4 both include independent ramp drainage systems to collect all ramp surface runoff. For all slopes, benching, rounding, and terracing would be considered to minimize concentrated flows. Side slopes would be rounded and shaped to reduce concentrated flows. Slope stabilization measures and retaining walls may be needed for these minimization techniques. In addition, slopes would include pipe or flume downdrains to collect concentrated flows, minimize erosion, and direct storm water into the proposed drainage system and for further treatment via a bioswale system prior to release into San Francisco Bay. Additional discussion of stormwater collection and treatment options is provided below in Section 3.10.3.2, Permanent Impacts.

FLOODING MINIMIZATION

As the ramps under either build alternative would be constructed above an elevation of 2.7 meters (8.85 feet) NGVD, the project would not increase flood risk to YBI. However, for both alternatives, the proposed drainage system and bioswale would be designed to convey flood flows, and the project engineers would coordinate with the San Francisco Bay Regional Water Quality Control Board to ensure that the design capacity of the constructed storm drain system is adequate (Long Form – Storm Water Data Report. Prepared for SFCTA and Caltrans. June, 2009d).
HYDROLOGIC MINIMIZATION

For both alternatives, bioswales would be designed to capture the increased flow rate and treat runoff due to the additional impervious surface. For Alternative 2b, the bioswale would be designed to capture and treat 0.03 m³/s (1.06 ft³/s) of runoff and for Alternative 4, the bioswale would be designed to capture and treat 0.04 m³/s (1.4 ft³/s) of runoff.

By incorporating the minimization measures, no hydrologic impacts would occur.
Chapter 3.9 – Hydrology and Floodplains

This page intentionally left blank.
Chapter 3.10 – Water Quality and Storm Water Runoff

3.10 Water Quality and Storm Water Runoff

3.10.1 Regulatory Setting

3.10.1.1 Federal Requirements: Clean Water Act

In 1972 Congress amended the Federal Water Pollution Control Act, making the addition of pollutants to the waters of the United States (U.S.), from any point source unlawful unless the discharge is in compliance with a National Pollutant Discharge Elimination System (NPDES) permit. Known today as the Clean Water Act (CWA), Congress has amended it several times. In the 1987 amendments, Congress directed dischargers of storm water from municipal and industrial/construction point sources to comply with the NPDES permit scheme. Important CWA sections are:

- Sections 303 and 304 require states to promulgate water quality standards, criteria, and guidelines.

- Section 401 requires an applicant for a federal license or permit to conduct any activity, which may result in a discharge to waters of the U.S., to obtain certification from the State that the discharge will comply with other provisions of the act. [Most frequently required in tandem with a Section 404 permit request. See below.]

- Section 402 establishes the NPDES, a permitting system for the discharges (except for dredge or fill material) of any pollutant into waters of the U.S. Regional Water Quality Control Boards (RWQCB) administer this permitting program in California. Section 402(p) requires permits for discharges of storm water from industrial/construction and municipal separate storm sewer systems (MS4s).

- Section 404 establishes a permit program for the discharge of dredge or fill material into waters of the U.S. This permit program is administered by the U.S. Army Corps of Engineers (USACE).

The objective of the CWA is “to restore and maintain the chemical, physical, and biological integrity of the Nation’s waters.”

USACE issues two types of 404 permits: Standard and General permits. There are two types of General permits, Regional permits and Nationwide permits. Regional permits are issued for a general category of activities when they are similar in nature and cause minimal environmental effect. Nationwide permits are issued to authorize a variety of minor project activities with no more than minimal effects.

There are two types of Standard permits: Individual permits and Letters of Permission. Ordinarily, projects that do not meet the criteria for a Nationwide Permit may be permitted under one of USACE’s Standard permits. For Standard permits, the USACE decision to approve is based on compliance with U.S. EPA’s Section 404 (b)(1) Guidelines (U.S. EPA CFR 40 Part 230), and whether permit approval is in the public interest. The Section 404(b)(1) Guidelines were developed by the U.S. EPA in conjunction with USACE, and allow the discharge of dredged or fill material into the aquatic system (waters of the U.S.) only if there is no practicable alternative which would
have less adverse effects. The Guidelines state that USACE may not issue a permit if there is a least environmentally damaging practicable alternative (LEDPA), to the proposed discharge that would have lesser effects on waters of the U.S., and not have any other significant adverse environmental consequences. Per Guidelines, documentation is needed that a sequence of avoidance, minimization, and compensation measures has been followed, in that order. The Guidelines also restrict permitting activities that violate water quality or toxic effluent standards, jeopardize the continued existence of listed species, violate marine sanctuary protections, or cause “significant degradation” to waters of the U.S. In addition every permit from the USACE, even if not subject to the Section 404(b)(1) Guidelines, must meet general requirements. See 33 CFR 320.4. A discussion of the LEDPA determination, if any, for the document is included in the Wetlands and Other Waters section (Section 3.17.2).

3.10.1.2 State Requirements: Porter-Cologne Water Quality Control Act

California’s Porter-Cologne Act, enacted in 1969, provides the legal basis for water quality regulation within California. This Act requires a “Report of Waste Discharge” for any discharge of waste (liquid, solid, or gaseous) to land or surface waters that may impair beneficial uses for surface and/or groundwater of the State. It predates the CWA and regulates discharges to waters of the State. Waters of the State include more than just Waters of the U.S., like groundwater and surface waters not considered Waters of the U.S. Additionally, it prohibits discharges of “waste” as defined and this definition is broader than the CWA definition of “pollutant”. Discharges under the Porter-Cologne Act are permitted by Waste Discharge Requirements (WDRs) and may be required even when the discharge is already permitted or exempt under the CWA.

The State Water Resources Control Board (SWRCB) and RWQCBs are responsible for establishing the water quality standards (objectives and beneficial uses) required by the CWA, and regulating discharges to ensure compliance with the water quality standards. Details regarding water quality standards in a project area are contained in the applicable RWQCB Basin Plan. States designate beneficial uses for all water body segments, and then set criteria necessary to protect these uses. Consequently, the water quality standards developed for particular water segments are based on the designated use and vary depending on such use. In addition, each state identifies waters failing to meet standards for specific pollutants, which are then state-listed in accordance with CWA Section 303(d). If a state determines that waters are impaired for one or more constituents and the standards cannot be met through point source controls, the CWA requires the establishment of Total Maximum Daily Loads (TMDLs). TMDLs specify allowable pollutant loads from all sources (point, non-point, and natural) for a given watershed.

3.10.1.3 State Requirements: California Department of Fish and Game

At the state level, wetlands and waters are regulated primarily by the California Department of Fish and Game (CDFG) and RWQCBs. Sections 1600–1607 of the Fish and Game Code require any agency that proposes a project that would substantially divert or obstruct the natural flow of or substantially change the bed or bank of a river, stream, or lake to notify CDFG before beginning construction. If CDFG determines that the project may substantially and adversely affect fish or wildlife resources, the Lake or Streambed Alteration Agreement would be required. CDFG jurisdictional limits are usually defined by the tops of the stream or lake banks, or the outer edge of riparian vegetation, whichever is wider. Wetlands under jurisdiction of the USACE may or may
not be included in the area covered by a Streambed Alteration Agreement obtained from the CDFG.

3.10.1.4 State Water Resources Control Board and Regional Water Quality Control Boards

The SWRCB administers water rights, water pollution control, and water quality functions throughout the state. RWCQBs are responsible for protecting beneficial uses of water resources within their regional jurisdiction using planning, permitting, and enforcement authorities to meet this responsibility.

NATIONAL POLLUTION DISCHARGE ELIMINATION SYSTEM (NPDES) PROGRAM

Municipal Separate Storm Sewer Systems

Section 402(p) of the CWA requires the issuance of NPDES permits for five categories of storm water dischargers, including Municipal Separate Storm Sewer Systems (MS4s). The U.S. EPA defines an MS4 as any conveyance or system of conveyances (roads with drainage systems, municipal streets, catch basins, curbs, gutters, ditches, human-made channels, and storm drains) owned or operated by a state, city, town, county, or other public body having jurisdiction over storm water, that are designed or used for collecting or conveying storm water. The SWRCB has identified the Department as an owner/operator of an MS4 by the SWRCB. This permit covers all Department (Caltrans) rights-of-way, properties, facilities, and activities in the state. The SWRCB or the RWQCB issues NPDES permits for five years, and permit requirements remain active until a new permit has been adopted.

The Department’s MS4 Permit, under revision at the time of this update, contains three basic requirements:

1. The Department must comply with the requirements of the Construction General Permit (see below);

2. The Department must implement a year-round program in all parts of the State to effectively control storm water and non-storm water discharges; and

3. The Department storm water discharges must meet water quality standards through implementation of permanent and temporary (construction) Best Management Practices (BMPs) and other measures.

To comply with the permit, the Department developed the Statewide Storm Water Management Plan (SWMP) to address storm water pollution controls related to highway planning, design, construction, and maintenance activities throughout California. The SWMP assigns responsibilities within the Department for implementing storm water management procedures and practices as well as training, public education and participation, monitoring and research, program evaluation, and reporting activities. The SWMP describes the minimum procedures and practices the Department uses to reduce pollutants in storm water and non-storm water discharges. It outlines procedures and responsibilities for protecting water quality, including the selection and implementation of BMPs. The proposed Project will be programmed to follow the guidelines and procedures outlined in the latest SWMP to address storm water runoff.
Part of and appended to the SWMP is the Storm Water Data Report (SWDR) and its associated checklists. The SWDR documents the relevant storm water design decisions made regarding project compliance with the MS4 NPDES permit. The preliminary information in the SWDR prepared during the Project Initiation Document (PID) phase will be reviewed, updated, confirmed, and if required, revised in the SWDR prepared for the later phases of the project. The information contained in the SWDR may be used to make more informed decisions regarding the selection of BMPs and/or recommended avoidance, minimization, or mitigation measures to address water quality impacts.

Construction General Permit

Construction General Permit (Order No. 2009-009-DWQ), adopted on September 2, 2009, became effective on July 1, 2010. The permit regulates storm water discharges from construction sites which result in a Disturbed Soil Area (DSA) of one acre or greater, and/or are smaller sites that are part of a larger common plan of development. By law, all storm water discharges associated with construction activity where clearing, grading, and excavation results in soil disturbance of at least one acre must comply with the provisions of the General Construction Permit. Construction activity that results in soil disturbances of less than one acre is subject to this Construction General Permit if there is potential for significant water quality impairment resulting from the activity as determined by the RWQCB. Operators of regulated construction sites are required to develop storm water pollution prevention plans; to implement sediment, erosion, and pollution prevention control measures; and to obtain coverage under the Construction General Permit.

The 2009 Construction General Permit separates projects into Risk Levels 1, 2, or 3. Risk levels are determined during the planning and design phases, and are based on potential erosion and transport to receiving waters. Requirements apply according to the Risk Level determined. For example, a Risk Level 3 (highest risk) project would require compulsory storm water runoff pH and turbidity monitoring, and before construction and after construction aquatic biological assessments during specified seasonal windows. For all projects subject to the permit, applicants are required to develop and implement an effective Storm Water Pollution Prevention Plan (SWPPP). In accordance with the Department’s Standard Specifications, a Water Pollution Control Plan (WPCP) is necessary for projects with DSA less than one acre.

Section 401 Permitting

Under Section 401 of the CWA, any project requiring a federal license or permit that may result in a discharge to a water body must obtain a 401 Certification, which certifies that the project will be in compliance with State water quality standards. The most common federal permits triggering 401 Certification are CWA Section 404 permits issued by USACE. The 401 permit certifications are obtained from the appropriate RWQCB, dependent on the project location, and are required before USACE issues a 404 permit.

In some cases the RWQCB may have specific concerns with discharges associated with a project. As a result, the RWQCB may issue a set of requirements known as Waste Discharge Requirements (WDRs) under the State Water Code that define activities, such as the inclusion of specific features, effluent limitations, monitoring, and plan submittals that are to be implemented for protecting or benefiting water quality. WDRs can be issued to address both permanent and temporary discharges of a project.
3.10.2 Affected Environment

3.10.2.1 Surface Water

A Water Quality Report was completed in August 2009 and is incorporated into this document (Appendix K). The project site is located in a developed area surrounded by the San Francisco Bay. The proposed project is located in the San Francisco Bay watershed in the Bay Bridges Hydrologic Unit (Hydrologic Subarea 203.10). The watershed area is approximately 21,461 hectares (53,031 acres) and the average rainfall is 536 millimeters (21 inches).

Unlike most of mainland San Francisco, TI and YBI are served by separate storm water and wastewater systems (SFPUC 2004). As a result, surface runoff from the project area flows untreated to the San Francisco Bay via the San Francisco Separate Storm Sewer System (MS4). The MS4 within the project area is not connected to San Francisco city’s MS4 or combined sewer systems.

The Region 2 Basin Plan (SFBRWQCB 2007) establishes beneficial uses for waterways and water bodies within the Central Basin in San Francisco County. The existing beneficial uses for the Central San Francisco Bay area include industrial service water supply; industrial process supply; ocean, commercial, and sport fishing; shellfish harvesting; estuarine habitat; fish migration; preservation of rare and endangered species; fish spawning; wildlife habitat; water contact recreation (e.g., swimming, windsurfing, fishing); noncontact water recreation (e.g., boating, picnicking, sunbathing); and navigation.

Central San Francisco Bay is the nearest receiving water body for this project. Central San Francisco Bay is listed as impaired on the CWA Section 303(d) list for chlordane, DDT, dieldrin, mercury, polychlorinated biphenyls (PCBs), PCBs (dioxin-like), selenium, dioxin compounds, furan compounds, and exotic species. Total maximum daily loads (TMDLs) are a calculation of the maximum amount of a pollutant that a waterbody can receive and still safely meet water quality standards. TMDLs for the San Francisco Bay have been established based on the 2006 303(d) list. TMDLs have only been established at this time for mercury and PCBs; all of the other pollutants listed in the 2006 303(d) list have not been completed. The SFBRWQCB has also recommended the Central San Francisco Bay shoreline for placement on the 303(d) list for trash impairment (SFBRWQCB 2008). Roadway runoff generally consists of the following contaminants: hydrocarbons (oil and grease, diesel), metals, micro-biological, nutrients, sediment, pesticides and herbicides, and semi-volatile organics (Caltrans 2003). These 303(d) listed contaminants are atypical of roadway runoff, as evidenced by roadway characterization studies previously performed by Caltrans (Caltrans 2003).

3.10.2.2 Groundwater

YBI does not have an existing designated groundwater basin in the SFBRWQCB Basin Plan and therefore, the project site does not have existing or proposed beneficial uses of...
groundwater. Due to the absence of long-term monitoring of water levels, the natural groundwater depth is uncertain. However, relatively shallow groundwater conditions may be encountered in the project area, especially in the lower elevation areas of YBI (AGS 2007). Based on current and previous environmental investigations, several areas of known and potential contaminant sources have been identified on YBI (Water Quality Report for Yerba Buena Islands Ramps Improvement Project. August 21, 2009c). At the high portion of northeastern YBI, elevated levels of beryllium, lead, and pesticides have been detected. Along the entire shadow area of the existing bridge and adjacent ramps, investigations indicate a potential for lead contamination in surficial soils. Petroleum hydrocarbons were also found at a former gas station and adjacent fire station, both of which have been demolished. Petroleum hydrocarbons have also been found at an active underground storage tank (leaking underground storage tank or LUST). In addition, it has been established that there is petroleum hydrocarbon contamination in the groundwater. There is also probable aerially deposited lead (ADL) contamination, primarily from tailpipe emissions, in the unpaved areas adjacent to the existing roadway. Please refer to Section 3.13, Hazardous Waste/Materials, for additional discussion of existing groundwater contamination and Section 3.13.8 for mitigation measures. The U.S. Navy is responsible for the groundwater cleanup which was a result of their operations at the site as a Naval Station and is a requirement under the land transfer agreement with TIDA.

3.10.3 Environmental Consequences

3.10.3.1 Temporary Impacts

NO BUILD ALTERNATIVE

Under the No Build Alternative, the existing on- and off-ramps would remain and no new ramps would be built. No construction activities would occur under this alternative. Therefore no construction storm water runoff would occur.

ALTERNATIVE 2B AND ALTERNATIVE 4

Alternative 2b would have a total disturbed soil area (DSA) of approximately 0.93 hectares (2.3 acres). Alternative 4 would have a total DSA of 1.77 hectares (4.4 acres). The DSA includes the areas from the edge of the pavement to the construction limits created by the cut and fill slopes and includes contractor staging areas. A portion of the existing on-and off-ramp structure would remain in place and would be removed from service by closing it using a K-rail, but would not be demolished. The on-ramp bridge section near the mainline would be removed, but the rest of the on-ramp would remain in place for use by Caltrans maintenance. The DSA includes the ground disturbance area, and does not include the paved areas that would not be demolished. The construction of Alternative 2b and Alternative 4 would not result in exposing the entire DSA at the same time. As explained in Section 2.4.4, Construction Schedule, and in Figures 2-4 and 2-5, construction activities would occur in stages. Thus, smaller sections of the DSA would be exposed at different times depending on the construction stage.

Alternatives 2b and 4 would have similar potential short-term impacts to water quality during construction activities due to soil disturbance. These potential short-term impacts are discussed in detail below.
CONSTRUCTION DEWATERING

The construction of either build alternative would require excavation below the ground surface for bridge foundations and pile caps. Typical construction practices require pumping of groundwater to dewater excavations below the groundwater level.

Existing groundwater quality data indicate that the groundwater may be contaminated and requires pretreatment prior to discharging. Additionally, permits for discharging to sewers or surface waters would require characterization of the chemical quality of the effluent to identify treatment requirements prior to discharge. The Caltrans General Permit allows the discharge of noncontaminated construction dewatering in conformance with Stormwater Management Plan (SWMP) procedures. The SFBRWQCB at its discretion may require a separate dewatering permit for this project (R2-2007-0033).

The proposed project would characterize the quality of groundwater in the vicinity of the dewatering operations (prior to initiation of dewatering). The dewatering would take place in conformance with the Caltrans General Permit and SWMP. Any discharge of groundwater to the sanitary sewer system would be required to comply with the SFPUC pretreatment standards.

If contaminants are present in dewatering effluent at levels that could cause environmental harm, measures would be implemented to either treat the effluent prior to discharge in conformance with the applicable permit, or collect the dewatering effluent for offsite disposal to an appropriate licensed waste disposal facility. 401 Certification may be required for the project, which would require coordination with and approval from SFBRWQCB.

Discharge to the storm sewer system (and eventually to the Bay) or directly to the Bay would be addressed by the Caltrans General Permit, which incorporates performance requirements and other technical provisions and would be subject to the quantitative water quality objectives included in the SFRWQCB Basin Plan. In exceptional cases, the SFRWQCB may require a separate NPDES permit for the dewatering discharge.

As previously noted, some form of pretreatment to remove pollutants in the effluent down to acceptable thresholds for discharge may be required prior to discharge. If the dewatering effluent does not meet the requirements for sewer discharge, provisions for other off-site treatment/disposal would be made. Implementation of the Caltrans General Permit and SWMP would minimize the potential impact of disposal of contaminated groundwater into the sewer system and the local storm drain system.

CONSTRUCTION STORM WATER RUNOFF

The build alternatives would involve roadway construction, including excavation, grading, stockpiling of soil, and reconstruction of existing facilities involving removal and replacement of earthen materials. Runoff generated during rainfall events may result in erosion of exposed soil and stockpiled soil. Sediment transported by runoff may cause sedimentation in downstream drainages. The accumulation of sediment may result in blockage of flows, potentially resulting in localized ponding or flooding and impacts to habitat.

Under existing conditions, the majority of runoff generated from the project site flows into San Francisco Bay via the storm sewer system. During construction, sediment may be
transported by the runoff and discharged into the Bay, resulting in water quality degradation. Other potential pollutants of concern include vehicle fluids, oil, trash, and debris. Without appropriate BMPs in place during construction, sediment may be transported by the runoff and discharged into the Bay, resulting in water quality degradation. The Caltrans General Permit requires control BMPs for control of construction site runoff. The SWPPP would require approval by the SFBRWQCB, would identify potential pollutant sources that could affect the quality of runoff, and would require identification, construction, and implementation of construction site BMPs. BMPs are designed to reduce, or prevent, pollutants in storm water discharges from the construction site.

3.10.3.2 Permanent Impacts

This section describes potential permanent impacts that would occur during project operations and maintenance. The operation of a roadway results in the discharge of contaminants to the environment that can be transported by runoff away from the roadway and its ramps. Pollutants associated with roadway runoff generally consist of the following contaminants: hydrocarbons (oil and grease, diesel), metals, microbiological, nutrients, sediment, pesticides and herbicides, and semi-volatile organics (Caltrans 2003).

NO BUILD ALTERNATIVE

Under existing conditions, the total amount of impervious roadway area (within the project study area) is approximately 1.47 hectares (3.6 acres). This area would not change under the No Build Alternative. No changes to the existing ramp drainage system and no additional treatment would occur under this alternative. Surface runoff would continue to be collected in gutters and inlets along the roadway and no bioswales would be designed. There may be existing impacts associated with the lack of treatment in the area and under the No Build Alternative.

ALTERNATIVE 2B AND ALTERNATIVE 4

Currently, surface runoff from the westbound lanes of I-80 is collected in deck drains on the side of the SFOBB. Both Alternatives 2b and 4 include an independent ramp drainage system to collect all ramp surface runoff. Slopes would include pipe or flume downdrains to collect concentrated flows and minimize erosion.

The proposed project traffic is not expected to increase substantially when compared with existing conditions. Following water quality treatment, the runoff would not be expected to contain detectable amounts of any of the pollutants of concern listed in the 303(d) for the Central San Francisco Bay. In this instance, storm water treatment target pollutants related to traffic are not entirely covered in the 303(d) list. The Caltrans statewide permit and SWMP call for the consideration of permanent BMPs, including treatment BMPs to control runoff after project construction. Preliminary treatment options for the proposed ramps were narrowed down to bioswales (Long Form – Storm Water Data Report. Prepared for SFCTA and Caltrans. June, 2009d). Bioswales would be designed in close consultation with the Regional/District NPDES coordinators due to the site’s hazardous soil conditions and would likely require the use of impermeable liners and an underdrain.
Bioswales would collect flows equivalent to all of the project’s new and reworked impervious areas from the proposed roadways and treat the runoff prior to discharge. Bioswales are vegetated channels which receive and convey storm water flows and designed to remove pollutants by filtration through the vegetation. For both Alternatives 2b and 4, the bioswale would be located north of the proposed westbound ramps and south of North Gate Road. Flows would then be discharged into the San Francisco Bay via the existing and upgraded storm drain system. In accordance with and as described in the SWDR, the bioswale would be designed, constructed, and maintained to treat storm water runoff associated with this project and within the roadway right-of-way (Long Form – Storm Water Data Report. Prepared for SFCTA and Caltrans. June, 2009d). Frequent small storms, which over the long term carry the substantial quantity of total pollutant load, would be the focus of the bioswale. The bioswale would also include bypass features that allow the safe passage of larger (i.e., 25-year storm) untreated storm flows.

Additionally, 401 Certification and a 404 permit would be required for the project, which would require coordination with and approval from SFBRWQCB and the U.S. Army Corps of Engineers.

3.10.4 Avoidance, Minimization, and/or Mitigation Measures

No adverse impacts to water quality and storm water runoff are anticipated to occur with the project. Caltrans would continue to incorporate minimization measures where feasible during the design process.

Construction site BMPs include but are not limited to soil stabilization (e.g., hydraulic mulch, erosion control blankets/mats, and ESA fencing), sediment control (e.g., silt fence, fiber rolls, inlet protection), tracking control (e.g., stabilized construction entrances/exits, tire/wheel washes), and waste materials control.

The SWPPP would specify a monitoring program and would require that the supervisors and workers be knowledgeable about each portion of the site and maintain awareness of the importance of storm water quality protection and pollution prevention. Compliance with existing regulations, programs, and the SWPPP would adequately address potential construction-related storm water runoff impacts.

In compliance with EO 13112 and subsequent guidance from FHWA, the landscaping and erosion control measures included in the project would not use species listed as noxious or invasive weeds by the California Department of Food and Agriculture list. Disturbed areas would be reseeded after construction activities are complete.
This page intentionally left blank.
3.11 Geology/Soils/Seismic/Topography

3.11.1 Regulatory Setting

The Alquist-Priolo Earthquake Fault Zoning Act (Alquist-Priolo Act) was passed in December 1972 to mitigate the hazard of surface faulting to structures for human occupancy. Surface rupture is the most easily avoided seismic hazard. The Alquist-Priolo Act's main purpose is to prevent the construction of buildings used for human occupancy on the surface trace of active faults. The Alquist-Priolo Act only addresses the hazard of surface fault rupture and is not directed toward other earthquake hazards.

In 1990, following the Loma Prieta earthquake, the California Legislature enacted the Seismic Hazards Mapping Act to protect the public from the effects of strong ground shaking, liquefaction, landslides, and other seismic hazards. The act established a statewide mapping program to identify areas subject to violent shaking and ground failure. The program is intended to assist cities and counties in protecting public health and safety.

For geologic and topographic features, the key Federal law is the Historic Sites Act of 1935, which establishes a national registry of natural landmarks and protects "outstanding examples of major geological features." Topographic and geologic features are also protected under CEQA.

This section also discusses geology, soils, and seismic concerns as they relate to public safety and project design. Earthquakes are prime considerations in the design and retrofit of structures. Caltrans' Office of Earthquake Engineering is responsible for assessing the seismic hazard for Caltrans projects. The current policy is to use the anticipated maximum credible earthquake (MCE), from young faults in and near California. The MCE is defined as the largest earthquake that can be expected to occur on a fault over a particular period of time.

3.11.2 Affected Environment

3.11.2.1 Regional Geologic Setting

A site-specific geotechnical memorandum has been prepared for the YBI Ramps Improvement Project:

Additional geotechnical information has been provided for the entire project area in the following reports:

The project site is located in the Coast Ranges geologic/geomorphic province of central and northern California. The Coast Ranges have a general northwest orientation and are characterized by north-northwest-trending folds and faults. The Coast Ranges province extends from approximately 483 kilometers (300 miles) south and 402 kilometers (249.8 miles) north of the project site. The Coast Ranges province is bordered to the north by the Klamath Mountains, to the south by the Transverse Ranges province, to the west by the Pacific Ocean, and to the east by the Great Valley province.

The San Francisco Bay region is located within a northwesterly oriented geomorphic depression called the San Francisco Bay-Santa Clara Valley depression. This depression and its surrounding mountains all have relatively recent tectonic origin. Most of the San Francisco Peninsula is underlain by bedrock of mid-Cretaceous to Jurassic age, mainly sandstone, shale, chert, greenstone, and sheared rock. The sea level has fluctuated significantly several times prior to and during Holocene times, and sediments known as Bay mud have been and are currently being deposited under estuarine conditions. The Bay mud consists of unconsolidated to moderately consolidated, saturated, organic-rich silty marine clays.

3.11.2.2 Regional Seismic Setting and Seismicity

The San Francisco Bay Area is one of the more seismically active regions of California. There are at least seven active faults (San Andreas, Hayward, Rodgers Creek, Calaveras, Green Valley, Concord, and Franklin) within 50 kilometers (31.1 miles) of the project site (USDT-FHWA 2001). The active faults trend northwesterly and display a similar right-lateral, primarily horizontal movement (displacement is sideways along fault plane instead of up/down vertical displacement). These faults have generated large historical earthquakes resulting in major surface disturbances, and segments of these faults have been designated as Special Earthquake Fault Zones by the California Division of Mines and Geology (Earthquake Fault Zoning Act). Numerous other smaller active faults are present throughout the region but are farther from the project site and not believed to be capable of causing significant earthquake shaking within the project area.

The project area’s main geologic structures are associated with two major faults: the San Andreas fault about 14.5 kilometers (9 miles) to the west and the Hayward fault, which is located about 8 kilometers (5 miles) to the east. Both faults have had large historic earthquakes, including the 7.8 magnitude\(^2\) (Richter Scale) earthquake on April 18, 1906.

\(^2\) Although the 1906 earthquake has been given an 8+ magnitude by some, the best estimate and also the current consensus among seismologists is 7.8.
and the 7.1 magnitude (Richter Scale) Loma Prieta earthquake on October 17, 1989. These earthquakes caused widespread damage throughout the greater San Francisco Bay Area. The Hayward fault has long been documented as active, with a major earthquake in 1868. An MCE is the largest earthquake reasonably capable of occurring under the current tectonic setting. The MCE has been estimated for the San Andreas fault at 8 and 7.25 on the Hayward fault (USDT-FHWA 2001).

3.11.2.3 Geology and Geotechnical Conditions in the Project Area

SOILS AND TOPOGRAPHY

The majority of the island is covered with un lithified alluvial deposits, along with localized areas of artificial fill. The un lithified material is primarily wind-blown sand and weathered decomposed Franciscan Formation.

Soils on YBI range from fine sandy loam to gravely loam 25.4 to 101.6 centimeters (10 to 40 inches) deep (City and County of San Francisco 2006). The natural soils consist of a complex of Candlestick, Kron, and Buriburi soils. These are generally coarse, loose soils, which reflect the underlying Franciscan sandstone bedrock. The permeability of these soils is moderately low. Storm water runoff is rapid, and soil erosion potential is high. Candlestick soil is a sandy loam that is very susceptible to failure on steep slopes. The Kron soil, also a sandy loam, is the shallowest of the three subunits, with a depth of 25.4 to 50.8 centimeters (10 to 20 inches) to bedrock. The Buriburi subunit is a gravelly loam, with a depth of 50.8 to 101.6 centimeters (20 to 40 inches) to bedrock.

The project site is characterized by four basic units (Preliminary Foundation Memorandum – Yerba Buena Island Ramps Improvement Project On East Side of the Island, Oakland, California , 2010):

- Artificial Fill (af)
- Sedimentary Deposits and Alluvium (Qs, Qal, Qb, Qc, Dbr)
- Landslide Deposits (Qls and Qols)
- Bedrock of the Franciscan Formation (JKf)

The Franciscan Formation on YBI and the immediate surrounding area is unusually coherent compared to the formation in other parts of California which is composed of a highly deformed melange of ancient seafloor/trench deposits. The rocks are about 140 million years old and have undergone a long history of deformation beginning with uplift from the deep ocean basin to its present surface exposure. This history included subduction zone tectonics, perhaps several episodes of uplift, folding, and subsidence, and plate-boundary faulting.

There are abundant shear zones with minor displacements on the order of millimeters and centimeters within the Franciscan Formation bedrock. Several larger fracture zones and minor shear zones were encountered in boreholes and foundation excavations within the rocks of Northeast Point. However, there are no known active faults in proximity of Yerba Buena Island and no historic earthquakes associated with fault rupturing on the island. Geophysical investigations north of the island revealed that offshore discontinuities are a result of dredging and filling activities and not faulting. An onshore geophysical study suggested another zone of poor continuity within the Saddle
Area, but detailed analysis of aerial photographs, geophysics, core samples, and downhole video logs do not favor a fault origin (Preliminary Foundation Memorandum – Yerba Buena Island Ramps Improvement Project On East Side of the Island, Oakland, California, 2010).

Bedding within the bedrock of the island generally strikes about N50° to 60°W and dips about 20° to 70° to the northeast. In general, the dips are steepest in the central part of the island and decrease gradually toward Northeast Point where dips of 30° to 45° degrees are most common. Just offshore to the east of the point, bedding dips in the 20° to 45° range.

The rocks of the formation are highly fractured with fracture density generally in the 3 to 4 fractures per foot range, especially near the surface. The density of fracturing generally decreases with depth where most joints are healed with calcite cement. The rocks have abundant intersecting calcite and some quartz veins which represent healed fractures. There are abundant minor intensely fractured zones. Some of these fractures have slickensides and fresh appearing oxidation indicating slight reopening and water percolation at some later time. The orientation of the fractures is distributed throughout all quadrants of the compass without any dominant orientation (Preliminary Foundation Memorandum – Yerba Buena Island Ramps Improvement Project On East Side of the Island, Oakland, California, 2010).

Tiny shears, generally hairline, and minor shear zones are ubiquitous throughout the rocks. These small shears are largely intra-formational and commonly intra-stratal features that formed when the rocks were still soft sediment or only slightly lithified. Displacements on such features are generally small fractions of an inch (on the order of millimeters or centimeters). These features are completely healed and may be tens of millions of year old and of no significance to the modern tectonic regime.

A total of seven soil samples were tested for pH, minimum resistivity, soluble chloride content, and soluble sulfate content (Preliminary Foundation Memorandum – Yerba Buena Island Ramps Improvement Project On East Side of the Island, Oakland, California, 2010). Based on the combined test results and these Caltrans criteria, the on-site soils are not considered to be corrosive to bare metals and concrete in contact with the on-site soils at the proposed foundations locations. However, the subject site is located within in a marine environment defined in the Caltrans Corrosion Guidelines as a site located within 304.8 meters (1,000 feet) of brackish water.

YBI can be divided into four distinct topographic zones (Preliminary Foundation Memorandum – Yerba Buena Island Ramps Improvement Project On East Side of the Island, Oakland, California, 2010):

- the Main Island;
- Northeast Point, which forms the small knoll at the northeast tip of the island;
- the Saddle Area, which forms the lowest part of the natural island between the Main Island and Northeast Point; and
- Treasure Island, the low-elevation man-made island on the north.
The project area is on the northeast flank of the Main Island. The change in topography of the island is extreme, with steep slopes over short distances. The elevations range from 103 meters (337.9 feet) near the center of the island to sea level, and slopes range from 5% to 75%. The USCG land along the southeast shore occupies the flattest area of the island and has been enlarged through the placement of fill material.

YBI is a peak in the Franciscan Formation bedrock surface that underlies the San Francisco Bay. It provides anchor points for the east and west spans of the Bay Bridge. To the east of YBI is a deep erosional trough developed in the Franciscan bedrock surface that extends beneath Alameda Island and the Oakland Airport (City and County of San Francisco 2006). As a result, the top of the bedrock goes from an elevation of about 103 meters (337.9 feet) NGVD on YBI to about -304.8 meters (-1,000 feet) NGVD beneath Oakland Airport.

Areas of artificial fill surrounding YBI, such as TI and part of the USCG station, were created by placing dredged Bay deposits and cut materials from YBI in relatively shallow water areas to create emergent usable pads.

GROUNDWATER

No groundwater was encountered during the subsurface exploration as part of the EMI study. Groundwater was also not found in the existing monitoring well 08-1 at the time of the investigation (Preliminary Foundation Memorandum – Yerba Buena Island Ramps Improvement Project On East Side of the Island, Oakland, California, 2010).

Groundwater was reported in previous studies done in October and November of 1999. Boreholes 99-220 and 99-221 were reported to have groundwater encountered at approximate El. +14 m and El. +10 m, respectively and interpreted the natural groundwater table to be near sea level (Preliminary Foundation Memorandum – Yerba Buena Island Ramps Improvement Project On East Side of the Island, Oakland, California, 2010). However, significantly higher levels have been measured in the sediment cover in the central part of the island, resulting from infiltration of surface run-off from seasonal rains on the higher elevations on YBI. Depth to groundwater, based on previous subsurface investigations conducted under the Installation Restoration program, varies from 2.1 to 18.5 meters (6 to 55 feet). Based on subsurface topography, groundwater flow tends to the northeast and southeast, toward San Francisco Bay.

Groundwater fluctuates due to seasonal influences, in particular from infiltration of surface water run-off and seepage from higher elevations on YBI, and to a lesser degree due to human-made influences. Groundwater levels are likely to continue to fluctuate with the change of season and may receive surface waters from the rock hill located to the west and above the project site.

SLOPE STABILITY

The existing slopes above Macalla Road have gradients varying in ratio from vertical to horizontal (V:H) from 2V:1H to 4V:1H. The slope gradients below Macalla Road are in a vertical to horizontal ratio of 1.5V:1H to 2V:1H range (Preliminary Foundation Memorandum – Yerba Buena Island Ramps Improvement Project On East Side of the Island, Oakland, California, 2010).
According to geotechnical data collected during analysis of the SFOBB ESSSP, several slope stability issues were associated with design of the East Span structures on and in the vicinity of YBI (Caltrans 2001a). These issues included the stability of the east-facing slope of YBI and the potential for slope failures in the vicinity of the west foundation for the SFOBB East Span.

Existing landslides have been identified at various locations on YBI and appear to range from older, probably prehistoric, failures to recent failures. The modes of the slope failures include discontinuity controlled rock failures (due to weakness in the rock), relatively deep-seated rotational landslides, and relatively surficial failures. Rock-wedge failures22 have occurred in the Franciscan Formation slopes surrounding the northeast point and eastern YBI tunnel approach. The sizes of the rock-wedge failures are variable and range up to in excess of 30.5 meters (100 feet) in width and length. Relatively deep-seated rotational landslides are located on the west and northwest of the eastern YBI tunnel approach area but appear to have occurred outside of the project area. The landslides appear to be older and probably failed prehistorically. A number of relatively shallow slope failures are located in unconsolidated sedimentary deposits on the southwest slope of the eastern YBI tunnel approach above the USCG station. These landslides are up to 45.7 (140.1 feet) meters high, 61 meters (200.1 feet) wide, and 6.1 meters (20 feet) thick. Some of the landslides have occurred recently. Additional debris-flow failures and zones of shallow creeping soils have been identified in the Franciscan Formation on the northwest and southeast slopes of the eastern YBI tunnel approach and on the east- and north-facing slopes of the northeast point.

GROUND SHAKING

During a major earthquake on a segment of one of the nearby faults, strong to very strong ground shaking is expected to occur at the project site. Strong shaking during an earthquake can result in ground failure.

There have been no significant earthquakes on YBI. Within the 40 or so years of high-resolution earthquake recording and roughly 1 million years for geology, the present San Francisco Bay domain has been essentially non-seismic and appears to be responding to tectonic stress only by long-term regional tilting down to the south (Preliminary Foundation Memorandum – Yerba Buena Island Ramps Improvement Project On East Side of the Island, Oakland, California, 2010).

FAULT RUPTURE

Review of regional seismotectonics of the San Francisco Bay Area indicates that there are no known active faults in proximity of Yerba Buena Island and no historical earthquakes have been associated with fault rupturing on the island (Preliminary Foundation Memorandum – Yerba Buena Island Ramps Improvement Project On East Side of the Island, Oakland, California, 2010).

Historically, ground surface displacements closely follow the trace of geologically young faults. The site is not within an Earthquake Fault Zone, as defined by the Alquist-Priolo

22 A rock-wedge failure is characterized as a movement or sliding of a rock mass, possibly including overlying soil, along existing discontinuities such as fractures or joints within the rock fabric. Movement or sliding typically occurs along layers or zones of low shear strength materials that have formed within the rock mass. Uplifting, folding, and faulting may cause the rock to develop low shear strength.
Earthquake Fault Zoning Act, and no known active or potentially active faults exist on the site. Therefore, surface fault rupture at the site is unlikely (Draft Preliminary Foundation Report – Yerba Buena Island Interchange Ramp Project, San Francisco Bay Bridge, California, April, 2007; Preliminary Foundation Memorandum – Yerba Buena Island Ramps Improvement Project On East Side of the Island, Oakland, California, 2010). It should be acknowledged, however, that in a seismically active area, the remote possibility exists for future faulting in areas where no faults previously existed (Geotechnical and Geological Evaluation – Yerba Buena Island Viaduct Vulnerability Study, San Francisco, CA. November 10, 2006).

SOIL LIQUEFACTION AND ASSOCIATED HAZARDS

Liquefaction. Soil liquefaction is a phenomenon in which saturated (submerged) cohesionless soils lose their strength due to the build-up of excess pore water pressures, especially during cyclic loadings such as those induced by earthquakes. In the process, the soil acquires mobility sufficient to permit both horizontal and vertical movements, if not confined. Soils most susceptible to liquefaction are loose, clean, uniformly graded, fine-grained sands. Saturated silty sands may also liquefy during strong ground shaking. Liquefaction is generally considered possible when the depth to groundwater is less than about 15.2 meters (50 feet) below the ground surface.

The California State Geological Survey (CGS)\(^2\) prepared a map titled State of California Seismic Hazard Zones, Oakland West Quadrangle Official Map, dated February 14, 2003. This map was prepared in accordance with the Seismic Hazards Mapping Act of 1990. Portions of the YBI Ramps Improvement Project site are located within one of the designated liquefaction hazard zones indicated on the map referenced above.

The subject site is underlain by competent medium dense to very dense silty sand and deep clay alluvium, particularly at depths where groundwater has been observed in few soil borings during wet seasons. Within the project area, the potential for soil liquefaction under these conditions is low and not considered a design issue (Preliminary Foundation Memorandum – Yerba Buena Island Ramps Improvement Project On East Side of the Island, Oakland, California, 2010).

Lateral Spreading. Lateral spreading occurs when a continuous layer of soil liquefies at depth and the soil layers above move toward an unsupported face, such as an open slope cut, or in the direction of a regional slope or gradient.

The magnitude of lateral spreading movements depends on earthquake magnitude, distance between the site and the seismic event, thickness of the liquefied layer, ground slope or ratio of free-face height to distance between the free face and structure, fines content, average particle size of the materials comprising the liquefied layer, and the standard penetration rates of the materials. Due to a low site soil liquefaction potential, the potential for lateral spreading to impact the project corridor is low (Preliminary Foundation Memorandum – Yerba Buena Island Ramps Improvement Project On East Side of the Island, Oakland, California, 2010).

\(^2\) The map was published under the agency’s previous title, the California Division of Mines and Geology (CDMG).
TSUNAMIS

Tsunamis are seismically induced “sea waves” that are generated when large subsea earth or rock masses are displaced during earthquakes or very large landslides. The low-amplitude very-long-period waves travel very quickly and increase significantly in size and height upon entering shallow water. The waves can cause significant damage to coastal areas.

According to the U.S. Geological Survey (USGS), the nearby SFOBB Oakland Touchdown area would be inundated with about 3 to 3.7 meters (9.8 to 12.1 feet) of water if a 6.1-meter (20-foot) wave were to occur at the Golden Gate.24 Given the hypothetical nature of the information, it is likely the inundation level at the Oakland Touchdown area would be lower, at a level closer to 1 meter (3.3 feet). According to the USGS, the northeastern portion of YBI would not be inundated by a 6.1-meter (20 foot) tsunami, although lower-lying fill areas such as the USCG station could be subject to damage.

3.11.3 Environmental Consequences

NO BUILD ALTERNATIVE

Under the No Build Alternative, the existing on- and off-ramps would remain and no new ramps would be built.

ALTERNATIVE 2B AND ALTERNATIVE 4

As described above, there are preexisting slope stability and erosion problems on parts of YBI in the vicinity of the USCG facility. Slope stability issues for the SFOBB ESSSP were evaluated through geologic mapping performed on YBI, marine exploration, and laboratory testing of bedrock. Stability analyses for various potential slope failure modes were performed. The results showed that wedge failures were anticipated on YBI. Rock anchors with or without shotcreted wire mesh and rock bolts were recommended as project design features for the SFOBB ESSSP to prevent wedge failures.

Based on the preliminary foundation memorandum for the YBI project (Preliminary Foundation Memorandum – Yerba Buena Island Ramps Improvement Project On East Side of the Island, Oakland, California , 2010) and draft preliminary foundation report for the YBI project (Draft Preliminary Foundation Report – Yerba Buena Island Interchange Ramp Project, San Francisco Bay Bridge, California, April, 2007), pile driving will be used to construct column and abutment foundations. The viaduct structure widening is recommended to be on 1,830-mm (72-inch) CIDH Type-1 cantilever shafts. All ramp abutments are recommended to be on driven HP 360x132 (HP 14x132) steel H piles. All bents are recommended to be on either HP 360x132 (HP 14x132) or 510-mm-diameter (24-inch) Cast-in-Drilled Hole (CIDH) piles.

24 A 6.1-meter wave approximates the wave that occurred at Crescent City, California as a result of the 1964 Alaskan earthquake.
3.11.4 Avoidance, Minimization, and/or Mitigation Measures

3.11.4.1 Alternatives 2b and 4

The preliminary foundation memorandum (Preliminary Foundation Memorandum – Yerba Buena Island Ramps Improvement Project On East Side of the Island, Oakland, California, 2010) provides site-specific conclusions and recommendations about conditions at the YBI project site. Final determination of specific construction activities and design features planned at the project site would occur once a preferred project alternative is identified. Once an alternative has been selected, Caltrans would retain California-licensed geologists and geotechnical engineers to prepare a draft and final foundation report and to conduct a site-specific geotechnical study for the preferred alternative. This study would identify for the preferred alternative ramp alignment the presence of the hazards or conditions, as appropriate, including fault rupture hazard, soft-ground conditions, slope stability and landslides, strong seismic shaking, liquefaction and lateral spreading, settlement, and corrosive or expansive soil to affect concrete and steel. As part of the study, the geotechnical engineer would review the project plans and specifications to ascertain that geotechnical aspects of the project are addressed appropriately, including identifying corrective actions to avoid the hazard or support the design of engineering control measures. A liquefaction analysis would be conducted if the water table is determined to be above bedrock in loose to medium dense sands and the potential for liquefaction is of concern to the project design. Pile specifications would be developed, based on the results of the site-specific geotechnical study, along the proposed on-ramp and off-ramp alignment. Caltrans would document compliance with necessary avoidance and minimization measures prior to the final project design and final foundation report. The engineers would prepare a summary report that would document the investigation and detail the specific design support alternatives and protection measures that would be implemented.

The ramps project in coordination with Caltrans would ensure that slope stability impacting USCG property, or its 365/24/7 access, will be maintained. The geotechnical engineer would conduct inspections and testing during the following stages of construction:

- Grading operations, including excavations and compacted fill placement,
- Shoring installation,
- Removal or installation of support of buried utilities or structures,
- Pile installation,
- CIDH drilling prior to placement of steel reinforcement,
- Preparation of subgrade prior to placement of any overlying materials,
- Foundation construction,
- Backdrain construction,
- When any unusual subsurface conditions are encountered.

Additional effects of pile-driving vibration are addressed in Section 3.8, “Cultural Resources”; Section 3.15, “Noise”; and Section 3.17, Biological Resources.”
This page intentionally left blank.
Chapter 3.12 – Paleontology

3.12 Paleontology

3.12.1 Regulatory Setting

Paleontology is the study of life in past geologic time based on fossil plants and animals. A number of Federal statutes specifically address paleontological resources, their treatment, and funding for mitigation as a part of Federally authorized or funded projects. (e.g., Antiquities Act of 1906 [16 USC 431-433], Federal-Aid Highway Act of 1956 [23 USC 305]). Under California law, paleontological resources are protected by the California Environmental Quality Act.

3.12.2 Affected Environment

Background research identified that the geologic units within the project area have low to high paleontological sensitivity. A qualified paleontologist conducted a field survey of the project site on Oct. 15, 2010. The paleontologist observed all geologic units identified by Graymer et al. (2000), Radbruch (1957) and CMB et al. (2009) at the surface within the PSA or adjacent to the project footprint. No paleontological resources were observed during the survey. A site-specific paleontological identification report (PIR) has been prepared for the YBI Ramps Improvement Project:

Additional geotechnical information (including paleontological information) has been provided for the entire project area in the following reports:

GEOLOGICAL SETTING

The valley in which San Francisco Bay resides began to form around 2 to 3 million years ago, when the surrounding mountains and hills started to rise on either side. YBI lies within the San Francisco Bay and is thought to have been uplifted by faulting along a branch of the Hayward Fault approximately 1 million years ago (Yerba Buena Island: Habitat Management Plan, 2009). Yerba Buena Island is underlain by Franciscan Formation basement rock consisting of interbedded graywacke sandstone, siltstone and claystone of varying proportions. Bedrock on the island is covered by thin sandy deposits from the Pleistocene Colma formation or derived from the underlying sandstone.
Sand covers most of the bedrock on the island, except along the lower parts of the slopes where waves have cleaned the rocks, and on northeast point. Grading in the late 1930s at the northeast point removed up to 15.24 to 18.29 meters (50 to 60 feet) off the top of the hill exposing slightly weathered bedrock. Artificial fill at the northeastern tip of the island was created in 1943 by placing cut materials from Yerba Buena Island and dredged bay deposits.

Native soils on YBI range from ten to 40 inches in depth and have been highly altered throughout the island by grading, excavating, filling, and otherwise reshaping topography (Preliminary Foundation Memorandum – Yerba Buena Island Ramps Improvement Project On East Side of the Island, Oakland, California, 2010; Yerba Buena Island: Habitat Management Plan, 2009).

JURASSIC/CRETACEOUS - THE FRANCISCAN COMPLEX

The Jurassic/Cretaceous-age Franciscan Formation forms the bedrock of YBI and consists of interbedded sandstone, siltstone and claystone. The Franciscan Complex is a melange of rock units that were variably deformed and metamorphosed in a subduction zone at the western edge of the North American Plate (Hamilton, 1969; Page, 1981; Wakabayashi, 1992). In the project area this unit is predominantly thick-bedded to massive sandstone with only a few thin beds of claystone or siltstone thus identifying it as part of the Alcatraz terrane. The bedding orientation dipping to the northeast is consistent with outcrops and other borings on the island (Preliminary Foundation Memorandum – Yerba Buena Island Ramps Improvement Project On East Side of the Island, Oakland, California, 2010). The rock is commonly soft in the upper 1.52 to 4.57 meters (5 to 15 feet) where it has been altered by weathering.

PLEISTOCENE – COLMA FORMATION

The Colma Formation is late Pleistocene in age and is dated to 0.07-0.13 mya (Clifton et al. 1988; Konigsmark 1998). Sediments of the Colma Formation were deposited in either marine or non-marine environments (Clifton et al. 1987, 1988; Hengesh and Wakabayashi 1994). The Colma Formation may simply represent a facies change of the geological units known as Old Bay Mud or Yerba Buena Formation, which can be found in the presently marine environment underneath the bay bridge. Yate et al. (1990) describes the texture of the Colma Formation as "poorly unconsolidated sands" and muds. On Yerba Buena Island, the Colma Formation underlies Bay Mud and dune sand layers at varying depths and overlies the Franciscan Complex in some areas where it has not eroded away (Elder, 2001). Surface outcrops of the Colma Formation have not been identified on the island. The depth of Colma Formation on the Island is unknown. The geographically closest data concerning the depth of the Colma formation comes from cores taken east of YBI from underneath the Bay bridge. Here, the Colma formation has been identified to exist as close as 3.05 meters (10 feet) below Bay Mud (McGann et al., 2002). Because erosion rates can be higher on land than in a marine setting, it can be expected that the Colma formation exists at a depth of less than 3.05 meters (10 feet). An archaeological excavation identified a stratum that coincides lithologically with the Colma formation on YBI in a nearby location at a depth of 2 meters (6.5 feet) (Morgan et al., 2007). Geotechnical drilling for this project resulted in the identification of a lithological unit that coincides with the Colma Formation at a depth of approximately 2 meters (6.5 feet) (Preliminary Foundation Memorandum – Yerba Buena Island Ramps Improvement Project On East Side of the Island, Oakland, California, 2010).
PLEISTOCENE TO RECENT - COLLUVIUM AND LANDSLIDE DEBRIS

A portion of the project area appears to have experienced shallow landslides. Similar but degraded slide scars can be seen on the slopes around the island indicating that these features have occurred in the past and are a recurring phenomenon. Landslides on YBI consist of two types: thin surficial soil slips and wedge failures involving Franciscan Formation bedrock. These landslides are generally small and occur where slopes have been over-steepened by erosion and excavations. The depth of these slides was on the order of about 0.61 to 1.52 meters (2 to 5 feet).

PLEISTOCENE TO RECENT - DUNE SAND AND ALLUVIUM

Quaternary dune sands typically cover the Colma Formation. Some of these dune sands were carried by the Sacramento River system through the Golden Gate and were deposited in an eolian environment (Konigsmark 1998). The sands, characterized by excessive drainage of water, extended throughout most of western San Francisco before its development (Sullivan and Galehouse 1991), and supported the native grassland and scrub vegetation that once were widely distributed throughout the San Francisco peninsula.

The alluvium is composed primarily of fine-grained sand and silty sand with a few scattered silt and clay lenses. The material is loose to very dense and generally moist except on the upper slopes where it is locally dry to moist. The deposits are thick-bedded to unbedded; where bedding occurs it is generally horizontal to dipping about 20 degrees.

The great thickness and fine-grained nature of the sands along with their poor grading and widespread distribution in pockets across the island suggests these materials originated as wind-blown sands similar to those occurring on much of the San Francisco Peninsula. An archaeological excavation identified a stratum that coincides lithologically with the San Dunes on YBI in a nearby location between 0 to 2 meters (0 to 6.5 feet) (Morgan et al., 2007).

RECENT - ARTIFICIAL FILL

Fill occurs locally across the island as road base, foundation support, and landscaping soil. Fill also occurs as uncompacted cast-over or disturbed surficial slough from the various historical development activities. Along the many roads around the island, cast-over grading material from the road building activities overlies, and is gradational with, native slope-wash sedimentary alluvium. Artificial fill occurs along the island shoreline east and south of the Northeast Point at the Torpedo Building and Torpedo Road, and in the USCG base in the southern Saddle Area. Most of the present USCG Station is entirely on fill first placed around 1934.

The fill material within the Southern Saddle Area is up to about 9.14 meters (30 feet) thick. Exploratory excavation indicated the upper portion of the fill consists of moist, loose to medium dense, fine grained sands with some gravel. The lower portion consists of a coarser fraction composed of sand and gravel material with large angular cobbles and boulders of the Franciscan Formation sandstone and siltstone.
LITERATURE SURVEY AND FOSSIL LOCALITY SEARCH

The results of the literature review and the online fossil locality search using the Berkeley Natural History Museum (BNHM) online database, which includes data from the University of California, Museum of Paleontology (UCMP) found 122 fossil localities within San Francisco County. These include 1 specimen from the Jurassic, 4 from the Cretaceous, 3 from the Miocene, 6 from the Pliocene, 102 from the late Quaternary, 1 from the Holocene and 5 of unknown age.

FRANCISCAN COMPLEX AND ALCATRAZ TERRANE

The Franciscan formation is heavily deformed and metamorphosed in many locations, and whatever fossils existed in these strata have been destroyed. Fossils from the Franciscan formation are therefore generally rare and are all the more important, because they can provide information on the age of a particular sedimentary suite, fixing it in the comparatively vast 150 million years spanned by the formation. Fossils recorded from the Franciscan formation of coastal California include trace fossils (preserved tracks or other signs of the behaviors of animals), mollusks, and marine reptiles.

The Alcatraz Terrane, the portion of the Franciscan complex found within YBI, contains fossils. In fact, the first fossil ever found in what was then called the Franciscan Formation, came from the Alcatraz Terrane (Graymer et al. 2000). This fossil consisted of an Inoceramus ellioti of Cretaceous age. Subsequent fossil discoveries include several other mulloskan fossils of Cretaceous age. While all other terranes of the Franciscan Complex usually carry a moderate paleontological sensitivity, the fossil finds of the Alcatraz Terrane are highly important in contributing to the understanding of the depositional environment thus giving this unit on YBI a high paleontological sensitivity.

COLMA FORMATION

The Colma Formation has produced significant marine and terrestrial fossils in the past. Rodda and Baghai (1993) reported bones and teeth of mammoth and extinct bison from sands and clays unconformably overlying the Franciscan Complex that they refer to as the Colma Formation. Marine facies of the Colma Formation have produced marine megafossils, marine and nonmarine diatoms, and sponge spicules (Schlocker, 1974). Savage (1951) listed other vertebrate fossil localities in the San Francisco Bay region to which he assigned an “undifferentiated Pleistocene” age. Some of these additional vertebrate fossils may also be referable to the Colma Formation. Schlocker (1974) reported fossil plant remains and a peat layer at the top of his Colma Formation possibly representing “an old soil that developed in or near local marshes or lakes.” Within San Francisco this geological unit is the most abundant collection of Pleistocene vertebrates. On YBI, the Colma Formation has not been mapped and is not known to occur in surface deposits but is likely to overlie portions of the Alcatraz Terrane, beneath deposits of dune sand or Old Bay Mud. This geological unit has a high paleontological sensitivity.

COLLUVIUM AND LANDSLIDE DEBRIS

These deposits are generally considered to be too young to contain significant fossils (10,000 years old to recent). They are less likely to contain well-preserved fossils than intact older parent deposits, and are thus considered to have a low paleontological resource potential.
DUNE SAND AND ALLUVIUM

Dune sand and alluvium are intermixed in the project area and are thus considered together. They consist of Holocene to Pleistocene sediments, increasing in age with depth (Graymer 2000). Due to their lack of good preservational abilities, Pleistocene dune sands rarely contain fossils. This geological unit has a low paleontological sensitivity.

ARTIFICIAL FILL

Artificial fill could have fragmentary fossil material transported from other sites. Even if such were the case, this material would be out of stratigraphic context and, therefore, have no scientific value and minimal, if any, educational value due to its lack of context and fragmentary nature. Therefore, artificial fill has a low paleontological sensitivity.

3.12.3 Environmental Consequences

Construction activities can impact paleontologically sensitive geologic units when vehicles or other work equipment impact previously undisturbed sediments by excavating, grading, or crushing bedrock exposed in or underlying a project. This can result in significant impacts to fossils by destroying them or otherwise altering them in such a way that their scientific value is lost.

Paleontological resources include fossil plants and animals and other evidence of past life such as preserved animal tracks and burrows. Determination of the “significance” of a fossil can only occur after a fossil has been found and identified by a qualified paleontologist. Until then, the actual significance is unknown.

The most useful designation for paleontological resources in an EIR document is the “sensitivity” of a particular geologic unit. Sensitivity refers to the likelihood of finding significant fossils within a geologic unit. As identified by the Society of Vertebrate Paleontologists (SVP), the paleontological sensitivity of a geologic unit is determined by its potential to contain paleontological resources (SVP 1995). The paleontological sensitivity of a geologic unit may be classified as:

High Potential. Rock units are considered to have a high potential for containing significant non-renewable fossiliferous resources if vertebrate or significant invertebrate fossils or significant suites of plant fossils have been recovered. These units include, but are not limited to, sedimentary and volcanic formations that contain significant nonrenewable paleontological resources and sedimentary rock units temporally or lithologically suitable for the preservation of fossils. Sensitivity comprises both of the following: (a) the potential for yielding abundant or significant vertebrate fossils or for yielding a few significant fossils that are large or small, vertebrate, invertebrate, or botanical; and, (b) the importance of recovered evidence for new and significant taxonomic, phylogenetic, ecologic, or stratigraphic data. Areas that contain potentially datable organic remains older than recent and areas that may contain new vertebrate deposits, traces, or trackways are also classified as significant.

Undetermined Potential. Specific areas underlain by sedimentary rock units for which little information is available are considered to have undetermined fossiliferous potentials. Field surveys by a qualified vertebrate paleontologist to specifically determine the
potentials of the rock units are required before programs of impact mitigation for such areas may be developed.

Low Potential. Reports in the paleontological literature or field surveys by a qualified vertebrate paleontologist may allow determination that some areas or units have low potentials for yielding significant fossils. Such units will be poorly represented by specimens in institutional collections. These deposits generally will not require protection or salvage operations.

Caltrans uses a similar three-part scale for assessing the sensitivity or potential for a particular rock unit to contain paleontological resources (Caltrans 2007). These two classification systems are compatible. In most cases, decisions about how to manage paleontological resources must be based on this potential because the actual situation can not be known until construction excavation for the project is underway:

High Potential. Rock units which, based on previous studies, contain or are likely to contain significant vertebrate, significant invertebrate, or significant plant fossils. These units include, but are not limited to, sedimentary formations that contain significant nonrenewable paleontological resources anywhere within their geographical extent, and sedimentary rock units temporally or lithologically suitable for the preservation of fossils. These units may also include some volcanic and low-grade metamorphic rock units. Fossiliferous deposits with very limited geographic extent or an uncommon origin (e.g., tar pits and caves) are given special consideration and ranked as highly sensitive. High sensitivity includes the potential for containing: (1) abundant vertebrate fossils; (2) a few significant fossils (large or small vertebrate, invertebrate, or plant fossils) that may provide new and significant taxonomic, phylogenetic, ecologic, and/or stratigraphic data; (3) areas that may contain datable organic remains older than Recent, including Neotoma (sp.) middens; or (4) areas that may contain unique new vertebrate deposits, traces, and/or trackways. Areas with a high potential for containing significant paleontological resources require monitoring and mitigation.

Low Potential. This category includes sedimentary rock units that: 1) are potentially fossiliferous, but have not yielded significant fossils in the past; 2) have not yet yielded fossils, but possess a potential for containing fossil remains; or 3) contain common and/or widespread invertebrate fossils if the taxonomy, phylogeny, and ecology of the species contained in the rock are well understood. Sedimentary rocks expected to contain vertebrate fossils are not placed in this category because vertebrates are generally rare and found in more localized stratum. Rock units designated as low potential generally do not require monitoring and mitigation. However, as excavation for construction gets underway it is possible that new and unanticipated paleontological resources might be encountered. If this occurs, a Contract Change Order (CCO) must be prepared in order to have a qualified Principal Paleontologist evaluate the resource. If the resource is determined to be significant, monitoring and mitigation is required.

No Potential. Rock units of intrusive igneous origin, most extrusive igneous rocks, and moderately to highly metamorphosed rocks are classified as having no potential for containing significant paleontological resources. For projects encountering only these types of rock units, paleontological resources can generally be eliminated as a concern when the PEAR is prepared and no further action taken.

SVP identifies vertebrate fossils, their taphonomic and associated environmental data, and fossiliferous deposits as significant nonrenewable paleontological resources.
Chapter 3.12 – Paleontology

Botanical and invertebrate fossils and assemblages may also be considered significant (SVP 1995). Due to the rarity of fossils and the scientific information they provide, a paleontological resource can be considered significant (Scott and Springer 2003) if the resource does any of the following:

- Provides data on the evolutionary relationships and developmental trends among organisms, both living and extinct;
- Provides data useful in determining the age(s) of the geologic unit or stratigraphy, as well as timing of associated geological events;
- Provides data on a community level;
- Demonstrates unusual or spectacular circumstances in the history of life; and / or
- Is not abundant or found in other geographic locations and may be in danger of being depleted or destroyed by the elements or vandalism.

Significant paleontological resources must be diagnostic to determine if any of the criteria above is applicable. Proper identification of paleontological resources is often difficult in the field; therefore, the recovery, preparation and analysis of paleontological resources is necessary to determine their significance (Scott and Springer 2003). This process must be done by, or under the supervision of, a qualified paleontologist (Conformable Impact Mitigation Guidelines Committee 1995). Microvertebrate fossils are generally not visible to the naked eye; although initial sifting may be conducted in the field, analysis for microinvertebrates requires laboratory processing of bulk samples from paleontologically sensitive geologic units (Conformable Impact Mitigation Guidelines Committee 1995; Scott and Springer 2003).

3.12.3.1 No Build Alternative

Under the No Build Alternative, the existing on- and off-ramps would remain and no new ramps would be built.

3.12.3.2 Alternative 2b and Alternative 4

Ground-disturbing activities associated with the construction of the build alternatives within the PSA could potentially impact paleontological resources. These activities include:

- Grading operations, including excavations and compacted fill placement,
- Shoring installation,
- Removal or installation of support of buried utilities or structures,
- Preparation of subgrade prior to placement of any overlying materials,
- Foundation construction,
- Backdrain construction,
- When any unusual subsurface conditions are encountered.
The paleontologically sensitive Franciscan Complex/Alcatraz Terrane can be found directly underneath the paleontologically sensitive Colma Formation, and both may be affected by construction activities.

3.12.4 Avoidance, Minimization, and/or Mitigation Measures

3.12.4.1 Alternatives 2b and 4

In general, avoidance and minimization are not feasible with regard to addressing significant impacts on paleontological resources. Geologic formations are usually extensive, and project design cannot be adjusted sufficiently to effectively avoid or minimize paleontological impacts. As a result, mitigation is the approach generally taken to address paleontological impacts.

Consistent with Caltrans Standard Environmental Reference, a Paleontological Mitigation Plan (PMP) will be prepared under the direction of a qualified Principal Paleontologist and include: general fieldwork and laboratory methods proposed, curation requirements, report format and content, distribution and proposed staff and their qualifications. The PMP would include mitigation measures adequate for the recovery of samples and would also serve as a basis for obtaining any necessary permits from other agencies.

Caltrans will retain a qualified principal paleontologist (MS or PhD in paleontology or geology familiar with paleontological procedures and techniques). The paleontologist will review the selected alternative alignment and design; determine the potential for discovery of significant fossils; and identify construction level implementation details to implement the PMP. Caltrans will implement the following mitigation measures as applicable to the selected alternative:

a. A qualified paleontologist will be present to consult with grading and excavation contractors at pre-grading meetings.

b. A paleontological monitor, under the direction of the qualified principal paleontologist, will be on site to inspect cuts for fossils at all times during original grading involving sensitive geologic formations.

c. When fossils are discovered, the paleontologist (or paleontological monitor) will recover them. Construction work in these areas will be halted or diverted to allow recovery of fossil remains in a timely manner.

d. Fossil remains collected during the monitoring and salvage portion of the mitigation prepared to the point of identification, sorted, and cataloged.

e. Prepared fossils, along with copies of all pertinent field notes, photos, and maps, will then be deposited in a scientific institution with paleontological collections.

f. A final report will be completed that outlines the results of the mitigation program.

In addition, the following mitigation measures should be implemented during the appropriate periods of project implementation.
ONSITE TRAINING

Onsite training should be conducted for all construction personnel who will work in excavation areas of the project area. Training will discuss the types of paleontological resources that could be encountered on the project and the procedures to be followed if they are discovered.

MONITORING OF CONSTRUCTION ACTIVITIES

Ground disturbing excavations include pile driving and column foundation construction. The minimum excavation depth for these construction activities is approximately 12.2 meters (40 feet). Ground disturbing activities are expected to penetrate paleontologically sensitive units throughout the PSA.

Monitoring of project-related, ground-disturbing activities within the Franciscan Complex and the overlying Colma formation should occur. Specific monitoring locations will depend on project design and be finalized in the PMP, however the following includes the areas and depth parameters where monitoring should occur:

- In areas where the Franciscan Bedrock is mapped and will be disturbed by project activities (as shown on Figure 1, Appendix P).
- If ground disturbances exceed 2 meters (6.5 feet) in depth in the areas mapped as Dune Sand and Alluvium (as shown on Figure 1, Appendix P).
- If ground disturbances exceed 2.6 meters (8.5 feet) where Colluvium and Landslide Debris are mapped (2 meters [6.5 feet] for Dune Sands and 0.6 meters [2 feet] for Landslides) (as shown on Figure 1, Appendix P).
- If ground disturbances exceed 9.1 meters (30 feet) in depth the southern saddle area where Manmade Fill is mapped (as shown on Figure 1, Appendix P).

Monitoring should continue until a paleontologist has determined that the paleontologically sensitive units are not being impacted or do not contain paleontological materials. Periodic sampling of excavated material of the Franciscan Complex and Colma Formation will determine whether they contain sensitive paleontological resources. Monitoring, sampling, data recovery, reporting, and curation activities should take place in accordance with the professional standards determined by the Society of Vertebrate Paleontology (Conformable Impact Mitigation Guidelines Committee 1995).

UNANTICIPATED DISCOVERY

In the event fossils are discovered in an area where monitoring is not being performed, the following guidelines should be followed:

- Stop all construction work within a 15.24 meter (50 foot) radius of the find until a qualified paleontologist can assess the significance of the find. If the discovery is significant or potentially significant, then potential mitigation will include:
 - Data recovery and analysis,
 - Preparation of a data recovery report, and
 - Accessioning recovered fossil material to an accredited paleontological repository, such as the University of California’s Museum of Paleontology.
This page intentionally left blank.
3.13 Hazardous Waste/Materials

A Hazardous Wastes Assessment (HWA) was conducted for the SFOBB ESSSP in 1998 to identify potential contaminant sources adjacent to and within that project’s vicinity that would potentially affect design and construction of the SFOBB East Span (Caltrans 1998a). For purposes of that assessment, potential contaminant sources are facilities that treat, store, or dispose of hazardous waste; use hazardous substances; store petroleum products on site; or otherwise may present a source of contamination to the project. Design and construction of a project may be affected by potential contaminant sources that are located within a project area, as well as potential contaminant migration to the project area from off-site sources.

The 1998 HWA evaluated an area that extends between the YBI tunnel east portal to the end of SFOBB East Span construction in the Oakland Touchdown area. The limits of the area evaluated in the HWA extend 100 meters (328 feet) out from and parallel to the outermost edge of the various SFOBB ESSSP alternatives that were under consideration at the time the HWA was prepared. The area encompassed a large part of the northeastern tip of YBI, which is where the YBI Ramps Improvement Project would be implemented. Therefore, the SFOBB ESSSP HWA is relied upon in this hazardous waste/materials section to help describe existing conditions at the proposed project site and identify potential impacts associated with the project.

In November 2008, the U.S. Navy completed an updated Site Management Plan (SMP) for NSTI (Tetra Tech 2008). This plan provides the annual status of strategies for ongoing basewide environmental programs and updates schedules whereby these strategies are being implemented. This plan provides updated information regarding various hazardous materials sites identified in the 1998 HWA.

A Phase I Initial Site Assessment (ISA) was used to update information on the presence of hazardous waste and materials on YBI (Preliminary Phase I ISA Report, Yerba Buena Island Ramps Improvement Project, Yerba Buena Island, San Francisco County, California. June 8, 2010).

3.13.1 Regulatory Setting

Hazardous materials and hazardous wastes are regulated by many state and Federal laws. These include not only specific statutes governing hazardous waste, but also a variety of laws regulating air and water quality, human health, and land use.

The primary Federal laws regulating hazardous wastes/materials are the Resource Conservation and Recovery Act of 1976 (RCRA) and the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). The purpose of CERCLA, often referred to as Superfund, is to clean up contaminated sites so that public health and welfare are not compromised. RCRA provides for “cradle to grave” regulation of hazardous wastes. Other Federal laws include:

- Community Environmental Response Facilitation Act (CERFA) of 1992
- CWA
- CAA
- Safe Drinking Water Act
Chapter 3.13 – Hazardous Waste/Materials

- Occupational Safety and Health Act (OSHA)
- Atomic Energy Act
- Toxic Substances Control Act (TSCA)
- Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA)

In addition to the acts listed above, EO 12088, Federal Compliance with Pollution Control, mandates that necessary actions be taken to prevent and control environmental pollution when Federal activities or Federal facilities are involved.

Hazardous waste in California is regulated primarily under the authority of RCRA and the California Health and Safety Code. Other California laws that affect hazardous waste are specific to handling, storage, transportation, disposal, treatment, reduction, cleanup, and emergency planning.

Worker health and safety, and public safety are key issues when dealing with hazardous materials that may affect human health and the environment. Proper disposal of hazardous material is vital if it is disturbed during project construction.

The Residential Lead-Based Paint Hazard Reduction Act of 1992, Title X of the Housing and Community Development Act (Public Law No. 102-550), applies at NSTI. As part of Title X, Congress amended the 1971 Lead-Based Paint Poisoning Prevention Act (U.S.C. Sections 4801–4846) and added a new Title IV to TSCA. Under this law, certain Federally owned housing constructed before 1960 must be inspected for lead-based paint (LBP), and LBP hazards must be abated. In addition, Federally owned housing constructed after 1960 and before 1978 must be inspected for LBP hazards and the results disclosed to prospective property recipients (42 U.S.C. Section 4822).

3.13.2 Methodology

This section has been prepared on the basis of several reports prepared for the project site. The HWA was conducted in 1998 (Caltrans 1998a) to identify potential contaminant sources that may exist in the project area. The assessment consisted of various tasks, including an existing data review, regulatory database search, historical information update, and a site reconnaissance. In 2008, the U.S. Navy prepared the final site management plan for the naval station at Treasure Island, including the installation on YBI, which addressed remediation and closure timeframes for contaminated sites at both locations. This management plan was finalized and approved by the U.S. Naval Facilities Engineering Command as part of the base closure process. More recently, a Phase I ISA was prepared (Preliminary Phase I ISA Report, Yerba Buena Island Ramps Improvement Project, Yerba Buena Island, San Francisco County, California. June 8, 2010) that reviewed more recent documents and updated the findings of contamination to include additional contaminants and sites that have been remediated. No direct consultation has occurred with state or Federal agencies.

3.13.3 Study Limitations

A definitive evaluation regarding the actual presence or absence of contamination was not addressed in the HWA. The intent of the assessment was to identify reported and obvious potential hazardous conditions that would need to be addressed or considered before proceeding with project construction. The assessment did not guarantee, imply,
or assert that all potential contaminant sources were located, due to the possible presence of an unlisted or unidentified contaminant occurrence.

3.13.4 Affected Environment

The following studies have been used in preparing this analysis of hazardous waste and materials effects for the YBI Ramps Improvement Project:

Land use within YBI has historically been dominated by various branches of the U.S. military. YBI was initially privately owned from about 1835 to 1867, when the U.S. Army established a post on the island, forcing the end of private ownership. A lighthouse was constructed in 1875 by the Department of Treasury, and it was operated until 1939 at which point the Service was transferred into the USCG. The U.S. Navy became the primary occupant in 1898 and established a recruit training station and other uses such as artillery storage, prison, machine shop, paint shop, hospital, and mess halls. The U.S. Navy also operated fueling docks, dryland fueling stations, and aboveground storage tanks for the storage of gasoline, heating oil, and kerosene. After World War II, the primary uses of YBI by the U.S. Navy and U.S. Army were as barracks and offices.

Construction of the SFOBB began in 1933 and was completed in 1936. Waste rock material from tunneling through a portion of YBI was used as fill material to increase the size of the island in the vicinity currently occupied by the USCG.

Current land uses on YBI include housing, open space, and USCG Sector San Francisco; the U.S. Navy currently does not house any personnel on the island. The USCG facility occupies 19.39 hectares (47.9 acres) of land on YBI. Facilities associated with the operations of the facility include maintenance, barracks, mess hall, offices, buoy repair area, residences, wharves and piers, and recreational facilities.

Several buildings on the island were previously being used by Caltrans. Buildings 15 and 29 were being used as a substation/air compressor house and as a tow truck housing facility, respectively; both buildings have been demolished and replaced.

3.13.5 Environmental Consequences

3.13.5.1 U.S. Navy Investigations

The U.S. Navy occupied a significant portion of the project area on YBI. The U.S. Navy, as part of an Installation Restoration Program (IRP) for NSTI/YBI, established a Federal Facility Site Remediation Agreement among the U.S. Navy, the California Department of Toxic Substances Control (DTSC) and RWQCB. Under this agreement, the U.S. Navy agreed to undertake and report on specified tasks associated with environmental assessment and response actions at 25 Installation Restoration (IR) sites under the IRP.
in accordance with CERCLA. Those actions have been ongoing since the early 1990s and are reported on in the 1998 HWA and the 2008 Final Site Management Plan, as well as summarized in the 2010 Phase I ISA for the YBI project. This section briefly summarizes relevant details of those investigations and their resolution or ongoing investigation. The U.S. Navy is responsible for the any hazardous waste cleanup on land that was part of their Naval Station as a requirement under the land transfer agreement with TIDA.

The Navy transferred ownership of Sites 8, 11, and 29 to Caltrans through FHWA. The data review conducted as part of the HWA identified the following potential contaminant sources on the YBI Ramps Improvement Project site:

- IR Site 8 – the Former U.S. Army Point Sludge Disposal Area (pesticides, heavy metals including beryllium and lead);
- IR Site 11 – the Former Landfill (acetone, benzene, polynuclear aromatic hydrocarbons, phenols, pesticides, diesel);
- IR Site 29 – East Side Contaminated Bridge Soils (lead, petroleum hydrocarbons);
- Site 270 – Leaking Underground Storage Tank (LUST) site associated with Building 270 (diesel fuel).

The identified sites are also shown in Figure 3.13-1. Delineation of the extent of each of the IR sites has been completed. IR Site 270 has received a No Further Action (closure) letter from the Regional Water Quality Control Board and the tank has been removed. IR sites 8, 11, and 29 have been conveyed to Caltrans, but as of June 2010 the Navy is preparing a Remedial Investigation (RI) for them (Preliminary Phase I ISA Report – Yerba Buena Island Ramps Improvement Project, Yerba Buena Island, San Francisco County, California. June 8, 2010) while also entering into discussions with Caltrans regarding site closeout.

Investigations at the site were also conducted under the Residential Lead-Based Paint Program and the Asbestos-Containing Material Program, as summarized below. Appendix O provides a detailed narrative of all investigations on the YBI project site as discussed in the 1998 HWA, the 2008 SMP, and the 2010 Phase I ISA.

IR Site 8 – Former U.S. Army Point Sludge Disposal Area

IR Site 8 is located immediately north of the SFOBB East Span on relatively flat terrain with gentle downward slopes on the western edge and much steeper slopes on the northern and eastern edges. The site was formerly the site of personnel quarters; however, only the concrete foundations of these structures remain. The site was used as a disposal area for sewage sludge from the wastewater treatment facility on TI between 1968 and 1976 after the personnel quarters were demolished.

Waste sludge was transported from the treatment facility and spread on the ground between the foundations to dewater the sludge. The final disposition of the sludge is not known; the dried sludge may have been allowed to dewater and decay in place or may have been removed. Due to the shallow depth of bedrock at this site, on-site burial is reportedly unlikely.
Figure 3.13-1
Potential Contamination Sources

Source: TerraServer 2004: County of San Francisco

Yerba Buena Island Ramps EIR/EIS
P:\2008\08080090 Yerba Buena Island Interchange\5.0 Graphics (Non-CAD)\5.7 Report Graphics\Figures\Figure 3.13-1 contamination sources.ai (dready) 9/15/09
Analytical soil testing, conducted for a 1990 site investigation (SI), indicated detectable concentrations of the organochlorine pesticides DOD, DOE, and DDT in concentrations ranging from 54 to 1,100 micrograms per kilogram (μg/kg).

Remedial investigations (RIs) in 1992 and 1995 indicated that semivolatile organic compounds (SVOCs) were detected in two surface soil samples collected at opposite ends of the sludge disposal area. Metals were detected in all soil samples. Concentrations of aluminum, barium, beryllium, cobalt, copper, lead, manganese, mercury, nickel, silver, and vanadium were detected above YBI background concentrations. In 1997, a draft RI report included results of additional investigations conducted during Phase I and Phase IIB of the RIs completed in 1992 and 1995, along with a human health risk assessment. The 1997 RI report noted potential beryllium and lead contamination at the site; however, concentrations of beryllium and lead were within the target risk range or below the point of departure. (Under EPA programs such as CERCLA and RCRA that address potential health risk from exposure to hazardous waste sites, an acceptable target risk range of 1 chance in 1 million to 100 chances in 1 million is used for determining acceptability of potential cancer risk. The point of departure is the contaminant level used to determine whether a potential health or environmental problem exists.) Pesticides/PCBs and SVOCs were determined to not be contaminants of concern.

In June 2001, independent of the U.S. Navy’s IR Program, Caltrans collected soil samples at 13 discrete surface soil locations on YBI as part of the SFOBB ESSSP (Tetra Tech 2008). Results of Caltrans’ soil sampling conducted within the Site 8 boundaries indicated that concentrations of lead ranged from less than 50 to 170 milligrams per kilogram (mg/kg). Based on the Caltrans sampling report, the U.S. Navy concluded that existing data were sufficient to characterize the lateral and vertical distribution of lead in soils at Site 8.

The surface soil on the site may be contaminated by lead and other metals as a result of vehicle emissions and lead-based paint from bridge and ramp painting and maintenance, or these contaminants may have been present in the soil when the landfill was created. Two boundary changes have occurred at Site 8; the first eliminated the northwest corner of Site 8 to allow for transfer of the property as part of the YBI parcel, independent of regulatory closure of Site 8. The second boundary change, made in June 2005, eliminated overlap between CERCLA Site 8 and Site 29. Field inspections of Site 8 were performed in April and October of 2006 to verify removal of contaminated soil by Caltrans and to document ongoing construction activities. The U.S. Navy is finalizing an Interim RI Report for Sites 8 and 29, and is discussing site closeout with Caltrans (Final Site Management Plan: Naval Station Treasure Island. November, 2008).

IR 11 SITE – FORMER LANDFILL

IR Site 11 is located immediately south of the SFOBB East Span. The site reportedly was used as a landfill by the U.S. Army and U.S. Navy from some time prior to 1935 to an undetermined date. The site, formerly a marsh, is identifiable as a dump on a 1935 topographic map of YBI.

Analytical results from the testing of the soil and fill material within the landfill indicated that acetone and benzene were the only VOCs detected. SVOCs consisting mainly of PAHs and phenols were detected, with the majority of the SVOCs detected at concentrations less than 1 mg/kg. Thirteen different types of pesticides were detected in
the soil samples, but PCBs were not detected. TPH detected in the soil indicated diesel and weathered diesel were present in the soil/fill material. Metals detected above ambient concentrations included aluminum, barium, beryllium, calcium, cobalt, copper, lead, manganese, silver, thallium, vanadium, and zinc.

Analytical results from the testing of the groundwater indicated very low concentrations of VOCs, specifically benzene, carbon disulfide, and acetone; SVOCs; only one pesticide after several sampling events; 18 metals; and TPH as diesel and weathered diesel. Copper, lead, silver, and zinc may reach the shoreline at concentrations exceeding ambient water quality concentrations (AWQC). Concentrations of TPH/diesel in the groundwater exceed ecological TPH screening levels for TPH.

Miscellaneous household waste was noted in test pits installed during a Phase I RI. During evaluation of the extent of the landfill, construction debris was found in numerous trenches and test pits completed in 2002. Petroleum-contaminated sand was found in the landfill underlying a burn layer. Groundwater contamination was detected at the site and appeared to originate from the buried materials.

Additional sources of contamination at the landfill include five underground storage tanks (USTs) (270, and 204A through 204D) and a fuel pipeline. All four USTs have been removed. RWQCB concurred that no further action (NFA) was required with respect to the USTs in a letter dated June 17, 2004. The USCG Petroleum Program Site extends into the Site 11 boundary, and the USTs and fuel lines formerly located within the USCG site may be sources of contamination. Further investigations at the USCG site are pending.

The surface soil on the site may be contaminated by lead and other metals as a result of vehicle emissions and bridge and ramp painting and maintenance, or these contaminants may have been present in the soil when the landfill was created. As of June 2010, the U.S. Navy is preparing an RI report for Site 11 and is discussing site closeout with Caltrans.

IR SITE 29 – EAST SIDE CONTAMINATED BRIDGE SOILS

Historical maintenance and repair operations of the SFOBB east of the YBI tunnel’s east entrance were identified as a potential source of contaminants to near surface soil. The soil beneath and surrounding the existing YBI on- and off-ramps and underneath the bridge was identified as contaminated by lead and other metals as a result of vehicle emissions, as well as bridge maintenance and painting operations.

Several shallow soil investigations were conducted by both the U.S. Navy and Caltrans. A U.S. Navy investigation identified elevated concentrations of lead as well as concentrations of barium, beryllium, copper, mercury, and nickel above YBI background concentrations. A surface soil and shallow subsurface soil sampling program conducted in October 1996 on behalf of Caltrans indicated elevated concentrations of lead in the surface soils above background conditions at almost all column sampling locations.

Petroleum-related investigations were performed within Site 29 boundaries, former fuel pipelines on the YF3 and USCG sites, and removed UST 270, formerly within the Site 29 boundaries. The U.S. Navy received an NFA closure letter from RWQCB for UST 270 in 2004.
Chapter 3.13 – Hazardous Waste/Materials

An SI was performed by Caltrans in 2001 to chemically characterize soil and groundwater for potential contaminants that may be encountered during construction activities. Field inspections of Site 29 were performed in April and October of 2006 to verify removal of contaminated soil by Caltrans and to document ongoing construction activities. As of June 2010, the U.S. Navy is finalizing the Interim RI report for Sites 8 and 29, and is discussing site closeout with Caltrans.

RESIDENTIAL LEAD-BASED PAINT PROGRAM

All known lead-based paint has been removed from buildings constructed before 1960, and all buildings constructed in 1978 or before have been assessed for the presence of lead-based paint. A biennial monitoring and sampling program is performed by the U.S. Navy.

LBP may be present on the interior and exterior surfaces of nonresidential buildings at NSTI because many were constructed before 1978. Public Works Center Norfolk began inspecting the family housing at NSTI for LBP in 1995. In October 1999, Engineering Field Activity West documented a completed LBP assessment and a “mini” risk assessment of facilities on NSTI. Facilities were selected under the implementing regulations for Title X of the Housing and Community Development Act. Pursuant to Title X, not all facilities require an inspection for LBP.

To date, LBP at all pre-1978 residential housing on TI and YBI has been assessed. LBP at all pre-1960 YBI residential housing has been abated, and hazard reduction measures were put in place to protect the residents. To ensure all hazard reduction measures remain protective, a reevaluation survey is conducted every 2 years per the recommended U.S. Department of Housing and Urban Development (HUD) schedule. LBP in residential housing on YBI was reevaluated between April and May 2004 and again between May and July 2006. The next LBP reevaluation of the residential housing on YBI is scheduled for within 1 year of transfer. Residential housing on TI is to be reevaluated within 1 year of transfer. LBP maintenance was conducted during the winter of 2006 at Quarters 2 through 7, 240, 83, and 61.

Soil samples were also collected to evaluate the status of drip line and midyard areas at representative TI and YBI residential buildings. Based on the analytical results, soil abatement of the planter boxes and drip line areas was conducted in accordance with Title X, HUD, and U.S. Navy Policy at Quarters 1/Nimitz House through 7, 10, and Buildings 62, 83, 205, and 230 on YBI. HUD guidelines state only bare soils may pose a hazard, and soils covered by grass, concrete, or asphalt are protective. Any future disturbance of the grass, concrete, or asphalt at these buildings would require further soil evaluation for lead. The U.S. Navy would either abate or require the transferee to abate any LBP hazards found in existing residential facilities within 1 year of being transferred. If an existing residential facility is scheduled for demolition or nonresidential use, it would not be inspected or abated of LBP.

ASBESTOS-CONTAINING MATERIAL PROGRAM

All known damaged, friable, or accessible asbestos-containing material (ACM) has been removed within most areas of TI and YBI, including the area of Quarters 10/Building 267 (these two buildings would be relocated during implementation of Alternative 2b). It is not anticipated that remaining ACM would pose a threat to human health, however the
measures listed below in Section 3.13.8 would be applied to ensure safety if the buildings were moved.

Beginning in 1995, several surveys to identify the presence of ACM have been completed at NSTI. Remedies for ACM were implemented.

Friable, accessible ACM identified during surveys was remediated beginning in 1998. All known damaged, friable, or accessible ACM has been abated within most areas of TI and YBI, including the area of Quarters 10/Building 267. It is not anticipated that remaining ACM would pose a threat to human health, however the measures listed below in Section 3.13.8 would be applied to ensure safety if the buildings were moved.

Notices and restrictions related to asbestos were identified in the U.S. Navy’s Finding of Suitability to Transfer (FOST) for both TI and YBI dated February 15, 2006, and March 23, 2006, respectively. A biennial monitoring and sampling program is performed by the U.S. Navy. A reevaluation of ACM was scheduled to begin in 2008; no update has been provided as of June 2010.

3.13.5.2 Regulatory Database Search

Database search results conducted for the YBI area identified and plotted one National Priorities List (NPL) site and two LUST sites within the search criteria. These sites are shown on an Environmental Risk Information & Imaging Services (ERIIS) database search map included as Figure 3.13-2. The database describes the single NPL site as Treasure Island Naval Station - Hunters Point Annex. In a conversation with Mr. James Sullivan, Base Reuse and Closure Environmental Coordinator for NSTI, he stated that TI is not an NPL site; rather, the Hunters Point Annex is on the NPL list. The Naval Hunters Point Annex is located in the vicinity of Candlestick Park, approximately 11.3 kilometers (7 miles) southwest of YBI across open water. Therefore, the plotted location on the ERIIS database search map should be considered a misplot. Due to the distance from the project area, the Hunters Point Annex NPL site should not have an impact on activities associated with the YBI Ramps Improvement Project.

One LUST site (Map ID site 2527), the Auto Hobby Shop/Building 225, is located on the western edge of TI. This site is located approximately 1.6 kilometers (1 mile) northwest of the project area. This site would not conflict with the project area due to its distance from it.

The other LUST site (Map ID site 4693) is located on USCG property. The database did not provide sufficient information as to the exact name or location for this site. Information provided by the RWQCB indicates that this site is listed as Building 40 of the USCG station. The two different case numbers (Case No. 10647 and 38-0794) provided in the ERIIS database report both reference the same site. Additional information regarding the investigatory status of this site is not available.

Unplottable “orphan” sites identified in the database search were reviewed individually as to general location and the type of environmental database listing. All sites in Alameda County and San Francisco County were eliminated because landfall from the island is over 6.4 kilometers (4 miles) away in any direction. Unplottable sites identified on TI were also eliminated due to their location and distance from the project area. The unplottable sites identified on the USCG base are either RCRA generators, with no
Figure 3.13-2
ERIIS Site Information Map
impact, or possible impacts associated with the unplottable sites that have been identified through other tasks, as in Building 270.

A Preliminary Phase I ISA Report for the YBI Ramps Improvement Project was used to update previous information. Findings of the report are as follows:

- Parts of three IR sites - IR 8 (a sludge spreading area), IR 11 (a landfill), and IR 29 (an area of known soil contamination possibly associated with former military operations or highway operations) - are within the project site. IR 270 (a closed LUST) is also within the project area. Soil and groundwater contamination by petroleum hydrocarbons, heavy metals, VOCs and SVOCs, and pesticides have been found on the IR sites. The extent of contamination has been delineated but RIs for IR 8, 11, and 29 are pending as of June 2010.

- Several other military sites are located on the western side of YBI or on TI. The potential for impact to the project site from these other sites appears to be low due to distance.

- The presence of documented soil and groundwater contamination at three IR sites within the project area constitutes a Recognized Environmental Condition pertaining to the project site.

- IR Site 270, which received a No Further Action letter in 2004, constitutes a Historical Recognized Environmental Condition. No immediate environmental concerns are evident in regard to this former LUST.

3.13.6 Temporary Impacts

The following discussion summarizes potential construction-related impacts associated with the project alternatives. Because the action alternatives would be implemented on sites that are located in the same general area, there is little variation in the types of impacts associated with them.

3.13.6.1 No Build Alternative

There would be no impacts associated with the No Build Alternative because this alternative would not result in the disturbance of sites potentially containing hazardous wastes.

3.13.6.2 Alternative 2b

Construction activities associated with this alternative could expose construction workers to the contaminated soil of IR Site 29. The project area is downgradient from known sites; therefore, there is a medium to high risk that hydrocarbons would be encountered during construction. Surface and shallow subsurface soil sampling and testing determined that the soil adjacent to the SFOBB bents and columns has been impacted by metals associated with past bridge maintenance and operations, and also by petroleum hydrocarbons at select locations. This alternative would also result in construction workers encountering IR Site 8, the former U.S. Army Point Sludge Disposal Area located in the vicinity of the Alternative 2b ramps alignment. Surface and shallow subsurface soil sampling and testing determined that the former sludge drying site is impacted by the presence of materials, especially beryllium and lead as chemicals.
of concern, and the presence of pesticides. Worker and public health issues during construction are a potential concern. Exposure pathways due to heavy construction traffic under dry, dusty conditions would include direct contact through ingestion, dermal contact, or inhalation.

Implementation of this alternative would involve relocation of Quarters 10/Building 267, both historic structures, to construct the alignment of the proposed ramps. Given the age of these buildings, it is expected that relocation could expose workers to hazardous materials such as ACM and LBP, if this procedure would disturb these materials. However, as of 2002, all known damaged, friable, or accessible ACM has been abated in these buildings; remaining ACM does not pose a threat to human health (Final Site Management Plan: Naval Station Treasure Island. November, 2008). The measures listed below in Section 3.13.8 would be applied to ensure safety from any ACM that may be discovered if the buildings were moved.

3.13.6.3 Alternative 4

Construction activities associated with Alternative 4 would result in the impacts identified for Alternative 2b described above (except for impacts resulting from relocation of Quarters 10/Building 267), given that the ramps alignment proposed for Alternative 4 includes a large part of the area that would be covered by the Alternative 2b alignment. However, given that Alternative 4 would cover additional parts of YBI, exposure by workers to hazardous wastes located elsewhere in the project area could occur if Alternative 4 is implemented.

The SFOBB ESSSP HWA identified a groundwater petroleum plume associated with a LUST at Building 270. According to that report, the extent of the plume was undefined and additional sampling and testing were proposed. Three permanent groundwater monitoring wells installed at this location indicated that the groundwater table ranges from 1.5 to 1.8 meters (4.9 to 5.9 feet) above mean sea level. Analytical results indicated elevated concentrations of TPH/diesel (160,000 micrograms per liter [μg/L]) and TPH/gasoline (7,300 μg/L) in the upgradient monitoring well. IR Site 11, the former landfill, was identified as a potential source of these contaminants in the upgradient monitoring well. Construction of foundations in the TPH plume may also cause migration of contamination to other groundwater zones.

Construction impacts may also exist from the former fire station/gas station site at Building 204/208. This site appeared to be located upgradient from Building 270 and may be a possible source of groundwater contamination identified in the groundwater monitoring well immediately upgradient of Building 270. This alternative may result in impacts on workers if construction activity were to take place in this area.

3.13.7 Permanent Impacts

Impacts related to the use and transport of hazardous materials or the disturbance of hazardous waste sites would be limited to the construction period. Although a release of hazardous materials during the construction period may potentially have long-lasting effects, construction phase BMPs and mitigation measures would be implemented to address this potential issue. Therefore, no permanent impacts are anticipated for the No Build Alternative, Alternative 2b, or Alternative 4.
Notices and restrictions related to asbestos were identified in the U.S. Navy’s Finding of Suitability to Transfer (FOST) for YBI dated March 23, 2006. Restrictions relating to operations at or use of Quarters 10/Building 267 would be held in compliance.

3.13.8 Avoidance, Minimization, and/or Mitigation Measures

3.13.8.1 Alternatives 2b and 4

Final determination of specific construction activities planned on or near a potential contaminant source would occur for the preferred project alternative. Using the Preliminary Phase 1 ISA Report as a starting point, additional site-specific delineation of any remaining areas of unabated contamination would be performed to finalize details of construction, to detail procedures for handling of contaminated media, and to ensure worker safety during construction. This would include performance of a Phase 1 Hazardous Materials Site Assessment by qualified professional (e.g., a California Registered Environmental Assessor) in conformance with American Society for Testing and Materials standards. If the Phase I Environmental Site Assessment indicates that a release of hazardous materials could have affected soil or groundwater quality at the site, then the SFCTA would retain a qualified environmental professional to conduct a Phase II Environmental Site Assessment to determine the presence and extent of contamination at the site, in conformance with state and local guidelines and regulations. If the results of a Phase II assessment indicated the presence of hazardous materials, alteration of the project’s design or a limited site remediation would be included in project specifications.

The SFCTA would require that its contractors comply with applicable requirements for worker safety during construction activities in the presence of contaminated soils.

Compliance with required laws and regulations through the project design and construction specifications would ensure that potential impacts associated with contaminated soils are minimized or avoided if possible.

As required by the Navy’s Finding of Suitability for Transfer (FOST) (2006), the proposed deed for transfer of the YBI transfer parcel will contain applicable CERCLA 120(h) notices, covenants, and warranties, as well as the additional notifications and restrictions indicated in the FOST. These are notices of the presence of hazardous substances, asbestos-containing material in buildings and structures (for which cleanup has been completed, as described below), lead-based paint adjacent to Quarters 1 through 7 and 10 (reevaluated every 2 years), residual petroleum contamination at UST 66 (not part of the project site), ongoing petroleum corrective actions at YF3 (not part of the project site), and PCBs in Buildings 118 and 200 (not part of the project site).

The FOST includes the following restrictions:

- prohibiting installation of groundwater production wells at YF3 for use without written approval of DTSC and the Water Board until regulatory closure has been granted and until the restriction is no longer necessary;

- managing ACM in accordance with all applicable local, state and federal laws and other requirements relating to asbestos or ACM; restrictions applicable to Building 267 and Quarters 10; removal of ACM in accordance with all applicable
local, state, and federal laws and other requirements relating to asbestos or ACM if discovered during use, occupancy, renovation, or demolition;

- occupancy restrictions on two vault rooms with elevated levels of PCBs (not part of the project site) which would require compliance with all regulations regarding PCBs as appropriate. If the Navy determines additional remedial activities are appropriate, these activities will be performed before transfer.

Regardless of which alternative is selected, the responsibility and cost of the remediation would be incurred by the responsible party as determined by hazardous waste laws.

3.13.8.2 Additional Measures for Alternative 2b

Building Relocations. All known instances of LBP and ACM at YBI have been abated and removed (U.S. Navy 2008). The measures listed below would be applied to ensure safety from any ACM that may be discovered if the buildings were moved. Contract specifications for relocation of Quarters 10/Building 267 would include procedures for the abatement, handling, and disposal of LBP and ACM (if this proves necessary during building relocation activity), as well as the health and safety of workers and nearby residents (including USCG and U.S. Navy personnel). Prior to building relocation, ACM and LBP surveys would be performed to identify these materials. All procedures and permitting requirements would be consistent with Caltrans’ guidelines and all Federal, state, and local laws and regulations and coordinated with responsible parties and regulatory agencies. Notices and restrictions related to asbestos were identified in the U.S. Navy’s Finding of Suitability to Transfer (FOST) for YBI dated March 23, 2006, and these restrictions would be complied with during construction and operations.

If surveys identify additional sources of LBP and/or ACM, workers performing activities on-site that may involve contact with contaminated soil, LBP, ACM, or groundwater would be required to have appropriate health and safety training in accordance with Federal and state regulations. To reduce the risk of exposure, a Worker Health and Safety Plan would be prepared and implemented during construction by a Certified Industrial Hygienist (CIH). The Health and Safety Plan would meet requirements of the Bay Area Air Quality Management District or other agencies as determined necessary for asbestos abatement and would include provisions for:

- Conducting preliminary site investigations and analysis of potential job hazards, including identification and removal of the potential UST;
- Personal protective equipment;
- Safe work practices;
- Site control;
- Exposure monitoring;
- Decontamination procedures; and
- Emergency response actions.

The plan would address reduction of potential worker, U.S. Navy and USCG personnel, and public exposure to airborne contaminants by incorporating dust suppression techniques in construction procedures. Procedures would be in place to handle
contaminated soils and groundwater, and if encountered, would follow applicable regulations.
Chapter 3.14 – Air Quality

3.14 Air Quality

This section presents the regulatory framework for air quality management on a national, state, and regional level. A description of the existing air quality conditions in the YBI Ramps Improvement Project area is also provided. The air quality impact determinations from the Air Quality Analysis, Yerba Buena Island Ramps Improvement Project will also be summarized. See the Air Quality Analysis, Yerba Buena Island Ramps Improvement Project in Appendix L for a detailed description of the methodology and analysis of the proposed project’s impacts to air quality.

3.14.1 Regulatory Setting

The Federal Clean Air Act (FCAA) as amended in 1990 is the federal law that governs air quality. The California Clean Air Act of 1988 is its companion state law. These laws, and related regulations by the U.S. Environmental Protection Agency (U.S. EPA) and California Air Resources Board (ARB), set standards for the quantity of pollutants that can be in the air. At the federal level, these standards are called National Ambient Air Quality Standards (NAAQS). NAAQS and State ambient air quality standards have been established for six transportation-related criteria pollutants that have been linked to potential health concerns. The criteria pollutants are: carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3), particulate matter (PM, broken down for regulatory purposes into particles of 10 micrometers or smaller – PM10 and particles of 2.5 micrometers and smaller - PM2.5), lead (Pb), and sulfur dioxide (SO2). In addition, State standards exist for visibility reducing particles, sulfates, hydrogen sulfide (H2S), and vinyl chloride. The NAAQS and State standards are set at a level that protects public health with a margin of safety, and are subject to periodic review and revision. Both State and Federal regulatory schemes also cover toxic air contaminants (air toxics). Some criteria pollutants are also air toxics or may include certain air toxics within their general definition.

Table 3.14-1, presents the NAAQS and California Ambient Air Quality Standards (CAAQS) along with the health and atmospheric effects, and typical sources associated with each pollutant.

<p>| Pollutant | Averaging Time | State Standard | National Standard | Health and | Typical Sources | Attainment Statusg |
|-----------|----------------|----------------|-------------------| Atmospheric Effects | | |
| Ozone a | 1 hour | 0.09 ppm | 0.070 ppm | High concentrations irritate lungs. Long-term exposure may cause lung tissue damage. Long-term exposure damages plant materials and reduces crop productivity. Precursor organic compounds include a number of known toxic air contaminants. Biogenic VOC may also contribute. | Low-altitude ozone is almost entirely formed from reactive organic gases/volatile organic compounds (ROG or VOC) and nitrogen oxides (NOx) in the presence of sunlight and heat. Major sources include motor vehicles and other mobile sources, solvent evaporation, and industrial and other combustion processes. | State: N Federal: - |
| | 8 hours | 0.09 ppm | 0.075 ppm | | | State: N Federal: N |</p>
<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>State Standard</th>
<th>National Standard</th>
<th>Health and Atmospheric Effects</th>
<th>Typical Sources</th>
<th>Attainment Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Monoxide (CO)</td>
<td>1 hour</td>
<td>20 ppm</td>
<td>35 ppm</td>
<td>CO interferes with the transfer of oxygen to the blood and deprives sensitive tissues of oxygen. CO also is a minor precursor for photochemical ozone.</td>
<td>Combustion sources, especially gasoline-powered engines and motor vehicles. CO is the traditional signature pollutant for on-road mobile sources at the local and neighborhood scale.</td>
<td>State: A Federal: A/M</td>
</tr>
<tr>
<td></td>
<td>8 hours (Lake Tahoe)</td>
<td>9.0 ppm c</td>
<td>9 ppm</td>
<td></td>
<td></td>
<td>State: A Federal: A/M</td>
</tr>
<tr>
<td></td>
<td>8 hours</td>
<td>6 ppm</td>
<td></td>
<td></td>
<td></td>
<td>State: A Federal: A/M</td>
</tr>
<tr>
<td>Respirable Particulate Matter (PM_{10})</td>
<td>24 hours</td>
<td>50 μg/m3</td>
<td>150 μg/m3</td>
<td>Irritates eyes and respiratory tract. Decreases lung capacity. Associated with increased cancer and mortality. Contributes to haze and reduced visibility. Includes some toxic air contaminants. Many aerosol and solid compounds are part of PM_{2.5}.</td>
<td>Dust- and fume-producing industrial and agricultural operations; combustion smoke; atmospheric chemical reactions; construction and other dust-producing activities; unpaved road dust and re-entrained paved road dust; natural sources (wind-blown dust, ocean spray).</td>
<td>State: N Federal: U</td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>20 μg/m3</td>
<td>–</td>
<td></td>
<td></td>
<td>State: N Federal: -</td>
</tr>
<tr>
<td>Fine Particulate Matter (PM_{2.5})</td>
<td>24 hours</td>
<td>–</td>
<td>35 μg/m3</td>
<td>Increases respiratory disease, lung damage, cancer, and premature death. Reduces visibility and produces surface soiling. Most diesel exhaust particulate matter—considered a toxic air contaminant—is in the PM_{2.5} size range. Many aerosol and solid compounds are part of PM_{2.5}.</td>
<td>Combustion including motor vehicles, other mobile sources, and industrial activities; residential and agricultural burning; also formed through atmospheric chemical (including photochemical) reactions involving other pollutants including NOx, sulfur oxides (SOx), ammonia, and ROG.</td>
<td>State: - Federal: N’</td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>12 μg/m3</td>
<td>15.0 μg/m3</td>
<td></td>
<td></td>
<td>State: N Federal: A</td>
</tr>
<tr>
<td>Nitrogen Dioxide (NO\textsubscript{2})</td>
<td>1 hour</td>
<td>0.18 ppm</td>
<td>100 ppb</td>
<td>Irritating to eyes and respiratory tract. Colors atmosphere reddish-brown. Contributes to acid rain. Part of the “NOx” group of ozone precursors.</td>
<td>Motor vehicles and other mobile sources; refineries; industrial operations; some natural sources like active volcanoes. Limited contribution possible from heavy-duty diesel vehicles if ultra-low sulfur fuel not used.</td>
<td>State: A Federal: -</td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>0.030 ppm</td>
<td>53 ppb</td>
<td></td>
<td></td>
<td>State: - Federal: U/A</td>
</tr>
<tr>
<td>Sulfur Dioxide (SO\textsubscript{2})</td>
<td>1 hour</td>
<td>0.25 ppm</td>
<td>75 ppb</td>
<td>Irritates respiratory tract; injures lung tissue. Can yellow plant leaves. Destructive to marble, iron, steel. Contributes to acid rain. Limits visibility.</td>
<td>Fuel combustion (especially coal and high-sulfur oil), chemical plants, sulfur recovery plants, metal processing.</td>
<td>State: A Federal: -</td>
</tr>
<tr>
<td></td>
<td>3 hours</td>
<td>–</td>
<td>0.5 ppm d</td>
<td></td>
<td></td>
<td>State: - Federal: -</td>
</tr>
<tr>
<td></td>
<td>24 hours</td>
<td>0.04 ppm</td>
<td>0.14 ppm</td>
<td></td>
<td></td>
<td>State: A Federal: A</td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>–</td>
<td>0.030 ppm</td>
<td></td>
<td></td>
<td>State: - Federal: -</td>
</tr>
</tbody>
</table>
Chapter 3.14 – Air Quality

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>State Standard</th>
<th>National Standard</th>
<th>Health and Atmospheric Effects</th>
<th>Typical Sources</th>
<th>Attainment Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead *</td>
<td>Monthly</td>
<td>1.5 μg/m³</td>
<td>–</td>
<td>Disturbs gastrointestinal system. Causes anemia, kidney disease, and neuromuscular and neurological dysfunction. Also considered a toxic air contaminant.</td>
<td>Primary: lead-based industrial process like batter production and smelters. Past: lead paint, leaded gasoline. Moderate to high levels of aerially deposited lead from gasoline may still be present in soils along major roads, and can be a problem if large amounts of soil are disturbed.</td>
<td>State: A Federal: -</td>
</tr>
<tr>
<td></td>
<td>Quarterly</td>
<td>–</td>
<td>1.5 μg/m³</td>
<td></td>
<td></td>
<td>State: - Federal: A</td>
</tr>
</tbody>
</table>

Sources: California Air Resources Board Ambient Air Quality Standards chart, 11/17/2008 (http://www.arb.ca.gov/research/aaqs/aaqs2.pdf)
USEPA and California Air Resources Board air toxics websites, 05/17/2006

Notes:
- ppm = parts per million; μg/m³ = micrograms per cubic meter; ppb = parts per billion
- Annual PM₁₀ NAAQS revoked October 2006; was 50 μg/m³. The 24-hr PM₂.₅ NAAQS tightened October 2006; was 65 μg/m³.
- 12/22/2006 Federal court decision may affect applicability of 1-hour ozone NAAQS. Prior to 6/2005, the 1-hour standard was 0.12 ppm. Case is still in litigation.
- Rounding to an integer value is not allowed for the State 8-hour CO standard. A violation occurs at or above 9.05 ppm.
- The national 3-hour SO₂ standard is a secondary standard, which is the level of air quality necessary to protect public welfare from any known or anticipated adverse effects of a pollutant.
- The ARB has identified lead, vinyl chloride, and the particulate matter fraction of diesel exhaust as toxic air contaminants. Diesel exhaust particulate matter is part of PM₁₀ and, in larger proportion, PM₂.₅. Both ARB and USEPA have identified various organic compounds that are precursors to ozone and PM₂.₅ as toxic air contaminants. There is no threshold level of exposure for adverse health effect determined for toxic air contaminants, and control measures may apply at ambient concentrations below any criteria levels specified for these pollutants or the general categories of pollutants to which they belong.

On October 9, 2009, USEPA published a final ruling in the Federal Register designating the SFBAAB as nonattainment for the 2006 24-hour PM₂.₅ standard. The rule will become effective 30 days after publication in the Federal Register.

Federal and State air quality standards and regulations provide the basic scheme for project-level air quality analysis under the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA). In addition to this type of environmental analysis, a parallel “Conformity” requirement under the FCAA also applies.

FCAA Section 176()c) prohibits the U.S. Department of Transportation and other federal agencies from funding, authorizing, or approving plans, programs, or projects that are not first found to conform to State Implementation Plan (SIP) for achieving the goals of Clean Air Act requirements related to the NAAQS. “Transportation Conformity” Act takes place on two levels: the regional, or planning and programming, level, and the project level. The proposed project must conform at both levels to be approved. Conformity requirements apply only in nonattainment and “maintenance” (former nonattainment) areas for the NAAQS, and only for the specific NAAQS that are or were violated. U.S. EPA regulations at 40 CFR 93 govern the conformity process.

Regional level conformity in California is concerned with how well the region is meeting the standards set for CO, NO₂, ozone, and PM. California is in attainment for the other criteria pollutants. At the regional level, Regional Transportation Plans (RTPs) are developed that include all of the transportation projects planned for a region over a period of years, usually at least 20. Based on the projects included in the RTP, a regionwide air quality model is run to determine whether or not the implementation of those projects would conform to air basin-wide emission budgets or other tests showing
that attainment requirements of the CAA are met. If the conformity analysis is successful, the regional planning organization, such as Metropolitan Transportation Commission (MTC) for the San Francisco Bay Area Air Basin (SFBAAB) and the appropriate national agencies, such as the FHWA, make the determination that the RTP is in conformity with the SIP for achieving the goals of the CAA. Otherwise, the projects in the RTP must be modified until conformity is attained. If the design and scope of the proposed transportation project are the same as described in the RTP, then the proposed project is deemed to meet regional conformity requirements for purposes of project-level analysis.

Conformity at the project level also requires “hot spot” analysis if an area is designated “nonattainment” or “maintenance” for CO and/or PM. A region is a nonattainment area if one or more monitoring stations in the region indicate that the relevant standard has been exceeded. Areas that were previously designated as nonattainment areas but have recently met the standard are called maintenance areas. Hot spot analysis is essentially the same, for technical purposes, as CO or PM analysis performed for NEPA purposes. Conformity does include some specific standards for projects that require a hot spot analysis. In general, projects must not cause the CO standard to be violated and, in designated nonattainment areas, the project must not cause any increase in the number and/or severity of violations. If a known CO or PM violation is located in the project vicinity, the project must include measures to reduce or eliminate the existing violation(s) as well. The SFBAAB has met the NAAQS for CO and PM with aerodynamic diameter less than 10 microns (PM$_{10}$). Therefore, the proposed project is not subject to a CO or PM$_{10}$ hot spot analysis. However, the SFBAAB is nonattainment for the PM with aerodynamic diameter less than 2.5 microns (PM$_{2.5}$) NAAQS; therefore, a hot spot analysis is required for PM$_{2.5}$. Based on consultation with the MTC, project-level conformity analysis shows that the project will conform with the SIP, including localized impact analysis with interagency consultation for carbon monoxide (CO) and particulate matter (PM$_{2.5}$) required by 40 CFR 93.116 and 93.123. This project is not considered a Project of Air Quality Concern regarding particulate matter (PM$_{2.5}$) as defined in 40 CFR 93.123(b)(1). A detailed PM$_{2.5}$ hot-spot analysis was not completed because Clean Air Act and 40 CFR 93.116 requirements are met without an explicit hot-spot analysis. The PM$_{2.5}$ consultation process is described in Section 3.14.3.4 below.

3.14.1.1 National

The USEPA is responsible for enforcing the national CAA and the NAAQS that it establishes. The prescribed levels (i.e., NAAQS) are considered to be the maximum concentrations of ambient (background) air pollutants determined safe (with an adequate margin of safety) to protect the public health and welfare. The CAAA were enacted to better protect the public’s health and create more efficient methods of lowering pollutant emissions. The major areas of improvement from the amendments include air basin designations, regulations addressing automobile/heavy-duty engine emissions, and rules addressing toxic air pollutants. The USEPA designates air basins as being in “attainment” or “nonattainment” levels for each of the seven criteria pollutants. The attainment status of the SFBAAB is shown in Table 3.14-3. Nonattainment air basins are ranked (marginal, moderate, serious, severe, or extreme) according to the degree of nonattainment, which dictates the length of time allocated to local air districts to achieve attainment. The air basin is then required to submit its portion of the SIP that describes how the state will achieve the NAAQS by specified dates. The extent of a given SIP depends on the severity of the air quality within the state or specific air basin. Failure to submit an approvable SIP or to implement the plan within the mandated time frame may
result in sanctions that withhold national transportation funding and stationary air pollution sources in the respective air basin.

NATIONAL HAZARDOUS AIR POLLUTANT PROGRAMS

Title III of the CAA requires USEPA to promulgate National Emissions Standards for Hazardous Air Pollutants (NESHAP) for certain categories of sources that emit one or more pollutants identified as hazardous air pollutants (HAPs), or in state parlance, toxic air contaminants (TACs). Emission standards may differ between “major sources” and “area sources” of TACs. Major sources are defined as stationary sources with potential to emit more than 10 tons per year (tpy) of any TAC or more than 25 tpy of any combination of TACs; all other sources are considered area sources. Promulgation of the emission standards involves two phases. In the first phase (1992–2000), USEPA developed technology-based emission standards designed to produce the maximum emission reduction achievable. These standards are generally referred to as requiring maximum achievable control technology (MACT). For area sources, the standards may be different, based on generally available control technology. In the second phase (2001–2008), USEPA is required to promulgate health risk–based emissions standards where such standards are deemed necessary to address risks remaining after implementation of the technology-based NESHAP standards.

The CAAA required USEPA to promulgate vehicle or fuel standards containing reasonable requirements to control TAC emissions, applying at a minimum to benzene and formaldehyde. Performance criteria were established to limit mobile-source emissions of toxics, including benzene, formaldehyde, and 1,3-butadiene. In addition, Section 219 of the CAA also required the use of reformulated gasoline in selected U.S. cities (those with the most severe ozone nonattainment conditions) to further reduce mobile-source emissions, including toxics.

3.14.1.2 State

The California Air Resources Board (ARB) is the agency responsible for coordination and oversight of state and local air pollution control programs in California and for implementing the CCAA. The CCAA, which was adopted in 1988, required ARB to establish the CAAQS (Table 3.14-1). ARB has established CAAQS for sulfates, hydrogen sulfide, vinyl chloride, visibility-reducing PM, and the above-mentioned criteria air pollutants. In most cases the CAAQS are more stringent than the NAAQS. Differences in the standards are generally explained by the health effects studies considered during the standard-setting process and the interpretation of the studies. In addition, the CAAQS incorporate a margin of safety to protect sensitive individuals.

The CCAA requires that all local air districts in the state endeavor to achieve and maintain the CAAQS by the earliest practical date. The CCAA specifies that local air districts should focus particular attention on reducing the emissions from transportation and areawide emission sources, and provides districts with the authority to regulate indirect sources.

Among ARB’s other responsibilities are overseeing local air district compliance with California and national laws, approving local air quality plans, submitting SIPs to USEPA, monitoring air quality, determining and updating area designations and maps, and setting emissions standards for new mobile sources, consumer products, small utility engines, off-road vehicles, and fuels. ARB is also developing plans and regulations
for achieving California’s greenhouse gas (GHG) reduction goals; this is discussed in
greater detail in Section 4.3.8, Climate Change.

ARB and local air pollution control districts are currently developing plans for meeting
new NAAQS for ozone and PM$_{2.5}$. California’s adopted 2007 State Strategy was
submitted to USEPA as a revision to the SIP in November 2007 (ARB 2008a).

STATE TOXIC AIR CONTAMINANT PROGRAMS

ARB works in partnership with the local air districts to enforce regulations that reduce
TACs in the state. It has authority for motor vehicles, fuels, and consumer products. ARB
identifies the TACs, researches prevention or reduction methods, adopts standards for
control, and enforces the standards. TACs in California are primarily regulated through
the Tanner Air Toxics Act (Assembly Bill [AB] 1807, Tanner Act) and the Air Toxics Hot
Spots Information and Assessment Act of 1987 (AB 2588, Hot Spot Act). The Tanner Act
sets forth a formal procedure for ARB to designate substances as TACs. Research,
public participation, and scientific peer review must occur before ARB can designate a
substance as a TAC. To date, ARB has identified more than 21 TACs and adopted
USEPA’s list of HAPs as TACs. Once a TAC is identified, ARB then adopts an Airborne
Toxics Control Measure (ATCM) for sources that emit that particular TAC. If there is a
safe threshold for a substance at which there is no toxic effect, the control measure must
reduce exposure below that threshold. If there is no safe threshold, the measure must
incorporate best available control technology (BACT) to minimize emissions (e.g., ATCM
that limits truck idling to 5 minutes [13 CCR Chapter 10 Section 2485]).

ARB identified diesel PM as a TAC in August 1998. Diesel PM is currently ARB’s
primary TAC of concern for mobile sources, in part because, of all controlled TACs,
diesel PM emissions are estimated to be responsible for approximately 70% of the total
ambient TAC risk (ARB 2000). In 2000, ARB developed and approved the Risk
Reduction Plan to Reduce Particulate Matter Emissions from Diesel-Fueled Engines and
Vehicles and the Risk Management Guidance for the Permitting of New Stationary
Diesel-Fueled Engines. ARB is now implementing an aggressive plan to require cleaner
diesel fuel and cleaner diesel engines and vehicles and is currently developing
regulations designed to reduce diesel PM emissions from diesel-fueled engines and
vehicles. The goal of each regulation is to make diesel engines as clean as possible by
establishing state-of-the-art technology requirements or emission standards to reduce
diesel PM emissions. These regulations require substantial reductions in diesel PM
emissions beginning with the 2004 model year. Additional more stringent standards will
apply to engines starting in the 2007 model year. Off-road vehicles will come under more
stringent regulation beginning with the 2005 model year. Each of these sets of
regulations will serve to significantly reduce diesel PM emissions and long-term human
health risks attributable to diesel-fueled vehicles and equipment.

Over time, the replacement of older vehicles will result in a vehicle fleet that produces
substantially lower levels of TACs than under current conditions. Mobile-source
emissions of TACs (e.g., benzene, 1,3-butadiene, diesel PM) have been reduced
significantly over the last decade, and will be reduced further in California through a
progression of regulatory measures (e.g., Low Emission Vehicle/Clean Fuels and Phase
II reformulated gasoline regulations) and control technologies. With implementation of
ARB’s Risk Reduction Plan, it is expected that diesel PM concentrations will be reduced
by 75% in 2010 and 85% in 2020 from the estimated year-2000 level. Adopted
regulations are also expected to continue to reduce formaldehyde emissions from cars
and light-duty trucks. As emissions are reduced, it is expected that risks associated with exposure to the emissions will also be reduced.

The California State Legislature has also examined TAC hazards and has adopted several bills to control TACs. Implementation of state-adopted legislation pertaining to the control of TACs is the responsibility of ARB and local air pollution control districts. The most important legislation applicable to the proposed project is summarized below.

ARB published *Air Quality and Land Use Handbook: A Community Health Perspective*, which provides guidance concerning land use compatibility with TAC sources (ARB 2005). While not a law or adopted policy, the handbook offers advisory recommendations for the siting of sensitive receptors near uses associated with TACs, such as freeways and high-traffic roads, commercial distribution centers, rail yards, ports, refineries dry cleaners, gasoline stations, and industrial facilities to help keep children and other sensitive populations out of harm’s way. A number of comments on the handbook were provided to ARB by air districts, other agencies, real estate representatives, and others. The comments included concern over whether ARB was playing a role in local land use planning, the validity of relying on static air quality conditions over the next several decades in light of technological improvements, and support for providing information that can be used in local decision making.

3.14.1.3 Local

Management of air quality in the SFBAAB is the responsibility of the Bay Area Air Quality Management District (BAAQMD). The BAAQMD is responsible for bringing and/or maintaining air quality in the SFBAAB within NAAQSs and CAAQSs. Specifically, the BAAQMD has responsibility for monitoring ambient air pollutant levels throughout the SFBAAB and developing and implementing attainment strategies to ensure that future emissions will be within NAAQSs and CAAQSs. The following plans have been developed by the BAAQMD to achieve attainment of the ozone NAAQS and CAAQS. The Clean Air Plan (CAP) and Ozone Strategy fulfill the planning requirements of the CCAA, while the Ozone Attainment Plan fulfills the national CAA requirements. In addition, in December of 1999, the BAAQMD released a revision to the previously adopted CEQA Guidelines document.

AIR QUALITY PLANS

The BAAQMD prepares ozone attainment plans (OAPs) for the national ozone standard and CAPs for the California standard both in coordination with the MTC and the Association of Bay Area Governments (ABAG). These plans outline how the region will comply with its emission allowances and implement emission control strategies to achieve attainment of pollutants for which the region is nonattainment. These assumptions, along with assumptions from the RTP are used to develop the SIP. Past plans include the 2001 OAP and the 2000 CAP. The 2001 OAP is a revision to the Bay Area part of the SIP and was prepared in response to the USEPA’s partial disapproval of the 1999 OAP. The 2001 OAP for the national 1-hour ozone standard includes two commitments for further planning: (1) conduct a midcourse review of progress toward attaining the national 1-hour ozone standard by December 2003; and (2) provide a revised ozone attainment strategy to USEPA by April 2004.

The 2000 CAP was adopted by the BAAQMD on December 20th, 2000, and was then submitted to ARB. The CCAA requires the BAAQMD to update the CAP for attaining the
state 1-hour ozone standard every 3 years. The 2000 CAP is the third triennial update of
the BAAQMD’s original 1991 CAP. The 2000 CAP includes a control strategy review to
ensure that the CAP includes all feasible measures to reduce ozone, updates to the
emissions inventory, estimates of emission reductions, and assessments of air quality
trends.

In July 2003, USEPA proposed an interim final determination that the 2001 OAP
corrected the deficiencies of the 1999 Plan and proposed approval of the 2001 OAP.
Following 3 years of low ozone levels (2001, 2002, and 2003), in October 2003, USEPA
proposed a finding that the SFBAAB had attained the national 1-hour standard and that
certain elements of the 2001 OAP (attainment demonstration, contingency measures
and reasonable further progress) were no longer required. In April 2004, USEPA made
final the finding that the SFBAAB had attained the 1-hour standard and approved the
remaining applicable elements of the 2001 Plan: emission inventory, control measure
commitments, motor vehicle emission budgets, reasonably available control measures,
and commitments to further study measures. However, as part of a transition from the
1-hour ozone NAAQS to an 8-hour ozone NAAQS, the 1-hour standard was revoked on
June 15, 2005, and is no longer applicable.

The 8-hour standard took effect in June 2004. In April 2004, USEPA designated regions
for the new national 8-hour standard and these designations took effect on June 15,
2004. USEPA formally designated the SFBAAB as a nonattainment area for the national
8-hour ozone standard, and classified the region as “marginal” according to five classes
of nonattainment areas for ozone, which range from marginal to extreme. Compliance
with the standard is determined at each monitoring station using an average of the fourth
highest ozone reading for 3 years. A violation at any monitoring station results in a
nonattainment designation for the entire region because ozone is a regional pollutant.
Monitoring data for the San Martin station for the years 2001, 2002, and 2003 show an
average of the fourth highest ozone values of 86 parts per billion (one part per billion
above the standard), hence the Bay Area’s “marginal” nonattainment classification.
Marginal, nonattainment areas must attain the national 8-hour ozone standard by June

While certain elements of Phase 1 of the 8-hour implementation rule are still undergoing
legal challenge, USEPA signed Phase 2 of the 8-hour implementation rule on November
9, 2005. It is not currently anticipated that marginal areas will be required to prepare
attainment demonstrations for the 8-hour standard (BAAQMD 2006).

However, there is still a need for continued improvement to meet California’s 1-hour
ozone standard. Accordingly, the BAAQMD prepared the Bay Area 2005 Ozone
Strategy, which is a roadmap showing how the SFBAAB will achieve compliance with
the state 1-hour air quality standard for ozone as expeditiously as practicable and how
the region will reduce transport of ozone and ozone precursors to neighboring air basins.
The 2005 Ozone Strategy, which was adopted by BAAQMD’s Board of Directors
January 4, 2006, describes how the SFBAAB will fulfill the CCAA planning requirements
for the state 1-hour ozone standard and transport mitigation requirements through the
proposed control strategy. The control strategy includes stationary source control
measures to be implemented through BAAQMD regulations; mobile source control
measures to be implemented through incentive programs and other activities; and
transportation control measures to be implemented through transportation programs in
cooperation with MTC, local governments, transit agencies, and others. The BAAQMD
will continue to adopt regulations, implement programs and work cooperatively with
other agencies, organizations, and the public on a wide variety of strategies to improve air quality in the region and reduce transport to neighboring air basins.

The 2005 Ozone Strategy explains how the SFBAAB plans to achieve these goals with respect to ozone and also discusses related air quality issues of interest, including the public involvement process, climate change, PM$_{2.5}$, the BAAQMD’s Community Air Risk Evaluation (CARE) program, local benefits of ozone control measures, the environmental review process, national ozone standards, and photochemical modeling.

Overall, the 2005 Ozone Strategy is a comprehensive document that describes the SFBAAB’s strategy for compliance with state 1-hour ozone standard planning requirements and is a significant component of the region’s commitment to achieving clean air to protect the public’s health and the environment (BAAQMD 2006).

In June 2010, BAAQMD adopted its new BAAQMD CEQA Air Quality Guidelines (BAAQMD Guidelines). In September 2010, BAAQMD Board of Directors adopted the final Bay Area 2010 Clean Air Plan (CAP), which updated the 2005 Ozone Strategy described above. The 2010 CAP also evaluated the effects of control measures for ozone, PM, and greenhouse gases (GHGs) to develop a single, integrated plan. An update to the guidelines was released in May 2011. The updated guidelines reviewed, revised, and developed significance thresholds, analysis methodology, and mitigation measures for criteria air pollutants, TACs, odors, and GHGs.

BAAQMD Rules and Regulations

The BAAQMD is responsible for limiting the amount of emissions that can be generated throughout the SFBAAB by stationary sources. Specific rules and regulations have been adopted that limit emissions that can be generated by various uses and/or activities and identify specific pollution reduction measures that must be implemented in association with various uses and activities. These rules regulate not only the emissions of the criteria air pollutants, but also the emissions of TACs. The rules are also subject to ongoing refinement by the BAAQMD.

In general, all stationary sources with air emissions are subject to BAAQMD’s rules governing their operational emissions. Some emissions sources are further subject to regulation through the BAAQMD’s permitting process. Through this permitting process, the BAAQMD also monitors the amount of stationary emissions being generated and uses this information in developing the CAP. The primary BAAQMD rules applicable to the project include the following:

- **Regulation 6**: Particulate Matter and Visible Emissions,
- **Regulation 7**: Odorous Substances,
- **Regulation 8, Rule 3**: Architectural Coatings, and
- **Regulation 8, Rule 15**: Emulsified Asphalt.

Local Toxic Air Contaminant Programs

At the local level, air pollution control or management districts may adopt and enforce ARB control measures. The local air districts have the authority over stationary or industrial type sources. BAAQMD Regulation 2 permits (Permits) may be granted to
these operations if they are constructed and operated in accordance with applicable regulations, including new-source-review standards and air-toxics control measures. Permits may be granted to these operations if they are constructed and operated in accordance with applicable regulations, including new-source review standards and air toxics control measures. BAAQMD limits emissions and public exposure to TACs through a number of programs and prioritizes TAC-emitting stationary sources based on the quantity and toxicity of the TAC emissions and the proximity of the facilities to sensitive receptors. It requires a comprehensive health risk assessment for facilities that are put in the significant risk category under the AB 2588 Program (Air Toxics “Hot Spot” Information and Assessment Act of 1987).

Sources that require a permit are analyzed by BAAQMD (e.g., health risk assessment [HRA]) on the basis of their potential to emit toxics. If it is determined that the project would emit toxics in excess of BAAQMD’s threshold of significance for TACs (Regulation 2 Rule 5 New Source Review of Toxic Air Contaminants), sources must implement toxics best available control technology (T-BACT) to reduce emissions. If a source cannot reduce the risk below the threshold of significance, even after T-BACT has been implemented, BAAQMD will deny the permit required by the source. This helps to prevent new problems and reduces emissions from existing older sources by requiring them to apply new technology when retrofitting with respect to TACs. It is important to note that BAAQMD’s air quality permitting process applies to new or modified stationary sources; properties that are exposed to elevated levels of nonstationary type sources of TACs, and the nonstationary type sources themselves (e.g., on-road vehicles), are not subject to air quality permits. Further, for reasons of feasibility and practicality, mobile sources (cars, trucks, etc.) are not required to implement T-BACT, even if they do have the potential to expose adjacent properties to elevated levels of TACs. Rather, emissions controls on such sources (e.g., vehicles) are subject to regulations implemented on the national and state levels.

3.14.2 Affected Environment

The proposed project is located along the SFOBB approximately 3.7 kilometers (2.3 miles) northeast of San Francisco. The project site is located in San Francisco County, which is part of the SFBAAB. Air quality within the SFBAAB is regulated by the BAAQMD. The following section describes the existing air quality conditions on a regional and local level that influence air quality.

3.14.2.1 Topography, Meteorology, and Climate

The SFBAAB is characterized by complex terrain, consisting of coastal mountain ranges, inland valleys, and bays, which distort normal wind flow patterns. Air quality within the SFBAAB is influenced by two main mountain ranges. The Sierra Nevada, with peaks reaching over 4,267.2 meters (1,400 feet), forms the eastern border of the SFBAAB. The western border is composed of the Coast Range. The gaps and directional orientation of these mountain ranges affect the location of where air flow enters and exits the SFBAAB. In the northern portion of the SFBAAB, the Coast Range splits, resulting in the western (Golden Gate) coast gap and the eastern (Carquinez Strait) coast gap. These gaps allow air to flow in and out of the SFBAAB. The Golden Gate coast gap allows marine air during afternoons and evenings to flow into the SFBAAB, which disperses and transports air pollution to neighboring counties and air basins. Winds coming from the Pacific Ocean through the Golden Gate coastal gap have typical speeds of 32.2 to 48.3 km/h (20 to 30 mph) (NOAA 1995). Air flows into Solano County through the
Carquinez Strait, moving across the Sacramento–San Joaquin River Delta, and transporting pollution from the Bay Area. In the areas south of the Carquinez Strait, the Coast Ranges, which have an average elevation of 914.4 meters (3,000 feet), impede pollutants from dispersing to the east. Regional flow patterns affect air quality patterns by moving pollutants downwind of sources. Localized meteorological conditions, such as moderate winds, disperse pollutants and reduce pollutant concentrations. An inversion layer develops when a layer of warm air traps cooler air close to the ground. Such temperature inversions hamper dispersion by creating a ceiling over the area and trapping air pollutants near the ground. During summer mornings and afternoons, these inversions are present in the northeast areas of the SFBAAB. During summer’s longer daylight hours, plentiful sunshine provides the energy needed to fuel photochemical reactions between reactive organic gases (ROG) and oxides of nitrogen (NOX), which result in ozone formation.

Local meteorology of the project area is represented by measurements recorded at the San Francisco Bay Area station. The region receives an average of 54.61 centimeters of precipitation per year, which primarily occurs from the months of October through April (NOAA 1995). Off-season rains (May through September) account for approximately 5% of the annual average. Maximum summer temperatures range from 15.56 to 21.11 degrees Celsius (°C). Minimum wintertime temperatures range from 7.22 to 10°C (NOAA 1995).

Climate within the SFBAAB is largely controlled by the presence of the Pacific high-pressure cell, which is located in the northern Pacific Ocean off the coast of California. During the summertime, the high-pressure cell deflects incoming storms from traveling inland. As a result, the SFBAAB receives little precipitation during these months as described above. Beginning in the fall and continuing through the winter, the high-pressure cell weakens and resides off the coast of Southern California. The absence of the high-pressure cell allows storms to travel inland and reach many portions of the SFBAAB. Temperature, winds, and rainfall become more variable during the winter months with the frequent presence of dense fog. Winter weather patterns include periods of stormy weather with rain and gusty winds.

3.14.2.2 Monitoring Station Data

To identify ambient concentrations of the criteria air pollutants, the BAAQMD operates more than 30 air quality monitoring stations throughout the SFBAAB. The nearest monitoring station to the project site is located at 10 Arkansas Street in San Francisco, approximately 6.4 kilometers (4 miles) southwest of the project site. This monitoring station measures ozone, CO, NO2, SO2, PM10, and PM2.5. The ambient air-quality measurements from this station are representative of the air quality in the vicinity of the plan area. Table 3.14-2 summarizes the air quality data from the most recent 3 years (2007–2009).

Table 3.14-2 also lists the concentrations registered and the exceedances of CAAQS and the NAAQS that have occurred at this monitoring station from 2007 through 2009. During this period, the station did not register any days above the state 1-hour or 8-hour ozone standards. The CO and NO2 CAAQSs were also not exceeded in any of the last 3 years. The 24-hour PM10 CAAQS was exceeded on multiple days in 2007, but not once during 2008 or 2009. The 24-hour PM2.5 NAAQS was exceeded during 2007 and 2009, but not in 2008.
3.14.2.3 Attainment Status

Both ARB and USEPA use this type of monitoring data (Table 3.14-2) to designate an area’s attainment status for criteria air pollutants published by the agencies. The purpose of these designations is to identify areas with air quality problems and thereby initiate planning efforts for improvement. The three basic designation categories are “nonattainment,” “attainment,” and “unclassified.” The “unclassified” designation is used in an area that cannot be classified on the basis of available information as meeting or not meeting the standards. In addition, the California designations include a subcategory of the nonattainment designation, called “nonattainment-transitional.” The nonattainment-transitional designation is given to nonattainment areas that are progressing and nearing attainment. The most recent attainment designations with respect to the SFBAAB are shown in Table 3.14-3 for each criteria air pollutant.

Table 3.14–2: Summary of Annual Ambient Air Quality Data

<table>
<thead>
<tr>
<th>Pollutant Description</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>OZONE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum concentration (1-hour/8-hour, ppm)</td>
<td>0.060/0.053</td>
<td>0.082/0.066</td>
<td>0.072/0.057</td>
</tr>
<tr>
<td>Number of days state standard exceeded (1-hour/8-hour)</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>Number of days national standard exceeded (8-hour)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CARBON MONOXIDE (CO)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum concentration (1-hour/8-hour, ppm)</td>
<td>2.5/1.60</td>
<td>2.1/2.29</td>
<td>–/2.86</td>
</tr>
<tr>
<td>Number of days state standard exceeded (8-hour)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Number of days national standard exceeded (1-hour/8-hour)</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>NITROGEN DIOXIDE (NO₂)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum concentration (1-hour, ppm)</td>
<td>0.069</td>
<td>0.062</td>
<td>0.059</td>
</tr>
<tr>
<td>Number of days state standard exceeded</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Annual average (ppm)</td>
<td>0.016</td>
<td>0.016</td>
<td>0.015</td>
</tr>
<tr>
<td>SULFUR DIOXIDE (SO₂)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum concentration (24-hour, ppm)</td>
<td>0.006</td>
<td>0.004</td>
<td>–</td>
</tr>
<tr>
<td>Number of days state standard exceeded</td>
<td>0</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>Number of days national standard exceeded</td>
<td>0</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>FINE PARTICULATE MATTER (PM₂.₅)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum concentration (µg/m³) (National/California)</td>
<td>45.2/45.2</td>
<td>29.4/39.2</td>
<td>35.5/49.8</td>
</tr>
<tr>
<td>Number of days national standard exceeded (measured/calculated)</td>
<td>5/5.1</td>
<td>0/–</td>
<td>1/–</td>
</tr>
<tr>
<td>State annual average (µg/m³) (National/California)</td>
<td>8.6/8.9</td>
<td>–/11.7</td>
<td>–/–</td>
</tr>
<tr>
<td>RESPIRABLE PARTICULATE MATTER (PM₁₀)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum concentration (µg/m³) (National/California)</td>
<td>65.7/69.8</td>
<td>41.2/41.3</td>
<td>35.3/36.0</td>
</tr>
<tr>
<td>Number of days state standard exceeded (measured/calculated)</td>
<td>2/12.0</td>
<td>0/0.0</td>
<td>0/0.0</td>
</tr>
<tr>
<td>Number of days national standard exceeded (measured/calculated)</td>
<td>0/0.0</td>
<td>0/0.0</td>
<td>0/0.0</td>
</tr>
<tr>
<td>State annual average (µg/m³) (National/California)</td>
<td>20.9/21.8</td>
<td>21.1/21.9</td>
<td>–/18.6</td>
</tr>
</tbody>
</table>

Notes: µg/m³ = micrograms per cubic meter; ppm = parts per million; — = data not available

1 Measurements were recorded at the Arkansas Street monitoring station.
2 The 8-hour national ozone standard was revised to 0.075 ppm in March 2008. Statistics shown are based on the previous 0.08 ppm standard.
State and national statistics may differ for the following reasons: State statistics are based on California-approved samplers, whereas national statistics are based on samplers using national reference or equivalent methods. State and national statistics may therefore be based on different samplers. State statistics are based on local conditions while national statistics are based on standard conditions. State criteria for ensuring that data are sufficiently complete for calculating valid annual averages are more stringent than the national criteria.

Measured days are those days that an actual measurement was greater than the level of the state daily standard or the national daily standard. Measurements are typically collected every 6 days. Calculated days are the estimated number of days that a measurement would have been greater than the level of the standard had measurements been collected every day. The number of days above the standard is not necessarily the number of violations of the standard for the year.

The national PM$_{2.5}$ 24-hour standard was revised from 65 μg/m3 to 35 μg/m3 in 2006. Statistics shown are based on the 65 μg/m3 standard.

Sources: ARB 2009a; USEPA 2009a

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>California Attainment Status</th>
<th>National Attainment Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone</td>
<td>1-hour</td>
<td>N</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>8-hour</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Carbon Monoxide (CO)</td>
<td>1-hour</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>8-hour</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Nitrogen Dioxide (NO$_2$)</td>
<td>Annual Arithmetic Mean</td>
<td>—</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td>A</td>
<td>U</td>
</tr>
<tr>
<td>Sulfur Dioxide (SO$_2$)</td>
<td>Annual Arithmetic Mean</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>A</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>3-hour</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Respirable Particulate Matter (PM$_{10}$)</td>
<td>Annual Arithmetic Mean</td>
<td>N</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>N</td>
<td>—</td>
</tr>
<tr>
<td>Fine Particulate Matter (PM$_{2.5}$)</td>
<td>Annual Arithmetic Mean</td>
<td>N</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>—</td>
<td>N1</td>
</tr>
<tr>
<td>Lead</td>
<td>30-day Average</td>
<td>A</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Calendar Quarter</td>
<td>—</td>
<td>A</td>
</tr>
</tbody>
</table>

N = nonattainment; A = attainment; A/M = attainment/maintenance; U = unclassified; — = no standard

1 On October 9, 2009, USEPA published a final ruling in the Federal Register designating the SFBAAB as nonattainment for the 2006 24-hour PM$_{2.5}$ standard. The effective date of the designation was December 14, 2009 and the air district has three years to develop a plan, called a State Implementation Plan (SIP), that demonstrates the Bay Area will achieve the revised standard by December 14, 2014. The SIP for the new PM$_{2.5}$ standard must be submitted to USEPA by December 14, 2012.

Sources: ARB 2009b; USEPA 2009b

The determination of whether a region’s air quality is healthful or unhealthful is made by comparing contaminant levels in ambient air samples to national and state standards. Health-based air quality standards have been established by ARB, at the state level, and USEPA, at the national level for the following criteria air pollutants: ozone, CO, NO$_2$, SO$_2$, PM$_{10}$, PM$_{2.5}$, and lead. These standards were established to protect the public with a margin of safety from adverse health impacts due to exposure to air pollution. California has also established standards for sulfates, visibility-reducing particles, hydrogen sulfide, and vinyl chloride. The CAAQS and NAAQS for each of the monitored pollutants are presented in Table 3.14-1. The current attainment designations for the SFBAAB are summarized in Table 3.14-3.
NATIONAL ATTAINMENT STATUS

The NAAQS (other than ozone, PM$_{10}$, PM$_{2.5}$, and those based on annual averages or arithmetic mean) are not to be exceeded more than once per year. The NAAQS for ozone, PM$_{10}$, and PM$_{2.5}$ are based on statistical calculations over 1- to 3-year periods, depending on the pollutant. The SFBAAB is currently designated as a marginal nonattainment area with respect to the national standard for ozone, a nonattainment area for the 24-hour PM$_{2.5}$ standard, and attainment or unclassified area for all other pollutants. Additional details regarding the national attainment status are provided in Table 3.14-3. The NAAQS along with health effects, atmospheric effects, and common source types are shown in Table 3.14-1.

CALIFORNIA ATTAINMENT STATUS

Air quality of a region is considered to be in attainment of the CAAQS if the measured ambient air pollutant levels for ozone, CO, NO$_2$, SO$_2$ (1- and 24-hour), PM$_{10}$, PM$_{2.5}$, and visibility-reducing particles are not exceeded, and all other standards are not equaled or exceeded at any time in any consecutive 3-year period. The SFBAAB is currently designated as a nonattainment area with respect to the state standards for ozone, PM$_{10}$, and PM$_{2.5}$ and is designated as attainment or unclassified for all other pollutants. Additional details regarding the state attainment status are provided in Table 3.14-3. The CAAQS along with health effects, atmospheric effects, and common source types are shown in Table 3.14-1.

3.14.2.4 Existing Air Quality — Criteria Air Pollutants

Criteria air pollutants can cause health risks to the public when their concentrations reach certain levels. As discussed above, the meteorology, topography, and climate of a region can influence the concentration and dispersion of air pollutants in the atmosphere. A brief description of each criteria air pollutant including source types, health effects, and future trends is provided below along with the most current attainment area designations and monitoring data for the project study area.

OZONE

Ozone is a photochemical oxidant, a substance whose oxygen combines chemically with another substance in the presence of sunlight, and the primary component of smog. Ozone is not directly emitted into the air, but is formed through complex chemical reactions between precursor emissions of ROG and NO$_X$ in the presence of sunlight. ROG are VOCs that are photochemically reactive. ROG emissions result primarily from incomplete combustion and the evaporation of chemical solvents and fuels. NO$_X$ are a group of gaseous compounds of nitrogen and oxygen that results from the combustion of fuels.

Ozone located in the upper atmosphere (stratosphere) acts in a beneficial manner by shielding the earth from harmful ultraviolet radiation that is emitted by the sun. However, ozone located in the lower atmosphere (troposphere) is a major health and environmental concern. Meteorology and terrain play a major role in ozone formation. Generally, low wind speeds or stagnant air coupled with warm temperatures and clear skies provide the optimum conditions for formation. As a result, summer is generally the peak ozone season. Because of the reaction time involved, peak ozone concentrations often occur far downwind of the precursor emissions. Therefore, ozone is a regional
pollutant that often affects large areas. In general, ozone concentrations over or near urban and rural areas reflect an interplay of emissions of ozone precursors, transport, meteorology, and atmospheric chemistry (Godish 2004).

The adverse health effects associated with exposure to ozone pertain primarily to the respiratory system. Scientific evidence indicates that ambient levels of ozone affect not only sensitive receptors, such as asthmatics and children, but healthy adults as well. Exposure to ambient levels of ozone ranging from 0.10 to 0.40 parts per million (ppm) for 1 or 2 hours has been found to significantly alter lung functions by increasing respiratory rates and pulmonary resistance, decreasing tidal volumes, and impairing respiratory mechanics. Ambient levels of ozone above 0.12 ppm are linked to symptomatic responses that include such symptoms as throat dryness, chest tightness, headache, and nausea. In addition to the above adverse health effects, evidence also exists relating ozone exposure to an increase in the permeability of respiratory epithelia; such increased permeability leads to an increase in responsiveness of the respiratory system to challenges, and the interference or inhibition of the immune system’s ability to defend against infection (Godish 2004).

Emissions of ozone precursors ROG and NOX have decreased over the past several years as a result of more stringent motor vehicle standards and cleaner burning fuels. Consequently, peak 1-hour and 8-hour ozone indicators in the SFBAAB have declined overall by about 18% during the last 20 years (ARB 2009c). However, it is not clear if this reduction represents a significant change in the overall trend due to the variability caused by meteorological conditions in the SFBAAB (ARB 2009c).

CARBON MONOXIDE

CO is a colorless, odorless gas that is formed when carbon in fuel is not burned completely. It is a component of motor vehicle exhaust, which contributes about 56% of all CO emissions nationwide. Other nonroad engines and vehicles (such as construction equipment and boats) contribute about 22% of all CO emissions nationwide. Higher levels of CO generally occur in areas with heavy traffic congestion. In cities, 85% to 95% of all CO emissions may come from motor vehicle exhaust. Other sources of CO emissions include industrial processes (such as metals processing and chemical manufacturing), residential wood burning, and natural sources such as forest fires. Woodstoves, gas stoves, cigarette smoke, and unvented gas and kerosene space heaters are sources of CO indoors. The highest levels of CO in the outside air typically occur during the colder months of the year when inversion conditions are more frequent. The air pollution becomes trapped near the ground beneath a layer of warm air (USEPA 2008).

CO enters the bloodstream through the lungs by combining with hemoglobin, which normally supplies oxygen to the cells. However, CO combines with hemoglobin much more readily than oxygen does, resulting in a drastic reduction in the amount of oxygen available to the cells. Adverse health effects associated with exposure to CO concentrations include such symptoms as dizziness, headaches, and fatigue. CO exposure is especially harmful to individuals who suffer from cardiovascular and respiratory diseases (USEPA 2008).

The highest concentrations are generally associated with cold, stagnant weather conditions that occur during the winter. In contrast to problems caused by ozone, which tends to be a regional pollutant, CO problems tend to be localized.
NITROGEN DIOXIDE

NO\textsubscript{2} is a brownish, highly reactive gas that is present in all urban environments. The major human-made sources of NO\textsubscript{2} are combustion devices, such as boilers, gas turbines, and mobile and stationary reciprocating internal-combustion engines. Combustion devices emit primarily nitric oxide (NO), which reacts through oxidation in the atmosphere to form NO\textsubscript{2} (USEPA 2008). The combined emissions of NO and NO\textsubscript{2} are referred to as NO\textsubscript{x}, which are reported as equivalent NO\textsubscript{2}. Because NO\textsubscript{2} is formed and depleted by reactions associated with photochemical smog (ozone), the NO\textsubscript{2} concentration in a particular geographical area may not be representative of the local NO\textsubscript{x} emission sources.

Inhalation is the most common route of exposure to NO\textsubscript{2}. Because NO\textsubscript{2} has relatively low solubility in water, the principal site of toxicity is in the lower respiratory tract. The severity of the adverse health effects depends primarily on the concentration inhaled rather than the duration of exposure. An individual may experience a variety of acute symptoms, including coughing, difficulty with breathing, vomiting, headache, and eye irritation, during or shortly after exposure. After a period of approximately 4 to 12 hours, an exposed individual may experience chemical pneumonitis or pulmonary edema with breathing abnormalities, cough, cyanosis, chest pain, and rapid heartbeat. Severe, symptomatic NO\textsubscript{2} intoxication after acute exposure has been linked on occasion with prolonged respiratory impairment, with such symptoms as chronic bronchitis and decreased lung functions (USEPA 2008).

SULFUR DIOXIDE

SO\textsubscript{2} is produced by such stationary sources as coal and oil combustion, steel mills, refineries, and pulp and paper mills. The major adverse health effects associated with SO\textsubscript{2} exposure pertain to the upper respiratory tract. SO\textsubscript{2} is a respiratory irritant with constriction of the bronchioles occurring with inhalation of SO\textsubscript{2} at 5 ppm or more. On contact with the moist mucous membranes, SO\textsubscript{2} produces sulfurous acid, which is a direct irritant. Concentration rather than duration of the exposure is an important determinant of respiratory effects. Exposure to high SO\textsubscript{2} concentrations may result in edema of the lungs or glottis and respiratory paralysis.

PARTICULATE MATTER

PM\textsubscript{10} consists of PM emitted directly into the air, such as fugitive dust, soot, and smoke from mobile and stationary sources; construction operations, fires, and natural windblown dust, and PM formed in the atmosphere by condensation and/or transformation of SO\textsubscript{2} and ROG (USEPA 2008). PM\textsubscript{2.5} is another classification of PM that has been evaluated as a pollutant due to the increased health risks associated with these smaller particulates that can reach deeper into the lungs (ARB 2009c).

The adverse health effects associated with PM\textsubscript{10} depend on the specific composition of the PM. For example, health effects may be associated with metals, PAH, and other toxic substances adsorbed onto fine PM (which is referred to as the “piggybacking effect”), or with fine dust particles of silica or asbestos. Generally, adverse health effects associated with PM\textsubscript{10} may result from both short-term and long-term exposure to elevated concentrations and may include breathing and respiratory symptoms, aggravation of existing respiratory and cardiovascular diseases, alterations to the immune system, carcinogenesis, and premature death (USEPA 2008). PM\textsubscript{2.5} poses an
increased health risk because the particles can deposit deep in the lungs and contain substances that are particularly harmful to human health.

Direct emissions of both PM$_{10}$ and PM$_{2.5}$ increased slightly in the SFBAAB between 1975 and 2005 and are projected to increase through 2020. These emissions are dominated by area-wide sources, primarily because of development. Direct emissions of PM from mobile and stationary sources have remained relatively steady (ARB 2009c).

LEAD

Lead is a metal found naturally in the environment as well as in manufactured products. The major sources of lead emissions have historically been mobile and industrial sources. As a result of the phase-out of leaded gasoline, as discussed in detail below, metal processing is currently the primary source of lead emissions. The highest levels of lead in air are generally found near lead smelters. Other stationary sources are waste incinerators, utilities, and lead-acid battery manufacturers.

Twenty years ago, mobile sources were the main contributor to ambient lead concentrations in the air. In the early 1970s, USEPA set national regulations to gradually reduce the lead content in gasoline. In 1975, unleaded gasoline was introduced for motor vehicles equipped with catalytic converters. USEPA banned the use of leaded gasoline in highway vehicles in December 1995 (USEPA 2008).

As a result of USEPA’s regulatory efforts to remove lead from gasoline, emissions of lead from the transportation sector have declined dramatically (95% between 1980 and 1999), and levels of lead in the air decreased by 94% between 1980 and 1999. Transportation sources, primarily airplanes, now contribute only 13% of lead emissions. A recent National Health and Nutrition Examination Survey reported a 78% decrease in the levels of lead in people’s blood between 1976 and 1991. This dramatic decline can be attributed to the move from leaded to unleaded gasoline (USEPA 2008).

Lead emissions and ambient lead concentrations have decreased dramatically in California over the past 25 years. The rapid decrease in lead concentrations can be attributed primarily to phasing out the lead in gasoline. This phase-out began during the 1970s, and subsequent ARB regulations have eliminated virtually all lead from gasoline now sold in California. All areas of the state are currently designated as attainment for California’s lead standard. (USEPA does not designate areas for the national lead standard.) Although the ambient lead standards are no longer violated, lead emissions from stationary sources still pose hot spot problems in some areas. As a result, ARB has identified lead as a TAC.

3.14.2.5 Existing Sensitive Receptors

Sensitive land uses or sensitive receptors are people or facilities that generally house people that may experience adverse effects from unhealthful concentrations of air pollutants. Commonly identified sensitive land uses are residences, schools, playgrounds, childcare centers, retirement homes or convalescent homes, hospitals, and clinics. The project site is located along the SFOBB where the bridge connects with YBI. Sensitive receptors in the project area include three residential units approximately 107 meters (351 feet) south of the project site. Commercial buildings are situated to the west and southeast of the project site; however, these uses are not considered sensitive receptors.
3.14.2.6 Existing Emission Sources

Criteria air pollutant emission sources in San Francisco County include stationary, area, and mobile sources. According to the 2006 emissions inventory (Table 3.14-4) for the county, the majority of ROG and NO\textsubscript{X} emissions are attributable to mobile sources, while area-wide sources are the greatest contributor of PM emissions (ARB 2008b).

Table 3.14–4: Summary of 2008 Estimated Emissions Inventory for Criteria Air Pollutants and Precursors (San Francisco County)

<table>
<thead>
<tr>
<th>Source Type/Category</th>
<th>Estimated Annual Average Emissions (Tons per Day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ROG</td>
</tr>
<tr>
<td>Stationary Sources</td>
<td></td>
</tr>
<tr>
<td>Fuel Combustion</td>
<td>0.18</td>
</tr>
<tr>
<td>Waste Disposal</td>
<td>0.03</td>
</tr>
<tr>
<td>Cleaning and Surface Coating</td>
<td>3.99</td>
</tr>
<tr>
<td>Petroleum Production and Marketing</td>
<td>1.43</td>
</tr>
<tr>
<td>Industrial Processes</td>
<td>0.73</td>
</tr>
<tr>
<td>Subtotal (Stationary Sources)</td>
<td>6.35</td>
</tr>
<tr>
<td>Areawide Sources</td>
<td></td>
</tr>
<tr>
<td>Solvent Evaporation</td>
<td>8.30</td>
</tr>
<tr>
<td>Miscellaneous Processes</td>
<td>0.66</td>
</tr>
<tr>
<td>Subtotal (Areawide Sources)</td>
<td>8.97</td>
</tr>
<tr>
<td>Mobile Sources</td>
<td></td>
</tr>
<tr>
<td>On-Road Motor Vehicles</td>
<td>8.74</td>
</tr>
<tr>
<td>Other Mobile Sources</td>
<td>9.43</td>
</tr>
<tr>
<td>Subtotal (Mobile Sources)</td>
<td>18.17</td>
</tr>
<tr>
<td>Total for San Francisco County</td>
<td>33.49</td>
</tr>
</tbody>
</table>

Notes: ROG = reactive organic gases; CO = carbon monoxide; NO\textsubscript{X} = oxides of nitrogen; SO\textsubscript{X} = oxides of sulfur; PM\textsubscript{10} = respirable particulate matter; PM\textsubscript{2.5} = fine particulate matter
Totals in table may not appear to add exactly due to rounding the calculations.
Source: ARB 2008b

Major stationary sources of air pollutant emissions within the county include industrial processes, fuel combustion from electric utilities and other processes, waste disposal, surface coating and cleaning, petroleum production, and other sources. Local air districts issue permits to various types of stationary sources, which must demonstrate implementation of BACT.

Area-wide sources of emissions include consumer products, application of architectural coatings, residential fuel combustion, farming operations, construction and demolition, road dust, fugitive dust, landscaping, fires, and other miscellaneous sources. Paved road dust is the largest contributor to PM emissions within the county.
On-road and other mobile sources are the largest contributors of ozone precursor emissions within the county. On-road sources consist of passenger vehicles, trucks, buses, and motorcycles, while off-road vehicles and other mobile sources comprise heavy-duty equipment, boats, aircraft, trains, recreational vehicles, and farm equipment. Major roadways in San Francisco County include I-80 and I-280. Major U.S. routes include U.S. Highway 101 and major state routes include SR-1.

SAN FRANCISCO COUNTY EMISSIONS INVENTORY

Table 3.14-4 summarizes emissions of criteria air pollutants within San Francisco County for various source categories. According to San Francisco County’s emissions inventory, mobile sources are the largest contributor to the estimated annual average air pollutant levels of ROG, CO, NOX, and oxides of sulfur (SOX) accounting for approximately 54%, 96%, 94%, and 99%, respectively, of the total emissions. Area-wide sources account for approximately 68% and 38% of the County’s PM10 and PM2.5 emissions, respectively.

3.14.3 Environmental Consequences

3.14.3.1 Temporary Impacts

Temporary or short-term impacts to air quality associated with implementation of the proposed project include construction-related emissions of criteria air pollutants and precursors. This analysis of the project’s construction-related emissions is consistent with the recommendations of the BAAQMD Guidelines. BAAQMD’s recommended approach to evaluating construction-related impacts is to emphasize implementation of effective and comprehensive control measures rather than detailed quantification of emissions. The analysis of air quality impacts is based on air quality regulations administered by the USEPA, FHWA, ARB, and the BAAQMD. The *Yerba Buena Island Ramps Improvement Project Air Quality Analysis* (Appendix L) includes mitigation measures for construction activities that would reduce the generation of fugitive PM10 dust and mobile source exhaust emissions. These measures would require implementing air pollution and dust control methods specified in the Caltrans’ Standard Specifications Section 14-9.01, “Air Pollution Control” by complying with applicable air pollution control rules, regulations, ordinances, and statutes; and Section 14-9.02, “Dust Control” by applying water and/or dust palliative to reduce dust. These measures would include:

- Water or dust palliative will be applied to the site and equipment as frequently as necessary to control fugitive dust emissions.
- Soil binder will be spread on any unpaved roads used for construction purposes, and all project construction parking areas.
- Trucks will be washed off as they leave the right of way as necessary to control fugitive dust emissions.
- Construction equipment and vehicles shall be properly tuned and maintained. Low-sulfur fuel shall be used in all construction equipment as provided in California Code of Regulations Title 17, Section 93114.
Develop a dust control plan documenting sprinkling, temporary paving, speed limits, and expedited revegetation of disturbed slopes as needed to minimize construction impacts to existing communities.

Locate equipment and materials storage sites as far away from residential and park uses as practical. Keep construction areas clean and orderly.

To the extent feasible, establish environmental site assessments (ESA) for sensitive air receptors within which construction activities involving extended idling of diesel equipment would be prohibited.

Use track-out reduction measures such as gravel pads at project access points to minimize dust and mud deposits on roads affected by construction traffic.

Cover all transported loads of soils and wet materials prior to transport, or provide adequate freeboard (space from the top of the material to the top of the truck) to reduce PM$_{10}$ and deposition of particulate during transportation.

Remove dust and mud that are deposited on paved, public roads due to construction activity and traffic to decrease particulate matter.

To the extent feasible, route and schedule construction traffic to reduce congestion and related air quality impacts caused by idling vehicles along local roads during peak travel times.

Install mulch or plant vegetation on disturbed areas as soon as practical after grading to reduce windblown particulate in the area.

NO BUILD ALTERNATIVE

Under the No Build Alternative, the existing ramps would stay intact and no construction activities or associated emissions would occur.

ALTERNATIVE 2B

Under Alternative 2b, construction activities are anticipated to last approximately 2 years. Demolition activities will include removal of the existing westbound on- and off-ramps on the east side of YBI. A proposed westbound loop on-ramp will be constructed from Macalla Road along the east side of YBI. The proposed westbound off-ramp would lead to Macalla Road on the east side of YBI. Alternative 2b will also include the relocation of Quarters 10/Building 267. Although these activities would be anticipated to generate additional construction-related emissions, the annual emissions associated with Alternative 2b would be comparable to those of the other build alternative (Alternative 4). Therefore, the construction-related impacts associated with the build alternatives (i.e., Alternative 2b and Alternative 4) are discussed together below, under Build Alternatives.

ALTERNATIVE 4

Under Alternative 4, construction activities would also last approximately 2 years. Both of the existing westbound on- and off-ramps would be demolished and removed as part of
this alternative. The proposed on-ramp would originate from South Gate Road rather than Macalla Road. The proposed off-ramp would still lead to Macalla Road on the east side of YBI. The proposed westbound on-ramp for Alternative 4 would be approximately three times longer than the on-ramp proposed for Alternative 2b. Therefore, it is anticipated that construction of the westbound on-ramp under Alternative 4 would generate more emissions relative to Alternative 2b. However, Alternative 4 would not relocate Quarters 10/Building 267. Therefore, it is anticipated that construction-related emissions associated with Alternative 4 would be comparable to those of Alternative 2b on an annual basis. The construction-related impacts associated with the build alternatives (Alternative 2b and Alternative 4) are discussed together below, under Build Alternatives.

BUILD ALTERNATIVES

Under the two build alternatives, construction activities would generate emissions of criteria air pollutants and precursors from various sources. The proposed build alternatives would require demolition of existing ramp structures, site grading, construction of the proposed ramps, and asphalt paving for the new roadway surfaces. Demolition and grading activities that include disturbance of existing ramp structures or exposed soil would generate fugitive PM$_{10}$ dust emissions. Heavy-duty off-road construction equipment used for demolition, grading, construction, and asphalt paving would generate exhaust emissions of criteria air pollutants and precursors. Additional exhaust emissions would be generated from material delivery trucks, construction worker vehicles, and, if needed, on-site generators. In addition, the application of asphalt for roads and, if required, the architectural coatings for structures would generate off-gas emissions of ROG.

Daily construction-related emissions would vary depending on the type and level of construction activities. However, construction-related emissions would be temporary and finite in nature. All construction-related emissions associated with the proposed project would cease following completion of the project. BAAQMD recommends that projects implement the most effective and comprehensive control measures available to minimize construction emissions. Implementation of the control measures would reduce any construction-related impact to a less-than-significant level. The abatement measures listed in the Yerba Buena Island Ramps Improvement Project Air Quality Analysis (Appendix L) and minimization measures listed in Section 3.14.5 below are required to be implemented during construction of the proposed project and would reduce the project’s temporary impacts to a less-than-significant level. These measures would require implementing air pollution and dust control methods specified in the Caltrans’ Standard Specifications Section 14-9.01, “Air Pollution Control” by complying with applicable air pollution control rules, regulations, ordinances, and statutes; and Section 14-9.02, “Dust Control” by applying water and/or dust palliative to reduce dust. Other measures include watering the site, developing a dust control plan, keeping construction areas clean and orderly, prohibiting extended idling of diesel equipment for sensitive air receptors, use track-out reduction measures to minimize dust and mud deposits on roads affected by construction traffic, covering all transported loads, remove dust and mud that are deposited on roads due to construction activity, and installing mulch or plant vegetation on disturbed areas as soon as practical after grading.
TOXIC AIR CONTAMINANTS

During construction of the proposed project, heavy-duty diesel construction equipment would generate diesel PM exhaust emissions, which have been classified by ARB as a TAC. Although intermittent and temporary, sensitive receptors in the project vicinity would be exposed to emissions of diesel PM during construction of the proposed project. A temporary increase in air emissions is defined as an increase that would only occur during a construction phase and would last for 5 years or less at any individual site.

The dose to which receptors are exposed is the primary factor used to determine health risk (i.e., potential exposure to TAC emission levels that exceed applicable standards). Dose is a function of the concentration of a substance or substances in the environment and the duration of exposure to the substance. Dose is positively correlated with time, meaning that a longer exposure period would result in a higher exposure level for the maximally exposed individual. Thus, the risks estimated for a maximally exposed individual are higher if a fixed exposure occurs over a longer period of time. According to the Office of Environmental Health Hazard Assessment, the HRA, which determines the exposure of sensitive receptors to TAC emissions, should be based on a 70-year exposure period; however, such assessments should be limited to the period/duration of activities associated with the proposed project (Salinas 2004). Thus, because the use of off-road heavy-duty diesel equipment would be temporary in combination with the highly dispersive properties of diesel PM (Zhu et al. 2002) and further reductions in exhaust emissions from regulatory programs and requirements (e.g., Clean Air Nonroad Diesel Rule and ARB tier standards), project-generated, construction-related emissions of TACs would not expose sensitive receptors to substantial emissions of TACs. As a result, this impact would not be adverse.

ASBESTOS

According to A General Location Guide for Ultramafic Rocks in California—Areas More Likely to Contain Naturally Occurring Asbestos (CDC 2000), the project site is not located in an area that is likely to contain naturally occurring asbestos. Thus, hazardous exposure to asbestos-containing serpentine materials would not be a concern with the proposed project.

Certain building structures (on YBI) and the on- and off-ramp structures could potentially include ACM that would be disturbed and emitted into the atmosphere during construction of the proposed project. However, as discussed in Chapter 13, Hazardous Waste/Materials, the 2008 Site Management Plan has abated all known ACM on the YBI and TI areas, including Quarters 10/Building 267, which would be relocated as part of Alternative 2b. Therefore, the proposed project would not expose any receptors or workers to naturally occurring or structural asbestos.

ODORS

Construction of the new ramps may generate odors associated with exhaust emissions from heavy-duty diesel construction equipment; however, these sources would be intermittent and temporary in nature. Construction of either alternative is expected to last less than 2 years, which is considered a temporary increase in air pollutant emissions. Therefore, temporary construction activities are not anticipated to cause a significant source of odiferous compounds.
3.14.3.2 Permanent Impacts

ALTERNATIVE ANALYSIS

Evaluation of the proposed project’s permanent impacts includes analysis of the long-term operational changes on a regional and local level associated with implementation of the proposed project. While the proposed project would not result in increased vehicle trips or vehicle miles traveled (VMT) it would affect traffic parameters along the YBI on- and off-ramps, SFOBB, and local roadways on YBI, including average vehicle speeds, traffic volumes, and vehicle queuing. The change in traffic patterns would affect regional mobile-source emissions. As a nonattainment area for the ozone NAAQS, the transportation infrastructure-related projects within the SFBAAB must be consistent with the MTC’s most recently adopted Regional Transportation Plan and Regional Transportation Improvement Program (RTIP) to avoid contributing to the existing nonattainment status of the SFBAAB.

On a local level, the proposed project could contribute to hot spots of CO, PM$_{10}$, or PM$_{2.5}$. A hot spot occurs when pollutant concentrations exceed the NAAQS or CAAQS. In addition, the potential for the proposed project to cause a substantial increase in mobile-source air toxics (MSATs) should also be evaluated on a local level. An analysis was conducted to evaluate the potential for a CO, PM$_{10}$, or PM$_{2.5}$ hot spot or substantial increase in MSATs as a result of the proposed project and discussed below. The discussion below summarizes the impacts associated with the proposed alternatives. Due to the similar operational scenarios associated with the build alternatives (i.e., Alternatives 2b and 4), these alternatives are discussed together below.

NO BUILD ALTERNATIVE

Under the No Build Alternative, future overall operations of the ramp junction would decrease. Due to the insufficient capacity of the existing ramps, long delays and queues would be anticipated on YBI in future conditions (year 2035). The level of service (LOS) and average vehicle speeds at the ramp junction would decline compared to existing conditions. The proposed project is included in the Transportation 2035 Plan (2035 RTP) (latest RTP update) and the 2009 Transportation Improvement Plan (2009 TIP) (latest RTIP update), which are used to demonstrate the region’s transportation-related efforts to achieve attainment of NAAQS (see Appendix L for excerpts of the RTP and TIP referencing the project). Therefore, without implementation of the proposed project (i.e., No Build Alternative), the project would not be consistent with the assumptions used in MTC’s regional emissions analysis and could conflict with regional air quality plans and, therefore, conflict the region from meeting its attainment goals.

ALTERNATIVES 2B AND 4

The two build alternatives would remove the existing on- and off-ramps and construct new ramps that meet seismic requirements, highway design standards, and improve safety. Both alternatives would add capacity to the on-ramp to handle the increase in future traffic volumes. The permanent impacts associated with the build alternatives are discussed in further detail below.
Chapter 3.14 – Air Quality

3.14.3.3 Regional Air Quality

A project’s regional air quality impacts would be significant if the proposed project is not included in the most recent RTP and RTIP. As discussed in the Yerba Buena Island Ramps Improvement Project Air Quality Analysis (Appendix L), the proposed project is included in the 2035 RTP, which was found to meet the transportation conformity provisions of the national CAA by MTC on April 22, 2009. The project is also included in MTC’s financially constrained 2009 TIP, which was found to conform to the CAA requirements by FHWA and FTA on November 17, 2008. Therefore, the proposed project would meet the requirements for regional air quality conformity and the change in emissions associated with the proposed project would have been accounted for in the regional SIP.

3.14.3.4 Local Air Quality

CARBON MONOXIDE HOT SPOTS

A qualitative analysis for a potential CO hot spot as a result of the proposed project was performed using the *Transportation Project-Level Carbon Monoxide Protocol* (ITS 1997). The analysis determined that the proposed project would not generate additional vehicle trips that would increase CO concentrations at local intersections. Although implementation of the proposed metering at the westbound on-ramp would result in an increase of vehicles idling, the number of vehicles at the on-ramp would not be expected to cause an exceedance of any ambient air quality standard. In addition, sensitive receptors would not be located near the on-ramp. Therefore, the proposed project would not generate CO concentrations that would exceed or contribute to an exceedance of the NAAQS or CAAQS at local intersections. Please refer to the Yerba Buena Island Ramps Improvement Project Air Quality Analysis in Appendix L for full detail of the analysis.

PM$_{2.5}$ AND PM$_{10}$ HOT SPOTS

On March 10, 2006, USEPA published a final rule that established the transportation conformity criteria and procedures for determining which transportation projects must be analyzed for local air quality impacts in PM$_{2.5}$ and PM$_{10}$ nonattainment and maintenance areas. Based on that rule, USEPA and FHWA published a guidance document, *Transportation Conformity Guidance for Qualitative Hot-spot Analyses in PM$_{2.5}$ and PM$_{10}$ Nonattainment and Maintenance Areas* (PM Guidance) that described how to qualitatively evaluate a project’s potential to cause a PM hot spot (USEPA 2010). However, in December 2010, USEPA released a new guidance document, *Transportation Conformity Guidance for Quantitative Hot-spot Analyses in PM$_{2.5}$ and PM$_{10}$ Nonattainment and Maintenance Areas* that describes how to quantitatively evaluate a project’s potential to cause a PM hot spot (USEPA 2010). The quantitative guidance has a two-year conformity grace period and therefore does not apply to the YBI Ramps Improvement project. Nevertheless, this analysis evaluates whether the proposed project would be required to conduct a quantitative PM hotspot analysis (i.e., if the project is a project of air quality concern). The determination of if the project is a project of air quality concern (POACQ) must be confirmed through an interagency consultation (IAC) process before becoming final. The MTC Air Quality Conformity Task Force concluded that the YBI Ramps Improvement Project is not a POACQ on April 28, 2011. The results of the MTC consultation for the proposed project are discussed below. The PM Guidance document describes qualitative hot spot analyses. As part of the final
A hot spot analysis is defined in 40 C.F.R. 93.101 as an estimation of likely future localized PM\(_{2.5}\) or PM\(_{10}\) pollutant concentrations and a comparison of those concentrations to the relevant air quality standards. A hot spot analysis assesses the air quality impacts on a scale smaller than an entire nonattainment or maintenance area, including, for example, congested roadway intersections and highways or transit terminals. Such an analysis is a means of demonstrating that a transportation project meets CAA conformity requirements to support state and local air quality goals with respect to potential localized air quality impacts. When a hot spot analysis is required, it is included within the project-level conformity determination that is made by FHWA or the Federal Transit Administration (FTA).

The PM Guidance document describes qualitative hot spot analysis method that does not involve dispersion modeling. This qualitative PM\(_{2.5}\) and PM\(_{10}\) hot spot analysis method involves a more streamlined review of local factors such as local monitoring data near a proposed project location. Quantitative PM\(_{2.5}\) and PM\(_{10}\) hot spot analyses will be required when appropriate methods and modeling guidance are available.

To meet statutory requirements, the March 10, 2006, final rule requires PM\(_{2.5}\) and PM\(_{10}\) hot spot analyses to be performed for POAQCs. Qualitative hot spot analyses would be done for these projects. Projects not identified as POAQCs are considered to have met statutory requirements without any further hot spot analyses.

The PM Guidance defines POAQCs as projects within a Federally designated PM\(_{2.5}\) or PM\(_{10}\) nonattainment or maintenance area that are funded or approved by FHWA or FTA, and are one of the following types of projects:

- New or expanded highway projects that have a significant number of or significant increase in diesel vehicles;

- Projects affecting intersections that are LOS D, E, or F with a significant number of diesel vehicles, or those that will change to LOS D, E, or F, because of increased traffic volumes from a significant number of diesel vehicles related to the project;

- New bus and rail terminals, and transfer points, that have a significant number of diesel vehicles congregating at a single location;

- Expanded bus and rail terminals, and transfer points, that significantly increase the number of diesel vehicles congregating at a single location; and

- Projects in, or affecting locations, areas, or categories of sites that are identified in the PM\(_{2.5}\) applicable implementation plan or implementation plan submission, as appropriate, as sites of violation or possible violation.

The PM Guidance contains examples of POAQCs and examples of projects that are not an air quality concern. Under the example of POAQC, a significant volume for a new
highway or expressway is defined as facilities with an annual average daily traffic (AADT) volume of 125,000 or more, and a significant number of diesel vehicles is defined as 8% or more of the total AADT or more than 10,000 truck AADT. A significant increase in diesel truck traffic is normally considered to be approximately 10%.

The proposed project would replace the YBI on- and off-ramps, which do not have and are not expected to have an AADT over 125,000 during current and future conditions. In addition, the proposed project would not increase the percentage of diesel truck traffic traveling along the ramps. The project would also not involve any bus or rail terminals, and transfer points. Therefore, the project would not be considered a POAQC. Concurrence with this determination must be obtained from all Federal, state, and local agencies with an air quality regulatory responsibility. The evaluation took place the Metropolitan Transportation Commission (MTC) Air Quality Conformity Task Force. The MTC is also responsible for determining that projects included in the 2035 Regional Transportation Plan (including the YBI Ramps Improvement Project) are in conformity with the State Implementation Plan for achieving the goals of the Clean Air Act. Caltrans and the SFCTA consulted the Air Quality Conformity Task Force to obtain a determination of whether the project is a “Project of Air Quality Concern” (POAQC) for PM$_{2.5}$. Consultation began in April 2011 when the SFCTA and Caltrans submitted a Project Assessment Form for PM$_{2.5}$ Interagency Consultation. The finding that the YBI Ramps Improvement Project is not a “Project of Air Quality Concern” for PM$_{2.5}$ was made by the Air Quality Conformity Task Force on April 28, 2011. On April 29, 2011, the MTC issued a final project-level conformity finding. Project-level conformity analysis also concluded that a detailed PM$_{2.5}$ hot-spot analysis was not completed because Clean Air Act and 40 CFR 93.116 requirements are met without an explicit hot-spot analysis. The 15-day public comment period for PM$_{2.5}$ ran from May 4 to May 19, 2011. A notice of finding that the YBI Ramps Improvement Project is not a POAQC and conforms with the State Implementation Plan was published in local newspapers on May 4, 2011. No public comments were received. Accordingly, an IAC was initiated with FHWA on May 24, 2011. The FHWA forwarded its concurrence on the conformity analysis on June 10, 2011 (Appendix L).

The proposed project is located in an attainment area for the PM$_{10}$ and nonattainment area for the 24-hour PM$_{2.5}$ NAAQS, and in a nonattainment area for the PM$_{10}$ and PM$_{2.5}$ CAAQSs. Based on screening using USEPA PM Guidance, the proposed project is not a POAQC because it does not meet the criteria described above. The proposed project is therefore in conformance for the PM$_{10}$ and PM$_{2.5}$ NAAQS and is unlikely to increase the frequency or severity of any existing exceedances regarding the nonattainment of state PM$_{10}$ and PM$_{2.5}$ standards.

MOBILE-SOURCE AIR TOXICS

In addition to CO and PM, MSAT emissions are of local concern. MSATs are compounds emitted from highway vehicles and nonroad equipment. In February 2006, FHWA issued the FHWA Interim Guidance to advise when and how to analyze MSATs in the NEPA process for highways. However, USEPA currently recommends following the March 2007 report entitled “Analyzing, Documenting, and Communicating the Impacts of Mobile Source Air Toxic Emissions in the NEPA Process.” FHWA and USEPA are currently undergoing mediation on the FHWA Interim Guidance. In September 2009, FHWA released an update to the FHWA Interim Guidance (i.e., Interim Guidance Update). The Interim Guidance Update did not change any project analysis thresholds, recommendations, or guidelines; however, an updated set of seven priority
MSATs were identified as having significant contributions from mobile sources that are among the national- and regional-scale cancer risk drivers.

Evaluating the environmental and health impacts from MSATs on a proposed highway project may involve several key elements, including emissions modeling, dispersion modeling to estimate ambient concentrations resulting from the estimated emissions, exposure modeling to estimate human exposure to the estimated concentrations, and then final determination of health impacts based on the estimated exposure.

The following is an excerpt from Appendix C of the FHWA Interim Guidance (FHWA 2006b):

INTRODUCTION TO MSATS

In addition to the criteria air pollutants for which there are NAAQS, USEPA also regulates air toxics. Most air toxics originate from human-made sources, including on-road mobile sources, nonroad mobile sources (e.g., airplanes), area sources (e.g., dry cleaners) and stationary sources (e.g., factories or refineries).

MSATs are a subset of the 188 air toxics defined by the CAA. The MSATs are compounds emitted from highway vehicles and nonroad equipment. Some toxic compounds are present in fuel and are emitted to the air when the fuel evaporates or passes through the engine unburned. Other toxics are emitted from the incomplete combustion of fuels or as secondary combustion products. Metal air toxics also result from engine wear or from impurities in oil or gasoline.

USEPA is the lead Federal Agency for administering the CAA and has certain responsibilities regarding the health effects of MSATs. USEPA issued a Final Rule on Controlling Emissions of Hazardous Air Pollutants from Mobile Sources, 66 FR 17229 (March 29, 2001). This rule was issued under the authority in Section 202 of the CAA. In its rule, USEPA examined the impacts of existing and newly promulgated mobile source control programs, including its reformulated gasoline (RFG) program, its national low emission vehicle (NLEV) standards, its Tier 2 motor vehicle emissions standards and gasoline sulfur control requirements, and its proposed heavy duty engine and vehicle standards and on-highway diesel fuel sulfur control requirements. Between 2000 and 2020, FHWA projects that even with a 64 percent increase in VMT, these programs would reduce on-highway emissions of benzene, formaldehyde, 1,3-butadiene, and acetaldehyde by 57–65 percent, and would reduce on-highway diesel PM emissions by 87 percent.

As a result, USEPA concluded that no further motor vehicle emissions standards or fuel standards were necessary to further control MSATs. The agency is preparing another rule under authority of CAA Section 202(l) that will address these issues and could make adjustments to the full 21 and the primary six MSATs.

INCOMPLETE OR UNAVAILABLE INFORMATION FOR PROJECT-SPECIFIC MSAT HEALTH IMPACT ANALYSIS

In FHWA’s view, information is incomplete or unavailable to credibly predict the project-specific health impacts due to changes in MSAT emissions associated with a proposed set of highway alternatives. The outcome of such an assessment, adverse or not, would be influenced more by the uncertainty introduced into the process through assumption.
and speculation rather than any genuine insight into the actual health impacts directly attributable to MSAT exposure associated with a proposed action.

The U.S. Environmental Protection Agency (USEPA) is responsible for protecting the public health and welfare from any known or anticipated effect of an air pollutant. They are the lead authority for administering the CAA and its amendments and have specific statutory obligations with respect to hazardous air pollutants and MSATs. The USEPA is in the continual process of assessing human health effects, exposures, and risks posed by air pollutants. They maintain the Integrated Risk Information System (IRIS), which is "a compilation of electronic reports on specific substances found in the environment and their potential to cause human health effects" (USEPA, http://www.epa.gov/ncea/iris/index.html). Each report contains assessments of noncancerous and cancerous effects for individual compounds and quantitative estimates of risk levels from lifetime oral and inhalation exposures with uncertainty spanning perhaps an order of magnitude.

Other organizations are also active in the research and analyses of the human health effects of MSATs, including the Health Effects Institute (HEI). Two HEI studies are summarized in Appendix D of FHWA’s Interim Guidance Update on Mobile Source Air Toxic Analysis in NEPA Documents. Among the adverse health effects linked to MSAT compounds at high exposures are cancer in humans in occupational settings; cancer in animals; and irritation to the respiratory tract, including the exacerbation of asthma. Less obvious is the adverse human health effects of MSAT compounds at current environmental concentrations (HEI, http://pubs.healtheffects.org/view.php?id=282) or in the future as vehicle emissions substantially decrease (HEI, http://pubs.healtheffects.org/view.php?id=306).

The methodologies for forecasting health impacts include emissions modeling; dispersion modeling; exposure modeling; and then final determination of health impacts—each step in the process building on the model predictions obtained in the previous step. All are encumbered by technical shortcomings or uncertain science that prevents a more complete differentiation of the MSAT health impacts among a set of project alternatives. These difficulties are magnified for lifetime (i.e., 70-year) assessments, particularly because unsupportable assumptions would have to be made regarding changes in travel patterns and vehicle technology (which affects emissions rates) over that time frame, since such information is unavailable. The results produced by the USEPA’s MOBILE6.2 model, the Cal/EPA's Emfac2007 model, and USEPA’s DraftMOVES2009 model in forecasting MSAT emissions are highly inconsistent. Indications from the development of the MOVES model are that MOBILE6.2 significantly underestimates diesel particulate matter (PM) emissions and significantly overestimates benzene emissions.

Regarding air dispersion modeling, an extensive evaluation of USEPA’s guideline CAL3QHC model was conducted in an NCHRP study (http://www.epa.gov/scram001/dispersion_alt.htm#hyroad), which documents poor model performance at 10 sites across the country—three where intensive monitoring was conducted plus an additional seven with less intensive monitoring. The study indicates a bias of the CAL3QHC model to overestimate concentrations near highly congested intersections and underestimate concentrations near uncongested intersections. The consequence of this is a tendency to overstate the air quality benefits of mitigating congestion at intersections. Such poor model performance is less difficult to manage for demonstrating compliance with NAAQS for relatively short time frames than it is for forecasting individual exposure over an entire lifetime, especially given that some information needed for estimating 70-year
lifetime exposure is unavailable. It is particularly difficult to reliably forecast MSAT exposure near roadways, and to determine the portion of time that people are actually exposed at a specific location.

There are considerable uncertainties associated with the existing estimates of toxicity of the various MSATs because of factors such as low-dose extrapolation and translation of occupational exposure data to the general population, a concern expressed by HEI (http://pubs.healtheffects.org/view.php?id=282). As a result, there is no national consensus on air dose-response values assumed to protect the public health and welfare for MSAT compounds, and in particular for diesel PM. The USEPA (http://www.epa.gov/risk/basicinformation.htm#g) and the HEI (http://pubs.healtheffects.org/getfile.php?u=395) have not established a basis for quantitative risk assessment of diesel PM in ambient settings.

There is also the lack of a national consensus on an acceptable level of risk. The current context is the process used by the USEPA as provided by the CAA to determine whether more stringent controls are required to provide an ample margin of safety to protect public health or to prevent an adverse environmental effect for industrial sources subject to the maximum achievable control technology standards, such as benzene emissions from refineries. The decision framework is a two-step process. The first step requires USEPA to determine a “safe” or “acceptable” level of risk due to emissions from a source, which is generally no greater than approximately 100 in a million. Additional factors are considered in the second step, the goal of which is to maximize the number of people with risks less than 1 in a million due to emissions from a source. The results of this statutory two-step process do not guarantee that cancer risks from exposure to air toxics are less than 1 in a million; in some cases, the residual risk determination could result in maximum individual cancer risks that are as high as approximately 100 in a million. In a June 2008 decision, the U.S. Court of Appeals for the District of Columbia Circuit upheld USEPA’s approach to addressing risk in its two-step decision framework. Information is incomplete or unavailable to establish that even the largest of highway projects would result in levels of risk greater than safe or acceptable.

Because of the limitations in the methodologies for forecasting health impacts described, any predicted difference in health impacts between alternatives is likely to be much smaller than the uncertainties associated with predicting the impacts. Consequently, the results of such assessments would not be useful to decision makers, who would need to weigh this information against project benefits, such as reducing traffic congestion, accident rates, and fatalities plus improved access for emergency response, that are better suited for quantitative analysis.

Credible Scientific Evidence Relevant to Evaluating the Impacts of MSATs

Research into the health impacts of MSATs is ongoing. For different emission types, there are a variety of studies that show that some either are statistically associated with adverse health outcomes through epidemiological studies (frequently based on emissions levels found in occupational settings) or that animals demonstrate adverse health outcomes when exposed to large doses.

Exposure to toxics has been a focus of a number of USEPA efforts. Most notably, the agency conducted the National Air Toxics Assessment (NATA) in 1996 to evaluate modeled estimates of human exposure applicable to the county level. While not intended for use as a measure of or benchmark for local exposure, the modeled estimates in the
NATA database best illustrate the levels of various toxics when aggregated to a national or State level.

The USEPA is in the process of assessing the risks of various kinds of exposures to these pollutants. The USEPA IRIS is a database of human health effects that may result from exposure to various substances found in the environment. The IRIS database is located at http://www.epa.gov/iris. The following toxicity information for the six prioritized MSATs was taken from the IRIS database Weight of Evidence Characterization summaries. This information is taken verbatim from USEPA’s IRIS database and represents the Agency’s most current evaluations of the potential hazards and toxicology of these chemicals or mixtures, unless noted otherwise.

- **Benzene** is characterized as a known human carcinogen.

- The potential carcinogenicity of **acrolein** cannot be determined because the existing data are inadequate for an assessment of human carcinogenic potential for either the oral or inhalation route of exposure.

- **Formaldehyde** is a probable human carcinogen, based on limited evidence in humans, and sufficient evidence in animals.

- **1,3-butadiene** is characterized as carcinogenic to humans by inhalation.

- **Acetaldehyde** is a probable human carcinogen based on increased incidence of nasal tumors in male and female rats and laryngeal tumors in male and female hamsters after inhalation exposure.

- **Diesel PM exhaust** is likely to be carcinogenic to humans by inhalation from environmental exposures. Diesel exhaust as reviewed in this document is the combination of diesel particulate matter and diesel exhaust organic gases.

- **Diesel exhaust** also represents chronic respiratory effects, possibly the primary noncancer hazard from MSATs. Prolonged exposures may impair pulmonary function and could produce symptoms, such as cough, phlegm, and chronic bronchitis. Exposure relationships have not been developed from these studies.

- **Naphthalene** is classified in Group C, a possible human carcinogen. This is based on the inadequate data of carcinogenicity in humans exposed to naphthalene via the oral and inhalation routes, and the limited evidence of carcinogenicity in animals via the inhalation route.

- Epidemiological studies have shown an increase in lung cancer cases for individuals exposed to **polycyclic organic matter** sources such as coke oven emissions, roof tar emissions, and cigarette smoke. Seven polycyclic organic matter compounds have been classified as Group B2, probable human carcinogens (USEPA 2009d).

There have been other studies that address MSAT health impacts in proximity to roadways. The Health Effects Institute, a nonprofit organization funded by USEPA, FHWA, and industry, has undertaken a major series of studies to research near-roadway...
MSAT “hot spots,” the health implications of the entire mix of mobile source pollutants, and other topics. The final summary of the series is not expected for several years.

Some recent studies have reported that proximity to roadways is related to adverse health outcomes—particularly respiratory problems (South Coast Air Quality Management District, Multiple Air Toxic Exposure Study-II (2000); Highway Health Hazards, The Sierra Club (2004) summarizing 24 Studies on the relationship between health and air quality); NEPA’s Uncertainty in the Federal Legal Scheme Controlling Air Pollution from Motor Vehicles, Environmental Law Institute, 35 ELR 10273 (2005) with health studies cited therein).

Much of this research is not specific to MSATs but instead surveys the full spectrum of both criteria air and other pollutants.

This document provides a qualitative assessment of MSAT emissions relative to the various alternatives and has acknowledged that all the project alternatives may result in increased exposure to MSAT emissions in certain locations.

It is possible to qualitatively assess the levels of future MSAT emissions under the project. A qualitative analysis provides a basis for identifying and comparing the potential differences among MSAT emissions, if any, from the various alternatives. The qualitative assessment presented below is derived in part from a study conducted by the FHWA entitled A Methodology for Evaluating Mobile Source Air Toxic Emissions Among Transportation Project Alternatives (FHWA 2009c).

EVALUATION OF PROJECT MSAT POTENTIAL

The FHWA has developed a tiered approach (FHWA Interim Guidance and Interim Guidance Update) for analyzing MSATs in NEPA documents. This tiered approach has not been altered in the Interim Guidance Update. Depending on the specific project circumstances, FHWA has identified three levels of analysis:

- **Category 1**: No analysis for projects with no potential for meaningful MSAT effects,
- **Category 2**: Qualitative analysis for projects with low potential MSAT effects, or
- **Category 3**: Quantitative analysis to differentiate alternatives for projects with higher potential MSAT effects.

Category 1 is limited to projects that qualify as a categorical exclusion under 23 C.F.R. 771.117(c); are exempt under the CAA conformity rule under 40 C.F.R. 93.126; or have no meaningful impacts on traffic volumes or vehicle mix. The proposed project does not meet any of the Category 1 requirements.

For a project to be of the magnitude to have a higher potential for MSAT effects, Category 3, a project must:

- Create or significantly alter a major intermodal freight facility that has the potential to concentrate high levels of diesel particulate matter in a single location; or
Chapter 3.14 – Air Quality

- Create new or add significant capacity to urban highways such as interstates, urban arterials, or urban collector-distributor routes with traffic volumes where the AADT is projected to be in the range of 140,000 to 150,000, or greater, by the design year; and

- Be proposed to be located in proximity to populated areas or in rural areas, in proximity to concentrations of vulnerable populations (i.e., schools, nursing homes, hospitals).

The proposed project would not alter a major intermodal freight facility or add significant capacity to urban highways where AADT is projected to be above 140,000. Therefore, by default, the proposed project would be classified as a Category 2 project with low potential MSAT effects. A Category 2 MSAT analysis is recommended for projects that would improve operations of highway, transit or freight without adding substantial new capacity or without creating a facility that is likely to meaningfully increase emissions. A qualitative MSAT analysis should be performed for Category 2 projects discussing the expected effect of the project on traffic volumes, vehicle mix, or routing of traffic. The analysis should also qualitatively evaluate the change in MSAT emissions based on the expected effect of the project on VMT, vehicle mix, and vehicle speeds.

PROJECT-SPECIFIC MSAT IMPACT ANALYSIS

The amount of MSATs emitted would be proportional to the VMT, assuming that other variables such as fleet mix are the same for each alternative. In addition, the FHWA’s A Methodology for Evaluating Mobile Source Air Toxic Emissions Among Transportation Project Alternatives study concluded that the most important factors affecting MSAT emissions are VMT and levels of traffic congestion (FHWA 2009c). A higher level of traffic congestion and reduced vehicle speeds were found to increase emission factors of all seven priority MSATs except for diesel PM. The emission rate for diesel PM is not as dependent on speeds as the other MSATs. Based on a review of the traffic study, year 2035 (i.e., build-out year) traffic volumes and associated VMT estimated for the two build alternatives and the No Build Alternative would be similar. The reason being, although the project would add additional capacity, the project itself would not generate trips or attract new trips as a result of its completion. In addition, the proposed project would not develop a land use that would alter the vehicle mix traveling along the ramps. Therefore, MSAT emissions associated with each alternative would vary as a function of vehicle congestion along the on- and off-ramps. The traffic study determined that compared with the No Build Alternative, the average operating speed on the on-ramp would be lower for the Build condition due to the proposed metering system (i.e., one-to-one ratio of vehicles exiting and entering the SFOBB). Under the No Build Alternative (i.e., no metering), the average vehicle speed on the on-ramp would be slightly higher due to the lack of metering. However, it should be noted that the free-flowing and unmetered on-ramp under the No Build Alternative could cause congestion and reduced speeds on the SFOBB. The operating speeds on the SFOBB were not analyzed in the traffic study. With respect to the operation of the on-ramp, the two build alternatives would result in more delays and queuing as a result of the proposed metering for the on-ramp, and therefore a lower average operating speed. According the A Methodology for Evaluating Mobile Source Air Toxic Emissions Among Transportation Project Alternatives study, it is anticipated that the build alternatives would result in higher emissions of MSATs than the No Build Alternative.
Regardless of the alternative chosen, emissions would likely be lower than present levels in the design year as a result of USEPA’s national control programs that are projected to reduce MSAT emissions by 57–87 percent between 2000 and 2020 (FHWA 2006b). This reduction in MSAT emissions is projected to occur even with a 64-percent increase in VMT. Local conditions may differ from these national projections in terms of fleet mix and turnover, VMT growth rates, and local control measures. However, the magnitude of the USEPA-projected reductions is so great (even after accounting for VMT growth) that MSAT emissions in the study area are likely to be lower in the future in nearly all cases.

3.14.3.5 Other Permanent Impacts

ODORS

The proposed project does not include any land uses that would generate offensive odors. In addition, the new ramps would not encourage heavy-duty diesel truck traffic that could potentially be a permanent source of odors. Therefore, it is not anticipated that the proposed project would generate or cause an increase in odiferous compounds in the project area.

3.14.4 Climate Change

Climate change is analyzed in Chapter 4. Neither USEPA nor FHWA has promulgated explicit guidance or methodology to conduct project-level greenhouse gas analysis. As stated on FHWA’s climate change website (http://www.fhwa.dot.gov/hep/climate/index.htm), climate change considerations should be integrated throughout the transportation decision-making process—from planning through project development and delivery. Addressing climate change mitigation and adaptation up front in the planning process will facilitate decision making and improve efficiency at the program level, and will inform the analysis and stewardship needs of project-level decision making. Climate change considerations can easily be integrated into many planning factors, such as supporting economic vitality and global efficiency, increasing safety and mobility, enhancing the environment, promoting energy conservation, and improving the quality of life.

Because there have been more requirements set forth in California legislation and executive orders regarding climate change, the issue is addressed in Chapter 4 of this environmental document and may be used to inform the NEPA decision. The four strategies set forth by FHWA to lessen climate change impacts do correlate with efforts that the State has undertaken and is undertaking to deal with transportation and climate change; the strategies include improved transportation system efficiency, cleaner fuels, cleaner vehicles, and reduction in the growth of vehicle hours travelled.

3.14.5 Avoidance, Minimization, and/or Mitigation Measures

Under the No Build Alternative, no construction activities would occur and current traffic operations would continue. Therefore, the avoidance, minimization, and/or mitigation measures described below apply to the construction activities that would be associated with the two build alternatives. These measures are recommended by the BAAQMD to minimize the generation of fugitive PM$_{10}$ dust emissions. The contractor would be required to implement these “Basic Control Measures” during all construction activities. The abatement measures listed in the *Yerba Buena Island Ramps Improvement Project*
Air Quality Analysis (Appendix L) are also required to be implemented during construction activities. In addition, the project site is approximately 1.62 hectares (4 acres); therefore, according to the BAAQMD CEQA Guidelines, the contractor is required to implement the BAAQMD’s “Enhanced Control Measures.”

The following “Basic Control Measures” are required for all construction activities:

- Water all active construction areas at least twice daily.
- Cover all trucks hauling soil, sand, and other loose materials or require all trucks to maintain at least 61 centimeters (24 inches) of freeboard.
- Pave, apply water three times daily, or apply (nontoxic) soil stabilizers on all unpaved access roads, parking areas, and staging areas at construction sites.
- Sweep daily (with water sweepers) all paved access roads, parking areas, and staging areas at construction sites.
- Sweep streets daily (with water sweepers) if visible soil material is carried onto adjacent public streets.

These additional “Enhanced Control Measures” should be implemented if the project site would exceed 1.62 hectares (4 acres):

- Include all “Basic” control measures listed above.
- Hydroseed or apply (nontoxic) soil stabilizers to inactive construction areas (previously graded areas inactive for 10 days or more).
- Enclose, cover, water twice daily, or apply (nontoxic) soil binders to exposed stockpiles (dirt, sand, etc.)
- Limit traffic speeds on unpaved roads to 24 kilometers (14.9 miles) per hour.
- Install sandbags or other erosion control measures to prevent silt runoff to public roadways.
- Replant vegetation in disturbed areas as quickly as possible.
3.15 Noise

3.15.1 Regulatory Setting

NEPA and CEQA provide the broad basis for analyzing and abating highway traffic noise effects. The intent of these laws is to promote the general welfare and to foster a healthy environment. The requirements for noise analysis and consideration of noise abatement and/or mitigation, however, differ between NEPA and CEQA.

3.15.1.1 California Environmental Quality Act

CEQA requires a strictly baseline versus build analysis to assess whether a proposed project will have a noise impact. If a proposed project is determined to have a significant noise impact under CEQA, then CEQA dictates that mitigation measures must be incorporated into the project unless such measures are not feasible. The rest of this section will focus on the NEPA-23 C.F.R. 772 noise analysis; please see Chapter 4 of this document for further information on noise analysis under CEQA.

3.15.1.2 National Environmental Policy Act and 23 C.F.R. 772

For highway transportation projects with FHWA (and Caltrans, as assigned) involvement, the Federal-Aid Highway Act of 1970 and the associated implementing regulations (23 C.F.R. 772) govern the analysis and abatement of traffic noise impacts. The regulations require that potential noise impacts in areas of frequent human use be identified during the planning and design of a highway project. The regulations contain noise abatement criteria (NAC) (Table 3.15-1) that are used to determine when a noise impact would occur. The NAC differ depending on the type of land use under analysis. For example, the NAC for residences (67 A-weighted decibels [dBA] average hourly noise level [Leq]) is lower than the NAC for commercial areas (72 dBA). The following table lists the NAC criteria for use in the NEPA and 23 C.F.R. 772 analysis.

<table>
<thead>
<tr>
<th>Activity Category</th>
<th>NAC, Hourly A-Weighted Noise Level (dBA Leq)</th>
<th>Description of Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>57 Exterior</td>
<td>Lands on which serenity and quiet are of extraordinary significance and serve an important public need and where the preservation of those qualities is essential if the area is to continue to serve its intended purpose</td>
</tr>
<tr>
<td>B</td>
<td>67 Exterior</td>
<td>Picnic areas, recreation areas, playgrounds, active sport areas, parks, residences, motels, hotels, schools, churches, libraries, and hospitals</td>
</tr>
<tr>
<td>C</td>
<td>72 Exterior</td>
<td>Developed lands, properties, or activities not included in Categories A or B above</td>
</tr>
<tr>
<td>D</td>
<td>–</td>
<td>Undeveloped lands</td>
</tr>
<tr>
<td>E</td>
<td>52 Interior</td>
<td>Residence, motels, hotels, public meeting rooms, schools, churches, libraries, hospitals, and auditoriums</td>
</tr>
</tbody>
</table>

Source: 23 C.F.R. 772

Table 3.15-2 lists the noise levels of common activities to enable readers to compare the actual and predicted highway noise-levels discussed in this section with common activities.
Table 3.15–2: Noise Levels for Common Activities

<table>
<thead>
<tr>
<th>Common Outdoor Activities</th>
<th>Noise Level (dBA)</th>
<th>Common Indoor Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet Fly-over at 300m (1000 ft)</td>
<td>110</td>
<td>Rock Band</td>
</tr>
<tr>
<td>Gas Lawn Mower at 1 m (3 ft)</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Diesel Truck at 15 m (50 ft), at 80 km (50 mph)</td>
<td>90</td>
<td>Food Blender at 1 m (3 ft)</td>
</tr>
<tr>
<td>Noisy Urban Area, Daytime</td>
<td>80</td>
<td>Garbage Disposal at 1 m (3 ft)</td>
</tr>
<tr>
<td>Gas Lawn Mower, 30 m (100 ft)</td>
<td>70</td>
<td>Vacuum Cleaner at 3 m (10 ft)</td>
</tr>
<tr>
<td>Commercial Area</td>
<td>60</td>
<td>Normal Speech at 1 m (3 ft)</td>
</tr>
<tr>
<td>Heavy Traffic at 90 m (300 ft)</td>
<td>50</td>
<td>Large Business Office</td>
</tr>
<tr>
<td>Quiet Urban Daytime</td>
<td>40</td>
<td>Theater, Large Conference Room</td>
</tr>
<tr>
<td>Quiet Urban Nighttime</td>
<td>30</td>
<td>Library</td>
</tr>
<tr>
<td>Quiet Suburban Nighttime</td>
<td>20</td>
<td>Bedroom at Night, Concert Hall</td>
</tr>
<tr>
<td>Quiet Rural Nighttime</td>
<td>10</td>
<td>Broadcast/Recording Studio</td>
</tr>
<tr>
<td>Lowest Threshold of Human Hearing</td>
<td>0</td>
<td>Lowest Threshold of Human Hearing</td>
</tr>
</tbody>
</table>

Source: Caltrans 2008a

In accordance with Caltrans’ Traffic Noise Analysis Protocol for New Highway Construction, Reconstruction, and Retrofit Barrier Projects (Caltrans 2006), a noise impact occurs when the future noise level with the project results in a substantial increase in noise level (defined as a 12 dBA or more increase) or when the future noise level with the project approaches or exceeds the NAC. Approaching the NAC is defined as coming within 1 dBA of the NAC. Construction impacts would occur if noise levels exceed 86 dBA at 50 feet between 9 p.m. and 6 a.m. and if construction equipment are not properly equipped with a manufacturer-recommended muffler.

If it is determined that the project will have noise impacts, then potential abatement measures must be considered. Noise abatement measures that are determined to be reasonable and feasible at the time of final design are incorporated into the project plans and specifications. This document discusses noise abatement measures that would likely be incorporated in the project.

Caltrans’ Traffic Noise Analysis Protocol (Caltrans 2006) sets forth the criteria for determining when an abatement measure is reasonable and feasible. Feasibility of noise...
abatement is basically an engineering concern. A minimum 5-dBA reduction in the future noise level must be achieved for an abatement measure to be considered feasible. Other considerations include topography, access requirements, other noise sources, and safety considerations. The reasonableness determination is basically a cost-benefit analysis. Factors used in determining whether a proposed noise abatement measure is reasonable include residents’ acceptance, the absolute noise level, build versus existing noise, environmental impacts of abatement, public and local agencies input, newly constructed development versus development predating 1978, and the cost per benefited residence.

VIBRATION

Ground-borne vibration can be a source of annoyance to people or a source of structural damage to some types of buildings. Although vibration measurements can be presented in many different forms, peak particle velocity (PPV) is the unit of measure used most often to assess building damage potential. Caltrans has identified vibration impact criteria for both building damage potential and human annoyance. Both human annoyance effects and building damage effects depend in part on whether vibration events are isolated, discrete events or a relatively continuous episode of vibrations. In general, there is less sensitivity to single, discrete events than to continuous events or frequently repeated discrete events. Table 3.15-3 below summarizes Caltrans criteria for assessing the effects of ground-borne vibration.

3.15.2 Affected Environment

In January 2011, a Noise Study Report (NSR) was prepared for this project and is incorporated by reference (Yerba Buena Ramps Improvement Project, Final Noise Study Report. January, 2011a) and also included as Appendix M. The noise receivers analyzed in this study are located along both sides of I-80 and the SFOBB within the project area (see Table 3.15-10). A map displaying the location of the noise receivers analyzed in this study is included in Figure 3.15-1.

YBI is surrounded by San Francisco Bay waters; the San Francisco mainland is about 3.7 kilometers (2.3 miles) to the west and Oakland is about 3.2 kilometers (2 miles) to the east. YBI is a natural island that has been used by private parties and the U.S. Army, USCG, and U.S. Navy since the 1840s; the island is steeply sloped and highly vegetated. USCG Sector San Francisco occupies 19.39 hectares (47.9 acres) of land on the southeast side of YBI, and Caltrans occupies about 8.1 hectares (20 acres) of YBI with portions of the SFOBB and tunnel.

Adjacent land uses include residential units, a limited amount of commercial development, and a USCG station intermixed with undeveloped hillsides. The USCG station incorporates a separate area within the facility that has varying land uses, including residential, commercial, office, and industrial. Commercial development is scattered to the north of the project area. Additional residential, commercial, and industrial development can be found west of YBI on TI.

Land uses on the eastern side of YBI in the vicinity of the proposed project include Quarters 1–7. Quarters 1–7 were built in the early 1900s as officers’ quarters and comprise a Historic District. Quarters 1–7 have been renovated and are leased out by the City and County as locations for events and meetings. Two other buildings (Buildings
Table 3.15–3: Summary of Caltrans Vibration Criteria

<table>
<thead>
<tr>
<th>Type of Criteria</th>
<th>Threshold Condition</th>
<th>Peak Particle Velocity (PPV), centimeters/second (inches/second)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Transient Sources Continuous or Frequent Sources</td>
</tr>
<tr>
<td>Human Response</td>
<td>Barely perceptible</td>
<td>0.10 (0.04)</td>
</tr>
<tr>
<td></td>
<td>Distinctly perceptible</td>
<td>0.64 (0.25)</td>
</tr>
<tr>
<td></td>
<td>Strongly perceptible; may be annoying to some people in buildings</td>
<td>2.29 (0.9)</td>
</tr>
<tr>
<td></td>
<td>Severe; unpleasant for people in buildings; unacceptable to pedestrians on bridges</td>
<td>5.08 (2.0)</td>
</tr>
<tr>
<td>Building Damage</td>
<td>Cosmetic damage threshold for extremely fragile historic buildings, ruins, and ancient monuments</td>
<td>0.30 (0.12)</td>
</tr>
<tr>
<td></td>
<td>Cosmetic damage threshold for fragile buildings</td>
<td>0.51 (0.2)</td>
</tr>
<tr>
<td></td>
<td>Cosmetic damage threshold for historic and some old buildings</td>
<td>1.27 (0.5)</td>
</tr>
<tr>
<td></td>
<td>Cosmetic damage threshold for older residential structures</td>
<td>1.27 (0.5)</td>
</tr>
<tr>
<td></td>
<td>Cosmetic damage threshold for newer residential structures</td>
<td>2.54 (1.0)</td>
</tr>
<tr>
<td></td>
<td>Cosmetic damage threshold for modern industrial/commercial buildings</td>
<td>5.08 (2.0)</td>
</tr>
</tbody>
</table>

Source: Caltrans 2002 (Technical Advisory, Transportation Related Earthborne Vibrations).

213 and 262) are located on the eastern side of YBI. Building 213 is currently vacant; however, a fire truck owned by the City and County of San Francisco is stored inside. Building 262, known as the Torpedo Building, was constructed in 1891 and is eligible for the NRHP.

USCG Sector San Francisco is an active military installation and occupies 19.39 hectares (47.9 acres) of land on the southeast side of YBI. It includes administrative, training, operation, and maintenance spaces and a few single family residential homes in addition to dock space. Station San Francisco is collocated with the larger Sector San Francisco.

3.15.2.1 Noise Receivers

The noise receivers analyzed in the project area are located along both the east and west sides of I-80 SF0BB and the proposed locations for the ramp improvements, as shown in Figures 3.15-2 and 3.15-3. The majority of Category B land uses in the project area are residential, single-family, and multiple-family. This analysis includes 17
receivers that represent four single-family residential units, 20 multiple-family residential units, 11 commercial/governmental units, one recreational area, and one driveway.

The single-family residential units for which noise levels were assessed are located east of the YBI SFOBB stretch, along Hillcrest Road. Single-family residential units located in the USCG station and serving as the officers quarters are represented by R-11, R-14, and R-15, which are located along the eastern side of Hillcrest Road. R-11, R-14, and R-15 are known as Quarters 9 and Quarters A and B, respectively. R-12, located in the driveway nearest the project site of a residential unit, was used as a model calibration point, whereas R-11 represents the rear yard, which is assumed to be the area of frequent human use. R-13 is located between Quarters A and B and represents a recreational area.

R-3 and R-6 through R-9 represent 20 multiple-family residential units in the project area (Figure 3.15-1). R-3 represents an abandoned barrack. R-6 through R-9 represent USCG quarters. No exterior use area was associated with USCG enlisted quarters; thus, R-6 through R-9 were placed at the building façade to estimate the interior noise levels. The existing USCG quarters are assumed to provide 20-dBA attenuation from exterior noise sources.

Category C receivers evaluated in the impact assessment are commercial/governmental development and are represented by R-1, R-2, R-4, R-5, R-10, R-16, and R-17 (Figure 3.15-1). R-1, R-2, and R-17 represent event rental facilities. R-16 represents a noncommercial land use: the USCG Vessel Traffic Service complex parking lot. R-4, R-5, and R-10 represent nonresidential uses, offices, and parade grounds, at the USCG station. R-1, R-2, R-4, R-5, and R-10 have direct lines of sight to the proposed ramp improvement project location and the YBI SFOBB stretch.

EXISTING NOISE LEVEL MEASUREMENTS

Site visits and noise measurements were conducted on March 30, and April 1 and 6, 2009 (see Appendix M for details). For each measurement location, the sound level meter was placed 1.5 meters (4.9 feet) above the existing ground elevation. The 24-hour long-term (LT) measurements are summarized in Tables 3.15-4 through 3.15-8.

Measurement data for LT-1, Table 3.15-4, indicate that the loudest periods of the day occur during the 6:00 a.m. hour. Table 3.15-4 also indicates noise levels are consistent for most of the day as they do not fluctuate by more than 1 dBA between 4:00 a.m. and 10:00 p.m.

Measurement data for LT-2, Table 3.15-5, indicate that the loudest periods of the day occur during the 7:00 a.m. hour. Table 3.15-5 also indicates daytime noise levels are relatively consistent as they do not fluctuate by more than 2 dBA between 6:00 a.m. and 8:00 p.m.

Measurement data for LT-3, Table 3.15-6, indicate that the loudest periods of the day occur during the 7:00 a.m. hour. Table 3.15-6 also indicates noise levels are consistent between 6:00 a.m. and 6:00 p.m. as noise levels do not fluctuate by more than 1 dBA during this period.
Table 3.15–4: Summary of LT-1
March 30, 2009

<table>
<thead>
<tr>
<th>Time</th>
<th>L_{eq}</th>
<th>Time</th>
<th>L_{eq}</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00 a.m.</td>
<td>65.3</td>
<td>12:00 p.m.</td>
<td>71.1</td>
</tr>
<tr>
<td>01:00 a.m.</td>
<td>60.9</td>
<td>13:00 p.m.</td>
<td>71.2</td>
</tr>
<tr>
<td>02:00 a.m.</td>
<td>61.5</td>
<td>14:00 p.m.</td>
<td>70.4</td>
</tr>
<tr>
<td>03:00 a.m.</td>
<td>65.2</td>
<td>15:00 p.m.</td>
<td>70.0</td>
</tr>
<tr>
<td>04:00 a.m.</td>
<td>70.3</td>
<td>16:00 p.m.</td>
<td>69.7</td>
</tr>
<tr>
<td>05:00 a.m.</td>
<td>71.3</td>
<td>17:00 p.m.</td>
<td>69.6</td>
</tr>
<tr>
<td>06:00 a.m.</td>
<td>71.4</td>
<td>18:00 p.m.</td>
<td>71.0</td>
</tr>
<tr>
<td>07:00 a.m.</td>
<td>71.1</td>
<td>19:00 p.m.</td>
<td>71.2</td>
</tr>
<tr>
<td>08:00 a.m.</td>
<td>70.3</td>
<td>20:00 p.m.</td>
<td>71.0</td>
</tr>
<tr>
<td>09:00 a.m.</td>
<td>71.3</td>
<td>21:00 p.m.</td>
<td>70.4</td>
</tr>
<tr>
<td>10:00 a.m.</td>
<td>71.2</td>
<td>22:00 p.m.</td>
<td>68.8</td>
</tr>
<tr>
<td>11:00 a.m.</td>
<td>70.9</td>
<td>23:00 p.m.</td>
<td>67.3</td>
</tr>
</tbody>
</table>

Bolded numbers indicate the loudest hour.

Table 3.15–5: Summary of LT-2
March 30, 2009

<table>
<thead>
<tr>
<th>Time</th>
<th>L_{eq}</th>
<th>Time</th>
<th>L_{eq}</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00 a.m.</td>
<td>61.0</td>
<td>12:00 p.m.</td>
<td>66.1</td>
</tr>
<tr>
<td>01:00 a.m.</td>
<td>60.3</td>
<td>13:00 p.m.</td>
<td>66.7</td>
</tr>
<tr>
<td>02:00 a.m.</td>
<td>60.2</td>
<td>14:00 p.m.</td>
<td>66.8</td>
</tr>
<tr>
<td>03:00 a.m.</td>
<td>60.5</td>
<td>15:00 p.m.</td>
<td>66.5</td>
</tr>
<tr>
<td>04:00 a.m.</td>
<td>63.6</td>
<td>16:00 p.m.</td>
<td>66.5</td>
</tr>
<tr>
<td>05:00 a.m.</td>
<td>65.7</td>
<td>17:00 p.m.</td>
<td>66.7</td>
</tr>
<tr>
<td>06:00 a.m.</td>
<td>66.9</td>
<td>18:00 p.m.</td>
<td>66.8</td>
</tr>
<tr>
<td>07:00 a.m.</td>
<td>67.4</td>
<td>19:00 p.m.</td>
<td>66.1</td>
</tr>
<tr>
<td>08:00 a.m.</td>
<td>67.2</td>
<td>20:00 p.m.</td>
<td>65.8</td>
</tr>
<tr>
<td>09:00 a.m.</td>
<td>66.8</td>
<td>21:00 p.m.</td>
<td>64.9</td>
</tr>
<tr>
<td>10:00 a.m.</td>
<td>66.5</td>
<td>22:00 p.m.</td>
<td>64.0</td>
</tr>
<tr>
<td>11:00 a.m.</td>
<td>66.0</td>
<td>23:00 p.m.</td>
<td>62.8</td>
</tr>
</tbody>
</table>

Bolded numbers indicate the loudest hour.
Figure 3.15-1
Noise Measurement and Receiver Locations
Figure 3.15-3
Alternative 4 and Receiver Locations
Table 3.15–6: Summary of LT-3
March 30, 2009

<table>
<thead>
<tr>
<th>Time</th>
<th>L_{eq}</th>
<th>Time</th>
<th>L_{eq}</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00 a.m.</td>
<td>62.6</td>
<td>12:00 p.m.</td>
<td>69.32</td>
</tr>
<tr>
<td>01:00 a.m.</td>
<td>61.7</td>
<td>13:00 p.m.</td>
<td>69.7</td>
</tr>
<tr>
<td>02:00 a.m.</td>
<td>61.6</td>
<td>14:00 p.m.</td>
<td>69.4</td>
</tr>
<tr>
<td>03:00 a.m.</td>
<td>63.1</td>
<td>15:00 p.m.</td>
<td>69.0</td>
</tr>
<tr>
<td>04:00 a.m.</td>
<td>66.5</td>
<td>16:00 p.m.</td>
<td>68.8</td>
</tr>
<tr>
<td>05:00 a.m.</td>
<td>68.2</td>
<td>17:00 p.m.</td>
<td>69.0</td>
</tr>
<tr>
<td>06:00 a.m.</td>
<td>69.6</td>
<td>18:00 p.m.</td>
<td>69.0</td>
</tr>
<tr>
<td>07:00 a.m.</td>
<td>70.4</td>
<td>19:00 p.m.</td>
<td>68.2</td>
</tr>
<tr>
<td>08:00 a.m.</td>
<td>69.5</td>
<td>20:00 p.m.</td>
<td>68.1</td>
</tr>
<tr>
<td>09:00 a.m.</td>
<td>69.4</td>
<td>21:00 p.m.</td>
<td>67.1</td>
</tr>
<tr>
<td>10:00 a.m.</td>
<td>69.1</td>
<td>22:00 p.m.</td>
<td>66.3</td>
</tr>
<tr>
<td>11:00 a.m.</td>
<td>69.0</td>
<td>23:00 p.m.</td>
<td>65.0</td>
</tr>
</tbody>
</table>

Bolded numbers indicate the loudest hour.

Measurement data for LT-4, Table 3.15-7, indicate that the loudest periods of the day occur during the 6:00 a.m. hour. Table 3.15-7 also indicates noise levels do not fluctuate by more than 2 dBA between 5:00 a.m. and 4:00 p.m. but there is a drop in noise levels after 6:00 p.m., which continues until 6:00 a.m.

Table 3.15–7: Summary of LT-4
April 2, 2009

<table>
<thead>
<tr>
<th>Time</th>
<th>L_{eq}</th>
<th>Time</th>
<th>L_{eq}</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00 a.m.</td>
<td>56.8</td>
<td>12:00 p.m.</td>
<td>63.0</td>
</tr>
<tr>
<td>01:00 a.m.</td>
<td>55.5</td>
<td>13:00 p.m.</td>
<td>64.0</td>
</tr>
<tr>
<td>02:00 a.m.</td>
<td>54.9</td>
<td>14:00 p.m.</td>
<td>62.0</td>
</tr>
<tr>
<td>03:00 a.m.</td>
<td>56.5</td>
<td>15:00 p.m.</td>
<td>62.3</td>
</tr>
<tr>
<td>04:00 a.m.</td>
<td>59.9</td>
<td>16:00 p.m.</td>
<td>61.1</td>
</tr>
<tr>
<td>05:00 a.m.</td>
<td>63.6</td>
<td>17:00 p.m.</td>
<td>61.3</td>
</tr>
<tr>
<td>06:00 a.m.</td>
<td>64.5</td>
<td>18:00 p.m.</td>
<td>62.6</td>
</tr>
<tr>
<td>07:00 a.m.</td>
<td>64.3</td>
<td>19:00 p.m.</td>
<td>61.4</td>
</tr>
<tr>
<td>08:00 a.m.</td>
<td>64.1</td>
<td>20:00 p.m.</td>
<td>61.7</td>
</tr>
<tr>
<td>09:00 a.m.</td>
<td>63.8</td>
<td>21:00 p.m.</td>
<td>61.4</td>
</tr>
<tr>
<td>10:00 a.m.</td>
<td>63.6</td>
<td>22:00 p.m.</td>
<td>61.3</td>
</tr>
<tr>
<td>11:00 a.m.</td>
<td>62.9</td>
<td>23:00 p.m.</td>
<td>60.3</td>
</tr>
</tbody>
</table>

Bolded numbers indicate the loudest hour.
Measurement data for LT-5, Table 3.15-8, indicate that the loudest periods of the day occur during the 5:00 a.m. hour. Table 3.15-8 also indicates noise levels fluctuate by approximately 2 dBA between 4:00 a.m. and 3:00 p.m. but there is a marked drop in noise levels after 3:00 p.m., which continues until 3:00 a.m.

Table 3.15–8: Summary of LT-5
April 6, 2009

<table>
<thead>
<tr>
<th>Time</th>
<th>L_{eq}</th>
<th>Time</th>
<th>L_{eq}</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00 a.m.</td>
<td>63.0</td>
<td>12:00 p.m.</td>
<td>71.7</td>
</tr>
<tr>
<td>01:00 a.m.</td>
<td>62.6</td>
<td>13:00 p.m.</td>
<td>71.6</td>
</tr>
<tr>
<td>02:00 a.m.</td>
<td>64.5</td>
<td>14:00 p.m.</td>
<td>71.4</td>
</tr>
<tr>
<td>03:00 a.m.</td>
<td>68.1</td>
<td>15:00 p.m.</td>
<td>71.0</td>
</tr>
<tr>
<td>04:00 a.m.</td>
<td>71.9</td>
<td>16:00 p.m.</td>
<td>62.6</td>
</tr>
<tr>
<td>05:00 a.m.</td>
<td>73.1</td>
<td>17:00 p.m.</td>
<td>68.2</td>
</tr>
<tr>
<td>06:00 a.m.</td>
<td>72.4</td>
<td>18:00 p.m.</td>
<td>70.4</td>
</tr>
<tr>
<td>07:00 a.m.</td>
<td>71.8</td>
<td>19:00 p.m.</td>
<td>69.3</td>
</tr>
<tr>
<td>08:00 a.m.</td>
<td>72.1</td>
<td>20:00 p.m.</td>
<td>69.1</td>
</tr>
<tr>
<td>09:00 a.m.</td>
<td>71.7</td>
<td>21:00 p.m.</td>
<td>68.6</td>
</tr>
<tr>
<td>10:00 a.m.</td>
<td>71.6</td>
<td>22:00 p.m.</td>
<td>66.5</td>
</tr>
<tr>
<td>11:00 a.m.</td>
<td>71.2</td>
<td>23:00 p.m.</td>
<td>64.3</td>
</tr>
</tbody>
</table>

Bolded numbers indicate the loudest hour.

Noise measurement data presented in Tables 3.15-4 through 3.15-8 are generally consistent with the project traffic report, which indicates higher I-80 AM peak hour traffic volumes as compared to the I-80 PM peak hour.

Short-term (ST) noise levels were measured between the hours of 11:00 a.m. and 3:30 p.m. at selected receivers and other points of interest within the project area (Figure 3.15-1). Weather conditions were clear and warm, 19.4 to 32.2°C, with a slight breeze, less than 4.8 km/h (3 mph) each day. All short-term noise measurements were taken outside the loudest hour and were normalized (i.e., adjusted) to reflect the loudest hour based on the results of the 24-hour measurements (see Table 3.15-8 and Appendix M).

Since I-80 is a continuous noise source, background noise (i.e., noise without the traffic noise from I-80, or other local roadways) is not easily measured. However, based on a review of the detailed noise measurement data provided in Appendix M, the background noise level may be estimated at less than 60 dBA L_{eq}, based on the L_{90} measurement (which represents the noise level exceeded 90% of the time during the measurement) at ST measurement sites 4 and 5. The ST noise measurements and the adjusted loudest hour for each location are summarized in Table 3.15-9.
Table 3.15–9: Short-Term Noise Measurement Summary

<table>
<thead>
<tr>
<th>Site I.D.</th>
<th>Location or Address</th>
<th>Type of Development</th>
<th>Measured Noise Level (Leq dBA)</th>
<th>Adjusted Worst-Hour Noise Level (Leq dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST-1</td>
<td>1 Whiting Way Historical Village</td>
<td>Commercial</td>
<td>70.4</td>
<td>71.4</td>
</tr>
<tr>
<td>ST-2</td>
<td>North Gate Road USCG Station, North Offices</td>
<td>Governmental</td>
<td>64.9</td>
<td>65.9</td>
</tr>
<tr>
<td>ST-3</td>
<td>North Gate Road USCG Station, South Parking Lot</td>
<td>Governmental</td>
<td>70.4</td>
<td>71.4</td>
</tr>
<tr>
<td>ST-4</td>
<td>Hill Crest Road USCG, Officers Quarters</td>
<td>Single-family Residential</td>
<td>60.5</td>
<td>63.5</td>
</tr>
<tr>
<td>ST-5</td>
<td>Hill Crest Road USCG, Officers Quarters</td>
<td>Single-family Residential</td>
<td>57.9</td>
<td>59.9</td>
</tr>
</tbody>
</table>

While the dominant noise source in the project area, traffic on major local roadways (such as Yerba Buena Road and Macalla Road) represented additional secondary noise sources with a noticeable but insignificant effect on the ambient noise levels as compared to I-80. Smaller local roadways including Forest Road, Healy Avenue, and Hillcrest Crest Road had limited traffic volumes and low speeds, which had a minor effect on ambient noise levels in the project area.

PREDICTED EXISTING NOISE LEVELS AND CALIBRATION

The purpose of model calibration is to “fine-tune” the prediction model to actual site conditions that are not adequately accounted for by the model. Calibration is performed by algebraically adding a constant, or K-factor, to the noise level calculated in TNM 2.5. The magnitude of K-factors is initially determined by the difference between measured and modeled noise levels at specific points. Calibration factors may be positive or negative. Additional factors may be applied based upon the experience and judgment of the noise engineer performing the analysis.

Section N-5400 of the TeNS, Calibrating the Prediction Model, provides guidance on the application of calibrations. Subsection N-5420 states “highway reconstruction projects which significantly alter alignments and profiles of an existing highway are also poor candidates for model calibration.” Additionally, FHWA’s Policy for TNM 2.5 states “[n]o adjustments should be made for differences of less than 3 dBA” (FHWA 2004).

Noise levels were predicted at all receivers, including at ST measurement locations, using TNM 2.5 and various input parameters, as previously discussed, to compare them with adjusted measured traffic noise levels at common points. Differences between measured loudest hour noise levels and the predicted loudest hour noise levels were less than 3 dBA at all receivers except ST-1 (R-2) and ST-3 (R-4). ST-1 (R-2) and ST-3 (R-4) modeled 4 and 5 dBA below the measured noise level at same location. The differences at ST-1 and ST-3 are likely due to reflective noise from the double-decked structure; or local noise sources, including construction activity on the new SFOBB and wave activity along the shore, not accounted for in the noise model. K-factors were applied to receivers R-2 and R-4 for the existing condition model. No K-factors were applied to the future models as the proposed SFOBB would substantially alter the alignment of I-80 as it currently exists...
specific receiver points are compared and are shown in Table 3.15-10. The existing condition noise model input and output data are included as an appendix to the NSR.

Table 3.15–10: Loudest Hour Noise Level Model Comparison

<table>
<thead>
<tr>
<th>Measurement ID</th>
<th>Measured Noise Level (L_{eq} dBA)</th>
<th>Loudest Hour Noise Level Adjustment</th>
<th>Adjusted Loudest Hour Noise Level (L_{eq} dBA)</th>
<th>Predicted Loudest Hour Noise Level (L_{eq} dBA)</th>
<th>Difference (K-Factor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST-1</td>
<td>70</td>
<td>1</td>
<td>71</td>
<td>67</td>
<td>4 (4.2)</td>
</tr>
<tr>
<td>ST-2</td>
<td>65</td>
<td>1</td>
<td>66</td>
<td>66</td>
<td>0</td>
</tr>
<tr>
<td>ST-3</td>
<td>70</td>
<td>1</td>
<td>71</td>
<td>65</td>
<td>6 (5.7)</td>
</tr>
<tr>
<td>ST-4</td>
<td>61</td>
<td>3</td>
<td>64</td>
<td>66</td>
<td>-2</td>
</tr>
<tr>
<td>ST-5</td>
<td>58</td>
<td>2</td>
<td>60</td>
<td>58</td>
<td>2</td>
</tr>
</tbody>
</table>

Based on the existing noise levels, one category B receiver is impacted by existing noise levels that approach or exceed the NAC. The category B receiver is a multiple-family residential receiver (R-3) representing 12 multiple-family units. Additionally, three category C receivers representing two commercial units (R-2 and R-4) are exposed to existing noise levels that approach or exceed the NAC. However, these conditions occur under existing conditions (without the proposed project), and therefore, are not assessed as impacts. The predicted existing noise levels are included in Table 3.15-11 for comparison of the noise level change with the proposed project alternatives.

3.15.3 Environmental Consequences

Traffic noise levels were predicted for three future (2035) alternatives: the No Build Alternative, Alternative 2b (Figure 3.15-2), and Alternative 4 (Figure 3.15-3). Existing and future traffic volumes on all study area roadways were taken from the project traffic report (YBI Ramps Project Traffic Operations Report, 2009b). Speeds were developed from posted speed limits and driving the existing alignment. Vehicle mixes for I-80 were taken from the 2007 Annual Average Daily Truck Traffic on the California State Highway System report (Caltrans 2008). The traffic mix used for all local streets was 97% automobile, 2% medium trucks, and 1% heavy trucks.

Future traffic speeds and vehicle mixes on all study roadways were assumed to be the same as those used in the existing conditions. The traffic parameters used for the modeling are discussed in detail in the NSR.

Receiver and building locations and elevations were taken from topographic survey data provided by the project engineer. Existing and future roadway geometric data were developed from project design drawings provided by the project engineer. The model input and output sheets for both the No Build Alternative and both build alternatives are included as an appendix in the NSR.

3.15.3.1 Traffic Noise Impacts

Predicted noise levels at each receiver for the three future conditions are shown in Table 3.15-11. The changes in traffic noise levels from the existing condition to the 2035 No Build condition would range from -4 to 2 dBA L_{eq}.
NO BUILD ALTERNATIVE

Under the No Build Alternative noise levels would approach or exceed the NAC at one category B receiver (R-3) representing 12 multiple-family residential units. Predicted noise levels at all other category B receivers under the No Build Alternative range from 41 to 65 dBA L_{eq}. Predicted noise levels at category C receivers would range from 61 to 69 dBA L_{eq}. The increases in noise levels associated with the No Build Alternative would be caused by forecast increased traffic volumes that would occur between the present time and 2035 and the construction and operation of the new SFOBB (YBI Ramps Project Traffic Operations Report, 2009b).

ALTERNATIVE 2B

Under Alternative 2b, noise level changes range from -4 to 2 dBA over existing conditions and 0 to 1 dBA L_{eq} over the No Build Alternative. Under Alternative 2b, noise levels would approach or exceed the NAC at one category B receiver (R-3) representing 12 multiple-family residential units. Predicted noise levels at all other category B receivers under Alternative 2b would range from 41 to 65 dBA L_{eq}. Predicted noise levels at category C receivers under Alternative 2b would range from 61 to 69 dBA L_{eq}.

ALTERNATIVE 4

Under Alternative 4, noise level changes range from -4 to 2 dBA over existing conditions and 0 to 1 dBA L_{eq} over the No Build Alternative. Under Alternative 4, noise levels would approach or exceed the NAC at one category B receiver (R-3) representing 12 multiple-family residential units. Predicted noise levels at all other category B receivers under either build alternative range from 41 to 65 dBA L_{eq}. Predicted noise levels at category C receivers under Alternative 4 would range from 61 to 69 dBA L_{eq}.

CONCLUSION

The predicted noise levels at each receiver for the three future conditions, shown in Table 3.15-11, would not approach or exceed the respective NAC, except at R-3, which is currently abandoned barracks. Based on a site visit and discussion with a TIDA representative in January 2011, there is no current occupation and the building is anticipated to be demolished according to future plans.

R-1, Event Rental, is a commercial development, designated as NAC activity category C of 72 dBA L_{eq}. With predicted noise levels of 67 dBA L_{eq} at R-1 for each of the 3 alternatives, project noise levels at R-1 are not a noise impact requiring abatement.

R-2, Historic Village, is a commercial development, designated as NAC activity category C of 72 dBA L_{eq}, with predicted noise levels of 69 dBA L_{eq} for each of the 3 alternatives. Therefore, project noise levels at R-2 are not a noise impact requiring abatement.

R-3, Abandoned Barracks, is a multiple-family residential development, designated as NAC activity category B of 67 dBA L_{eq} with predicted noise levels of 73 dBA L_{eq} for each of the 3 alternatives. However, R-3 is an abandoned barracks and there are no plans to reuse these structures. Therefore, project noise levels at R-3 are not a noise impact requiring abatement.
R-4, North Offices, is a governmental development, designated as NAC activity category C of 72 dBA L_{eq}, with predicted noise levels of 67 dBA L_{eq} for each of the 3 alternatives. Therefore, project noise levels at R-4 are not a noise impact requiring abatement.

R-5, Parade Ground, is a governmental development, designated as NAC activity category C of 72 dBA L_{eq}, with predicted noise levels of 67 dBA L_{eq} for each of the 3 alternatives. Therefore, project noise levels at R-5 are not a noise impact requiring abatement.

R-6, USCG Quarters, is a Multiple-Family Residential development, designated as NAC activity category E of 52 dBA L_{eq}, with predicted noise levels of 47 dBA L_{eq} for each of the 3 alternatives. Therefore, project noise levels at R-6 are not a noise impact requiring abatement.

R-7, USCG Quarters, is a Multiple-Family Residential development, designated as NAC activity category E of 52 dBA L_{eq}, with predicted noise levels of 47 dBA L_{eq} for each of the 3 alternatives. Therefore, project noise levels at R-7 are not a noise impact requiring abatement.

R-8, USCG Quarters, is a Multiple-Family Residential development, designated as NAC activity category E of 52 dBA L_{eq}, with predicted noise levels of 48 dBA L_{eq} for each of the 3 alternatives. Therefore, project noise levels at R-8 are not a noise impact requiring abatement.

R-9, USCG Quarters, is a Multiple-Family Residential development, designated as NAC activity category E of 52 dBA L_{eq}, with predicted noise levels of 43 dBA L_{eq} for each of the 3 alternatives. Therefore, project noise levels at R-9 are not a noise impact requiring abatement.

R-10, South Parking Lot, is a governmental development, designated as NAC activity category C of 72 dBA L_{eq}, with predicted noise levels of 65 dBA L_{eq} for each of the 3 alternatives. Therefore, project noise levels at R-10 are not a noise impact requiring abatement.

R-11, Officers Quarters, is a single-family residential development, designated as NAC activity category B of 67 dBA L_{eq}, with predicted noise levels of 54 dBA L_{eq} for each of the 3 alternatives. These quarters are not in use. Therefore, project noise levels at R-11 are not a noise impact requiring abatement.

R-12, Officers Quarters, is a driveway location, undesignated as NAC activity category with predicted noise levels of 66 dBA L_{eq} for each of the 3 alternatives. R-12 is a driveway location. Therefore, project noise levels at R-12 are not a noise impact requiring abatement.

R-13, Officers Quarters, is a single-family residential development, designated as NAC activity category B of 67 dBA L_{eq}, with predicted noise levels of 58 dBA L_{eq} for each of the 3 alternatives. Therefore, project noise levels at R-13 are not a noise impact requiring abatement.

R-14, Officers Quarters, is a single-family residential development, designated as NAC activity category B of 67 dBA L_{eq}, with predicted noise levels of 65 dBA L_{eq} for each of
the 3 alternatives. Therefore, project noise levels at R-14 are not a noise impact requiring abatement.

R-15, Officers Quarters, is a single-family residential development, designated as NAC activity category B of 67 dBA L_{eq}, with predicted noise levels of 64 dBA L_{eq} for each of the 3 alternatives. Therefore, project noise levels at R-15 are not a noise impact requiring abatement.

R-16, VTS Complex, is a governmental development, designated as NAC activity category C of 72 dBA L_{eq}, with predicted noise levels of 73 dBA L_{eq} for each of the 3 alternatives. Therefore, project noise levels at R-16 are considered a noise impact requiring abatement.

R-17, Event Rental, is a commercial development, designated as NAC activity category C of 72 dBA L_{eq} with predicted noise levels of 61 dBA L_{eq} for each of the 3 alternatives. Therefore, project noise levels at R-17 are not a noise impact requiring abatement.

As with the No Build Alternative, the primary result of noise level increase would be caused by forecast increased traffic volumes that would occur between the present time and 2035. However, unlike the No Build Alternative some noise level increases would be a result of the proposed ramps under each build alternative. As shown in Table 3.15-11, the maximum increase associated with the either build alternative would be 2 dBA L_{eq}, which is below the Caltrans threshold considered a substantial increase. Thus, the proposed project would not result in a substantial increase.

3.15.3.2 Construction Noise Impacts

Construction noise would be generated by diesel engine-driven construction equipment used for site preparation and grading, removal of existing pavement, loading, unloading, and placing materials and paving. Diesel engine-driven trucks also would bring materials to the site and remove the spoils from excavation. Pile driving would be required as part of the proposed project. Caltrans requires noise from construction to be less than 86 dBA L_{eq} between 9 p.m. and 6 a.m. and that all equipment is outfitted with manufacturer–recommended mufflers.

Under load conditions, diesel engine noise levels of typical construction equipment (not including pile driving) may be 85 to 90 dBA at a distance of 15.24 meters (50 feet) from the equipment (FHWA 2006). Maximum noise levels during pavement breaking would be about 90 dBA L_{max}. Pile driving would generate noise that would be different in character from typical construction equipment (described above). Maximum noise levels at 15.24 meters (50 feet) from a pile driver range from 89 to 114 dBA L_{max}, depending on driver power, driver type, pile size, soil characteristics, etc.

Construction equipment noise is considered a “point source” and is attenuated over distance at a rate of 6 dBA for each doubling of distance. Thus, a noise level of 85 dBA at 15.24 meters (50 feet) would be 79 dBA at 30.5 meters (100 feet) and 73 dBA at 61 meters (200 feet) from the source.

During excavating, grading, and paving operations, equipment moves to different locations and goes through varying load cycles, and there are breaks for the operators and for nonequipment tasks, such as measurement. Although maximum noise levels may be 85 to 90 dBA at a distance of 15.24 meters (50 feet) during most construction
activities, hourly average noise levels (L_{eq}) near the edge of the project site at locations where the excavation, grading, and paving occur would be anticipated to be 65 to 75 dBA L_{eq}. The typical L_{eq} produced during pile driving ranges from 101 to 105 dBA L_{eq} at 15.24 meters (50 feet). Caltrans does not have a daytime noise standard and mufflers are required under construction abatement measures outlined below.

The nearest occupied residential units (R-6 through R-9 and R-11 through R-15) are located approximately 100.6 meters (330 feet) from the nearest point of construction activities. R-3 is closer but is currently unoccupied with no known plans for occupation. Hourly average construction noise levels (L_{eq}) at this distance would attenuate to approximately 59 dBA L_{eq}, with a maximum noise level of 73 dBA L_{max}. Based on the existing modeling and measurements, these noise levels would barely be noticeable over existing noise levels. Therefore, adverse construction-related noise impacts would not occur from diesel engine noise associated with development of the proposed project.

Pile driving noise would be generated within the project area containing general construction activities. The higher end of pile driving noise levels of 105 dBA L_{eq} and 114 dBA L_{max} at 15.24 meters (50 feet) would attenuate to approximately 89 dBA L_{eq} and 98 dBA L_{max} at the nearest occupied residential units, approximately 100.6 meters (330 feet) away, assume a direct line of sight (without intervening structures and/or topography) between noise source and receiver. If there are intervening buildings and/or topography, pile driving noise levels at the receivers would be substantially less; although it is likely that noise from the pile driving would still be audible at the receivers.

Nighttime construction activities associated with construction of the proposed improvements would be required, specifically paving and striping for detour lanes as these cannot be constructed during daytime hours due to greater daytime traffic. As described previously, noise levels from these activities would be on the order of 75 dBA L_{eq} at 15.24 meters (50 feet) from construction activity. As residential units are located approximately 100.6 meters (330 feet) from these activities, nighttime construction noise levels would be approximately 59 dBA L_{eq} at the nearest residences, which is not sufficient to disturb local residents and is less than the Caltrans impact threshold of 86 dBA L_{eq}. Based on the 24-hour measurement (LT-4), noise levels during the quietest hour are on the order of 63 dBA L_{eq}; thus adding the nighttime construction noise of 59 dBA L_{eq} would result in a 1 dBA increase in night ambient levels to 64 dBA L_{eq} at nearby residential units. However, even if noise associated with construction were audible at these residences, these activities would be temporary in nature and would not be considered an adverse impact.

To summarize, construction noise may be heard at nearby sensitive receivers and may cause occasional speech disruption, principally during times of pavement breaking or use of impact equipment. In addition, noise levels would not exceed Caltrans criteria of 86 dBA L_{eq} between 9 p.m. and 6 a.m. Thus, construction-related noise would not be considered adverse. Measures to minimize construction noise impacts are discussed in Section 3.15.4 and include all measures required by Caltrans.

VIBRATION IMPACTS

Heavy equipment and trucks used for construction of the proposed project are potential sources of ground vibration, with pile driving being the greatest source of vibration. Vibration levels for impact pile drivers are typically 0.02 meters/second peak particle velocity (PPV) (0.644 inches/second PPV at 7.6 meters (25 feet) (FTA 1995).
As vibration decreases with distance from the source, vibration levels beyond 7.6 meters (25 feet) are below the damage threshold for residential buildings; beyond 60.9 meters (200 feet) for fragile buildings. The locations where pile driving would occur are more than 91.4 meters (300 feet) from any structures. Therefore, project vibration levels would not result in a significant vibration impact.

3.15.4 Avoidance, Minimization, and/or Abatement Measures

The following minimization and/or mitigation measures would be performed to reduce the potential impacts from potential environmental issues to the fullest extent practicable.

3.15.4.1 Traffic Noise Abatement

Noise abatement must be considered where traffic noise impacts are identified. Impacts have been identified at two receivers (R-3 and R-16) under the No Build and both build alternatives. According to FHWA and Caltrans criteria, noise abatement must be considered at impacted receivers where there is an exposed area of frequent human use (such as a yard, patio, or deck) and a lowered noise level would be of benefit. Receiver R-3 represents a residential use; however, there is no current occupation and the building is anticipated to be demolished, however future plans for development are uncertain at this time (Letter from AECOM to Melanie Brent, 2/4/11). Thus, a lowered noise level at this location would not be of benefit and noise abatement is not further considered, therefore a Noise Abatement Decision Report (NADR) is not required.

R-16 represents a governmental unit. Although this receiver represents an area of human use, it is associated with a parking lot that has only transitory use (i.e. less than an hour) and would not result in a cumulative amount of time on a daily, weekly, or yearly level that would be considered frequent or have detrimental effects on the activities of humans at the receiver location. Thus, a lowered noise level at this location would not be a benefit and abatement is not considered further for R-16. Future plans would relocate personnel associated with this site to a lower portion of USCG Sector San Francisco. As no feasible noise abatement has been identified, a NADR is not required.

3.15.4.2 Construction Noise Abatement

As required by the Caltrans’ Standard Specification 14-8.02, “Noise Control”:

- Each internal combustion engine shall be equipped with a muffler of a type recommended by the manufacturer. No internal combustion engine shall be operated on the project without said muffler.

No construction is proposed for the No Build Alternative. Therefore, construction noise abatement would not be required. The following measures are recommended to avoid or minimize construction noise impacts associated with Alternatives 2b and 4:

- Work in staging areas that generate loud noises, such as equipment maintenance, shall not occur during the hours prohibited for construction work.
<table>
<thead>
<tr>
<th>Receiver I.D.</th>
<th>Location or Address</th>
<th>Type of Development</th>
<th>Number of Units Represented</th>
<th>NAC</th>
<th>Predicted Noise Level (dBA)</th>
<th>Predicted Noise Level (dBA)</th>
<th>Increase less Existing (dBA)</th>
<th>Impact Type</th>
<th>Predicted Noise Level (dBA)</th>
<th>Increase, Build less Existing (dBA)</th>
<th>Impact Type</th>
<th>Predicted Noise Level (dBA)</th>
<th>Increase, Build less Existing (dBA)</th>
<th>Impact Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-1</td>
<td>7 Whiting Way, Event Rental</td>
<td>Commercial</td>
<td>2</td>
<td>C(72)</td>
<td>68</td>
<td>67</td>
<td>-1</td>
<td>None</td>
<td>67</td>
<td>-1</td>
<td>None</td>
<td>67</td>
<td>-1</td>
<td>None</td>
</tr>
<tr>
<td>R-2</td>
<td>1 Whiting Way, Historical Village</td>
<td>Commercial</td>
<td>5</td>
<td>C(72)</td>
<td>71</td>
<td>69</td>
<td>-2</td>
<td>None</td>
<td>69</td>
<td>-2</td>
<td>None</td>
<td>69</td>
<td>-2</td>
<td>None</td>
</tr>
<tr>
<td>R-3</td>
<td>240 Macalla Road USCG, Abandon Barrack</td>
<td>Multiple-family Residential</td>
<td>12</td>
<td>B(67)</td>
<td>74</td>
<td>73</td>
<td>-1</td>
<td>A/E</td>
<td>73</td>
<td>-1</td>
<td>A/E</td>
<td>73</td>
<td>-1</td>
<td>A/E</td>
</tr>
<tr>
<td>R-4</td>
<td>North Gate Road USCG Station, North Offices</td>
<td>Governmental</td>
<td>1</td>
<td>C(72)</td>
<td>71</td>
<td>67</td>
<td>-4</td>
<td>None</td>
<td>67</td>
<td>-4</td>
<td>None</td>
<td>67</td>
<td>-4</td>
<td>None</td>
</tr>
<tr>
<td>R-5</td>
<td>North Gate Road USCG Station, Parade Ground</td>
<td>Governmental</td>
<td>1</td>
<td>C(72)</td>
<td>70</td>
<td>67</td>
<td>-3</td>
<td>None</td>
<td>67</td>
<td>-3</td>
<td>None</td>
<td>67</td>
<td>-3</td>
<td>None</td>
</tr>
<tr>
<td>R-6</td>
<td>USCG, Quarters</td>
<td>Multiple-family Residential</td>
<td>2</td>
<td>E(52)</td>
<td>47</td>
<td>47</td>
<td>0</td>
<td>None</td>
<td>47</td>
<td>0</td>
<td>None</td>
<td>47</td>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td>R-7</td>
<td>USCG, Quarters</td>
<td>Multiple-family Residential</td>
<td>2</td>
<td>E(52)</td>
<td>47</td>
<td>47</td>
<td>0</td>
<td>None</td>
<td>47</td>
<td>0</td>
<td>None</td>
<td>47</td>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td>R-8</td>
<td>USCG, Quarters</td>
<td>Multiple-family Residential</td>
<td>2</td>
<td>E(52)</td>
<td>44</td>
<td>44</td>
<td>0</td>
<td>None</td>
<td>44</td>
<td>0</td>
<td>None</td>
<td>44</td>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td>R-9</td>
<td>USCG, Quarters</td>
<td>Multiple-family Residential</td>
<td>2</td>
<td>E(52)</td>
<td>43</td>
<td>43</td>
<td>0</td>
<td>None</td>
<td>43</td>
<td>0</td>
<td>None</td>
<td>43</td>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td>R-10</td>
<td>North Gate Road USCG Station, South Parking Lot</td>
<td>Governmental</td>
<td>1</td>
<td>C(72)</td>
<td>66</td>
<td>65</td>
<td>-1</td>
<td>None</td>
<td>65</td>
<td>-1</td>
<td>None</td>
<td>65</td>
<td>-1</td>
<td>None</td>
</tr>
<tr>
<td>R-11</td>
<td>Hill Crest Road USCG, Officers Quarters</td>
<td>Single-family Residential</td>
<td>1</td>
<td>B(67)</td>
<td>55</td>
<td>54</td>
<td>-1</td>
<td>None</td>
<td>54</td>
<td>-1</td>
<td>None</td>
<td>54</td>
<td>-1</td>
<td>None</td>
</tr>
<tr>
<td>R-12</td>
<td>Hill Crest Road USCG, Officers Quarters</td>
<td>Driveway</td>
<td>0</td>
<td>--</td>
<td>66</td>
<td>66</td>
<td>0</td>
<td>NA</td>
<td>66</td>
<td>0</td>
<td>NA</td>
<td>66</td>
<td>0</td>
<td>NA</td>
</tr>
<tr>
<td>R-13</td>
<td>Hill Crest Road USCG, Officers Quarters</td>
<td>Single-family Residential</td>
<td>1</td>
<td>B(67)</td>
<td>57</td>
<td>58</td>
<td>1</td>
<td>None</td>
<td>58</td>
<td>1</td>
<td>None</td>
<td>58</td>
<td>1</td>
<td>None</td>
</tr>
<tr>
<td>R-14</td>
<td>Hill Crest Road USCG, Officers Quarters</td>
<td>Single-family Residential</td>
<td>1</td>
<td>B(67)</td>
<td>65</td>
<td>65</td>
<td>0</td>
<td>None</td>
<td>65</td>
<td>0</td>
<td>None</td>
<td>65</td>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td>R-15</td>
<td>Hill Crest Road USCG, Officers Quarters</td>
<td>Single-family Residential</td>
<td>1</td>
<td>B(67)</td>
<td>62</td>
<td>64</td>
<td>2</td>
<td>None</td>
<td>64</td>
<td>2</td>
<td>None</td>
<td>64</td>
<td>2</td>
<td>None</td>
</tr>
<tr>
<td>R-16</td>
<td>Signal Road USCG, VTS complex</td>
<td>Governmental</td>
<td>1</td>
<td>C(72)</td>
<td>71</td>
<td>73</td>
<td>2</td>
<td>A/E</td>
<td>73</td>
<td>2</td>
<td>A/E</td>
<td>73</td>
<td>2</td>
<td>A/E</td>
</tr>
<tr>
<td>R-17</td>
<td>62 Macalla Road, Event Rental</td>
<td>Commercial</td>
<td>1</td>
<td>C(72)</td>
<td>60</td>
<td>61</td>
<td>1</td>
<td>None</td>
<td>61</td>
<td>1</td>
<td>None</td>
<td>61</td>
<td>1</td>
<td>None</td>
</tr>
</tbody>
</table>

Source: Yerba Buena Ramps Improvement Project, Final Noise Study Report, January 2011a
Note: A/E = Approach or Exceed; NAC - Noise Abatement Criterion; Bold = traffic noise impact
Noise levels reported for these receivers are reduced by 20 dBA to represent interior noise levels.
• If traffic control and construction signs that require power for lighting or flashing are located near residential units, the source of power would be batteries, solar cells, or another quiet source. Gas- or diesel-fueled internal combustion engines would not be used.

Due to the proximity of the USCG Sector San Francisco facility to the construction area, a Memorandum of Understanding (MOU)/Memorandum of Agreement (MOA) shall be prepared detailing limitations on noise and impact activities prior to construction commencing.
3.16 Energy

This section assesses the impact of the project alternatives on transportation-related energy consumption in the study area. This analysis considers the long-term (direct) and temporary impacts related to energy consumption. Direct energy consumption includes the fuel required for passenger vehicles (automobiles, vans, and light trucks), heavy trucks (three or more axles), and transit buses.

3.16.1 Regulatory Setting

The CEQA Guidelines, Appendix F, Energy Conservation, state that EIRs are required to include a discussion of the potential energy impacts of proposed projects, with particular emphasis on avoiding or reducing inefficient, wasteful and unnecessary consumption of energy. NEPA (42 U.S.C. Part 4332) requires the identification of all potentially significant impacts to the environment, including energy impacts.

Regulations for transportation energy consumption are generally directed toward motor vehicle fuel efficiency. The Energy Policy and Conservation Act of 1992 established fuel economy standards for on-road vehicles in the United States. Under this law, the National Highway Traffic and Safety Administration is responsible for reviewing and updating these standards. The USEPA administers the Corporate Average Fuel Economy (CAFE) program, which ensures that vehicle manufacturers are in compliance with the standards.

3.16.2 Affected Environment

Existing energy consumption in the study area consists of direct energy consumption resulting from automobile and transit operations. Indirect energy involves the one-time, nonrecoverable energy consumption associated with the construction of roadways, structures, and vehicles. In addition to fuel consumption of vehicles involved in the actual construction of different elements of the alternatives, construction energy consumption also includes the energy needed in the production of construction materials. Indirect energy also involves the manufacturing and maintenance of vehicles. This includes passenger vehicles, heavy trucks, and transit buses. Permanent direct energy consumption involves the fuel needed by all of the vehicles (automobile, truck, bus, or transit lane vehicle) in the project area.

3.16.3 Environmental Consequences

NO BUILD ALTERNATIVE

The indirect energy consumption of the No Build Alternative would only be associated with the manufacturing and maintenance of passenger vehicles, heavy trucks, and transit buses. As discussed in the Section 3.6, Traffic and Transportation/Pedestrian and Bicycle Facilities, the long-term LOS under the No Build Alternative would be expected to worsen over existing conditions and delays and queues on YBI would increase as the demand would exceed the capacity of the ramps. Therefore, long-term energy consumption would increase under the No Build Alternative.
ALTERNATIVE 2B AND ALTERNATIVE 4

The build alternatives would be conserving natural resources and limiting energy consumption in several ways. The increased on- and off-ramp capacity and improved geometry would reduce travel times for motorists on the SFOBB, which would provide for less vehicle operating time which, in turn, reduces wear on the vehicles and reduces fuel consumption. Additional savings on the SFOBB would result from fewer vehicle stops and starts (which is the most wasteful condition in terms of fuel). Energy consumption on the islands would be expected to increase, however this would be due to the TI/YBI Project which underwent its own environmental process under CEQA and is a separate and independent project from the YBI ramps. To improve traffic flow on the islands, the ramps would be metered. Metering the ramps as a system would allow Caltrans to optimize the efficiency of the on- and off-ramps access.

It is Caltrans’ goal to construct this proposed project in the least amount of time by planning and staging the work efficiently. Short-term, indirect energy consumption would be associated with the construction of the ramps and associated construction equipment. This impact would not be adverse due to the temporary nature of construction activities. Construction vehicles and activities would increase energy consumption at the project site for 3 and 3 ½ years for Alternative 2b and 4 respectively, and would cease thereafter. Energy consumption would be a one-time, non-recoverable occurrence related to the production of construction materials (i.e. cement, steel, asphalt), energy needed to produce these materials, and use of construction equipment (i.e. use of diesel, oil, fuel). The reduced construction time would lead to a low number of construction-related delays and make the benefits of the project available sooner. Caltrans is also proposing to reuse and incorporate existing materials (those that can be) into the final product. Any pavement and construction debris that is removed would be considered for recycling or reuse. Recycling saves the fuel and materials that would have been required to create new materials. The design of each build alternative would also reflect an attempt to reduce the number of utilities that need to be either relocated or replaced as part of the project. Where possible, utilities would be left in place and incorporated.

Caltrans has recently been identifying ways to incorporate a greener construction fleet and is developing construction specifications by which construction-related emissions would be reduced. The Caltrans Fleet Greening Program goal is to promote an efficient fleet mix and use of efficient, low emission vehicles to lower Caltrans’ use of petroleum as well as reduce emissions of criteria air pollutants and greenhouse gases (Caltrans 2010). The green fleet includes hybrid passenger vehicles, solar-powered equipment, propane-fueled vehicles, low dust street sweepers, and diesel particulate filters on heavy-duty, diesel-powered vehicles (Caltrans 2010b). To the extent possible and appropriate, the green specifications would be considered for incorporation into the various construction contracts to build the project. As such, long-term energy consumption would be reduced compared to future no build conditions.

3.16.4 Avoidance, Minimization, and/or Mitigation Measures

The No Build Alternative would result in an increase in energy usage as traffic demand on the existing on- and off- ramps increases over time and the capacity is not increased to meet the projected demands. Caltrans would potentially develop minimization measures in the future to address the impacts. The two build alternatives would result in a short-term increase in energy consumption from construction activities, but over the
Chapter 3.16 – Energy

long-term would not result in a need to implement avoidance, minimization, or mitigation measures resulting from project-related impacts to growth on YBI and TI, given that energy consumption would be reduced.
This page intentionally left blank.
3.17 Biological Environment

3.17.1 Natural Communities

This section of the document discusses natural communities of concern. The focus of this section is on biological communities, not individual plant or animal species. Wetlands and other waters are discussed below in Section 3.17.2.

Due to the disturbed nature of the project site, proximity to existing construction, and the absence of wildlife corridors given the site’s orientation on the edge of a developed area as well as the Bay, both project alternatives would not result in habitat fragmentation. Consequently, habitat fragmentation is not discussed further.

3.17.1.1 Affected Environment

The following technical reports were consulted:

- Natural Environment Study: YBI Ramps Improvement Project. (2011b) [NES. Appendix N].
- Yerba Buena Island Ramps Improvement Project Botanical Assessment (2009e). [included in NES. Appendix N].
- Preliminary Descriptions of the Terrestrial Natural Communities of California. California Department of Fish and Game, The Resources Agency. 156 pp. (1986)
- Transfer and Reuse of Naval Station Treasure Island: Final Environmental Impact Report Vol 1: Chapters 1 to 10 (2006)
Remnant sensitive natural communities are present in small patches on-site, including northern foredune and central coast riparian scrub. Northern Foredune and Central Coast Riparian Scrub are shown along with other adjacent biological communities in Figure 3.17-2. There are no Habitat Conservation Plans or Multiple Species Conservation Plans that include the project site.

NORTHERN FOREDUNE

Northern foredune is generally found behind active beaches and in front of more stabilized back dune coastal scrubs. This plant community is similar to active coastal dunes but is somewhat more sheltered from wind and may have a greater supply of groundwater. This zone is also referred to as coastal strand vegetation. This pioneer habitat typically has low species diversity, being dominated by prostrate herbs and grasses with creeping stems or rhizomes. These salt tolerant plants are also tolerant of repeated burial by shifting sands and contribute to dune stabilization. Northern foredune vegetation occurs in areas of sand accumulation along the immediate coast from Monterey County to Oregon (Holland 1986).

Within the biological study area (BSA), a narrow 0.178 hectare (0.440-acre) strip of northern foredune vegetation occurs along the northwestern portion of the site (Figure 3.17-2). In addition there is an approximately 4.57-meter-wide (15-foot-wide) patch of invasive, non-native *Spartina alterniflora* hybrid on the northeastern portion of the site, north of the bridge. This species is more typical of northern coastal salt marsh but its invasive nature warrants mention here. The patch was treated with herbicide by the Invasive Spartina Project in September 2008 (Hogle 2008). Wave action in the BSA appears to be too strong to allow substantial northern coastal salt marsh vegetation to develop.

The northern foredune vegetation on-site is dominated by non-native iceplant (*Carpobrotus edulis*) and sweet fennel. Diagnostic foredune species present include sea rocket (*Cakile maritima*) and iceplant, although additional species may be present and observable during other seasons. Native species observed include alkali heath (*Frankenia salina*), saltgrass (*Distichlis spicata*), and spearscale (*Atriplex triangularis*). Other non-native species present include cheeseweed, dill daisy (*Argyranthemum* sp.), Russian thistle (*Salsola soda*), and seedlings of wild radish (*Raphanus sativa*). Wood’s plant list (2007) indicates that other foredune species are present on the island, including several special-status species, but these have been primarily documented on the less-disturbed western portion of YBI. These species include dune gilia (*Gilia capitata* ssp. *capitata*, CNPS 1B.1), woolly-sunflower (*Eriophyllum staechadifolium*), yellow bush lupine (*Lupinus arboreus*), and beach bursage (*Ambrosia chamissonis*).

Within the BSA, northern foredune most closely corresponds to the iceplant series as classified by Sawyer and Keeler-Wolf (1995) and is upland following Cowardin et al. (1979). Northern foredune habitat in undisturbed areas such as outer Point Reyes is used for nesting and foraging by several bird species including western snowy plover (*Charadrius alexandrinus nivosus*), Federally listed as threatened, and a California Species of Special Concern. However, remnant small patches of northern foredune habitat such as that found on-site are unlikely to be used for nesting by most avian
species, due to the prevalence of iceplant and lack of sandy dunes. These patches are more likely to be used only for foraging and roosting by shorebirds and waterbirds, particularly gulls (Larus spp.), and generalist landbirds nesting in other habitats nearby.

CENTRAL COAST RIPARIAN SCRUB

Central coast riparian scrub typically consists of a scrubby streamside, with open to impenetrable thickets composed of any of several species of willows (Salix spp.). This plant community occurs close to river channels and near the coast on fine-grained sand and gravel bars with a high water table. It is distributed along and at the mouths of most perennial and many intermittent streams of the southern coast ranges, from the Bay Area to near Point Conception (Holland 1986). Central coast riparian scrub is generally regarded as early seral, meaning that it typically precedes the development of other riparian woodland or forest communities in the absence of severe flooding. However, outside of riparian situations, that is, near groundwater seeps, willow-dominated scrub represents a relatively stable plant community and is not considered seral.

Within the BSA, an approximate 0.011 hectare (0.028-acre) patch of central coast riparian scrub occurs at the southern end of the northern foredune community where a culvert empties into the bay (Figure 3.17-2). A patch of vegetation in this area referred to as riparian scrub was also noted in the Transfer and Reuse of Naval Station Treasure Island FEIR (San Francisco Planning Department 2006). The sole species occurring in the BSA is arroyo willow (Salix lasiolepis). This species generally indicates the presence of freshwater. On-site, central coast riparian scrub conforms to the arroyo willow series as described in Sawyer and Keeler-Wolf (1995) and palustrine shrub-scrub wetland following Cowardin et al. (1979).

Wildlife species found in central coast riparian scrub would be similar to that found in other scrub communities as noted above. Additionally, the thick stands of willow species that characterize central coast riparian scrub habitat provide cover and nesting habitat for a variety of birds, including white-crowned sparrow, song sparrow, and house finch.

3.17.1.2 Environmental Consequences

Permanent project features would entirely avoid the northern foredune and central coast riparian scrub vegetation on-site. Temporary staging and construction access would occur directly adjacent to these habitat patches.

3.17.1.3 Avoidance, Minimization, and/or Mitigation Measures

With implementation of the avoidance and minimization measures described below, both project alternatives would not result in impacts to northern foredune and central coast riparian scrub vegetation.

Potential impacts during construction activities would be avoided by placement of ESA exclusion fencing 3 meters (10 feet) from the perimeter of these communities. Contractor education would be conducted, bright-colored ESA fencing and signage shall be implemented, and a construction monitor shall confirm the fence integrity on a daily basis to protect the area from accidental equipment damage. If necessary, fence repair and/or reinforcements shall be completed immediately.
3.17.2 Wetlands and Other Waters

3.17.2.1 Regulatory Setting

Wetlands and other waters are protected under a number of laws and regulations. At the Federal level, the CWA (33 U.S.C. 1344) is the primary law regulating wetlands and waters. The CWA regulates the discharge of dredged or fill material into waters of the United States, including wetlands. Waters of the United States include navigable waters, interstate waters, territorial seas, and other waters that may be used in interstate or foreign commerce. To classify wetlands for the purposes of the CWA, a three-parameter approach is used that includes the presence of hydrophytic (water-loving) vegetation, wetland hydrology, and hydric soils (soils subject to saturation/inundation). All three parameters must be present, under normal circumstances, for an area to be designated as a jurisdictional wetland under the CWA.

Section 404 of the CWA establishes a regulatory program that provides that no discharge of dredged or fill material can be permitted if a practicable alternative exists that is less damaging to the aquatic environment or if the nation’s waters would be significantly degraded. The Section 404 permit program is run by the U.S. Army Corps of Engineers (USACE) with oversight by USEPA.

EO 11990, Protection of Wetlands, also regulates the activities of Federal agencies with regard to wetlands. Essentially, this executive order states that a Federal agency, such as FHWA, cannot undertake or provide assistance for new construction located in wetlands unless the head of the agency finds (1) that there is no practicable alternative to the construction and (2) the proposed project includes all practicable measures to minimize harm.

At the state level, wetlands and waters are regulated primarily by the California Department of Fish and Game (CDFG) and RWQCBs. In certain circumstances, the Coastal Commission (or San Francisco Bay Conservation and Development Commission [BCDC]) may also be involved. Sections 1600–1607 of the Fish and Game Code require any agency that proposes a project that would substantially divert or obstruct the natural flow of or substantially change the bed or bank of a river, stream, or lake to notify CDFG before beginning construction. If CDFG determines that the project may substantially and adversely affect fish or wildlife resources, a Lake or Streambed Alteration Agreement would be required. CDFG jurisdictional limits are usually defined by the tops of the stream or lake banks, or the outer edge of riparian vegetation, whichever is wider. Wetlands under jurisdiction of the USACE may or may not be included in the area covered by a Streambed Alteration Agreement obtained from the CDFG.

The RWQCBs were established under the Porter-Cologne Water Quality Control Act to oversee water quality. The RWQCB also issues water quality certifications in compliance with Section 401 of the CWA. Please see Section 3.10, Water Quality, for additional details.

BCDC was created by the McAteer-Petris Act of 1965. BCDC’s mission is to promote responsible planning for the San Francisco Bay, and to regulate activities in the Bay in an effort to eliminate unnecessary fill in the Bay and to protect its shoreline. BCDC’s jurisdiction usually extends to all areas of the Bay subject to tidal action (including open bay, marshes, and mudflats) including a 30.5-meter-wide (100-foot-wide) band of the
Chapter 3.17 – Biological Environment

shorline extending landward from the mean high water line, as well as salt ponds, managed wetlands, and waterways flowing into the Bay. BCDC has the authority to issue or deny permit applications for land, water, or structural changes, and dredge or fill activities proposed within the area of its jurisdiction. Any project that calls for an increase to a structure’s surface area by 464 square meters (4,994 square feet) requires a Major permit from BCDC.

3.17.2.2 Affected Environment

The following technical reports were consulted:

- Natural Environment Study: YBI Ramps Improvement Project. (2011b) [NES. Appendix N]

- Yerba Buena Island Ramps Improvement Project Botanical Assessment. (2009e) [NES. Appendix N]

The BSA, located within the Oakland West 7.5’ USGS Quadrangle, encompasses the northeastern tip of YBI, from the first dry structural footing for the west side of the eastern span of the SFOBB, to the eastern YBI tunnel entrance, and borders active USCG facilities to the south, the Bay to the north and east, and the YBI tunnel, former U.S. Navy station structures, and current residential development to the west (Figure 3.17-1). Current construction activities, as well as associated trailers and staging areas, for the SFOBB East Span Seismic Safety Project are ongoing on the eastern side of the BSA, and as such a large portion of the BSA is currently characterized by active construction, and is largely unvegetated (Figure 3.17-2). The western portion of the BSA is a mixture of landscaped and developed areas, roadways, and disturbed natural communities. Concurrent with the site reconnaissance, biologists conducted a wetland delineation and preliminary jurisdictional determination of the project site in accordance with the procedures outlined in the USACE Wetlands Delineation Manual (Environmental Laboratory 1987) and Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Arid West Region (USACE 2008). The entire BSA was surveyed on foot and all distinct plant communities were visited and described (Figure 3.17-2). Locations of potential wetlands and waters of the United States and State were recorded and mapped on a 1”=50’ aerial map of the project area. There is a total of 172 square meters (1,852 square feet) of unvegetated waters within the BSA that may be regulated by the USACE and RWQCB under the CWA. Of the total 172 square meters (1,852 square feet) of unvegetated waters, 36 square meters (386 square feet) may also be regulated by the BCDC. The mean high tide water level corresponds to Federal jurisdictional tidal waters of the Bay (Figure 3).
Figure 3.17-1
Study Area
The southeast edge of the BSA boundary runs at or slightly above the mean high tide line. On the northern edge of the BSA, the boundary is well above the mean high tide line.

Based on a preliminary review of photos and the jurisdictional determination map the USACE indicated via e-mail correspondence on January 4th, 2011, that several of the unvegetated waters features appear to have been constructed in uplands, drain only uplands, and are therefore not jurisdictional. USACE stated that the remaining features (Location ID’s 1, 2, 4, 5, and 6), based on their position in the landscape (topography), would indicate that they are natural ephemeral drainages, although some of them have been armored with concrete or filled with debris over the years.

3.17.2.3 Environmental Consequences

No evidence of wetlands was found in the BSA. For both Alternatives 2b and 4, the potential Federal or state jurisdictional waters on-site consist solely of unvegetated waters flowing in concrete or roadside swales (Figure 3.17-2). Nearly all of these unvegetated waters demonstrate a direct connection to the Bay through culvert outlets on the shoreline. Due to the steep gradient, only the outer few feet of these waters, where they empty into the Bay, are below mean high tide (approximately 1.5 meters [5 feet] in elevation) and are tidally influenced. The downstream portions of these waters within 30.5 meters (100 feet) of the mean high tide line, which includes the segments under tidal influence, are under jurisdiction of BCDC, along with the entire shoreline (Figure 3.17-2). There would be no temporary or permanent impacts to tidal waters under either alternative. There would be no permanent impacts to Federal and state jurisdictional unvegetated waters under either project alternative. These jurisdictional features will be avoided by permanent and temporary construction activities under both alternatives.

Approximately 0.01 acre (586 square feet) of non-jurisdictional unvegetated waters will be temporarily disturbed during project construction where they coincide with potential staging and access areas for both project alternatives (Figures 3.17-3 and 3.17-4). Unvegetated waters that will be subject to temporary disturbance do not fall within 30.5 meters (100 feet) of the mean high tide line and are entirely outside the jurisdiction of the BCDC. These drainages are concrete-lined and convey storm water runoff; therefore, they have minimal value as aquatic habitat. These features would be restored to their current condition after construction staging is complete. Both project alternatives would be elevated above these features; therefore, post-construction impacts are not expected.

Under Alternative 2b there will be no permanent impacts or temporary disturbance to lands falling under the purview of BCDC. Alternative 4 will involve permanent impacts to 0.25 acres and temporary disturbance to lands totaling 0.36 acres which fall under the purview of BCDC. The lands within 30.5 meters (100 feet) of the mean high tide that will be permanently or temporarily affected are considered uplands (Figure 3.17-2). Temporarily disturbed habitats will be restored, to the extent feasible, to their natural condition after completion of the project. Unvegetated waters on-site consist of concrete-lined drainages adjacent to roadways. Only 586 square feet (0.01 acre) of non-jurisdictional features will be disturbed by temporary construction activities. Therefore notifications or permits are not anticipated (e.g., 404 CWA permit from USACE and 401 Certification from RWQCB). The unvegetated non-jurisdictional features would be restored at a 1:1 ratio on-site post-construction; therefore, compensatory measures are not anticipated.
Table 3.17-1: Jurisdictional Waters

<table>
<thead>
<tr>
<th>Potential Jurisdictional Agency</th>
<th>Jurisdictional Feature</th>
<th>Total Within Study Area square feet (acres)</th>
<th>Not Impacted square feet (acres)</th>
<th>Temporary Impacts square feet (acres)</th>
<th>Permanent Impacts square feet (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RWQCB and CDFG (Waters of the State)</td>
<td>Unvegetated Waters</td>
<td>1,742.4 (0.04)</td>
<td>2b – 1,742.4 (0.04)</td>
<td>2b –0 4 – 0</td>
<td></td>
</tr>
<tr>
<td>USACE (Waters of the US)</td>
<td>Unvegetated Waters</td>
<td>1,742.4 (0.04)</td>
<td>2b –1,742.4 (0.04)</td>
<td>2b –0 4 – 0</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.17–2: BCDC Jurisdiction

<table>
<thead>
<tr>
<th>Jurisdictional Agency</th>
<th>Jurisdictional Area</th>
<th>Total Within Study Area (acres)</th>
<th>Not Impacted (acres)</th>
<th>Temporary Impacts¹ (acres)</th>
<th>Permanent Impacts¹ (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCDC</td>
<td>Within 100 feet of Mean High Tide</td>
<td>4.39 acres</td>
<td>2b-4.38 acres 4-4.03 acres</td>
<td>2b-0.0 acres 4-0.36 acres</td>
<td>2b-0 acres 4-0.25 acres</td>
</tr>
</tbody>
</table>

¹Lands affected by project alterantives falling within BCDC jurisdiction are considered uplands.

The project will be reviewed with RWQCB to ensure adequate water quality protection during and after construction. A SWPPP will be developed and standard construction BMPs implemented to meet RWQCB standards. The SWPPP will be reviewed and approved by the RWQCB. Given that the project would not result in a permanent loss of aquatic features, compensatory measures for aquatic features are not proposed.

3.17.2.4 Avoidance, Minimization, and/or Mitigation Measures

For both alternatives, the tidal waters of the Bay would be avoided through project design to stay outside the boundary of the tidal waters to the extent possible. An existing road would be used by construction vehicles in this vicinity. Tidal waters would not be affected by temporary construction activities due to implementation of standard construction BMPs to treat and minimize discharge into the Bay (Figures 3.17-3 and 3.17-4). Existing SFOBB project staging areas that are present within the BSA and addressed herein would be largely utilized for construction staging and access. Standard construction BMPs, including placement of straw wattles or silt fencing along the boundary of the project area, would be implemented according to an erosion control plan, which would be prepared to avoid discharge into the waters of the Bay during staging and construction of the ramps. Catch basin inlet protection and installation of straw wattles (fiber rolls) would be implemented throughout the site during construction. Other construction BMPs that would be reviewed and coordinated with the RWQCB for implementation during work near the Bay waters are discussed in Section 3.9, Hydrology and Floodplains.
Figure 3.17-3
Alternative 4 Impacts to Vegetation Communities and Aquatic Habitats

Vegetation Communities
- Central Coast Riparian Scrub (0.028 ac)
- Eucalyptus Woodland (4.110 ac)
- Landscaped/Disturbed (3.788 ac)
- Mixed Broadleaf Conifer Forest (3.326 ac)
- Urban (19.615 ac)
- Non-native Scrub/Shrubland (1.181 ac)
- Northern Foredune (0.440 ac)
- Ruderal/Disturbed (1.065 ac)

Study Area

Total Acres Impacted:
- Permanently Impacted:
 - Eucalyptus Woodland: 0.189
 - Mixed Broadleaf Conifer Forest: 0.324
 - Non-native Scrub/Shrubland: 0.048
 - Ruderal/Disturbed: 0.149
 - Urban: 2.393
 - Total: 3.282

- Temporarily Impacted:
 - Eucalyptus Woodland: 1.244
 - Mixed Broadleaf Conifer Forest: 1.318
 - Non-native Scrub/Shrubland: 0.357
 - Ruderal/Disturbed: 0.209
 - Urban: 6.790
 - Total: 10.062

- Not Impacted:
 - Central Coast Riparian Scrub: 0.028
 - Eucalyptus Woodland: 2.654
 - Mixed Broadleaf Conifer Forest: 1.538
 - Non-native Scrub/Shrubland: 0.629
 - Northern Foredune: 0.440
 - Ruderal/Disturbed: 0.651
 - Urban: 4.328
 - Total: 13.634

Unvegetated Waters (1,852.45 sq ft)
- Jurisdictional: 315.89 sq ft
- Non-jurisdictional: 950.47 sq ft
- Temporarily Impacted: 586.09 sq ft

Source: GoogleEarth 2008; 2010
Figure 3.17-4

Alternative 2b Impacts to Vegetation Communities and Aquatic Habitats

The figure shows the impact areas to vegetation communities and aquatic habitats. The map includes various vegetation types such as Eucalyptus Woodland, Mixed Broadleaf Conifer Forest, Urban, and more, indicated in different colors. The impacts are categorized as permanently impacted, temporarily impacted, and not impacted. Table data indicates the total acres impacted and not impacted for each category.

The source is GoogleEarth 2008-2010.

3.17.3 Plant Species

3.17.3.1 Regulatory Setting

The U.S. Fish and Wildlife Service (USFWS) and CDFG share regulatory responsibility for the protection of special-status plant species. “Special-status” species are selected for protection because they are rare and/or subject to population and habitat declines. Special status is a general term for species that are afforded varying levels of regulatory protection. The highest level of protection is given to threatened and endangered species; these are species that are formally listed or proposed for listing as endangered or threatened under the Federal Endangered Species Act (FESA) and/or the California Endangered Species Act (CESA). Please see Section 3.17.5, Threatened and Endangered Species, in this document for detailed information regarding these species.

This section of the document discusses all the other special-status plant species, including CDFG fully protected species and species of special concern, USFWS candidate species, and those on the California Native Plant Society’s (CNPS’) statewide and East Bay Chapter’s list of sensitive plants.\(^{25}\)

The regulatory requirements for FESA can be found at 16 U.S.C. Section 1531, et seq. See also 50 C.F.R. Part 402. The regulatory requirements for CESA can be found at California Fish and Game Code, Section 2050, et seq. Caltrans projects are also subject to the Native Plant Protection Act, found at Fish and Game Code, Sections 1900–1913, and CEQA, Public Resources Code, Sections 2100–21177.

3.17.3.2 Affected Environment

The following technical reports were consulted:

- Natural Environment Study: YBI Ramps Improvement Project. (2011b) [NES. Appendix N].

- Yerba Buena Island Ramps Improvement Project Botanical Assessment. (2009e) [included in NES. Appendix N].

\(^{25}\) The CNPS has created five lists in an effort to categorize degrees of concerns, which include List 1A: Plants Presumed to Extinct in California; List 1B: Plants Rare, Threatened, or Endangered in California and Elsewhere; List 2: Plants Rare, Threatened, or Endangered in California, But More Common Elsewhere; List 3: Plants About Which We Need More Information - A Review List; and List 4: Plants of Limited Distribution - A Watch List. Additionally, the CNPS has developed a Threat Rank which is an extension added onto the CNPS List and designates the level of endangerment by a 1 to 3 ranking, with 1 being the most endangered and 3 being the least endangered. A Threat Rank is present for all List 1Bs, List 2s, and the majority of List 3s and List 4s. The categorization of plants under the CNPS is separate and legally distinct from the CESA and FESA. In addition, East Bay Chapter of the CNPS List A-ranked species are recommended for consideration under CEQA Guidelines when they occur in areas where development or land use changes are proposed.
Chapter 3.17 – Biological Environment

- Inventory of Rare and Endangered Plants of California (sixth edition). Rare Plant Scientific Advisory Committee, David P. Tibor, Convening Editor. Sacramento, California. 388 pp. (2001)
- Rare Plants of San Francisco. List of Special Status Plants of the Presidio. Prepared by Peter Brastow. Yerba Buena Chapter. September 15. (2005a)
- Rare Plants of San Francisco. List of special status plants of San Francisco. September 15. (2005b)
Based upon field surveys and review of the above-listed documents, 34 species special-status plant species were identified to have a low to moderate potential to occur on-site based on habitat availability and were included in focused botanical surveys conducted during spring and summer 2009 during the appropriate blooming periods (Figure 3.17-5; Table 3.17-3; NES, Appendix N). During focused botanical surveys, two of these species were observed in the BSA, stinging phacelia (*Phacelia malvifolia*) and large-flowered sand-spurrey (*Spergularia macrotheca* var. *macrotheca*). Survey methods and results are discussed in more detail in the botanical survey report (included in NES, Appendix N). The remaining target species were not found during focused surveys and are therefore presumed absent from the site; thus they are not discussed further. In addition, the project will avoid northern foredune, potential habitat for several of these target species.

LARGE FLOWERED SAND-SPURREY

Large flowered sand-spurrey is a stout, taprooted perennial herb in the pink family (Caryophyllaceae). The species is low-growing, from 5.1 to 35.6 centimeters (2 to 14 inches) tall, with fleshy leaves with sometimes conspicuous dull-white to tan, narrowly triangular stipules. The inflorescence is glandular hairy and the flowers are pink to rosy and can appear year-round. Large flowered sand-spurrey is found in salt flats and marshes, dunes, rocky outcrops, sandy or rocky coastal bluffs, gravelly ridges, and...
alkaline fields from Humboldt to San Diego counties and inland in Alameda and Contra Costa counties, from the coast inland to the Great Central Valley and the Mojave Desert.

Large flowered sand-spurrey has no official state or Federal status as a protected species but is an East Bay Chapter CNPS List A-2.

On YBI, large-flowered sand-spurrey was found during 2009 focused botanical surveys. It persists as dense clumps on otherwise barren sandstone, just above the high tide line and below the scrub vegetation, on the north side of the east point, immediately outside the project boundary. There are approximately 20 individuals within this location (Figures 3.17-6 and 3.17-7).

STINGING PHACELIA

Stinging phacelia is an annual herb in the waterleaf family (Hydrophyllaceae) with hairy/bristly foliage and flowers that may cause dermatitis when touched. The leaves are wide and lobed and the flowers are pale cream. Stinging phacelia grows to about 0.3 meter (1 foot) tall. It occurs on sandy or gravelly soils along the coast from Santa Barbara north to Oregon in redwood forest, mixed evergreen forest, closed-cone pine forest, and northern coastal scrub. It has been documented on YBI during previous botanical surveys (Preliminary Checklist Of The Flora Of Yerba Buena Island, San Francisco County. January 16, 2007).

Stinging phacelia is not listed nor on the statewide CNPS List. However, stinging phacelia is on the East Bay Chapter of the CNPS List A2, indicating that it is currently found in three to five regions of the two-county area (Lake 2004).

Suitable habitat on-site includes non-native scrub/shrublands on sandy soil. Stinging phacelia was found within the BSA during focused botanical surveys. It exists as uncommon herbaceous understory within the mixed broadleaf conifer and eucalyptus woodland forest north and northwest of the hairpin turn where Macalla Road becomes North Gate Drive (Figures 3.17-6 and 3.17-7). Two proximal zones (within 61 meters [200 feet] of each other) located along the slope contour, for a total area of 0.35 hectare (0.86 acre), define the spatial extent of stinging phacelia. Potential habitat within the BSA consists of mixed broadleaf conifer and eucalyptus woodland forest totaling 7.436 acres, of which only 11.6% is occupied by the species based on survey results. Approximately 53 total acres of conifer and eucalyptus woodlands are present on YBI, which provide potential habitat for stinging phacelia.

3.17.3.3 Environmental Consequences

A cumulative impact assessment for plants is provided in Section 3.20.2.

26 The East Bay Chapter of the CNPS only covers Alameda and Contra Costa counties.
Figure 3.17-5
Special Status Species (Plants)

Source: CNDDB 2008
<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Status</th>
<th>Habitat Present/ Absent</th>
<th>Potential for Occurrence and Rationale</th>
<th>Survey Results and Project Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coast rock cress</td>
<td>Arabis blepharophylla</td>
<td>CNPS 4; YBCNPS</td>
<td>HP</td>
<td>Low: Marginally suitable habitat present.</td>
<td>Presumed absent: Would have been detectable during focused surveys. Would not be affected by project.</td>
</tr>
<tr>
<td>Nuttall’s milk-vetch</td>
<td>Astragalus nuttallii var. nuttallii</td>
<td>CNPS 4.2</td>
<td>HP</td>
<td>Very Low: Marginally suitable habitat present.</td>
<td>Presumed absent: Would have been detectable during focused surveys. Would not be affected by project.</td>
</tr>
<tr>
<td>Coastal bluff morning-glory</td>
<td>Calystegia purpurata ssp. saxicola</td>
<td>CNPS 1B.2</td>
<td>HP</td>
<td>Moderate: Marginally suitable habitat present.</td>
<td>Presumed absent: Would have been detectable during focused surveys. Would not be affected by project.</td>
</tr>
<tr>
<td>Franciscan thistle</td>
<td>Cirsium andrewsii</td>
<td>CNPS 1B.2; YBCNPS</td>
<td>HP</td>
<td>Low: Marginally suitable habitat present.</td>
<td>Presumed absent: Would have been detectable during focused surveys. Would not be affected by project.</td>
</tr>
<tr>
<td>Compact cobwebby thistle</td>
<td>Cirsium occidentale var. compactum</td>
<td>CNPS 1B.2</td>
<td>HP</td>
<td>Very Low: Marginally suitable habitat present.</td>
<td>Presumed absent: Would have been detectable during focused surveys. Would not be affected by project.</td>
</tr>
<tr>
<td>San Francisco Bay spineflower</td>
<td>Chorizanthe cuspidata var. cuspidata</td>
<td>CNPS 1B.2</td>
<td>HP</td>
<td>Low: Marginally suitable habitat present.</td>
<td>Presumed absent: Would have been detectable during focused surveys. Would not be affected by project.</td>
</tr>
<tr>
<td>Robust spineflower</td>
<td>Chorizanthe robusta var. robusta</td>
<td>FE; CNPS 1B.1</td>
<td>HP</td>
<td>Very Low: Marginally suitable habitat present.</td>
<td>Presumed absent: Would have been detectable during focused surveys. Would not be affected by project.</td>
</tr>
<tr>
<td>San Francisco collinsia</td>
<td>Collinsia multicolor</td>
<td>CNPS 1B.2; YBCNPS</td>
<td>HP</td>
<td>Low: Marginally suitable habitat present.</td>
<td>Presumed absent: Would have been detectable during focused surveys. Would not be affected by project.</td>
</tr>
<tr>
<td>Pt. Reyes bird’s-beak</td>
<td>Cordylanthus maritimus ssp. palustris</td>
<td>CNPS 1B.2; YBCNPS</td>
<td>HP</td>
<td>Low: Marginally suitable habitat present.</td>
<td>Presumed absent: Would have been detectable during focused surveys. Potential salt marsh habitat avoided by project. Would not be affected by project.</td>
</tr>
<tr>
<td>Common Name</td>
<td>Scientific Name</td>
<td>Status</td>
<td>Habitat Present/Absent</td>
<td>Potential for Occurrence and Rationale</td>
<td>Survey Results and Project Effects</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------------------------</td>
<td>--------</td>
<td>------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Western leatherwood</td>
<td>Dirca occidentalis</td>
<td>CNPS 1B.2</td>
<td>HP</td>
<td>Low: Marginally suitable habitat present.</td>
<td>Presumed absent: Would have been detectable during focused surveys. Would not be affected by project.</td>
</tr>
<tr>
<td>San Francisco wallflower</td>
<td>Erysimum franciscanum</td>
<td>CNPS 4.2; YBCNPS</td>
<td>HP</td>
<td>Low: Marginally suitable habitat present.</td>
<td>Presumed absent: Would have been detectable during focused surveys. Would not be affected by project.</td>
</tr>
<tr>
<td>Fragrant fritillary</td>
<td>Fritillaria liliacea</td>
<td>CNPS 1B.2</td>
<td>HP</td>
<td>Low: Marginally suitable habitat present.</td>
<td>Presumed absent: Would have been detectable during focused surveys. Would not be affected by project.</td>
</tr>
<tr>
<td>Dune gilia</td>
<td>Gilia capitata ssp. chamissonis</td>
<td>CNPS 1B.1; YBCNPS</td>
<td>HP</td>
<td>Moderate: Marginally suitable habitat present.</td>
<td>Presumed absent: Would have been detectable during focused surveys. Potential northern foredune habitat avoided by project. Would not be affected by project.</td>
</tr>
<tr>
<td>Dark-eyed gilia</td>
<td>Gilia millefoliata</td>
<td>CNPS 1B.2</td>
<td>HP</td>
<td>Very Low: Marginally suitable habitat present.</td>
<td>Presumed absent: Would have been detectable during focused surveys. Would not be affected by project.</td>
</tr>
<tr>
<td>San Francisco gum-plant</td>
<td>Grindelia hirsutula var. maritima</td>
<td>CNPS 1B.2; YBCNPS</td>
<td>HP</td>
<td>Moderate: Suitable habitat present.</td>
<td>Presumed absent: Would have been detectable during focused surveys. Would not be affected by project.</td>
</tr>
<tr>
<td>Diablo helianthella</td>
<td>Helianthella castanea</td>
<td>CNPS 1B.2</td>
<td>HP</td>
<td>Very Low: Marginally suitable habitat present.</td>
<td>Presumed absent: Would have been detectable during focused surveys. Would not be affected by project.</td>
</tr>
<tr>
<td>Short-leaved evax</td>
<td>Hesperevax sparsiflora var. brevifolia</td>
<td>CNPS 1B.2</td>
<td>HP</td>
<td>Low: Marginally suitable habitat present.</td>
<td>Presumed absent: Would have been detectable during focused surveys. Would not be affected by project.</td>
</tr>
<tr>
<td>Kellogg's horkelia</td>
<td>Horkelia cuneata ssp. sericea</td>
<td>CNPS 1B.1; YBCNPS</td>
<td>HP</td>
<td>Very Low: Suitable habitat present.</td>
<td>Presumed absent: Would have been detectable during focused surveys. Would not be affected by project.</td>
</tr>
<tr>
<td>Beach layia</td>
<td>Layia camosa</td>
<td>FE; SE; CNPS 1B.1</td>
<td>HP</td>
<td>Very Low: Marginally suitable habitat present.</td>
<td>Presumed absent: Would have been detectable during focused surveys. Potential northern foredune habitat avoided by project. Would not be affected by project.</td>
</tr>
<tr>
<td>Common Name</td>
<td>Scientific Name</td>
<td>Status</td>
<td>Habitat Present/Absent</td>
<td>Potential for Occurrence and Rationale</td>
<td>Survey Results and Project Effects</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------------------------</td>
<td>--------------</td>
<td>------------------------</td>
<td>--</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Large-flowered linanthus</td>
<td>Leptosiphon grandiflorus</td>
<td>CNPS 4.2 HP</td>
<td>Present</td>
<td>Low: Marginally suitable habitat present.</td>
<td>Presumed absent: Would have been detectable during focused surveys. Would not be affected by project.</td>
</tr>
<tr>
<td>Rose linanthus</td>
<td>Leptosiphon rosaceus</td>
<td>CNPS 1B.1 HP</td>
<td>Present</td>
<td>Low: Marginally suitable habitat present.</td>
<td>Presumed absent: Would have been detectable during focused surveys. Would not be affected by project.</td>
</tr>
<tr>
<td>San Francisco lessingia</td>
<td>Lessingia germanorum</td>
<td>FE; SE; CNPS 1B.1; YBCNPS HP</td>
<td>Present</td>
<td>Very Low: Marginally suitable habitat present.</td>
<td>Presumed absent: Would have been detectable during focused surveys. Potential northern foredune habitat avoided by project. Would not be affected by project.</td>
</tr>
<tr>
<td>Woolly-headed lessingia</td>
<td>Lessingia hololeuca</td>
<td>CNPS 3 HP</td>
<td>Present</td>
<td>Very Low: Marginally suitable habitat present.</td>
<td>Presumed absent: Would have been detectable during focused surveys. Would not be affected by project.</td>
</tr>
<tr>
<td>Coast lily</td>
<td>Lillium martitimum</td>
<td>CNPS 1B.1 HP</td>
<td>Present</td>
<td>Low: Marginally suitable habitat present.</td>
<td>Presumed absent: Would have been detectable during focused surveys. Would not be affected by project.</td>
</tr>
<tr>
<td>Slender trefoil</td>
<td>Lotus formosissimus</td>
<td>CNPS 4.2 HP</td>
<td>Present</td>
<td>Low: Marginally suitable habitat present.</td>
<td>Presumed absent: Would have been detectable during focused surveys. Would not be affected by project.</td>
</tr>
<tr>
<td>Mount Diablo cottonweed</td>
<td>Micropus amphibolus</td>
<td>CNPS 3.2 HP</td>
<td>Present</td>
<td>Low: Marginally suitable habitat present.</td>
<td>Presumed absent: Would have been detectable during focused surveys. Would not be affected by project.</td>
</tr>
<tr>
<td>Marsh microseris</td>
<td>Microseris paludosa</td>
<td>CNPS 1B.2 HP</td>
<td>Present</td>
<td>Very Low: Marginally suitable habitat present.</td>
<td>Presumed absent: Would have been detectable during focused surveys. Would not be affected by project.</td>
</tr>
<tr>
<td>Curly-leaved monardella</td>
<td>Monardella undulata</td>
<td>CNPS 4.2 HP</td>
<td>Present</td>
<td>Low: Marginally suitable habitat present.</td>
<td>Presumed absent: Would have been detectable during focused surveys. Would not be affected by project.</td>
</tr>
<tr>
<td>Stinging phacelia</td>
<td>Phacelia malvifolia</td>
<td>EBCNPS A2 HP</td>
<td>Present</td>
<td>Detected: Suitable habitat present.</td>
<td>Will be permanently and temporarily affected by project.</td>
</tr>
<tr>
<td>Choris's popcorn-flower</td>
<td>Plagiobothrys chorisianus var. chorisianus</td>
<td>CNPS 1B.2 HP</td>
<td>Present</td>
<td>Very Low: Marginally suitable habitat present.</td>
<td>Presumed absent: Would have been detectable during focused surveys. Would not be affected by project.</td>
</tr>
<tr>
<td>Common Name</td>
<td>Scientific Name</td>
<td>Status</td>
<td>Habitat Present/Absent</td>
<td>Potential for Occurrence and Rationale</td>
<td>Survey Results and Project Effects</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Michael’s rein orchid</td>
<td>P. michaelii</td>
<td>CNPS 4.2</td>
<td>HP</td>
<td>Low: Marginally suitable habitat present.</td>
<td>Presumed absent: Would have been detectable during focused surveys. Would not be affected by project.</td>
</tr>
<tr>
<td>San Francisco campion</td>
<td>S. verecunda ssp. verecunda</td>
<td>CNPS 1B.2; YBCNPS</td>
<td>HP</td>
<td>Low: Marginally suitable habitat present.</td>
<td>Presumed absent: Would have been detectable during focused surveys. Would not be affected by project.</td>
</tr>
<tr>
<td>Large flowered sand-surrey</td>
<td>S. macrotheca var. macrotheca</td>
<td>EBCNPS A2</td>
<td>HP</td>
<td>Detected adjacent to project construction area: Suitable habitat present.</td>
<td>Plants avoided during project construction. Measures will be implemented to avoid indirect effects of project.</td>
</tr>
<tr>
<td>Santa Cruz microseris</td>
<td>S. decipiens</td>
<td>CNPS 1B.2</td>
<td>HP</td>
<td>Low: Marginally suitable habitat present.</td>
<td>Presumed absent: Would have been detectable during focused surveys. Would not be affected by project.</td>
</tr>
<tr>
<td>Beach starwort</td>
<td>S. littoralis</td>
<td>CNPS 4; YBCNPS</td>
<td>HP</td>
<td>Low: Marginally suitable habitat present.</td>
<td>Presumed absent: Would have been detectable during focused surveys. Would not be affected by project.</td>
</tr>
<tr>
<td>California seablite</td>
<td>S. californica</td>
<td>FE; CNPS 1B.1; YBCNPS</td>
<td>HP</td>
<td>Low: Marginally suitable habitat present.</td>
<td>Presumed absent: Would have been detectable during focused surveys. Potential northern foredune habitat avoided by project. Would not be affected by project.</td>
</tr>
<tr>
<td>Dune tansy</td>
<td>T. camphoratum</td>
<td>YBCNPS</td>
<td>HP</td>
<td>Low: Marginally suitable habitat present.</td>
<td>Presumed absent: Would have been detectable during focused surveys. Potential northern foredune habitat avoided by project. Would not be affected by project.</td>
</tr>
<tr>
<td>Triquetrella</td>
<td>T. californica</td>
<td>CNPS 1B.2</td>
<td>HP</td>
<td>Low: Marginally suitable habitat present.</td>
<td>Presumed absent: Would have been detectable during focused surveys. Would not be affected by project.</td>
</tr>
<tr>
<td>Common Name</td>
<td>Scientific Name</td>
<td>Status</td>
<td>Habitat Present/Absent</td>
<td>Potential for Occurrence and Rationale</td>
<td>Survey Results and Project Effects</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>----------------------------------</td>
<td>--------</td>
<td>------------------------</td>
<td>--</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Wildlife</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invertebrates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandy beach tiger beetle</td>
<td>Cicindela hirticollis gravida</td>
<td>CNDB</td>
<td>HP</td>
<td>Very Low: Marginally suitable habitat – Northern Foredune - present in BSA. Nearest Occurrence: within 8 kilometers (5 miles) to the southwest.</td>
<td>Potential northern foredune habitat avoided by project. Would not be affected by project.</td>
</tr>
<tr>
<td>Monarch butterfly (overwintering)</td>
<td>Danaus plexippus</td>
<td>CNDB</td>
<td>HP</td>
<td>Moderate: Suitable habitat present in BSA</td>
<td>Observed on-site. May be affected by project.</td>
</tr>
<tr>
<td>San Francisco lacewing</td>
<td>Nothochrysa californica</td>
<td>CNDB</td>
<td>HP</td>
<td>Very Low: Marginally suitable habitat present in BSA. Nearest Occurrence: within 16 kilometers (10 miles) to the south</td>
<td>May be affected by project.</td>
</tr>
<tr>
<td>A leaf-cutter bee (Gummifera leaf-cutter bee)</td>
<td>Trachusa gummifera</td>
<td>CNDB</td>
<td>HP</td>
<td>Very Low: Marginally suitable habitat present in BSA. Nearest Occurrence: within 8 kilometers (5 miles) to the southwest.</td>
<td>May be affected by project.</td>
</tr>
<tr>
<td>Birds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooper's hawk (nesting site only)</td>
<td>Accipiter cooperii</td>
<td>WL</td>
<td>HP</td>
<td>Moderate: Suitable habitat present in BSA. Nearest Occurrence: within 16 kilometers (10 miles) to the northeast.</td>
<td>Nesting habitat may be affected by project.</td>
</tr>
<tr>
<td>Allen's hummingbird</td>
<td>Selasphorus sasin</td>
<td>CNDB</td>
<td>HP</td>
<td>Moderate: Suitable habitat present in BSA</td>
<td>Nesting habitat may be affected by project.</td>
</tr>
<tr>
<td>Alameda song sparrow</td>
<td>Melospiza melody pusillula</td>
<td>SSC</td>
<td>HP foraging only</td>
<td>Moderate: Suitable foraging habitat present in BSA, but no breeding habitat present.</td>
<td>Reported on-site. Potential foraging habitat may be affected by project. No potential nesting habitat will be affected by project.</td>
</tr>
<tr>
<td>Common Name</td>
<td>Scientific Name</td>
<td>Status</td>
<td>Habitat Present/Absent</td>
<td>Potential for Occurrence and Rationale</td>
<td>Survey Results and Project Effects</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------------------------------</td>
<td>--------</td>
<td>------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Bank swallow</td>
<td>Riparia riparia</td>
<td>ST</td>
<td>HP</td>
<td>Low: Suitable habitat present in BSA.</td>
<td>The species was not observed and the project will comply with MBTA to avoid impacts to nesting birds.</td>
</tr>
<tr>
<td>California least tern</td>
<td>Sternula antillarum browni</td>
<td>FE; SE/FP</td>
<td>A</td>
<td>Not Expected: No suitable nesting or foraging habitat in the project area, although potential to forage in waters of Bay adjacent to the site.</td>
<td>Would not be affected by project.</td>
</tr>
<tr>
<td>Golden eagle (nesting/wintering sites only)</td>
<td>Aquila chrysaetos</td>
<td>FP; WL</td>
<td>HP</td>
<td>Very Low: Marginally suitable habitat present in BSA Nearest Occurrence: within 8 kilometers (5 miles) to the east.</td>
<td>The species was not observed and the project will comply with MBTA to avoid impacts to nesting birds.</td>
</tr>
<tr>
<td>Great egret (nesting colony)</td>
<td>Ardea alba</td>
<td>CNDDBB</td>
<td>HP</td>
<td>Moderate: Suitable habitat present in BSA.</td>
<td>The species was not observed and the project will comply with MBTA to avoid impacts to nesting birds.</td>
</tr>
<tr>
<td>Great blue heron (nesting colony)</td>
<td>Ardea herodias</td>
<td>CNDDBB</td>
<td>HP</td>
<td>Moderate: Suitable habitat present in BSA.</td>
<td>The species was not observed and the project will comply with MBTA to avoid impacts to nesting birds.</td>
</tr>
<tr>
<td>Snowy egret (nesting colony)</td>
<td>Egretta thula</td>
<td>CNDDBB</td>
<td>HP</td>
<td>Moderate: Suitable habitat present in BSA.</td>
<td>The species was not observed and the project will comply with MBTA to avoid impacts to nesting birds.</td>
</tr>
<tr>
<td>White-tailed kite (nesting sites)</td>
<td>Elanus leucurus</td>
<td>FP</td>
<td>HP</td>
<td>Moderate: Suitable habitat present in BSA Nearest Occurrence: within 8 kilometers (5 miles) to the north.</td>
<td>The species was not observed and the project will comply with MBTA to avoid impacts to nesting birds.</td>
</tr>
<tr>
<td>American peregrine falcon (nesting)</td>
<td>Falco peregrinus anatum</td>
<td>FP</td>
<td>HP</td>
<td>High: Suitable habitat present in BSA.</td>
<td>Documented nesting on both spans of SFOBB. The project will comply with MBTA to avoid impacts to nesting birds.</td>
</tr>
<tr>
<td>California gull (nesting colony)</td>
<td>Larus californicus</td>
<td>WL</td>
<td>HP</td>
<td>Moderate: Suitable habitat present in BSA.</td>
<td>The species was not observed and the project will comply with MBTA to avoid impacts to nesting birds.</td>
</tr>
<tr>
<td>Common Name</td>
<td>Scientific Name</td>
<td>Status</td>
<td>Habitat Present/Absent</td>
<td>Potential for Occurrence and Rationale</td>
<td>Survey Results and Project Effects</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------</td>
<td>--------</td>
<td>------------------------</td>
<td>---------------------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Western gull</td>
<td>Larus occidentalis</td>
<td>MBTA</td>
<td>HP</td>
<td>Moderate: Suitable habitat present in BSA.</td>
<td>Nesting documented on western Span of SFOBB. The project will comply with MBTA to avoid impacts to nesting birds.</td>
</tr>
<tr>
<td>Black-crowned night heron (rookery)</td>
<td>Nycticorax nycticorax</td>
<td>CNDDDB</td>
<td>HP</td>
<td>Moderate: Suitable habitat present in BSA.</td>
<td>Nearest Occurrence: Rookery on YBI 0.25 mile south of the BSA. The project will comply with MBTA to avoid impacts to nesting birds.</td>
</tr>
<tr>
<td>California brown pelican (overwintering)</td>
<td>Pelecanus occidentalis californicus</td>
<td>FP</td>
<td>HP</td>
<td>High: Suitable habitat present in BSA.</td>
<td>The project will comply with MBTA to avoid impacts to nesting birds.</td>
</tr>
<tr>
<td>Double-crested cormorant</td>
<td>Phalacrocorax auritus</td>
<td>WL</td>
<td>HP</td>
<td>High: Suitable habitat present in BSA.</td>
<td>The project will comply with MBTA to avoid impacts to nesting birds.</td>
</tr>
</tbody>
</table>

Mammals

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Status</th>
<th>Habitat Present/Absent</th>
<th>Potential for Occurrence and Rationale</th>
<th>Survey Results and Project Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western red bat</td>
<td>Lasiurus blossevillii</td>
<td>SSC</td>
<td>HP</td>
<td>Moderate: Marginally suitable habitat present in BSA.</td>
<td>Roosting habitat may be affected by project.</td>
</tr>
<tr>
<td>Hoary bat</td>
<td>Lasiurus cinereus</td>
<td>CNDDDB</td>
<td>HP</td>
<td>Moderate: Suitable habitat present in BSA.</td>
<td>Roosting habitat may be affected by project.</td>
</tr>
<tr>
<td>Long-eared myotis bat</td>
<td>Myotis evotis</td>
<td>CNDDDB</td>
<td>HP</td>
<td>Moderate: Suitable habitat present in BSA.</td>
<td>Roosting habitat may be affected by project.</td>
</tr>
<tr>
<td>Fringed myotis bat</td>
<td>Myotis thysanodes</td>
<td>CNDDDB</td>
<td>HP</td>
<td>Moderate: Suitable habitat present in BSA.</td>
<td>Roosting habitat may be affected by project.</td>
</tr>
<tr>
<td>Long-legged myotis bat</td>
<td>Myotis volans</td>
<td>CNDDDB</td>
<td>HP</td>
<td>Moderate: Suitable habitat present in BSA.</td>
<td>Roosting habitat may be affected by project.</td>
</tr>
<tr>
<td>San Francisco dusky-footed woodrat</td>
<td>Neotoma fuscipes annectens</td>
<td>SSC</td>
<td>HP</td>
<td>Moderate: Suitable habitat present in BSA.</td>
<td>Roosting habitat may be affected by project.</td>
</tr>
</tbody>
</table>

Absent [A] - no habitat present and no further work needed. Habitat Present [HP] - habitat is, or may be, present. [CH] - project footprint is located within a designated CH unit but does not necessarily mean that appropriate habitat is present. Status: Federal Endangered (FE); Federal Threatened (FT); State Endangered (SE); State Threatened (ST); Fully Protected (FP); State Rare (SR); State Species of Special Concern (SSC); CDFG Watch List (WL); California Native Plant Society (CNPS); East Bay Chapter CNPS (EBCNPS); Yerba Buena Chapter CNPS (YBCNPS); Tracked by CNDDB (CNDDDB); Federal Migratory Bird Treaty Act (MBTA).
Figure 3.17-6

Alternative 2b Impacts to Special Status Plants

Source: CNDDB 2008
Figure 3.17-7

Alternative 4 Impacts to Special Status Plants

Study Area

- **Permanently Impacted**
 - Stinging Phacelia: 215 sq ft
 - Stinging Phacelia (scattered): 113 sq ft

- **Temporarily Impacted**
 - Stinging Phacelia: 113 sq ft

- **Not Impacted**
 - Large flowered sand-sparrey: 79 sq ft
 - Stinging Phacelia: 2,445 sq ft
 - Stinging Phacelia (scattered): 34,869 sq ft

Source: CNDDB 2008

Yerba Buena Island Ramps EIR/EIS
P:\2008\00800999 Yerba Buena Island Interchange\5.0 Graphics (Non-CAD)\5.7 Report Graphics\Figures\Figure 3.17-7 alt 4 plants.ai (dbrady) 10/15/10

Hillcrest Rd
Macalla Rd
Yerba Buena Island Tunnel
Stinging Phacelia
Whiting Way
West Bound Route 80
(SFOBB Project)

Study Area
- 79 sq ft
- 2,445 sq ft
- 34,869 sq ft

Permanently Impacted
- Stinging Phacelia: 215 sq ft
- Stinging Phacelia (scattered): 113 sq ft

Temporarily Impacted
- Stinging Phacelia: 113 sq ft

Not Impacted
- Large flowered sand-sparrey: 79 sq ft
- Stinging Phacelia: 2,445 sq ft
- Stinging Phacelia (scattered): 34,869 sq ft
LARGE FLOWERED SAND-SPURREY

Within the BSA, large flowered sand-spurrey is found on the north side of the east point as low clumps on a sparsely populated sandstone cliff, occurring just above the high tide line and below the scrub vegetation. This population is composed of approximately 20 individuals covering approximately 7 square meters (79 square feet). The plants are located outside of the proposed temporary and permanent impact areas for both Alternative 2b and Alternative 4 (Figures 6a and 6b). They are, however, located within 30.5 meters (100 feet) of the Alternative 2b and Alternative 4 temporary disturbance areas and there is potential for incidental or indirect impacts during construction. This could occur under either alternative if equipment, vehicles, debris, or soils accidentally encroach into this area beyond the proposed temporary disturbance boundary. If this were to occur the population could be damaged or lost by crushing, burial, loss of stabilizing soils, and/or the seed bank.

With implementation of avoidance and minimization measures, impacts to large flowered sand-spurrey are not anticipated.

Avoidance and minimization measures are defined in Section 3.17.3.4.

STINGING PHACELIA

Both project alternatives could cause temporary and permanent impacts to areas with stinging phacelia vegetation during construction (Figures 3.17-6 and 3.17-7). However, the area of permanent and temporary impact under either alternative is less than 1% (0.9%) of the overall on-site population. The total area of potential impact to stinging phacelia is provided below for each alternative:

- Alternative 2b
 - 11 square meters (113 square feet) permanent and 20 square meters (215 square feet) temporary

- Alternative 4
 - 20 square meters (215 square feet) permanent and 11 square meters (113 square feet) temporary

The extent of occupied habitat on YBI overall is unknown, although the island is characterized by approximately 53 acres of potential habitat. Temporary and permanent project impacts under either alternative (Alternative 2b=2.797 acres; Alternative 4=3.075 acres) encompass approximately 5% of the total potential stinging phacelia habitat area (mixed broadleaf conifer and eucalyptus woodland forest) on YBI. With implementation of avoidance and minimization measures as well as implementation of woodland habitat revegetation plan as described in Section 2.2.4 impacts to stinging phacelia are not anticipated. Existing stinging phacelia plants and potential woodland habitat removed in permanent and temporary disturbance areas will be replanted according to a woodland habitat revegetation plan.

Avoidance and minimization measures are defined in Section 3.17.3.4.
3.17.3.4 Avoidance, Minimization, and/or Mitigation Measures

STINGING PHACELIA

Stinging phacelia shall be avoided to the extent feasible by the chosen project alternative and protected during construction. The permanent and temporary impacts associated with Alternative 2b and Alternative 4 will avoid more than 99% of the population occurring on site (Figures 3.17-6 and 3.17-7). Where avoidance is not feasible, minimization measures shall be implemented.

Potential impacts during construction activities shall be avoided to the extent feasible by placement of exclusion fencing 3 meters (10 feet) from the perimeter of the stinging phacelia stands outside the temporary and permanent impact area. Contractor education shall be conducted, bright-colored ESA fencing and signage shall be implemented, and a construction monitor shall confirm the fence integrity on a daily basis to protect the area from accidental equipment damage. Fence repair and/or reinforcements shall be completed immediately.

Unavoidable impacts to stinging phacelia will be offset by implementation of a woodland habitat revegetation plan as described in Section 2.2.4 of this Final EIR/EIS. Stinging phacelia plants removed in permanent and temporary disturbance areas will be replanted at a 1:1 ratio based on the area of occupied habitat affected. Woodland habitat removed in permanent and temporary disturbance areas will also be replanted. Compensatory measures are not proposed.

LARGE FLOWERED SAND-SPURREY

Large flowered sand-spurrey shall be avoided to the extent feasible by the chosen project alternative and protected during construction.

Potential impacts during construction activities shall be avoided by placement of exclusion fencing 3 meters (10 feet) from the perimeter of the large flowered sand-spurrey stand outside the temporary and permanent impact area. Contractor education shall be conducted, bright-colored ESA fencing and signage shall be implemented, and a construction monitor shall confirm the fence integrity on a daily basis to protect the area from accidental equipment damage. Fence repair and/or reinforcements shall be completed immediately. Loss of individuals is not anticipated; therefore, compensatory measures are not proposed.

3.17.4 Animal Species

3.17.4.1 Regulatory Setting

Many state and Federal laws regulate impacts to wildlife. USFWS, the National Oceanic and Atmospheric Administration (NOAA) Fisheries, and CDFG are responsible for implementing these laws. This section discusses potential impacts and permit requirements associated with wildlife not listed or proposed for listing under the CESA or FESA and those that are not covered under the Marine Mammal Protection Act. Marine mammals and species listed or proposed for listing as threatened or endangered are discussed in Section 3.17.5. All other special-status animal species are discussed here, including CDFG Fully Protected Species and Species of Special Concern, and USFWS or NOAA Fisheries candidate species.
Chapter 3.17 – Biological Environment

Federal laws and regulations pertaining to wildlife relevant to the project include the following:

- NEPA
- Migratory Bird Treaty Act (MBTA)
- Fish and Wildlife Coordination Act
- Magnuson-Stevens Fishery Conservation and Management Act

State laws and regulations pertaining to wildlife relevant to the project include the following:

- CEQA
- Sections 1600-1603 of the Fish and Game Code
- Section 4150 and 4152 of the Fish and Game Code

3.17.4.2 Affected Environment

The following technical reports were consulted:

- Natural Environment Study: YBI Ramps Improvement Project. (2011b) [NES. Appendix N]
- California Natural Diversity Data Base. Database Query for the Briones Valley, Hunters Point, Oakland East, Oakland West, Richmond, San Francisco North, San Francisco South, San Leandro, and San Quentin’s 7-½ minute Quads. October. (2008a)
Chapter 3.17 – Biological Environment

- Amphibian and Reptile Species of Special Concern in California. California Department of Fish and Game Contract # 8023. Inland Fisheries Division, Rancho Cordova, California. (1994)

- Bird Species of Special Concern in California: an Annotated List of Declining or Vulnerable Bird Species. California Department of Fish and Game, The Resources Agency. (1978)
INVERTEBRATES

Based on a literature review, previous biological reports for projects on or near YBI or the SFOBB, and a familiarity with the fauna within the project region, Caltrans considered potential impacts to 26 special-status invertebrate species for the Final EIR/EIS. Of these species, 22 are not expected to occur on-site due to a lack of suitable habitat, the fact that the project site lies outside of their range, and/or isolation from known populations (See NES, Appendix N). The four remaining special-status invertebrate species that have potential to occur within the BSA are discussed in further detail below (Table 3.17-2).

Sandy Beach Tiger Beetle

The sandy beach tiger beetle, \(Cicindela\ hirticollis\ gravida\) a species tracked by the California Natural Diversity Database (CNDDB), is a subspecies of \(Cicindela\ hirticollis\) tiger beetles. Cicindela tiger beetles are usually brownish-colored beetles with lighter patterned areas, ranging in size from 1.19 to 1.50 centimeters (0.47 to 0.59 inch) in length. They are found occupying moist sand near the ocean; for example, in swales behind dunes or upper beaches beyond normal high tides. They are generally a spring/fall species with a 1- or 2-year lifecycle, that had a historical distribution ranging along the immediate coast from north of San Francisco south slightly into Mexico. The sandy beach tiger beetle is now extirpated from most of the sites where it previously occurred (NatureServe 2008; USGS 2008).

On-site, the sandy beach tiger beetle is considered to have a very low potential to occur due to the availability of marginally suitable northern foredune habitat. The nearest known occurrence of the sandy beach tiger beetle is within 16 kilometers (10 miles) to the southwest.

Monarch Butterfly

The monarch butterfly, a species tracked by the CNDDB, is a large, familiar orange butterfly in the family Nymphalidae, or brush-footed butterflies. Monarchs are a migratory species, with successive generations making long-distance migrations to the same overwintering sites year after year. These overwintering sites occur in very specific microclimates that are vulnerable to human disturbance, particularly through the destruction or alteration of wind-protected, coastal tree groves. Upon hatching, monarch caterpillars feed on their hostplant, milkweed (\(Asclepias\) sp.), before pupating and becoming adults. Monarchs arrive at the coast and begin forming colonies in trees in late September (Lane 1993). They do not have persistent colony formations. Temporary colonies tend to break up in early October to early December and then disperse to other permanent sites where they will spend the winter. The date in which the colonies break up depends on the weather. In warmer, drier years, mating occurs earlier and colonies may break up as early as late January. In colder, wetter years, colony breakup can be delayed into March. Several generations may be produced during the spring and
summer before adults begin their migration to overwintering sites. The adults mate just before leaving overwintering sites in mid- to late winter, and then disperse widely to areas where their host plant is present to lay eggs.

The western population of monarchs breeds in areas with milkweed throughout the United States west of the Rockies (Brower 1995), but virtually all of the overwintering sites used by the western population are located along the California coast, from northern Mendocino County south to San Diego County. Overwintering sites are almost always coastal, though small numbers of monarchs have been reported overwintering as far east as Inyo County (Lane 1993). Most sites are located within 0.8 kilometers (0.5-mile) of the coast, in areas of dense tree cover where the butterflies are protected from the wind. Typical overwintering sites are found near natural watercourses and include areas at or near sea level in shallow canyons, gullies, or the leeward side of hills, where a combination of dense tree canopy, vegetation cover, and local topography provides strong wind protection (Lane 1993). Dense canopy cover also provides insulation from cold temperatures and protection from winter rains, both of which can cause lethal freezing in monarchs (Anderson and Brower 1996). Although monarch overwintering sites do not receive specific protection under Federal or state laws, in many cases they are protected locally by city or county ordinances. They are also included on CDFG’s special animal list with a conservation status rank of G5S3 (globally secure; subnationally vulnerable). CDFG tracks the locations of Monarch overwintering sites through the California Natural Diversity Data Base (CNDDB). Individual monarchs do not receive this consideration outside of overwintering sites. Other Federal projects in the City of San Francisco, such as the Presidio Recycled Water Project, have included mitigation measures to protect monarch butterfly overwintering sites (Presidio Trust 2002).

Two individual monarch butterflies were observed in flight during the site visit, within the BSA. Four reported monarch butterfly overwintering sites occur within 8 kilometers (5 miles) of the BSA, on Angel Island to the northwest, and within the city of San Francisco to the west (CDFG 2008a; Figure 3.17-8). Suitable habitat for overwintering monarchs is present among the tall, wind-protected trees within the eucalyptus woodland and mixed broadleaf conifer forest in the BSA (Figure 3.17-1). Based on the presence of suitable habitat and the known presence of individuals in the BSA, overwintering monarch butterflies are considered to utilize habitats within the BSA and have a moderate potential to roost within these habitats in the BSA.

Gummifera Leaf-Cutter Bee

The gummifera leaf cutter bee (Trachusa gummifera), a species tracked by the CNDDB, has been reported to use the leaves on rosebushes (Crenshaw 1997; Kulzer 1996) as well as a number of native and non-native plants for nest-building activities. The gummifera leaf cutter bee has been reported from San Francisco, San Mateo, and Marin counties. This species is included on CDFG’s special animal list with a conservation status rank of G1S1 (critically imperiled globally and subnationally).

Although the nearest known occurrence is more than 8 kilometers (5 miles) to the southwest (CDFG 2008a), due to the presence of some potentially suitable plants within the landscaped portions of the BSA, including a row of roses, the gummifera leaf-cutter bee is considered to have a very low potential to occur on-site.
San Francisco Lacewing

The San Francisco lacewing (*Nothochrysa californica*), a species tracked by the CNDDB, inhabits moist woodlands near the coast with live oak, bay, or pine. They are included on CDFG’s special animal list with a conservation status rank of G1S1S3 (critically imperiled globally; critically imperiled to vulnerable subnationally).

The nearest known occurrence of the San Francisco lacewing is more than 8 kilometers (5 miles away), to the southwest (CDFG 2008a). Due to the presence of marginally suitable habitat within the BSA, the San Francisco lacewing is considered to have a very low potential to occur.

FISH

Caltrans considered potential impacts to the Sacramento perch (*Archoplites interruptus*), a California Species of Special Concern, because the BSA falls within or in the vicinity of the historical range of this species. Although the BSA is located immediately adjacent to the Bay, which is considered Essential Fish Habitat for several fisheries, the only aquatic habitat present within the BSA is concrete-lined drainage swales adjacent to roadides. These features are designed to convey storm water (therefore they are intermittent) and are unvegetated, ranging from 0.3 to 0.9 meters (1 to 3 feet) in width. They do not provide habitat for the Sacramento perch or other fish that have potential to occur in the adjacent waters of the Bay. Based on the absence of suitable aquatic habitat, the species is not expected to occur on-site (see NES, Appendix N). Implementation of BMPs for aquatic habitats as described in Section 3.17.2.4 would ensure that the fish species occurring in the Bay and their habitat is not indirectly affected by project construction activities.

Reptiles and Amphibians

Caltrans considered impacts to one special-status amphibian species and one special-status reptile species during the preparation of the Final EIR/EIS because the BSA falls within or in the vicinity of the historical range of these species. These nonfederally or state-listed sensitive species include:

- Foothill yellow-legged frog (*Rana boylii*), a California Species of Special Concern
- Western pond turtle (*Actinemys [=Clemmys] marmorata*), a California Species of Special Concern

Both of these species were eliminated from consideration due to their range, isolation from known populations, or lack of suitable habitat. The BSA lacks freshwater aquatic habitat in the form of streams or ponds, making it unsuitable for foothill yellow legged frog and western pond turtle. The concrete-lined drainages are not considered suitable habitat for these species due to lack of cover, suitable substrate, and ponded water. The fact that YBI is an island also isolates it from all known populations of these species, as well as populations of Federally or state-listed amphibians and reptiles (Figure 3.17-8).
Accuracy Class 1
Reported occurrence is a point: location considered accurate to within the minimum mappable unit of 80 meters

Accuracy Class 2
Reported location is an area with defined boundaries

Accuracy Class 3
Reported location is a non-specific area; buffer added to represent degree of uncertainty in reported location

Accuracy Class 4-9
Reported location considered accurate within the radius shown

Terrestrial Community (non-specific)

Study Area

Non-CNDB Sensitive Species

- Peregrine Falcon Nesting Site
- Active Harbor Seal Haul Out Site
- Burrowing Owl

Source: CNDD 2008

Figure 3.17-8
Special Status Species (Animals)
RAPTORS

Most raptors, such as golden eagle (*Aquila chrysaetos*), white-tailed kite (*Elanus leucurus*), red-tailed hawk (*Buteo jamaicensis*), red-shouldered hawk (*Buteo lineatus*), and Cooper’s hawk (*Accipiter cooperii*), nest in mature, large coniferous or deciduous trees and use twigs or branches as nesting material. Smaller raptors such as American kestrel (*Falco sparverius*) and western screech-owl (*Otus kennicottii*) may nest in cavities in anthropogenic structures and trees. Short-eared owl (*Asio flammeus*), and northern harrier (*Circus cyaneus*), nest on the ground in grassland, marshes, and agricultural fields with tall vegetation. The American peregrine falcon (*Falco peregrinus anatum*) nests on cliff faces and in urban areas uses human-made structures. Western burrowing owl (*Athene cunicularia hypugaea*) typically nest in small mammal burrows in open dry lands but have been known to utilize any ground cavity of similar size as well as anthropogenic structures. Common raptors such as American kestrel, great horned owl (*Bubo virginianus*), common barn owl (*Tyto alba*), Cooper’s hawk, and red-tailed hawk could nest on-site and are afforded protection under the MBTA (16 U.S.C. § 703–712) and the California Fish and Game Code §§ 355–357, 3503, 3503.5, and 3513). The nesting period for raptors generally occurs between December 15 and August 31.

Caltrans considered potential project impacts to seven special-status raptor species during the preparation of the Final EIR/EIS because the BSA falls within or in the vicinity of the historical range of these species, including:

- Cooper’s hawk, a CDFG Watch List species
- American peregrine falcon, (*Falco peregrinus anatum*), a California Fully Protected species
- Golden eagle, a CDFG Watch List species and California Fully Protected species
- Western burrowing owl, a California Species of Special Concern
- Northern harrier, a California Species of Special Concern
- White-tailed kite, a California Fully Protected species
- Osprey (*Pandion haliaetus*), a CDFG Watch List species

Four of these species are not expected to occur or nest on-site. Although the closest known occurrence of western burrowing owl is less than 6.4 kilometers (4 miles) to the southeast, on Alameda Island (Euing 2007, 2008a, 2008b) (Figure 3.17-8), based on the isolation of the island from suitable open habitat areas and lack of such habitat on-site, western burrowing owl is not expected to occur. Northern harrier has been reported to occur within 8 kilometers (5 miles) to the northeast of the BSA; however, due to a lack of open grassland, marsh, or agricultural habitats on-site, northern harrier is not expected to occur on-site. Osprey may occasionally forage in the Bay adjacent to the BSA, and although they are also known to nest on Bay Area watershed lands adjacent to reservoirs, they are not expected to use the BSA for nesting.

The bridge structure within and adjacent to the project area provides suitable nesting habitat for American peregrine falcon. The large trees within the eucalyptus woodland
and mixed forest on-site including coastal redwood (*Sequoia sempervirens*), coast live oak (*Quercus agrifolia*), Monterey pine (*Pinus radiata*), eucalyptus (*Eucalyptus cinerera*), acacia (*Acacia* sp.), and canary palms (*Phoenix canariensis*) provide suitable nesting habitat for Cooper’s hawk, white-tailed kite, and golden eagle as well as common raptor species such as red-tailed hawk and great horned owl. Large trees within landscaped areas also provide potential raptor nesting habitat. Refer to the NES in Appendix N for the potential for each of these species to occur on-site.

Because of the likelihood that they could occur on-site, American peregrine falcon, Cooper’s hawk, golden eagle, and white-tailed kite are addressed in further detail below.

American Peregrine Falcon

The peregrine falcon is one of the most widely spread bird species, found on all continents except Antarctica. In California, the peregrine falcon is found year-round along the coast from the Oregon border south to Pt. Conception (Sibley 2003). Peregrine falcons require open areas for foraging, and for nesting use cliffs in isolated areas, or bridges and buildings in urban areas. Other potential but rare nest sites include abandoned nests of ravens, hawks, or cormorants. Peregrine falcons generally begin nesting in late March, laying between three and four eggs per clutch. Incubation lasts approximately 33 days, during which time the female incubates while the male forages and brings food back to the nest. Peregrine falcons will nest again if the first attempt is unsuccessful. The peregrine falcon is known for its high speed flight; it is a foraging specialist, feeding primarily on birds ranging in size from swallows to small ducks or pigeons, which it often catches in flight.

Listed in 1973 as an endangered species under the FESA, the peregrine was delisted in 1999 after a successful recovery program that included banning DDT and other chlorinated hydrocarbons, protection from shooting and trapping, and captive breeding. At its lowest, the population had been reduced to several hundred breeding pairs in the U.S., and only two of these nested in California in 1970. The population now numbers approximately 2,000 breeding pairs, with 271 active breeding sites known in California as of 2006 (SCPBRG 2009), and they were delisted under the CESA in 2009 although they remain a Fully Protected species (CDFG 2009).

Peregrine falcons have been known to nest in urban areas within the Bay Area, with pairs nesting in San Jose, Redwood Shores, and San Francisco. The peregrines in San Jose have nested on the city hall building in 2007, 2008, and 2009, and have successfully fledged three to four offspring each of those years. The peregrines in Redwood Shores nested on the roof of building 400 on the Oracle campus from 2000 to 2002 and again in 2007. In 2007 the Oracle peregrines successfully fledged four offspring. The peregrines in downtown San Francisco nested on the Pacific Gas and Electric (PGE) building from 2003 until 2005, successfully fledging two offspring in 2004 and three offspring in 2005. The peregrines that had nested on the PGE building in downtown San Francisco moved temporarily to an adjacent building in 2006, fledging a single offspring, and to the west span of the SFOBB in 2007 producing two viable eggs, which were collected and incubated by Santa Cruz Predatory Bird Research Group (SCPBRG) biologists. Of the two viable eggs, only one survived to fledging. In 2007, the peregrines returned to the PGE building for a second nesting attempt, which produced a second successful hatchling (SCPBRG 2009). A different pair of peregrines successfully nested at the PGE building in 2009. However, shortly after fledging, one fledgling was killed when it hit a skyscraper window, a second was severely injured and taken into
Chapter 3.17 – Biological Environment

captivity for rehabilitation, and the third disappeared and may have successfully left the area (SCPBRG 2009)

Peregrine falcons are known to nest on existing piers on the SFOBB (Woodward-Clyde 1998; USDT-FHWA 2001), and known peregrine nesting areas on the SFOBB are currently being monitored as part of the mitigation requirements for the SFOBB East Span Seismic Safety Plan (Final Revised Bird Monitoring and Management Plan: San Francisco –Oakland Bay Bridge East Span Seismic Safety Project, 2003). The peregrines nested on pier E3, located approximately 487.7 meters (1,600 feet) east of the BSA, in 2004 and 2007, and on pier E2, located approximately 79.2 meters (260 feet) east of the BSA, in 2005 and 2006 (Biological Monitoring and Mitigation Compliance Report (March, April and May), 2004, 2005, 2006, 2007, 2008). In 2004 and 2005 the nesting attempts failed, and no viable offspring were produced (Biological Monitoring and Mitigation Compliance Report (March, April and May), 2004, 2005). In 2006, a first nesting attempt in March failed; however, a second nesting attempt in June produced a single hatching, which was removed from the nest by SCPBRG biologists on July 31 (Biological Monitoring and Mitigation Compliance Report (March, April and May), 2006). In 2007, the peregrines successfully hatched two eggs, which were removed from the nest by SCPBRG biologists on May 15. The falcons did not attempt to nest on the east span of the SFOBB in 2008. A pair of peregrine falcons nested and hatched two chicks on the west span of the SFOBB in April of 2008; however, the chicks did not successfully fledge. In May 2009, a pair of peregrine falcons successfully hatched three chicks at the pier E2 nesting site on the existing SFOBB. All three nestlings fledged in June of 2009. Two of the three juveniles were observed flying and roosting repeatedly on and around the existing and new bridge. The third juvenile was not observed since fledging on June 18, 2009 (Bird Monitoring Memo #365, Week of June 29 – July 3, 2009. Bay Bridge East Span Project. Prepared for Parsons Brinckerhoff. July 15, 2009).

While there are several structures within the BSA, none of them provide the cliff-like habitat preferred by peregrine falcons. Furthermore, the portion of the bridge structure within the BSA does not have the unobstructed views, or high ledges that would make it likely appealing to a nesting peregrine falcon. Therefore, it is unlikely that peregrine falcons would nest within the BSA. However, due to the proximity of known past nesting sites on the eastern span SFOBB columns, and the availability of adequate foraging habitat on-site, the peregrine falcon is considered to have a high potential to occur and forage on-site.

Cooper’s Hawk

Cooper’s hawk is a medium-sized raptor distributed year-round throughout California and much of the contiguous United States. Cooper’s hawk occupies open forested areas, oak woodland, and riparian areas, nesting in conifers or deciduous trees. Primarily an ambush hunter, Cooper’s hawks feed on small birds and mammals, and on occasion, fish (Alsop 2001). Cooper’s hawks lay four to six eggs per year, with chicks hatching after 32 to 36 days. This species is found in residential areas in portions of the Bay Area, especially in the East Bay, where they are becoming increasingly common (Pericoli and Fish 2004). They have been known to hunt near houses, backyard ponds, and bird feeders.

The nearest known occurrence is approximately 8 kilometers (5 miles) to the east within the city of Oakland (CDFG 2008a). The common birds and mammals that occur on-site
provide a potential prey base. Based upon the relative proximity to known occurrences and the suitable nest trees present within the landscaped areas, eucalyptus woodland, and mixed forest found on portions of the site, Cooper's hawk is considered to have a moderate potential to occur.

Golden Eagle

Golden eagle is a large raptor that is widely distributed throughout western North America. Primarily found in grasslands and open mountainous areas, golden eagles are solitary birds that nest on cliff ledges and tall trees, and feed primarily on small mammals. Golden eagles nest throughout the hills of the East Bay and prefer remote nest sites with a low level of human disturbance.

Large trees within the wooded portions of the site provide potential nesting habitat although these areas are adjacent to heavy and regular disturbances from SFOBB construction activities, boat, and bridge traffic. The nearest recorded occurrence is approximately 16 kilometers (10 miles) to the east (CDFG 2008a), and due to the ongoing site disturbances, golden eagle is considered to have a very low potential to occur.

White-Tailed Kite

White-tailed kite is a medium-sized raptor that is distributed across much of the western part of California. The white-tailed kite occupies low-elevation grassland, agricultural, wetland, oak woodland, and savanna habitats and nests in a wide variety of trees and shrubs, either isolated or in larger stands. Nearby open areas are required for foraging, including certain types of agricultural fields. Food habit studies have demonstrated that voles make up a large proportion of its diet, although other small mammals, birds, and insects are also preyed upon (Alsop 2001). This species hunts during the day primarily by hovering and searching for prey. White-tailed kites in California are generally resident, although they may occupy different areas during the nonbreeding and breeding seasons. Typically, four eggs are laid in February and March and chicks hatch after 30 to 32 days. Juveniles are dependent on parents for 2 to 3 months before they fledge. During the nonbreeding season, this species roosts communally.

Suitable nesting habitat for white-tailed kite is present within the mixed broadleaf conifer forest located on the northeast side of the BSA, and the closest documented occurrence is within 8 kilometers (5 miles) to the northeast (CDFG 2008a). With its placement up against the hillside, the forested area is somewhat buffered from the construction and traffic activity to the southwest. White-tailed kites are relatively tolerant of human disturbances if suitable trees are available for nesting providing adequate shelter, noise buffers, and wind protection. Trees within the forest are well developed with adequate limbs and canopy for nesting. Common rodents present on-site provide an adequate prey base. Therefore, white-tailed kites are considered to have a moderate potential to occur on-site.

BIRDS (NONRAPTORS)

Passerines (perching birds) are a taxonomic grouping that consists of several families including swallows (Hirundinidae), larks (Alaudidae), crows, ravens and jays (Corvidae), shrikes (Laniidae), vireos (Vireonidae), finches (Fringillidae) and Emberizids (Emberizidae; warblers, sparrows, blackbirds, etc.), among others. Nonpasserine land
birds are a nontaxonomic based grouping typically used by ornithologists to categorize a loose assemblage of birds. Families grouped into this category include kingfishers (Alcedinidae), woodpeckers (Picidae), swifts (Apodidae), hummingbirds (Trochilidae), and pigeons and doves (Columbidae), among others.

Shorebirds and water birds encompass species that are strongly dependent upon aquatic and wetland habitat, and include such families as loons (Gaviidae), grebes (Podicipedidae), pelicans (Pelecanidae), herons and egrets (Ardeidae), swans, geese and ducks (Anatidae), Gruides (Gruidae; cranes, Rallidae; rails, coots, moorhens), gulls (Laridae), nonsandpiper shorebirds (Charadriidae, Haematopodidae, Recurvirostridae; plovers, oystercatchers, stilts and avocets), and sandpipers (Scolopacidae).

Caltrans considered impacts to 24 nonraptor special-status bird species during the preparation of this Final EIR/EIS because the BSA falls within or in the vicinity of the historical range of these species. Based on the location of the site (beyond the species current range) or absence of suitable habitat, 14 of these species are not expected to occur (see the NES in Appendix N). Several of these species, including the double-crested cormorant (Phalacrocorax auritus), a CDFG Watch List species, and California brown pelican (Pelecanus occidentalis californicus), a CDFG Fully Protected species, are discussed below in more detail.

Passerines and Nonpasserine Landbirds

Habitat, nesting, and foraging requirements for these species are wide ranging; therefore, outlining generic habitat requirements for this grouping is difficult. These species typically use most habitat types and are known to nest on the ground; in shrubs and trees; on buildings; under bridges; and within cavities, crevices, and human-made structures. Many of these species migrate long distances and all species except starlings, English house sparrows (Passer domesticus), and rock doves (pigeons) (Columba livia), are protected under the Federal MBTA and Fish and Game Code. The nesting period for nonpasserines occurs between February 1 and August 31.

Mature woodlands and scrub communities provide ample nesting and foraging habitats for a wide variety of species including sparrows, scrub jays, crows, warblers, bushtits, and hummingbirds. Allen’s hummingbird (Selasphorus sasin), a species tracked by the CNDDB, has a moderate potential to nest within natural and landscaped vegetation found throughout the BSA.

Several common passerine and nonpasserine landbird species could nest within habitats present on-site including natural vegetation, structures, and disturbed areas. Ruderal, disturbed, landscaped, and grassland areas could provide nesting habitat for such opportunistic birds, as well as foraging habitat for a wide variety of birds. Structures within the BSA such as the existing bridge structure provide potential nesting habitat for species such as house finch and barn swallow. Alameda song sparrow (Melospiza melodya pusillula), a California Species of Special Concern, nests in tidal marsh habitat and uses this habitat year-round. This species has been reportedly observed foraging on-site (USDT-FHWA 2001); however, this occurrence is not noted in the CNDDB, and there is no suitable nesting habitat within the BSA. Because the song sparrow subspecies are difficult to visually tell apart, except by habitat use and location, the song sparrow seen at YBI may have been the upland subspecies, not Alameda song sparrow.
Therefore while Alameda song sparrow is considered to have a moderate potential to occur, it is not expected to nest within the BSA.

Shorebirds, Marshbirds, and Waterbirds

Suitable nesting and foraging habitat is present on-site for special-status wading birds found in nearshore habitats such as snowy egret (Egretta thula), great blue heron (Ardea herodias), great egret (Ardea alba), and black-crowned night-heron (Nycticorax nycticorax). Rookery sites of all of these species are tracked by the CNDDB. These species are considered to have a moderate potential to occur on-site. A small black-crowned night-heron rookery has been documented on a cliff face on the southern end of YBI, approximately 0.8 kilometers (0.25 mile) south of the BSA (Kelly et al. 2006). The eucalyptus woodland and mixed forest within the BSA provide potential roost and nesting habitat for these species. Great blue herons, great egrets, and double-crested cormorants often roost and nest in stands of non-native trees. In Santa Cruz County, these species have been reported to only nest in eucalyptus groves (Suddjian 2004).

The California gull (Larus californicus), a CDFG Watch List species, and western gull (Larus occidentalis), are both known to nest and forage within San Francisco Bay. A large group of California gulls is known to nest on Alameda Naval Air Station (Goals Project 2000) which is located approximately 3.2 kilometers (2 miles) to the east from the BSA, with nests numbering more than 100 in 1997. Western gulls have been reported to nest on the SFOBB structure near the Oakland touchdown (Biological Monitoring and Mitigation Compliance Report (July), 2002). While both of these species nest near the BSA, the proximity of the on-site portion of the bridge structure is unlikely to be attractive as a nesting site for western gulls due to its orientation over land as opposed to being over water. Moreover, California gulls are unlikely to nest within the BSA as there is no undisturbed open habitat that would support a colony. Both species of gulls could forage within the project area as they are opportunistic feeders that forage in areas with human garbage such as school yards and dumps (Goals Project 2000); therefore, they are considered to have a moderate potential to occur on-site. Additional foraging habitat for California gull and western gull is available adjacent to the BSA in shallow bay waters. This habitat is not likely to be impacted by project construction activities. Implementation of BMPs for aquatic habitats as described in Section 3.17.2.4 would ensure that gull fish prey in the Bay are not indirectly affected by project construction activities.

California Brown Pelican

The California brown pelican, which was recently delisted under ESA and CESA (CDFG 2009), occurs in estuarine, marine, subtidal, and marine pelagic waters from the Gulf of California north to Washington and southern British Columbia. They breed exclusively on islands from the Channel Islands off the coast of southern California south to islands off the coast of Baja California. When not breeding, California brown pelicans roost on the open ocean, offshore or mainland rocks, mudflats, sandy beaches, wharfs, and jetties throughout coastal California.

California brown pelicans are plunge divers that fly over water bodies scanning the surface for the shimmer of schooling fish. In California, they feed mainly on sardines (family Clupeidae), mackerels (family Scombridae), and anchovies (family Engraulididae). Pelicans breed in colonies on islands without mammalian predators.
along the Baja peninsula and in the Gulf of California in Mexico. They build nests of sticks on the ground, usually laying a clutch of three eggs in March or April.

Pelicans are present in the Bay Area as they disperse after breeding in southern California as early as April. By July, thousands of pelicans are seen and remain in the region through September. Pelicans usually retreat to the south by about December (Jaques-Strong 1994).

California brown pelicans utilize Breakwater Island (part of the former Naval Air Station, Alameda) east of the BSA as the “key roost in San Francisco Bay.” They congregate and roost on this disconnected island and use the surrounding waters to forage. At peak density there may be over 8,500 pelicans utilizing Breakwater Island, and hundreds are regularly present (Euing 2007).

Numerous brown pelicans have been observed foraging in the Bay near the BSA (Garcia and Associates 2008), and several pelicans were observed roosting on pilings in the Bay immediately adjacent to the site during the site reconnaissance survey. California brown pelicans have been observed immediately adjacent to the BSA and marginally suitable roosting habitat is present on the narrow sandy shoreline rimming the BSA and the small pier that is partially within the BSA; therefore, California brown pelicans are considered to have a high potential to roost within or immediately adjacent to the BSA. Brown pelicans are not expected to nest within the BSA, however, as they are only known to nest on Southern California coastal islands.

Double-Crested Cormorant

The double-crested cormorant is a common resident in waterways and water bodies throughout California. They may forage for fish at almost any significant water source, from ponds and streams to the open ocean. They nest on steep slopes, cliff faces, tall trees, and tall human-made structures such as transmission towers beside water.

During the site reconnaissance survey, double-crested cormorants were observed foraging in the Bay. Furthermore, double-crested cormorants are known to nest on bridges, including the Richmond-San Rafael Bridge (Wunderlich per. obs.) and the SFOBB (Woodward-Clyde 1998; USDT-FHWA 2001) and have been observed on YBI (Yerba Buena Island Habitat Management Plan – Stakeholder Interview Background Information. And Appendix – Existing Habitats and Special-Status Species on Yerba Buena Island. July, 2008) (Figure 3.17-8). On the Richmond-San Rafael Bridge, cormorants generally nest below the roadway on the supporting steel structure and will roost nearby on the bridge structure as well as on any exposed rocks in the Bay. Based on the presence of suitable roosting habitat such as exposed columns, piers, and rocks immediately adjacent to the eastern edge of the BSA, and their known presence in the vicinity, double-crested cormorant are considered to have a high potential to roost within the BSA and a low potential to nest within the bridge structure on-site.

TERRESTRIAL MAMMALS

Potential impacts to 15 special-status terrestrial mammal species were considered during the preparation of this Final EIR/EIS because of the presence of occurrences nearby, or because the BSA falls within or in the vicinity of the historical range of these species, including:
Chapter 3.17 – Biological Environment

- Pallid bat (*Antrozous pallidus*), a California Species of Special Concern
- Berkeley kangaroo rat (*Dipodomys heermanni berkeleyensis*), a species tracked by the CNDDB
- Silver-haired bat (*Lasionycteris noctivagans*), a species tracked by the CNDDB
- Western red bat (*Lasiurus blossevillii*), a California Species of Special Concern
- Hoary bat (*Lasiurus cinereus*), a species tracked by the CNDDB
- San Pablo vole (*Microtus californicus sanpabloensis*), a species tracked by the CNDDB
- Long-eared myotis bat (*Myotis evotis*), a species tracked by the CNDDB
- Fringed myotis bat (*Myotis thysanodes*), a species tracked by the CNDDB
- Long-legged myotis bat (*Myotis volans*), a species tracked by the CNDDB
- San Francisco dusky-footed woodrat (*Neotoma fuscipes annectens*), a California Species of Special Concern
- Angel Island mole (*Scapanus latimanus insularis*), a California Species of Special Concern
- Alameda Island mole (*Scapanus latimanus parvus*), a California Species of Special Concern
- Salt marsh wandering shrew (*Sorex vagrans halicoetes*), a California Species of Special Concern
- American badger (*Taxidea taxus*), a California Species of Special Concern
- Point Reyes jumping mouse (*Zapus trinotatus orarius*), a California Species of Special Concern

Based on the absence of suitable salt marsh habitat and isolation from known occurrences (Figure 3.17-8), salt marsh wandering shrew is not expected to occur within the BSA. YBI is isolated from known occurrences and populations of San Pablo vole, Point Reyes jumping mouse, Angel Island mole, Alameda island mole, American badger, and Berkeley kangaroo rat by the waters of the Bay (CDFG 2008a) (Figure 3.17-8), and therefore these species are not expected to occur (see the NES in Appendix N). Special-status terrestrial mammal species that have potential to occur on-site are discussed in more detail below.

Special-Status Bats

There are 24 known species of bats in California. Of those, 11 are classified as California Species of Special Concern (CDFG 2008c). Five special-status bat species
have a moderate potential to occur within the BSA, including western red bat, hoary bat, long-eared myotis bat, fringed myotis bat, and long-legged myotis bat.

These species variously use mature trees, snags, crevices, and human-made structures (such as buildings) for roosting, either for winter roosting (hibernacula) or for forming nursery colonies. Bats are generally site faithful and will not abandon an established roosting area unless disturbed.

Several species of bats have a potential to use structures and trees on-site for roosting. Structures such as the existing bridge roadway structure, between the YBI landing and YBI tunnel, have crevices and nooks that provide potential refuge for bats as temporary night roosts. Additionally, there are several uninhabited buildings within the BSA that could provide adequate day and night roosting habitat in gaps beneath roof tiles or exterior trim, or within the structures themselves, and several potential access points for bats to enter and leave these structures were identified. The BSA also contains stands of mature trees, which could provide roosting habitat within the canopy, cavities in the trees, or beneath loose bark. Foraging habitat is available throughout the BSA, wherever insects may congregate, such as near nighttime light sources.

An acoustical bat survey was conducted as part of the biological resources analysis for the TI/YBI Project by ESA in 2009. Calls recorded overnight on two occasions indicated that Mexican free-tailed bats (Tadarilla brasiliensis) are the predominant species present on the island (City of San Francisco 2010). However, the survey was not exhaustive and other species that may be considered special-status were not ruled out.

San Francisco Dusky Footed Woodrat

The San Francisco dusky-footed wood rat is a medium-sized rat that builds large stick nests at the bases of trees and shrubs. These nests average 116.8 centimeters (46 inches) high and contain multiple chambers and openings (Carraway 1991). This species prefers forested habitat with a moderate to complete canopy cover and brushy understory and is often found on the upper banks of riparian forests. However, wood rats will also nest in chaparral, coastal sage-scrub, and mixed coniferous forests (Carraway 1991). Nesting locations are determined based on a combination of dark, cool surroundings; low to moderate humidity; and dense cover (Linsdale 1957). San Francisco dusky-footed wood rats feed on a variety of woody plants, fungi, flowers, and seeds (Jameson and Peeters 2004) but prefer evergreen vegetation high in fiber, tannins, and polyphenolics such as oaks, California bay, alders, willows, coffeeberry, toyon, coyote brush, and Douglas fir, among others (Atsatt and Ingram 1983; Carraway 1991). Home ranges average 0.2 hectare (0.5 acre) with males having slightly larger home ranges, all of which overlap from 15% to 62% depending on breeding activity (Carraway 1991).

Wood rats are commonly preyed on by weasels, coyotes, bobcats, and rattlesnakes as well as several raptors such as barn owls, great horned owls, and red-tailed hawks (Carraway 1991). Most notably, wood rats are the preferred prey of the Northern spotted owl. Wood rats and their nests provide food and cover for a wide range of species including parasitic mouse (Peromyscus californicus), deer mouse (Peromyscus maniculatus), harvest mouse (Reithrodontomys megalotis), ornate shrew (Sorex ornatus), brush rabbit (Sylvilagus bachmani), western fence lizard (Sceloporus occidentalis), garter snake (Thamnophis spp.), California whipsnake (Masticophis lateralis), gopher snake (Pituophis melanoleucus), ensatina (Ensatina eschscholtzii),
California slender salamander (*Batrachoseps attenuatus*), and California newt (*Taricha torosa*), among others (Carraway 1991).

Thick understory beneath the eucalyptus and mixed broadleaf woodland canopies composed of ivy, as well as small acacia and other shrubby plants, provides potential habitat for San Francisco dusky-footed woodrat. Although no San Francisco dusky-footed woodrat houses were observed during the site visit, these structures can be quite cryptic, the site provides ample material for the building of these structures, and San Francisco dusky-footed woodrats have been known to build houses in stands of eucalyptus, such as those found on-site. They have also been observed using eucalyptus leaves as food and nest-making material (Hodge 2008). Therefore, San Francisco dusky-footed woodrat are considered to have a moderate potential to occur on-site.

3.17.4.3 Environmental Consequences

A cumulative impact assessment for animal species was conducted including invertebrates, raptors, birds, and terrestrial mammals, which is provided in Section 3.20.2.

INVERTEBRATES

Sandy Beach Tiger Beetle

Sandy beach tiger beetle has the potential to occur in northern foredune habitat adjacent to the project construction area. As described in Section 3.17.3, the project would employ avoidance measures for the northern foredune community, which lies outside of the proposed permanent and temporary construction footprint for both alternatives. Thus impacts to potential sandy beach tiger beetle habitat are not anticipated.

Monarch Butterfly

Both build alternatives would have potential temporary and permanent impacts to eucalyptus woodland and mixed broadleaf conifer forest (Figures 3.17-3 and 3.17-4), which provide potential habitat for monarch butterfly. The total area of potential impact to this habitat is small for each alternative:

- **Alternative 2b**
 - eucalyptus woodland = 0.10 hectare (0.25 acre) permanent, 0.36 hectare (0.90 acres) temporary
 - mixed broadleaf conifer forest = 0.28 hectare (0.70 acre) permanent, 0.38 hectare (0.95 acre) temporary

- **Alternative 4**
 - eucalyptus woodland = 0.08 hectare (0.19 acre) permanent, 0.50 hectare (1.24 acres) temporary
mixed broadleaf conifer forest = 0.13 hectare (0.32 acre) permanent, 0.53 hectare (1.32 acres) temporary

Gummifera Leaf-Cutter Bee

Both build alternatives would have potential temporary and permanent impacts to landscaped/disturbed areas (Figures 3.17-3 and 3.17-4), which may provide potential habitat for gummifera leafcutter bee, including rosebushes. The total area of potential impact to this habitat is small for each alternative:

- Alternative 2b
 - landscaped/disturbed = 0.04 hectare (0.09 acre) permanent, 0.09 hectare (0.23 acre) temporary

- Alternative 4
 - landscaped/disturbed = 0.07 hectare (0.18 acre) permanent, 0.06 hectare (0.14 acre) temporary

San Francisco Lacewing

Both build alternatives would have potential temporary and permanent impacts to eucalyptus woodland and mixed broadleaf conifer forest (Figures 3.17-3 and 3.17-4), which provide potential habitat for San Francisco lacewing. The total area of potential impact to this habitat is small for each alternative:

- Alternative 2b
 - eucalyptus woodland = 0.10 hectare (0.25 acre) permanent, 0.36 hectare (0.90 acre) temporary
 - mixed broadleaf conifer forest = 0.28 hectare (0.70 acre) permanent, 0.38 hectare (0.95 acre) temporary

- Alternative 4
 - eucalyptus woodland = 0.08 hectare (0.19 acre) permanent, 0.50 hectare (1.24 acres) temporary
 - mixed broadleaf conifer forest = 0.13 hectare (0.32 acre) permanent, 0.53 hectare (1.32 acres) temporary

FISH

Project construction activities that involve loud equipment such as pile driving have the potential to cause barotrauma to fish species occurring within waters adjacent to the site. However, none of these activities will occur within aquatic habitats. All construction activities, including pile driving of piers for installation of the ramps, will occur on land in soils that are not saturated. H-piles (steel piles) will be driven into the ground; the other type of piles to be used are concrete piles which are to be placed, not driven (a hole is
The closest H-piles will be driven approximately 91.4 meters (300 feet) from the shoreline under Alternative 2b and 27.4 meters (90 feet) from the shoreline under Alternative 4. The primary source of underwater noise would be ground borne vibration released into the bay. The measurement criteria used for noise is decibel (dB). The underwater noise measurement unit is referred to as “dB re: 1μPa”. A hydro-acoustic analysis for pile driving activities under both project alternatives was prepared (Memo: Yerba Buena Island – Pile Driving Noise Descriptions. January 3, 2011a). Predictions for distances to adopted NMFS, USFWS, and CDFG (FHWG 2008) injury threshold criteria were made using actual measurements taken from similar pile driving experiences. Injury threshold criteria for fish are as follows:

- **Peak Sound Pressure, unweighted (dB)**

 206 dB re: 1μPa (for all size of fish)

- **Cumulative Sound Exposure Level (SEL), dB re 1 μPa2 sec**

 187 dB re: 1μPa2-sec – for fish size of two grams or greater.

 183 dB re: 1μPa2-sec – for fish size of less than two grams.

NMFS does not consider events that produce a SEL per strike of less than 150 dB to accumulate and cause injury. The data used in this analysis is based primarily on data measured for installation of a temporary crane platform on YBI in November 2008. Therefore soil types and transmission loss through the soils would be similar to the project area, providing a reasonable comparison. For the crane platform, piles were driven approximately 12.2 meters (40 feet) from the water’s edge producing maximum underwater sound levels of 174 dB peak and 147 dB SEL at underwater measurement locations of 39.9 meters (131 feet). This was the closest location that measurements could be made due to the shallowness of the water. The closest pile for Alternative 4 is located 27.4 meters (90 feet) from the shoreline. Given that this pile will be farther away from fisheries habitat than those installed for the crane platform, underwater noise levels are expected to be even lower for construction of the YBI Ramps under both alternatives. Thus, project construction noise levels are not expected to reach the minimum established injury threshold of 183 dB SEL or 206 dB peak for fish (Memo: Yerba Buena Island – Pile Driving Noise Descriptions. January 3, 2011a).

The project is designed so that construction activities are located an adequate distance from the bay and therefore fish would be not be affected by construction activities. Construction noise levels, including pile driving, would be well below established thresholds to avoid potential injury to fish located in aquatic habitats adjacent to the site.

RAPTORS

American Peregrine Falcon

Project construction activities have the potential to disturb peregrine falcons that attempt nesting within the project area and those that may be nesting adjacent to the site. Construction-related noise and vibration could potentially impact the success of nests that are within line of sight or near enough to disturb the normal activities of the adult birds.
Cooper’s Hawk

Project construction activities have the potential to disturb Cooper’s hawks that attempt nesting within the project area and those that may be nesting adjacent to the site. Both build alternatives would have potential temporary and permanent impacts to eucalyptus woodland and mixed broadleaf conifer forest. The total area of potential impact to woodland and forest habitat is small for each alternative:

- **Alternative 2b**
 - woodland and forest habitat = 0.38 hectare (0.95 acre) permanent, 0.75 hectare (1.85 acres) temporary

- **Alternative 4**
 - woodland and forest habitat = 0.20 hectare (0.51 acre) permanent, 1.04 hectares (2.56 acres) temporary

Golden Eagle

Project construction activities have the potential to disturb golden eagles that attempt nesting within the project area and those that may be nesting adjacent to the site. Both build alternatives would have potential temporary and permanent impacts to eucalyptus woodland and mixed broadleaf conifer forest. Removal of trees would result in a loss of potential golden eagle nesting habitat:

- **Alternative 2b**
 - woodland and forest habitat = 0.38 hectare (0.95 acre) permanent, 0.75 hectare (1.85 acres) temporary

- **Alternative 4**
 - woodland and forest habitat = 0.20 hectare (0.51 acre) permanent, 1.04 hectares (2.56 acres) temporary

White-Tailed Kite

Project construction activities have the potential to disturb white-tailed kites that attempt nesting within the project area and those that may be nesting adjacent to the site. Both build alternatives would have potential temporary and permanent impacts to eucalyptus woodland and mixed broadleaf conifer forest. Removal of trees would result in a loss of potential white-tailed kite nesting habitat:

- **Alternative 2b**
 - woodland and forest habitat = 0.38 hectares (0.95 acre) permanent, 0.75 hectares (1.85 acres) temporary

- **Alternative 4**
Chapter 3.17 – Biological Environment

- **woodland and forest habitat = 0.20 hectare (0.51 acre) permanent, 1.04 hectares (2.56 acres) temporary**

BIRDS (NONRAPTORS)

Passerines and Nonpasserine Landbirds

Special-status passerine and nonpasserine landbird species, including bank swallow and Allen’s hummingbird, have the potential to nest within the BSA. The remaining special-status bird species, as well as other common bird species that may nest on-site could be temporarily disturbed or unable to nest due to construction activity. Permanent removal of existing structures is not anticipated to have a long-term effect on habitat availability as the project would create new structures providing additional habitat for nesting birds such as house finches and swallows.

Both build alternatives would have potential temporary and permanent impacts to landbird nesting habitat, including central coast riparian scrub, eucalyptus woodland, landscaped/disturbed, mixed broadleaf conifer forest, non-native scrub/shrubland, northern foredune, and ruderal/disturbed habitat:

- **Alternative 2b**
 - central coast riparian scrub, eucalyptus woodland, landscaped/disturbed, mixed broadleaf conifer forest, non-native scrub/shrubland, and ruderal/disturbed = 0.43 hectare (1.07 acres) permanent, 1.17 hectare (2.88 acres) temporary

- **Alternative 4**
 - central coast riparian scrub, eucalyptus woodland, landscaped/disturbed, mixed broadleaf conifer forest, non-native scrub/shrubland, and ruderal/disturbed = 0.36 hectare (0.89 acre) permanent, 1.32 hectares (3.27 acres) temporary

Shorebirds, Marshbirds, and Waterbirds

Project construction activities have the potential to disturb wading bird species that nest in mature woodlands, such as egrets and herons that attempt nesting within the project area and those that may be nesting adjacent to the site. Both build alternatives would have potential temporary and permanent impacts to eucalyptus woodland and mixed broadleaf conifer forest. Removal of trees would result in a loss of potential nesting habitat:

- **Alternative 2b**
 - woodland and forest habitat = 0.38 hectare (0.95 acre) permanent, 0.75 hectare (1.85 acres) temporary

- **Alternative 4**
 - woodland and forest habitat = 0.20 hectare (0.51 acre) permanent, 1.04 hectare (2.56 acres) temporary
California Brown Pelican

California brown pelican has the potential to occur within the BSA and roost on piers and the sandy shoreline just outside the temporary and permanent project construction areas. Temporary disturbance to roosting pelicans could occur if construction activities encroach upon occupied roosting habitat. No permanent impacts to potential roosting areas are anticipated as the project construction footprint would avoid the piers in the Bay and the shoreline, including the northern foredune community.

Double-Crested Cormorant

Double-crested cormorants have the potential to occur within the BSA. Construction activities on or adjacent to the existing bridge structure could potentially disturb nesting cormorants and cause nest failure or abandonment. Construction activities along the eastern border of the BSA could potentially temporarily disturb roosting cormorants, if construction activities move outside of the construction envelope. The project would have no permanent impact on cormorant roosting, nesting, or foraging habitat.

TERRESTRIAL MAMMALS

Special-Status Bats

Project construction activities have the potential to directly affect bats roosting within the project area and indirectly disturb those that may be roosting adjacent to the site. Both build alternatives would have potential temporary and permanent impacts to eucalyptus woodland and mixed broadleaf conifer forest that provide potential roost sites. Removal of trees would result in a loss of potential bat roosting habitat:

- Alternative 2b
 - woodland and forest habitat = 0.38 hectare (0.95 acre) permanent, 0.75 hectare (1.85 acres) temporary. Alternative 2b would require removal of one unoccupied building that provides potential roost habitat. In addition, the bridge structure and portions of the road way would be disturbed and modified during construction which may result in a loss of potential roost sites.

- Alternative 4
 - woodland and forest habitat = 0.20 hectare (0.51 acre) permanent, 1.04 hectare (2.56 acres) temporary. No buildings are proposed for removal under Alternative 4.

San Francisco Dusky Footed Woodrat

Project construction activities have the potential to directly affect woodrats if they occur within the project area and indirectly disturb those that may be utilizing woodlands and/or forests adjacent to the site. Both build alternatives would have potential temporary and permanent impacts to eucalyptus woodland and mixed broadleaf conifer forest that provide potential habitat. Removal of vegetation would result in a loss of potential foraging and nesting habitat:
Alternative 2b

- woodland and forest habitat = 0.38 hectare (0.95 acre) permanent, 0.75 hectare (1.85 acres) temporary

Alternative 4

- woodland and forest habitat = 0.20 hectare (0.51 acre) permanent, 1.04 hectare (2.56 acres) temporary

3.17.4.4 Avoidance, Minimization, and Mitigation Measures

All of the avoidance, minimimization, and mitigation measures as discussed below are applicable to each build alternative.

INVERTEBRATES

Sandy Beach Tiger Beetle

Even though no direct impacts are anticipated for the Sandy Beach Tiger Beetle as discussed in 3.17.4.2, the following measures will be incorporated into the project as an extra precaution. Exclusion fencing will be placed around sandy dune habitats and contractor education will be conducted to prevent encroachment of construction activities.

Impacts to potential sandy beach tiger beetle habitat are not anticipated. In addition, the potential habitat within the BSA is considered marginal and the species has a very low potential to be present based on habitat quality and lack of occurrences in the vicinity. Compensatory measures are not proposed.

Monarch Butterfly

Prior to the onset of construction activities, a qualified biologist would conduct focused surveys for monarch butterfly to determine presence or absence within the proposed project areas. If monarch butterfly winter roost sites are determined to be present during focused surveys, occupied habitat would be avoided to the extent feasible, or it would be disturbed outside of the winter roost season, which is typically from September through March. ESA exclusion fencing would be placed around avoided habitats and contractor education would be conducted to prevent encroachment of construction activities. Bright-colored ESA fencing and signage would be implemented and a construction monitor would confirm the fence integrity on a daily basis to protect the area from accidental equipment damage. Fence repair and/or reinforcements would be completed immediately. If a new roost site is discovered during construction, the biological monitor would be contacted to implement avoidance procedures before construction resumes in the area.

Removal of eucalyptus woodland and mixed broadleaf conifer forest habitat that may provide roost sites for monarch butterfly will be offset by implementation of the woodland habitat revegetation plan described in Section 2.2.4. Trees removed will be replaced to provide potential habitat that may benefit the species longer term. Compensatory measures are not proposed.
Gummifera Leaf-Cutter Bee

Prior to the onset of construction activities, a qualified biologist would conduct focused surveys for gummifera leaf-cutter bee to determine presence or absence within the proposed project areas. If any gummifera leaf-cutter bees are determined to be present during focused surveys, occupied habitat would be avoided to the extent feasible. ESA exclusion fencing would be placed around avoided habitats and contractor education would be conducted to prevent encroachment of construction activities. Bright-colored ESA fencing and signage would be implemented and a construction monitor would confirm the fence integrity on a daily basis to protect the area from accidental equipment damage. Fence repair and/or reinforcements would be completed immediately. If the species is discovered during construction, the biological monitor would be contacted to implement avoidance procedures before construction resumes in the area.

Removal of vegetation that may provide habitat for the gummifera leaf-cutter bee will be offset by implementation of the revegetation plan described in Section 2.2.4. Vegetation removed, including non-native trees, will be replaced, providing potential habitat that may benefit the species longer term if it occurs in the area. Compensatory measures are not proposed.

San Francisco Lacewing

Prior to the onset of construction activities, a qualified biologist would conduct focused surveys for San Francisco lacewing to determine presence or absence within the proposed project areas. If any individuals are determined to be present during focused surveys, occupied habitat would be avoided to the extent feasible. ESA exclusion fencing would be placed around avoided habitats and contractor education would be conducted to prevent encroachment of construction activities. Bright-colored ESA fencing and signage would be implemented and a construction monitor would confirm the fence integrity on a daily basis to protect the area from accidental equipment damage. Fence repair and/or reinforcements would be completed immediately. If the species is discovered during construction, the biological monitor would be contacted to implement avoidance procedures before construction resumes in the area.

Removal of eucalyptus woodland and mixed broadleaf conifer forest habitat that may provide habitat for San Francisco lacewing will be offset by implementation of the woodland habitat revegetation plan described in Section 2.2.4. Trees removed will be replaced, providing potential habitat that may benefit the species longer term. Compensatory measures are not proposed.

FISH

The project is designed so that construction activities are located an adequate distance from the bay and therefore fish would be not be affected by construction activities. Construction noise levels, including pile driving, would be well below established thresholds to avoid potential injury to fish located in aquatic habitats adjacent to the site.

The project would not result in the loss of any Essential Fish Habitat and therefore compensatory measures are not proposed.
RAPTORS

American Peregrine Falcon

Peregrine falcons have the potential to nest in proximity to the BSA and have a high potential to use the BSA for foraging. Construction activities within the vicinity of active raptor nests could result in nest abandonment, nest failure, or premature fledging. Destruction or disturbance of active nests would be in violation of the MBTA and Fish and Game Code. In addition, peregrines are protected under CESA. Therefore, the following minimization measures would be implemented to avoid project-related impacts to potentially nesting peregrine falcons:

1. Throughout project construction, monitoring of the potential peregrine falcon nest sites on the columns of the existing SFOBB would be continued following the methodology outlined in the Final Revised Bird Monitoring and Management Plan (LSA 2003).

2. If removal of structures occurs, or construction begins between December 15 and August 31 (the nesting season), a nesting bird survey would be performed by a qualified biologist within 15 days prior to the removal of potential nesting structures, or prior to disturbance of areas in the vicinity of potential nest sites.

3. If an active peregrine falcon nest is discovered on the bridge or other structures within the project area or within 457.2 meters (1,500 feet) of the project area boundary, a nondisturbance buffer zone would be established in coordination with CDFG as necessary. Contractor education would be conducted by a qualified biologist for nesting bird avoidance. Observations would be conducted by a qualified biologist to confirm that work occurring outside of the buffer zone is not disturbing the nesting pair. If necessary, buffer zones would be adjusted to reduce distress to birds.

4. CDFG would be consulted for clearance before construction activities resume within the buffer zone.

5. ESA exclusion fencing would be placed around avoided habitats and contractor education would be conducted to prevent encroachment of construction activities. Bright-colored ESA fencing and signage would be implemented and a construction monitor would confirm the fence integrity on a daily basis to protect the area from accidental equipment damage. Fence repair and/or reinforcements would be completed immediately. If a new nest site is discovered during construction, the biological monitor would be contacted to implement avoidance procedures in coordination with CDFG before construction resumes in the area.

No compensatory measures are proposed for this species.

Cooper’s Hawk, Golden Eagle, White-tailed Kite, and Other Nesting Raptors

Cooper’s hawks, golden eagle, white-tailed kite, and common raptor species such as red-tailed hawk have the potential to nest within habitats on-site. Any removal of trees, buildings, or other structures, or construction activities within the vicinity of active raptor nests could result in nest abandonment, nest failure, or premature fledging. Destruction or disturbance of active nests would be in violation of the MBTA and Fish and Game
Chapter 3.17 – Biological Environment

Code. Therefore, the following minimization measures would be implemented to avoid project-related impacts to potentially nesting raptors, in coordination with CDFG:

1. To the extent feasible, potential nest trees will be avoided.

2. To the extent feasible, the necessary removal of any trees or structures would occur from September 1 through December 15, outside the breeding season. If removal of trees or structures occurs, or construction begins between December 15 and August 31 (the nesting season), a nesting bird survey would be performed by a qualified biologist within 15 days prior to the removal of potential nesting trees or structures, or prior to disturbance of areas in the vicinity of potential nest sites.

3. All trees or structures with active nests would be flagged and a nondisturbance buffer zone established around the nest site in coordination with CDFG. Additionally, if any nests are found on the bridge or other structures within the project area or within 152.4 meters (500 feet) of the project area boundary, these nests shall be flagged and a nondisturbance buffer zone established. Buffer zones typically range between 61 and 152.4 meters (200 and 500 feet) depending on the species involved, site conditions, nesting stage, and type of work in proximity. Contractor education would be conducted for nesting bird avoidance. Observations would be conducted by a qualified biologist to confirm that work occurring outside of the buffer zone is not disturbing nesting pairs. If necessary, buffer zones would be adjusted to reduce distress to birds.

4. Active nests would be regularly monitored by a qualified biologist in coordination with CDFG to determine when the young have fledged and are feeding on their own. CDFG would be consulted for clearance before construction activities resume within the buffer zone. CDFG will be notified if any nest is disturbed.

5. ESA exclusion fencing would be placed around avoided habitats and contractor education would be conducted to prevent encroachment of construction activities. Bright-colored ESA fencing and signage would be implemented and a construction monitor would confirm the fence integrity on a daily basis to protect the area from accidental equipment damage. Fence repair and/or reinforcements would be completed immediately. If a new nest site is discovered during construction, the biological monitor would be contacted to implement avoidance procedures, in coordination with CDFG, before construction resumes in the area.

Temporarily disturbed woodland and forested areas will be restored after completion of construction activities. Removal of eucalyptus woodland and mixed broadleaf conifer forest habitat that may provide nest sites for Cooper’s hawk will be offset by implementation of the woodland habitat revegetation plan described in Section 2.2.4. Trees removed will be replaced with natives to the island. Compensatory measures are not proposed.

BIRDS (NONRAPTORS)

Passerines and Nonpasserine Landbirds

Several special-status and common passerine and nonpasserine landbirds, listed above, have at least some potential to nest and forage on-site. Any removal of structures, trees,
or shrubs, or construction activities in the vicinity of active nests could result in nest abandonment, nest failure, or premature fledging. Destruction or disturbance of active nests would be in violation of the MBTA and Fish and Game Code. In addition, due to its Fully Protected status under Fish and Game Code, incidental take of individuals or nests is not authorized. Therefore, the following minimization measures would be implemented to avoid project-related impacts to potentially nesting passerine and nonpasserine landbirds, in coordination with CDFG:

1. The removal of any structures, trees, or shrubs would occur from September 1 through February 1, outside the passerine and nonpasserine landbird breeding season. If removal of trees or shrubs occurs, or construction begins between February 1 and August 31 (the nesting season), a nesting bird survey would be performed by a qualified biologist within 15 days prior to the removal of potential nesting structures, trees, or shrubs, or prior to disturbance of areas in the vicinity of potential nest sites, i.e., trees and shrubs.

2. All active nests would be flagged and a nondisturbance buffer zone established around the nesting tree (or other nesting substrate) in coordination with the CDFG. Buffer zones for passerines and nonpasserine land birds typically range between 15.2 and 27.4 meters (50 and 90 feet) depending on the species involved, site conditions, and type of work proposed in the vicinity. Contractor education would be conducted for nesting birds, including a discussion of avoidance and protection measures.

3. Active nests would be monitored by a qualified biologist in coordination with CDFG to determine when the young have fledged and are feeding on their own. The project biologist would be consulted for clearance before construction activities resume in the vicinity.

4. If a new nest site is discovered during construction, the biological monitor would be contacted to implement avoidance procedures, in coordination with CDFG, before construction resumes in the area.

No compensatory measures are proposed for these species.

Shorebirds, Marshbirds, and Waterbirds

Suitable nesting and foraging habitat is present on-site for several species of wading birds, including snowy egret, great blue heron, great egret, and black-crowned night-heron. Therefore, the following minimization measures would be implemented to avoid project-related impacts to potentially nesting birds, in coordination with CDFG:

1. The removal of any structures, trees, or shrubs would occur from September 1 through February 1, outside the breeding season. If removal of trees or shrubs occurs, or construction begins between February 1 and August 31 (the nesting season), a nesting bird survey would be performed by a qualified biologist within 15 days prior to the removal of potential nesting structures, trees, or shrubs, or prior to disturbance of areas in the vicinity of potential nest sites, i.e., trees and shrubs.

2. All active nests would be flagged and a nondisturbance buffer zone established around the nesting tree in coordination with the CDFG. Buffer zones for wading
birds typically range between 30.5 and 61 meters (100 and 200 feet) depending on the species involved, site conditions, and type of work proposed in the vicinity. Contractor education would be conducted for nesting birds, including a discussion of avoidance and protection measures.

3. Active nests would be monitored by a qualified biologist in coordination with CDFG to determine when the young have fledged and are feeding on their own. The project biologist would be consulted for clearance before construction activities resume in the vicinity.

4. ESA exclusion fencing would be placed around avoided habitats and contractor education would be conducted to prevent encroachment of construction activities. Bright-colored ESA fencing and signage would be implemented and a construction monitor would confirm the fence integrity on a daily basis to protect the area from accidental equipment damage. Fence repair and/or reinforcements would be completed immediately. If a new nest or roost site is discovered during construction, the biological monitor would be contacted to implement avoidance procedures in coordination with CDFG before construction resumes in the area.

Temporarily disturbed woodland and forested areas will be restored after completion of construction activities. Removal of eucalyptus woodland and mixed broadleaf conifer forest habitat that may provide nest sites for waterbirds such as herons and egrets will be offset by implementation of the woodland habitat revegetation plan described in Section 2.2.4. Trees removed will be replaced with natives to the island. Compensatory measures are not proposed.

California Brown Pelican

California brown pelicans have a high potential to roost adjacent to the construction envelope. Construction activities immediately adjacent to their roosting habitat could cause disturbance or flushing of individuals. Therefore, the following minimization measure would be implemented to avoid project-related impacts to California brown pelican, in coordination with CDFG:

1. Exclusion fencing would be placed around the construction footprint to prevent construction equipment from entering areas where the pelicans may roost. Contractor education would be conducted, including a discussion of avoidance and protection measures. A construction monitor would confirm the fence integrity on a daily basis to protect the area from accidental equipment damage. Fence repair and/or reinforcements would be completed immediately. If a new roost site is discovered during construction, the biological monitor would be contacted to implement avoidance procedures in coordination with CDFG before construction resumes in the area.

No compensatory measures are proposed due to the lack of permanent impacts.

Double-Crested Cormorant

Double-crested cormorants have potential to nest and forage on-site. Construction activities on or adjacent to the existing bridge structure or the eastern border of the BSA could potentially disturb cormorants. Therefore, the following minimization measures are
recommended to avoid project-related impacts to double-crested cormorants, in coordination with CDFG:

1. Throughout project construction, monitoring of the potential cormorant nest sites on the existing SFOBB would be continued following the methodology outlined in the Final Revised Bird Monitoring and Management Plan (2003).

2. If construction activities begin between February 1 and August 31 (the nesting season), a nesting bird survey of the on-site bridge structure would be performed by a qualified biologist within 15 days prior to onset of construction to ensure that no cormorants have begun to nest in the structure or within 61 meters (200 feet) of the project disturbance footprint.

3. All active nests would be flagged or mapped and a nondisturbance buffer zone established around the nest in coordination with the CDFG. Buffer zones typically range between 30.5 and 61 meters (100 and 200 feet) for wading and waterbirds depending on the species involved, site conditions, and type of work proposed.

4. Active nests would be monitored by a qualified biologist in coordination with CDFG to determine when the young have fledged and are feeding on their own. CDFG would be consulted for clearance before construction activities resume.

5. Exclusion fencing would be placed around the construction footprint to prevent construction equipment for entering areas where the cormorants may roost. A construction monitor would confirm the fence integrity on a daily basis to protect the area from accidental equipment damage. Fence repair and/or reinforcements would be completed immediately.

6. If a new roost or nest site is discovered during construction, the biological monitor would be contacted to implement avoidance procedures in coordination with CDFG before construction resumes in the area.

No compensatory measures are proposed for this species.

TERRESTRIAL MAMMALS

Special-Status Bats

A preconstruction survey for roosting bats would be performed by a qualified biologist within 30 days prior to any removal of trees or structures on the site. If no active roosts are found, then no further action would be proposed. If either a maternity roost or hibernacula (structures used by bats for hibernation) is present, the following minimization measures would be implemented:

1. If active maternity roosts or hibernacula are found in trees or structures that would be removed or disturbed as part of project construction, the roost would be avoided by construction activities to the extent feasible. If an active maternity roost is located and avoidance of the occupied tree or structure is not feasible, demolition can commence before maternity colonies form (i.e., prior to March 1) or after young are volant (flying) (i.e., after July 31). Disturbance-free buffer zones as determined by a qualified biologist in coordination with CDFG would be observed during the maternity roost season (March 1 through July 31).
2. ESA exclusion fencing would be placed around avoided habitats and contractor education would be conducted to prevent encroachment of construction activities. Bright-colored ESA fencing and signage would be implemented and a construction monitor would confirm the fence integrity on a daily basis to protect the area from accidental equipment damage. Fence repair and/or reinforcements would be completed immediately. If a new roost site is discovered during construction, the biological monitor would be contacted to implement avoidance procedures before construction resumes in the area.

3. If a non-breeding bat hibernacula is found in a tree or structure scheduled for removal, the individuals would be safely evicted, under the direction of a qualified biologist (as determined by possession of a Memorandum of Understanding [MOU] with CDFG, typically amended to the individual's scientific collecting permit), by opening the roosting area to allow airflow through the cavity. demolition can then follow at least one night after initial disturbance for airflow. This action should allow bats to leave during darkness, thus increasing their chance of finding new roosts with a minimum of potential predation during daylight. Trees or structures with roosts that need to be removed would first be disturbed at dusk, just prior to removal that same evening, to allow bats to escape during the darker hours.

If special-status bats are found roosting within trees or structures on-site that require removal or if occupied habitat is accidentally damaged during construction, appropriate replacement roosts shall be created at a 1:1 ratio at a suitable location on-site or off-site in coordination with a qualified biologist, Caltrans and/or CDFG.

San Francisco Dusky Footed Woodrat

A preconstruction survey for San Francisco dusky-footed woodrat and associated woodrat houses would be performed by a qualified biologist within 30 days prior to any removal of trees or other vegetation on the site and within 30.5 meters (100 feet) of planned construction activities. If no active houses are found, then no further action would be proposed. If active woodrat houses are found in or below trees and vegetation that would be removed or temporarily disturbed as part of project construction, the project would be redesigned to avoid the loss of the occupied habitat and disturbance to woodrats to the extent feasible. If the project cannot be redesigned to avoid removal of the occupied habitat, the woodrat house may be relocated to a suitable location as close to the original house as possible while maintaining an adequate buffer of construction activities in coordination with CDFG. Animal exclusion fencing would be placed around the construction area, to prevent woodrat ingress, and contractor education would be conducted. A construction monitor would confirm the fence integrity on a daily basis to protect the area from accidental equipment damage. Fence repair and/or reinforcements would be completed immediately. If a new nest site is discovered during construction, the biological monitor would be contacted to implement avoidance procedures in coordination with CDFG before construction resumes in the area.

If San Francisco dusky-footed woodrat houses are found within portions of the project site that require permanent or temporary disturbance or if occupied habitat is accidentally damaged during construction, appropriate replacement houses/nests would be created at a 1:1 ratio at a suitable location on-site or off-site in coordination with a qualified biologist, Caltrans, and/or CDFG. Follow-up monitoring efforts would be
conducted to evaluate relocation success and additional measures may be proposed if relocated houses are not successful.

3.17.5 Threatened and Endangered Species

3.17.5.1 Regulatory Setting

The primary Federal law protecting threatened and endangered species is FESA: 16 U.S.C., Section 1531, et seq. (see also 50 C.F.R. Part 402). This act and subsequent amendments provide for the conservation of endangered and threatened species and the ecosystems upon which they depend. Under Section 7 of this act, Federal agencies, such as FHWA, are required to consult with USFWS and NOAA Fisheries to ensure that they are not undertaking, funding, permitting, or authorizing actions likely to jeopardize the continued existence of listed species or destroy or adversely modify designated critical habitat. Critical habitat is defined as geographic locations critical to the existence of a threatened or endangered species. The outcome of consultation under Section 7 is a Biological Opinion or an incidental take permit. Section 3 of FESA defines take as “harass, harm, pursue, hunt, shoot, wound, kill, trap, capture or collect or any attempt at such conduct.”

California has enacted a similar law at the state level, CESA, California Fish and Game Code, Section 2050, et seq. CESA emphasizes early consultation to avoid potential impacts to rare, endangered, and threatened species and to develop appropriate planning to offset project caused losses of listed species populations and their essential habitats. CDFG is the agency responsible for implementing CESA. Section 2081 of the Fish and Game Code prohibits “take” of any species determined to be an endangered species or a threatened species. Take is defined in Section 86 of the Fish and Game Code as “hunt, pursue, catch, capture, or kill, or attempt to hunt, pursue, catch, capture, or kill.” CESA allows for take incidental to otherwise lawful development projects; for these actions an incidental take permit is issued by CDFG. For projects requiring a Biological Opinion under Section 7 of FESA, CDFG may also authorize impacts to CESA species by issuing a Consistency Determination under Section 2080.1 of the Fish and Game Code.

The Marine Mammal Protection Act (MMPA) of 1972 establishes a Federal responsibility for the protection and conservation of marine mammal species by prohibiting the harassment, hunting, capture, or killing of any marine mammal. The primary authority for implementing the act belongs to the USFWS and NOAA-Fisheries.

3.17.5.2 Affected Environment

The following technical reports were consulted:

- Natural Environment Study: YBI Ramps Improvement Project. (2011b) [NES. Appendix N].

Fish

Potential project impacts to eight Federally or state-listed fish species were considered during the preparation of the Final EIR/EIS because the BSA is located near the shoreline which is in the vicinity of the historical range of these species, including:

Chapter 3.17 – Biological Environment

- Green sturgeon – southern Distinct Population Segment (DPS) (*Acipenser medirostris*), Federally listed threatened and a California Species of Special Concern

- Tidewater goby (*Eucyclogobius newberryi*), Federally listed endangered and a California Species of Special Concern

- Delta smelt (*Hypomesus transpacificus*), Federally and state-listed threatened

- Longfin smelt (*Spirinchus thaleichthys*), state-listed threatened

- Coho salmon – Central California ESU (Evolutionarily Significant Unit) (*Oncorhynchus kisutch*), Federally and state-listed endangered

- Steelhead – Central California Coast ESU (*Oncorhynchus mykiss*), Federally listed threatened

- Steelhead – Central Valley California ESU, Federally listed threatened

- Chinook salmon – Central Valley spring-run ESU (*Oncorhynchus tshawytcha*), Federally and state-listed threatened

- Chinook salmon – winter-run ESU, Federally and state-listed threatened

Leidy (2007) and Moyle (2002) consider the tidewater goby to be extirpated from San Francisco Bay and its tributaries. Delta smelt rarely occur in central or South San Francisco Bay and are normally restricted to areas north of San Pablo Bay (Moyle 2002). Critical habitat for Sacramento River winter-run Chinook, Central Valley spring-run Chinook, Central Coast coho, Central Valley steelhead is located in the Bay adjacent to the north side of the BSA. Furthermore, EFH is located in the Bay adjacent to the BSA for winter-run Chinook, Central Valley spring-run Chinook, Central Valley fall-run Chinook, late fall-run Chinook, and Central Coast coho (USDT-FHWA 2001; City and County of San Francisco 2006). Critical habitat for California coastal steelhead is also located to the south of the BSA. Although the BSA is located immediately adjacent to the Bay, the only aquatic habitat present within the BSA is concrete-lined drainage swales adjacent to roadsides. These features are designed to convey storm water (therefore they are intermittent) and are about 0.91-meter (3 feet) wide and unvegetated. They do not provide habitat for the special-status fish species that have potential to occur in the adjacent waters of the Bay. Based on the absence of suitable aquatic habitat, no fish species are expected to occur on-site (see the NES in Appendix N).

Reptiles and Amphibians

Potential project impacts to two amphibian species and six reptile species that are Federally or state-listed were considered during the preparation of the Final EIR/EIS because the BSA falls within or in the vicinity of the historical range of these species. These include:

- California tiger salamander (*Ambystoma californiense*), Federally and state-listed threatened
California red-legged frog (*Rana [=aurora draytonii] draytonii*), Federally listed threatened and a California Species of Special Concern

Loggerhead turtle (*Caretta caretta*), Federally listed threatened

Green turtle (*Chelonia mydas*), Federally listed threatened

Leatherback (*Dermochelys coriacea*), Federally listed endangered

Olive ridley sea turtle (*Lepidochelys olivacea*), Federally listed threatened

Alameda whipsnake (*Masticophis lateralis euryxanthus*), Federally and state-listed threatened

San Francisco garter snake (*Thamnophis sirtalis tetrataenia*), Federally and state-listed endangered and a California Fully Protected Species

Of these eight species, all were eliminated from consideration due to their range, isolation from known populations, or lack of suitable habitat. The BSA lacks freshwater aquatic habitat in the form of streams or ponds, making it unsuitable for California tiger salamander, California red-legged frog, and San Francisco garter snake. The concrete-lined drainages are not considered suitable habitat for these species due to lack of cover, suitable substrate, and ponded water. The fact that YBI is an island also isolates it from all known populations of these species, as well as populations of Alameda whipsnake (Figure 3.17-8). The four species of sea turtle range very widely throughout the Pacific and other oceans, are typically found far out to sea during migrations, forage in suitable nearshore habitats, and lay their eggs on suitable beaches. Sea turtles do not nest in California, and although they may occur in coastal waters, sea turtles are not expected to enter the San Francisco Bay. There are no reported observations in the Bay and higher quality foraging opportunities are present in coastal waters and lagoons outside of the Bay. Therefore, they are not expected to occur within the waters adjacent to the project area (see the NES in Appendix N).

The project will have no effect on listed reptiles or amphibians.

RAPTORS

Potential project impacts to one state-listed endangered raptor species were considered during the preparation of the Final EIR/EIS because the BSA falls within or in the vicinity of the historical range of this species:

- Bald eagle (*Haliaeetus leucocephalus*), state-listed endangered and a California Fully Protected species

The nearest reported occurrence of bald eagle is more than 8 kilometers (5 miles) away (CDFG 2008a). Bald eagle pairs have recently established nest sites on watershed lands adjacent to Bay Area reservoirs including Calaveras, Del Valle, and San Pablo; however, they are not known to nest in trees or structures adjacent to the Bay, preferring lands with minimized human activity. Therefore, bald eagles are not expected to occur on-site (see the NES in Appendix N).
BIRDS (NONRAPTORS)

Passerines and Nonpasserine Landbirds

Several common passerine and nonpasserine landbird species could nest within habitats present on-site including natural vegetation, structures, and disturbed areas. Ruderal, disturbed, landscaped, and grassland areas could provide nesting habitat for such opportunistic birds, as well as foraging habitat for a wide variety of birds. Exposed vertical banks found on the northern boundary of the BSA provide potential nesting habitat for species such as bank swallow (*Riparia riparia*), a state-listed threatened species, which excavate tunnel nests into exposed sandbanks. Nesting bank swallows have not been recorded at YBI and the closest known nest colony is located approximately 14.5 kilometers (9 miles) southwest at Fort Funston/Lake Merced (Garrison 1998).

Shorebirds, Marshbirds, and Waterbirds

Birds that inhabit salt marsh habitats of the Bay and require dense vegetation for shelter and nesting including black rail (*Laterallus jamaicensis coturniculus*), state-listed threatened and a California Fully Protected species, and California clapper rail (*Rallus longirostris obsoletus*), Federally and state-listed endangered and a California Fully Protected species, are not expected to occur on-site. Although they are known to occur within 8.05 kilometers (5 miles) (Figure 3.17-8), no suitable marsh habitat is present within the boundaries of the BSA for these species.

The California least tern (*Sterna antillarum browni*), Federally and state-listed endangered and a California Fully Protected species, western snowy plover (*Charadrius alexandrinus nivosus*), Federally-listed threatened and a California species of special concern, and other sensitive beach nesting birds are not expected to nest on-site due to an absence of suitable habitat. These species nest on protected sand dunes, beaches, or other open but sheltered habitats adjacent to water. Northern foredune habitat on-site is minimal (0.178 hectare [0.440 acre]) and exposed to wave action, making it unsuitable for nest establishment and the remainder of the site is unsuitable due to ongoing construction or dense vegetation; therefore California least tern and western snowy plover are not expected to occur on-site. Foraging habitat for California least tern is available adjacent to the study area in shallow bay waters and occurrences have been recorded in the region (Figure 5).

TERRESTRIAL MAMMALS

Potential project impacts to the salt marsh harvest mouse (*Reithrodontomyys raviventris*), a Federally and state-listed endangered and a California Fully Protected Species, was considered during the preparation of the Final EIR/EIS because of the presence of occurrences nearby, or because the BSA falls within or in the vicinity of the historical range of this species. However, based on the absence of suitable salt marsh habitat and isolation from known occurrences and no connectivity (Figure 3.17-8), this species is not expected to occur within the BSA.

MARINE MAMMALS

Potential project impacts to nine Federally listed marine mammal species were considered during the preparation of the Final EIR/EIS because the BSA falls within or in...
the vicinity of the historical range of these species or the species have been identified as occurring near the BSA, including:

- Guadalupe fur seal (*Arctocephalus townsendi*), Federally and state-listed threatened and a California Fully Protected Species
- Sei whale (*Balaenoptera borealis*), Federally listed endangered
- Blue whale (*Balaenoptera musculus*), Federally listed endangered
- Finback whale (*Balaenoptera physalus*), Federally listed endangered
- Southern sea otter (*Enhydra lutris nereis*), Federally listed threatened and a California Fully Protected Species
- Right whale (*Eubalaena glacialis*), Federally listed endangered
- Stellar sea lion (*Eumetopias jubatus*), Federally listed threatened
- Humpback whale (*Megaptera novaeangliae*), Federally listed endangered
- Sperm whale (* Physeter catadon*), Federally listed endangered

Several species of Federally listed marine mammals occur off of the Central California Coast. However, only the humpback whale has been known to enter the San Francisco Bay on occasion and it is not expected to occur in the vicinity of the project area.

MARINE MAMMAL PROTECTION ACT

Potential impacts to four marine mammal species which are not listed under either the CESA or the FESA, but receive protection under the Marine Mammal Protection Act (MMPA), were considered during the preparation of the Final EIR/EIS. The BSA is located near the shoreline in the vicinity of the historical range of these species which have been identified to potentially occur, including:

- Harbor seal (*Phoca vitulina*)
- Harbor porpoise (*Phocoena phocoena*)
- California sea lion (*Zalophus californicus*)
- Gray whale (*Eschrichtius robustus*)

Several species of marine mammals occur off of the central California coast; however, only a few species have been known to enter the Bay, including harbor seal, California sea lion, harbor porpoise and gray whale, all of which have potential to occur in the vicinity of the BSA. Although the BSA is located immediately adjacent to the Bay, no work would be conducted within the limits of the Bay, and the only aquatic habitat present within the BSA is limited to concrete-lined drainage swales adjacent to roadsides, which do not provide habitat for marine mammal species. California sea lions and harbor seals forage aquatically but use land to haul-out and pup. Gray whales and harbor porpoises are entirely aquatic, ocean species, and the likelihood of them occurring in waters adjacent to the site is extremely low.
Because of their presence in the Bay and potential to use surrounding shoreline habitats, harbor seals and California sea lions are discussed in more detail below.

Harbor Seal

Harbor seals are permanent residents in the San Francisco and San Pablo bays. They forage aquatically but use land to haul-out and pup. They feed on a variety of fish including surf perch (Embiotocidae fishes) and plainfin midshipman (*Porichthys notatus*), with variation in the dominant fish taken both seasonally and based upon the portion of the bay in which they reside. Harbor seals are generally solitary, or in mother-pup pairs when in the water, although they will haul-out in groups ranging in size from a few individuals to several hundred (Riedman 1990). Harbor seals breed in the spring and early summer, giving birth 11 months later to a single pup. Pups are weaned in weeks.

Harbor seals haul out at 12 main sites in the San Francisco Bay (Marine Mammal Monitoring Plan: San Francisco – Oakland Bay Bridge East Span Seismic Safety Project, 2002), with several smaller sites used as well, and had eight known pupping sites in the early 1990s (Baylands Ecosystem Species and Community Profiles: Life histories and environmental requirements of key plants, fish and wildlife, 2000). Haul-out sites generally require several features to be suitable for harbor seals, such as sloping terrain, deep water immediately adjacent, and no disturbance from boats or land access. Seals are extremely sensitive to human disturbance, are extremely wary of their surroundings, and have been known to abandon haul-out sites when disturbance increases and/or food resources decrease, as evidenced by the abandonment of Strawberry Spit near Marin (Grigg 2000). Many of the sites traditionally used are islands or completely surrounded by water, such as Brooks Island, and Castro Rocks, and there has been some limited use of a floating abandoned dock by Sausalito. Pupping sites are generally the most protected from disturbance, and harbor seals are slow to colonize new pupping sites. Harbor seals have been known to pup at Castro Rocks, Newark Slough, and Mowry Slough (Baylands Ecosystem Species and Community Profiles: Life histories and environmental requirements of key plants, fish and wildlife, 2000).

Harbor seals are known to haul-out on the southeast side of YBI 1,600 feet from the BSA (Marine Mammal Monitoring Plan: San Francisco – Oakland Bay Bridge East Span Seismic Safety Project, 2002; Revised Marine Mammal Monitoring Plan: San Francisco – Oakland Bay Bridge East Span Seismic Safety Project, 2004; Baylands Ecosystem Species and Community Profiles: Life histories and environmental requirements of key plants, fish and wildlife, 2000) (Figure 13.7-8). The haul-out site on YBI is a small rocky beach in a cove just west of the lighthouse, surrounded by steep hillsides, making access by land difficult and thereby minimizing disturbance. In 1999, the haul-out site at YBI had 72 seals and three pups reported (Baylands Ecosystem Species and Community Profiles: Life histories and environmental requirements of key plants, fish and wildlife, 2000), although this site is not confirmed as an active pupping site, as no births have been observed at the site. While the YBI haul-out site is an active and well-used site, its relative isolation from disturbance distinguishes it from the rest of the island, and in particular the BSA.

The BSA is located away from the shoreline and does not include beach areas easily accessed by seals for haul-out purposes, with the exception of the southeastern edge, which is adjacent to a small area of sandy beach. This beach area is subject to a large amount of water-based human disturbance from the nearby USCG facility as well as ongoing construction disturbance from the land, which would likely preclude harbor seals
from hauling out at this location. Furthermore, there are no records of harbor seals using this area for hauling out. Based on the absence of suitable haul-out habitat, harbor seals are not expected to occur on-site. However, harbor seals may forage in the Bay immediately offshore from the project area. No components of the project are immediately adjacent to the water.

Although there is an active haul-out and potential pupping site on YBI, this haul-out site is located more than 487.7 meters (1,600 feet) from the BSA and is characteristically distinct from the BSA. The haul-out site is not within line of sight of the BSA and is protected by the surrounding hillsides. Based on the absence of suitable haul-out habitat, harbor seals are not expected to occur on-site (see the NES in Appendix N).

California Sea Lion

California sea lions occur along the entire California coast and occur year-round in the Bay. California sea lions breed from San Luis Obispo County south to the Gulf of California, Baja California, Mexico, although they have been known to breed farther north on rare occasions. Pups are born between May and June. California sea lions feed primarily on schooling fish species such as anchovies, midshipman, and Pacific herring (Goals Project 2000). In the San Francisco Bay, populations of California sea lion peak during the winter herring run from December to February. California sea lions are only known to haul-out in three places in the Bay: Pier 39 in San Francisco (Biological Monitoring and Mitigation Compliance Report (July), 2002; Baylands Ecosystem Species and Community Profiles: Life histories and environmental requirements of key plants, fish and wildlife, 2000), Angel Island, and Seal Rock, which is located just beyond the Golden Gate Bridge.

While California sea lions could potentially forage near the BSA, it is unlikely that any individuals would haul-out near the BSA. Based on the absence of suitable haul-out habitat and the absence of construction activity within the Bay, California sea lions are not expected to occur on-site (see the NES in Appendix N).

3.17.5.3 Environmental Consequences

Caltrans conducted a cumulative impact assessment for animal species including invertebrates, raptors, birds, and terrestrial mammals, which is provided in Section 3.20.2.

Based on an absence of suitable habitat and isolation from known populations in the region, terrestrial species listed under the FESA are not expected to occur on-site. Aquatic species falling under the purview of the USFWS are not expected to occur in waters adjacent to the site. Therefore, it has been determined that the project will have no effect on federally listed species regulated by the USFWS.

Except as noted below, the environmental consequences are the same for both build alternatives.

PLANT SPECIES

Based upon initial field surveys and review of the above-listed documents, four endangered or threatened plant species (beach layia, San Francisco lessingia, California seablite, and robust spineflower) were identified to have a low to moderate potential to
occur on site based on habitat availability and were included in the focused botanical surveys conducted during spring and summer 2009 during the appropriate blooming periods (Figure 3.17-5; Table 3.17-3; NES in Appendix N). Because these target species were not found during focused surveys and are therefore presumed absent from the site, the project will have no effect on listed plant species and they are not discussed further.

FISH

Implementation of BMPs for aquatic habitats during construction as described in Section 3.17.2.4 will minimize potential water quality impacts to waters of the Bay and avoid indirect impacts to critical habitat and Essential Fish Habitat adjacent to the site.

Project construction activities that involve loud equipment such as pile driving have the potential to cause barotrauma to fish species occurring within waters adjacent to the site. However, none of these activities will occur within aquatic habitats. All construction activities, including pile driving of piers for installation of the ramps, will occur on land in soils that are not saturated. H-piles (steel piles) will be driven into the ground; the other type of piles to be used are concrete piles which are to be placed, not driven (a hole is augered and the concrete is placed inside). The closest H-piles will be driven approximately 91.4 meters (300 feet) from the shoreline under Alternative 2b and 27.4 meters (90 feet) from the shoreline under Alternative 4. The primary source of underwater noise would be ground borne vibration released into the bay. A hydroacoustic analysis for pile driving activities under both project alternatives was prepared (Memo: Yerba Buena Island – Pile Driving Noise Descriptions. January 3, 2011a). Predictions for distances to adopted NMFS, USFWS, and CDFG (HFWG 2008) injury threshold criteria were made using actual measurements taken from similar pile driving experiences. Injury threshold criteria for fish are as follows:

- **Peak Sound Pressure, unweighted (dB)**

 206 dB re: 1μPa (for all size of fish)

- **Cumulative Sound Exposure Level (SEL), dB re 1 μPa2 sec**

 187 dB re: 1μPa2-sec – for fish size of two grams or greater.

 183 dB re: 1μPa2-sec – for fish size of less than two grams.

NMFS does not consider events that produce a SEL per strike of less than 150 dB to accumulate and cause injury. The data used in this analysis is based primarily on data measured for installation of a temporary crane platform on YBI in November 2008. Therefore soil types and transmission loss through the soils would be similar to the project area, providing a reasonable comparison. For the crane platform, piles were driven approximately 40 feet from the water’s edge producing maximum underwater sound levels of 174 dB peak and 147 dB SEL at underwater measurement locations of 131 feet. This was the closest location that measurements could be made due to the shallowness of the water. The closest pile for Alternative 4 is located 90 feet from the shoreline. Given that this pile will be farther away from fisheries habitat than those installed for the crane platform, underwater noise levels are expected to be even lower for construction of the YBI Ramps under both alternatives. Thus, project construction noise levels are not expected to reach the minimum established injury threshold of 183

Based on the Alternative 2b project design which avoids sensitive aquatic habitats, restricts pile driving to a minimum of 91.4 meters (300 feet) from the shoreline and implements BMPs, this alternative will have no effect on fisheries. Alternative 4 will also implement BMPs and avoid direct impacts to aquatic habitats however it will involve pile driving within 27.4 meters (90 feet) of the shoreline. It is also anticipated that this alternative will have no effect on fisheries in the area based on the hydroacoustical analysis.

REPTILES AND AMPHIBIANS

Because none of the reptile or amphibian species listed above have potential to occur on or in the vicinity of the site, the project will have no effect on listed reptiles or amphibians.

RAPTORS

Because this species is not expected to occur on or in the vicinity of the site, the project will have no effect on bald eagle.

BIRDS (NONRAPTORS)

Passerines and Nonpasserine Landbirds

Bank swallow have not been documented on YBI and the vertical banks that provide potential nesting habitat for bank swallow would be avoided; therefore, direct impacts to this species are not anticipated. The project will comply with MBTA to avoid indirect impacts to adjacently nesting birds; a pre-construction survey will be conducted for nesting birds prior to construction to avoid take of any individuals. Therefore the project will have no effect on listed passerine species and a 2081 permit from CDFG will not be necessary. Shorebirds, Marshbirds, and Waterbirds

Because these species are not expected to occur on-site, the project will have no effect on California black rail or California clapper rail.

California least tern foraging habitat is not expected to be impacted by project construction activities given the avoidance of tidal aquatic habitat by project features and construction activities. For both alternatives, the tidal waters of the Bay will be avoided by temporary construction features and permanent project features, and will not be affected by temporary construction activities as standard construction BMP’s will be implemented to treat and minimize discharge into the Bay. Implementation of BMP’s as described in Section 3.17.2.4 for aquatic habitats will minimize the potential for least tern prey items (fish in the Bay) to be indirectly affected by project construction activities. Because this species is not expected to occur on-site, and because construction BMPs will reduce the potential for indirect effects to foraging habitat, it is expected that the project will have no effect on California least tern, western snowy plover, or any other listed bird species.

The project will have no effect on salt marsh harvest mouse.
MARINE MAMMALS

If a humpback whale were to move into waters of the Bay, implementation of construction BMPs for adjacent aquatic habitats as described in Section 3.17.2.4 would minimize the potential for indirect effects. Given that it is extremely unlikely for them to be present in San Francisco Bay, the project will have no effect on Federally listed marine mammals.

MARINE MAMMAL PROTECTION ACT

Gray whales and harbor porpoises are entirely aquatic, ocean species, and the likelihood of them occurring in waters adjacent to the site is extremely low. There will be no direct project effects on these species. The project would have no effect on gray whale and/or harbor porpoise with the implementation of BMPs described in Section 3.17.2.4 and based on the hydroacoustic analysis described below. Based on the Alternative 2b project design which avoids sensitive aquatic habitats, restricts pile driving to a minimum of 91.4 meters (300 feet) from the shoreline and implements BMPs, this alternative will have no effect on marine mammals. Alternative 4 will also implement BMPs and avoid direct impacts to aquatic habitats however it will involve pile driving within 27.4 meters (90 feet) of the shoreline. It is also anticipated that this alternative will have no effect on marine mammal behavior patterns in the area based on the hydroacoustical analysis.

Because of their presence in the Bay and potential to use surrounding shoreline habitats, harbor seals and California sea lions are discussed in more detail below.

Harbor Seal

Project construction activities that involve loud equipment such as pile driving have the potential to injure or disturb behavior patterns of harbor seals utilizing waters of the San Francisco Bay adjacent to the site. The project will employ pile driving techniques under both alternatives. However, none of these activities will occur within aquatic habitats. All construction activities, including pile driving of piers for installation of the ramps, will occur on land in soils that are not saturated. H-piles (steel piles) will be driven into the ground; the other type of piles to be used are concrete piles which are to be placed, not driven (a hole is augered and the concrete is placed inside). The closest H-piles will be driven approximately 91.4 meters (300 feet) from the shoreline under Alternative 2b and 27.4 meters (90 feet) from the shoreline under Alternative 4. The primary source of underwater noise would be ground borne vibration released into the bay. A hydroacoustic analysis for pile driving activities under both project alternatives was prepared (Memo: Yerba Buena Island – Pile Driving Noise Descriptions. January 3, 2011a; E-Mail Correspondence: Airborne Noise from Pile Driving. January 6, 2011b). Predictions for distances to accepted NMFS thresholds were made using actual measurements taken by Illingworth & Rodkin, Inc. from similar pile driving experiences. Injury and behavioral disturbance thresholds accepted by NMFS are described by root-mean-square pressure (RMS) for marine mammals in Table 3.17-4, as follows:
Table 3.17–4: Marine Mammal Disturbance Thresholds for Marine Construction Activities

<table>
<thead>
<tr>
<th>Species</th>
<th>Airborne Noise Threshold (dB re: 20μPa)</th>
<th>Underwater Noise threshold (dB re: 1μPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In Air Sound Pressure Levels (RMS)</td>
<td>Vibratory Pile Driving Disturbance Threshold</td>
</tr>
<tr>
<td>Harbor Seals</td>
<td>90 dB RMS¹ (un-weighted)</td>
<td>120 dB RMS</td>
</tr>
<tr>
<td>Sea Lions and Sea Otters</td>
<td>100 dB RMS¹ (un-weighted)</td>
<td>120 dB RMS</td>
</tr>
<tr>
<td>Cetaceans</td>
<td>NA</td>
<td>120 dB RMS</td>
</tr>
</tbody>
</table>

Source: (70 FR 1871), Southal et al. 2007: 71FR 3260 January 20, 2006; and WADOT.wa.gov/nr/rdonlyres/216F21DA../BA_Marine/Noisethreshold.pdf

The data used in this analysis is based primarily on data measured for installation of a temporary crane platform on YBI in November 2008. Therefore soil types and transmission loss through the soils would be similar to the project area, providing a reasonable comparison. For the crane platform, piles were driven approximately 12.2 meters (40 feet) from the water’s edge producing maximum underwater sound levels of 157 dB RMS at underwater measurement locations of 39.9 meters (131 feet). This was the closest location that measurements could be made due to the shallowness of the water. The closest pile for Alternative 4 is located 27.4 meters (90 feet) from the shoreline. Given that this pile will be farther away from marine mammal foraging habitat than those installed for the crane platform, underwater noise levels are expected to be even lower for construction of the YBI Ramps under both alternatives. Thus, project construction noise levels are not expected to reach the minimum established injury threshold of 190 dB RMS nor the minimum established disturbance threshold of 160 dB RMS for harbor seals (Memo: Yerba Buena Island – Pile Driving Noise Descriptions. January 3, 2011a).

Although there is an active haul-out, and potential pupping site on YBI, this haul-out site is located over 487.7 meters (1,600 feet) from the study area and is characteristically distinct from the study area. The haul out site is not within line of sight of the study area and is protected from the study area by the surrounding hillsides. The analysis calculated the distance to the airborne noise disturbance limit for harbor seals (90 dB RMS) to be 213.4 meters (700 feet) for Lmax/RMS (maximum sound level) and 76.2 meters (250 feet) for Leq/RMS during pile driving activities (E-Mail Correspondence: Airborne Noise from Pile Driving. January 6, 2011b). Given the distance of the haul out site, the airborne noise threshold of 90 dB RMS will not be reached at that location during pile driving activities. Sound levels of air-borne construction noise may approach these levels at the water’s surface adjacent to the site however any foraging harbor seals could avoid disruption by swimming under water where sound levels are not expected to reach disturbance thresholds as described above.

Based on the absence of suitable haul-out habitat on site, distance and topographic position of the known haul out site on YBI, the absence of construction activity within the San Francisco Bay, and the above hydroacoustic analysis, no effects to harbor seals are expected from either project alternative.
California Sea Lion

Project construction activities that involve loud equipment such as pile driving have the potential to injure or disturb behavior patterns of sea lions utilizing waters of the San Francisco Bay adjacent to the site. The project will employ pile driving techniques under both alternatives. However, none of these activities will occur within aquatic habitats. All construction activities, including pile driving of piers for installation of the ramps, will occur on land in soils that are not saturated. H-piles (steel piles) will be driven into the ground; the other type of piles to be used are concrete piles which are to be placed, not driven (a hole is augered and the concrete is placed inside). The closest H-piles will be driven approximately 91.4 meters (300 feet) from the shoreline under Alternative 2b and 27.4 meters (90 feet) from the shoreline under Alternative 4. The primary source of underwater noise would be ground borne vibration released into the bay. A hydroacoustic analysis for pile driving activities under both project alternatives was prepared (Memo: Yerba Buena Island – Pile Driving Noise Descriptions. January 3, 2011a; E-Mail Correspondence: Airborne Noise from Pile Driving. January 6, 2011b). Predictions for distances to accepted NMFS thresholds were made using actual measurements taken by Illingworth & Rodkin, Inc. from similar pile driving experiences. Injury and behavioral disturbance thresholds accepted by NMFS are described by root-mean-square pressure (RMS) for marine mammals in Table 3.17-4:

The data used in this analysis is based primarily on data measured for installation of a temporary crane platform on YBI in November 2008. Therefore soil types and transmission loss through the soils would be similar to the project area, providing a reasonable comparison. For the crane platform, piles were driven approximately 12.2 meters (40 feet) from the water’s edge producing maximum underwater sound levels of 157 dB RMS at underwater measurement locations of 39.9 meters (131 feet). This was the closest location that measurements could be made due to the shallowness of the water. The closest pile for Alternative 4 is located 27.4 meters (90 feet) from the shoreline. Given that this pile will be farther away from marine mammal foraging habitat than those installed for the crane platform, underwater noise levels are expected to be even lower for construction of the YBI Ramps under both alternatives. Thus, project construction noise levels are not expected to reach the minimum established injury threshold of 190 dB RMS nor the minimum established disturbance threshold of 160 dB RMS for sea lions (Memo: Yerba Buena Island – Pile Driving Noise Descriptions. January 3, 2011a).

The analysis calculated the distance to the airborne noise disturbance limit for sea lions (100 dB RMS) to be 70.14 meters (230 feet) for Lmax/RMS (maximum sound level) and 24.4 meters (80 feet) for Leq/RMS during pile driving activities (E-Mail Correspondence: Airborne Noise from Pile Driving. January 6, 2011b). Sound levels of air-borne construction noise may approach the airborne noise threshold of 100 dB RMS at the water’s surface immediately adjacent to the site for Alternative 4 where pile driving will occur within 27.4 meters (90 feet) of the shoreline; however, any foraging sea lions could avoid disruption by swimming under water where sound levels are not expected to reach disturbance thresholds.

Based on the absence of suitable haul-out habitat on site, the absence of construction activity within the San Francisco Bay, and the above hydroacoustic analysis, no effects to sea lions are expected from either project alternative.
3.17.5.4 Avoidance, Minimization, and/or Mitigation Measures

FISH

The project design is such that protected fish would be not be affected by construction activities. Construction noise levels, including pile driving, would be below established thresholds to avoid potential injury to protected fish located in aquatic habitats adjacent to the site.

The project would not result in the loss of any habitat for Federally listed fish species and therefore compensatory measures are not proposed.

BIRDS (NONRAPTORS)

Bank Swallow

Any removal of structures, trees, or shrubs, or construction activities in the vicinity of active nests could result in nest abandonment, nest failure, or premature fledging. Destruction or disturbance of active nests would be in violation of the MBTA and Fish and Game Code. Therefore, the following measures would be implemented to avoid project-related impacts to potentially nesting bank swallows in proximity to construction areas, in coordination with CDFG:

1. The removal of any structures, trees, or shrubs would occur from September 1 through February 1, outside the passerine and nonpasserine landbird breeding season. If removal of trees or shrubs occurs, or construction begins between February 1 and August 31 (the nesting season), a nesting bird survey would be performed by a qualified biologist within 15 days prior to the removal of potential nesting structures, trees, or shrubs, or prior to disturbance of areas in the vicinity of potential nest sites, i.e., hillsides and trees.

2. All active nests would be flagged and a nondisturbance buffer zone established around the nesting tree (or other nesting substrate) in coordination with CDFG. Buffer zones for passerines and nonpasserine land birds typically range between 15.2 to 27.4 meters (50 and 90 feet) depending on the species involved, site conditions, and type of work proposed in the vicinity. Contractor education would be conducted for nesting birds, including a discussion of avoidance and protection measures.

3. Active nests would be monitored by a qualified biologist in coordination with CDFG to determine when the young have fledged and are feeding on their own. The project biologist would be consulted for clearance before construction activities resume in the vicinity.

4. If a new nest site is discovered during construction, the biological monitor would be contacted to implement avoidance procedures in coordination with CDFG before construction resumes in the area.

No compensatory measures are proposed for this species.
MARINE MAMMALS

Harbor Seal

The project design is such that harbor seal habitat and individuals will be avoided by construction activities. Based on the hydroacoustic analysis (Memo: Yerba Buena Island – Pile Driving Noise Descriptions. January 3, 2011a; E-Mail Correspondence: Airborne Noise from Pile Driving. January 6, 2011b), no avoidance measures are proposed.

The project would not result in loss of any harbor seal habitat and therefore compensatory measures are not proposed.

California Sea Lion

The project design is such that sea lion habitat and individuals will be avoided by construction activities. Based on the hydroacoustic analysis (Memo: Yerba Buena Island – Pile Driving Noise Descriptions. January 3, 2011a; E-Mail Correspondence: Airborne Noise from Pile Driving. January 6, 2011b), no avoidance measures are proposed.

The project would not result in loss of any sea lion habitat and therefore compensatory measures are not proposed.

3.17.6 Invasive Species

3.17.6.1 Regulatory Setting

On February 3, 1999, President Clinton signed EO13112 requiring Federal agencies to combat the introduction or spread of invasive species in the United States. The order defines invasive species as “any species, including its seeds, eggs, spores, or other biological material capable of propagating that species, that is not native to that ecosystem whose introduction does or is likely to cause economic or environmental harm or harm to human health.” FHA guidance issued August 10, 1999 directs the use of the state’s noxious weed list to define the invasive plants that must be considered as part of the NEPA analysis for a proposed project.

3.17.6.2 Affected Environment

The following technical reports were consulted:

INVASIVE PLANTS

Within almost all of the major vegetation communities, except for central coast riparian scrub, there exist substantial populations of invasive plant species that encompass a range of very low to severe invasive potential (Table 3.17-4). The eucalyptus woodland contains Tasmanian blue gum eucalyptus (*Eucalyptus globulus*), French broom (*Genista monspessulana*), Scotch broom (*Cytisus scoparius*), English ivy (*Hedera helix*), and Himalayan blackberry (*Rubus discolor*). The mixed broadleaf-conifer forest contains Tasmanian blue gum and blackwood acacia (*Acacia melanoxylon*). The understory is dominated by French and Scotch broom, English ivy, Himalayan blackberry, and periwinkle (*Vinca major*). The non-native scrub area contains common fennel (*Foeniculum vulgare*), black mustard (*Brassica nigra*), and broom species. The northern foredune community contains iceplant (*Carpobrotus edulis*), sea rocket (*Cakile maritima*), buttercup (*Oxalis pes-carpae*), Bermuda grass (*Cynodon dactylon*), and common fennel.

The landscaped/disturbed vegetation community contains common fennel, rip-gut brome (*Bromus diandrus*), wild oat (*Avena fatua*), barley (*Hordeum marinum* and *Hordeum murinum*), cotoneaster (*Cotoneaster pannosa and lacteus*), California burclover (*Medicago polymorpha*), broad-leaved fillaree (*Erodium botrys*), milk thistle (*Silybum marianum*), perennial pepperweed (*Lepidium latifolium*), English plantain (*Plantago lanceolata*), ox-eye daisy (*Leucanthemum vulgare*), brooms, and English ivy. The ruderal vegetation community supports common fennel, black mustard, and wild radish (*Raphanus sativus*). Invasive grasses present in the ruderal vegetation community include Italian ryegrass (*Lolium multiflorum*), rip-gut brome, soft chess (*Bromus hordeaceous*), California bur-clover, and bristly ox-tongue (*Picris echioides*).

NON-NATIVE/NUISANCE WILDLIFE

Throughout the various habitats within the YBI site and due to the plethora of edge effects created by adjacent ongoing disturbance associated with human uses (e.g., roadways, existing structures, and construction) a variety of non-native bird species occur and nest in this habitat such as the house finch (*Carpodacus mexicanus*), house sparrow (*Passer domesticus*), and European starling (*Sturnus vulgaris*). Larger wildlife species associated with disturbed lands and associated with close contact to urban areas such as black rat (*Rattus rattus*), Norway rat (*Rattus norvegicus*), and house mouse (*Mus musculus*), as well as feral cats (*Felis cattus*) and opossum (*Didelphus virginianus*) reside here also.

3.17.6.3 Environmental Consequences

YBI’s location in the central part of San Francisco Bay, even aside from new construction and development, provides a hospitable habitat for invasive species due to its location at the crossroads of a busy marine port and interstate freeway thoroughfare.
Table 3.17–4: Invasive Potential of Plants within Yerba Buena Island Ramps Project Biological Study Area Vegetation Communities

<table>
<thead>
<tr>
<th>Vegetation Community</th>
<th>Low Invasive Potential</th>
<th>Moderate Invasive Potential</th>
<th>Severe Invasive Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eucalyptus Woodland</td>
<td></td>
<td>Tasmanian blue gum (Eucalyptus globulus)</td>
<td>French broom (Genista monspessulana)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scotch broom (Cytisus scoparius)</td>
<td>English ivy (Hedera helix)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>big periwinkle (Vinca major)</td>
<td>Himalayan blackberry (Rubus discolor)</td>
</tr>
<tr>
<td>Mixed Broadleaf-Conifer Forest</td>
<td>blackwood acacia (Acacia melanoxyylon)</td>
<td>Tasmanian blue gum (Eucalyptus globulus)</td>
<td>French broom (Genista monspessulana)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scotch broom (Cytisus scoparius)</td>
<td>English ivy (Hedera helix)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>big periwinkle (Vinca major)</td>
<td>Himalayan blackberry (Rubus discolor)</td>
</tr>
<tr>
<td>Non-Native Scrub</td>
<td></td>
<td>common fennel (Foeniculum vulgare)</td>
<td>French broom (Genista monspessulana)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>black mustard (Brassica nigra)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scotch broom (Cytisus scoparius)</td>
<td></td>
</tr>
<tr>
<td>Northern Foredune</td>
<td></td>
<td>sea rocket (Cakile maritima)</td>
<td>iceplant (Carpobrotus edulis)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>common fennel (Foeniculum vulgare)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>buttercup (Oxalis pes-caprae)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bermudagrass (Cynodon dactylon)</td>
<td></td>
</tr>
<tr>
<td>Landscaped/Disturbed</td>
<td>California burclover (Medicago polymorpha)</td>
<td>common fennel (Foeniculum vulgare)</td>
<td>silverleaf cotoneaster (Cotoneaster pannosus)</td>
</tr>
<tr>
<td></td>
<td>broadleaf filaree (Erodium botrys)</td>
<td>rip-gut brome (Bromus diandrus)</td>
<td>perennial pepperweed (Lepidium latifolium)</td>
</tr>
<tr>
<td></td>
<td>blessed milkthistle (Silybum marianum)</td>
<td>wild oat (Avena fatua)</td>
<td>English ivy (Hedera helix)</td>
</tr>
<tr>
<td></td>
<td>English plantain (Plantago lanceolata)</td>
<td>Mediterranean barley (Hordeum marinum)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>foxtail barley (Hordeum murinum)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parney’s cotoneaster (Cotoneaster lacteus)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ox-eye daisy (Leucanthemum vulgare)</td>
<td></td>
</tr>
<tr>
<td>Ruderal</td>
<td>wild radish (Raphanus sativus)</td>
<td>common fennel (Foeniculum vulgare)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>soft brome (Bromus hordeaceus)</td>
<td>black mustard (Brassica nigra)</td>
<td></td>
</tr>
<tr>
<td>Ruderal</td>
<td>California burclover (Medicago polymorpha)</td>
<td>rip-gut brome (Bromus diandrus)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Italian ryegrass (Lolium multiflorum)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bristly oxtongue (Picris echioides)</td>
<td></td>
</tr>
</tbody>
</table>

Source: Natural Environment Study: YBI Ramps Improvement Project 2011b
As a direct result of project grading, land disturbance, and debris generated from construction for either build alternative, YBI would be subject to the potential increase spread of invasive plant and wildlife species. Invasive plant species can be spread through construction equipment tire treads, construction materials, land clearing, people, and wildlife. Invasive/nuisance wildlife would be attracted to garbage created by construction staff and traffic. Land clearing and vegetation removal provides the ideal habitat for invasive plant and animal species colonization due to their success as generalists in landscapes that lack specified ecological niches. Through this process, invasive species can increase the ecological homogenization of YBI. Measures to avoid, minimize, and compensate these environmental consequences are outlined below in Section 3.17.6.4.

3.17.6.4 Avoidance, Minimization, and/or Mitigation Measures

To avoid the environmental consequences outlined above, there would be a multilayered approach to avoid, minimize, and/or compensate the project’s effects. In compliance with EO 13112, and subsequent guidance from FHWA, the landscaping and erosion control measures included in the project would not use species listed as noxious or invasive weeds by the California Department of Food and Agriculture (CDFA 2010). In areas of particular sensitivity, extra precautions would be taken if invasive species are found in or adjacent to the construction areas. These include the inspection and cleaning of construction equipment and eradication strategies to be implemented should an invasion occur.

For botanical resources, hydroseeding and replanting for erosion control and revegetation of slopes would be verified for being invasive plant/weed-free before application by an established, approved, licensed, and insured contractor. Local native plant ecotypes would be used for replanting in affected areas. Standard BMPs would be implemented. To minimize attracting non-native/nuisance wildlife, garbage generated on-site would be appropriately disposed of in garbage cans placed throughout the site and deposited into large and secure dumpsters daily. These dumpsters would be emptied on a weekly basis before dusk. On-site toilets would be maintained daily for site sanitation and to avoid attracting more nuisance wildlife. Worker education would focus on the diminishment and disposal of on-site garbage and the factors associated with decreasing invasive species potential on-site.

By encouraging proper and timely sanitation of construction-generated waste (especially food), invasive rodent (e.g., mice and rat) activity would be controlled. In most urbanized environments random food scraps and overgrown or salvage areas provide abundant forage and habitat for rodents. Neat, off-the-ground storage of pipes, girders, cable, wire, and lumber would help reduce the suitability of the area for rats and would also make rodent detection easier. Garbage and trash, and all garbage receptacles, would have tight-fitting covers. Feral pets should not be encouraged through provision of food for feeding. This food may become a ready supply of food for rats and mice, or other nuisance wildlife.

Overall, the introduction and spread of exotic and invasive plant and wildlife species would be avoided to the maximum extent possible. BMPs, as identified by the SFRWQCB and described in Section 3.17.2.4, would be implemented to control erosion while not increasing the spread of invasive plant or wildlife species. In some cases, hydroseeding or rapid replanting measures can increase the spread of weed/invasive grass species through lack of seed purity or insufficient preparation of the seed mix.
Revegetation contractors would implement standard quality assurance/quality control measures to verify the purity of native seed mix and the site appropriateness of ecotypes for revegetation utilizing container plants.
This page intentionally left blank.
3.18 Relationship between Local Short-Term Uses of the Human Environment and the Maintenance and Enhancement of Long-Term Productivity

Project implementation would result in attainment of short-term and long-term transportation and economic objectives at the expense of some long-term aesthetic, biological, noise, and other land use impacts.

3.18.1 Alternatives 2b and 4

The build alternatives would have the following similar impacts:

Short-term losses include construction impacts such as noise and motorized and nonmotorized traffic delays or detours.

Short-term benefits include increased jobs and revenue generated during construction.

Long-term losses include permanent loss of plant and wildlife resources, visual impacts, and use of construction materials and energy.

Long-term gains include Traffic safety, geometric configuration, traffic operations LOS improvements of the transportation network of the region and the project vicinity, increased access, reduction of congestion on local streets and highways, and support of approved development.

3.18.2 No Project

This alternative would offer none of the potential gains nor have any of the potential losses listed above.
3.19 Irreversible and Irretrievable Commitments of Resources That Would Be Involved in the Proposed Project

Implementation of the YBI Ramps Improvement Project involves a commitment of a range of natural, physical, human, and fiscal resources. Land used in the construction of the proposed facility is considered an irreversible commitment during the time period that the land is used for a highway facility. However, if a greater need arises for use of the land or if the highway facility is no longer needed, the land can be converted to another use. At present, there is no reason to believe such a conversion would ever be necessary or desirable.

Considerable amounts of fossil fuels, labor, and highway construction materials such as cement, aggregate, and bituminous material would be expended. Additionally, large amounts of labor and natural resources would be used in the making of construction materials. These materials would generally not be retrievable. However, these materials are not in short supply and their use would not have an adverse effect upon continued availability of these resources. Any construction would also require a substantial one-time expenditure of both state and Federal funds, which are not retrievable; savings in energy, time, and a reduction in accidents would offset this. In addition to the costs of construction and right-of-way would be costs for roadway maintenance, including pavement, roadside, litter/sweeping, signs and markers, electrical and storm maintenance.

The commitment of these resources is based on the concept that residents in the immediate area, region, and state would benefit from the improved quality of the transportation system. These benefits would consist of improved accessibility and safety, which are expected to outweigh the commitment of these resources.
Chapter 3.19 – Irreversible and Irretrievable Commitments

This page intentionally left blank.
Chapter 3.20 – Cumulative Impacts

3.20 Cumulative Impacts

3.20.1 Regulatory Setting

Cumulative impacts are those that result from past, present, and reasonably foreseeable future actions, combined with the potential impacts of the proposed project. A cumulative effect assessment looks at the collective impacts posed by individual land use plans and projects. Cumulative impacts can result from individually minor, but collectively substantial impacts taking place over a period of time.

Cumulative impacts to resources in the project area may result from residential, commercial, industrial, and highway development. These land use activities can degrade habitat and species diversity through consequences such as displacement and fragmentation of habitats and populations, alteration of hydrology, contamination, erosion, sedimentation, disruption of migration corridors, changes in water quality, and introduction or promotion of predators. They can also contribute to potential community impacts identified for the project, such as changes in community character, traffic patterns, housing availability, and employment.

CEQA Guidelines, Section 15130, describes when a cumulative impact analysis is warranted and what elements are necessary for an adequate discussion of cumulative impacts. The definition of cumulative impacts, under CEQA, can be found in Section 15355 of the CEQA Guidelines. A definition of cumulative impacts, under NEPA, can be found in 40 C.F.R., Section 1508.7 of the CEQ Guidelines.

3.20.2 Cumulative Actions and Processes Considered

Cumulative impacts due to past, present, and future activities or actions of Federal, non-Federal, public, and private entities as well as relevant ongoing and anticipated processes were identified for purposes of evaluating cumulative environmental impacts. Reasonable foreseeable projects are those that are likely to occur in the future and would add to the cumulative impact on a particular resource. Other reasonably foreseeable current and future actions in the project area include:

- the SFOBB ESSSP (construction currently underway; construction scheduled through 2013);
- the TI/YBI Project (the Final EIR was certified on April 21, 2011; construction anticipated between 2012 and 2022);
- the San Francisco Bicycle Plan (adopted June 2009; construction of Treasure Island perimeter bikeway path to occur in conjunction with TI/YBI Project); and,
- the San Francisco-Oakland Bay Bridge: capital projects (California Senate Bill 1061), which would allow a portion of Bay Bridge toll funds to be spent on this project, was passed by the State Assembly Committee on Transportation on June 22, 2010; this project has not yet undergone environmental review. Construction completion is anticipated in 2014).

These current and future actions are described in Section 1.3 Related Plans and Projects of this Final EIR/EIS, and their respective locations are depicted in Figure 1-4.
In addition to these current and future actions, the ongoing and anticipated process of sea level rise within the San Francisco Bay is included for evaluation purposes. California Climate Action Team–funded research for a 2009 report (the 2009 California Climate Adaptation Strategy) to Governor Schwarzenegger estimates that sea level rise will increase in California between 30.5 and 43.2 centimeters (12 and 17 inches) by 2050 and between 50.8 and 139.7 centimeters (20 and 55 inches) by 2099 (SFBCDC 2009). In addition, the California Department of Water Resources supports a range in sea level rise of 17.8 to 139.7 centimeters (7 to 55 inches) along California’s Coast by 2100 (CDDWR 2008). In addition, the most recent climate science report, the 2009 Copenhagen Diagnosis, estimates that global sea level rise will increase up to approximately 199.9 centimeters (78.7 inches) by 2100 (Allison 2009). Based on these predictions, sea level rise would likely cause inundation of some portions of YBI and TI.

3.20.3 Methodology/Approach

In accordance with NEPA and CEQA, if a project would not cause direct or indirect impacts on a resource, it would not contribute to a cumulative impact on that resource and need not be further evaluated. The initial step in the cumulative impact analysis is the identification of those resources to be considered, which consists of resources that would be adversely and significantly (despite mitigation) impacted by the proposed project and resources currently in poor or declining health or at risk even if project impacts are relatively small (less than significant). Resources that have been identified in this EIR/EIS to be adversely and significantly (despite mitigation) impacted by the proposed project are visual resources, cultural resources, plant species, animal species, and threatened and endangered species. Despite some existing air quality, water quality, and traffic issues within the Bay Area, these resources are not considered in poor or declining health nor are they considered at risk from less-than-significant air quality, water quality, and traffic impacts of the proposed project. Rather, with continued implementation of new regulations and new improvement projects with associated mitigation, these resources have and will continue to improve within the Bay Area. As such, these resources are not included in this cumulative impact analysis.

The second step in the cumulative impact analysis is to identify the resource study area (RSA) for each resource. The RSA for each previously identified issue area is described at the beginning of the respective cumulative impact analyses in Section 3.20.4.

The third step in the cumulative impact analysis is to describe the current health and historical context for each resource. The context for each previously identified resource is discussed within the respective cumulative impact analyses in Section 3.20.4.

The fourth step in the cumulative impact analysis is to identify direct and indirect impacts of the proposed project that might contribute to a cumulative impact. The impact conclusion summary for each previously identified resource is discussed within the respective cumulative impact analyses in Section 3.20.4.

The fifth step in the cumulative impact analysis is to identify other current and reasonably foreseeable future actions or projects that affect each resource. This discussion narrows down which of the previously identified actions and processes would affect the particular resource and is discussed within the respective cumulative impact analyses in Section 3.20.4.
Chapter 3.20 – Cumulative Impacts

The sixth step is the actual assessment of potential cumulative impacts. The cumulative impact analysis for each previously identified resource is discussed within the respective cumulative impact analyses in Section 3.20.4.

The seventh step is to summarize the step-wise cumulative impact analysis process. Thus, a cumulative impacts results summary table is provided in Section 3.20.5.

Finally, the eighth step in the cumulative impact analysis is to assess the need for cumulative impact mitigation. This discussion is contained in Section 3.20.6.

3.20.4 Impact Analysis

3.20.4.1 Visual Resources

RESOURCE STUDY AREA

For potential cumulative visual impacts, the RSA is represented by the area encompassing eight key viewpoints described in Section 3.7. The key viewpoints were chosen to help evaluate the project’s visual impact as experienced by viewers at various locations on the island as well as areas in the vicinity of YBI. These viewpoints are representative of the visual environment experienced by the widest cross section of viewers.

CURRENT HEALTH AND HISTORICAL CONTEXT

Current and recent trends affecting visual resources in the project area include the ongoing construction of the SFOBB ESSSP. The construction of the new east span of the SFOBB and the related tie-ins at YBI may result in temporary, degraded aesthetics in the project area. However, the final, streamlined aesthetic of the SFOBB ESSSP would be an improvement over the aging, bulkier infrastructure that is currently in place. Furthermore, the project area has a history of being the transition viewpoint between the two different-looking parts of the SFOBB. Thus, given the existence of the SFOBB and its tie-ins at YBI since the 1930s, the SFOBB and its tie-ins are a familiar visual resource in the Bay Area.

SUMMARY OF IMPACTS OF THE PROPOSED PROJECT

Table 3.7-1 (Summary of Project’s Visual Quality Impacts) provides a concise description of the visual impacts associated with Alternative 2b and Alternative 4 for each of the eight identified viewpoints. The table shows that Alternative 2b would have a less adverse visual impact on the project area than Alternative 4.

Other Actions Affecting the Resource

The area surrounding the proposed project will likely undergo change during the coming years due to construction of the SFOBB ESSSP, which will be a visually prominent project in the area. Figures 3.7-3 through 3.7-18 include simulations that represent likely changes to the visual environment and viewpoints from both the proposed project and the SFOBB ESSSP. In addition, the area would change visually due to a number of planned projects such as the TI/YBI Project, the SF Bicycle Plan, and the West Span Bay Bridge Bicycle and Pedestrian Pathway, if implemented. The TI/YBI Project would contribute to the largest amount of visual change on TI and YBI. The TI/YBI Project
would intensify the development on the islands with the construction of housing, commercial and retail space, office space, hotel rooms, all of which would alter the visual composition of the islands.

CUMULATIVE IMPACTS ASSESSMENT

An evaluation of cumulative visual impacts was completed in part through review of the YBI Ramps Improvement Project VIA (Appendix I), as well as through consultation with Caltrans personnel.

Development associated with the SFOBB would contribute to the changing character of the landscape. The SFOBB project would generally have the effect of reducing the impact of the proposed YBI ramps, with the former being considerably more visually prominent from various viewpoints than the latter. However, in some instances, the proposed project’s contribution to area-wide changes to the visual setting would be equal to changes attributable to the SFOBB project. Ramp features associated with Alternative 2b would have a lesser cumulative impact on the area’s visual setting than the ramp features associated with Alternative 4. The ramp structures associated with Alternative 2b would be less massive than those associated with Alternative 4. Implementation of Alternative 2b would result in a smaller ramp footprint, especially in the case of the westbound on-ramp, when compared to Alternative 4. SFCTA has been developing avoidance, minimization, and mitigation measures that would reduce the impacts to viewpoints associated with the proposed project and the visual quality of the viewshed. These measures identified in section 3.7.5 would help reduce the effect on the visual environment in the area of the proposed new ramps through replacement vegetation as well as planting new vegetation and matching the new ramps to the ribbed structural form and architectural vocabulary of the new SFOBB. Additionally, it would be expected that the TI/YBI Project would be required to develop mitigation to lessen impacts to visual resources resulting from this proposed redevelopment project. Therefore, no cumulative impacts are anticipated related to visual resources within the project area.

3.20.4.2 Cultural Resources

IDENTIFICATION OF PROJECT-SPECIFIC CULTURAL RESOURCES CONSIDERED IN CUMULATIVE IMPACT ANALYSIS

Cumulative impacts analysis should focus on those resources that would be significantly impacted by the project or resources currently in poor or declining health, even if project impacts are relatively small. As described in section 3.8.3.2 of this document, both Alternative 2B and 4 would cause adverse impacts (direct or indirect, depending upon the alternative) to the following cultural resources:

- Senior Officers' Quarters Historic District (with Quarters 1/ Nimitz House as an individually eligible resource)
- Quarters 1/Nimitz House
- Quarters 10 (with Building 267 as a contributing feature)

Although the San Francisco-Oakland Bay Bridge (SFOBB) is a recognized historical resource, the portion located within the project area will be replaced as part of a preceding project prior to the initiation of the YBI Ramps project. For that reason, the historic structure was not included as part of the existing conditions used to assess the impacts of the YBI Ramps project. Neither of the proposed project alternatives would result in direct or indirect impacts to the Quarters 8 historical resource, and thus, it is not considered in the cumulative impacts analysis. Similarly, although an archeological site was identified in the project area, neither of the project alternatives would disturb or impact the site during construction or operation of the new ramps; therefore it is not included in the cumulative impacts analysis.

DEFINITION OF THE RESOURCE STUDY AREA

The Resource Study Area provides a context in which to evaluate the health and condition of the specific resource or resource type being addressed in the cumulative impacts analysis. The RSAs need to contain resources similar to the type of project-specific resources that have been identified as significant for comparison purposes. The RSAs also need to be large enough to allow for the identification of identification of past, present and reasonably foreseeable projects that have, or could impact the resources in the project area.

For the proposed project, geographically broad RSAs have been defined that will allow for an assessment of the Condition of the project-specific resources within the context of other resources that represent the same historical themes. The project-specific resources being considered are the Senior Officers’ Quarters Historic District, (which includes Quarters 1/ Nimitz House), and Quarters 10/Building 267.

The Senior Officers’ Quarters Historic District is significant for its role in U.S. Naval history in the San Francisco Bay Area. Quarters 1/Nimitz House is significant for its connection to Admiral Chester Nimitz, as well as being a contributor to the Senior Officers’ Quarters Historic District. The district is also a fine example of the Classical Revival style unique to the early development of West Coast military facilities. Quarters 10/Building 267 is significant for its ability to express an architectural trend particular to the San Francisco Bay Area during the mid-20th Century that combined three different styles: Moderne, International, and Bay Region. As such, the proposed project will have impacts on resources that are important in terms of naval history and mid-20th century modern design trends.

Because there are two separate types of cultural resources that would be impacted by the proposed project, and thus discussed in the cumulative impacts analysis, two resource-specific RSAs have been utilized.

Historic Naval Facilities on San Francisco Bay RSA

An individual historical resource can represent a significant theme in our history that may be represented by other examples with varying degrees of significance and integrity. For some historical resources, that theme is represented by just a handful of examples, and thus the impacts of the project on an example within the project area may be considered cumulatively significant when considered along with the effects of other projects on the

28 Ibid, p. 5.
other related resources. For this reason, the RSA for considering cumulative impacts on the Senior Officers’ Quarters Historic District and Quarters 1/Nimitz House includes an area that encompasses historic naval facilities located on or around the San Francisco Bay.

Mid-20th Century Military Residential Architecture of the San Francisco Bay RSA

An individual historical resource can also represent a local example of craftsmanship or unique architectural design that is represented by other examples at the local, state, or national level. While the cultural context of modern architecture is almost limitless, Quarters 10/Building 267 was built by the Navy for a specific purpose in a style unique to the Bay Area. Thus, the RSA for considering cumulative effects on Quarters 10/Building 267 corresponds to other military facilities around the San Francisco Bay that incorporated mid-20th century architectural trends, such as Modern or International Style, in the development of their residential architecture.

CURRENT HEALTH AND HISTORICAL CONTEXT

Historic Naval Facilities on San Francisco Bay RSA

The United States Department of the Navy has had an active presence on the San Francisco Bay since the 19th century. During times of war and in peace, naval shipyards, training centers, air stations and other facilities have played an important role in the regional economy by providing jobs and attracting supporting industries. They have also contributed to the social character of the region, branding the Bay Area as a leader in our national defense and an innovator in the development of new technologies. During the 19th century, the Navy established a presence in the Bay Area to provide coastal defense, with an added emphasis on protecting the massive amounts of trade brought on by the Gold Rush. At the turn of the 20th century the Navy’s role expanded to include support of the Pacific Squadron with shipyards and new types of coastal defense. Expansion during the first several decades of the new century responded to technological innovations: hangars and airfields for incorporation of airplanes, submarine stations, radio communications, and expansions for World War I, and training schools to prepare personnel to use these innovations. Between the wars, the Navy began to transfer major functions to the San Diego area; operations in the Bay Area focused on naval air stations, supply networks, ship repair, troop support, and administrative functions. World War II brought a massive build-up, as ships and troops were deployed overseas, requiring facilities for the care and maintenance of both vessels and personnel. From the late 1940s through the 1980s the focus was on weapons, warning systems, and research affiliated with the Cold War. During this time and especially as the Cold War came to a close, the Navy reduced its presence around the Bay.

The closures and realignments associated with the modern BRAC programs have been subject to environmental regulatory review, and in most cases, preservation alternatives or extensive mitigation were implemented where impacts were identified for the National Register of Historic Places (NRHP) historic resources. Overall the condition of resources within this RSA has stabilized, after a period of decline. Table 3.20-1 below provides a

29 The summary of naval activity in the San Francisco Bay area is adapted from Volume III of the California Historic Military Buildings and Structures Inventory prepared by JRP Historical Consulting Services and Foster Wheeler Environmental Corporation for the U.S. Army Corps of Engineers, March 2000.
summary of historical naval installations on the San Francisco Bay, and the current condition of the known historical resources associated with those facilities.

Table 3.20–1: Summary of Historic Naval Installations on the San Francisco Bay

<table>
<thead>
<tr>
<th>Historic Naval Facility</th>
<th>Historical Resource(s)</th>
<th>Current Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mare Island Naval Shipyard (Vallejo)</td>
<td>The oldest Navy facility on the West Coast, dating to the 1850s with buildings from every ensuing decade through the 1980s. One National Historic Landmark (NHL) district and one NRHP district have been designated.</td>
<td>The installation was closed in 1996 during the BRAC process and transferred to local authority. Redevelopment plans include conversion to industrial, commercial, and residential uses as well as community uses such as a public golf course and regional park. Impacts were mitigated in 1999 through completion of one of the largest HABS recordation projects ever completed.</td>
</tr>
<tr>
<td>Naval Air Station, Alameda</td>
<td>Built in 1938 through the 1940s as an air training facility. One NRHP-eligible historic district was identified.</td>
<td>The installation was closed in 1997 during the BRAC process and transferred to local agency control through leases. A 1999 MOA outlined preservation guidelines and protections of the historic district for layaway and eventual transfer. NAS is slated for transfer to the Alameda Reuse and Redevelopment Authority which is investigating possible development plans for the station.</td>
</tr>
<tr>
<td>Naval Air Station, Moffett Field (Sunnyvale)</td>
<td>Established in 1933 as a Lighter-than-Air station. Several historic properties have been identified. The Unitary Plan Wind tunnel Complex is listed as a National Historic Landmark, and the core facility from the 1930s is listed in the NRHP as the Shenandoah Plaza National Historic District. Five individual buildings have been identified as eligible for the NRHP, including the Administration Building, the 40 x 80 Wind Tunnel, the 6 x 6 Supersonic Wind Tunnel, the Arc Jet Laboratory, and the Flight and Guidance Simulation Laboratory.</td>
<td>Transferred to NASA during BRAC realignment in 1994. All facility planning and development is subject to the provisions of an Historic Resources Protection Plan (2002) and coordinated through the base preservation officer. These mechanisms ensure that historic preservation requirements are integrated with NASA decisions regarding mission support.</td>
</tr>
<tr>
<td>Naval Fleet and Industrial Supply Center,</td>
<td>Established 1940-1945 and served as the Navy’s major supply depot on the West Coast during World War II.</td>
<td>Transferred from Federal control and redeveloped during expansion of the Port of Oakland’s intermodal facility. The</td>
</tr>
</tbody>
</table>

30 The list of Naval facilities located on the San Francisco Bay was culled from the list of Navy installations and their historical resources survey status in Table 4-2 of Volume I of the California Historic Military Buildings and Structures Inventory prepared by JRP Historical Consulting Services and Foster Wheeler Environmental Corporation for the U.S. Army Corps of Engineers, March 2000. The table does not include Navy facilities where historic resource surveys were conducted and concluded that no NRHP-eligible properties are present.

31 Unless otherwise noted, the current condition of each facility was derived from the JRP 2000 study (Volume I) with updated information from the Navy’s BRAC Program Management Office website (accessed 30 December 2010): http://www.bracpmo.navy.mil/states.aspx?state=california
Chapter 3.20 – Cumulative Impacts

<table>
<thead>
<tr>
<th>Historic Naval Facility</th>
<th>Historical Resource(s)</th>
<th>Current Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oakland</td>
<td>One NRHP-eligible district has been identified. Center comprised primarily of warehouses, sheds and support facilities.</td>
<td>Navy and the Port of Oakland executed an MOA in 1999 to address the impacts associated with the demolition of the contributing features of the historic district.</td>
</tr>
<tr>
<td>Naval Medical Center, Oakland</td>
<td>Established as a Naval Hospital in 1942 on the grounds of the former Oak Knoll Country Club. Although a National Register nomination was prepared for the clubhouse, Navy consultation with the SHPO resulted in a determination that there are no NRHP-eligible historic properties present.</td>
<td>The facility was closed in 1996 was sold at public online auction in 2006.</td>
</tr>
<tr>
<td>Naval Station, Treasure Island and Yerba Buena Island</td>
<td>There has been a military presence on Yerba Buena Island since 1848. There are two NRHP listed buildings (Quarters 1/Nimitz House and Quarters 10/Bldg.267), one NRHP-listed district (Senior Officers’ Quarters Historic District) and one NRHP-eligible building (19th century anti-ship mine assembly building) present. The USACE built Treasure Island in the late 1930s for the Golden Gate International Exposition and it became a major naval station during World War II. Three individual buildings have been determined NRHP-eligible for their associations with the GGIE and associated architectural trends (Building 1/Administration Building, Building 2/Hall of Transportation, and Building 3/Palace of Fine and Decorative Arts). There are no NRHP historic properties on Treasure Island related to Navy operations.</td>
<td>The majority of the 1900-1923 facility on YBI was demolished by the Navy when the training function was moved to San Diego. Construction of the SFOBB occurred during a time of limited operations on YBI, and there were very few buildings in the alignment of the bridge. As a result, the SFOBB did not result in much demolition of the 1920s era facility. The post-World War II re-orientation of YBI from Receiving Ship facility to residential support for the training center on Treasure Island resulted in the “destruction of most traces of the once-busy Naval Training Station.” By 1997 there were only 23 buildings and structures on YBI that dated to the 1900-1923 period. Quarters 10 was the only residence built on YBI post-war, though some older buildings were converted into housing. Naval Station Treasure Island (which included support facilities on YBI) closed in 1997 during the BRAC process. Impacts on historic properties were addressed in a 2003 MOA between the Navy and the City and County of San Francisco. CCSF is a CLG and has preservation ordinance and process to ensure historic properties are given due consideration in planning and development process.</td>
</tr>
<tr>
<td>Naval Station and...</td>
<td>In the early 1940s the Navy acquired an established private shipyard, but didn’t use the facility</td>
<td>Ceased operations in 1974 then closed in 1988 during the BRAC process. Transfer to the San Francisco</td>
</tr>
</tbody>
</table>

Chapter 3.20 – Cumulative Impacts

<table>
<thead>
<tr>
<th>Historic Naval Facility</th>
<th>Historical Resource(s)</th>
<th>Current Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shipyard Hunters Point</td>
<td>much during World War II. There is one NRHP-eligible historic district (based on the pre-Navy facility) and one NRHP-eligible structure (Dry Dock 4) present.</td>
<td>Redevelopment Agency began in 2004 with the first 75 acre parcel. The status of the transfer of the historic facilities is not known at this time.</td>
</tr>
</tbody>
</table>

Mid-20th Century Military Residential Architecture of the San Francisco Bay RSA

According to the National Register nomination for Quarters 10/Building 267, military architecture in the Bay Area during the late 19th and early 20th centuries relied on standardized plans that reflected the preference for the Classical Revival style, with the occasional introduction of the regional preference for Mission Revival style. The construction campaigns for the World War II build-up reflected the emphasis on practicality and flexibility in design, and incorporation of modern building materials and technologies. Following World War II, this attitude shift created a unique opportunity for military designers to adopt tenets of the Modern design movement, which also emphasized flexibility and technological modernization. Drawing on a combination of Modern, International, and Bay Tradition architectural styles, Quarters 10/Building 267 buildings represents a locally significant example of military housing “that highlights the transition in mid-twentieth century military residential design from Classical Revival to the Modern style of architecture.”34 The Quarters 10/Building 267 nomination suggest that one reason that this example is significant is that it is one of the few instances where the military architects deviated from standard military design and embraced the local traditions so literally.

A review of the comprehensive inventory of military facilities in California compiled in 2000 supports this perspective, and narrows the RSA for this theme down to two installations, Naval Station Yerba Buena Island and NAS Alameda. The summary of the statewide context provided in the table above shows that no other mid-century modern NRHP resources have been identified at Navy facilities in the Bay Area. A similar review of the context’s inventory of Army, Air Force, and Marine Corps facilities arrives at the same conclusion. Most military installations in the greater Bay Area (reaching as far as the North Bay, Central Coast, and the Central Valley) were either built in the Classical Revival or Mission Revival styles popular before World War II, were built according to the standardized plans expressly for the World War II readiness, or were augmented with specialized facilities for Cold War military operations. The facilities at Naval Air Station Alameda appear to be the only other example of NRHP-eligible resources that reflect the military use of the Modern trends in architectural design.

Quarters 10 (with its Building 267 garage) was the only Navy residence built on YBI post-World War II, though some other buildings were converted into housing. The residence has functioned as officers housing since its original construction up until the closure of the Navy facility in 1997. Other than deterioration associated with standing vacant, the buildings have been subject to very little physical alteration.

NAS Alameda was built in 1938 through the 1940s as an air training facility. One NRHP-eligible historic district has been identified, including officers housing from 1941 that exhibits a simplified Modern or Art Deco style. The installation was closed in 1997 during the BRAC process and transferred to local agency control through leases. A 1999 MOA outlined preservation guidelines and protections of the historic district for layaway and eventual transfer. NAS is slated for transfer to the Alameda Reuse and Redevelopment Authority which is investigating possible development plans for the station.

SUMMARY OF IMPACTS OF THE PROPOSED PROJECT

Senior Officers’ Quarters Historic District (and Quarters 1/Nimitz House)

Alternative 2b would cause direct impacts on contributing landscape features of both the District and Quarters 1/Nimitz House. Alternative 2b would also have indirect impacts on the District – including Quarters 1/Nimitz House – through introduction of visual elements that diminish the integrity of feeling and setting. Proposed measures to resolve adverse effects as described in the YBI Ramps Project MOA developed under Section 106 of the National Historic Preservation Act (NHPA) include preparation of historic structures reports and historic landscape reports to thoroughly document pre-construction conditions, interpretive signs that would help the public understand the significance of the resources, relocation of Quarters 10/Building 267 to avoid demolition, protection of historic buildings from construction-related damage, repair of inadvertent damage that may be caused by construction activities, and protection of archaeological site CA-SFR-04/H (see Appendix R). The impact of Alternative 2b on the Senior Officers’ Quarters Historic District would be considered adverse.

Alternative 4 would cause indirect adverse impacts to the Senior Officers’ Quarters Historic District (including Quarters 1) through the introduction of visual elements that diminish the integrity of the property's integrity of feeling and setting. Proposed measures to resolve adverse effects as described in the YBI Ramps Project MOA developed under Section 106 of the National Historic Preservation Act (NHPA) include preparation of historic structures reports and historic landscape reports to thoroughly document pre-construction conditions, interpretive signs that would help the public understand the significance of the resources, relocation of Quarters 10/Building 267 to avoid demolition, protection and stabilization of historic buildings, repair of inadvertent damage that may be caused by construction activities, and protection of archaeological site CA-SFR-04/H (see Appendix R). The impact of Alternative 4 on the Senior Officers' Quarters Historic District would be considered adverse.

Quarters 10/Building 267

Alternative 2b would require the removal of the NRHP-listed Quarters 10 (which includes Building 267 as a contributing feature). These buildings would be relocated to another location on YBI, in accordance with the stipulations of the MOA. The impact of both the direct and indirect impacts of Alternative 2b on the Quarters 10/Building 267 resource would be considered adverse.

Alternative 4 would cause indirect adverse impacts to Quarters 10/Building 267 through alteration of the resource’s setting and potential damage caused by construction vibration. Proposed measures to resolve adverse effects as described in the YBI Ramps Project MOA developed under Section 106 of the NHPA include relocation of the buildings to a site that is compatible with its historical setting and development of
measures to protect the buildings during the move and from construction-related activities (see Appendix R). The impact of Alternative 4 on Quarters 10/Building 267 would be considered adverse, but not as severe as Alternative 2b.

SUMMARY OF ENVIRONMENTAL IMPACTS OF OTHER PAST, CURRENT AND REASONABLY FORESEEABLE ACTIONS

Senior Officers’ Quarters Historic District (and Quarters 1/Nimitz House)

Impacts on historic resources in the project area that are related to the Historic Naval Facilities on San Francisco Bay RSA have occurred in the past, and may continue to occur despite regulatory processes that apply to projects subject to state or Federal environmental reviews. The Naval heritage of the Bay Area has been in decline since the 1990s in general, and past impacts to the YBI Naval Training Station in particular have been severe. As described in the Current Health and Historical Context section, construction of the SFOBB did not physically destroy a notable amount of the built environment related to the 1900-1923 facility. However, it made a drastic change in the surroundings of the senior officers’ quarters, affecting the feeling and setting of what was later to become the historic district. The post-World War II re-orientation of YBI from Receiving Ship facility to residential support for the training center on Treasure Island resulted in the “destruction of most traces of the once-busy Naval Training Station.” By 1997 there were only 23 buildings and structures on YBI that dated to the 1900-1923 period.

Impacts to these resources have also been identified with projects currently occurring. The SFOBB East Span Seismic Safety Project currently under construction will have an adverse effect on the Senior Officers’ Quarters Historic District, but will not impact Quarters 10/Building 267. As part of that project, the completion of the West Span Bay Bridge Bicycle and Pedestrian Pathway is likely to increase recreational use of YBI and TI. Both projects would contribute to the cumulative impacts on the Senior Officers’ Quarters Historic District and Quarters 1/Nimitz House.

The impacts of the YBI/TI transfer from Navy to CCSF were identified during environmental review, and impacts are being off-set by specific measures codified in the 2003 MOA between the Navy and CCSF. The TI/YBI Project generally provides for restoration and reuse of historic resources, including the Senior Officers’ Quarters Historic District (including Quarters 1/Nimitz House) as a potential commercial and cultural mixed-use area. Any impacts will be off-set by specific measures codified in an agreement document, if necessary.

Quarters 10/Building 267

Until recently, historic residences from the 1940s through 1960s were not recognized as having the potential to qualify as historic resources, and thus environmental reviews rarely accounted for impacts to resources related to the Mid-20th Century Military Residential Architecture on the San Francisco Bay RSA unless the building was known to be of exceptional architectural or historical significance. Mid-century housing at NAS Alameda has been identified for preservation and reuse.

Chapter 3.20 – Cumulative Impacts

Past projects on YBI have not impacted the known mid-century residences, namely Quarters 10/Building 267 (no other resources of this type occur in the project area). Other than deterioration associated with standing vacant, the house and garage have been subject to very little physical alteration.

The SFOBB East Span Seismic Safety Project currently under construction will not directly impact Quarters 10/Building 267; the EIS notes that inadvertent damage may occur as a result of construction activities. The completion of the West Span Bay Bridge Bicycle and Pedestrian Pathway may increase recreational use of YBI and TI. However, these projects are not anticipated to contribute to cumulative impacts on Quarters 10/Building 267, since construction-related effects, if any, would be resolved in accordance with the protective and repair measures identified for the SFOBB East Span Seismic Safety project.

The current and proposed redevelopment projects on YBI may impact Quarters 10/Building 267, since they may result in reuse of the buildings under both Alternatives 2b and 4. Such impacts are being offset through inclusion of preservation standards for potential reuse of the building. Though minor, these impacts may contribute to cumulative impacts on Quarters 10/Building 267.

CUMULATIVE IMPACTS ASSESSMENT

When considered with past, present, and reasonably foreseeable projects, the moderately severe net impacts of Alternative 2b and 4 would contribute to a cumulative impact to the Senior Officers’ Quarters Historic District and the Quarters1/Nimitz House, although the impact is not a considerable impact.

When considered with past, present, and reasonably foreseeable projects, the moderately severe net impacts of Alternative 2b would contribute to a cumulative impact on Quarters 10/Building 267. This impact is not considerable because the direct impacts to Quarters 10/Building 267 would be mitigated by the relocation of the historic property. Likewise, the indirect impacts of Alternative 4 would contribute to a cumulative impact on Quarters 10/Building 267. In both cases, the impact is not a considerable impact.

3.20.4.3 Plant Species

RESOURCE STUDY AREA

For potential cumulative plant species impacts, the RSA encompasses all of YBI and TI, which are separated from other lands in the vicinity by the San Francisco Bay. As a result, YBI and TI are characterized by distinct plant relationships.

CURRENT HEALTH AND HISTORICAL CONTEXT

Based on habitat availability, 34 special-status plant species have been identified to have a low to moderate potential to occur on site. During focused botanical surveys, two of these species were observed in the study area, stinging phacelia and large-flowered sand-spurrey. The large-flowered sand-spurrey population is composed of approximately 20 individuals covering approximately 7.30 square meters (78.53 square feet) of the project area. Furthermore, the northern foredune plant community is a pioneer habitat that has and continues to represent potential habitat for several of the special-status
plant species. However, due to the constant wave action and shifting sands, this habitat typically has low species diversity.

SUMMARY OF IMPACTS OF THE PROPOSED PROJECT

Special-status, large-flowered sand-spurrey plants are located outside of the proposed temporary and permanent impact areas for both Alternative 2b and Alternative 4. They are, however, located within 30.5 meters (100 feet) of the temporary disturbance areas, and, thus, there is potential for incidental or indirect impacts during construction. However, with implementation of avoidance and minimization measures defined in Section 3.17.3.4, impacts to large flowered sand-spurrey are not anticipated.

Special-status, stinging phacelia plants could be temporarily and permanently impacted during construction (Figures 3.17-6 and 3.17-7). However, with implementation of avoidance and minimization measures defined in Section 3.17.3.4 as well as compensatory measures for unavoidable impacts, adverse effects to stinging phacelia are not anticipated.

OTHER ACTIONS AFFECTING THE RESOURCE

Other than the proposed project, plans that identify land use concepts for YBI and TI that could affect plant species include the SFOBB ESSSP and the TI/YBI Project. Since the SF Bicycle Plan would fall under the footprint of the TI/YBI Project and the West Span Bay Bridge Bicycle and Pedestrian Pathway is intended to be constructed along the existing west span structure of the SFOBB, these related actions are not focused on within the evaluation of cumulative plant species impacts.

CUMULATIVE IMPACTS ASSESSMENT

Several biological studies conducted for the SFOBB project, TI, and YBI were reviewed to inform the plant species cumulative effects analysis. Full citations are provided in Section 3.17. As discussed in Section 3.17, focused surveys of the project area identified stinging phacelia. The combined construction efforts of the proposed project, SFOBB ESSSP, and the TI/YBI Project would have the potential to cumulatively impact stinging phacelia if they resulted in a reduction in the number of plants on the island. The combined construction efforts of the proposed project, SFOBB ESSSP, and the TI/YBI Project would have the potential to cumulatively impact stinging phacelia.

The proposed project would result in temporary and permanent impacts to stinging phacelia; however, the project would be required to implement the avoidance and minimization measures described in Section 3.17.3.4 and compensate for the permanent impacts through replacement. The SFOBB ESSSP and the TI/YBI Project would also be required to implement avoidance and minimization measures as well as compensation replacement for any impacts to stinging phacelia. Accordingly, cumulative impacts to stinging phacelia would not occur. Therefore, no cumulative impacts are anticipated to plant species within the project area.
3.20.4.4 Animal Species

RESOURCE STUDY AREA

For potential cumulative animal species impacts, the RSA encompasses all of YBI and TI, which are separated from other lands in the vicinity by the San Francisco Bay. As a result, YBI and TI are characterized by distinct wildlife relationships.

CURRENT HEALTH AND HISTORICAL CONTEXT

Based on habitat availability and as described below, various invertebrate, raptor, bird, and terrestrial animal species have been identified to have a low to moderate potential to occur on site. Per wildlife surveys and literature reviews, only a few of these species actually occur in the study area. Furthermore, the northern foredune plant community is a pioneer habitat that has and continues to represent potential habitat for several animal species. However, due to the constant wave action and shifting sands, this habitat typically has low species diversity.

SUMMARY OF IMPACTS OF THE PROPOSED PROJECT

Invertebrates

Based on habitat suitability, 26 invertebrate species were identified to have a potential to occur in the study area, because the study area contains habitat conducive to survival of these species. However, three of these species, the monarch butterfly, gummifera leaf cutter bee, and San Francisco lacewing, would have their respective habitat either temporarily or permanently impacted by the proposed project.

Fish

Project construction activities that involve loud equipment such as pile driving have the potential to cause barotrauma to fish species occurring within Essential Fish Habitat adjacent to the site. However, none of these activities will occur within aquatic habitats.

Raptors

Four raptor species were identified to have a potential to occur in the study area, because the study area contains habitat conducive to nesting of these species. However, three of these species, Cooper’s hawk, golden eagle, and white-tailed kite, would have their respective nesting habitat either temporarily or permanently impacted by the proposed project. The fourth species, the American Peregrine Falcon could also have its nesting habitat disturbed by construction-related noise and vibration.

Birds (Nonraptors)

Special-status passerine and nonpasserine landbird species, including bank swallow and Allen’s hummingbird, have the potential to nest within the study area. The remaining special-status bird species, as well as other common bird species that may nest on-site could be temporarily disturbed or unable to nest due to construction activity. Permanent removal of existing structures is not anticipated to have a long-term effect on habitat availability, as the proposed project would create new structures providing additional habitat for nesting birds such as house finches and swallows.
Chapter 3.20 – Cumulative Impacts

Project construction activities have the potential to disturb wading bird species that nest in mature woodlands, such as egrets and herons that attempt nesting within the project area and those that may be nesting adjacent to the site.

California brown pelican has the potential to occur within the study area and roost on piers and the sandy shoreline just outside the temporary and permanent project construction areas. Temporary disturbance to roosting pelicans could occur if construction activities encroach upon occupied roosting habitat. No permanent impacts to potential roosting areas are anticipated as the project construction footprint would avoid the piers in the Bay and the shoreline, including the northern foredune plant community.

Construction activities on or adjacent to the existing bridge structure could potentially disturb nesting double-crested cormorants and cause nest failure or abandonment. In addition, construction activities along the eastern border of the study area could potentially temporarily disturb roosting cormorants, if construction activities move outside of the construction envelope. The proposed project would have no permanent impact on cormorant roosting, nesting, or foraging habitat.

Terrestrial Mammals

Project construction activities have the potential to directly affect bats roosting within the project area and indirectly disturb those that may be roosting adjacent to the site through temporary and permanent removal of potential roost habitat. In addition, project construction activities have the potential to directly affect San Francisco dusky footed woodrats that occur within the project area and indirectly disturb those that may be utilizing woodlands and/or forests adjacent to the site through temporary and permanent removal of potential foraging and nesting habitat.

Other Actions Affecting the Resource

Other than the proposed project, plans that identify land use concepts for YBI and TI that could affect animal species include the SFOBB ESSSP and the TI/YBI Projects. Since the SF Bicycle Plan would fall under the footprint of the TI/YBI Project and the West Span Bay Bridge Bicycle and Pedestrian Pathway would be constructed along the existing west span structure of the SFOBB, these related actions are not focused on within the evaluation of cumulative animal species impacts.

Cumulative Impacts Assessment

Several biological studies conducted for the SFOBB project, TI, and YBI were reviewed in support of the animal species cumulative effects analysis. Full citations are provided in Section 3.17. The combined construction efforts of the SFOBB ESSSP and the proposed project may temporarily reduce availability of potential habitat for monarch butterflies, gummifera leaf-cutter bees, and San Francisco lacewing on the eastern portion of YBI as well as the total available potential habitat on the island. Additionally, the combined construction efforts of these projects may temporarily reduce nesting success of Cooper’s hawks, golden eagles, white-tailed kites, American peregrine falcon, passerine and nonpasserine landbirds, and wading birds on the eastern portion of YBI as well as the total available woodland habitat on the island. If the combined disturbance is great enough, cormorants may abandon nest and roost sites around the bridge, YBI, and TI. Construction activities may disturb the California brown pelican.
thereby causing the species to abandon roost sites throughout YBI and TI. If bat roosts are present, particularly a maternity roost site, the combined construction efforts may result in the loss of local bat populations. If present, the combined construction efforts may temporarily reduce the number of woodrats on the eastern portion of YBI as well as the total available woodland habitat on the island. The proposed project along with potential future construction projects, such as the SFOBB ESSSP and TI/YBI Project, could potentially result in cumulative effects to invertebrates, birds, bats, and mammals due to the overall reduction of habitat on YBI and the resulting decline in species population. The proposed project would implement avoidance and minimization measures as described in Section 3.17. If needed, Caltrans would compensate for any permanent impacts on occupied habitat with 1:1 replacement. Similar measures are expected to be implemented by future projects; therefore, no cumulative impacts are anticipated to animal species within the study area.

The TI/YBI Project has been identified and considered throughout this Final EIR/EIS. However, the potential for cumulative effects to the above-defined animal species associated with this proposed plan is speculative at this juncture. The implementation of specific features associated with the TI/YBI Project would be conceptual in nature. While a number of the plan features would likely include physical development and landform alteration, these elements have not been defined in detail and their locations are still undetermined. At this time the TI/YBI Project is not anticipated to result in a cumulative effect to any of the animal species discussed.

Therefore, no cumulative impacts are anticipated to animal species within the project area.

3.20.4.5 Threatened and Endangered Species

RESOURCE STUDY AREA

For potential cumulative threatened and endangered species impacts, the RSA encompasses all of YBI and TI, which are separated from other lands in the vicinity by the San Francisco Bay. As a result, YBI and TI are characterized by distinct habitat relationships.

CURRENT HEALTH AND HISTORICAL CONTEXT

The habitat on the project site is currently characterized as disturbed, proximate to existing construction associated with the SFOBB ESSSP, and lacking in suitability for threatened and endangered species. Furthermore, the project area has a history of being disturbed by human activity due to construction and maintenance of SFOBB and its associated YBI ramps. However, despite the existence of the SFOBB and its related to ongoing improvements at YBI since the 1930s, it has not caused adverse effects on threatened and endangered species in the Bay Area.

SUMMARY OF IMPACTS OF THE PROPOSED PROJECT

Plant Species

Based on habitat availability, four endangered or threatened plant species were identified to have a low to moderate potential to occur on-site. Because these target species were not found during focused surveys and are, therefore, presumed absent

Yerba Buena Island Ramps EIR/EIS 3.20-16 October 2011
from the site, the project would have no effect on listed threatened and endangered plant species.

Fish

Eight Federally or state-listed fish species (listed in Section 3.17.5) were identified to have a potential to occur in the study area, because the study area falls within or in the vicinity of the historical range of these species. Based on the absence of suitable aquatic habitat, no fish species are expected to occur on-site, and the project would have no direct effect on listed threatened and endangered fish species. In addition, implementation of BMPs for aquatic habitats as described in Section 3.17.2.4 would ensure that fish species occurring in the Bay are not indirectly affected by project construction activities.

Reptiles and Amphibians

Two amphibian species and six reptile species that are Federally or state-listed (listed in Section 3.17.5) were identified to have a potential to occur in the study area, because the study area falls within or in the vicinity of the historical range of these species. Of these eight species, all were eliminated from consideration due to their range, isolation from known populations, or lack of suitable habitat. Because none of these reptile or amphibian species have potential to occur on or in the vicinity of the site, the project would have no effect on listed reptiles or amphibians.

Raptors

One state-listed endangered raptor species, the Bald eagle, was identified to have a potential to occur in the study area, because the study area falls within or in the vicinity of the historical range of this species. Since the nearest reported occurrence of bald eagle is more than 8.05 kilometers (5 miles) away (CDFG 2008a) and they are not known to nest in trees or structures adjacent to the Bay, (preferring lands with minimized human activity), bald eagles are not expected to occur on-site, and the project would have no direct effect on listed threatened and endangered raptor species.

Birds (Nonraptors)

One state-listed threatened landbird species, the bank swallow, was identified to have a potential to occur in the study area, because exposed vertical sandbanks found on the northern boundary of the study area provide nesting habitat for this species. Since the vertical banks would be avoided; the project would have no effect on listed threatened and endangered landbird species.

One state-listed threatened and a California Fully Protected marshbird species, the black rail, and one Federally and state-listed endangered and a California Fully Protected bird species, the California clapper rail, were identified to have a potential to occur in the study area, because they inhabit salt marsh habitats of the Bay and require dense vegetation for shelter and nesting. Since no suitable marsh habitat is present within the boundaries of the study area, the project would have no effect on listed threatened and endangered marshbird species.

One Federally and state-listed endangered and a California Fully Protected shorebird species, the California least tern, and one Federally-listed threatened and a California
shorebird species of special concern, western snowy plover, were identified to have a potential to occur in the study area, because sand dunes on-site provide habitat. Since sand dune habitat on-site is minimal and exposed to wave action, making it unsuitable for nest establishment, permanent impacts to these shorebird species are not anticipated. In addition, implementation of BMPs for aquatic habitats as described in Section 3.17.2.4 would ensure that least tern prey fish in the Bay are not indirectly affected by project construction activities.

Terrestrial Mammals

One Federally and state-listed endangered and a California Fully Protected Species, salt marsh harvest mouse, was identified to have a potential to occur in the study area, because of the presence of occurrences nearby and because the study area falls within or in the vicinity of the historical range of this species. Due to the absence of suitable salt marsh habitat and isolation from known occurrences and lack of connectivity, this species is not expected to occur within the study area, and the project would have no effect on listed threatened and endangered terrestrial mammal species.

Marine Mammals

Nine Federally-listed marine mammal species (listed in Section 3.17.5) were identified to have a potential to occur in the study area, because the study area falls within or in the vicinity of the historical range of these species or the species have been identified as occurring near the study area. Of these species, only the humpback has been known to enter the Bay, but since it does not have the potential to occur in the vicinity of the study area, the project would have no effect on listed threatened and endangered marine mammal species. In addition, implementation of BMPs for aquatic habitats as described in Section 3.17.2.4 would ensure that Federally-listed marine mammal species occurring in the Bay are not indirectly affected by project construction activities.

Four marine mammal species that are not listed under either the CESA or the FESA but do receive protection under the Marine Mammal Protection Act (MMPA) were identified to have a potential to occur in the study area, because the study area falls within or in the vicinity of the historical range of these species or the species have been identified as occurring near the study area. Of these species, only the harbor seal, California sea lion, and gray whale have potential to occur in the vicinity of the study area, but since no work would be conducted within the limits of the Bay and no suitable aquatic habitat for foraging occurs on-site, the project would have no effect on marine mammal species protected under the MMPA. In addition, implementation of BMPs for aquatic habitats as described in Section 3.17.2.4 would ensure that marine mammal species occurring in the Bay are not indirectly affected by project construction activities.

Other Actions Affecting the Resource

Other than the proposed project, plans that identify land use concepts for YBI and TI and could affect threatened and endangered species are the SFOBB ESSSP and the TI/YBI Project. Since the SF Bicycle Plan would fall under the footprint of the TI/YBI Project and the West Span Bay Bridge Bicycle and Pedestrian Pathway is intended to be constructed along the existing west span structure of the SFOBB, these actions are not focused on within the evaluation of cumulative threatened and endangered species impacts.
Sea level rise associated with climate change could result in some island shore and, thus, marsh habitat, inundation. Since TI is primarily characterized by military development and YBI is characterized by areas of greater elevation (steep elevation changes from the island shore), there are no adequate areas for marsh habitat to retreat to if it were inundated.

CUMULATIVE IMPACTS ASSESSMENT

Several biological studies conducted for the SFOBB project, TI, and YBI were reviewed to inform the threatened and endangered species cumulative effects analysis. Full citations are provided in Section 3.17. As discussed in Section 3.17.5, most threatened and endangered species occurring in the region would not be directly or cumulatively affected by the proposed project, as it does not involve work within habitats suitable for threatened and endangered species. Although bank swallow have potential to nest on-site, there would be no cumulative impacts to these species with implementation of avoidance measures discussed in Sections 3.17.5.2 and 3.17.5.3.

Sea level rise would result in island shore inundation, which could lead to erosion and loss of marsh habitat, changing sediment demand, altered species composition, changing freshwater inflow and salinity, altered food web, and impaired water quality, all of which may overwhelm the system’s ability to rebound and continue functioning. Thus, marsh habitat and ecosystem health on YBI and TI could be adversely affected by climate change–induced sea level rise.

Since shoreline and marsh inundation as a result of sea level rise could degrade or eliminate habitat utilized by threatened and endangered marshbirds and shorebirds, a significant and unavoidable cumulative impact associated with threatened and endangered bird species within the project area is anticipated. However, the proposed project would not contribute to this significant and unavoidable cumulative impact, given that the operational effects of replacing the ramps would be similar to the current existing condition. Therefore, the proposed project’s contribution to the significant and unavoidable cumulative effect on threatened and endangered bird species would not be adverse.
3.20.5 Cumulative Impacts Results Summary

Table 3.20–2: Cumulative Impacts Results Summary Table

<table>
<thead>
<tr>
<th>Caltrans Cumulative Impact Guidance Step</th>
<th>Visual Resources</th>
<th>Cultural Resources</th>
<th>Plant Species</th>
<th>Animal Species</th>
<th>Threatened and Endangered Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Visual resources, cultural resources, plant species, animal species, and threatened and endangered species</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2: RSA</td>
<td>Eight key viewpoints</td>
<td>Six historic properties</td>
<td>All of YBI and TI</td>
<td>All of YBI and TI</td>
<td>All of YBI and TI</td>
</tr>
<tr>
<td>3: Current Health/Historical Context</td>
<td>Temporarily degraded aesthetics, due to SFOBB ESSSP construction</td>
<td>Removal of two historic properties since 1993</td>
<td>Two special-status plant species identified on site</td>
<td>Several special-status animal species known to occur on site</td>
<td>Habitat is disturbed, proximate to existing construction, and lacking in suitability</td>
</tr>
<tr>
<td>4: Summary of Proposed Project Impacts</td>
<td>Significant but Mitigable</td>
<td>Significant and Unavoidable</td>
<td>Significant but Mitigable</td>
<td>Significant but Mitigable</td>
<td>Significant but Mitigable</td>
</tr>
<tr>
<td>5: Other Actions Affecting the Resource</td>
<td>SFOBB ESSSP, TI/YBI Project, SF Bicycle Plan, and West Span Bay Bridge Bicycle and Pedestrian Pathway</td>
<td>SFOBB ESSSP and TI/YBI Project</td>
<td>SFOBB ESSSP and TI/YBI Project</td>
<td>SFOBB ESSSP and TI/YBI Project</td>
<td>SFOBB ESSSP, TI/YBI Project, and sea level rise in the Bay</td>
</tr>
<tr>
<td>6: Cumulative Impacts Assessment</td>
<td>No cumulative impacts</td>
<td>No cumulative impacts</td>
<td>No cumulative impacts</td>
<td>No cumulative impacts</td>
<td>Significant and Unavoidable; however, no project contribution</td>
</tr>
<tr>
<td>7: Cumulative Impacts Results Summary</td>
<td>This table</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8: Mitigation of Cumulative Impacts</td>
<td>None required</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.20.6 Mitigation of Cumulative Impacts

As no significant cumulative impacts were identified as a result of the proposed project in this document, no further mitigation beyond that identified in the relevant EIR/EIS sections is necessary.
3.21 Additional Analysis for the Quarters 10/Building 267 Relocation Site

The YBI Ramps Improvement PDT, which is comprised of the lead (Caltrans and SFCTA), cooperating, and responsible agencies, held a meeting in April 12, 2011 to consider and identify the preferred alternative. The unanimous decision was that Alternative 2b would best meet the purpose and need of the YBI Ramps Improvement Project. The relocation site for Quarters 10/Building 267 was determined following the identification of the preferred alternative. An evaluation of the relocation of the building to the site is included below. After the buildings are relocated, any future use of the site will be evaluated through a separate environmental process initiated by the City and County of San Francisco and/or TIDA.

Quarters 10/Building 267 Relocation Site

As shown in Figure 3.21-1, Quarters 10/Building 267 would be relocated to the north end of YBI adjacent to Treasure Island Road and Macalla Road in order to mitigate adverse effects to these historic properties. A portion of the site was developed as an informal picnic area, situated above nearby Clipper Cove. This area was established by the California Youth Conservation Corps in 1978, and consists of a combination of grass areas with scattered trees and a few picnic tables. There is a gravel lot are also located adjacent to this area which is accessed off Treasure Island Road and is sometimes used as a pull over spot for cars and buses. The relocation site has not been formally designated as a park, but is considered a park based on past use and future planned use proposed by the City in their recently approved Treasure Island Yerba Buena Island Parks and Open Space Plan.

Quarters 10 is a two-story, building with generally a rectangular footprint and a curved glass end wall with flat roof. Building 267 consists of board formed concrete with beveled wood siding and has a flat roof with a projecting eave and exposed rafter tails. Both buildings will be oriented towards the SFOBB SAS tower to the northeast. For the purposes of this analysis, it is assumed that relocation would require partial dismantling of the structures. This approach would allow relocation without the need to create new paths of travel or otherwise cause ground disturbance beyond the areas where reconstruction would occur.

The relocation area inclusive of all necessary construction, easements, and staging areas is less than 1 acre. The relocated buildings are anticipated to be publicly accessible, however, details of the future use of the buildings are currently unknown. After the buildings are relocated, any future use of the site will be evaluated through a separate environmental process initiated by the City and County of San Francisco and/or TIDA.

Construction Description

It is anticipated the relocation of Quarters 10/Building 267 will require partial dismantling of the structure, and construction of temporary support framing, to negotiate the available access to the relocation site. Architectural and structural construction documents of the existing building will be provided to the contractor representing the best method to divide the structure and retain its integrity. The contractor will determine the means and methods of moving both buildings to the final relocation site, including temporary support framing, and disassembly to facilitate relocation. The building will
likely be disassembled into multiple pieces for transport and any roadside obstructions along the relocation route will be removed. Potential construction equipment for building disassembly includes 2 trailer mounted generators for power, a diesel truck for transport, and a pickup truck. Potential equipment that may be used for the building move includes a trailer mounted generator and a diesel flatbed truck for building transport. It is anticipated that hydraulic ram equipment will be utilized to jack up the building before rolling the building onto the flatbed truck. Construction documents will indicate the final relocation site orientation, location, and rehabilitation of both structures including foundations, site grading, retaining walls, landscaping, paved areas, utility stub-outs, and drainage details. The site foundation will be prepared and ready to receive the building prior to relocation. Movement of the building to the site would be accomplished with a short time frame in approximately 2-4 days. Site preparation and rehabilitation work is anticipated to utilize a medium backhoe, medium excavator, bull dozer, trailer mounted generator, cement mixer truck, dump truck, and pickup truck.

Construction Duration

The total construction duration for the building relocation will be approximately three months and includes the following time frames:

- Final site preparation (grading and foundations/retaining walls): 4 weeks
- Building disassembly and staging: 2 to 4 weeks
- Building relocation/placement onto foundation: 2 weeks
- Building rehabilitation, utility connections, drainage, and final site work: 4 weeks.
3.21.1 Land Use

The Quarters 10/Building 267 relocation site is within land designated for open space on the north end of YBI. This site would be located above the future TI/YBI Project’s proposed Beach Park as indicated in the City’s recently approved Treasure Island Yerba Buena Island Parks and Open Space Plan, which is a subcomponent of the TI/YBI Project and was approved on April 21, 2011. TIDA has been coordinating with SFCTA and Caltrans on the YBI Ramps Improvement project EIR/EIS throughout the planning and environmental review process. TIDA agrees with the selection of the relocation site for Quarters 10 - Building 267, which is required for the Preferred Project Alternative 2b. TIDA has included a designated area for these structures in the Treasure Island and Yerba Buena Island Parks and Open Space Plan, Exhibit GG to the Disposition and Development Agreement approved by the TIDA Board of Directors and the San Francisco Board of Supervisors in April and June 2011, respectively (see Figure 3.21-2 TI and YBI Parks and Open Space Plan – Beach Park Plan). The plan for this area indicates the relocation site and identifies the picnic area, which would be maintained as part of the development. The Navy currently owns this property and is actively working with TIDA on the transfer of this property to TIDA’s ownership. Upon transfer of the land, the City of San Francisco and TIDA will be responsible for determining the future use of the site. The relocated buildings are anticipated to be a publicly accessible, however, details of the future use of the buildings are currently unknown. After the buildings are relocated, any future use of the site will be evaluated through a separate environmental process initiated by the City and County of San Francisco and/or TIDA.

Consistent with the objectives of the San Francisco General Plan, the relocation of the buildings would not affect the shoreline, nor would it affect public access within the 30.5 meter (100 foot) BCDC shoreline band. The relocation of Quarters 10/Building 267 would not conflict with future land uses, land use plans or policies. No avoidance, minimization, or mitigation measures would be required.

3.21.2 Parks and Recreation

Construction and relocation impacts related to Quarters 10/Building 267 would be temporary. Efforts would be made to concentrate the construction activity and relocation of the buildings during off-peak hours to reduce traffic impacts. A narrow beach area is located on the south edge of Clipper Cove, which is located at a lower elevation on Yerba Buena Island, just below the proposed relocation site. There is also an informal picnic area with two picnic tables that is located adjacent to the proposed relocation site. The relocation site has not been formally designated as a park, but is considered a park based on past use and future planned use proposed by the City in their recently approved Treasure Island Yerba Buena Island Parks and Open Space Plan. The previous Navy land use map and documentation classified most of the land on Yerba Buena Island that is not occupied by housing, public works, storage or roads, as open space/recreation. As part of the mitigation for project impacts on historic resources, the historic Quarters 10 and Building 267 structures will be moved out of the path of construction and onto the relocation site. In April and May, 2011, the Navy, Caltrans (FHWA assigned), SHPO, and SFCTA signed an MOA that includes the relocation of Quarters 10 and Building 267. Please refer to Section 9.1.2 of Appendix B, Section 4(f), for further information.
Access to YBI and TI would be maintained during construction. Signage would be provided to direct bicyclists and pedestrians on YBI and recreational users driving to TI/YBI to take alternate routes. The existing westbound on-ramp on the east side of YBI would also be closed and traffic would be diverted to the westbound on-ramp on the west side of YBI. The USCG’s recreational areas are currently used as a parking area for Caltrans’ SFOBB South-South Detour construction. The construction and relocation impacts related to Quarters 10/Building 267 would have no impact on the USCG’s recreational areas. Water-oriented recreational facilities would continue to be accessible to the public and consistent with the BCDC’s The Bay Plan and park priority use designation. In addition, the relocation of the buildings would have no impact on the Macalla Road improvement, which would include a 3.66-meter-wide (12-foot-wide) multiuse pedestrian/bike path that would provide a direct connection to the future planned SFOBB ESSSP multiuse path.

While future use of the relocated buildings has not been determined, even if the land is protected by Section 4(f), moving the buildings to the relocation site is not a project activity that involves incorporation of any component of the park into a transportation facility. None of this area shall be used for the YBI Ramps Improvement Project during construction, operation or future ongoing maintenance. Therefore there would be no Section 4(f) use of the park resource, and no further documentation of Section 4(f) impacts to park resources is necessary. No avoidance, minimization, or mitigation measures would be required.

3.21.3 Growth

Site preparation and construction activities related to the relocation of the buildings would induce a minimal amount of temporary growth at the relocation site. Over the short term, project construction activities would take place that would require the presence of construction personnel during working hours. The buildings would not result in the inducement of direct or indirect unplanned growth in the area. No avoidance, minimization, or mitigation measures would be required.

3.21.4 Community Impacts

RELOCATIONS

Quarters 10/Building 267 are currently unoccupied. The relocation site is vacant, thus relocation of Quarters 10/Building 267 therefore would not result in the temporary and/or permanent removal of occupied buildings in the area. No residents would be displaced or need to be relocated. No avoidance, minimization, or mitigation measures would be required.

ENVIRONMENTAL JUSTICE

No occupied structures would be removed or relocated. As such, there are no residents at the Quarters 10/Building 267 relocation site and minority or low-income populations would not be affected. No avoidance, minimization, or mitigation measures would be required.

3.21.5 Emergency Services

During the preparation of the relocation site and relocation of the buildings themselves, temporary road detours may be required for a short duration. This impact would be
minimized through review and coordination with USCG Sector San Francisco and San Francisco emergency service providers. Any detours required during the relocation would be part of the Transportation Management Plan (TMP) which would be required to be reviewed and approved by the SFFD. All detours would be designed to ensure emergency access to TI from YBI is not affected and in close coordination with emergency service providers. Any temporary closures would be addressed in the final TMP prepared as part of this project. An alternate emergency access plan will also be in place should the advertised access routes experience failure or blockage. These avoidance and minimization measures would ensure that access to the islands would be maintained throughout the construction period.

3.21.6 Utilities

The Quarters 10/Building 267 relocation site would require utility connections. Utility lines currently run under Treasure Island Road and Macalla Road in the vicinity of the relocation site. It is anticipated that adequate capacity is available to connect into the utility system on YBI and TI to serve the site. There would be no impacts to the utility system as continuous service is planned to be maintained during construction. All utility relocations would be conducted in coordination with the applicable provider. No avoidance, minimization, or mitigation measures would be required.

3.21.7 Traffic and Transportation/Pedestrian and Bicycle Facilities

The relocation site is bounded by Treasure Island Road and Macalla Road to the west and south, respectively. The site preparation and building relocation would take approximately three months. Traffic and transportation impacts related to the relocation activities would be short-term and temporary. Construction traffic related to the relocation site is expected to access the site from SFOBB, using Treasure Island Road and Macalla Road, similar to the proposed ramps. Construction would involve excavation and preparation of the relocation site, dismantling of Quarters 10/Building 267, and transportation of the buildings to the relocation site. Vehicles involved in the relocation construction activities would include trucks hauling debris and delivering materials and supplies, graders and heavy earthmoving and paving equipment, and vehicles driven by construction workers.

It is anticipated that the site preparation would consist of 10 truck trips, and the relocation of Quarters 10/Building 267 would require 9 truck trips. These trips would be temporary and would not result in permanent impacts to the operation of Treasure Island Road and Macalla Road, or to existing and planned pedestrian and bicycle facilities in the area.

As with the proposed ramps, efforts would be made to concentrate construction activities during off-peak hours. Scheduling construction activities during off-peak hours would ensure that roadways in the construction area are open during the peak traffic times to minimize disruptions. As with the proposed ramps, Caltrans and other affected agencies would be consulted to define specific construction procedures and routes and to implement the Transportation Management Plan (TMP) prepared for the project during final design. Construction impacts would be minimized through coordination with the USCG and emergency service providers. By implementing this avoidance and minimization measure, traffic and transportation/pedestrian and bicycle facilities impacts would not be adverse.
Future use of this site is currently unknown. Trips generated from the future use of the site would be evaluated separately in the appropriate documentation by the City and County of San Francisco and TIDA.

3.21.8 Visual/Aesthetics

The relocation site, which is located on the northwest quadrant of YBI before the Treasure Island causeway, is currently open space with trees, grass, vegetation, and a small informal picnic area with a few tables. Future use of the site proposed by the City in the Treasure Island Yerba Buena Island Parks and Open Space Plan incorporates these uses and connects to a proposed Beach Park at Clipper Cove, located at a lower elevation below the relocation site. The site is bounded by Treasure Island Road and Macalla Road to the west and south, respectively. The relocation site slopes downward from Treasure Island Road and Macalla Road to the shoreline of TI. Quarters 10/Building 267 would be reconstructed on the slope of the southeast portion of the relocation site. Views from the relocation site would be of Clipper Cove in the foreground, Treasure Island to the north, and the San Francisco Bay and the SAS Structure of the new SFOBB East Span to the northeast. Views towards the relocation site from Treasure Island Road and Macalla Road would be obscured by trees lining the roadways and existing trees at the site, and the topography of the site; therefore, views of Quarters 10, which is approximately 6.1 meters tall (20 feet tall), and Building 264, which is approximately 3 meters tall (10 feet tall) would be obscured from viewers in vehicles. Pedestrians and bicyclists would have views of Quarters 10/Building 267 from certain points along Treasure Island Road, but the views would be similar to existing views of buildings on Treasure Island. Quarters 10/Building 267 would be visible from the north and northeast, but would not have substantial adverse impact on views from distant off-site locations, including a waterside approach. The relocated buildings would not be prominent when viewed in context from distant vantage points, thus no adverse impacts would occur. No avoidance, minimization, or mitigation measures would be required.

3.21.9 Cultural Resources

An addendum Historic Properties Survey Report (HPSR) and Archeological Survey Report (ASR), included as Appendix J of this Final EIR/EIS were prepared in accordance with Caltrans SER guidance to identify cultural resources that may be impacted by the relocation of Quarters 10/Building 267 to the specified site. The Addendum HPSR/ASR concluded that there are no significant historical resources located within the APE of the Quarters 10/Building 267 relocation site. Because there are no significant resources present, there is no potential to impact historical resources. No avoidance, minimization, or mitigation measures would be required.

3.21.10 Hydrology and Floodplains

Estimated elevation of the 100-year tide in the vicinity of the project site is 1.83 to 2.04 meters (6 to 6.7 feet) above NGVD. The surface elevation of the relocation site is above an elevation of 15.24 meters (50 feet) NGVD. Therefore the floodplain associated with the extreme adopted high tide level would not encroach into the relocation site. Based on review of available topographic data, the surface elevation of the relocation site is above an elevation of 2.7 meters (8.85 feet) NGVD. Therefore it is not likely that the site could be inundated during one of these unusual and extreme events. The expected sea level rise at this site would be 16 centimeters (0.5 feet) by year 2050 and 37 centimeters
The relocation site is above the elevations expected for sea level rise, and not likely to be inundated or experience flooding if these events occur.

3.21.11 Water Quality and Storm Water Runoff

Relocation of Quarters 10/Building 267 would increase impervious area at the site. The disturbed area could total up to 1 acre from the site preparation and relocation activities. Preparation of the site could include some excavation for the building foundations. Typical construction practices require pumping of groundwater to dewater excavations below the groundwater level. If construction dewatering is required, it would take place in conformance with Caltrans General Permit and SWMP. Any discharge of groundwater to the sanitary sewer system would be required to comply with the SFPUC pretreatment standards.

The preparation of the relocation site would involve excavation, grading, and stockpiling of soil and construction materials. Runoff generated during rainfall events may result in erosion of exposed soil and stockpiled soil. Sediment transported by runoff may cause sedimentation in downstream drainages or may be transported by runoff and discharged into the Bay, resulting in water quality degradation. Other potential pollutants of concern include vehicle fluids, oil, trash, and debris. The Caltrans General Permit requires control BMPs for control of construction site runoff. The SWPPP would require approval by the SFBRWQCB and would identify potential pollutant sources that could affect the quality of runoff, and would require identification, construction, and implementation of construction site BMPs. The SWPPP would specify a monitoring program and would require that the supervisors and workers be knowledgeable about each portion of the site and maintain awareness of the importance of storm water quality protection and pollution prevention. Compliance with existing regulations, programs, and the SWPPP would adequately address potential construction-related storm water runoff impacts. Caltrans and SFCTA would continue to incorporate minimization measures where feasible. The relocation site design would include a drainage system to collect flows and direct storm water into the drainage system. No adverse impacts to water quality and storm water runoff would occur at the relocation site.

3.21.12 Geology/Soils/Seismicity/Topography

Based on available information (Preliminary Foundation Memorandum – Yerba Buena Island Ramps Improvement Project On East Side of the Island, Oakland, California, 2010), YBI is underlain by Franciscan Formation basement rock consisting of interbedded graywacke sandstone, siltstone and claystone of varying proportions. Bedrock on the island is covered by thin sandy deposits from the Pleistocene Colma formation or derived from the underlying sandstone.

The relocation site is located in the northwest quadrant of YBI. The geologic formation in the Clipper Cove area consists of colluviums and landslide debris which is mainly loose sand and rock debris. Sand covers most of the bedrock on the island, except along the lower parts of the slopes where waves have cleaned the rocks, in the northwest quadrant. The relocation site is located on natural land. Treasure Island and the causeway between YBI and TI was constructed in the late 1930s and consists mainly of dredged sandy fill surrounded by a perimeter of berm-like series of rock dikes (Final Report-Geotechnical Investigation-Treasure Island Causeway Seismic Stabilization Study, San Francisco, California, 2006)
Chapter 3.21 – Additional Analysis for the Relocation Site

Construction activities associated with the building relocations would include grading and excavation operations associated with preparing the site, foundation construction, and placement of the relocated buildings. No pile installation or CIDH drilling would be required at the relocation site. Earthwork would be performed in accordance with Caltrans Standard Specifications, Section 19.

As with the proposed ramps and as stated in Section 3.11.4.1, Caltrans would retain California-licensed geologists and geotechnical engineers to prepare a draft and final foundation report and to conduct a site-specific geotechnical study for the preferred alternative. The preferred alternative has been identified as Alternative 2b, and thus the site-specific geotechnical study would include the relocation site. Caltrans would document compliance with necessary avoidance and minimization measures prior to the final project design and foundation report.

As with the proposed ramps, compliance with required laws and regulations through the project design and construction specifications would ensure that potential geology/soils/seismic/topography impacts are minimized or avoided for the building relocations.

3.21.13 Paleontology

Based on available information (Paleontological Identification Report 2010), Yerba Buena Island is underlain by Franciscan Formation basement rock consisting of interbedded graywacke sandstone, siltstone and claystone of varying proportions. Bedrock on the island is covered by thin sandy deposits from the Pleistocene Colma formation or derived from the underlying sandstone.

The relocation site is located on the northern portion of YBI. Sand covers most of the bedrock on the island, except along the lower parts of the slopes where waves have cleaned the rocks, and on northeast point. Grading in the late 1930s at the northeast point removed up to 15.24 to 18.29 meters (50 to 60 feet) off the top of the hill exposing slightly weathered bedrock. Artificial fill at the northeastern tip of the island was created in 1943 by placing cut materials from Yerba Buena Island and dredged bay deposits.

The construction activities for the relocation site can impact paleontologically sensitive geologic units, when vehicles or other work equipment impact previously undisturbed sediments by excavating, grading, or crushing bedrock exposed in or underlying the site. This can result in significant impacts to fossils by destroying them or otherwise altering them in such a way that their scientific value is lost. The paleontologically sensitive Franciscan Complex/Alcatraz Terrane can be found directly underneath the paleontologically sensitive Colma Formation at the relocation site, and may be affected by construction activities.

In general, avoidance and minimization are not feasible with regard to addressing significant impacts on paleontological resources. Geologic formations are usually extensive, and project design cannot be adjusted sufficiently to effectively avoid or minimize paleontological impacts. As a result, mitigation is the approach generally taken to address paleontological impacts:

A Paleontological Mitigation Plan (PMP) would be prepared under the direction of a qualified Principal Paleontologist and including: general fieldwork and laboratory methods proposed, curation requirements, report format and content, distribution and
The proposed staff and their qualifications. The PMP would include mitigation measures adequate for the recovery of samples and would also serve as a basis for obtaining any necessary permits from other agencies.

Caltrans will retain a qualified principal paleontologist (MS or PhD in paleontology or geology familiar with paleontological procedures and techniques). The paleontologist will review the selected alternative alignment and design, once a preferred project alternative is identified; determine the potential for discovery of significant fossils; and identify specific mitigation measures as needed. Caltrans will implement the mitigation measures identified in Section 3.12.4.1 as applicable to the site.

3.21.14 Hazardous Waste/Materials

The U.S. Navy occupied a significant portion of YBI. The U.S. Navy, as part of an Installation Restoration Program (IRP) for NSTI/YBI, established a Federal Facility Site Remediation Agreement among the U.S. Navy, the California Department of Toxic Substances Control (DTSC) and RWQCB. Under this agreement, the U.S. Navy agreed to undertake and report on specified tasks associated with environmental assessment and response actions at 25 Installation Restoration (IR) sites under the IRP in accordance with CERCLA. Those actions have been ongoing since the early 1990s and are reported on in the 1998 HWA and the 2008 Final Site Management Plan (SMP), as well as summarized in the 2010 Phase I ISA for the YBI project. This section briefly summarizes relevant details of those investigations and their resolution or ongoing investigation.

The relocation site for Quarters 10/Building 267 is identified as Site 16 in the 2008 SMP. Petroleum-related investigations were performed within Site 16 boundaries. Site 16 was identified as the former Clipper Cove Tank Farm, which was an area used to store aviation gasoline and automotive diesel for more than 20 years (2008 SMP, Figure 1) from at least 1943 until they were dismantled in the 1960s. The sludge was removed from the aboveground storage tanks (ASTs) during their dismantling, with unknown quantities of sludge reportedly deposited on bare ground east of the former AST locations. No documentation has been found of removal and disposal of the sludge during the 1960s. Based on the investigation at the site, it appears that at least some portion of the sludge was left on the surface to degrade and leach into the underlying soils. In 2001, contaminated surface soil was excavated by the Navy and disposed of offsite (2008 SMP, page A-41). The U.S. Navy received a no further action (NFA) concurrence letter from the RWQCB dated June 17, 2004.

Based on the regulatory database search of the YBI Ramps Improvement project, the results identified and plotted one National Priorities List (NPL) site and two LUST sites within the search criteria. The NPL site and one LUST site (Map ID site 2527) are not in the vicinity of the relocation site. LUST site (Map ID site 4693) is located on USCG property. The database did not provide sufficient information as to the exact name or location for this site. Information provided by the RWQCB indicates that this site is listed as Building 40 of the USCG station. The two different case numbers (Case No. 10647 and 38-0794) provided in the ERIIS database report both reference the same site.

To date, lead-based paint (LBP) at all pre-1978 residential housing on TI and YBI has been assessed. LBP at all pre-1960 YBI residential housing has been abated, and hazard reduction measures were put in place to protect the residents. To ensure all hazard reduction measures remain protective, a reevaluation survey is conducted every
2 years per the recommended U.S. Department of Housing and Urban Development (HUD) schedule. LBP in residential housing on YBI was reevaluated between April and May 2004 and again between May and July 2006. The next LBP reevaluation of the residential housing on YBI is scheduled for within 1 year of transfer of the NSTI property to TIDA.

Soil samples were collected to evaluate the status of drip line and midyard areas at representative YBI residential buildings. Based on the analytical results, soil abatement of the planter boxes and drip line areas was conducted in accordance with Title X, HUD, and U.S. Navy Policy at Quarters 10 on YBI. HUD guidelines state only bare soils may pose a hazard, and soils covered by grass, concrete, or asphalt are protective. Any future disturbance of the grass, concrete, or asphalt at these buildings would require further soil evaluation for lead. The U.S. Navy would either abate or require the transferee to abate any LBP hazards found in existing residential facilities within 1 year of being transferred. If an existing residential facility is scheduled for demolition or nonresidential use, it would not be inspected or abated of LBP.

All known damaged, friable, or accessible asbestos-containing material (ACM) has been removed within most areas of YBI, including the area of Quarters 10/Building 267. It is not anticipated that remaining ACM would pose a threat to human health, however the measures listed in Section 3.13.8 would be applied to ensure safety when the buildings are moved to the relocation site.

Beginning in 1995, several surveys to identify the presence of ACM have been completed at NSTI. Remedies for ACM were implemented.

Friable, accessible ACM identified during surveys was remediated beginning in 1998 All known damaged, friable, or accessible ACM has been abated within most areas of YBI, including the area of Quarters 10/Building 267. It is not anticipated that remaining ACM would pose a threat to human health, however the measures listed in Section 3.13.8 would be applied to ensure safety when the buildings are moved to the relocation site.

Notices and restrictions related to asbestos were identified in the U.S. Navy’s Finding of Suitability to Transfer (FOST) for YBI dated March 23, 2006. A biennial monitoring and sampling program is performed by the U.S. Navy.

Impacts related to the use and transport of hazardous materials or the disturbance of hazardous waste sites would be limited to the construction period for the building relocations. Although a release of hazardous materials during the construction period may potentially have long-lasting effects, construction phase BMPs and avoidance/minimization measures would be implemented to address this potential issue. As with the proposed ramps, compliance with required laws and regulations through the project design and construction specifications would ensure that potential hazardous waste and materials impacts are minimized or avoided if possible for the building relocations. As stated in Section 3.13.8.2, additional measures for the building relocations would be applicable for Alternative 2b. Implementation of these measures would ensure safety from any ACM that may be discovered during the building relocations and would include: contract specifications for relocation of Quarters 10/Building 267 to include procedures for abatement, handling, and disposal of LBP and ACT (if this proves necessary); and performing ACM and LBP surveys prior to building relocation.
Therefore, no permanent impacts are anticipated for the relocation of Quarters 10/Building 267 to the relocation site. By implementing the applicable avoidance and minimization measure, hazardous waste/materials impacts would not be adverse.

3.21.15 Air Quality

Construction activities for Quarters 10/Building 267 would include building disassembly and staging operations along with the physical relocation of the buildings. The total duration of construction activities for the relocation of Quarters 10/Building 267 would be approximately five to six weeks. During this period, construction-related criteria air pollutants and ozone precursors would be generated from heavy-duty construction equipment, on-site generators, material haul trucks, and construction worker vehicles.\(^{36}\) Table 3.21-1 presents the average daily construction emissions through each phase of the proposed project.

\(^{36}\) The maximum daily emissions associated with relocation construction activities were modeled using URBEMIS2007 Version 9.2.4.
As shown above in Table 3.21-1, the construction activities associated with the building relocation’s average daily emissions would not exceed any of the BAAQMD’s construction thresholds of significance. In addition, similar to the proposed ramps, construction activities associated with the Quarters 10/Building 267, staging area, and demolition is required to comply with the requirements of the BAAQMD’s Basic Construction Mitigation Measures Recommended for ALL Proposed Projects. The avoidance and minimization measures identified in Section 3.14.5 would be implemented as applicable to the site.

By implementing this avoidance and minimization measure, air quality impacts would not be adverse and less than significant according to BAAQMD’s new CEQA Guidelines (June 2010).

3.21.16 Noise

During construction activities, noise would be generated from heavy-duty construction equipment, generators, haul trucks, and construction worker vehicles. Thus, construction noise would primarily occur at the existing building location during building disassembly and at the Quarters 10/Building 267 relocation site. The movement of the structures and worker trips would also generate noise on local roadways during construction; however, these noise level increases would be short term and would not result in a perceptible change in the existing noise environment.

Table 3.21-2 below lists the construction equipment that could be used for the preparation of the relocation site with reference noise levels at a distance of 15.24 meters (50 feet) from the equipment and usage factors. The loudest construction activity at the relocation site would be associated with site clearing. Assuming a reasonable maximum activity scenario with a dozer, excavator, a pickup truck, and a dump truck and after determining the usage factor of individual pieces of equipment; construction equipment

Table 3.21–1: YBI Ramp Improvement Supplemental Construction Emissions

<table>
<thead>
<tr>
<th>Construction Phase(s)</th>
<th>Pollutants (pounds per day)</th>
<th>ROG</th>
<th>NOX</th>
<th>PM10</th>
<th>PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Preparation</td>
<td></td>
<td>1.56</td>
<td>12.02</td>
<td>0.67</td>
<td>0.61</td>
</tr>
<tr>
<td>Building Disassembly/Staging</td>
<td></td>
<td>3.76</td>
<td>47.74</td>
<td>1.32</td>
<td>1.21</td>
</tr>
<tr>
<td>Building Relocation</td>
<td></td>
<td>1.97</td>
<td>24.18</td>
<td>0.67</td>
<td>0.62</td>
</tr>
<tr>
<td>Building Rehabilitation</td>
<td></td>
<td>1.97</td>
<td>24.18</td>
<td>0.67</td>
<td>0.62</td>
</tr>
<tr>
<td>Demolition</td>
<td></td>
<td>5.46</td>
<td>73.33</td>
<td>2.82</td>
<td>2.60</td>
</tr>
<tr>
<td>Average Daily Emissions</td>
<td></td>
<td>2.91</td>
<td>34.25</td>
<td>1.13</td>
<td>1.04</td>
</tr>
<tr>
<td>BAAQMD Average Daily Thresholds of Significance</td>
<td></td>
<td>54</td>
<td>54</td>
<td>82</td>
<td>54</td>
</tr>
</tbody>
</table>

Notes: YBI = Yerba Buena Island; ROG = reactive organic gases; NOX = oxides of nitrogen; PM10 = particulate matter with aerodynamic diameter less than 10 microns; PM2.5 = particulate matter with aerodynamic diameter less than 2.5 microns; BAAQMD = Bay Area Air Quality Management District.

1 Pollutants shown for each specific construction phase represent maximum daily emissions, which is the emissions output from URBEMIS2007. However, BAAQMD’s thresholds of significance are for average daily emissions. Maximum daily emissions are shown for informational purposes.

2 BAAQMD thresholds for PM10 and PM2.5 are only for exhaust emissions; therefore, all PM10 and PM2.5 emissions shown in the table represent exhaust emissions.

3 Average daily emissions also include haul truck trips for the Building Disassembly and Building Relocation phases.

Source: YBI Ramps Improvement Project EIR/EIS Air Quality Analysis Addendum Memorandum #2, 2011d
activities at a relocation site would be expected to result in an equivalent hourly average noise levels of 86 dBA L_{eq}, at a distance of 15.24 meters (50 feet) from the center of the construction site. Maximum noise levels generated by construction activities are not predicted to exceed 85 dBA L_{max} at 15.24 meters (50 feet) beyond the edge of active construction sites.

Table 3.21–2: Quarters 10 and Building 267 Relocation Site Construction Equipment

<table>
<thead>
<tr>
<th>Equipment Type</th>
<th>Typical Noise Level at 15.24 meters (50 feet), dBA</th>
<th>Usage Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pickup Truck</td>
<td>55</td>
<td>0.4</td>
</tr>
<tr>
<td>Backhoe</td>
<td>80</td>
<td>0.4</td>
</tr>
<tr>
<td>Dozer</td>
<td>85</td>
<td>0.4</td>
</tr>
<tr>
<td>Excavator</td>
<td>85</td>
<td>0.4</td>
</tr>
<tr>
<td>Dump Truck</td>
<td>84</td>
<td>0.4</td>
</tr>
<tr>
<td>Generator</td>
<td>82</td>
<td>0.5</td>
</tr>
<tr>
<td>Concrete Mixer Truck</td>
<td>85</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Notes: dB = A-weighted decibels;
*All equipment fitted with properly maintained and operational noise control device, per manufacturer specifications.
Source: YBI Ramps Improvement Project EIR/EIS Noise Study Report Addendum Memorandum, 2011e

The nearest noise-sensitive receptor to the Quarters 10/Building 267 relocation site is a multiple family residence approximately 83.8 meters (275 feet) from the nearest point of construction to the south at the northwest corner of Nimitz Drive and Macalla Road. The distance from the center of construction activity to this receptor is approximately 143.3 meters (470 feet). Noise from localized sources, such as construction activities, decreases at a rate of 6 to 7.5 dBA with each doubling of distance from source. Conservatively assuming an attenuation rate of 6 dBA per doubling of distance, construction activities during peak activity are predicted to generate hourly noise levels of approximately 67 dBA L_{eq} at 143.3 meters (470 feet) at the closest source. Therefore, construction noise associated with the relocation of Quarters 10/Building 267 would not exceed the maximum allowable noise level of 80 dBA at 30.5 meters (100 feet) per Section 2907(a) of City of San Francisco Municipal Code. The avoidance and minimization measures for construction noise abatement identified in Section 3.15.4.2 would be implemented as applicable to the site. Noise impacts would not be adverse.

3.21.17 Energy

Construction vehicles and activities would increase energy consumption at the relocation site, but would cease after the estimated three-month construction period. Energy consumption would be a one-time, non-recoverable occurrence related to the production of construction materials (i.e. cement, steel, asphalt), energy needed to produce these materials, and use of construction equipment (i.e. use of diesel, oil, fuel). No avoidance, minimization, or mitigation measures would be required.

3.21.18 Biological Environment

The following analysis is based on a field survey conducted for the relocation site on May 10, 2011. Vegetation communities and wildlife habitats within the relocation site on YBI can generally be described as landscaped/disturbed areas and a gravel parking
area bordered by a strip of native and non-native vegetation (Figure 3.21-3). Vegetation communities found on-site are Mixed broadleaf-conifer forest (0.42 acres), landscaped/disturbed (0.72 acres), and graveled areas (0.16 acres) as presented in the Table 3.21-3 below and, Figure 3.21-3. A portion of the site was developed as an informal picnic area, located above the nearby Clipper Cove which was established by the California Youth Conservation Corps in 1978. The area consists of a combination of lawn areas with scattered trees and several picnic tables. A gravel lot area is also located off of Treasure Island Road and is used as a pull over spot for cars and buses. Along the border of the picnic area, following the curvature of Macalla Road as it runs northeast from Treasure Island Road is a wide strip of mixed broadleaf-conifer forest. Each of the dominant vegetation communities, which are similar to the vegetation described in Section 3.17, is described separately below (Table 3.21-3), and includes descriptions of the native elements found therein.

Table 3.21–3: Habitat Type and Area

<table>
<thead>
<tr>
<th>Habitat Type</th>
<th>Total Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed broadleaf-conifer forest</td>
<td>0.42 acres</td>
</tr>
<tr>
<td>Landscaped/Disturbed</td>
<td>0.72 acres</td>
</tr>
<tr>
<td>Graveled Parking Area</td>
<td>0.16 acres</td>
</tr>
</tbody>
</table>

Source: YBI Ramps Improvement Project Natural Environment Study Addendum Memorandum 2011

Mixed Broadleaf-Conifer Forest

Mixed broadleaf-conifer forest is a general description for a vegetation community dominated by both conifers and broadleaf trees (non-conifers, either deciduous or non-deciduous). In coastal central California, native mixed broadleaf-conifer forests include mixed evergreen forest dominated by Douglas fir (*Pseudotsuga menziesii*) and coast live oak (*Quercus agrifolia*); and Monterey pine forest, which includes Monterey pine (*Pinus radiata*), coast live oak, and native understory shrub and ground cover species also found in coast live oak forests.

Mixed broadleaf-conifer forest totaling approximately 0.42 acres are located within the relocation area. The canopy is a mixture of Tasmanian blue gum (*Eucalyptus globulus*) trees 12.2 – 18.3 meters (40 - 60 feet) in height, and Monterey pine. The understory supports a combination of ruderal, nonnative shrubs and herbs such as broom (*Genista* spp.), English ivy (*Hedera helix*), and natives such as California buckeye (*Aesculus californica*). Herbaceous understory species that were observed include native miner’s lettuce (*Claytonia perfoliata*), bee plant (*Scrophularia californica*), Nasturtium (*Tropaeolum* sp), sweet fennel (*Foeniculum vulgare*), and California blackberry (*Rubus ursinus*). This community intergrades with the landscaped/disturbed area making up the picnic area near Clipper Cove, and shares tree species with that vegetation community. Mixed broadleaf conifer forest provides cover and nesting habitat for a variety of birds. Large (e.g. > 9”) diameter trees may provide nesting habitat for raptors, including great horned owl (*Bubo virginianus*), red-tailed hawk (*Buteo jamaicensis*), and red-shouldered hawk (*Buteo lineatus*). A variety of passerine species can be expected to occur and nest in this habitat such as Anna’s hummingbird (*Calypte anna*), white-crowned sparrow (*Zonotrichia leucophrys*), song sparrow (*Melospiza melodia*), and house finch (*Carpodacus mexicanus*).

Mixed broadleaf conifer forest is not defined in Holland (1986). On-site, mixed broadleaf conifer forest resembles a combination of Monterey pine series, eucalyptus series, and...

Landscaped/Disturbed

Landscaped lands are disturbed in that all or most of the native vegetation has been removed and replaced with horticultural species. Disturbed landscaped areas have little potential to support significant botanical resources.

Landscaped/disturbed lands within the relocation site totaling approximately 0.72 acres are made up primarily of maintained lawn and scattered trees including Monterey cypress (*Callitropsis macrocarpa*), eucalyptus, elm and Canary island palm (*Phoenix canariensis*). Such areas are not expected to support any naturally occurring vegetation, although invasive native and nonnative plant species frequently colonize disturbed sites. There are additional areas of landscaped/disturbed habitat on site that are characterized by ornamental lava rock. Landscaped/disturbed lands as they occur on-site are not specifically described by Sawyer and Keeler-Wolf (1995) and would be classified as upland following Cowardin *et al.* (1979).

Wildlife species associated with landscaped/disturbed lands are often those associated with close contact to urban areas such as raccoon (*Procyon lotor*), opossum (*Didelphus virginianus*), house finch, European starling (*Sturnus vulgaris*), and mourning dove (*Zenaida macroura*).

Wetlands and Other Waters

No evidence of wetlands or aquatic features was found within the relocation site. The site is in close proximity to Clipper Cove and the San Francisco Bay, accessible from Treasure Island Road through the site via a stairway located adjacent to the northeast. As with the proposed ramps, tidal waters would not be affected by temporary construction activities due to implementation of standard construction BMPs to treat and minimize discharge into the Bay. The avoidance and minimization measures to implement construction BMPs identified in Section 3.17.2.4 would be implemented as applicable to the site. Wetlands and other water impacts would not be adverse.

Special Status Plants and Wildlife

No special-status plant or wildlife species were encountered during the reconnaissance-level biological resources assessment. Species that have a potential to occur within the relocation site are consistent with those that could occur on other portions of YBI evaluated as part of the YBI Ramps Improvement Project, and are discussed in detail in the Natural Environment Study (NES) and included as Appendix N of this Final EIR/EIS. If necessary, the avoidance, minimization, and/or mitigation measures identified in Section 3.17.3.4 (Stinging Phacelia, Large Flowered Sand-Spurrey), Section 3.17.4.4 (Sandy Beach Tiger Beetle, Monarch Butterfly, Gummifera Leaf-Cutter Bee, San Francisco Lacewing, American Peregrine Falcon, Cooper’s Hawk, Golden Eagle, White-tailed Kite, and Other Nesting Raptors, Passerines and Nonpasserine Landbirds, Shorebirds, Marshbirds, and Waterbirds, California Brown Pelican, Double-Crested Cormorant, Special Status Bats, San Francisco Dusky Footed Woodrat, and Bank Swallow) would be implemented as applicable to the site. By implementing the applicable avoidance, minimization, and mitigation measures, special status plants and wildlife impacts would not be adverse.
Invasive Species

YBI’s location in the central part of San Francisco Bay provides a hospitable habitat for invasive species due to its location at the crossroads of a busy marine port and interstate freeway thoroughfare. As a direct result of the relocation site grading, land disturbance, and debris generated from construction, YBI would be subject to the potential increased spread of invasive plant and wildlife species. The avoidance and minimization measures to prevent the introduction and spread of exotic and invasive plant and wildlife species identified in Section 3.17.6.4 would be implemented as applicable to the site. Impacts related to invasive species would not be adverse.
Vegetation Classifications

- Mixed Broadleaf-Conifer Forest
- Gravel Parking Area
- Landscaped/Disturbed
- Landscaped/Lava Rock

Figure 3.21-3
Quarters 10 and Building 267 Relocation Site - Habitat Map
CHAPTER 4 – CALIFORNIA ENVIRONMENTAL QUALITY ACT (CEQA) EVALUATION

This chapter describes the potential environmental effects identified in Chapter 3 that would be considered significant under CEQA. This combined Final EIR/EIS has been prepared in accordance with CEQA and NEPA. SFCTA is the project sponsor and, per a memorandum of understanding with Caltrans, they are the lead agency under CEQA. CEQA requires that identification of the level of significance for each impact be stated in an EIR, while NEPA regulations do not require such a discussion. Because of this difference, the CEQA significance criteria and the determination of significant impacts have not been included in other sections of this combined Final EIR/EIS. These criteria and determinations are identified and described in this chapter. Appendix A contains a CEQA checklist of project impact determinations made as part of the Initial Study.

4.1 Determining Significance under CEQA

The project is subject to Federal as well as SFCTA and state environmental review requirements because the SFCTA proposes the use of Federal funds and/or the project requires a Federal approval action. Project documentation, therefore, has been prepared in compliance with both CEQA and NEPA. The SFCTA is the lead agency under CEQA. Environmental review, consultation, and any other action required in accordance with NEPA and other applicable Federal laws for this project is being, or has been, carried out by Caltrans under its assumption of responsibility pursuant to 23 U.S.C. 327.

One of the primary differences between NEPA and CEQA is the way significance is determined. Under NEPA, significance is used to determine whether an EIS, or some lower level of documentation, would be required. NEPA requires that an EIS be prepared when the proposed Federal action (project), as a whole, has the potential to “significantly affect the quality of the human environment.” The NEPA determination of significance is based on context and intensity. Some impacts determined to be significant under CEQA may not be of sufficient magnitude to be determined significant under NEPA. Under NEPA, once a decision is made regarding the need for an EIS, it is the magnitude of the impact that is evaluated and no judgment of its individual significance is deemed important for the text. NEPA does not require that a determination of significant impacts be stated in the environmental documents.

CEQA, on the other hand, does require the project sponsor(s) to identify each “significant effect on the environment” resulting from the project and ways to mitigate each significant effect. If the project may have a significant effect on any environmental resource, then an EIR must be prepared. Each and every significant effect on the environment must be disclosed in the EIR, and mitigated if feasible. In addition, the CEQA Guidelines list a number of mandatory findings of significance, which also require the preparation of an EIR. There are no types of actions under NEPA that parallel the mandatory findings of significance of CEQA. This chapter discusses the effects of this project and CEQA significance.

The CEQA Guidelines (§15000, et seq., California Code of Regulations, 2001) define a “significant effect” as:

...a substantial, or potentially substantial, adverse change in any of the physical conditions within the area affected by the project including land,
air, water, minerals, flora, fauna, ambient noise, and objects of historic and aesthetic significance. An economic or social change by itself shall not be considered a significant effect on the environment. A social or economic change related to a physical change may be considered in determining whether the physical change is significant (CEQA Guidelines §15382, 2001).

The CEQA Guidelines further state that “An ironclad definition of significant effect is not possible because the significance of an activity may vary with the setting. For example, an activity which may not be significant in an urban area may be significant in a rural area” (CEQA Guidelines §15064, 2001). Appendix G of the CEQA Guidelines describes impacts that the California Resources Agency has determined are normally considered significant. These guidelines require that physical changes in the environment be evaluated based on factual evidence, reasonable assumptions supported by facts, and expert opinion based on fact.

4.2 Discussion of Impact Significance

Analysis of the project alternatives was conducted to determine if there would be an impact on a particular environmental resource. This review included a determination of whether an impact occurring from the implementation of an alternative would be rated as “significant” under CEQA. Levels of significance stating “less than significant with mitigation incorporated” are based on the application of successful mitigation measures meaning the impact would not be mitigated until mitigation successfully accomplishes the desired goals.

Chapter 3 provides a detailed discussion of the impacts for each resource category. Significant impacts were not identified for the No Build Alternative, which is used as the existing condition for comparison with the build alternatives.

4.3 No Impacts of the Proposed Project

The proposed project would have no impacts to parks and recreation, community, emergency services and utilities, and energy. These resource areas are also discussed in Section 3.2, Parks and Recreation; Section 3.4 Community Impacts; Section 3.5, Emergency Services and Utilities; and Section 3.16, Energy.

4.3.1 Parks and Recreation

The project site is not within an existing regional park and does not contain any recreational facilities. As discussed in Section 3.2, no recreational facilities would be removed as part of either build alternative. Neither build alternative would impact parks and neither interferes with the City’s plans for a balanced park system.

Consistent with objectives in the City of San Francisco General Plan, both build alternatives would maintain adequate open space along the shoreline. The provision of this open space involves meeting the goals for implementing TI/YBI Development Plan, which has proposed to redevelop 121.41 hectares (300 acres) of open space on TI/YBI with waterfront promenades, bicycle and pedestrian paths, recreational and entertainment facilities, restaurants, shops, hotels, residences, and other public uses for facilities and areas previously used by the U.S. Navy. Water-oriented recreational
facilities would continue to be accessible to the public and consistent with the San Francisco Bay Conservation and Development Commission’s *The Bay Plan.*

Neither build alternative is expected to generate a greater demand on existing or future recreational facilities at YBI and TI. Neither alternative would remove existing recreational facilities nor preclude the future development of recreational opportunities set forth in the TI/YBI Project. No impacts to recreational facilities would occur.

4.3.2 Community

The build alternatives would occur within existing and proposed Caltrans right-of-way. As discussed in Section 3.4, no occupied structures would be removed or relocated either temporarily or permanently as part of either build alternative. As such, there are no residents in the project area and minority or low-income populations would not be affected.

Alternatives 2b and 4 would not have disproportionately high or adverse impacts on low-income or minority populations in the project area. No impacts would occur.

4.3.3 Emergency Services and Utilities

As discussed in Section 3.5, temporary impacts to emergency services would occur under the build alternatives during construction. Construction activities would result in temporary detours and single-lane closures. However, these impacts would be minimized through coordination with the USCG and emergency service providers. The proposed detour would be part of the TMP, which would be required to be reviewed and approved by the SFFD and USCG. Implementation of the TMP would result in less than significant impacts to emergency services.

It is anticipated that certain components of the utility system on YBI and TI would need to be temporarily relocated as part of the YBI Ramps Improvement Project. In those instances, temporary facilities would be provided during construction to maintain continuous utility operations. As discussed in Section 3.5, there would be no impacts to the utility system under the build alternatives as continuous service is planned to be maintained during construction. In some cases, where allowable, utility elements may be relocated before the initial construction phase.

Both build alternatives would include the permanent relocation of gas and sewer lines. All utility relocations would be conducted in coordination with the applicable provider. As such, no impacts related to utility relocations would occur.

4.3.4 Energy

The indirect energy consumption of the No Build Alternative would only be associated with the manufacturing and maintenance of passenger vehicles, heavy trucks, and transit buses. As discussed in Section 3.6, the long-term LOS under the No Build Alternative would be expected to worsen over existing conditions and delays and queues on YBI would increase as the demand would exceed the capacity of the ramps. Accordingly, energy consumption would increase.

The build alternatives would be conserving natural resources and limiting energy consumption in several ways. The increased on- and off-ramp capacity and improved
geometry would reduce travel times for motorists on the Bridge, which would provide for less vehicle operating time which, in turn, reduces wear on the vehicles and reduces fuel consumption. Additional savings on the Bridge would result from fewer vehicle stops and starts (which is the most wasteful condition in terms of fuel). Energy consumption on the islands would be expected to increase as a result of the build alternatives, as queuing and delays would occur due to the increased capacity of the on-ramps. To improve traffic flow on the islands, the ramps would be metered. Metering the ramps as a system would allow Caltrans to optimize the efficiency of the on- and off-ramps access.

It is Caltrans’ goal to construct this proposed project in the least amount of time by planning and staging the work efficiently. Short-term energy consumption would increase due to construction. The reduced construction time would lead to a low number of construction-related delays and make the benefits of the project available sooner. Caltrans is also proposing to reuse and incorporate existing materials (those that can be) into the final product. Any pavement and construction debris that is removed would be considered for recycling or reuse. Recycling saves the fuel and materials that would have been required to create new materials.

The design of each build alternative would also reflect an attempt to reduce the number of utilities that need to be either relocated or replaced as part of the project. Where possible, utilities would be left in place and incorporated as part of the project.

Caltrans has recently identified ways to incorporate a green construction fleet and is developing construction specifications by which construction-related emissions would be reduced. The Caltrans Fleet Greening Program goal is to promote an efficient fleet mix and use of efficient, low-emission vehicles to lower Caltrans’ use of petroleum as well as reduce emissions of criteria air pollutants and greenhouse gases (Caltrans 2010b). The green fleet includes hybrid passenger vehicles, solar-powered equipment, propane-fueled vehicles, low dust street sweepers, and diesel particulate filters on heavy-duty, diesel-powered vehicles (Caltrans 2010b). To the extent possible and appropriate, the green specifications would be considered for incorporation into the various construction contracts to build the project. As such energy consumption would be less than under existing conditions. Therefore no impacts to energy would occur.

4.4 Less-Than-Significant Effects of the Proposed Project

The proposed project would have a less-than-significant effect on land use, growth, traffic, hydrology and floodplains, water quality and storm water runoff, geology and soils, hazardous waste/materials, air quality, noise, and biological resources. These resource areas are also discussed in Section 3.1, Land Use; Section 3.3, Growth; Section 3.6, Traffic and Transportation/Pedestrian and Bicycle Facilities; Section 3.9, Hydrology and Floodplains; Section 3.10, Water Quality and Storm Water Runoff; Section 3.11, Geology/Soils/Seismic/Topography; 3.12, Paleontology, Section 3.13, Hazardous Waste/Materials; Section 3.14, Air Quality; Section 3.15, Noise; and Section 3.17, Biological Environment.

4.4.1 Land Use

The proposed project’s build alternatives (2b and 4) would occur on YBI within future Caltrans right-of-way. The project build alternatives would replace existing on- and off-ramps that occupy some of the same land. Some additional land would be necessary to allow for the column foundations for the ramp structure. For Alternative 2b, Quarters 10
(and Building 267) would be removed and relocated. As discussed in Section 3.1, no conflict with existing land uses would occur.

Future land uses including institutional, open space, and mixed-use classifications are planned but not designated at locations beneath the proposed on- and off-ramps in the TI/YBI Project, which underwent its own environmental review process in the form of an EIR. These land uses would only be affected at areas where the columns were located and where the ramp would meet grade along Macalla Road. There are currently existing on- and off-ramps in these locations. The proposed project’s build alternatives would occur within existing Caltrans right-of-way. The YBI Ramps project is necessary to improve the functional roles of the current ramps and requires adequate land to build a new facility. Land use impacts would be less than significant.

4.4.2 Growth

4.4.2.1 Temporary Impacts

Implementation of either build alternative would induce a minimal amount of temporary growth at the project site. As discussed in Section 3.3, over the short-term, project construction activities would require the establishment of temporary small-scale office facilities at the project site for construction personnel during working hours. These facilities would comprise the extent of growth (on a temporary basis) that would result from implementation of the YBI Ramps Improvement Project. These facilities would be used during the project implementation period and removed from the site once construction activities are completed. Workers would be from the existing labor pool within San Francisco and Alameda counties and the Bay Area, and would not require the relocation or influx of additional population to staff the construction efforts. As such, the build alternatives would not result in temporary growth beyond the minimal amount associated with construction and impacts would be less than significant.

4.4.2.2 Permanent Impacts

Neither build alternative would induce unplanned growth, either directly or indirectly, in the area. The project would improve acceleration and deceleration distances to and from SFOBB’s highway lanes. The project would replicate the functional roles of the current ramps and would not place a new permanent facility in an undeveloped area nor would it expand or increase roadway capacity. However, as stated in Section 3.6, Traffic and Transportation/Pedestrian and Bicycle Facilities, of this Final EIR/EIS, the build alternatives would increase the capacity of the existing on- and off-ramps; however, the increase would be constrained by ramp metering. Therefore, neither build alternative would result in the inducement of direct or indirect permanent unplanned growth in the project area. Impacts to growth would be less than significant.

4.4.3 Traffic

This section identifies potential impacts that may occur during construction of the build alternatives.

As discussed in Section 3.6, construction vehicles, equipment, and workers would traverse the project area, resulting in temporary traffic and circulation impacts.
Project construction would involve demolition, excavation, new ramp structures, a roadway, sidewalk, retaining wall, landscaping, and signage. Construction vehicles include trucks hauling debris and delivering construction materials and supplies, graders and heavy earth-moving and paving equipment, and vehicles transporting by construction workers.

As described in Section 3.6.4.1, during project construction, the following minimization measures would be implemented to concentrate the majority of road closures and construction activity during off-peak hours to reduce traffic impacts. During the lane closure on Macalla Road, traffic would be diverted to one side of the road and traffic would be controlled by flaggers stationed at both ends of the closure. Similar traffic handling is currently being used on Macalla Road with the ongoing SFOBB construction by Caltrans. Macalla Road primarily serves the USCG facility. Therefore, road closures would be subject to USCG lane closure restrictions. During closure of the existing westbound on-ramp, traffic would be diverted to the westbound on-ramp on the west side of YBI, utilizing Macalla Road and Treasure Island Road. During final design, the implementation details in the Transportation Management Plan (TMP) will be prepared, including specific construction procedures and routes. Traffic impacts during the various construction stages would be temporary. However, implementation of the TMP during construction would reduce temporary impacts to less-than significant levels.

4.4.3.1 Future Trip Demand on YBI and TI

As required by CEQA, the significance determination for traffic impacts was made based on a consideration of the effects of the proposed project compared to baseline (existing) conditions. Existing traffic conditions are discussed in Section 3.6.2 of the Final EIR/EIS. The traffic impacts were determined to be less than significant because under existing conditions there are already ramps in place at YBI. This project makes safety and geometric improvements to the existing conditions. See also Section 3.3.3.2 Growth."

Future trip demand volumes were estimated for baseline transit investments only (only those funded improvements were included in the modal split analysis). Table 3.6-4 in Chapter 3.6, Traffic and Transportation/Pedestrian and Bicycle Facilities, presents the proposed land use program for the TI/YBI Project and estimated person and vehicle trips for this plan under the baseline transit scenario. The table shows the TI/YBI Project would generate approximately 2,416 vehicle trips during the AM peak hour (1,062 inbound and 1,354 outbound vehicle trips) and approximately 3,835 vehicle trips during the PM peak hour (2,136 inbound and 1,699 outbound vehicle trips). It should be noted that the vehicle trips presented in Table 3.6-3 are total vehicle trips generated by the proposed developments on TI and YBI at build-out and include vehicles currently accessing the islands. These trips would continue after implementation of the TI/YBI Project. The net increase in vehicle volumes would be 1,664 vehicles during the AM peak hour and 2,909 vehicles during the PM peak hour, which would significantly impact the local road network. Under the 2035 Build Condition with Ramp Metering, long delays and queues would be expected on the island. However, additional roadway improvements would not be implemented to accommodate these queues, which would occur only on the approaches to the meters and thus would not substantially impair circulation on YBI. Therefore, island roadways, such as Macalla Road and Treasure Island Road, would not need to be widened to accommodate projected traffic volumes. Table 3.6-8 summarizes the results of the 2035 Build Condition analysis for the ramp junctions with ramp metering. When compared with the results in Table 3.6-7, the project
with ramp metering is expected to improve conditions at the westbound on-ramps to LOS C (from LOS E/F) during both the AM and PM peak hours.

As described in Section 3.6.4.2, the analysis with no ramp-metering concludes that the average operating speed on the SFOBB would be lower because the capacity of the new on-ramp would increase to 1,200 vph from 330 vph. With no ramp metering, on-ramp traffic would be allowed to enter the Bridge unimpeded, thus reducing queuing on the on-ramp and YBI. After construction, ramp metering will be in effect, which may cause long delays and queues on the ramp and YBI. With ramp metering, the metering rates can be coordinated such that the number of vehicles entering the Bridge would be based on the number of vehicles exiting the Bridge. Additionally, the Bridge metering lights at the Oakland touchdown would be coordinated with the on-ramp, such that the traffic entering the Bridge would be reduced to increase the metering rate of the on-ramp, and vice versa. Implementation of ramp metering and coordination with the Bridge metering lights at the Oakland touchdown would reduce traffic impacts to a less-than-significant level.

4.4.4 Hydrology/Water Quality

For the purpose of this discussion and in conformance with CEQA format, hydrology/water quality includes hydrology, floodplains, water quality, and storm water runoff. Potential impacts to these resource areas are covered separately in Section 3.9, Hydrology and Floodplains, and Section 3.10, Water Quality and Storm Water Runoff.

There is the potential that the discharge of dewatering effluent or runoff from the proposed build alternatives (either during the construction or operation periods), including sediment and/or urban pollutants above allowable regulated thresholds, may affect receiving waters.

4.4.4.1 Flooding

As described in Section 3.9, Hydrology and Floodplains, the proposed ramps for both build alternatives do not encroach upon any existing FEMA-mapped floodplains. Any roadways below 2.5 meters (8.2 feet) NGVD could be inundated during the 100-year tsunami wave run-up event. By the year 2050, the inundation elevation is expected to rise incrementally to 2.65 meters (8.7 feet) NGVD.

Based on review of available topographic data, the surface elevations of the proposed ramps are above an elevation of 2.65 meters (8.7 feet) NGVD. In low-lying areas and dips along YBI, the roadway ramps are raised via pile foundations well above an elevation of 2.65 meters (8.7 feet) for both alternatives. Therefore, impacts to the roadway from inundation during one of these unusual and extreme events would be less than significant.

4.4.4.2 Hydrology

Alternative 2b would add 0.79 hectares (1.95 acres) of additional surface paving area compared with existing conditions. This additional impervious surface would increase surface runoff by 0.021 cubic meters per second (m³/s) (0.75 cubic feet per second [ft³/s]).
Chapter 4 – CEQA Evaluation

Alternative 4 would add 1.78 hectares (4.40 acres) of additional surface paving area compared with existing conditions. This additional impervious surface would increase surface runoff flows by 0.024 m3/s (0.85 ft3/s).

As described in Section 3.9, bioswales would be designed to capture the increased flow rate due to the additional impervious surface for both alternatives. Impacts to hydrology would therefore be less than significant.

4.4.4.3 Water Quality

Alternative 2b would add 0.79 hectares (1.95 acres) of additional surface paving area compared with existing conditions. This additional impervious surface would increase surface runoff by 0.021 cubic meters per second (m3/s) (0.75 cubic feet per second [ft3/s]).

Alternative 4 would add 1.78 hectares (4.40 acres) of additional surface paving area compared with existing conditions. This additional impervious surface would increase surface runoff flows by 0.024 m3/s (0.85 ft3/s).

As discussed in Section 3.10, both build alternatives include an independent ramp drainage system to collect all ramp surface runoff. Slopes would include pipe or flume downdrains to collect concentrated flow and minimize erosion. Currently, surface runoff from the westbound lanes of I-80 is collected in deck drains on the side of the SFOBB. Because Alternative 2b would provide treatment for runoff, sediment loading in surface runoff would be reduced compared to existing conditions where runoff flows over exposed soil without treatment.

Although storm water runoff would contain pollutants generated by automotive vehicles over paved surfaces, after construction, traffic is not expected to increase substantially when compared with existing conditions. Following water quality treatment, the runoff would not be expected to contain detectable amounts of any of the pollutants of concern listed in the 303(d) for the Central San Francisco Bay. In this instance, storm water treatment target pollutants related to traffic are not entirely covered in the 303(d) list. The Caltrans statewide permit and SWMP call for the consideration of permanent BMPs, including treatment to control runoff after project construction. Preliminary treatment options for the proposed raps were narrowed down to bioswales, which would collect flows from the proposed roadways and treat the runoff prior to discharge. Compliance with applicable regulations and implementation of a SWPPP for construction-related storm water runoff impacts and the Caltrans General Permit and SWMP to control runoff after project construction would result in less-than-significant water quality impacts.

4.4.5 Geology and Soils

According to geotechnical data collected during analysis of the SFOBB ESSSP, several slope stability issues were associated with design of the East Span structures on and in the vicinity of YBI (Caltrans 2001a). These issues included the stability of the east-facing slope of YBI and the potential for slope failures in the vicinity of the west foundation for the SFOBB East Span.

As discussed in Section 3.11, there are pre-existing slope stability and erosion problems on parts of YBI in the vicinity of the USCG facility. Slope stability issues for the SFOBB ESSSP were evaluated through geologic mapping performed on YBI, marine
exploration, and laboratory testing of bedrock. Stability analyses for various potential
slope failure modes were performed. The results showed that wedge failures were
anticipated on YBI. Based on the preliminary foundation report for the YBI project (Draft
Preliminary Foundation Report – Yerba Buena Island Interchange Ramp Project, San
Francisco Bay Bridge, California, April, 2007) and preliminary engineering design, pile
driving will be used to construct some column foundations. The proposed new structures
are planned to be supported on 610-mm (24-inch) diameter columns, 2,440 to 3,050-mm
(96 to 120-inch) diameter drilled shafts, or other types of piles. Pre-cast concrete (PCC)
piles or other types of driven piles may be used. This construction technique could result
in ground-transmitted vibration, which could affect soil stability as well as structural
stability and wildlife behavior.

As described in Section 3.11.4.1, the site-specific preliminary foundation memorandum
(Preliminary Foundation Memorandum – Yerba Buena Island Ramps Improvement
Project On East Side of the Island, Oakland, California, 2010) contains construction
recommendations for earthwork (cuts, fills, and finished slopes), pile construction (driven
or drilled piles), and abutment walls. These recommendations take into account the
geologic and soil conditions at the project site, previous studies, and current
requirements of Caltrans Standard Specifications and are based on the preliminary
construction plans. The site-specific foundation report also recommends review of the
final construction plans and specifications by a geotechnical consultant to confirm
inclusion of these recommendations, as well as inspections and testing during several
stages of construction.

As described in Section 3.11.4.1, the following minimization measure would be
implemented to avoid impacts related to geology and soils. A Final Foundation
Memorandum would be prepared, which would update and/or confirm the earthwork, pile
construction and abutment wall recommendations in the Preliminary Foundation
Memorandum to the final design level. SFCTA, in conjunction with Caltrans, would retain
California-licensed geologists and geotechnical engineers to assist in final design and
review the final construction plans and specifications to confirm inclusion of
recommendations from the preliminary foundation memorandum (Preliminary
Foundation Memorandum – Yerba Buena Island Ramps Improvement Project On East
Side of the Island, Oakland, California, 2010). Caltrans would document compliance with
this measure prior to the final project design. The engineers would prepare a summary
report that would document the investigation and detail the specific design support
alternatives and protection measures that would be implemented. The geotechnical
engineer would conduct inspections and testing during the following stages of
construction: grading operations, including excavations and compacted fill placement;
shoring installation; CIDH drilling prior to replacement of steel reinforcement; preparation
of subgrade prior to placement of any overlying materials; foundation construction;
backdrain construction, and when any unusual subsurface conditions are encountered.
Any updates for the final foundation report would reflect construction level details in
compliance with the Preliminary Foundation Memorandum. Slope stability impacting
USCG property, or its 365/24/7 access, will be maintained.

Implementation of the avoidance and minimization measures above and compliance with
required laws and regulations through the project design would ensure that potential
impacts associated with geology and soils would be reduced to less-than-significant
levels.
4.4.6 Paleontology

As discussed in Section 3.12, the paleontologically sensitive Franciscan Complex/Alcatraz Terrane can be found directly underneath the paleontologically sensitive Colma Formation, and both would be affected by construction activities. Ground-disturbing activities within the PSA for both build alternatives could potentially impact paleontological resources. As described in Section 3.12.4, potential impacts to paleontological resources during construction activities would be mitigated by development of a Paleontological Mitigation Plan (PMP), retaining a qualified principal paleontologist (MS or PhD in paleontological procedures and techniques) who would review the selected alternative alignment and design, once a preferred project alternative is identified; determine the potential for disturbance of the paleontological resource; and identify specific mitigation measures as needed. In addition, onsite training and monitoring of project-related ground-disturbing activities would occur. Impacts to paleontological resources would therefore be less than significant with mitigation.

4.4.7 Hazardous Waste/Materials

As described in detail in Section 3.13, parts of Installation Restoration (IR) Site 8 (a sludge spreading area), IR Site 11 (a landfill), and IR Site 29 (an area of known soil contamination possibly associated with former military operations or highway operations) are within the project site. Site 270 (a closed leaking underground storage tank [LUST]) is also within the project area. Soil and groundwater contamination by petroleum hydrocarbons, heavy metals, volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs), and pesticides have been found on the IR sites. Construction activities associated with Alternative 2b could expose construction workers to the contaminated soil of IR Site 29. Surface and shallow subsurface soil sampling and testing determined that the soil adjacent to the SFOBB bents and columns has been contaminated by metals associated with past bridge maintenance and operations, and also by petroleum hydrocarbons at select locations.

As discussed in Section 3.13, Alternative 2b would also result in construction workers encountering IR Site 8, the former U.S. Army Point Sludge Disposal Area located in the vicinity of the Alternative 2b ramps alignment. Surface and shallow subsurface soil sampling and testing determined that the former sludge drying site is impacted by the presence of materials, especially beryllium and lead as chemicals of concern, as well as the presence of pesticides. Worker and public health issues during construction are a potential concern. Exposure pathways due to heavy construction traffic under dry, dusty conditions would include direct contact through ingestion, dermal contact, or inhalation.

Implementation of this alternative will include the relocation of Quarters 10/Building 267, both historic structures, to construct the alignment of the proposed ramps. Given the age of these buildings, it is expected that relocation could expose workers to hazardous materials such as asbestos and LBP, if this procedure disturbs these materials. However, as of 2002, all known damaged, friable, or accessible ACM has been abated in these buildings; remaining ACM does not pose a threat to human health (U.S. Navy 2008).

All known instances of LBP and ACM at YBI have been abated and removed (U.S. Navy 2008). The measures listed below in Section 3.13.8.2 would be applied to ensure safety from any ACM that may be discovered if the buildings were moved and avoid potential
impacts. Contract specifications for relocation of Quarters 10/Building 267 would include procedures for the abatement, handling, and disposal of LBP and ACM (if this proves necessary during building relocation activity), as well as the health and safety of workers and nearby residents (including USCG and U.S. Navy personnel). Prior to building relocation, ACM and LBP surveys would be performed to identify these materials. All procedures and permitting requirements would be consistent with Caltrans’ guidelines and all Federal, state, and local laws and regulations and coordinated with responsible parties and regulatory agencies. Notices and restrictions related to asbestos were identified in the U.S. Navy’s Finding of Suitability to Transfer (FOST) for YBI dated March 23, 2006, and these restrictions would be complied with during construction and operations.

If surveys identify additional sources of LBP and/or ACM, workers performing activities on-site that may involve contact with contaminated soil, LBP, ACM, or groundwater would be required to have appropriate health and safety training in accordance with Federal and state regulations. To reduce the risk of exposure, a Worker Health and Safety Plan will be prepared and implemented during construction by a Certified Industrial Hygienist (CIH). The Health and Safety Plan would meet requirements of the Bay Area Air Quality Management District for asbestos abatement and will include provisions for:

- Conducting preliminary site investigations and analysis of potential job hazards, including identification and removal of the potential UST;
- Personal protective equipment;
- Safe work practices;
- Site control;
- Exposure monitoring;
- Decontamination procedures; and
- Emergency response actions.

The plan would address reduction of potential worker, U.S. Navy and USCG personnel, and public exposure to airborne contaminants by incorporating dust suppression techniques in construction procedures. Procedures would be in place to handle contaminated soils and groundwater, and if encountered, would follow applicable regulations. As discussed in Section 3.13, construction activities associated with Alternative 4 would result in the same impacts identified for Alternative 2b described above (except for impacts resulting from relocation of Quarters 10/Building 267), given that the ramps alignment proposed for Alternative 4 includes a large part of the area that would be covered by the Alternative 2b alignment. However, given that Alternative 4 would cover additional parts of YBI, exposure by workers to hazardous wastes located elsewhere in the project area could occur if Alternative 4 was implemented.

The SFOBB ESSSP HWA identified a groundwater petroleum plume associated with a LUST at Building 270. According to that report, the extent of the plume was undefined and additional sampling and testing were proposed. Three permanent groundwater
monitoring wells installed at this location indicated that the groundwater table ranges from 1.5 to 1.83 meters (4.9 to 5.9 feet) above mean sea level. Analytical results indicated elevated concentrations of TPH/diesel (160,000 μg/l) and TPH/gasoline (7,300 μg/l) in the upgradient monitoring well. IR Site 11, the former landfill, was identified as a potential source of these contaminants in the upgradient monitoring well.

Construction impacts may also be of concern because the former fire station/gas station site at Building 204/208 appears to be located upgradient from Building 270 where a possible source of groundwater contamination was identified in the groundwater monitoring well. This alternative may result in impacts on workers if construction activity occurs in this area.

The Phase I ISA for the YBI project includes the following findings as a result of ongoing investigations and remediation by the U.S. Navy at these sites:

- The extent of contamination has been delineated but Remedial Investigations (RIs) for IR 8, 11, and 29 are pending as of June 2010.

- Several other military sites are located on the western side of YBI or on TI. The potential for impact to the project site from these other sites appears to be low due to distance.

- The presence of documented soil and groundwater contamination at the three IR sites within the project area constitutes a Recognized Environmental Condition pertaining to the project site.

- IR Site 270, which received a No Further Action letter in 2004, constitutes a Historical Recognized Environmental Condition. No immediate environmental concerns are evident in regard to this former LUST.

The U.S. Navy has determined the extent of contamination, and RIs are under way for IR Sites 8, 11, and 29; the U.S. Navy is in discussions with Caltrans about property transfer. Notices and restrictions related to asbestos were identified in the U.S. Navy’s Finding of Suitability to Transfer (FOST) for YBI dated March 23, 2006, and these restrictions would be complied with during construction and operations.

Impacts related to the use and transport of hazardous materials or the disturbance of hazardous waste sites would be limited to the construction period. Although a release of hazardous materials during the construction period may potentially have long-lasting effects, construction phase BMPs and Phase 1 Hazardous Materials Site Assessment would be implemented to address this potential issue. As described in Section 3.13.8.1, the following measures would be implemented to avoid hazardous waste/materials impacts during construction. Final determination of specific construction activities planned on or near a potential contaminant source would occur for the preferred project alternative. An additional site-specific delineation of any remaining areas of unabated contamination will be performed to finalize details of construction, to detail procedures for handling of contaminated media, and to ensure worker safety during construction. This would include performance of a Phase 1 Hazardous Materials Site Assessment by a qualified professional (e.g., a California Registered Environmental Assessor) in conformance with American Society for Testing and Materials standards. If the Phase I Environmental Site Assessment indicates that a previous release of hazardous materials could have affected soil or groundwater quality at the site, then the SFCTA would retain
a qualified environmental professional to conduct a Phase II Environmental Site Assessment to determine the presence and extent of contamination at the site, in conformance with state and local guidelines and regulations. If the results of a Phase II assessment indicate the presence of hazardous materials, alteration of the project’s design or site remediation would be included in project specifications. The SFCTA also requires that its contractors comply with applicable requirements for worker safety during construction activities in the presence of contaminated soils. Compliance with required laws and regulations through the project design and construction specifications would ensure that potential impacts associated with contaminated soils would be reduced to less-than-significant levels.

4.4.8 Air Quality

4.4.8.1 Temporary Impacts

As discussed in Section 3.14, under the two build alternatives, construction activities would generate emissions of criteria air pollutants and precursors from various sources. The proposed build alternatives would require demolition of existing ramp structures, site grading, construction of the proposed ramps, and asphalt paving for the new roadway surfaces. Demolition and grading activities that include disturbance of existing ramp structures or exposed soil would generate fugitive PM$_{10}$ dust emissions. Heavy-duty off-road construction equipment used for demolition, grading, construction, and asphalt paving would generate exhaust emissions of criteria air pollutants and precursors. Additional exhaust emissions would be generated from material delivery trucks, construction worker vehicles, and, if needed, on-site generators. In addition, the application of asphalt for roads and, if required, the architectural coatings for structures would generate off-gas emissions of ROG.

Because the use of off-road heavy-duty diesel equipment would be temporary in combination with the highly dispersive properties of diesel PM (2002) and further reductions in exhaust emissions from regulatory programs and requirements (e.g., Clean Air Nonroad Diesel Rule and ARB tier standards), project-generated, construction-related emissions of TACs would not expose sensitive receptors to substantial emissions of TACs.

According to A General Location Guide for Ultramafic Rocks in California—Areas More Likely to Contain Naturally Occurring Asbestos (CDC 2000), the project site is not located in an area that is likely to contain naturally occurring asbestos. Thus, hazardous exposure to asbestos-containing serpentine materials would not be a concern with the proposed project.

Certain building structures (on YBI) and the on- and off-ramp structures could potentially include ACM that would be disturbed and emitted into the atmosphere during construction of the proposed project. As discussed in Chapter 3.13, Hazardous Waste/Materials, the 2008 Site Management Plan has abated all known ACM on the YBI and TI areas, including Quarters 10 and Building 267, which would be relocated as part of Alternative 2b. Therefore, the proposed project would not expose any receptors or workers to naturally occurring or structural asbestos. Impacts would be less than significant.

Construction of the new ramps may generate odors associated with exhaust emissions from heavy-duty diesel construction equipment; however, these sources would be
intermittent and temporary in nature. Therefore, temporary construction activities are not anticipated to cause a significant source of odiferous compounds.

Construction activities under the two build alternatives would generate emissions of criteria air pollutants and precursors from various sources. As described in Section 3.14.5, potential impacts during construction activities would be avoided by implementing control measures recommended by the BAAQMD to minimize the generation of PM$_{10}$ dust emissions. In addition, the contractor would be required to implement these “Basic Control Measures” during all construction activities. The abatement measures listed in the Yerba Buena Island Ramps Improvement Project Air Quality Analysis (Appendix L) are also required to be implemented during construction activities. In addition, the project site is approximately 1.62 hectares (4 acres); therefore, according to the BAAQMD CEQA Guidelines, the contractor is required to implement the BAAQMD’s “Enhanced Control Measures.”

The following “Basic Control Measures” are required for all construction activities:

- Water all active construction areas at least twice daily.
- Cover all trucks hauling soil, sand, and other loose materials or require all trucks to maintain at least 61 centimeters (24 inches) of freeboard.
- Pave, apply water three times daily, or apply (nontoxic) soil stabilizers on all unpaved access roads, parking areas, and staging areas at construction sites.
- Sweep daily (with water sweepers) all paved access roads, parking areas, and staging areas at construction sites.
- Sweep streets daily (with water sweepers) if visible soil material is carried onto adjacent public streets.

These additional “Enhanced Control Measures” should be implemented if the project site would exceed 1.62 hectares (4 acres):

- Include all “Basic” control measures listed above.
- Hydroseed or apply (nontoxic) soil stabilizers to inactive construction areas (previously graded areas inactive for 10 days or more).
- Enclose, cover, water twice daily, or apply (nontoxic) soil binders to exposed stockpiles (dirt, sand, etc.)
- Limit traffic speeds on unpaved roads to 24 kilometers (14.9 miles) per hour.
- Install sandbags or other erosion control measures to prevent silt runoff to public roadways.
- Replant vegetation in disturbed areas as quickly as possible.

Implementation of these minimization measures would ensure that potential air quality impacts associated with construction would be less-than-significant.
4.4.8.2 Permanent Impacts

A project’s regional air quality impacts would be significant if the proposed project is not included in the most recent RTP and RTIP. As discussed in the Yerba Buena Island Ramps Improvement Project Air Quality Analysis (Appendix L), the proposed project is included in the 2035 RTP, which was found to meet the transportation conformity provisions of the national CAA by MTC on April 22, 2009. The project is also included in MTC’s financially constrained 2009 TIP, which was found to conform to the CAA requirements by FHWA and FTA on November 17, 2008.

As discussed in Section 3.14, a qualitative analysis for a potential CO hot spot as a result of the proposed project was performed using the Transportation Project-Level Carbon Monoxide Protocol (ITS 1997). The analysis determined that the proposed project would not generate additional vehicle trips that would increase CO concentrations at local intersections.

The proposed project would replace the YBI on- and off-ramps, which do not have and are not expected to have an AADT over 125,000 during current and future conditions. In addition, the proposed project would not increase the percentage of diesel truck traffic traveling along the ramps. The project would also not involve any bus or rail terminals, and transfer points. Therefore, the project does not meet the requirements of a POAQC. Furthermore, as determined in the MTC’s Air Quality Conformity Task Force interagency consultation the project is not a POAQC.

The proposed project is located in an attainment area for the PM$_{10}$ and a nonattainment area for the PM$_{2.5}$ NAAQS. With respect to the CAAQSs, the SFBAAB is designated as a nonattainment area for PM$_{10}$ and PM$_{2.5}$. Based on screening using USEPA PM Guidance, the proposed project is not a POAQC because it does not meet the criteria described above. The proposed project is therefore in conformance for the PM$_{10}$ and PM$_{2.5}$ NAAQS and is unlikely to increase the frequency or severity of any existing exceedance regarding the nonattainment of state PM$_{10}$ and PM$_{2.5}$ standards.

The build alternatives are not expected to result in a substantial increase in MSAT emissions because the new ramps would not generate additional vehicle trips, result in increased VMT, or change the types of vehicles using the YBI on- and off-ramps. A localized increase in MSAT emissions may occur where vehicles queue at the metering light on the YBI on-ramp. However, this increase would be nominal and partially offset by the reduction in the level of congestion experienced by traffic traveling on the segment of the SFOBB between the on- and off-ramps. Furthermore, the potential, localized increase in MSAT concentrations near the metering light would not likely result in increased concentrations of MSAT emissions at the nearest sensitive receptor, the residential unit that is located approximately 198 meters (649.6 feet) away from the proposed on-ramp location. Therefore, all the proposed alternatives would be considered to have low potential MSAT effects.

The proposed project does not include any land uses that would generate offensive odors. In addition, the new ramps would not encourage heavy-duty diesel truck traffic that could potentially be a permanent source of odors. Therefore, it is not anticipated that the proposed project would generate or cause an increase in odiferous compounds in the project area. Impacts would be less than significant.
4.4.9 Noise

As described in Section 3.15, the primary result of noise level increase would from increased traffic volumes that would occur between the present time and 2035. However, some noise level increases would be a result of the proposed ramps under each build alternative. The maximum increase associated with the either build alternative would be 2 dBA Leq, which is below the CEQA threshold of 3 to 5 dBA above the existing ambient level for a substantial increase. Thus, the build alternatives would not result in a substantial increase. Construction noise may be heard at nearby sensitive receivers and may cause occasional speech disruption, principally during times of pavement breaking or use of impact equipment. As described in Section 3.15.4.2, potential impacts during construction activities would be avoided by implementing construction noise abatement required by Caltrans’ Standard Specification 14-8.02, “Noise Control”. Thus, construction-related noise would not be considered adverse. Noise impacts would, therefore, be less than significant.

4.4.10 Biological Resources

4.4.10.1 Natural Communities

Within the BSA, a narrow 0.18 hectare (0.44 acre) strip of northern foredune vegetation occurs along the northwestern portion of the site. In addition there is an approximately 4.6-meter-wide (15-foot-wide) patch of invasive, non-native Spartina alterniflora hybrid on the northeastern portion of the site, north of the bridge. This species is more typical of northern coastal salt marsh but its invasive nature warrants mention here. The patch was treated with herbicide by the Invasive Spartina Project in September 2008 (Hogle 2008). Wave action in the BSA appears to be too strong to allow substantial northern coastal salt marsh vegetation to develop.

Within the BSA, an approximate 0.01 hectare (0.028 acre) patch of central coast riparian scrub occurs at the southern end of the northern foredune community where a culvert empties into the bay. A patch of vegetation referred to as riparian scrub was also noted in this area in the Transfer and Reuse of Naval Station Treasure Island FEIR (San Francisco Planning Department 2006). The sole species occurring in the BSA is arroyo willow (Salix lasiolepis). This species generally indicates the presence of freshwater. On-site, central coast riparian scrub conforms to the arroyo willow series as described in Sawyer and Keeler-Wolf (1995) and palustrine shrub-scrub wetland following Cowardin et al. (1979).

Permanent project features would entirely avoid the northern foredune and central coast riparian scrub vegetation on-site. Temporary staging and construction access would occur directly adjacent to its location. Potential impacts during construction activities would be avoided by placement of ESA exclusion fencing 3 meters (10 feet) from the perimeter of these communities. Contractor education would be conducted, bright-colored ESA fencing and signage shall be implemented, and a construction monitor shall confirm the fence integrity on a daily basis to protect the area from accidental equipment damage. If necessary, fence repair and/or reinforcements shall be completed immediately. Impacts to natural communities would be less than significant.
4.4.10.2 Wetlands and Other Waters

No evidence of wetlands was found in the BSA. For both Alternatives 2b and 4, the potential Federal or state jurisdictional waters on-site consist solely of unvegetated waters flowing in concrete or roadside swales (Figure 3.17-2). Nearly all of these unvegetated waters demonstrate a direct connection to the Bay through culvert outlets on the shoreline. Due to the steep gradient, only the outer few feet of these waters, where they empty into the Bay, are below mean high tide (approximately 1.5 meters [5 feet] in elevation) and are tidally influenced. The mean high tide water level corresponds to Federally jurisdictional tidal waters of the Bay (Figure 3.17-2). The southeast edge of the BSA boundary runs at or slightly above the mean high tide line. On the northern edge of the BSA the boundary is well above the mean high tide line. As indicated in Table 4.4-1 Jurisdictional Waters below there is a total of 1,852 square feet (0.04 acre) of unvegetated waters within the BSA which may be regulated by the USACE and RWQCB under the CWA. BCDC jurisdiction includes waters of the Bay and extends 30.5 meters (100 feet) onto the shore from the mean high tide line encompassing any aquatic habitats as well as uplands. The downstream portions of unvegetated waters within 30.5 meters (100 feet) of the mean high tide line, which includes the segments under tidal influence, are under the jurisdiction of BCDC, along with the entire shoreline (Figure 3.17-2). Of the total 1,852 square feet (0.04 acres) of unvegetated waters within the BSA, 386 square feet (0.01 acres) may also be regulated by the BCDC as indicated in Table 4.4-2 BCDC Jurisdiction, approximately 191,228.4 square feet (4.39 total acres) (primarily uplands) falling under BCDC jurisdiction are located within the BSA. There would be no temporary or permanent impacts to tidal waters under either alternative. There would be no permanent impacts to Federal and state jurisdictional unvegetated waters under either project alternative. Approximately 0.01 acre (586 square feet) of non-jurisdictional unvegetated waters would be temporarily disturbed during project construction where they coincide with potential staging and access areas for both alternatives (Figures 3.17-3 and 3.17-4). Unvegetated waters that will be subject to temporary disturbance do not fall within 30.5 meters (100 feet) of the mean high tide line and are entirely outside the jurisdiction of the BCDC (Figures 3.17-3 and 3.17-4, and Table 3.17-1). These drainages are concrete-lined and convey storm water runoff; therefore, they have minimal value as aquatic habitat. These features would be restored to their current condition after construction staging is complete. Both project alternatives would be elevated above these features; therefore, post-construction impacts are not expected. The outer 30.5 meters (100 feet) of these drainages is under the jurisdiction of BCDC; however no temporary or permanent construction impacts are anticipated to these drainages within BCDC jurisdiction.

The remaining lands within 30.5 meters (100 feet) of the mean high tide that will be permanently or temporarily affected are considered uplands. Under Alternative 2b there will be no permanent impacts or temporary disturbance to lands falling under the purview of BCDC. Alternative 4 will involve permanent impacts to 0.25 acres and temporary disturbance to lands totaling 0.36 acres which fall under the purview of BCDC. Temporarily disturbed habitats will be restored to their natural condition after completion of the project.
Table 4–1: Jurisdictional Waters

<table>
<thead>
<tr>
<th>Potential Jurisdictional Agency</th>
<th>Jurisdictional Feature</th>
<th>Total Within Study Area square feet (acres)</th>
<th>Not Impacted square feet (acres)</th>
<th>Temporary Impacts square feet (acres)</th>
<th>Permanent Impacts square feet (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RWQCB and CDFG (Waters of the State)</td>
<td>Unvegetated Waters</td>
<td>1,742.4 (0.04)</td>
<td>2b – 1,742.4 (0.04)</td>
<td>4- 1,742.4 (0.04)</td>
<td>2b – 0</td>
</tr>
<tr>
<td>USACE (Waters of the US)</td>
<td>Unvegetated Waters</td>
<td>1,742.4 (0.04)</td>
<td>2b – 1,742.4 (0.04)</td>
<td>4- 1,742.4 (0.04)</td>
<td>2b – 0</td>
</tr>
</tbody>
</table>

Table 4–2: BCDC Jurisdiction

<table>
<thead>
<tr>
<th>Jurisdictional Agency</th>
<th>Jurisdictional Area</th>
<th>Total Within Study Area</th>
<th>Not Impacted</th>
<th>Temporary Impacts¹</th>
<th>Permanent Impacts¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCDC</td>
<td>Within 100 feet of Mean High Tide</td>
<td>4.39 acres</td>
<td>2b-4.38 acres 4-4.03 acres</td>
<td>2b-0.0 acres 4-0.36 acres</td>
<td>2b-0 acres 4-0.25 acres</td>
</tr>
</tbody>
</table>

¹Lands affected by project alternatives falling within BCDC jurisdiction are considered uplands.

Unvegetated waters on-site consist of concrete-lined drainages adjacent to roadways. Some of these features fall under the jurisdiction of USACE, CDFG, and RWQCB. Based on a preliminary review of photos and the jurisdictional determination map the USACE indicated via e-mail correspondence on January 4th, 2011, that several of the unvegetated waters features appear to have been constructed in uplands, drain only uplands, and are therefore not jurisdictional. USACE stated that the remaining features (Location ID's 1, 2, 4, 5, and 6), based on their position in the landscape (topography), would indicate that they are natural ephemeral drainages, although some of them have been armored with concrete or filled with debris over the years. Only 586 square feet (0.01 acre) of non-jurisdictional features will be disturbed by temporary construction activities. Therefore notifications or permits are not anticipated (e.g., 404 CWA permit from USACE and 401 Certification from RWQCB). These unvegetated non-jurisdictional features would be restored at a 1:1 ratio on-site post-construction; therefore, compensatory measures are not anticipated.

As described in Section 3.17.2.4, potential impacts to the tidal waters of the Bay would be avoided by temporary construction features and permanent project features. Tidal waters would not be affected by temporary construction activities due to implementation of standard construction BMPs to treat and minimize discharge of dredged or fill material into the Bay (Figures 3.17-3 and 3.17-4). Existing SFOBB project staging areas that are present within the BSA would be largely utilized for project-related construction staging and access. Standard construction BMPs, including placement of straw wattles or silt fencing along the boundary of the project area, would be implemented according to an erosion control plan, which would be prepared to avoid discharge into the waters of the Bay (and the related aquatic environment that provides habitat, nesting, feeding, and refuge for shorebirds) during staging and construction of the ramps. Catch basin inlet protection and installation of straw wattles (fiber rolls) would be implemented throughout the project site during construction to protect the aquatic environment from discharge...
that could include dredged or fill material. Other construction BMPs for limiting hydrological interruption of potential Federal or state jurisdictional waters that would be reviewed and coordinated with the RWQCB and BCDC for implementation during work near the Bay waters are included in the Water Quality discussion.

Implementation of standard construction BMPs and compliance with required laws and regulations would ensure that potential impacts associated with wetlands and other waters would be reduced to less-than-significant levels.

4.4.10.3 Plant Species

STINGING PHACELIA AND LARGE-FLOWERED SAND-SPURREY

Based upon initial field surveys and review of the above-listed documents the 10 species identified below have a low to moderate potential to occur on-site based on habitat availability and were included in focused botanical surveys conducted during spring and summer 2009 during the appropriate blooming periods (Figure 3.17-5). During focused botanical surveys, two of these species were observed in the BSA, stinging phacelia (*Phacelia malvifolia*) and large-flowered sand-spurrey (*Spergularia macrotheca var. macrotheca*). Survey methods and results are discussed in more detail in the botanical survey report (Natural Environment Study: YBI Ramps Improvement Project, 2011b, Appendix N). The remaining target species were not found during focused surveys and are therefore presumed absent from the site.

Both project alternatives could cause temporary and permanent impacts to areas with stinging phacelia (Figures 3.17-6 and 3.17-7). However, the area of permanent and temporary impact under either alternative is less than 1% (0.9%) of the overall on-site population. The total area of potential impact to stinging phacelia is provided below for each alternative:

- **Alternative 2b**
 - 11 square meters (113 square feet) permanent, 20 square meters (215 square feet) temporary
- **Alternative 4**
 - 20 square meters (215 square feet) permanent, 11 square meters (113 square feet) temporary

As described in Section 3.17.3.4, potential impacts during construction activities would be avoided by placement of exclusion fencing 3 meters (10 feet) from the perimeter of the stinging phacelia stands outside the temporary and permanent impact area. The permanent and temporary impacts associated with Alternative 2b and Alternative 4 will avoid more than 99% of the population occurring on site (Figures 3.17-6 and 3.17-7). Contractor education would be conducted, bright-colored ESA fencing and signage would be implemented, and a construction monitor shall confirm the fence integrity on a daily basis to protect the area from accidental equipment damage. Fence repair and/or reinforcements would be completed immediately. However, the project alternatives could cause permanent impacts to areas with stinging phacelia during construction as described above.
Chapter 4 – CEQA Evaluation

The extent of occupied habitat on YBI overall is unknown, although the island is characterized by approximately 53 acres of potential habitat. Temporary and permanent project impacts under either alternative (Alternative 2b=2.797 acres; Alternative 4=3.075 acres) encompass approximately 5% of the total potential stinging phacelia habitat area (mixed broadleaf conifer and eucalyptus woodland forest) on YBI. As described in Section 2.2.4, stinging phacelia shall be replaced at a minimum 1:1 ratio as part of the woodland revegetation plan and further described in Section 4.7.1.1. Impacts to stinging phacelia would be minimized with replacement planting of the plant and its woodland habitat.

Large-flowered sand-spurrey was observed during botanical surveys on 7 square meters (79 square feet). The plants are located outside of the proposed temporary and permanent impact areas for both Alternative 2b and Alternative 4 (Figures 3.17-6 and 3.17-7). They are, however, located within 30.5 meters (100 feet) of the temporary disturbance areas and there is potential for incidental impacts during construction. As described in Section 3.17.3.4, large flowered sand-spurrey would be avoided to the extent feasible and protected during construction. Potential impacts during construction activities would be avoided by placement of exclusion fencing 3 meters (10 feet) from the perimeter of the large flowered sand-spurrey stand outside the temporary and permanent impact area. Contractor education would be conducted, bright-colored ESA fencing and signage shall be implemented, and a construction monitor shall confirm the fence integrity on a daily basis to protect the area from accidental equipment damage. Fence repair and/or reinforcements shall be completed immediately. Loss of individuals is not anticipated.

4.4.10.4 Animal Species

MONARCH BUTTERFLY AND SAN FRANCISCO LACEWING

Both build alternatives would have potential temporary and permanent impacts to eucalyptus woodland and mixed broadleaf conifer forest (Figures 3.17-3 and 3.17-4), which provide potential habitat for monarch butterfly and San Francisco lacewing. The total area of potential impact to this habitat is limited for each alternative:

- Alternative 2b
 - eucalyptus woodland = 0.10 hectare (0.25 acre) permanent, 0.36 hectare (0.90 acre) temporary
 - mixed broadleaf conifer forest = 0.28 hectare (0.70 acre) permanent, 0.38 hectare (0.95 acre) temporary

- Alternative 4
 - eucalyptus woodland = 0.08 hectare (0.19 acre) permanent, 0.50 hectare (1.24 acres) temporary
 - mixed broadleaf conifer forest = 0.13 hectare (0.32 acre) permanent, 0.53 hectare (1.32 acres) temporary

As described in Section 3.17.4.4, prior to the onset of construction activities, a qualified biologist would conduct focused surveys for monarch butterfly to determine presence or
absence within the proposed project areas. If monarch butterfly winter roost sites are determined to be present during focused surveys, occupied habitat would be avoided to the extent feasible, or it would only be disturbed outside of the winter roost season, which is typically from September through March. ESA exclusion fencing would be placed around avoided habitats and contractor education would be conducted to prevent encroachment of construction activities. Bright-colored ESA fencing and signage would be implemented and a construction monitor would confirm the fence integrity on a daily basis to protect the area from accidental equipment damage. Fence repair and/or reinforcements would be completed immediately. If a new roost site is discovered during construction, the biological monitor would be contacted to implement avoidance procedures before construction resumes in the area. Removal of eucalyptus woodland and mixed broadleaf conifer forest habitat that may provide habitat for monarch butterfly will be offset by implementation of the woodland habitat revegetation plan as described in Section 4.7.2.1. Trees removed will be replaced, providing potential habitat that may benefit the species longer term. Compensatory measures are not proposed.

As described in Section 3.17.4.4, prior to the onset of construction activities, a qualified biologist would conduct focused surveys for San Francisco lacewing to determine presence or absence within the proposed project areas. If any individuals are determined to be present during focused surveys, occupied habitat would be avoided to the extent feasible. ESA exclusion fencing would be placed around avoided habitats and contractor education would be conducted to prevent encroachment of construction activities. Bright-colored ESA fencing and signage would be implemented and a construction monitor would confirm the fence integrity on a daily basis to protect the area from accidental equipment damage. Fence repair and/or reinforcements would be completed immediately. If the species is discovered during construction, the biological monitor would be contacted to implement avoidance procedures before construction resumes in the area. Removal of eucalyptus woodland and mixed broadleaf conifer forest habitat that may provide habitat for San Francisco lacewing will be offset by implementation of the woodland habitat revegetation plan as described in Section 4.7.2.1. Trees removed will be replaced, providing potential habitat that may benefit the species longer term. Compensatory measures are not proposed.

GUMMIFERA LEAF-CUTTER BEE

Both build alternatives would have potential temporary and permanent impacts to landscaped/disturbed areas (Figures 13.7-3 and 13.7-4), which may provide potential habitat for gummifera leaf-cutter bee, including rosebushes. The total area of potential impact to this habitat is limited for each alternative:

- Alternative 2b
 - landscaped/disturbed = 0.04 hectare (0.09 acre) permanent, 0.09 hectare (0.23 acre) temporary

- Alternative 4
 - landscaped/disturbed = 0.07 hectare (0.18 acre) permanent, 0.06 hectare (0.14 acre) temporary

As described in Section 3.17.4.4, prior to the onset of construction activities, a qualified biologist would conduct focused surveys for gummifera leaf-cutter bee to determine
presence or absence within the proposed project areas. If any gummifera leaf-cutter bees are determined to be present during focused surveys, occupied habitat would be avoided to the extent feasible. ESA exclusion fencing would be placed around avoided habitats and contractor education would be conducted to prevent encroachment of construction activities. Bright-colored ESA fencing and signage would be implemented and a construction monitor would confirm the fence integrity on a daily basis to protect the area from accidental equipment damage. Fence repair and/or reinforcements would be completed immediately. If the species is discovered during construction, the biological monitor would be contacted to implement avoidance procedures before construction resumes in the area. Removal of vegetation that may provide habitat for the gummifera leaf-cutter bee will be offset by implementation of the revegetation plan as described in Section 4.7.1.2. Vegetation removed, including non-native trees, will be replaced, providing potential habitat that may benefit the species longer term if it occurs in the area. Compensatory measures are not proposed.

RAPTORS (COOPER’S HAWK, GOLDEN EAGLE, WHITE-TAILED KIT, AND OTHER NESTING RAPTORS) AND NONRAPTORS (SHOREBIRDS, MARSHBIRDS, AND WATERBIRDS)

Both build alternatives would have potential temporary and permanent impacts to eucalyptus woodland and mixed broadleaf conifer forest. Project construction activities have the potential to disturb Cooper’s hawks, golden eagles, white-tailed kites, and wading bird species that nest in mature woodlands, such as egrets and herons that attempt nesting within the project area and those that may be nesting adjacent to the site. The total area of potential impact to woodland and forest habitat is limited for each alternative:

- **Alternative 2b**
 - woodland and forest habitat = 0.38 hectare (0.95 acre) permanent, 0.75 hectare (1.85 acres) temporary

- **Alternative 4**
 - woodland and forest habitat = 0.21 hectare (0.51 acre) permanent, 1.04 hectares (2.56 acres) temporary

As described in Section 3.17.4.4, Cooper’s hawks, golden eagle, white-tailed kite, and common raptor species such as red-tailed hawk have the potential to nest within habitats on-site. Any removal of trees, buildings, or other structures, or construction activities within the vicinity of active raptor nests could result in nest abandonment, nest failure, or premature fledging. Destruction or disturbance of active nests would be in violation of the MBTA and Fish and Game Code. Therefore, the following measures would be implemented to avoid project-related impacts to potentially nesting raptors in coordination with CDFG:

1. To the extent feasible, potential nest trees will be avoided.

2. To the extent feasible, the necessary removal of any trees or structures would occur from September 1 through December 15, outside the breeding season. If removal of trees or structures occurs, or construction begins between December 15 and August 31 (the nesting season), a nesting bird survey would be performed by a qualified biologist within 15 days prior to the removal of potential
nests or structures, or prior to disturbance of areas in the vicinity of potential nest sites.

3. All trees or structures with active nests would be flagged and a nondisturbance buffer zone established around the nest site in coordination with CDFG. Additionally, if any nests are found on the bridge or other structures within the project area or within 152.4 meters (500 feet) of the project area boundary, these nests shall be flagged and a nondisturbance buffer zone established. Buffer zones typically range between 61 and 152.4 meters (200 and 500 feet) depending on the species involved, site conditions, nesting stage, and type of work in proximity. Contractor education would be conducted for nesting bird avoidance. Observations would be conducted by a qualified biologist to confirm that work occurring outside of the buffer zone is not disturbing nesting pairs. If necessary, buffer zones would be adjusted to reduce distress to birds.

4. Active nests would be regularly monitored by a qualified biologist in coordination with CDFG to determine when the young have fledged and are feeding on their own. CDFG would be consulted for clearance before construction activities resume within the buffer zone. CDFG will be notified if any nest is disturbed.

5. ESA exclusion fencing would be placed around avoided habitats and contractor education would be conducted to prevent encroachment of construction activities. Bright-colored ESA fencing and signage would be implemented and a construction monitor would confirm the fence integrity on a daily basis to protect the area from accidental equipment damage. Fence repair and/or reinforcements would be completed immediately. If a new nest site is discovered during construction, the biological monitor would be contacted to implement avoidance procedures, in coordination with CDFG, before construction resumes in the area.

Temporarily disturbed woodland and forested areas will be restored after completion of construction activities. Removal of eucalyptus woodland and mixed broadleaf conifer forest habitat that may provide nest sites for Cooper’s hawks, golden eagles, and white-tailed kites will be offset by implementation of the woodland habitat revegetation plan as described in Section 4.7.1.2. Trees removed will be replaced with natives to the island. Compensatory measures are not proposed.

As described in Section 3.17.4.4, suitable nesting and foraging habitat is present on-site for several species of wading birds, including snowy egret, great blue heron, great egret, and black-crowned night-heron. Therefore, the following measures would be implemented to avoid project-related impacts to potentially nesting birds, in coordination with CDFG:

1. The removal of any structures, trees, or shrubs would occur from September 1 through February 1, outside the breeding season. If removal of trees or shrubs occurs, or construction begins between February 1 and August 31 (the nesting season), a nesting bird survey would be performed by a qualified biologist within 15 days prior to the removal of potential nesting structures, trees, or shrubs, or prior to disturbance of areas in the vicinity of potential nest sites, i.e., trees and shrubs.

2. All active nests would be flagged and a nondisturbance buffer zone established around the nesting tree in coordination with the CDFG. Buffer zones for wading
birds typically range between 30.5 and 61 meters (100 and 200 feet) depending on the species involved, site conditions, and type of work proposed in the vicinity. Contractor education would be conducted for nesting birds, including a discussion of avoidance and protection measures.

3. Active nests would be monitored by a qualified biologist in coordination with CDFG to determine when the young have fledged and are feeding on their own. The project biologist would be consulted for clearance before construction activities resume in the vicinity.

4. ESA exclusion fencing would be placed around avoided habitats and contractor education would be conducted to prevent encroachment of construction activities. Bright-colored ESA fencing and signage would be implemented and a construction monitor would confirm the fence integrity on a daily basis to protect the area from accidental equipment damage. Fence repair and/or reinforcements would be completed immediately. If a new nest or roost site is discovered during construction, the biological monitor would be contacted to implement avoidance procedures in coordination with CDFG before construction resumes in the area.

Temporarily disturbed woodland and forested areas will be restored after completion of construction activities. Removal of eucalyptus woodland and mixed broadleaf conifer forest habitat that may provide nest sites for wading birds will be offset by implementation of the woodland habitat revegetation plan as described in Section 4.7.1.2. Trees removed will be replaced, with natives to the island. Compensatory measures are not proposed.

Passerine and Nonpasserine Landbirds

Both build alternatives would have potential temporary and permanent impacts to potential landbird nesting habitat, including central coast riparian scrub, eucalyptus woodland, landscaped/disturbed, mixed broadleaf conifer forest, non-native scrub/shrubland, northern foredune, and ruderal/disturbed habitat:

- **Alternative 2b**
 - central coast riparian scrub, eucalyptus woodland, landscaped/disturbed, mixed broadleaf conifer forest, non-native scrub/shrubland, and ruderal/disturbed = 0.43 hectare (1.07 acres) permanent, 1.17 hectares (2.88 acres) temporary

- **Alternative 4**
 - central coast riparian scrub, eucalyptus woodland, landscaped/disturbed, mixed broadleaf conifer forest, non-native scrub/shrubland, and ruderal/disturbed = 0.36 hectare (0.89 acre) permanent, 1.32 hectares (3.27 acres) temporary

As described under Avoidance, Minimization, and Mitigation Measures in Section 3.17.4.4, several special-status and common passerine and nonpasserine landbirds, listed above, have at least some potential to nest and forage on-site. Any removal of structures, trees, or shrubs, or construction activities in the vicinity of active nests could result in nest abandonment, nest failure, or premature fledging. Destruction or
disturbance of active nests would be in violation of the MBTA and Fish and Game Code. Therefore, the following measures would be implemented to avoid project-related impacts to potentially nesting passerine and nonpasserine landbirds, in coordination with CDFG:

1. The removal of any structures, trees, or shrubs would occur from September 1 through February 1, outside the passerine and nonpasserine landbird breeding season. If removal of trees or shrubs occurs, or construction begins between February 1 and August 31 (the nesting season), a nesting bird survey would be performed by a qualified biologist within 15 days prior to the removal of potential nesting structures, trees, or shrubs, or prior to disturbance of areas in the vicinity of potential nest sites, i.e., trees and shrubs.

2. All active nests would be flagged and a nondisturbance buffer zone established around the nesting tree (or other nesting substrate) in coordination with the CDFG. Buffer zones for passerines and nonpasserine land birds typically range between 15.2 to 27.4 meters (50 and 90 feet), depending on the species involved, site conditions, and type of work proposed in the vicinity. Contractor education would be conducted for nesting birds, including a discussion of avoidance and protection measures.

3. Active nests would be monitored by a qualified biologist in coordination with CDFG to determine when the young have fledged and are feeding on their own. The project biologist would be consulted for clearance before construction activities resume in the vicinity.

4. If a new nest site is discovered during construction, the biological monitor would be contacted to implement avoidance procedures, in coordination with CDFG, before construction resumes in the area.

Impacts to potential landbird nesting habitat is not anticipated.

DOUBLE-CRESTED CORMORANT

Additionally, construction activities along the eastern border of the BSA could potentially temporarily disturb roosting cormorants, if construction activities move outside of the construction envelope. As described in Section 3.17.4.4, Double-crested cormorants have potential to nest and forage on-site. Construction activities on or adjacent to the existing bridge structure or the eastern border of the BSA could potentially disturb cormorants. Therefore, the following measures are recommended to avoid project-related impacts to double-crested cormorants, in coordination with CDFG:

1. Throughout project construction, monitoring of the potential cormorant nest sites on the existing SFOBB would be continued following the methodology outlined in the Final Revised Bird Monitoring and Management Plan (LSA 2003).

2. If construction activities begin between February 1 and August 31 (the nesting season), a nesting bird survey of the on-site bridge structure would be performed by a qualified biologist within 15 days prior to onset of construction to ensure that no cormorants have begun to nest in the structure or within 61 meters (200 feet) of the project disturbance footprint.
3. All active nests would be flagged or mapped and a nondisturbance buffer zone established around the nest in coordination with the CDFG. Buffer zones typically range between 30.5 and 61 meters (100 to 200 feet) for wading and waterbirds depending on the species involved, site conditions, and type of work proposed.

4. Active nests would be monitored by a qualified biologist in coordination with CDFG to determine when the young have fledged and are feeding on their own. CDFG would be consulted for clearance before construction activities resume.

5. Exclusion fencing would be placed around the construction footprint to prevent construction equipment for entering areas where the cormorants may roost. A construction monitor would confirm the fence integrity on a daily basis to protect the area from accidental equipment damage. Fence repair and/or reinforcements would be completed immediately.

6. If a new roost or nest site is discovered during construction, the biological monitor would be contacted to implement avoidance procedures in coordination with CDFG before construction resumes in the area.

Impacts to Double-crested cormorants are not anticipated.

AMERICAN PEREGRINE FALCON

Project construction activities have the potential to disturb peregrine falcons that attempt nesting within the project area and those that may be nesting adjacent to the site. Construction-related noise and vibration could potentially impact the success of nests that are within line of sight or near enough to disturb the normal activities of the adult birds.

As described in Section 3.17.4.4, peregrine falcons have the potential to nest in proximity to the BSA and have a high potential to use the BSA for foraging. Construction activities within the vicinity of active raptor nests could result in nest abandonment, nest failure, or premature fledging. Destruction or disturbance of active nests would be in violation of the MBTA and Fish and Game Code. In addition, peregrines are protected under the CESA. Therefore, the following measures would be implemented to avoid project-related impacts to potentially nesting peregrine falcons:

1. Throughout project construction, monitoring of the potential peregrine falcon nest sites on the columns of the existing SFOBB would be continued following the methodology outlined in the Final Revised Bird Monitoring and Management Plan (LSA 2003).

2. If removal of structures occurs, or construction begins between December 15 and August 31 (the nesting season), a nesting bird survey would be performed by a qualified biologist within 15 days prior to the removal of potential nesting structures, or prior to disturbance of areas in the vicinity of potential nest sites.

3. If an active peregrine falcon nest is discovered on the bridge or other structures within the project area or within 457.2 meters (1,500 feet) of the project area boundary, a nondisturbance buffer zone would be established in coordination with CDFG as necessary. Contractor education would be conducted by a qualified biologist for nesting bird avoidance. Observations would be conducted.
4. The CDFG would be consulted for clearance before construction activities resume within the buffer zone.

5. ESA exclusion fencing would be placed around avoided habitats and contractor education would be conducted to prevent encroachment of construction activities. Bright-colored ESA fencing and signage would be implemented and a construction monitor would confirm the fence integrity on a daily basis to protect the area from accidental equipment damage. Fence repair and/or reinforcements would be completed immediately. If a new nest site is discovered during construction, the biological monitor would be contacted to implement avoidance procedures in coordination with CDFG before construction resumes in the area.

Impacts to peregrine falcons are not anticipated.

CALIFORNIA BROWN PELICAN

California brown pelican has the potential to occur within the BSA and roost on piers and the sandy shoreline just outside the temporary and permanent project construction areas. Temporary disturbance to roosting pelicans could occur if construction activities encroach upon occupied roosting habitat. As described in Section 3.17.4.4, the following measures would be implemented to avoid project-related impacts to California brown pelican:

Exclusion fencing would be placed around the construction footprint to prevent construction equipment from entering areas where the pelicans may roost. Contractor education would be conducted, including a discussion of avoidance and protection measures. A construction monitor would confirm the fence integrity on a daily basis to protect the area from accidental equipment damage. Fence repair and/or reinforcements would be completed immediately. If a new roost site is discovered during construction, the biological monitor would be contacted to implement avoidance procedures in coordination with CDFG before construction resumes in the area. Compensatory measures are not proposed due to the lack of permanent impacts.

No permanent impacts to potential roosting areas are anticipated as the project construction footprint would avoid the piers in the Bay and the shoreline including the northern foredune community. Therefore impacts to the California brown pelican are not anticipated.

TERRESTRIAL MAMMALS

San Francisco Dusky Footed Woodrat

Project construction activities have the potential to directly affect woodrats if they occur within the project area and indirectly disturb those that may be utilizing woodlands and/or forests adjacent to the site. Both build alternatives would have potential temporary and permanent impacts to eucalyptus woodland and mixed broadleaf conifer forest that provide potential habitat. Removal of vegetation would result in a loss of potential foraging and nesting habitat:
As described in Section 3.17.4.4, a preconstruction survey for San Francisco dusky-footed woodrat and associated woodrat houses would be performed by a qualified biologist within 30 days prior to any removal of trees or other vegetation on the site and within 30.5 meters (100 feet) of planned construction activities. If no active houses are found, then no further action would be proposed. If active woodrat houses are found in or below trees and vegetation that would be removed or temporarily disturbed as part of project construction, the project would be redesigned to avoid the loss of the occupied habitat and disturbance to woodrats to the extent feasible. If the project cannot be redesigned to avoid removal of the occupied habitat, the woodrat house may be relocated to a suitable location as close to the original house as possible while maintaining an adequate buffer of construction activities in coordination with CDFG. Animal exclusion fencing would be placed around the construction area, to prevent woodrat ingress, and contractor education would be conducted. A construction monitor would confirm the fence integrity on a daily basis to protect the area from accidental equipment damage. Fence repair and/or reinforcements would be completed immediately. If a new nest site is discovered during construction, the biological monitor would be contacted to implement avoidance procedures in coordination with CDFG before construction resumes in the area.

If San Francisco dusky-footed woodrat houses are found within portions of the project that require permanent or temporary disturbance or if occupied habitat is accidentally damaged during construction, habitat shall be replaced at a 1:1 ratio and further described in Section 4.7.1.2. Impacts to San Francisco dusky-footed woodrat would be minimized with replacement planting.

Special-Status Bats

Project construction activities have the potential to directly affect bats roosting within the project area and indirectly disturb those that may be roosting adjacent to the site. Both build alternatives would have potential temporary and permanent impacts to eucalyptus woodland and mixed broadleaf conifer forest that provide potential roost sites. Removal of trees would result in a loss of potential bat roosting habitat:

- Alternative 2b
 - woodland and forest habitat = 0.38 hectares (0.95 acres) permanent, 0.75 hectare (1.85 acres) temporary. Alternative 2b would require removal of one unoccupied building that provides potential roost habitat. In addition, the bridge structure and portions of the road way would be disturbed and modified during construction which may result in a loss of potential roost sites.
• Alternative 4

 o woodland and forest habitat = 0.21 hectare (0.51 acre) permanent, 1.04 hectares (2.56 acres) temporary. No buildings are proposed for removal under Alternative

As described in Section 3.17.4.4, a preconstruction survey for roosting bats would be performed by a qualified biologist within 30 days prior to any removal of trees or structures on the site. If no active roosts are found, then no further action would be proposed. If either a maternity roost or hibernacula (structures used by bats for hibernation) is present, the following minimization measures would be implemented:

1. If active maternity roosts or hibernacula are found in trees or structures that would be removed or disturbed as part of project construction, the roost would be avoided by construction activities to the extent feasible. If an active maternity roost is located and avoidance of the occupied tree or structure is not feasible, demolition can commence before maternity colonies form (i.e., prior to March 1) or after young are volant (flying) (i.e., after July 31). Disturbance-free buffer zones as determined by a qualified biologist in coordination with CDFG would be observed during the maternity roost season (March 1 through July 31).

2. ESA exclusion fencing would be placed around avoided habitats and contractor education would be conducted to prevent encroachment of construction activities. Bright-colored ESA fencing and signage would be implemented and a construction monitor would confirm the fence integrity on a daily basis to protect the area from accidental equipment damage. Fence repair and/or reinforcements would be completed immediately. If a new roost site is discovered during construction, the biological monitor would be contacted to implement avoidance procedures before construction resumes in the area.

3. If a nonbreeding bat hibernacula is found in a tree or structure scheduled for removal, the individuals would be safely evicted, under the direction of a qualified biologist (as determined by possession of a Memorandum of Understanding (MOU) with CDFG typically amended to the individual’s scientific collecting permit), by opening the roosting area to allow airflow through the cavity. Demolition can then follow at least one night after initial disturbance for airflow. This action should allow bats to leave during darkness, thus increasing their chance of finding new roosts with a minimum of potential predation during daylight. Trees or structures with roosts that need to be removed would first be disturbed at dusk, just prior to removal that same evening, to allow bats to escape during the darker hours.

If special-status bats are found roosting within trees or structures on-site that require removal or if occupied habitat is accidentally damaged during construction, habitat shall be replaced at a 1:1 ratio and further described in Section 4.7.1.2. Impacts to special-status bats would be minimized with replacement planting.

4.4.10.5 Threatened and Endangered

Beach layia, California sea-blite, robust spineflower, and San Francisco lessingia were not observed in the project area during focused botanical surveys and are presumed absent; therefore, impacts are not anticipated.
Bald eagles do not have the potential to occur in the project area due to lack of appropriate habitat and are presumed absent; therefore, impacts are not anticipated.

The hillside that provides potential nesting habitat for bank swallow would be avoided. As described in Section 3.17.5.4, any removal of structures, trees, or shrubs, or construction activities in the vicinity of active nests could result in nest abandonment, nest failure, or premature fledging. Destruction or disturbance of active nests would be in violation of the MBTA and Fish and Game Code. Therefore, the following measures would be implemented to avoid project-related impacts to potentially nesting bank swallows in proximity to construction areas in coordination with CDFG:

1. The removal of any structures, trees, or shrubs would occur from September 1 through February 1, outside the passerine and nonpasserine landbird breeding season. If removal of trees or shrubs occurs, or construction begins between February 1 and August 31 (the nesting season), a nesting bird survey would be performed by a qualified biologist within 15 days prior to the removal of potential nesting structures, trees, or shrubs, or prior to disturbance of areas in the vicinity of potential nest sites, i.e., hillsides and trees.

2. All active nests would be flagged and a nondisturbance buffer zone established around the nesting tree (or other nesting substrate) in coordination with the CDFG. Buffer zones for passerines and nonpasserine land birds typically range between 15.2 to 27.4 meters (50 and 90 feet), depending on the species involved, site conditions, and type of work proposed in the vicinity. Contractor education would be conducted for nesting birds, including a discussion of avoidance and protection measures.

3. Active nests would be monitored by a qualified biologist in coordination with CDFG to determine when the young have fledged and are feeding on their own. The project biologist would be consulted for clearance before construction activities resume in the vicinity.

Permanent impacts to bank swallow are not anticipated and would be less than significant.

4.4.10.6 Invasive Species

YBI’s location in the Central San Francisco Bay, even aside from new construction and development, provides a hospitable habitat for invasive species due to its location at the crossroads of a busy marine port and interstate freeway thoroughfare. As a direct result of project grading, land disturbance, and debris generated from construction for either build alternative, YBI would be subject to the potential increased spread of invasive plant and wildlife species. Invasive plant species can be spread through construction equipment tire treads, construction materials, land clearing, people, and wildlife. Invasive/nuisance wildlife would be attracted to garbage created by construction staff and traffic. Land clearing and vegetation removal provides the ideal habitat for invasive plant and animal species colonization due to their success as generalists in landscapes that lack specified ecological niches. Through this process, invasive species can increase the ecological homogenization of YBI.

To avoid the environmental consequences outlined above and in Chapter 3, there would be a multilayered approach to avoid, minimize, and/or mitigate the project’s effects. In
compliance with EO 13112 and subsequent guidance from FHWA, the landscaping and erosion control measures included in the project would not use species listed as noxious or invasive weeds by the California Department of Food and Agriculture (CDFA 2010). In areas of particular sensitivity, extra precautions would be taken if invasive species are found in or adjacent to the construction areas. These include the inspection and cleaning of construction equipment and eradication strategies to be implemented should an invasion occur.

For botanical resources, hydroseeding and replanting for erosion control and revegetation of slopes would be verified for being invasive plant/weed-free before application by an established, approved, licensed, and insured contractor. Local native plant ecotypes would be used for replanting in affected areas. To minimize attracting non-native/nuisance wildlife, garbage generated on-site would be appropriately disposed of in garbage cans placed throughout the site and deposited into large and secure dumpsters daily. These dumpsters would be emptied on a weekly basis before dusk. On-site toiletries would be maintained daily for site sanitation and to avoid attracting more nuisance wildlife. Worker education would focus on the diminishment and disposal of on-site garbage and the factors associated with decreasing invasive species potential on-site.

By encouraging proper and timely sanitation of construction-generated waste (especially food), invasive rodent (e.g., mice and rat) activity would be controlled. In most urbanized environments random food scraps and overgrown or salvage areas provide abundant forage and habitat for rodents. Neat, off-the-ground storage of pipes, girders, cable, wire, and lumber would help reduce the suitability of the area for rats and would also make rodent detection easier. Garbage and trash, and all garbage receptacles would have tight-fitting covers. Feral pets should not be encouraged through provision of food for feeding. This food may become a ready supply of food for rats and mice, or other nuisance wildlife.

Overall, the introduction and spread of exotic and invasive plant and wildlife species would be avoided to the maximum extent possible. BMPs, as identified by the SFRWQCB and described in Section 3.17.2.4, would be implemented to control erosion while not increasing the spread of invasive plant or wildlife species. In some cases, hydroseeding or rapid replanting measures can increase the spread of weed/invasive grass species through lack of seed purity or insufficient preparation of the seed mix. Revegetation contractors would implement standard QA/QC measures to verify the purity of native seed mix and the site appropriateness of ecotypes for revegetation utilizing container plants. Invasive species impacts would be less than significant through compliance with EO 13122 and the avoidance and minimization measures above.

4.5 Unavoidable Significant Environmental Effects of the Proposed Project under CEQA

The proposed project would have unavoidable significant effects on cultural and visual resources. These resource areas are also discussed in Section 3.7, Visual/Aesthetics and Section 3.8, Cultural Resources.

4.5.1 Cultural Resources

For the purposes of CEQA, significant cultural resources are those resources that are eligible for or are listed in the CRHR. All resources determined eligible for or are listed in
the NRHP are automatically eligible for the CRHR and, as such, are historical resources for the purposes of CEQA. In addition, cultural resources included in local registers of historical resources, as defined in Public Resource Code (PRC) 5020.1(k) or 5024.1(g), are also historical resources for the purposes of CEQA. CEQA states that “a project with an effect that may cause a substantial adverse change in the significance of a historical resource is a project that may have a significant effect on the environment.”

The significance of a historical resource is materially impaired when a project demolishes or materially alters in an adverse manner those physical characteristics of a historical resource that conveys its historical significance and justifies its inclusion in, or eligibility for the CRHR. Essentially, this means that if a project demolishes an entire historical resource, or alters it adversely so that it would no longer be eligible for the CRHR or be considered a historical resource, the project would have a substantial adverse change to that resource. However, after project construction, if the resource would still possess historical significance such that it would still be eligible, there would be no substantial adverse change.

The following analyzes the impacts of the YBI Ramps Improvement Project on six properties considered as historical resources for the purposes of CEQA. These are Quarters 8; Quarters 10/Building 267; the Senior Officers’ Quarters Historic District; Quarters 1/Nimitz House; a portion of the East Span of the SFOBB; and a prehistoric archaeological site CA-SFR-04/H.

Neither Alternative 2b nor Alternative 4 would result in substantial adverse change to Quarters 8, or the archaeological site CA-SFR-04/H. Quarters 8 is located a sufficient distance from the proposed project work that no impacts would result to the building. Archaeological site CA-SFR-04/H would not experience substantial adverse change, because this area is currently designated as ESAs and would be protected during construction.

The YBI Ramps Improvement Project alternatives would not cause a direct impact on the SFOBB because that structure would be replaced through the separate replacement project. The SFOBB ESSSP would precede the proposed YBI Ramps Improvement Project that is subject of this analysis.

- Alternative 2b would impact the Quarters 10/Building 267 through the relocation of both buildings to avoid demolition.

- Alternative 2b would impact the Senior Officers’ Quarters Historic District through the alteration, removal, and/or damage to a portion of the district’s historic landscape, including grass and border hedge of the greensward in front of Quarters 1–3, and paved driveway and curbing southeast of Quarters 1/Nimitz House. A proposed support column would be constructed within the formal terraced garden behind Quarters 1/Nimitz House and would destroy much of the third level of the terrace garden, which is a contributing element of the historic district. In addition, there would be impacts to the cultural landscape of the Senior Officers’ Quarters Historic District due to the addition of new nonhistoric features into the cultural landscape.

- Alternative 4 would also cause an impact on the historic district by the introduction of visual elements that diminish the integrity of the property’s significant historic features. The size and scale of the proposed ramps structure...
are not consistent with historic setting or feeling of Quarters 1/Nimitz House or the historic district, and would introduce a new visual element. The ramp deck and support columns would obstruct the eastward view from Quarters 1/Nimitz House and, because the view from this building is a character-defining feature, Alternative 4 would diminish the integrity of Quarters 1/Nimitz House. Thus, the introduction of the ramp structures would thus cause an impact on both the district and Quarters 1/Nimitz House.

- Alternative 2b would impact Quarters 10/Building 267 through the relocation of both buildings to avoid demolition. However, a moved building, structure, or object that is otherwise eligible may be listed in the CRHR if it was moved to prevent its demolition at its former location and if the new location is compatible with the original character and use of the historic resource. A historic resource should retain its historic features and compatibility in orientation, setting, and general environment (California Office of Historic Preservation 2006:3). The proposed relocation of Quarters 10/Building 267 under the terms of the MOA meets these criteria. The MOA includes the requirement that a post-construction assessment be done to determine whether the resource retains sufficient integrity to convey its historical significance and would remain eligible for the CRHR (see Appendix R).

- Alternative 2b would impact the Senior Officers’ Quarters Historic District through the alteration, removal, and/or damage to a portion of the district’s historic landscape, including grass and border hedge of the greensward in front of Quarters 1–3, and paved driveway and curbing southeast of Quarters 1/Nimitz House. Another proposed support column would be constructed within the formal terraced garden behind Quarters 1/Nimitz House and would destroy much of the third level of the terrace garden, which is a contributing element of the historic district. In addition, there would be impacts to the cultural landscape of the Senior Officers’ Quarters Historic District due to the addition of new nonhistoric features into the cultural landscape. These impacts would not result in a substantial adverse change in the Senior Officers’ Quarters Historic District because the district would still retain sufficient integrity to convey its historical significance and would remain eligible for the CRHR and be considered a historical resource under CEQA.

- Alternative 4 would also cause an impact on the historic district by the introduction of visual elements that diminish the integrity of the property’s significant historic features. The size and scale of the proposed ramps structure are not consistent with historic setting or feeling of Quarters 1/Nimitz House or the historic district, and would constitute introduction of a new visual element. These impacts would not result in a substantial adverse change in the Senior Officers’ Quarters Historic District because it would still retain sufficient integrity to convey its historical significance and would remain eligible for the CRHR and be considered a historical resource under CEQA.

The proximity of work conducted for both alternatives to historic resources presents the possibility that the resulting vibration could impact the buildings or character-defining features of the historic district and Quarters 1/Nimitz House (Alternatives 2b and 4). Caltrans monitors the effects of construction vibration on historic buildings and adjusts construction methods to prevent adverse effects. However, because vibration impacts may cause irreparable damage (and subsequent destruction) to these masonry
foundation buildings, this would be considered a substantial adverse change wherein the resources would no longer retain sufficient integrity to meet the criteria for the CRHR and therefore would cease to be a historical resource under CEQA. A final determination of the sensitivity of these resources to vibration impacts would be determined through the mitigation stipulated in the MOA (Appendix R), and further described in Section 4.7.2. Impacts to cultural resources would remain significant and unavoidable even with implementation of mitigation.

4.5.2 Visual

As discussed in Section 3.7, Visual/Aesthetics, Table 4-3 provides the extent of the visual impacts associated with Alternative 2b and Alternative 4 for each viewpoint. Review of the table indicates that Alternative 2b would have a less adverse visual impact on the project area than Alternative 4.

<table>
<thead>
<tr>
<th>Key Viewpoint</th>
<th>Alternative 2b</th>
<th>Alternative 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Minimally Adverse</td>
<td>Minimally Adverse</td>
</tr>
<tr>
<td>2</td>
<td>Minimally Adverse</td>
<td>Minimally Adverse</td>
</tr>
<tr>
<td>3</td>
<td>Strongly Adverse</td>
<td>Strongly Adverse</td>
</tr>
<tr>
<td>4</td>
<td>Adverse</td>
<td>Adverse</td>
</tr>
<tr>
<td>5</td>
<td>Negligible</td>
<td>Negligible</td>
</tr>
<tr>
<td>6</td>
<td>Minimally Adverse</td>
<td>Minimally Adverse</td>
</tr>
<tr>
<td>7</td>
<td>Negligible</td>
<td>Negligible</td>
</tr>
<tr>
<td>8</td>
<td>Negligible</td>
<td>Negligible</td>
</tr>
</tbody>
</table>

Alternative 2b design would in some cases have significant impacts on the visual quality of some areas when these areas are observed from certain viewpoints. This would be more noticeable where views toward or from the Senior Officers’ Quarters Historic District would be dominated and/or obstructed by the ramp structures. Alternative 4 would require less vegetation removal than Alternative 2b. However, the sheer mass and extent of the design would produce an overall more visually dominant effect relative to Alternative 2b. If Alternative 4 is implemented, the design would integrate landscaping to reduce the visual impact on the environment after ramp construction. However, given the large scale of the ramps, it would be difficult to screen or sufficiently offset their visual effects without in the process causing secondary significant visual effects.

The project site is not located within a State-designated scenic corridor. Implementation of either build alternative would potentially affect the visual quality of the project site and its vicinity, including neighboring historic structures. Please refer to Section 3.8, Cultural Resources, of this Final EIR/EIS for further discussion related to the project’s potential impacts on these resources.

Impacts to visual resources would remain significant and unavoidable even with implementation of mitigation, described in Section 4.7.3.

4.6 Climate Change

Climate change refers to long-term changes in temperature, precipitation, wind patterns, and other elements of the earth's climate system. An ever-increasing body of scientific research attributes these climatological changes to greenhouse gases (GHGs), particularly those generated from the production and use of fossil fuels.
While climate change has been a concern for several decades, the establishment of the Intergovernmental Panel on Climate Change (IPCC) by the United Nations and World Meteorological Organization’s in 1988, has led to increased efforts devoted to greenhouse gas (GHG) emissions reduction and climate change research and policy. These efforts are primarily concerned with the emissions of GHGs related to human activity that include carbon dioxide (CO2), methane, nitrous oxide, tetrafluoromethane, hexafluoroethane, sulfur hexafluoride, HFC-23 (fluoroform), HFC-134a (s, s, s, 2 – tetrafluoroethane), and HFC-152a (difluoroethane).

There are typically two terms used when discussing the impacts of climate change. "Greenhouse Gas (GHG) Mitigation" is a term for reducing GHG emissions in order to reduce or "mitigate" the impacts of climate change. “Adaptation,” refers to the effort of planning for and adapting to impacts due to climate change (such as adjusting transportation design standards to withstand more intense storms and higher sea levels).

Transportation sources (passenger cars, light duty trucks, other trucks, buses and motorcycles) in the state of California make up the largest source (second to electricity generation) of greenhouse gas emitting sources. Conversely, the main source of GHG emissions in the United States (U.S.) is electricity generation followed by transportation. The dominant GHG emitted is CO2, mostly from fossil fuel combustion.

There are four primary strategies for reducing GHG emissions from transportation sources: 1) improve system and operation efficiencies, 2) reduce growth of vehicle miles traveled (VMT) 3) transition to lower GHG fuels and 4) improve vehicle technologies. To be most effective all four should be pursued collectively. The following regulatory setting section outlines state and federal efforts to comprehensively reduce GHG emissions from transportation sources.

4.6.1 Regulatory Setting

STATE

With the passage of several pieces of legislation including State Senate and Assembly Bills and Executive Orders, California launched an innovative and pro-active approach to dealing with greenhouse gas emissions and climate change at the state level.

Assembly Bill 1493 (AB 1493), Pavley. Vehicular Emissions: Greenhouse Gases (AB 1493), 2002: requires the California Air Resources Board (CARB) to develop and implement regulations to reduce automobile and light truck greenhouse gas emissions. These stricter emissions standards were designed to apply to automobiles and light trucks beginning with the 2009-model year. In June 2009, the United States Environmental Protection Agency (U.S. EPA) Administrator granted a Clean Air Act waiver of preemption to California. This waiver allowed California to implement its own GHG emission standards for motor vehicles beginning with model year 2009. California agencies will be working with Federal agencies to conduct joint rulemaking to reduce GHG emissions for passenger cars model years 2017-2025.

Executive Order S-3-05: (signed on June 1, 2005, by Governor Arnold Schwarzenegger) the goal of this Executive Order is to reduce California’s GHG emissions to: 1) 2000 levels by 2010, 2) 1990 levels by the 2020 and 3) 80 percent below the 1990 levels by
the year 2050. In 2006, this goal was further reinforced with the passage of Assembly Bill 32.

AB32 (AB 32), the Global Warming Solutions Act of 2006: AB 32 sets the same overall GHG emissions reduction goals as outlined in Executive Order S-3-05, while further mandating that CARB create a plan, which includes market mechanisms, and implement rules to achieve “real, quantifiable, cost-effective reductions of greenhouse gases.” Executive Order S-20-06 further directs state agencies to begin implementing AB 32, including the recommendations made by the State’s Climate Action Team.

Executive Order S-01-07: Governor Schwarzenegger set forth the low carbon fuel standard for California. Under this Executive Order, the carbon intensity of California’s transportation fuels is to be reduced by at least ten percent by 2020.

Senate Bill 97 (Chapter 185, 2007): required the Governor's Office of Planning and Research (OPR) to develop recommended amendments to the State California Environmental Quality Act (CEQA) Guidelines for addressing greenhouse gas emissions. The Amendments became effective on March 18, 2010.

FEDERAL

Although climate change and GHG reduction is a concern at the federal level; currently there are no regulations or legislation that have been enacted specifically addressing GHG emissions reductions and climate change at the project level. Climate change and its associated effects are being addressed through various efforts at the federal level to improve fuel economy and energy efficiency, such as the “National Clean Car Program” and Executive Order 13514- Federal Leadership in Environmental, Energy and Economic Performance.

Executive Order 13514 is focused on reducing greenhouse gases internally in federal agency missions, programs and operations, but also direct federal agencies to participate in the interagency Climate Change Adaptation Task Force, which is engaged in developing a U.S. strategy for adaptation to climate change.

On April 2, 2007, in Massachusetts v. EPA, 549 U.S. 497 (2007), the Supreme Court found that greenhouse gases are air pollutants covered by the Clean Air Act and that the U.S. EPA has the authority to regulate GHG. The Court held that the U.S. EPA Administrator must determine whether or not emissions of greenhouse gases from new motor vehicles cause or contribute to air pollution which may reasonably be anticipated to endanger public health or welfare, or whether the science is too uncertain to make a reasoned decision.

On December 7, 2009, the U.S. EPA Administrator signed two distinct findings regarding greenhouse gases under section 202(a) of the Clean Air Act:

- **Endangerment Finding:** The Administrator found that the current and projected concentrations of the six key well-mixed greenhouse gases—carbon dioxide (CO$_2$), methane (CH$_4$), nitrous oxide (N$_2$O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF$_6$)—in the atmosphere threaten the public health and welfare of current and future generations.
Cause or Contribute Finding: The Administrator found that the combined emissions of these well-mixed greenhouse gases from new motor vehicles and new motor vehicle engines contribute to the greenhouse gas pollution which threatens public health and welfare.

Although these findings did not themselves impose any requirements on industry or other entities, this action was a prerequisite to finalizing the U.S. EPA’s Proposed Greenhouse Gas Emission Standards for Light-Duty Vehicles, which was published on September 15, 2009. On May 7, 2010 the final Light-Duty Vehicle Greenhouse Gas Emissions Standards and Corporate Average Fuel Economy Standards was published in the Federal Register.

U.S. EPA and the National Highway Traffic Safety Administration (NHTSA) are taking coordinated steps to enable the production of a new generation of clean vehicles with reduced GHG emissions and improved fuel efficiency from on-road vehicles and engines. These next steps include developing the first-ever GHG regulations for heavy-duty engines and vehicles, as well as additional light-duty vehicle GHG regulations. These steps were outlined by President Obama in a memorandum on May 21, 2010.

The final combined U.S. EPA and NHTSA standards that make up the first phase of this national program apply to passenger cars, light-duty trucks, and medium-duty passenger vehicles, covering model years 2012 through 2016. The standards require these vehicles to meet an estimated combined average emissions level of 250 grams of carbon dioxide per mile, equivalent to 35.5 miles per gallon (MPG) if the automobile industry were to meet this carbon dioxide level solely through fuel economy improvements. Together, these standards will cut GHG emissions by an estimated 960 million metric tons and 1.8 billion barrels of oil over the lifetime of the vehicles sold under the program (model years 2012-2016).

On January 24, 2011, the U.S. EPA along with the U.S. Department of Transportation and the State of California announced a single timeframe for proposing fuel economy and greenhouse gas standards for model years 2017-2025 cars and light-trucks. Proposing the new standards in the same timeframe (September 1, 2011) would signal continued collaboration that could lead to an extension of the current National Clean Car Program.

4.6.2 Project Analysis

An individual project does not generate enough GHG emissions to significantly influence global climate change. Rather, global climate change is a cumulative impact. This means that a project may participate in a potential impact through its incremental contribution combined with the contributions of all other sources of GHG. In assessing cumulative impacts, it must be determined if a project’s incremental effect is “cumulatively considerable.” See CEQA Guidelines sections 15064(h)(1) and 15130. To make this determination the incremental impacts of the project must be compared with

37 http://www.epa.gov/climatechange/endangerment.html
38 http://epa.gov/otaq/climate/regulations.htm
39 This approach is supported by the AEP: Recommendations by the Association of Environmental Professionals on How to Analyze GHG Emissions and Global Climate Change in CEQA Documents (March 5, 2007), as well as the SCAQMD (Chapter 6: : The CEQA Guide, April 2011) and the US Forest Service (Climate Change Considerations in Project Level NEPA Analysis, July 13, 2009).
Chapter 4 – CEQA Evaluation

the effects of past, current, and probable future projects. To gather sufficient information on a global scale of all past, current, and future projects in order to make this determination is a difficult if not impossible task.

The AB 32 Scoping Plan contains the main strategies California will use to reduce GHG. As part of its supporting documentation for the Draft Scoping Plan, CARB released the GHG inventory for California (Forecast last updated: 28 October 2010). The forecast is an estimate of the emissions expected to occur in the year 2020 if none of the foreseeable measures included in the Scoping Plan were implemented. The base year used for forecasting emissions is the average of statewide emissions in the GHG inventory for 2006, 2007, and 2008 (Figure 4-1).

![California Greenhouse Gas Emissions Forecast](http://www.arb.ca.gov/cc/inventory/data/forecast.htm)

Figure 4-1 California Greenhouse Gas Forecast

Caltrans and its parent agency, the Business, Transportation, and Housing Agency, have taken an active role in addressing GHG emission reduction and climate change. Recognizing that 98 percent of California’s GHG emissions are from the burning of fossil fuels and 40 percent of all human made GHG emissions are from transportation, the Department has created and is implementing the Climate Action Program at Caltrans that was published in December 2006 (see Climate Action Program at Caltrans (December 2006)).

One of the main strategies in Caltrans’ Climate Action Program to reduce GHG emissions is to make California’s transportation system more efficient. The highest levels of carbon dioxide from mobile sources, such as automobiles, occur at stop-and-go speeds of 0 to 40 kilometers per hour (km/h) [0 to 25 mph] and speeds more than 88 km/h (55 mph) (Figure 4-2). To the extent that a project relieves congestion by enhancing operations and improving travel times in high congestion travel corridors GHG emissions, particularly CO₂, may be reduced.

40 Caltrans Climate Action Program is located at the following web address: http://www.dot.ca.gov/hq/tpp/offices/ogm/key_reports_files/State_Wide_Strategy/Caltrans_Climate_Action_Program.pdf
The YBI Ramps Improvement Project is not a capacity increasing project. However, pursuant to the Climate Action Program, the proposed ramps would reduce traffic congestion along the San Francisco-Oakland Bay Bridge (SFOBB) by metering vehicles entering the SFOBB. The proposed metering system would allow a one-to-one ratio of vehicles exiting and entering the SFOBB and therefore would avoid a large volume of vehicles from entering the SFOBB at the YBI westbound on-ramp.

CONSTRUCTION EMISSIONS

GHG emissions for transportation projects can be divided into those produced during construction and those produced during operations. Construction GHG emissions include emissions produced as a result of material processing, emissions produced by on-site construction equipment, and emissions arising from traffic delays due to construction. These emissions will be produced at different levels throughout the construction phase; their frequency and occurrence can be reduced through innovations in plans and specifications and by implementing better traffic management during construction phases. In addition, with innovations such as longer pavement lives, improved traffic management plans, and changes in materials, the GHG emissions produced during construction can be mitigated to some degree by longer intervals between maintenance and rehabilitation events. It is Caltrans’ goal to construct this proposed project in the least amount of time by planning and staging the work efficiently. The reduced construction time would lead to a low number of construction-related delays and make the benefits of the project available sooner.

Lastly, the construction contractor would be required to comply with Caltrans’ Standard Specifications Section 14-9.01, “Air Pollution Control”, and Section 14-9.02, “Dust Control,” which would reduce construction-related emissions. Please also refer to the *Yerba Buena Island Ramps Improvement Project Air Quality Analysis* (Appendix L) for additional pollution abatement measures.
Chapter 4 – CEQA Evaluation

OPERATIONAL EMISSIONS

The YBI Ramps Improvement Project would include ramp metering that can be coordinated such that the number of vehicles entering the Bridge would be based on the number of vehicles exiting the Bridge. Therefore, the Bridge would not receive large influx of vehicles at the proposed ramps that would likely result in congestion and higher CO₂ emission rates as described above. Additionally, the Bridge metering lights for westbound traffic (just west of the toll booths) could be coordinated with the on-ramp, such that the traffic entering the SFOBB could be reduced while the metering rate for the on-ramp is increased, and vice versa. The project would therefore have a traffic-smoothing effect. This would reduce wear on the vehicles, maintain a higher average vehicle speed on the Bridge, and reduce fuel consumption and GHG emissions.

CEQA CONCLUSION

While there would be a slight increase in GHG emissions during construction, it is anticipated that any increase in GHG emissions due to construction would be offset by the long-term improvement in operational GHG emissions. In the absence of further regulatory or scientific information related to GHG emissions and CEQA significance, it is too speculative to make a significance determination regarding the project’s direct impact and its contribution on the cumulative scale to climate change, Caltrans is firmly committed to implementing measures to help reduce GHG emissions; which are outlined in the following section.

AB 32 Compliance

Caltrans continues to be actively involved on the Governor’s Climate Action Team as CARB works to implement the Governor’s executive orders and help achieve the targets set forth in AB 32. Many of the strategies Caltrans is using to help meet the targets in AB 32 come from the California Strategic Growth Plan, which is updated each year. Former Governor Arnold Schwarzenegger’s Strategic Growth Plan calls for a $222 billion infrastructure improvement program to fortify the state’s transportation system, education, housing, and waterways, including $100.7 billion in transportation funding during the next decade. The Strategic Growth Plan targets a significant decrease in traffic congestion below today’s level and a corresponding reduction in GHG emissions. The Strategic Growth Plan proposes to do this while accommodating growth in population and the economy. A suite of investment options has been created that combined together are expected to reduce congestion. The Strategic Growth Plan relies on a complete systems approach to attain CO₂ reduction goals: system monitoring and evaluation, maintenance and preservation, smart land use and demand management, and operational improvements as depicted in Figure 4-3: The Mobility Pyramid.
Caltrans is supporting efforts to reduce vehicle miles traveled by planning and implementing smart land use strategies: job/housing proximity, developing transit-oriented communities, and high density housing along transit corridors. Caltrans is working closely with local jurisdictions on planning activities; however, Caltrans does not have local land use planning authority. Caltrans is also supporting efforts to improve the energy efficiency of the transportation sector by increasing vehicle fuel economy in new cars, light and heavy-duty trucks; Caltrans is doing this by supporting on-going research efforts at universities, by supporting legislative efforts to increase fuel economy, and by its participation on the Climate Action Team. It is important to note, however, that the control of the fuel economy standards is held by U.S. EPA and CARB. Lastly, the use of alternative fuels is also being considered; the Department is participating in funding for alternative fuel research at the UC Davis.

Table 4-4 summarizes Caltrans and statewide efforts that it is implementing in order to reduce GHG emissions. More detailed information about each strategy is included in the Climate Action Program at Caltrans (December 2006).
<table>
<thead>
<tr>
<th>Strategy</th>
<th>Program</th>
<th>Partnership</th>
<th>Method/Process</th>
<th>Estimated CO₂ Savings (MMT)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lead</td>
<td>Agency</td>
<td></td>
</tr>
<tr>
<td>Smart Land Use</td>
<td>Intergovernmental Review (IGR)</td>
<td>Caltrans</td>
<td>Local Governments</td>
<td>Review and seek to mitigate development proposals</td>
</tr>
<tr>
<td></td>
<td>Planning Grants</td>
<td>Caltrans</td>
<td>Local and regional agencies & other stakeholders</td>
<td>Competitive selection process</td>
</tr>
<tr>
<td></td>
<td>Regional Plans and Blueprints Planning</td>
<td>Regional Agencies</td>
<td>Caltrans</td>
<td>Regional plans and application process</td>
</tr>
<tr>
<td></td>
<td>Strategic Growth Plan</td>
<td>Caltrans</td>
<td>Regions</td>
<td>State ITS; Congestion Management Plan</td>
</tr>
<tr>
<td>Operational Improvements & Intelligent Trans. System (ITS) Deployment</td>
<td>Office of Policy Analysis & Research; Division of Environmental Analysis</td>
<td>Interdepartmental effort</td>
<td>Policy establishment, guidelines, technical assistance</td>
<td>Not Estimated</td>
</tr>
<tr>
<td>Mainstream Energy & GHG into Plans and Projects</td>
<td>Office of Policy Analysis & Research; Division of Environmental Analysis</td>
<td>Interdepartmental, Cal/EPA, CARB, CEC</td>
<td>Analytical report, data collection, publication, workshops, outreach</td>
<td>Not Estimated</td>
</tr>
<tr>
<td>Educational & Information Program</td>
<td>Office of Policy Analysis & Research</td>
<td>Interdepartmental, Cal/EPA, CARB, CEC</td>
<td>Caltrans</td>
<td>Not Estimated</td>
</tr>
<tr>
<td>Fleet Greening & Fuel Diversification</td>
<td>Division of Equipment</td>
<td>Department of General Services</td>
<td>Fleet Replacement B20 B100</td>
<td>0.045</td>
</tr>
<tr>
<td>Nonvehicular Conservation Measures</td>
<td>Energy Conservation Program</td>
<td>Green Action Team</td>
<td>Energy Conservation Opportunities</td>
<td>0.117</td>
</tr>
<tr>
<td>Portland Cement</td>
<td>Office of Rigid Pavement</td>
<td>Cement and Construction Industries</td>
<td>2.5% limestone cement mix</td>
<td>1.2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>2.66</td>
</tr>
</tbody>
</table>
To the extent that it is applicable or feasible for the project and through coordination with the project development team, the following will also be included in the project to reduce the GHG emissions and potential climate change impacts from the project:

- Caltrans and the CHP are working with regional agencies to implement Intelligent Transportation Systems (ITS) to help manage the efficiency of the existing highway system. ITS are commonly referred to as electronics, communications, or information processing used singly or in combination to improve the efficiency or safety of a surface transportation system.

- The project would incorporate the use of energy efficient lighting, such as LED bulbs for the proposed metering signals. LED bulbs—or balls, in the stoplight vernacular—cost $60 to $70 apiece but last 5 to 6 years, compared to the 1-year average lifespan of the incandescent bulbs previously used. The LED balls themselves consume 10 percent of the electricity of traditional lights, which will also help reduce the project’s CO₂ emissions.\(^{42}\)

Adaptation Strategies

“Adaptation strategies” refer to how Caltrans and others can plan for the effects of climate change on the state’s transportation infrastructure and strengthen or protect the facilities from damage. Climate change is expected to produce increased variability in precipitation, rising temperatures, rising sea levels, storm surges and intensity, and the frequency and intensity of wildfires. These changes may affect the transportation infrastructure in various ways, such as damaging roadbeds by longer periods of intense heat; increasing storm damage from flooding and erosion; and inundation from rising sea levels. These effects will vary by location and may, in the most extreme cases, require that a facility be relocated or redesigned. There may also be economic and strategic ramifications as a result of these types of impacts to the transportation infrastructure.

At the Federal level, the Climate Change Adaptation Task Force, co-chaired by the White House Council on Environmental Quality (CEQ), the Office of Science and Technology Policy (OSTP), and the National Oceanic and Atmospheric Administration (NOAA), released its interagency report October 14, 2010 outlining recommendations to President Obama for how Federal Agency policies and programs can better prepare the United States to respond to the impacts of climate change. The Progress Report of the Interagency Climate Change Adaptation Task Force recommends that the Federal Government implement actions to expand and strengthen the Nation’s capacity to better understand, prepare for, and respond to climate change.

Climate change adaption must also involve the natural environment as well. Efforts are underway on a statewide level to develop strategies to cope with impacts to habitat and biodiversity through planning and conservation. The results of these efforts will help California agencies plan and implement mitigation strategies for programs and projects.

On November 14, 2008, Governor Schwarzenegger signed EO S-13-08, which directed a number of state agencies to address California’s vulnerability to sea level rise caused

by climate change. This Executive Order set in motion several agencies and actions to address the concern of sea level rise.

The California Natural Resources Agency (Resources Agency) was directed to coordinate with local, regional, state and federal public and private entities to develop. The California Climate Adaptation Strategy (Dec 2009)\(^{43}\), which summarizes the best known science on climate change impacts to California, assesses California’s vulnerability to the identified impacts, and then outlines solutions that can be implemented within and across state agencies to promote resiliency. The strategy outline is in direct response to Executive Order S-13-08 that specifically asked the Resources Agency to identify how state agencies can respond to rising temperatures, changing precipitation patterns, sea level rise, and extreme natural events. Numerous other state agencies were involved in the creation of the Adaptation Strategy document, including Environmental Protection; Business, Transportation and Housing; Health and Human Services; and the Department of Agriculture. The document is broken down into strategies for different sectors that include: Public Health; Biodiversity and Habitat; Ocean and Coastal Resources; Water Management; Agriculture; Forestry; and Transportation and Energy Infrastructure. As data continues to be developed and collected, the state’s adaptation strategy will be updated to reflect current findings.

Resources Agency was also directed to request the National Academy of Science to prepare a Sea Level Rise Assessment Report by December 2010\(^{44}\) to advise how California should plan for future sea level rise. The report is to include:

- relative sea level rise projections for California, taking into account coastal erosion rates, tidal impacts, El Niño and La Niña events, storm surge, and land subsidence rates;
- the range of uncertainty in selected sea level rise projections;
- a synthesis of existing information on projected sea level rise impacts to state infrastructure (such as roads, public facilities and beaches), natural areas, and coastal and marine ecosystems;
- a discussion of future research needs regarding sea level rise for California.

Prior to the release of the final Sea Level Rise Assessment Report, all state agencies that are planning to construct projects in areas vulnerable to future sea level rise were directed to consider a range of sea level rise scenarios for the years 2050 and 2100 in order to assess project vulnerability and, to the extent feasible, reduce expected risks and increase resiliency to sea level rise. Sea level rise estimates should also be used in conjunction with information regarding local uplift and subsidence, coastal erosion rates, predicted higher high water levels, storm surge and storm wave data.

Until the final report from the National Academy of Sciences is released, interim guidance has been released by The Coastal Ocean Climate Action Team (CO-CAT) as

\(^{44}\) The Sea Level Rise Assessment report is currently due to be completed in 2012 and will include information for Oregon and Washington State as well as California.
well as Caltrans as a method to initiate action and discussion of potential risks to the states infrastructure due to projected sea level rise.

All projects that have filed a Notice of Preparation, and/or are programmed for construction funding from 2008 through 2013, or are routine maintenance projects as of the date of Executive Order S-13-08 may, but are not required to, consider these planning guidelines. An NOP was filed for the YBI Ramps Improvement Project on September 8, 2008 and the project is programmed for construction in 2012.

Currently, Caltrans is working to assess which transportation facilities are at greatest risk from climate change effects. However, without statewide planning scenarios for relative sea level rise and other climate change impacts, Caltrans has not been able to determine what change, if any, may be made to its design standards for its transportation facilities. Once statewide planning scenarios become available, Caltrans will be able review its current design standards to determine what changes, if any, may be warranted in order to protect the transportation system from sea level rise.

Climate change adaptation for transportation infrastructure involves long-term planning and risk management to address vulnerabilities in the transportation system from increased precipitation and flooding; the increased frequency and intensity of storms and wildfires; rising temperatures; and rising sea levels. Caltrans is an active participant in the efforts being conducted in response to Executive Order S-13-08 and is mobilizing to be able to respond to the National Academy of Science report on Sea Level Rise Assessment which is due to be released in 2012.

4.7 Mitigation Measures for Significant Impacts under CEQA

4.7.1 Biological Resources

No formal mitigation is required, however the following measures below will be implemented.

4.7.1.1 Plant Species

STINGING PHACELIA

Stinging phacelia shall be avoided to the extent feasible by the chosen project alternative and protected during construction. The permanent and temporary impacts associated with Alternative 2b and Alternative 4 will avoid more than 99% of the population occurring on site (Figures 3.17-6 and 3.17-7). Where avoidance is not feasible, minimization measures will be implemented.

Potential impacts during construction activities shall be avoided to the extent feasible by placement of exclusion fencing 3 meters (10 feet) from the perimeter of the stinging phacelia stands outside the temporary and permanent impact area. Contractor education shall be conducted, bright-colored ESA fencing and signage shall be implemented, and a construction monitor shall confirm the fence integrity on a daily basis to protect the area from accidental equipment damage. Fence repair and/or reinforcements shall be completed immediately.

Unavoidable impacts to stinging phacelia will be offset by implementation of a woodland habitat revegetation plan as described in Section 2.2.4 of this Final
EIR/EIS. Stinging phacelia plants removed in permanent and temporary disturbance areas will be replanted at a 1:1 ratio based on the area of occupied habitat affected. Woodland habitat removed in permanent and temporary disturbance areas will also be replanted. Compensatory measures are not proposed.

4.7.1.2 Animal Species

MONARCH BUTTERFLY, GUMMIFERA LEAF-CUTTER BEE, SAN FRANCISCO LACEWIND

If avoidance of any occupied habitat is not feasible or if occupied habitat is accidentally damaged during construction, habitat would be replaced at a location approved by the appropriate jurisdictional agency, which may include Caltrans, the SFCTA (CEQA lead agency), and/or CDFG. The habitat in the amount specified above would be acquired, permanently protected, and enhanced through management to compensate for the loss of habitat.

RAPTORS (COOPER’S HAWK, GOLDEN EAGLE, WHITE-TAILED KITE, AND OTHER NESTING RAPTORS) AND NONRAPTORS (SHOREBIRDS, MARSHBIRDS, AND WATERBIRDS)

Temporarily disturbed woodland and forested areas would be restored after completion of construction activities. Approximately 130 trees would be removed, of which approximately 90% are greater than 6.1 meters (20 feet) high with a trunk size greater than 30.5 centimeters (12 inches). Any trees removed in temporary disturbance areas would be replaced with native species appropriate to the island. Trees native to YBI that are removed, such as 2 Coast live oak trees, would be replaced at a 3:1 ratio. Other permanently affected habitat would be replaced at a location approved by the appropriate jurisdictional agency, which may include Caltrans, the Authority, and/or CDFG. A woodland habitat replacement plan would be developed 30 days prior to construction that outlines measures proposed for permanent and temporary habitat impacts, an implementation strategy, monitoring plan, performance standards, funding requirements, and long-term management.

TERRESTRIAL MAMMALS

Special-Status Bats

If special-status bats are found roosting within trees or structures on-site that require removal or if occupied habitat is accidentally damaged during construction, appropriate replacement roosts shall be created at a 1:1 ratio at a suitable location on-site or off-site in coordination with a qualified biologist and CDFG.

San Francisco Dusky Footed Woodrat

If San Francisco dusky-footed woodrat houses are found within portions of the project site that require permanent or temporary disturbance or if occupied habitat is accidentally damaged during construction, appropriate replacement houses/nests would be created at a 1:1 ratio at a suitable location on-site or off-site in coordination with a qualified biologist and CDFG. Follow-up monitoring efforts would be conducted to evaluate relocation success and additional measures may be necessary if relocated houses are not successful.
4.7.2 Cultural Resources

The MOA has been developed with input from SHPO (Appendix R). It dictates a variety of tasks intended to avoid, minimize, or mitigate for impacts to the built environment. The MOA includes the following mitigation measures:

DEVELOP PROTECTIVE MEASURES FOR HISTORIC BUILDINGS

The buildings of the Senior Officers’ Quarters Historic District will be protected from potential damage due to construction activities. Prior to the commencement of any construction activity, construction-level design measures, such as, but not limited to, changes in construction methodology, shoring, and/or building stabilization, will be developed for the protection of the buildings of the Senior Officers’ Quarters Historic District (including the Quarters 1/Nimitz House) and Quarters 10/Building 267 from potential damage due to construction activities. Existing analysis derived from the SFOBB ESSSP could be used to inform the need for changes in construction methodology, shoring, and/or building stabilization, if consultation among the SHPO, SFCTA, and Caltrans/FHWA requires it. Caltrans will also ensure that any damage to historic properties resulting from the project or the relocation of Quarters 10/Building 267 will be repaired in accordance with the Secretary of the Interior’s standards for the treatment of historic properties.

PREPARE HISTORIC STRUCTURES REPORTS AND CONDITIONS ASSESSMENTS

Historic Structure Reports (HSRs) will be prepared for Quarters 1/Nimitz House and Quarters 10/Building 267. Construction-level avoidance and protection measures will be selected based on the conditions of the buildings and required to prevent adverse effects. The HSRs would include a history of the property/building, construction history, archaeology, architectural evaluation, conditions assessment, maintenance requirements, recommendations for proposed work, copies of original drawings and specifications if available, current drawings if different from the original, and historic and current photographs. Such information would also help facilitate future owners or operators’ adaptive reuse of these buildings and structures.

INTERPRETATION OF HISTORIC PROPERTIES

SFCTA, in consultation with Caltrans, will develop and install interpretive signs incorporating narrative and images relating to the historic Navy buildings on Yerba Buena Island. Interpretive signage would be coordinated with that already planned by Caltrans as mitigation for the SFOBB ESSSP.

RELOCATION

With the identification of Alternative 2b as the Preferred Alternative, Quarters 10/Building 267 shall be relocated and reconstructed in accordance with the Secretary of the Interior’s Standards for the Treatment of Historic Properties: Standards for Preservation, Rehabilitation, Restoration, and Reconstruction (1995). The process for moving these buildings would follow the approach outlined in Moving Historic Buildings (Curtis 1979). In addition, Quarters 10/Building 267 would be relocated by a professional mover with demonstrated experience in the successful movement of historic buildings.
Appropriate steps will also be taken to ensure that buildings will be protected prior to moving to accommodate construction. Quarters 10/Building 267 will be protected in place until they are relocated. Measures taken for Quarters 10/Building 267 will include securing the building and providing security before, during, and following its relocation for a period of time agreed to by Caltrans and the SFCTA.

HISTORIC LANDSCAPE REPORT AND LANDSCAPING PLAN

To aid in planning for future use and landscaping of the properties within the Senior Officers’ Quarters Historic District, a Historic Landscape Report will be prepared. The scope will be developed in consultation with Caltrans, the Navy, and TIDA and will generally follow the guidelines for the Historic American Landscape Survey described in the National Park Service publication “HALS Guidelines.” In addition, a landscaping plan for the Senior Officers’ Quarters Historic District will be prepared to address areas where the existing landscaping features will be disturbed by construction activities.

CONDUCT POSTCONSTRUCTION CONDITION ASSESSMENT, AND A REEVALUATION OF RESOURCES

Following completion of construction of the YBI Ramps, a postconstruction conditions assessment and reevaluation will be conducted to determine whether NRHP-listed resources continued to adequately meet listing criteria. This reevaluation would apply to Quarters 10/Building 267 to assess whether the property still retains sufficient historical integrity to convey its significance. This reevaluation would take place subsequent to the Yerba Buena Ramps Improvement Project completion.

4.7.3 Visual

Visual mitigation for adverse project impacts would consist of adhering to the following design requirements in cooperation with the District Landscape Architect.

4.7.3.1 Alternative 2b

Construction of the Alternative 2b design would in some cases have significant impacts on the visual quality of some areas when these areas are observed from certain viewpoints. This would be most noticeable where views toward or from the Senior Officers’ Quarters Historic District would be dominated and/or obstructed by the ramp structures.

The design would incorporate landscaping to reduce the visual effect on the environment when the YBI ramps would be replaced. If Alternative 2b is implemented, vegetation removed during construction would be replaced, to the extent feasible, in areas that would aesthetically enhance the project site, and new vegetation would be planted in appropriate locations elsewhere on-site. However, given the large scale of the ramps, it would be difficult to screen or sufficiently offset their visual effects without in the process causing secondary significant visual effects.

To promote a seamless interaction between the ramps and the SFOBB Transition Structure, the ribbed design and materials used to finish the ramp structures would be compatible with those used to finish the Transition Structure.
4.7.3.2 Alternative 4

Implementation of Alternative 4 would require less vegetation removal than Alternative 2b. However, the sheer mass and extent of the design would produce an overall more visually dominant effect relative to Alternative 2b. If Alternative 4 is implemented, the design would incorporate landscaping to reduce the visual effect on the environment after ramp construction. However, given the large scale of the ramps, it would be difficult to screen or sufficiently offset their visual effects without in the process causing secondary significant visual effects.

To further mitigate the visual impact of the ramp structures associated with this alternative, the use of a ribbed design such as the one presented for Alternative 2b shall be implemented. This design technique would add aesthetic interest to the ramps and integrate the structures to appear as one project, thereby reducing their visual impact.

4.8 Mandatory Findings of Significance

The proposed project would result in no impacts to parks and recreation, community, utilities, and energy. The proposed project would result in less-than-significant impacts to land use, growth, emergency services, traffic and transportation/pedestrian and bicycle facilities, air quality, hydrology/water quality, geology/soils/seismic/topography, hazardous waste/materials, noise, and biological resources. The proposed project would result in potentially significant impacts to paleontological resources, however, implementation of the mitigation measures described in Section 4.7 would reduce these impacts to less-than-significant levels. Significant unavoidable impacts would occur for cultural and visual resources as described in Section 4.7 above, even with implementation of mitigation measures. Cumulative impacts of Alternative 2b and Alternative 4 are discussed in Section 3.20, Cumulative Impacts.
This page intentionally left blank.
CHAPTER 5 – COMMENTS AND COORDINATION

This chapter describes the public outreach and agency coordination activities undertaken for the YBI Ramps Improvement Project EIR/EIS. The preparation of this Final EIR/EIS includes consultation and coordination with federal, state, and local agencies. Comments on the Draft EIR/EIS and responses are summarized in Section 5.5 below. Comment letters and responses are included in Section 5.6.

5.1 Coordination Plan

Early and continuing coordination with the general public and appropriate public agencies is an essential part of the environmental process to determine the scope of environmental documentation, the level of analysis, potential impacts, and mitigation measures and related environmental requirements. Agency consultation and public participation for this project have been accomplished through a variety of formal and informal methods, including project development team meetings, interagency coordination meetings, and the public scoping process. This chapter summarizes the results of the joint efforts of the SFCTA and Caltrans to identify, address, and resolve project-related issues through early and continuing coordination.

In September 2008, Caltrans prepared a SAFETEA-LU Coordination Plan for the project and invited agencies to become participating or cooperating agencies during the NEPA environmental review process. This plan is required by Section 6002 of the “Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users” (SAFETEA-LU), which is codified in 23 U.S.C. Sec. 139. The goals are to make the environmental review process more efficient and timely, provide a process for resolving interagency disagreements, protect environmental and community resources, and expedite approvals of urgently needed transportation improvements.

The Coordination Plan included the following:

i. Notice of initiation – A NEPA Notice of Intent for the project was circulated to the public and government agencies on September 5, 2008, inviting them to participate in the public scoping meeting or provide comment in written form regarding the scope of the EIS. The full NOI distribution list and the NOI and NOP are provided below.
FEDERAL AND STATE AGENCIES

Northwest Information Center
Attn: Leigh Jordan, Coordinator
Sonoma State University
1303 Maurice Avenue
Rohnert Park, CA 94928

California Department of Transportation
Attn: Tim Sable, IGR CEQA Branch
Office of Transportation Planning
PO Box 23660
Oakland, CA 94623-0660

California Integrated Waste Management Board
Attn: Reinhard Hohlwein
Sue O’Leary – CEQA
Permitting & Inspection Branch, MS#15
1001 “I” Street – PO Box 4025

Director
U.S. Coast Guard
Dept. of Homeland Security
Civil Engineering Division
Coast Guard Island, Building 54D
Alameda, CA 94501-5100

John Barna, Executive Director
California Transportation Commission
1120 N Street, Rm. 2221 (MS-52)
Sacramento, CA 95814

State Office of Intergovernmental Management
State Clearinghouse
1400 Tenth Street, Room 121
PO Box 3044
Sacramento, CA 95812-3044

Office of Historic Preservation
Attn: Milford Wayne Donaldson
FAIA, SHPO
California Department of Parks and Recreation
PO Box 942896
Sacramento, CA 94296-0001

Jane Hicks, Regulatory
U.S. Corps of Engineers
Civil Works Office
333 Market St., Rm. 923
San Francisco, CA 94105

Director
State Lands Commission
Division of Research & Planning
100 Howe Ave., Suite 100 South
Sacramento, CA 95825-8202

California Department of Fish and Game
Central Coast Region
Habitat Conservation
PO Box 47
Yountville, CA 94599

U.S. Fish and Wildlife Service
2800 Cottage Way, Room W-2605
Sacramento, CA 95825-1846

Wayne Nastri, Region 9 Administrator
U.S. Environmental Protection Agency
75 Hawthorne St.
San Francisco, CA 94105

Larry Myers, Executive Secretary
CA Native American Heritage Commission
915 Capitol Mall, Room 364
Sacramento, CA 95814

Regional AGENCIES

Association of Bay Area Governments
Attn: Suzan Ryder
PO Box 2050
Oakland, CA 94604-2050

Bay Area Rapid Transit District (BART)
Attn: Val Menotti
300 Lakeside Dr., 16th Floor
Oakland, CA 94612

Dennis Baker, Chief of Operations
City of Daly City
Wastewater Treatment Plant
153 Lake Merced Blvd.
Daly City, CA 94015

Regional Water Quality Control Board
Attn: Judy Huang
San Francisco Bay Region
1515 Clay St., Suite 1400
Oakland, CA 94612

Metropolitan Transportation Commission
Attn: Craig Goldbratt
101 – 8th Street
Oakland, CA 94607

Mr. Alan Zahradnik
Director of Planning and Policy Analysis
Golden Gate Bridge, Highway and Transportation District
1011 Anderson Drive
San Rafael, CA 94901

*Bay Area Air Quality Management District
Attn: Joseph Steinberger
939 Ellis Street
San Francisco, CA 94109

*For the purposes of this document, the Bay Area Air Quality Management District is included under Regional AGENCIES.
Chapter 5 – Comments and Coordination

CITY AND COUNTY OF SAN FRANCISCO

<table>
<thead>
<tr>
<th>Department/Agency</th>
<th>Contact Information</th>
</tr>
</thead>
</table>
| San Francisco Architectural Heritage | Attn: Executive Director
2007 Franklin Street
San Francisco, CA 94109 |
| Department of Building Inspection | Attn: Isam Hasenin – Director
1660 Mission Street
San Francisco, CA 94103 |
| Mayor’s Office of Community Development | Attn: Adrienne Pon, Director
1 South Van Ness, 5th Floor
San Francisco, CA 94103 |
| Wastewater Enterprise | Attn: Ed Ho
1145 Market Street, 5th Floor
San Francisco, CA 94103 |
| Michael Cohen | Mayor’s Office of Economic & Workforce Develop.
City Hall, Room 448
1 Dr. Carlton b. Goodlett Place
San Francisco, CA 94102-4689 |
| Stormwater Management | Attn: Rosey Jencks
1145 Market Street, 5th Floor
San Francisco, CA 94103 |
| Recreation & Park Department | Attn: Daniel LaForte
501 Stanyan Street
San Francisco, CA 94117 |
| The Planning Department | Attn: Janice Shambray
1650 Mission Street, Ste. 400
San Francisco, CA 94103 |
| San Francisco Department of Public Works | Attn: Sonya Banks
1650 Mission Street, Suite 400
San Francisco, CA 94103 |
| MTA Traffic Engineering Division | Attn: Jack L. Fleck
1 South Van Ness Street, 7th Floor
San Francisco, CA 94103 |
| San Francisco Fire Department | Attn: Barbara Schultheis, fire Marshall
698 Second Street, Room 109
San Francisco, CA 94107-2015 |
| Bill Mitchell, Captain | Bureau of Fire Prevention & Investigation
1660 Mission Street, 2nd Floor
San Francisco, CA 94103 |
| MTA Service Planning Division | Attn: Peter Straus
1 South Van Ness Avenue, 7th Floor
San Francisco, CA 94103 |
| Ken Yee, San Francisco Municipal Transportation Agency | SFMTA Finance – Real Estate Group
One South Van Ness Avenue, 7th Floor #7313
San Francisco, CA 94103-5417 |
| San Francisco Real Estate Department | Attn: Steve Legnito, Director of Property
25 Van Ness Avenue, 4th Floor
San Francisco, CA 94102 |
| Jack Sylvan, SF Mayor’s Office of Base Reuse & Development | 410 Ave. of the Palms, Bldg. 1, 2nd Floor
San Francisco, CA 94130 |
| Nathaniel P. Ford | Executive Director/CEO
San Francisco Municipal Transportation Agency
1 South Van Ness, 7th Floor
San Francisco, CA 94103 |
| Owen Stephens, President | Treasure Island Development Authority
410 Ave. of the Palms, Bldg. 1, 2nd Floor
San Francisco, CA 94130 |

San Francisco, CA 94102
Chapter 5 – Comments and Coordination

Jack Gold, Executive Director
San Francisco Architectural Heritage
2007 Franklin St.
San Francisco, CA 94109

GROUPS AND INDIVIDUALS

<table>
<thead>
<tr>
<th>AIA</th>
<th>Chi-Hsin Shao</th>
<th>James W. Haas, Chairman</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Francisco Chapter</td>
<td>CHS Consulting Group</td>
<td>Civic Pride!</td>
</tr>
<tr>
<td>Attn: Bob Jacobvitz</td>
<td>130 Sutter Street, Suite 468</td>
<td>555 Montgomery Street, Suite 850</td>
</tr>
<tr>
<td>130 Sutter Street</td>
<td>San Francisco, CA 94122</td>
<td>San Francisco, CA 94110</td>
</tr>
<tr>
<td>San Francisco, CA 94104</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gibson, Dunn & Crutcher</th>
<th>Richard Mayer</th>
<th>Bruce White</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Mary Murphy</td>
<td>NRG Energy Center</td>
<td>3207 Shelter Cove Avenue</td>
</tr>
<tr>
<td>One Montgomery Street</td>
<td>410 Jessie street, Suite 702</td>
<td>Davis, CA 95616</td>
</tr>
<tr>
<td>San Francisco, CA 94104</td>
<td>San Francisco, CA 94103</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alice Suet Yee Barkley of Counsel</th>
<th>Michal Dyett</th>
<th>*Peter Bosselman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luce Forward, Attorneys at Law</td>
<td>Dyett & Bhatia</td>
<td>Environmental Simulation Laboratory</td>
</tr>
<tr>
<td>121 Spear Street, Suite 200</td>
<td>755 Sansome Street, #400</td>
<td>119 Wurster Hall</td>
</tr>
<tr>
<td>San Francisco, CA 94105</td>
<td>San Francisco, CA 94111</td>
<td>University of California</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Georgia Brittan</th>
<th>Morgan, Lewis & Bockius</th>
<th>Cahill Contractors, Inc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Francisco for Reasonable Growth</td>
<td>Attn: Susan R. Diamond</td>
<td>Attn: Jay Cahill</td>
</tr>
<tr>
<td>460 Duncan Street</td>
<td>One Market Plaza</td>
<td>425 California Street, Suite 2300</td>
</tr>
<tr>
<td>San Francisco, CA 94131</td>
<td>San Francisco, CA 94104</td>
<td>San Francisco, CA 94104</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chicago Title</th>
<th>Chinatown Resource Center</th>
<th>Jeffer Mangels Butler & Mamaro, LLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Carol Lester</td>
<td>1525 Grant Avenue</td>
<td>David Cincotta</td>
</tr>
<tr>
<td>388 Market Street, 13th Floor</td>
<td>San Francisco, CA 94133</td>
<td>Two Embarcadero Center, 5th Floor</td>
</tr>
<tr>
<td>San Francisco, CA 94111</td>
<td></td>
<td>San Francisco, CA 94111</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coalition for San Francisco Neighborhoods</th>
<th>Ruben Santiago</th>
<th>Cushman & Wakefield of California, Inc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO Box 320098</td>
<td>PO Box 56631</td>
<td>Attn: John Vaughan</td>
</tr>
<tr>
<td>San Francisco, CA 94132-0098</td>
<td>Hayward, CA 94545</td>
<td>1 Maritime Plaza, Suite 900</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>*Damon Raike & Co.</th>
<th>DKS Associates</th>
<th>Yerba Buena Consortium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Frank Fudem</td>
<td>1000 Broadway</td>
<td>Attn: John Elberling</td>
</tr>
<tr>
<td>201 California Street</td>
<td>Oakland, CA 94612</td>
<td>182 Howard Street, #519</td>
</tr>
<tr>
<td>San Francisco, CA 94111</td>
<td></td>
<td>San Francisco, CA 94105</td>
</tr>
</tbody>
</table>
Chapter 5 – Comments and Coordination

<table>
<thead>
<tr>
<th>Address</th>
<th>Contact</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIP Associates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>353 Sacramento Street,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suite 1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Francisco, CA 94111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Associates, Inc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225 Bush Street, Suite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Francisco, CA 94104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mary Anne Miller</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Francisco Tomorrow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1239 – 42nd Avenue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Francisco, CA 94122</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farella Braun & Martel, LLC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Steven L. Vettel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Russ Building</td>
<td></td>
<td></td>
</tr>
<tr>
<td>235 Montgomery St.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Francisco, CA 9404</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Francisco Architectural Heritage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Executive Director</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Francisco, CA 94109</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morrison & Foerster, LLP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attorneys at Law</td>
<td></td>
<td></td>
</tr>
<tr>
<td>425 Market Street</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Francisco, CA 94105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vincent Marsh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Historic Preservation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consultant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marsh and Associates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2134 Green Street, No. 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Francisco, CA 94123-4761</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goldfarb & Lipman</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Richard A. Judd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1300 Clay Street, 9th Floor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>City Center Plaza</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oakland, CA 94612-1455</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greenwood Press, Inc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Gerry Katz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO Box 5007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westport, CT 06881-5007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gruen, Gruen & Associates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>564 Howard Street</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Francisco, CA 94105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sue Hestor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attorney at Law</td>
<td></td>
<td></td>
</tr>
<tr>
<td>870 Market Street, Room 1128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Francisco, CA 94102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Philip Fukuda</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRI Commercial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 California Street, Suite 1200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Francisco, CA 94111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaplan/McLaughlin/Diaz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Jan VArgo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>222 Vallejo Street</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Francisco, CA 94111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Howard Levy, Director</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Legal Assistance to the Elderly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 McAllister Street, #412</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Francisco, CA 94104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Larry Mansbach</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mansbach Associates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>582 Market Street, Suite 217</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Francisco, CA 94104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sally Maxwell</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maxwell & Associates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1522 Grand View Drive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berkeley, CA 94705</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cliff Miller</td>
<td></td>
<td></td>
</tr>
<tr>
<td>89 Walnut Avenue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corte Madera, CA 94925-1028</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milton Meyer & Co.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: James C. DeVoy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>One California Street</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Francisco, CA 94111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Robert Meyers Associates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120 Montgomery Street, Suite 2290</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Francisco, CA 94104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Lawyers Guild</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Regina Sneed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>558 Capp Street</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Francisco, CA 94110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Pacific Exchange</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Dale Carleson</td>
<td></td>
<td></td>
</tr>
<tr>
<td>301 Pine Street</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Francisco, CA 94104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page & Turnbull</td>
<td></td>
<td></td>
</tr>
<tr>
<td>724 Pine Street</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Francisco, CA 94109</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patri Merker Architects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Marie Zeller</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400 Second Street, Suite 400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Francisco, CA 94107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pillsbury, Winthrop LLP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Environmental and Landuse Section</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 Fremont Street</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Francisco, CA 94105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mrs. G. Bland Platt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>362 Ewing Terrace</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Francisco, CA 94118</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramsay/Bass Interest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Peter Bass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3756 Grant Avenue, Suite 301</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oakland, CA 94610</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reuben & Junius, LLP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>One Bush Street, Suite 600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Francisco, CA 94104</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Yerba Buena Island Ramps EIR/EIS 5-5 October 2011
Chapter 5 – Comments and Coordination

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Phone</th>
<th>Email</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diane Wong</td>
<td>UCSF Campus Planning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>333 California Street, Suite 11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>San Francisco, CA 94143-0286</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leah Shahum, Executive</td>
<td>San Francisco Bicycle Coalition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Director</td>
<td>955 Market St., #1550</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRETT GLADSTONE</td>
<td>Gladstone & Associates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>177 Post Street, Penthouse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>San Francisco, CA 94108</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WILLIAM ROSTOV</td>
<td>Communities for a Better Environment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1440 Broadway, Suite 701</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oakland, CA 94612</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROBERT PASSMORE</td>
<td>San Francisco, CA 94109</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JASON HENDERSON</td>
<td>Department of Geography S.F. State</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1600 Holloway Avenue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HSS279 San Francisco, CA 94132</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEDIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASSOCIATED PRESS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Bill Shiffman</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>303 – 2nd Street, #680 North</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>San Francisco, CA 94107-1366</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Leland S. Meyerzone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KPOO – FM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PO Box 6149</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>San Francisco, CA 94101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAN FRANCISCO BUSINESS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIMES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>275 Battery Street, Suite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>940</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Francisco, CA 94111</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>City Hall Bureau</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Francisco Chronicle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>901 Mission Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Francisco, CA 94103</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THE SUN REPORTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1791 Bancroft Avenue</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Francisco, CA 94124-2644</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAN FRANCISCO EXAMINER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>450 Mission Street, 5th</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Francisco, CA 94105</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIBRARIES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GOVERNMENT INFORMATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SERVICES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Francisco Main Library</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Civic Center</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 Larkin Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Francisco, CA 94102</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STANFORD UNIVERSITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIBRARIES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jonsson Library of</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Government Documents</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STATE & LOCAL DOCUMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIVISION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STANFORD, CA 94305</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HASTINGS COLLEGE OF THE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAW –</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIBRARY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200 McAllister Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Francisco, CA 94102-4978</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INSTITUTE OF GOVERNMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STUDIES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>109 Mosses Hall</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNIVERSITY OF CALIFORNIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BERKELEY, CA 94720</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ramps located on the east side of YBI with new westbound on- and off-ramps that replicate the functional role of the current ramps and also address seismic, traffic safety requirements, and design standards. The feasibility of improving the geometric configuration of the current eastbound off-ramp on the eastern side of YBI to Hillcrest Road will also be included. The YBI Ramps Improvement Project is separate and independent of both the SFOBB East Spina Seismic Safety Project currently under construction, and the Treasure Island and Yerba Buena Island (T/YBI) Redevelopment Plan, which is currently undergoing its own environmental review process. The proposed new ramps would improve traffic and seismic safety of the ramps and provide connections between YBI and the transition structure of the new SFOBB. The proposed project is located between Post Mile (PM) 7.0 and 8.1 starting at the east portal of the YBI tunnel and ending before the SFOBB Transition Structure.

The purpose of the project is to address geometric and operational deficiencies of the existing on- and off-ramps, improve traffic operations to and from the SFOBB and improve traffic safety by increasing design length for the eastbound and westbound off-ramps, and increasing merging distance for eastbound and westbound on-ramps. Preliminary alternatives under consideration for the EIS/EIR include:

(1) Build Alternative A, which assumes that the existing on- and off-ramps would remain in place and no further action or improvements would occur;
(2) Alternative B, which would include the removal of the existing westbound on- and off-ramps on the east side of YBI, construction of a westbound off-ramp to Macalla Court on the east side of YBI, construction of a westbound on-ramp to Macalla Court on the east side of YBI, and
(3) Alternative 4, which would include the removal of the existing westbound on- and off-ramps on the east side of YBI, construction of a westbound off-ramp from Macalla Court on the east side of YBI, construction of a westbound on-ramp from Hillcrest Road, and construction of a westbound off-ramp from Hillcrest Road on the east side of YBI. The feasibility of incorporating improvements to the current eastbound off-ramp on the eastern side of YBI to Hillcrest Road will be studied.

Anticipated Federal approvals or permits include, U.S. Fish and Wildlife Service (USFWS) Section 7 Endangered Species Act, Consultation, Sections 404 and 406 of the Clean Water Act, Section 10 of the Migratory Bird Treaty Act, Section 660 Land and Water Conservation Fund Act, Section 30 of the Corps of Engineers (ACE), Chapter 9 National Environmental Policy Act (NEPA), and environmental review process for the proposed project began in June 2008. A public scoping meeting is scheduled to be held at the Port of San Francisco on Wednesday, September 24, 2008 from 6:30 to 8 p.m.

In addition, at least one public hearing will be held after the publication of the Draft EIS/EIR. Public notice will be given of the time and place of the hearing (as applicable). The Draft EIS/EIR will be available for public review and comment prior to the public hearing.

To ensure that the full range of issues related to this proposed action are addressed and all significant issues identified, comments and suggestions are invited from all interested parties. Comment or questions concerning this proposed action and the EIR should be directed to Eric Cordoba, Project Manager for the Authority, by a copy of the comment sent to Melanie Brent, Caltrans Office Chief. Written comments must be received no later than 5 p.m. on October 9, 2008 and should be sent to Eric Cordoba at the Authority, copy of the comment sent to Melanie Brent at Caltrans at the address listed above.

(Catalog of Federal Domestic Assistance Program Number 20.295, Highway Planning and Construction. The regulations implementing Executive Order 12872 regarding intergovernmental consultation on Federal programs and activities apply to this program.)

Issued on: September 5, 2008

Nancy E. Bobb, Director, State Programs, Federal Highway Administration, Sacramento, California

[FR Doc. E9-2008 Filed 9-5-08; 0:45 am]

DEPARTMENT OF TRANSPORTATION
Federal Railroad Administration

Notice of Application for Approval of Discontinuance or Modification of a Railroad Signal System or Reset From the Requirements of Title 49 Code of Federal Regulations Part 238

Pursuant to Title 49 Code of Federal Regulations (CFR) Part 238 and Title 49 Code of Federal Regulations (CFR), the following railroad has petitioned the Federal Railroad Administration (FRA) seeking approval for the discontinuance or modification of a signal system or reset from the requirements of Title 49 CFR Part 238 as detailed below.

[Docket Number FRA-2008-0041]
Applicant: Wheeling & Lake Erie Railway Company, Mr. Dan Reines, Signal & Communications Supervisor, 100 East First Street, Elyria, OH 44035.

The Wheeling & Lake Erie Railway Company seeks approval of the proposed discontinuance of the signal system governing movements on the Maumee River turn span bridge at MP 2.30, Toledo, Ohio.

The reason given for the proposed changes is that a damaged mechanical circuit coupler located on the east end of the turn span is no longer in production and attempts to secure a replacement have been unsuccessful. Replacement of the entire system would be of excessive cost given the amount of rail traffic across the bridge.

Any interested party desiring to protest the granting of an application shall set forth specifically the grounds upon which the protest is made, and include a concise statement of the interest of the party in the proceeding.

Additionally, one copy of the protest shall be furnished to the applicant at the address listed above.

FRA expects to be able to determine these matters without an oral hearing. However, if a specific request for an oral hearing is accompanied by a showing that the party is unable to adequately present his or her position by written statements, an application may be set for public hearing.

All communications concerning this proceeding should be identified by Docket Number FRA-2008-0041 and may be submitted by one of the following methods:

- Web Site: http://www.regulations.gov. Follow the instructions for submitting comments on the DOT electronic site;
- Fax: 202-493-2251;
to award discretionary grants are made on the basis of a number of factors, including project evaluation under the National Priority System and the current operations and number of aircraft that are based at an airport. Nonprimary airports that have not provided verifiable data on the number of based aircraft at the airport adhere FAA of a tool for reviewing discretionary requests. Therefore, if a nonprimary airport has not provided a list of based aircraft at the airport, including “N” number. FAA will consider the failure to provide the information as a factor when considering a request from the airport for discretionary funding.

Issued in Washington, DC on August 27, 2011.

Wayne Heimbach,
Deputy Director, Office of Airport Planning and Programs

Federal Register 1 Vol. 73, No. 174 / Monday, September 8, 2008 / Notices

DEPARTMENT OF TRANSPORTATION

Federal Aviation Administration

Aviation Rulemaking Advisory Committee Meeting on Transport Airplane and Engine Issues

AGENCY: Federal Aviation Administration (FAA), DOT.

ACTION: Notice of public meeting.

SUMMARY: This notice announces a public meeting of the FAA’s Aviation Rulemaking Advisory Committee (ARAC) to discuss transport airplane and engine (TAE) issues.

DATES: The meeting is scheduled for Wednesday, October 7, 2008, starting at 9 a.m. Pacific Daylight Time. Arrange for oral presentations by September 16, 2008.

FOR FURTHER INFORMATION CONTACT: Ralph Gue, Office of Rulemaking, ARM–20, FAA, 800 Independence Avenue, SW, Washington, DC 20591, Telephone (202) 267–0160, Fax (202) 267–5075, or e-mail at ralph.gue@faa.gov.

SUPPLEMENTARY INFORMATION: Pursuant to Section 10(c)(2) of the Federal Advisory Committee Act (Pub. L. 92–463; 5 U.S.C. app. III), notice is given of an ARAC meeting to be held October 7, 2008.

The agenda for the meeting is as follows:

1. Opening Remarks, Review Agenda and Minutes.

DEPARTMENT OF TRANSPORTATION

Federal Highway Administration

Environmental Impact Statement and Environmental Impact Report:

San Francisco, CA

AGENCY: Federal Highway Administration (FHWA), DOT.

SUMMARY: The FHWA, on behalf of the California Department of Transportation (Caltrans), and the San Francisco County Transportation Authority (Authority), is issuing this notice to advise the public that an Environmental Impact Statement/Environmental Impact Report (EIS/EIR) will be prepared for the proposed Yerba Buena Island (YBI) Ramps Improvement Project on Interstate 80 (I-80) in San Francisco County, California.

FOR FURTHER INFORMATION CONTACT: Eric Cordoba, San Francisco County Transportation Authority, 160 Van Ness Avenue, 26th Floor, San Francisco, CA 94109. Telephone 415/555-2948 or Melanie Brent, Caltrans District 4 Office of Environmental Analysis, 111 Grand Avenue, Oakland, CA 94625. Telephone (510) 286–5213.

SUPPLEMENTARY INFORMATION: Effective July 1, 2007, the Federal Highway Administration (FHWA) assigned, and the California Department of Transportation (Caltrans) assumed, National Environmental Policy Act (NEPA) environmental responsibilities for highway projects pursuant to 23 U.S.C. 327. In cooperation with Caltrans, the Authority will prepare a Final EIS/EIR for the proposed YBI Ramps Improvement Project on Yerba Buena Island in the City and County of San Francisco, California. Caltrans is the lead agency under NEPA and the Authority is the lead agency under the California Environmental Quality Act (CEQA).

YBI is located in San Francisco Bay, between Oakland and San Francisco, and is accessible by vehicles only via the San Francisco–Oakland Bay Bridge (SPDEB), which is a critical link in the interstate network, providing access between San Francisco and the East Bay. The only access to Treasure Island, located north of YBI, and the only land access to the active U.S. Coast Guard facilities on the south side of YBI, is also from the SPDEB and the associated on- and off-ramps.

The proposed project would replace the existing westbound on- and off-
September 5, 2008

Subject: Notice of Preparation – Environmental Impact Report for the Yerba Buena Island Ramps Improvement Project

Dear Responsible Agencies, Organizations, and Interested Parties:

The San Francisco County Transportation Authority (Authority) proposes to remove the westbound on-ramp and the westbound off-ramp located on the eastern side of Yerba Buena Island (YBI). A new westbound on-ramp and a new westbound off-ramp - that replicate the functional roles of the current ramps on the eastern side of YBI - would be constructed. The replacement ramps would address design standards, and seismic and traffic safety requirements. For the proposed action, the Authority is preparing an Environmental Impact Report (EIR) under the provision of the California Environmental Quality Act (CEQA). The project involves a federal action and is therefore also subject to review under the National Environmental Policy Act (NEPA). The environmental document will be a joint environmental impact statement/environmental impact report (EIS/EIR) and is hereinafter referred to as the EIS/EIR.

The Authority is the Lead Agency under CEQA. The California Department of Transportation (Caltrans) is the Lead Agency under NEPA. We need to know the views of your agency regarding the scope and content of the environmental information germane to your agency’s statutory responsibilities in connection with the proposed project. Your agency will need to use the EIS/EIR prepared by our agency when considering your permit or other approval for the project.

This YBI Ramps Improvement Project is separate from both the San Francisco Oakland Bay Bridge (SF-OBB), East Span Seismic Safety Project, which is currently under construction and the Treasure Island and Yerba Buena Island (TI/YBI) Redevelopment Plan, which is currently undergoing its own environmental review process. The YBI Ramps Improvement Project has been proposed to address the geometric and operational deficiencies of the existing westbound on-ramp and existing westbound off-ramp on the eastern side of YBI and their effects on the San Francisco-Oakland Bay Bridge (I-80) mainline, without degrading the mainline operation as compared to the no-action alternative. This project would improve safety and facilitate traffic operations, at the I-80/YBI interchange by replacing the westbound on-ramp and the westbound off-ramp located on the eastern side of YBI. The feasibility of improving the geometric configuration and operations of the current eastbound off-ramp on the eastern side of YBI to Hilcrest Road will also be studied. A more detailed project description, project location map, and project vicinity map, are contained in the attached materials.

CEQA Guidelines Section 15082(b) mandates that each Responsible Agency must respond to a NOP within thirty (30) days after receipt. The review period for the YBI Ramps Improvement Project will extend from September 5, 2008 through October 5, 2008.
Chapter 5 – Comments and Coordination

YBI Ramps Improvement Project, NOI/NOP
Page 2 of 2

Written comments must be received at the Authority office by 5 p.m. on October 6, 2008 and sent to Eric Cordoba, Project Manager; San Francisco County Transportation Authority; 100 Van Ness Avenue, 26th Floor; San Francisco, CA 94102. Phone: (415) 955-2904. Fax: (415) 522-4629. E-mail: eric@cordobaconsulting.com, with a copy of the comment sent to Melanie Brent, Caltrans District 4 Office of Environmental Analysis, 111 Grand Avenue, Oakland CA 94623. Telephone (510) 286-5231. Please include the name of an appropriate contact person in your agency for continued EIS/EIR coordination.

A copy of the Notice of Preparation and Notice of Intent can be found on the Authority’s website, at http://www.sfcta.org

Your views and comments on how the project may affect the environment are welcomed. Please contact Mr. Cordoba at (415) 955-2904 if you have any questions.

David Murray
Deputy Director for Finance and Administration
San Francisco County Transportation Authority

September 5, 2008
Date

Attachments (1)

cc: EC, LC - Chron, File: YBI Ramps Improvement Project NOI/NOP
NOTICE OF PREPARATION (NOP) ATTACHMENT

YERBA BUENA ISLAND RAMPS IMPROVEMENT PROJECT

Environmental Impact Statement/Environmental Impact Report (EIS/EIR)

The San Francisco County Transportation Authority (Authority), and California Department of Transportation (Caltrans) as the Lead Agencies under the California Environmental Quality Act (CEQA) and National Environmental Policy Act (NEPA) respectively, will prepare an Environmental Impact Report/Environmental Impact Statement (EIS/EIR) for the following project:

PROJECT TITLE: YERBA BUENA ISLAND RAMPS IMPROVEMENT PROJECT

The Authority requests the views of your agency on the scope and content of the environmental information relevant to your agency’s jurisdictional or regulatory responsibilities. If your agency is a responsible agency or trustee agency as defined by State California Environmental Quality Act (CEQA) Guidelines (Sections 15381 and 15386), your agency will need to use the EIS/EIR prepared for this project when considering your permit or other approval for the project. If your agency is not a responsible or trustee agency as defined by CEQA guidelines, or if you are an interested individual or organization, we would still appreciate your views on the scope of the environmental document for this project.

The project description, location, and probable environmental effects are described herein, along with date, time, and location of the project scoping meeting. The project has the potential to have a significant effect on the environment, and therefore an EIS/EIR is required pursuant to State CEQA Guidelines 15060(d). No initial study has been prepared. The review period for the Yerba Buena Island (YBI) Ramps Improvement Project will extend from September 5, 2008 through October 6, 2008. Written comments must be received at the Authority office no later than 5 p.m. on October 6, 2008 and sent to Eric Cordoba, Project Manager; San Francisco County Transportation Authority; 100 Van Ness Avenue, 26th Floor; San Francisco, CA 94102. Phone: (415) 955-2904. Fax: (415) 522-4829. E-mail: eric@cordobaconsulting.com, with a copy of the comment sent to Melanie Brent, Caltrans District 4 Office of Environmental Analysis, 111 Grand Avenue, Oakland CA 94623. Telephone (510) 286-5231. Please include the name of an appropriate contact person in your agency for continued EIS/EIR coordination.

PROJECT DESCRIPTION

YBI is located in the San Francisco Bay, approximately halfway between Oakland and San Francisco, and is accessible by vehicles only via the San Francisco-Oakland Bay Bridge (SFOBB), part of Interstate 80. The SFOBB is a critical link in the interstate network, providing access between San Francisco and the East Bay. YBI and the SFOBB also provide access to Treasure Island, which lies to the north of YBI. YBI and Treasure Island are accessed by on-and off-ramps located on the upper and lower decks of the SFOBB. The SFOBB and the associated

Yerba Buena Island Ramps Improvement Project NOP Attachment Page 1 of 7
on-and off-ramps provide the only land access to the active U.S. Coast Guard facilities located on the southern side of YBI.

The proposed project would replace the existing westbound on-ramp and the westbound off-ramp located on the eastern side of YBI with a new westbound on-ramp and a new westbound off-ramp that replicate the functional roles of the current ramps. The replacement ramps would also address seismic and traffic safety requirements, and design standards. The feasibility of improving the geometric configuration and operations of the current eastbound off-ramp on the eastern side of YBI to Hillcrest Road will also be studied.

Build Alternatives have been proposed to address the geometric and operational deficiencies of the existing on- and off-ramps and their effects on the SFOBB (I-80) mainline without degrading the mainline operation as compared to the no-action. This YBI Ramps Improvement Project is separate and independent of the SFOBB East Span Seismic Safety Project, which is currently under construction and the Treasure Island and Yerba Buena Island (TI/YBI) Redevelopment Plan, which is currently undergoing its own environmental review process. The proposed new ramps would improve traffic and seismic safety of the ramps and provide connections between YBI and the transition structure of the new SFOBB. The proposed project is located between Post Mile (PM) 7.8 and 8.1 starting at the east portal of the YBI tunnel and ending before the SFOBB Transition Structure.

PURPOSE AND NEED

The purpose of the project is to address the geometric and operational deficiencies of the existing on- and off-ramps, to the extent physically and economically feasible; improve traffic operations to and from the SFOBB and improve traffic safety by increasing deceleration length for the eastbound and westbound off-ramps, and increasing merging distance for eastbound and westbound on-ramps.

The YBI ramps currently do not meet Caltrans geometric standards. They have not been significantly updated since the 1960s and are seismically unsafe. Due to their non-standard entrances and exits, these ramps act as a traffic operational constraint. In addition, the deceleration length of the off-ramps and the merging distance for the on-ramps are insufficient and not up to current standards. The limited merging and deceleration distances make it challenging for vehicles to enter and exit traffic flows on the SFOBB.
THE PROJECT AND PROJECT ALTERNATIVES

Preliminary alternatives under consideration for the EIS/EIR include:

(1) No Build Alternative, which assumes that the existing on- and off-ramps would remain in place and no further action or improvements would occur;

(2) Alternative 2B, which would include the removal of the existing westbound on- and off-ramps on the east side of YBI, construction of a westbound off-ramp to Macalla Court on the east side of YBI, and construction of a westbound on-ramp from Macalla Court on the east side of YBI. The feasibility of incorporating improvements to the current eastbound off-ramp on the eastern side of YBI to Hillcrest Road will be studied;

(3) Alternative 4, which would include the removal of the existing westbound on- and off-ramps on the east side of YBI, the construction of westbound on-ramp from Hillcrest Road, and construction of westbound off-ramp from Macalla Court on the east side of YBI. The feasibility of incorporating improvements to the current eastbound off-ramp on the eastern side of YBI to Hillcrest Road will be studied;

(4) Other alignment alternatives that emerge from the scoping and alternatives analysis process.

POTENTIAL ENVIRONMENTAL EFFECTS TO BE ANALYZED

Potential environmental effects would be analyzed for the following issue areas:

- Land Use
- Consistency with State, Regional, and Local Plans and Programs
- Parks and Recreational Facilities
- Growth
- Farmland/Agricultural Lands
- Community Services
- Environmental Justice
- Utilities and Emergency Services
- Traffic and Transportation
- Visual/Aesthetics
- Historic and Cultural Resources
- Hydrology and Floodplain
- Water Quality and Stormwater Runoff
- Geology, Soils, and Seismicity
- Paleontology
- Hazardous Waste/Materials
- Air Quality
- Noise and Vibration
- Biological Resources
• Wetlands and Other Waters of the U.S.

Caltrans and the Authority will evaluate the impacts of each alternative. To ensure that the full range of issues to this proposed action are addressed and all significant issues identified, comments and suggestions are invited from all interested parties.

THE EIS/EIR PROCESS AND THE ROLE OF PARTICIPATING AGENCIES AND THE PUBLIC

In accordance with 23 CFR 771.105(a) and 771.133 and with CEQA and the implementing regulations, Caltrans and the Authority will comply with all applicable Federal and state environmental laws, regulations, and federal executive orders applicable to the proposed project during the environmental review process. These requirements include, but are not limited to, the regulations of the Council on Environmental Quality and Caltrans implementing NEPA (40 CFR parts 1500-1508, and 23 CFR Part 771), the project-level air quality conformity regulation of the U.S. Environmental Protection Agency (EPA) (40 CFR part 93), the Section 404(b)(1) guidelines of EPA (40 CFR part 230), the regulation implementing Section 106 of the National Historic Preservation Act (36 CFR Part 800), the regulation implementing section 7 of the Endangered Species Act (50 CFR part 402), Section 4(f) of the 1966 DOT Act (23 CFR 771.135; 49 U.S.C. 303), Section 401 and 404 of the Clean Water Act, Section 6(f) Land and Water Conservation Fund Act, Section 10 Army Corps of Engineers (ACOE), Section 9 Coast Guard, determination of consistency with the federal Coastal Zone Management Act by the San Francisco Bay Conservation and Development Commission, federal Executive Orders 12898 on environmental justice, 11988 on floodplain management, and 11990 on wetlands, and the CEQA laws and regulations. The Authority Board would certify the EIR, Caltrans would certify the EIS, approve the project and project design, and would be responsible for project construction.

Letters describing the proposed action and soliciting comments will be sent to appropriate Federal, state, participating agencies (including federally recognized Tribal governments, if any), and local agencies, and to private organizations and citizens who have previously expressed or are known to have interest in this proposal.

To ensure that the full range of issues related to this proposed action are addressed and all significant issues identified, comments and suggestions are invited from all interested parties. Comment or questions concerning this proposed action and the EIS/EIR should be directed to Eric Cordoba, Project Manager for the Authority, with a copy of comment sent to Melanie Brent, Caltrans Office Chief at the addresses listed at the end of this attachment.

SCOPING MEETINGS

A public scoping meeting is scheduled to be held at the Port of San Francisco office, in the Bayside Conference Room located at Pier 1, The Embarcadero, San Francisco, CA 94111 on Wednesday, September 24, 2008 from 6:30 to 8:00 p.m. Written comments on the scope of alternatives and impacts to be considered must be received at the Authority office no later than 5 p.m. on October 6, 2008 and should be sent to the Authority with a copy of the comment sent to Caltrans at the addresses below.
In addition, at least one public hearing will be held after the publication of the Draft EIS/EIR. Public notice will be given of the time and place of the meeting and hearing (as applicable). The Draft EIS/EIR will be available for public and agency review and comment prior to the public hearing.

ADDRESSES/CONTACT LIST/FURTHER INFORMATION

Written comments during scoping or on the proposed project in general should be sent to: Eric Cordoba, Project Manager; San Francisco County Transportation Authority; 100 Van Ness Avenue, 26th Floor; San Francisco, CA 94102. Phone: (415) 955-2904. Fax: (415) 522-4829. E-mail: eric@cordobaconsulting.com with a copy of the comment sent to Melanie Brent, Caltrans District 4 Office of Environmental Analysis, 111 Grand Avenue, Oakland CA 94623. Telephone (510) 286-3231.

To be added to the mailing list for the YBI Ramps Improvement Project, contact Mr. Cordoba at the address listed above.
ii. Process for inviting participating agencies – On September 5, 2008, Caltrans sent out letters inviting key stakeholder agencies and local interest groups to become cooperating or participating agencies in the YBI Ramps Improvement Project environmental review process. In November 2010, Caltrans sent out an invitation to agencies and local interest groups for an opportunity to hear an update on the project alternatives and potential environmental impacts, which was held on December 7, 2010.

Agencies invited to participate included:

- California Transportation Commission
- U.S. Army Corps of Engineers (USACE)
- U.S. Fish and Wildlife Service (USFWS)
- U.S. Environmental Protection Agency (USEPA)
- U.S. Department of the Interior (USDOI)
- USCG
- U.S. Navy
- California Department of Fish and Game (CDFG)
- Regional Water Quality Control Board San Francisco Bay Region (SFRWQCB)
- Bay Area Air Quality Management District (BAAQMD)
- California Air Resources Board
- Association of Bay Area Governments (ABAG)
- Federal Transit Administration (FTA)
- Federal Highway Administration (FHWA)
- San Francisco Bay Conservation and Development Commission (BCDC)
- California Department of Parks and Recreation State Office of Historic Preservation (SHPO)
- State Lands Commission
- San Francisco Planning Department
- Treasure Island Development Authority (TIDA)
- San Francisco Mayor’s Office of Base Reuse and Development
- Mayor’s Office of Community Development
- San Francisco Architectural Heritage
- California Native American Heritage Commission (NAHC)
- San Francisco Bicycle Coalition
- Metropolitan Transportation Commission for the San Francisco Bay Area (MTC)
San Francisco Municipal Transportation Agency (SFMTA).

The following agencies are participating agencies:

- USCG – cooperating agency
- U.S. Navy – participating agency
- USEPA – participating agency
- USDOI – participating agency
- FHWA – participating agency
- FTA – participating agency
- USACE – participating agency
- USFWS – participating agency
- CDFG – participating agency
- SFRWQCB – participating agency
- TIDA – participating agency
- SFMTA – participating agency

iii. How and when opportunities for involvement were given on:

- Purpose and need – This was contained in the Notice of Intent (NOI) sent on September 5, 2008, along with the invitation letter.

- Range of alternatives – These were contained in the NOI sent on September 5, 2008, along with the invitation letter.

- Methodology for analyzing alternatives – Caltrans and SFCTA actively reached out to participating agencies via phone and e-mail to determine the best time for attendance. This meeting was held on December 7, 2010, and the agencies listed under (iv) below, participated. At this meeting the participating agencies were provided an update on the project overview, purpose and need, alternatives, analyses conducted and methodologies and potential environmental impacts.

- Preferred alternative - The preferred alternative was identified on April 12, 2011 with the PDT.

iv. Process for early identification of issues – Opportunities to identify issues early were provided on September 5, 2008. In November 2010, agencies included in the full list under item (ii) above were contacted to request participation in a briefing of the draft findings in the Draft EIR/EIS. The meeting was held on December 7, 2010 and the following agencies participated:

- U.S. Navy
- USCG
- USEPA
v. Status of permits and approvals - Permits required for the project may include:

<table>
<thead>
<tr>
<th>Approval Agency</th>
<th>Permit/Approval/Determination</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCDC</td>
<td>Consistency Determination</td>
<td>Anticipate After ROD</td>
</tr>
<tr>
<td>CDFG</td>
<td>Streambed Alteration Agreement (1602 Permit)</td>
<td>After ROD</td>
</tr>
<tr>
<td>SHPO</td>
<td>Section 106 concurrence and MOA</td>
<td>Occurred between Draft and Final</td>
</tr>
<tr>
<td>Regional Water Quality Control Board</td>
<td>NPDES Statewide Permit (Order No. 99-06-DWQ)</td>
<td>After ROD</td>
</tr>
<tr>
<td></td>
<td>Dewatering permit (R2-2007-0033)</td>
<td>After ROD</td>
</tr>
<tr>
<td></td>
<td>401 Water Quality Certification Permit</td>
<td>After ROD</td>
</tr>
<tr>
<td>Air Pollution Control District</td>
<td>Permit to Construct</td>
<td>After ROD</td>
</tr>
<tr>
<td>USACE</td>
<td>404 Nationwide Permit (NWP 14)</td>
<td>Pre-construction notification</td>
</tr>
<tr>
<td>USCG</td>
<td>Section 9 Permit Requirements</td>
<td>After ROD</td>
</tr>
<tr>
<td></td>
<td>MOU to ensure existing MOA and license criteria currently in effect with the SFOBB ESSSP will apply to the YBI Ramps Improvement Project</td>
<td>Occurred between Draft and Final</td>
</tr>
<tr>
<td></td>
<td>Encroachment Permit</td>
<td>After ROD</td>
</tr>
<tr>
<td>MTC</td>
<td>Air Quality PM$_{2.5}$</td>
<td>Occurred between Draft and Final</td>
</tr>
</tbody>
</table>

5.2 Scoping Process

The scoping process was launched with the publication of the NEPA NOI and CEQA Notice of Preparation (NOP). The NOI was published in the Federal Register on September 8, 2008, and the NOP was published on September 5, 2008 in local newspapers. The NOP was circulated to stakeholder agencies through the California State Clearinghouse on September 5, 2008, and to additional agencies, organizations, and the general public through direct mail. The NOP was advertised in local newspapers (San Francisco Chronicle, Contra Costa Times, and Oakland Tribune) on September 5, 2008, along with information about the scoping meeting and scoping comment period.

Scoping Meeting – The scoping meeting was held on September 24, 2008, from 6:30 to 8:30 p.m. at the Port of San Francisco conference room, which is located at Pier 1, The Embarcadero, in San Francisco, California. Information boards were set up around the room and staffed by Caltrans and the SFCTA, as well as project consultants. A court reporter was available to record comments. Attendees at the scoping meeting included Arc Ecology, Paul Svedersky, and TICD. Issues raised at the meeting included concern as to whether greenhouse gas issues would be studied; potential for contributing to intensity of growth on TI by removing traffic impacts of planned TI/YBI Project, relationship of this project’s Final EIR/EIS to the EIR produced for the TI/YBI Project, and a suggestion that the traffic analysis look at a comprehensive region relative to the
highway system that is affected by the bridge, reaching as far south as Cesar Chavez and reaching into the East Bay.

During the 30-day scoping period from September 5, 2008, through October 6, 2008, letters were received from the following agencies and organizations:

- USCG
- USEPA Region 9
- California Regional Water Quality Control Board – San Francisco Bay Region
- California Transportation Commission
- Bay Conservation and Development Commission
- San Francisco Municipal Transportation Agency
- San Francisco Bike Coalition
- San Francisco Bay Trail
- East Bay Bike Coalition

Issues raised in these scoping comment letters include:

- Maintaining unfettered, uninterrupted access to and from USCG facilities on YBI;
- Recommendation that the project be funded;
- Review for consistency with Section 309 of the CAA and consideration of air quality impacts, including GHG emissions;
- Guidance from USEPA on cumulative impact assessment methodology; protection of historic and cultural resources, and environmental justice analysis;
- Potential for water and wetlands impacts;
- Potential impacts to CWA Section 404 Waters;
- Potential for polluted storm water runoff and treatment requirements to preserve water quality;
- Potential for impacts on public access and view corridors;
- Potential impacts on fish, aquatic organisms, and other wildlife;
- Potential impacts on biological resources, including threatened and endangered species, critical habitats, and invasive species concerns;
- Potential impacts on bay water surface area, volume and circulation; questions about whether the project would come under the jurisdiction of the BCDC;
- Request for details on how the new ramps would accommodate bicycles, pedestrians, wheelchairs and transit connections (consistency with the separated
multiuse path on the new Bay Bridge East Span), as well as connections to existing and proposed trail systems on TI and YBI.

- Request for review of the Bay Trail Plan and discussion of possible impacts from the project.

5.3 Consultation and Coordination with Public Agencies

i. In addition to the SAFETEA-LU Coordination Plan and Scoping Process, the following meetings and presentations have been conducted with public agencies in support of the YBI environmental review:

CALTRANS

- More than 35 project development team meetings and numerous focused technical meetings have been held with Caltrans to discuss design issues pertaining to geometry, drainage, utilities, lighting, traffic, right-of-way, aesthetics, and structures. Each meeting resulted in valuable input to complete the respective design.

- Attendance at monthly project meetings with the City of San Francisco Mayor’s Office, the SFCTA, and TIDA to share information and discuss coordination issues.

- Meetings with the Caltrans Seismic PEER Review Panel on 11/21/08, 1/30/09, 4/24/09, and 6/26/09 to discuss the seismic response of the ramps and their impacts to the YBITS 1 project.

- Meetings with the Caltrans Project Management Team on 11/3/08, 1/12/09, 9/14/09, and 10/2/10 to discuss project funding, schedule, and construction staging of the YBI Ramps Improvement Project with the SFOBB.

SFCTA

- Meeting with the SFCTA Community Advisory Committee on 4/22/09 and 4/27/11 to present the project alternatives, solicit comments from the members, and provide updates on selection of the preferred alternative and project schedule.

BCDC

- Presentation to agencies on 12/7/10 to present a summary of project alternatives and potential environmental impacts.

USCG

- Meeting with USCG on 2/9/10 to discuss project impacts to the USCG right-of-way and project responsibilities between Caltrans, TIDA, and SFCTA.
Chapter 5 – Comments and Coordination

- Meeting with USCG on 3/23/09 to discuss the Hillcrest/South Gate Road intersection configuration and truck turning on Macalla Road.

- Meeting with USCG on 3/23/09 to discuss the Hillcrest/South Gate Road intersection configuration and truck turning on Macalla Road. Presentation to agencies on 12/7/10 to present a summary of project alternatives and potential environmental impacts.

US NAVY

- Meeting with the U.S. Navy on 5/19/10 to discuss right-of-way.

- Presentation to agencies on 12/7/10 to present a summary of project alternatives and potential environmental impacts.

TIDA

- Presentations to the TIDA Community Advisory Board on 4/6/09 and TIDA Board on 4/8/09 to brief them on the project and answer questions.

SHPO

- Meeting with SHPO on 7/23/09 to discuss impacts of the relocation of Buildings 10 and 267 and effects of Alternatives 2b and 4 on the historic district.

- Meeting and site visit with SHPO on 9/24/09 to discuss impacts of the relocation of Buildings 10 and 267.

TOLL BRIDGE PROGRAM OVERSIGHT COMMITTEE

- Meeting with the Toll Bridge Program Oversight Committee (TBPOC) on 4/2/09, 10/16/09 and 10/6/10 to provide project updates, gain consensus on aesthetics, and obtain structural Contract Change Order (COO) approval.

FHWA

- Meeting with FHWA on 12/1/09 to provide an update on the project.

- PM$_{2.5}$ interagency consultation and concurrence on the conformity analysis on 6/10/11.

DEPARTMENT OF HOMELAND SECURITY

- Meeting with the Department of Homeland Security on 1/12/10 to discuss Bridge security.

SFPUC

- Meetings with SFPUC on 1/26/09, 3/19/09, 7/1/10, and 1/31/11 to discuss potential impacts to utilities. Meeting resulted in positive feedback and information to identify impacted utilities.
Chapter 5 – Comments and Coordination

USEPA

- Presentation to agencies on 12/7/10 to present a summary of project alternatives and potential environmental impacts.

RWQCB

- Presentation to agencies on 12/7/10 to present a summary of project alternatives and potential environmental impacts.

METROPOLITAN TRANSPORTATION COMMISSION AIR QUALITY CONFORMITY TASK FORCE

- PM$_{2.5}$ interagency consultation and determination that the project is not Project of Air Quality Concern on 4/29/11.

CULTURAL RESOURCES CONSULTATION OF DRAFT FINDING OF EFFECT (FOE)

The following Section 106 process activities and consultations have been conducted in support of this Final EIR/EIS and preparation of a Draft FOE.

- AECOM sent a contact letter to the Native American Heritage Commission (NAHC) on November 7, 2008, requesting a search of the Sacred Lands File and a list of suitable Native American tribal organizations and individuals that might have an interest in or concerns with the project. AECOM sent contact letters to the NAHC-suggested Ohlone/Costanoan representatives on December 17, 2008, and followed up with phone calls approximately 2 weeks later. No responses were received.

- JRP, on behalf of the SFCTA, sent letters to interested parties on December 11, 2008, to inform area planning agencies, local governments, historical societies, museums, and other interested parties of the proposed project. No responses were received. The following organizations received this letter:
 - San Francisco Architectural Heritage
 - San Francisco Landmark Preservation Advisory Board
 - Preservation Coordinator, San Francisco Planning Department
 - San Francisco History Association
 - San Francisco Museum and Historical Society
 - California Historical Society
 - San Francisco Beautiful
 - California Heritage Council
 - California Preservation Foundation
 - National Trust for Historic Preservation Western Office
 - National Park Service, Pacific West Region Office
 - Oakland Heritage Alliance
 - Oakland Landmarks Preservation Advisory Board
 - Oakland Cultural Heritage Survey
On November 4, 2009, AECOM, on behalf of SFCTA, sent letters to inform interested parties of the findings of historic properties identified within the project’s APEs, in compliance with Section 106 of the NHPA and that the FOE report was submitted to SHPO.

Project Website – Information about the proposed project and the environmental review process (including the NOI/NOP) is posted on the SFCTA’s website at www.sfcta.org.

5.4 Public Participation on the Draft EIR/EIS

The Draft EIR/EIS was published in the Federal Register and officially released for public review on February 25, 2011. The formal review period ended on April 11, 2011. Since publication of the NOI and NOP in 2008, the purpose and need for the project has been refined to clarify that the purpose of the project is to improve traffic safety, geometric design, and traffic operation levels of service. The refinement in the purpose and need did not result in changes to the project description.

The Draft EIR/EIS was distributed to elected officials, key agencies, community groups, and interested citizens. The package mailed with the Draft EIR/EIS contained companion materials including DVDs of the draft document and technical studies, and a copy of the Notice of Availability (NOA). Copies of the Draft EIR/EIS and companion materials were made available to the general public through multiple sources, including local libraries, Caltrans District 4 and SFCTA websites, and upon request.

A public hearing on this document was held on Wednesday, March 16, 2011 at the Port of San Francisco office, in the Bayside Conference Room located at Pier 1, The Embarcadero, San Francisco, CA 94111 from 6:00 to 8:00 p.m. The public hearing was an open house format, during which time attendees could circulate among exhibit stations and talk to members of the project team. Legal notices of the Draft EIR/EIS publication and public hearing were printed in three local newspapers: The San Francisco Chronicle, Contra Costa Times, and Oakland Tribune.

A copy of the NOA was distributed with the Draft EIR/EIS at the time of publication. Comments are considered and addressed in this Final EIR/EIS.
Chapter 5 – Comments and Coordination

Yerba Buena Island Ramps EIR/EIS 5-27 October 2011

Secretary Richard K. Sullivan, Executive Office of Energy and Environmental Affairs, Attn: MEPA Office [Asling O’Shea], EEA No. 74636, 100 Cambridge Street, Suite 700, Boston, MA 02210. To send comments by e-mail or fax, or for questions regarding the MEPA process, contact Asling O’Shea, MEPA Analyst at: e-mail: asling.o'shea@state.ma.us; Fax: (617) 626-1191 or Phone: (617) 626-1104.

In addition, please file a copy of your comments with the Federal Energy Regulatory Commission. Your comments may be filed electronically via the Internet (instructions are on the Commission's Web site at http://www.ferc.gov/docs-filing/e-filing.asp). For assistance, please contact FERC Online Support at FERCOnlinesupport@ferc.gov or toll-free at (800) 222-0677 or, for TTY, contact (202) 502-6909. Although FERC strongly encourages electronic filing, your comments may also be paper-filed. To paper-file, mail an original and eight copies to: Kimberly Bose, Secretary, Federal Energy Regulatory Commission, 888 First Street, N.E., Washington, D.C. 20426. Please put the docket number, P-13015-001, on the first page of your response.

n. Procedures: The meetings will be recorded by a stenographer and will become part of the formal record of the Commission proceeding on the project.

dated: February 18, 2011.

Kimberly D. Bose, Secretary.

Federal Energy Regulatory Commission

DEPARTMENT OF ENERGY

Federal Energy Regulatory Commission

[Docket No. RM11-1-000]

Records Governing Off-the-Record Communications: Public Notice

This constitutes notice, in accordance with 18 CFR 385.220(b)(1), of the receipt of prohibited and exempt off-the-record communications.

Order No. 697 (64 FR 51222, September 22, 1999) requires Commission decisional employees, who make or receive a prohibited or exempt off-the-record communication, to record the substance of the communication on the record of the proceeding.

The following is a list of all communications recently received by the Secretary of the Commission. The communications listed are grouped by docket numbers in ascending order. These filings are available for review at the Commission in the Public Reference Room or may be viewed on the Commission’s Web site at http://www.ferc.gov using the e-library link. Enter the docket number, excluding the last three digits, in the docket number field to access the document. For assistance, please contact FERC Online Support at FERCOnlinesupport@ferc.gov or toll-free at (800) 222-0677, or for TTY, contact (202) 502-6909.

docket No. a file date b Preserver or requester

<table>
<thead>
<tr>
<th>Docket No.</th>
<th>File Date</th>
<th>Presenter or Requester</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM11-1</td>
<td>2/14/11</td>
<td>Gertrude Johnson</td>
</tr>
<tr>
<td>13015-001</td>
<td>2/15/11</td>
<td>Hon. Mike</td>
</tr>
<tr>
<td>13015-002</td>
<td>2/15/11</td>
<td>Sarmanta Dav-</td>
</tr>
<tr>
<td>13015-003</td>
<td>2/15/11</td>
<td>Mary</td>
</tr>
<tr>
<td>13015-004</td>
<td>2/15/11</td>
<td>Larry</td>
</tr>
<tr>
<td>13015-005</td>
<td>2/15/11</td>
<td>Pete Borgho</td>
</tr>
</tbody>
</table>

¹ Report of conference call.
² Telephone record.
³ Email exchange.
⁴ E-mail exchange record.

Dated: February 17, 2011.

Nathaniel J. Davis, Jr., Deputy Secretary.
Chapter 5 – Comments and Coordination

letters, in the Federal Register. Since February 2008, EPA has included its comment letters on EISs on its Web site at: http://www.epa.gov/ecompliance/nepa/index.html. Including the entire EPA comment letters on the Web site satisfies the Section 309(e) requirement to make EPA’s comments on EISs available to the public. Accordingly, on March 31, 2010, EPA discontinued the publication of the notice of availability of EPA comments in the Federal Register.

EIS No. 20110084, Draft EIS, FHWA, CA, Yerba Buena Island Ramps Improvement Project on Interstate 80 (I-80), Proposal to Replace the Existing Westbound on- and off-ramp, Funding, San Francisco County, CA, Comment Period Ends: 04/21/2011, Contact: Greg Kelle 916-498-5852.

EIS No. 20110049, Draft EIS, USEPA, HI, Palmyra Atoll National Wildlife Refuge Refill Project, Proposing to Restore and Protect the Native Species and Habitat, Implementation, Northern Line Islands, Honolulu, HI, Comment Period Ends: 03/14/2011, Contact: Bill O’Hara 808-586-6033.

EIS No. 20110050, Final EIS, USACE, MO, Missouri River Commercial Dredging, Proposal to Extract Sand and Gravel from the Missouri River, U.S. Corps of Engineers Section 10 and 404 Permits, Kansas City, Missouri and Greater St. Louis, Missouri, Review Period Ends: 03/18/2011, Contact: Cody Bowerman 816-333-3776.

EIS No. 20110051, Draft EIS, USN, CA, Marine Corps Air Ground Combat Center Project, Land Acquisition and Aerial Space Establishment to Support Large-Scale MACTI Live-Fire and Maneuver Training Facility, San Bernardino County, CA, Comment Period Ends: 04/11/2011, Contact: Chris Poudred 760-830-3764.

EIS No. 20110054, Revised Draft EIS, FTA, CA, Crenshaw Transit Corridor Project. Updated Information on a New Evaluation of Maintenance Sites, Proposals to Improve Transit Services, Funding, Los Angeles County Metropolitan Transportation Authority (LACMTA), Los Angeles County, CA, Comment Period Ends: 04/11/2011, Contact: Key Tellis 213-250-3860.

Amended Notices

Cliff Rader,
Environmental Protection Specialist, NERD Compliance Division, Office of Federal Activities.
[FR Doc. 2011-4255 Filed 2-24-11; 8:45 am]
BILLING CODE 6560-50-P

ENVIRONMENTAL PROTECTION AGENCY
[EA-PO-OPP-2011-0082; FRL-8845-3]
Notice of Receipt of Several Pesticide Petitions Filed for Residues of Pesticide Chemicals in or on Various Commodities
AGENCY: Environmental Protection Agency (EPA).
ACTION: Notice.
SUMMARY: This notice announces the Agency’s receipt of several initial filings of pesticide petitions proposing the establishment or modification of regulations for residues of pesticide chemicals in or on various commodities.
DATES: Comments must be received on or before March 28, 2011.
ADDRESSES: Submit your comments, identified by docket identification (ID) number and the pesticide petition number (PPN) of interest as shown in the body of this document, by one of the following methods:
• Delivery OPP Regulatory Public Docket (7002P), Environmental Protection Agency, Reg. S-4400, One Potomac Yard (South Bldg), 2777 S. Crystal Dr., Arlington, VA. Deliveries are only accepted during the Docket Facility’s normal hours of operation (8:30 a.m. to 4 p.m., Monday through Friday, excluding legal holidays). Special arrangements should be made for deliveries of boxed information. The Docket Facility telephone number is (703) 305-5805.

Instructions: Direct your comments to the docket ID number and the pesticide petition number of interest as shown in the body of this document. EPA’s policy is that all comments received will be included in the docket without change and may be available online at http://www.regulations.gov, including any personal information provided, unless the comment includes information claimed to be Confidential.
Notice of Availability and Request for Comment for
Yerba Buena Island Ramps Improvement Project
Draft Environmental Impact Report/Environmental Impact Statement

Date: February 25, 2011
To: All Interested Agencies, Organizations, and Persons

A Draft Environmental Impact Report/Environmental Impact Statement (EIR/EIS) has been prepared by the California Department of Transportation (Caltrans) and the San Francisco County Transportation Authority (the Authority) for the Yerba Buena Island (YBI) Ramps Improvement Project.

Caltrans is the lead agency pursuant to National Environmental Policy Act (NEPA) and the Authority is the lead agency pursuant to the California Environmental Quality Act (CEQA).

Project Location and Description

YBI is located in the San Francisco Bay, approximately halfway between Oakland and San Francisco, and is accessible by vehicles only via the San Francisco-Oakland Bay Bridge (SF/OBB), which is part of Interstate 80 (I-80). The SPOBB is a critical link in the interstate network, providing access between San Francisco and the East Bay. YBI and the SPOBB also provide access to Treasure Island (TI), which lies to the north of YBI. YBI and TI are accessed by on- and off-ramps located on the upper and lower decks of the SPOBB. The SPOBB and the associated on- and off-ramps provide the only land access to the active U.S. Coast Guard facilities located on the southern side of YBI. The proposed project is located between Post Mile (PM) 7.6 and PM 8.1 starting at the east portal of the YBI tunnel and ending before the SPOBB Transition Structure.

The proposed project would replace the existing westbound on-ramp and the westbound off-ramp located on the eastern side of YBI with a new westbound on-ramp and a new westbound off-ramp that would improve the functional roles of the current ramps.

The YBI Ramps Improvement Project is separate and independent of both the SPOBB East Span Seismic Safety Project currently under construction, and the Treasure Island and Yerba Buena Island (TI/YBI) Redevelopment Plan, which is currently undergoing its own independent environmental review process.

Project Purpose

The purpose of the proposed project is to improve:

- Traffic safety for drivers using the westbound on- and off-ramps
- Geometric design of the westbound on- and off-ramps on the east side of YBI to and from I-80
- Traffic operation levels of service (LOS) on the westbound on- and off-ramps.
NOTICE OF AVAILABILITY, 02.25.11
Page 2 of 3

Chapter 5 – Comments and Coordination

Draft EIR/EIS Overview
The Authority in cooperation with Caltrans has prepared a Draft EIR/EIS. The Draft EIR/EIS presents the environmental existing conditions, impacts from construction and operation of the alternatives, and suggested mitigation measures to reduce or eliminate adverse impacts.

The information is grouped by environmental impact category and a summary is provided of impacts and mitigation measures to reduce adverse impacts to less-than-significant levels. The project proponent would apply the mitigation measures during design, construction and operation of the facility.

The Draft EIR/EIS found that implementation of the proposed project would result in significant unavoidable environmental effects related to visual/aesthetics and cultural resources.

Document Availability and Request for Public Comment
The Draft EIR/EIS is being circulated for public comments for a period of 45 days.

The 45 day public comment period for the Draft EIR/EIS will commence on February 25, 2011 and conclude on April 11, 2011. Copies of the Draft EIR/EIS will be available online at http://www.dot.ca.gov/construction/YBIRamps and available for viewing at these local locations:

Caltrans Transportation Library
111 Grand Avenue, Room 12-639
Oakland, CA 94612

Oakland Main Public Library
125 14th Street
Oakland, CA 94612

San Francisco Public Library
Government Information Center
100 Larkin Street
San Francisco, CA, 94102

To request a copy of the document please call Eric Cordoba at (415) 522-4806.

A public hearing will be held to take comments from interested parties on the Draft EIR/EIS. The public hearing will be held at the Port of San Francisco office, in the Bayside Conference Room located at Pier 1, The Embarcadero, San Francisco, CA 94111 on Wednesday, March 16, 2011 from 6:00 p.m. to 8:00 p.m. Please visit http://www.dot.ca.gov/construction/YBIRamps for details on the public hearings.

Please submit comments in writing to the addresses provided below. Comment letters must be postmarked by April 11, 2011.

Eric Cordoba
Project Manager
YBI Ramps Improvement Project Comment
c/o San Francisco County Transportation Authority
NOTICE OF AVAILABILITY, 02.25.11
Page 3 of 3

100 Van Ness Avenue, 26th Floor
San Francisco, CA 94102
Phone: (415) 522-4806
Fax: (415) 522-4829

With a copy sent to:
Melanie Brent
Caltrans District 4 Office of Environmental Analysis
111 Grand Avenue
Oakland, CA 94623
Phone: (510) 286-5231
Fax: (510) 286-5600

Written comments may also be emailed to Eric Cordoba, eric@cordobaconsulting.com, with a copy
sent to Melanie Brent, melanie_brent@dot.ca.gov.

All comments received in writing prior to the close of the public comment period, and any
comments entered into the public record at the public hearing will be responded to in writing in the
Final EIR/EIS.

The Authority and Caltrans will consider the public comments in concert with the information
presented in the Draft EIR/EIS.
Chapter 5 – Comments and Coordination

5.5 Summary of Public and Agency Comments on the Draft EIR/EIS

During the formal comment period of the Draft EIR/EIS, a total of 5 letters consisting of 13 separate comments were received from the public. The major categories on which the public agencies commented included:

- Cultural and Historic Resources;
- Air Quality;
- Water Quality; and
- Selection of the Preferred Alternative.

Responses to the comments are provided in Section 5.6 of this Final EIR/EIS.

5.6 Comment Letters on the Draft EIR/EIS and Responses

The following comment letters were received during the comment period of the Draft EIR/EIS.

Table 5–1: Comment Letters on the Draft EIR/EIS

<table>
<thead>
<tr>
<th>Agencies</th>
<th>Comment Letter</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States Department of the Interior, Office of Environmental Policy and Compliance</td>
<td>1</td>
</tr>
<tr>
<td>United States Navy</td>
<td>2</td>
</tr>
<tr>
<td>United States Environmental Protection Agency Region IX</td>
<td>3</td>
</tr>
<tr>
<td>California Regional Water Quality Control Board San Francisco Bay Region</td>
<td>4</td>
</tr>
<tr>
<td>United States Coast Guard</td>
<td>5</td>
</tr>
</tbody>
</table>
United States Department of the Interior
OFFICE OF THE SECRETARY
Office of Environmental Policy and Compliance
Pacific Southwest Region
1111 Jackson Street, Suite 520
Oakland, California 94607

Electronically Filed

11 April 2011

Ms. Melanie Brent
Caltrans District 4 Office
Office of Environmental Analysis
111 Grand Avenue
Oakland, CA 94623
Email: melanie_brent@dot.ca.gov

Subject: Review of Draft Environmental Impact Statement (DEIS) and Section 4(f)
Evaluation for the Yerba Buena Island Ramps Improvement Project on I-80, San
Francisco County, CA

Dear Ms. Brent:

The Department of the Interior has received and reviewed the subject document and has no
comments to offer.

Thank you for the opportunity to review this project.

Sincerely,

[Signature]

Patricia Sanderson Port
Regional Environmental Officer
United States Department of the Interior, Office of Environmental Policy and Compliance

1. Thank you for your comment.
From: "An H CTV OASN Bui (EL&E), BRAC PMO West" <sn.bui@navy.mil>
To: "Eric Cordoba" <eric@cordobaconsulting.com>
Cc: "Douglas E CTV OASN Gilkey (EL&E), BRAC PMO West" <douglas.gilkey@navy.mil>, "Thomas L. CIV OASN Macchiarella (EL&E), BRAC PMO West" <thomas.macchiarella@navy.mil>, "Marvin D CIV WEST Counsel Norman" <marvin.norman@navy.mil>, "John M CIV NAVFAC SW Cummins" <john.cummins@navy.mil>, "Elizabeth A CIV OASN Larson (EL&E), BRAC PMO West" <elizabeth.larson@navy.mil>, "Ronald J CTR OASN Bochenek (EL&E), BRAC PMO West" <ronald.bochenek ctr@navy.mil>, "Alexander B CIV NAVFAC SW Bethke" <alexander.bethke@navy.mil>, "melanie brent" <melanie.brent@dot.ca.gov>
Sent: Tuesday, April 12, 2011 5:14:55 PM
Subject: Navy's YBI Ramps Draft EIR/EIS Comments

Hi Eric,

Below are our comments on the Draft EIR/EIS for the YBI Ramps Improvements Project. Thanks for providing the document for our review.

An

GENERAL COMMENTS:

1. In some instances the EIS/EIR contains inaccurate statements about the status of the Dept of Navy's transfer of Yerba Buena and Treasure Island properties to the Treasure Island Development authority. For example, in some instances, the EIS/EIR describes TI and YBI as "sites of the former Naval Station Treasure Island which was transferred from the U.S. Navy to TIDA in December 2009. " (See page, 3.1-4 of draft EIS/EIR, and page 3.1-7, which refers to TIDA and Navy having "reached agreement on the basic financial terms for the transfer...) However, in other instances the EIS/EIR states that the Navy "is in the process of transferring" these sites to TIDA. These statements create the potential for ambiguity or confusion about the ownership of the sites involved in the undertaking addressed by the analysis of the EIS/EIR. Please "scrub" the EIS/EIR for any text that is inaccurate and revise it to be consistent with the language used in the Caltrans MOA to address the status of the Navy's conveyance action (See attached MOA).

SPECIFIC COMMENTS:

1. 3.8-12: There is no mention of the potential indirect effects incurred under Alternative 2b here, only mentioned in association with Alternative 4. While indirect effects are mentioned on the previous page, it seems necessary to include them for Alternatives 2b and 4 in the comparison of effects as well.

2. 3.8-15: "Minor Repairs and Reconstruction" - inadvertent damage should be rectified in accordance with the Secretary of the Interior's Standards for Reconstruction or Restoration, not Rehabilitation or Preservation.
MEMORANDUM OF AGREEMENT
Between the California Department of Transportation and the California State Historic Preservation Officer
Regarding the Yerba Buena Island I-80 Ramps Improvement Project
San Francisco (04-SF-80, PM 7.6-8.1)

WHEREAS, the Federal Highway Administration (FHWA) has assigned and the California Department of Transportation (Caltrans) has assumed FHWA responsibility for environmental review, consultation, and coordination under the provisions of the Memorandum of Understanding between the Federal Highway Administration and the California Department of Transportation Concerning the State of California’s Participation in the Surface Transportation Project Delivery Pilot Program, which became effective on July 1, 2007 and applies to this project; and

WHEREAS, Caltrans has determined that the Yerba Buena Island I-80 Ramps Improvement Project in San Francisco (Undertaking) will have an adverse effect on the Senior Officers’ Quarters Historic District and Quarters 10 (which includes Building 267), properties listed on the National Register of Historic Places (National Register), and may have an effect on archaeological site CA-SFR-04-H, a property which has been determined eligible for listing on the National Register; and

WHEREAS, implementation and enforcement of the measures set forth in Stipulation ILF of this Memorandum of Agreement (MOA) will satisfactorily avoid potential adverse effects to archaeological site CA-SFR-04-H; and

WHEREAS, Caltrans has consulted with the California State Historic Preservation Officer (SHPO) pursuant to Stipulations X.C and XI of the January 2004 Programmatic Agreement among the Federal Highway Administration, the Advisory Council on Historic Preservation, the California State Historic Preservation Officer, and the California Department of Transportation Regarding Compliance with Section 106 of the National Historic Preservation Act, as it pertains to the Administration of the Federal-Aid Highway Program in California (PA), and where the PA so directs, in accordance with 36 CFR Part 800, the regulations implementing Section 106 of the National Historic Preservation Act (16 USC Section 470f) as amended, regarding the Undertaking’s effects on historic properties, and has notified the Advisory Council on Historic Preservation (AHP) of the adverse effect finding pursuant to 36 CFR § 800.6(a)(1); and

WHEREAS, Caltrans has thoroughly considered alternatives to the Undertaking, has determined that the statutory and regulatory constraints on the design of the Undertaking preclude the possibility of avoiding adverse effects to historic properties during the Undertaking’s implementation, and has further determined that it will resolve adverse effects of the Undertaking on the subject historic properties through the execution and implementation of this MOA; and

WHEREAS, Caltrans District 4, the San Francisco County Transportation Authority (SFCTA), the United States Navy, the United States Coast Guard, and the Treasure Island Development Authority (TIDA) have participated in the consultation and have been invited to concur in this MOA;
WHEREAS, the United States Navy is the current owner of the subject historic properties and the Undertaking will be implemented in accordance with this MOA after the conveyance of the subject historic properties to the TIDA.

NOW, THEREFORE, Caltrans and the SHPO agree that, upon Caltrans’ decision to proceed with the Undertaking, Caltrans shall ensure that the Undertaking is implemented in accordance with the following stipulations in order to take into account the effect of the Undertaking on historic properties, and further agrees that these stipulations shall govern the Undertaking and all of its parts until this MOA expires or is terminated.

Caltrans shall ensure that the following stipulations are implemented:

STIPULATIONS

I. Area of Potential Effect
The APE for this Undertaking is depicted in the Supplemental Historic Property Survey Report for the Yerba Buena Island Ramps Improvement Project, Map 3 (Map 3 is included as Attachment A of this MOA). The APE included the maximum existing and proposed right-of-way, project construction easements (temporary and permanent), and all properties subject to direct or indirect project effects. Attachment A set forth hereunder may be amended through consultation among the MOA parties without amending the MOA proper.

II. Treatment of Historic Properties
A. Prior to the start of any work that could adversely affect any characteristics that qualify Quarters 1 (the Nimitz House), Quarters 10, and Building 267 as historic properties, SFCTA will prepare Historic Structure Reports (HSRs) for Quarters 1 (the Nimitz House) within the Officers’ Quarters Historic District, Quarters 10, and Building 267. The scope of the HSRs will be developed in consultation with Caltrans, the Navy, and TIDA, and will follow the general guidelines for such reports as described in the California Office of Historic Preservation publication, “Historic Structure Report Format.” Caltrans shall ensure that the documentation is completed and accepted before the historic properties are altered and/or moved. Copies of the HSRs will be provided to all of the signatory and concurring parties to this MOA.

B. Historic Landscape Report and Landscaping Plan
1. Historic Landscape Report
SFCTA will prepare a Historic Landscape Report (HLR) for the Officers’ Quarters Historic District, to aid in planning for future use and landscaping of the properties within the District. The scope of the HLR will be developed in consultation with Caltrans, the Navy, and TIDA, and will be informed by the general guidelines for the Historic American Landscape Survey, as described in the National Park Service.
publication, “HALS Guidelines.” Copies of the HLR will be provided to all of the
signatory and concurring parties to this MOA.

2. SFCTA will prepare and implement a landscaping plan for the Officers’ Quarters
Historic District, to address areas where the existing landscaping will be disturbed
by the Undertaking and for visual screening of the new ramp structures from
properties within the District. SFCTA and Caltrans shall consult to ensure that this
stipulation does not duplicate effort or conflict with Stipulation V.C of the
Memorandum of Agreement among the Federal Highway Administration, the
United States Coast Guard, the California State Historic Preservation Officer, and
the Advisory Council on Historic Preservation for the San Francisco Oakland Bay
Bridge East Span Seismic Safety Project in San Francisco and Alameda Counties,
California. Prior to implementation, the landscaping plan will be transmitted for
review and comment to all of the signatory and concurring parties to this MOA.

C. Relocation of Quarters 10 and Building 267
SFCTA will relocate Quarters 10 and Building 267 to a new location on Yerba Buena
Island. SFCTA will ensure that the buildings are moved in accordance with the
approaches recommended in the National Park Service’s Moving Historic Buildings
(John Obed Curtis, 1979), and by a professional building mover who has the experience
and capability to move historic buildings properly. The SHPO will be afforded an
opportunity to review and approve the proposed relocation site. The relocation will
include the construction of new foundations, utility connections, and all other work
necessary to prepare the buildings for future use.

Upon completion of the relocation work, Caltrans will re-evaluate the property and
determine, in consultation with the SHPO, whether the property continues to meet
National Register criteria or should be proposed for removal from the National
Register.

D. Interpretive Signs
SFCTA will install interpretive signs, incorporating narrative and images relating to the
historic Navy buildings on Yerba Buena Island, in consultation with Caltrans. Caltrans
shall submit the content and location(s) of the interpretive signs to the SHPO for review
and comment. The review period shall be 30 days upon receipt. If the SHPO has not
commented by the end of the 30-day review period, SFCTA may proceed.

E. Protection of Historic Buildings and Repair of Inadvertent Damage

1. Protection
SFCTA, in consultation with Caltrans, the Navy, and TIDA, will develop and
implement measures to protect the buildings of the Senior Officers’ Quarters
Historic District and Quarters 10 (including Building 267) from damage resulting
from the Undertaking. Such measures may include, but are not limited to, vibration
monitoring during pile driving in proximity to historic properties.

2. Repair of Inadvertent Damage
Caltrans will ensure that any damage to historic properties resulting from the Undertaking, and any damage resulting from the relocation of Quarters 10 and Building 267, will be repaired in accordance with the Secretary of the Interior’s Standards for Rehabilitation. The IHSs and HLIs described in Stipulations II.A and II.B will include photographic and other documentation of the properties prior to the start of construction and will establish the baseline condition for assessing damage. Prior to implementation of any repairs, Caltrans and SFCTA will provide plans for repairs to the SHPO for review and comment to ensure conformance with the Secretary of the Interior’s Standards for Rehabilitation. The review period shall be 30 days upon receipt. If the SHPO has not commented by the end of the 30-day review period, SFCTA may proceed.

F. Protection of Archaeological Site CA-SFR-04/H
Caltrans shall ensure that the potentially adverse effect of the Undertaking on archaeological site CA-SFR-04/H is avoided by establishing an Environmentally Sensitive Area (ESA) around the boundary of the site. The ESA will be established and maintained in accordance with the ESA Action Plan for this Undertaking. The ESA shall be thoroughly described on the final construction plans for the Undertaking. No construction activity or related ground disturbance will take place within the ESA. The ESA Action plan that details the implementation of this stipulation is appended to this MOA as Attachment B.

III. Administrative Provisions
A. Definitions.
 The definitions provided at 36 CFR § 800.16 are applicable throughout this MOA.

B. Professional Qualifications and Standards.
 Caltrans will ensure that only individuals meeting the Secretary of the Interior’s Professional Qualification Standards (48 FR 44738-39) in the relevant field of study carry out or review the appropriateness and quality of the actions and products required by Stipulations II.A, II.B, and II.D of this MOA.

C. Discoveries and Unanticipated Effects.
 If Caltrans determines after the construction of the Undertaking has commenced, that the Undertaking will affect a previously unidentified property that may be eligible for listing on the National Register, or affect a known historic property in an unanticipated manner, Caltrans will address the discovery or unanticipated effect in accordance with 36 CFR § 800.13(b)(3). Caltrans at its discretion may hereunder assume any discovered property to be eligible for listing on the National Register in accordance with 36 CFR § 800.13(c).

D. Resolving Objections.
 1. Should any party to this MOA object at any time in writing to the manner in which the terms of this MOA are implemented, to any action carried out or proposed with
respect to implementation of this MOA, or to any document prepared in accordance with and subject to the terms of this MOA, Caltrans shall immediately notify the other parties of the objection, request their comments on the objection within 15 days following receipt of Caltrans’ notification, and proceed to consult with the objecting party for no more than 30 days to resolve the objection. Caltrans will honor the request of the other parties to participate in the consultation and will take any comments provided by those parties into account.

2. If the objection is resolved during the 30-day consultation period, Caltrans may proceed with the disputed action in accordance with the terms of such resolution.

3. If at the end of the 30-day consultation period, Caltrans determines that the objection cannot be resolved through such consultation, then Caltrans shall forward all documentation relevant to the objection to the ACHP, including Caltrans’ proposed response to the objection, with the expectation that the ACHP will, within 30 days after receipt of such documentation:
 a. Advise Caltrans that the ACHP concurs in Caltrans’ proposed response to the objection, whereupon Caltrans will respond to the objection accordingly. The objection shall thereby be resolved; or
 b. Provide Caltrans with recommendations, which Caltrans will take into account in reaching a final decision regarding its response to the objection. The objection shall thereby be resolved; or
 c. Notify Caltrans that the objection will be referred for comment pursuant to 36 CFR § 800.7(c) and proceed to refer the objection for comment. Caltrans shall take the resulting comments into account in accordance with 36 CFR § 800.7(c)(4) and Section 110(1) of the National Historic Preservation Act. The objection shall thereby be resolved.

4. Should the ACHP not exercise one of the above options within 30 days after receipt of all pertinent documentation, Caltrans may assume the ACHP’s concurrence in its proposed response to the objection and proceed to implement that response. The objection shall thereby be resolved.

5. Caltrans shall take into account any of the ACHP’s recommendations or comments provided in accordance with this stipulation with reference only to the subject of the objection. Caltrans’ responsibility to carry out all other actions under this MOA that are not the subject of the objection shall remain unchanged.

6. At any time during the implementation of the Stipulations in this MOA, should a member of the public raise an objection in writing pertaining to such implementation to any signatory party to this MOA, that signatory party shall immediately notify Caltrans. Caltrans shall immediately notify the other signatory parties in writing of the objection. Any signatory party may choose to comment in writing on the objection to Caltrans. Caltrans shall establish a reasonable time frame for this comment period. Caltrans shall consider the objection, and in reaching its decision, Caltrans will take all comments from the other signatory parties into account. Within 15 days following the closure of the comment period,
Chapter 5 – Comments and Coordination

Caltrans will render a decision regarding the objection and respond to the objecting party. Caltrans will promptly notify the other signatory parties of its decision in writing, including a copy of the response to the objecting party. Caltrans’ decision regarding resolution of the objection will be final. Following issuance of its final decision, Caltrans may authorize the action subject to dispute hereunder to proceed in accordance with the terms of that decision.

7. Caltrans shall provide all parties to this MOA, and the ACHP, if the ACHP has commented, and any parties that have objected pursuant to subsection D.6 of this Stipulation, with a copy of its final written decision regarding any objection addressed pursuant to this Stipulation.

8. Caltrans may authorize any action subject to objection under this Stipulation to proceed after the objection has been resolved in accordance with the terms of this Stipulation.

E. Amendments

Any signatory party to this MOA may propose that this MOA be amended, whereupon all signatory parties shall consult to consider such amendment. The amendment will be effective on the date that a copy signed by all of the original signatories is filed with the SHPO. If the signatories cannot agree to appropriate terms to amend this MOA, any signatory may terminate the MOA in accordance with Stipulation III,F, below.

F. Termination

1. If this MOA is not amended as provided for in section E of this Stipulation, or if any signatory party proposes termination of this MOA for other reasons, the signatory party proposing termination shall notify the other parties to this MOA in writing, explain the reasons for proposing termination, and consult with the other parties for at least 30 days to seek alternative to termination. Such consultation shall not be required if Caltrans proposes termination because the Undertaking no longer meets the definition set forth in 36 CFR § 800.16(y).

2. Should such consultation result in an agreement on an alternative to termination, the signatory parties shall proceed in accordance with that agreement.

3. Should such consultation fail to result in an agreement on an alternative to termination, the signatory party proposing termination may terminate this MOA by promptly notifying the other parties in writing. Termination hereunder shall render this MOA without further force or effect.

4. If this MOA is terminated hereunder, and if Caltrans determines that the Undertaking will nonetheless proceed, then Caltrans shall comply with the requirements of 36 CFR 800.3-800.6.

G. Duration

1. Unless terminated pursuant to section F of this stipulation, or unless it is superseded by an amended MOA, this MOA will be in effect following execution by the
signatory parties until Caltrans, in consultation with the other signatory parties, determines that all of its stipulations have been satisfactorily fulfilled.

2. The terms of this MOA shall be satisfactorily fulfilled within ten years following the date of execution by the signatory parties. If Caltrans determines that this requirement cannot be met, the parties to this MOA will consult to reconsider its terms. Reconsideration may include continuation of the MOA as originally executed, amendment of the MOA, or termination. In the event of termination, Caltrans will comply with subsection F.4 of this stipulation, if it determines that the Undertaking will proceed notwithstanding termination of this MOA.

3. If the Undertaking has not been implemented within ten years following the execution of this MOA, this MOA shall automatically terminate and have no further force or effect. In such event, Caltrans shall notify the other signatory parties in writing and, if it chooses to continue with the Undertaking, shall reinitiate review of the Undertaking in accordance with 36 CFR Part 800.

H. Effective Date

This MOA will take effect on the date that it is executed by Caltrans and the SHPO.

EXECUTION of this MOA by Caltrans and the SHPO, its filing with the ACHP in accordance with 36 CFR § 800.6(b)(1)(iv), and subsequent implementation of its terms, shall evidence, pursuant to 36 CFR § 800.6(e), that Caltrans has afforded the ACHP an opportunity to comment on the Undertaking and its effects on historic properties, and that Caltrans has taken into account the effects of the Undertaking on historic properties.
SIGNATORY PARTIES

California Department of Transportation
By: ______________________ Date: ____________
Jay Norvell, Chief
Division of Environmental Analysis

California State Historic Preservation Officer
By: ______________________ Date: ____________
Milford Wayne Donaldson
State Historic Preservation Officer

CONCURRING PARTIES

California Department of Transportation, District 4
By: ______________________ Date: ____________
Bijan Sartipi, District Director, District 4, Oakland

San Francisco County Transportation Authority
By: ______________________ Date: ____________

United States Navy
By: ______________________ Date: ____________

United States Coast Guard
By: ______________________ Date: ____________

Treasure Island Development Authority
By: ______________________ Date: ____________
United States Navy

1. The Final EIR/EIS has been revised to correct statements about the status of the U.S. Navy’s conveyance action to the Treasure Island Development Authority.

2. Thank you for your comment. The text of the EIR/EIS on page 3.8-12 has been revised to include a statement that Alternative 2b has the potential to cause an indirect adverse effect on the Senior Officers’ Quarters Historic District through construction vibration damages or through the introduction of visual elements that may diminish the integrity of the property’s significant historic features.

3. Thank you for your comment. The exact wording of the MOA has been finalized through Section 106 consultation between the agreement’s signatories (Caltrans, SFCTA, SHPO, United States Navy, and United States Coast Guard). The MOA has received all of the signatures and this Final EIR/EIS reflect language reflective of the agreement. The MOA is included as Appendix R of this Final EIR/EIS.
April 11, 2011

Melanie Brent
California Department of Transportation
District 4, Office of Environmental Analysis
111 Grand Avenue
Oakland, California 94623

Subject: Draft Environmental Impact Statement for the Yerba Buena Island Ramps Improvement Project, San Francisco County, California (CEQ #20110044)

Dear Ms. Brent:

The Environmental Protection Agency (EPA) has reviewed the above-referenced document pursuant to the National Environmental Policy Act (NEPA), Council on Environmental Quality (CEQ) regulations (40 CFR Parts 1500-1508), and Section 309 of the Clean Air Act. We have rated this Draft Environmental Impact Statement (DEIS) as LO, Lack of Objections. Please see the enclosed Summary of EPA Rating Definitions for a description of our rating system.

While we have a lack of objections to the proposed project, there are a few items that EPA recommends be clarified in the Final Environmental Impact Statement (FEIS):

- The air quality chapter should be updated to include the most recent available information, including monitoring data. Ensure that analyses are based on the most current data.
- The DEIS states that the project is not considered a Project of Air Quality Concern (POAQC), which determines whether a PM2.5 hot spot analysis is required. Caltrans must consult with the regional Air Quality Conformity Task Force to receive concurrence from the relevant agencies on the conclusion that the project is not a POAQC. This consultation and determination should be discussed in the FEIS.
- The DEIS references EPA’s 2006 guidance for qualitative particulate matter (PM) hot spot analysis, EPA’s final guidance document, Transportation Conformity Guidance for Quantitative Hot-spot Analyses in PM2.5 and PM10 Nonattainment and Maintenance Areas, was released in December 2010 and is available at http://www.epa.gov/ttn/astpl/state/roadtranscon/po_7260.html. EPA published a Federal Register notice on December 20, 2010, which initiated a two-year grace period for transitioning from qualitative to quantitative analysis procedures.
• EPA recommends that Caltrans complete consultation with the State Historic Preservation Officer and execute a programmatic agreement prior to publication of the FEIS, and include all mitigation commitments in the record of decision (ROD).

• Given the fact that stormwater runoff from the project site flows directly into the San Francisco Bay, EPA recommends that Caltrans implement aggressive best management practices (BMPs) to control and treat stormwater during construction and operation of the facility, and monitoring to ensure effectiveness of the BMPs. Commitment to these BMPs should be included in the FEIS.

We appreciate the opportunity to review this DEIS. When the FEIS is released for public review, please send one hard copy and one electronic copy to the address above (mail code: CED-2). If you have any questions, please contact Carolyn Mulvihill, the lead reviewer for this project, at 415-947-3554 or mulvihill.carolyn@epa.gov.

Sincerely,

Connell Dunning, Transportation Team Supervisor Environmental Review Office

Enclosure: Summary of EPA Rating Definitions

cc: Eric Cordoba, San Francisco County Transportation Authority
 Brendan Thompson, Regional Water Quality Control Board
 Andrea Meier, Army Corps of Engineers
1. The air quality sections have been updated to include the most recent available information including monitoring data.

2. Thank you for your interest in our project. The Metropolitan Transportation Commission (MTC) facilitates the Air Quality Conformity Task Force. The MTC is also responsible for determining that projects included in the 2035 Regional Transportation Plan (including the YBI Ramps Improvement Project) are in conformity with the State Implementation Plan for achieving the goals of the Clean Air Act. Consultation began in April 2011 when Caltrans submitted a Project Assessment Form for PM2.5 Interagency Consultation. On April 28, 2011, the Air Quality Conformity Task Force determined that the project is not a “Project of Air Quality Concern”. The consultation and determination is discussed in Section 3.14.3.4 of this Final EIR/EIS.

3. Thank you for your interest in our project. Reference to EPA’s final guidance document and the two-year grace period has been added to the Final EIR/EIS in Section 3.14.

4. Thank you for your interest in our project. Consultation between Caltrans, SFCTA, and the State Historic Preservation Officer has occurred. Caltrans, SFCTA, SHPO, United States Navy, and United States Coast Guard have a signed MOA. Mitigation is also included in this Final EIR/EIS and the commitments will also be included in the ROD.

5. Thank you for your interest in our project. Caltrans and the SFCTA are committed to implementing BMPs to control and treat stormwater during construction and operation of the YBI Ramps which are included in Section 3.10. A SWPPP would require identification, construction, and implementation of construction site BMPs as discussed on page 3.10-5 of the Final EIR/EIS. Stormwater runoff from operations would be treated by the bioswales designed for the project, and is discussed on page 3.10-6 of the Final EIR/EIS.
April 8, 2011
CIWQS Place No.: 719912 (BT)

Sent via electronic mail: No hard copy to follow

San Francisco County Transportation Authority
Attn: Mr. Eric Cordoba
eric@cordobaconsulting.com
100 Van Ness Avenue, 26th Floor
San Francisco, CA. 94102

SUBJECT: Draft Environmental Impact Report for the Yerba Buena Island Ramps Improvement Project (SCH#2008092019)

Dear Mr. Cordoba:

Thank you for giving staff of the San Francisco Bay Regional Water Quality Control Board (Water Board) the opportunity to comment on the Draft Environmental Impact Report (DEIR) for the Yerba Buena Island Ramps Improvement Project. Please see our comments below.

The San Francisco Transportation Authority (Authority) is proposing to replace the westbound Interstate 80 on- and off-ramps on the eastern side of Yerba Buena Island. Project implementation would result in the creation of new impervious areas.

Stormwater runoff from impervious areas may contain hydrocarbons, metals, volatile organic compounds, trash, and sediment at levels that may significantly impact State waters if left untreated. To mitigate for water quality impacts, the Authority may be required to ensure appropriate treatment of stormwater runoff from an area equivalent to the area of any new and redeveloped impervious surfaces. This level of treatment will be required by the Water Board should a 401 water quality certification be required for the project. Should the project not require a 401 water quality certification, then the Authority will need to implement stormwater treatment controls to the maximum extent practicable, per the requirements in the Caltrans Statewide Stormwater Permit (99-06-DWQ). However, please be aware the Caltrans Statewide Permit is currently undergoing revision and will be reissued in 2011. The revised version may include new language requiring provision of stormwater treatment at greater levels than required in 99-06-DWQ.
The Authority should factor the above considerations into the EIR mitigation measures and plan accordingly to provide any necessary right-of-way to accommodate treatment controls.

A similar version of this letter was sent to the Authority on October 6, 2008 in response to the Notice of Preparation of a DEIR, it is unclear on page 3.10-6 of the DEIR if the Authority is proposing to treat stormwater from an area equivalent to all of the Project’s new and reworked impervious areas. The Water Board will be unable to issue 401 certification if this treatment level is not provided.

If you have any questions, comments, or concerns, please contact me at (510) 622-2506, or via e-mail to BThompson@waterboards.ca.gov.

Sincerely,

Brendan Thompson
Environmental Specialist

cc (via e-mail): Ms. Melanie Brent, Caltrans
Mr. Hardeep Takhar, Caltrans
Mr. Cyrus Vafai, Caltrans
State Clearinghouse, state.clearinghouse@apr.ca.gov
Mr. Rafael Montes, BCDC

California Environmental Protection Agency

Recycled Paper
California Regional Water Quality Control Board San Francisco Bay Region

1. Thank you for your comment. As shown in Table S-2, on page S-11, Permits and Approvals Needed, a 401 Water Quality Certification permit is identified for the project. It is understood that the Caltrans Statewide Stormwater Permit (99-06-DWQ) is undergoing revision and will be reissued in 2011. The SWPPP will be prepared prior to construction and would reflect the latest stormwater treatment requirements in 99-06-DWQ. The SWPPP would be subject to Caltrans review and approval, and the 401 Water Quality Certification permit would require coordination and approval from the SFRWQCB.

2. The bioswales would collect flows from an area equivalent to all of the project’s new and reworked impervious areas. The text in the Final EIR/EIS has been revised to clarify in Section 3.10.3.2 on page 3.10-6. All necessary information will be provided to the SFRWQCB for the 401 Water Quality Certification permit.
Ms. Melanie Brent
District 4 Office of Environmental Analysis
California Department of Transportation
111 Grand Avenue
P. O. Box 22366
Oakland, CA 94623

Dear Ms. Brent:

The U.S. Coast Guard (CG) is writing to express its support of CALTRANS’ efforts to date on the Yerba Buena Island (YBI) Ramps Improvement Project. As a cooperating agency, we appreciate your efforts to include the CG in the development of the two build alternatives for the project.

We have discussed the alternatives with your project team throughout their development in order to ensure that CG operations can be maintained on YBI. Mitigation of any impacts to CG operations during construction, which are inevitable and understandable, can be addressed in a memorandum of understanding (MOU), or other suitable instrument, that will extend applicable terms and conditions of existing agreements with CALTRANS for the San Francisco - Oakland Bay Bridge Eastern Span Seismic Safety Project (SFOBB-ESSSP) to the Ramps project.

Once the public comment period for the Draft Environmental Impact Report is complete, the CG will work with CALTRANS to select the preferred alternative for this project.

We appreciate your efforts to date in addressing our detailed listing of concerns forwarded through earlier correspondence. Please contact Mr. Erik Balsley, my lead on this project, available at (510) 637-5542, if you have any questions or concerns.

Sincerely,

P. M. McMillin
United States Coast Guard

1. Thank you for your comment. Applicable terms and conditions of existing agreements with Caltrans for the SFOBB-ESSSP will be extended to the YBI Ramps Improvement Project in an MOU.

2. Thank you for your comment. Alternative 2b was identified as the preferred alternative with representatives from all participating and cooperating agencies (including the U.S. Coast Guard) on April 12, 2011.
CHAPTER 6 – LIST OF PREPARERS

Caltrans – District 4

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Office</th>
<th>Address</th>
<th>City, State, ZIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dale Jones</td>
<td>Caltrans Headquarters Environmental Coordinator for District 4 & 7</td>
<td>Caltrans Office of Environmental Analysis</td>
<td>1120 N Street</td>
<td>Sacramento, CA 95814</td>
</tr>
<tr>
<td>Valerie Shearer, Senior Environmental Planner</td>
<td>Caltrans Office of Environmental Analysis</td>
<td>Caltrans Office of Environmental Analysis</td>
<td>111 Grand Avenue</td>
<td>Oakland, CA 94612</td>
</tr>
<tr>
<td>Ed Pang, Senior Environmental Planner</td>
<td>Caltrans Office of Environmental Analysis</td>
<td>Caltrans Toll Bridge Program</td>
<td>111 Grand Avenue</td>
<td>Oakland, CA 94612</td>
</tr>
<tr>
<td>Stefan Galvez, SFOBB Environmental Compliance Manager</td>
<td>Caltrans Office of Natural Resources and Permits</td>
<td>Caltrans Office of Landscape Architecture</td>
<td>111 Grand Avenue</td>
<td>Oakland, CA 94612</td>
</tr>
<tr>
<td>Monica Gan, SFOBB Environmental Compliance</td>
<td>Caltrans Office of Natural Resources and Permits</td>
<td>Caltrans Water Quality Program</td>
<td>111 Grand Avenue</td>
<td>Oakland, CA 94612</td>
</tr>
<tr>
<td>Eltora Charles, Water Quality Permits</td>
<td>Caltrans Water Quality Program</td>
<td>Caltrans Water Quality Program</td>
<td>111 Grand Avenue</td>
<td>Oakland, CA 94612</td>
</tr>
<tr>
<td>Alex McDonald, Erosion Control</td>
<td>Caltrans Water Quality Program</td>
<td>Caltrans Office of Advanced Planning</td>
<td>111 Grand Avenue</td>
<td>Oakland, CA 94612</td>
</tr>
<tr>
<td>Glenn Kinoshita, Air Quality and Noise Impact Studies</td>
<td>Caltrans Office of Environmental Engineering</td>
<td>Caltrans Office of Cultural Resources Studies</td>
<td>111 Grand Avenue</td>
<td>Oakland, CA 94612</td>
</tr>
</tbody>
</table>
Chapter 6 – List of Preparers

Mary K. Smith
Associate Environmental Planner/Architectural History Office of Cultural Resource Studies
111 Grand Avenue
Oakland, CA 94612

Janet Pape, Branch Chief, SFOBB Archaeology
Office of Cultural Resource Studies
111 Grand Avenue
Oakland, CA 94612

Jeffrey G. Jensen, Office Chief
Biological Sciences and Permits
111 Grand Avenue
Oakland, CA 94612

Courtney Cacace
Ecologist / Permitting Specialist
111 Grand Avenue
Oakland, CA 94612

Yolanda Rivas, Branch Chief
Office of Environmental Analysis
111 Grand Avenue
Oakland, CA 94612

San Francisco County Transportation Authority
Eric Cordoba, Project Manager
SFCTA
100 Van Ness Avenue, 26th Floor
San Francisco, CA 94102

AECOM
Bill Graham, Principal
1420 Kettner Blvd., Suite 500
San Diego, CA 92101

David Reel, Principal/Vice President
150 Chestnut Street
San Francisco, CA 94111

Steve Heipel, Principal
2022 J Street
Sacramento CA 95811

Tammy Chan, Project Manager
150 Chestnut Street
San Francisco, CA 94111

Susan Yogi, Associate
150 Chestnut Street
San Francisco, CA 94111

Debra Lilly, Senior Environmental Project Manager
2020 L Street, Suite 400
Sacramento, CA 95811

Jason Reynolds, Senior Associate
1420 Kettner Blvd., Suite 500
San Diego, CA 92101

Marisa Grivas, Associate
150 Chestnut Street
San Francisco, CA 94111

Kara Baker, Associate
150 Chestnut Street
San Francisco, CA 94111

Bill Kasson, Senior Associate
2020 L Street, Suite 400
Sacramento, CA 95811

Mark Bowen, Architectural Historian
2020 L Street, Suite 400
Sacramento, CA 95811

Brian Ludwig, Associate
2020 L Street, Suite 400
Sacramento, CA 95811
Chapter 6 – List of Preparers

Angie Harbin-Ireland, Biological Resources Practice Leader
2101 Webster Street, Suite 1900
Oakland, CA 94612

Hildie Spautz, Biologist
2101 Webster Street, Suite 1900
Oakland, CA 94612

George Lu, Air Quality Specialist
2020 L Street, Suite 400
Sacramento, CA 95811

Jeff Goodson, Environmental Engineer
1420 Kettner Blvd., Suite 500
San Diego, CA 92101

JT Barr, Landscape Architect
1420 Kettner Blvd., Suite 500
San Diego, CA 92101

Yvana Kuhn, Environmental Scientist/Engineer
1420 Kettner Blvd., Suite 500
San Diego, CA 92101

Shawn Jackson, Visual Simulations
150 Chestnut Street
San Francisco, CA 94111

Marisa Fabrigas, Word Processing
1420 Kettner Blvd., Suite 500
San Diego, CA 92101

Therese Tempereau, Technical Editor
1420 Kettner Blvd., Suite 500
San Diego, CA 92101

Robin Rice, Word Processing
1420 Kettner Blvd., Suite 500
San Diego, CA 92101

Pete Choi, Environmental Planner
150 Chestnut Street
San Francisco, CA 94111

AECOM Transportation

Susan Chang, Vice President
2101 Webster Street, Suite 1900
Oakland, CA 94612

Corey Lang, Project Manager
2101 Webster Street, Suite 1900
Oakland, CA 94612
Chapter 6 – List of Preparers

Kelly Dunlap, Associate Vice President, 4(f)
2020 L Street, Suite 300
Sacramento, CA 95811

Rodney Pimentel, Vice President, Project Manager
2101 Webster Street, Suite 1900
Oakland, CA 94612

Craig Chatelain, Associate Vice President, Project Manager
2020 L Street, Suite 300
Sacramento, CA 95811

Samuel Chui, Project Engineer
2101 Webster Street, Suite 1900
Oakland, CA 94612

Alan D. Tabachnick, 4(f) Specialist
516 East State Street
Trenton, NJ 08609

JRP Historical Consulting

Meta Bunse, Historic Resources
1490 Drew Avenue #110
Davis, CA 95618

Toni Webb, Historic Resources
1490 Drew Avenue #110
Davis, CA 95618

CHS Consulting Group

Chi-Hsin Shao, Transportation
130 Sutter Street, Suite 468
San Francisco, CA 94104
CHAPTER 7 – REFERENCES

All supporting studies are included in this document by reference. These studies include the following.

Advisory Council on Historic Preservation (ACHP)

AECOM
2007 Yerba Buena Island Ramp Improvements – PEAR.

2009e Yerba Buena Island Ramps Improvement Project Botanical Assessment.

2011b Natural Environment Study: Yerba Buena Island Ramps Improvement Project.

2011d Yerba Buena Island Ramps Improvement Project EIR/EIS Air Quality Analysis Addendum Memorandum #2

2011e Yerba Buena Island Ramps Improvement Project EIR/EIS Noise Study Report Addendum Memorandum

2011f Yerba Buena Island Ramps Improvement Project EIR/EIS Natural Environment Study Addendum Memorandum.
AGS, Inc.

Alsop, F. J.

Anderson, J. B., and Brower, L. P.

Association of Bay Area Governments (ABAG)

Atsatt, P. R., and T. Ingram

Bay Area Air Quality Management District (BAAQMD)

Baye, P.

Birnbaum, Charles A., ASLA

Bloom, V.

Bossard, C. C., J. M. Randall, and M. C. Hoshovsky
Brower, L. P.

California Air Resources Board (ARB)

California Department of Conservation (CDC)

California Department of Fish and Game (CDFG)

2008a California Natural Diversity Data Base. Database Query for the Briones Valley, Hunters Point, Oakland East, Oakland West, Richmond, San Francisco North, San Francisco South, San Leandro, and San Quentin’s 7-½ minute Quads. October.

2008b State and Federally Listed Endangered and Threatened Animals of California. Natural Heritage Division, Natural Diversity Data Base.

California Department of Transportation (Caltrans)

2003 Caltrans Discharge Characterization Study Report, November. Library # CTSW-RT-03-065.51.42.
Chapter 7 – References

2007 Project Study Report: To Request Programming for Capital Support (Project Approval and Environmental Document Phase) On Interstate 80 in the City and County of San Francisco at Yerba Buena Island from PM 7.6 to PM 8.1, December 19.

California Environmental Protection Agency (Cal/EPA)

California Invasive Plant Inventory (Cal-IPC)

California Native Plant Society (CNPS)

2001 Inventory of Rare and Endangered Plants of California (sixth edition). Rare Plant Scientific Advisory Committee, David P. Tibor, Convening Editor. Sacramento, California. p. 388.

2005a Rare Plants of San Francisco. List of Special Status Plants of the Presidio. Prepared by Peter Brastow. Yerba Buena Chapter. September 15.

2005b Rare Plants of San Francisco. List of Special Status Plants of San Francisco. September 15.

California Office of Historic Preservation

Carraway, L. N., and B. J. Verts

CHS Consulting Group
2009a Yerba Buena Island Project Traffic Forecast Report.

City and County of San Francisco

2006 Planning Department. Transfer and Reuse of Naval Station Treasure Island Final Environmental Impact Report. State Clearinghouse No. 1996092073. Prepared by the Treasure Island Development Authority and the City and County of San Francisco. June 1.

Chapter 7 – References

Clifton, H.E. and R.E. Hunter

Clifton, H.E., Hunter, R.E., and Gardner, J.V.
Cowardin, L. M., V. Carter, F. C. Golet, and E. T. LaRoe

Crenshaw, W. S.

Curtis, John Obed

Dill, Jennifer
2003 TRB 2003 Annual Meeting CD-ROM, Transit Use and Proximity to Rail: Results from Large Employment Sites in the San Francisco Bay Area.

Earth Mechanics, Inc. (EMI)
2010 Draft Foundation Report – Yerba Buena Island Ramps Improvement, Oakland, California, August.

Employment Development Department

Environmental Laboratory
Euing, S.

Federal Emergency Management Agency (FEMA)

Federal Highway Administration (FHWA)

2004 Traffic Noise Model (TNM) ver. 2.5.

2006c Road Construction Noise Model, Version 1, February 2.

Fehr & Peers
2002 Disposal and Reuse of Naval Station Treasure Island Administrative Final Environmental Impact Statement (Treasure Island Community Development).

Chapter 7 – References

Garcia and Associates
2008 Yerba Buena Island Habitat Management Plan – Stakeholder Interview Background Information. And Appendix I – Existing Habitats and Special-Status Species on Yerba Buena Island. July.

Goals Project

Godish, T.

Graymer, R.W.

Grigg, Emma
2000 Lead biologist for Richmond Bridge Harbor Seal Project in conversation regarding harbor seal haul-out use with Veronica Wunderlich.

Hendricks, Rudy

Hendrix, Michael, and Wilson, Cori
2007 Recommendations by the Association of Environmental Professionals (AEP) on How to Analyze Greenhouse Gas Emissions and Global Climate Change in CEQA Documents. March 5. p. 2.

Hengesh, James V. and John Wakabayashi

Hickman, J. C.
Hodge, Hillary
2008 Lead biologist for Caltrans Devils Slide Tunnel Project in conversation regarding woodrat habitat with Veronica Wunderlich. April.

Hogle, Ingrid
2008 Monitoring Program Manager, San Francisco Estuary Invasive Spartina Project, Berkeley, California. Email correspondence with Hildie Spautz regarding spartina near YBI. November 18.

Holland, R.

ICF Jones & Stokes and Illingworth and Rodkin
2009 Final Technical Guidance for Assessment and Mitigation of the Hydroacoustic Effects of Pile Driving on Fish. February.

Illingworth and Rodkin

2011b E-mail Correspondence: Airborne Noise from Pile Driving. January 6.

Institute of Transportation Studies, UC Davis (ITS)

Jacques-Strong, D. L.

Jameson, E. W. Jr., and Hans J. Peeters

Jennings, M. R., and M. P. Hayes
1994 Amphibian and Reptile Species of Special Concern in California. California Department of Fish and Game Contract # 8023. Inland Fisheries Division, Rancho Cordova, California.

JRP Historical Consulting (JRP) 2009 Historical Resources Evaluation Report, Yerba Buena Island Ramps Improvement Project, San Francisco, California, May.

2007 Andy Zanoff, Captain, Administration Division, SFFD. Personal communication with LSA Associates, Inc. December 11.

2010 Small Takes of Marine Mammals Incidental to the Specified Activities; Dumbarton Bridge Seismic Retrofit Project, California Federal Register Volume 75, Number 54 Doc 2010-6252. March 22.

Parsons Brinkerhoff Quade & Douglas
Chapter 7 – References

2004 Biological Monitoring and Mitigation Compliance Report (March, April, and May).

2005 Biological Monitoring and Mitigation Compliance Report (March, April, and May).

2006 Biological Monitoring and Mitigation Compliance Report (March, April, and May).

2007 Biological Monitoring and Mitigation Compliance Report (March, April, and May).

2008 Biological Monitoring and Mitigation Compliance Report (March, April, and May).

Pericoli, R. V., and A. M. Fish

Remsen, H. V.
1978 Bird Species of Special Concern in California: an Annotated List of Declining or Vulnerable Bird Species. California Department of Fish and Game, The Resources Agency.

Ressio, Greg, SFOBB Project Liaison, U.S. Coast Guard Engineering Division, San Francisco
2008 Email to Stephanie Klock of AECOM regarding U.S. Coast Guard recreation facilities on YBI. December 5.

Riedman, M. L.

Rodda, P. U., and N. Baghai

Sacramento County Association of Governments (SACOG)
2000 Household Surveys.

Salinas, Julio
Kurt Legleiter of AECOM regarding exposure period for determining health risk.

San Francisco Bay Conservation and Development Commission (BCDC)

San Francisco Bay Regional Water Quality Control Board (SFBRWQCB)

San Francisco Boardsailing Association

San Francisco County Transportation Authority (SFCTA)

San Francisco Fire Department
- 2009c Email exchange between Talmadge, Mindy, Public Information Officer, SFFD and Stephanie Klock of AECOM regarding response times. Personal communication. May 21.

San Francisco Police Department (SFPD)

San Francisco Public Utilities Commission (SFPUC)

Sawyer, J. O., and T. Keeler-Wolf

Schlocker, J.

SCPBRG
2009 Website for Santa Cruz Predatory Bird Research Group, University of California, Santa Cruz. Available at http://www2.ucsc.edu/scpbrg/index.htm.

Park, Sharon C., AIA

Savage, D. E.

Sibley, D. A.

Society of Vertebrate Paleontology (SVP)

SRS Technologies

State Historic Preservation Office (SHPO)
Chapter 7 – References

2000 Memorandum of Agreement among the FHWA, the U.S. Coast Guard, the California SHPO, and the ACHP for the San Francisco Oakland Bay Bridge East Span Seismic Safety Project. May.

Suddjian, David L.

2004 Birds and Eucalyptus on the Central California Coast: A Love-Hate Relationship. June 3.

Sullivan, Jim, Navy BRAC Environmental Coordinator, Naval Station Treasure Island

2009 Phone conversation with Stephanie Klock of AECOM regarding TIDA and Navy’s soil remediation project. March 19.

Sullivan, Raymond and Jon S. Galehouse

Tetra Tech EM Inc.

Transportation Research Board

Treasure Island Community Development, LLC and Fehr & Peers

Treasure Island Online

Treasure Island Sailing Center

Treasure Isle Marina

United States Army Corps of Engineers (USACE)

United States Department of Agriculture, Natural Resources Conservation Services (USDA-NRCS)

United States Department of Transportation, Federal Highway Administration, Office of Environmental Policy (USDT-FHWA)

United States Environmental Protection Agency (USEPA)

1995 The Probability of Sea Level Rise.

United States Fish and Wildlife Services (USFWS)

United States Navy (U.S. Navy)

Williams, D. F.

1986 Mammalian Species of Special Concern in California. California Department of Fish and Game. Wildlife Management Division Administrative Report 86-1. p. 112.
Wood Biological Consulting

Woodward-Clyde

Yates, Eugene B, Scott N. and Lisa Horowitz-McCann.

Zhu, Y., W. C. Hinds, S. Kim, and C. Sioutas
Chapter 8 – Distribution List

<table>
<thead>
<tr>
<th>Environmental Protection Agency (EPA)</th>
<th>Carolyn Mulvihill</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Federal Activities (Mail Code 2252-A)</td>
<td>U.S. EPA, Region IX</td>
</tr>
<tr>
<td>EIS Filing Section</td>
<td>75 Hawthorne Street, Mail Code CED-2</td>
</tr>
<tr>
<td>401 M Street, SW</td>
<td>San Francisco, CA 94105</td>
</tr>
<tr>
<td>Washington, DC 20460</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Office of Federal Activities Office, CMD-2</th>
<th>Environmental Protection Agency, Region IX</th>
</tr>
</thead>
<tbody>
<tr>
<td>75 Hawthorne Street</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Office of U.S. Senator Barbara Boxer</th>
<th>Office of U.S. Senator Dianne Feinstein</th>
</tr>
</thead>
<tbody>
<tr>
<td>1700 Montgomery St., Suite 240</td>
<td>One Post Street, Suite 2450</td>
</tr>
<tr>
<td>San Francisco, CA 94111</td>
<td>San Francisco, CA 94104</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Office of U.S. Senator Dianne Feinstein</th>
<th>Office of U.S. Senator Barbara Boxer</th>
</tr>
</thead>
<tbody>
<tr>
<td>455 Golden Gate Avenue Suite 14300</td>
<td>1700 Montgomery St., Suite 240</td>
</tr>
<tr>
<td>San Francisco, CA 94102</td>
<td>San Francisco, CA 94111</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Attn: Angela Calvillo</th>
<th>Attn: Angela Calvillo</th>
</tr>
</thead>
<tbody>
<tr>
<td>City and County of San Francisco Board of Supervisors (SFCTA Board)</td>
<td>City and County of San Francisco Board of Supervisors (SFCTA Board)</td>
</tr>
<tr>
<td>1 Dr. Carlton B. Goodlett Place</td>
<td>1 Dr. Carlton B. Goodlett Place</td>
</tr>
<tr>
<td>City Hall, Room 244</td>
<td>City Hall, Room 244</td>
</tr>
<tr>
<td>San Francisco, CA 94102-4689</td>
<td>San Francisco, CA 94102-4689</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Office of Economic and Workforce Development City</th>
<th>Sacramento Fish and Wildlife Office</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hall, Room 448</td>
<td>2800 Cottage Way, Room W-2605</td>
</tr>
<tr>
<td>San Francisco, CA 94102</td>
<td>Sacramento, CA 95825</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capt. P.M. McMillin</th>
<th>CWO3 Greg Ressio</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Coast Guard</td>
<td>USCG Sector San Francisco</td>
</tr>
<tr>
<td>Chief, Product Line Division By Direction of the Commander</td>
<td>Engineering Division/SFOBB Project Liaison</td>
</tr>
<tr>
<td>1301 Clay Street, Suite 700 N</td>
<td>1 Yerba Buena Island</td>
</tr>
<tr>
<td>Oakland, CA 94612</td>
<td>San Francisco, CA 94130</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Erik Balsley</th>
<th>Michael Tymoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shore Facilities Planner</td>
<td>Office of Economic and Workforce Development City</td>
</tr>
<tr>
<td>Portfolio Management Branch</td>
<td>Hall, Room 448</td>
</tr>
<tr>
<td>CG SILC – Product Line Division</td>
<td>1 Dr. Carlton B. Goodlett Place</td>
</tr>
<tr>
<td>1301 Clay Street, Suite 700 N</td>
<td>City Hall, Room 244</td>
</tr>
<tr>
<td>Oakland, CA 94612</td>
<td>San Francisco, CA 94102</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>John Huang</th>
<th>Nathaniel P. Ford</th>
</tr>
</thead>
<tbody>
<tr>
<td>California RWQCB (San Francisco Bay Region)</td>
<td>Executive Director/CEO</td>
</tr>
<tr>
<td>1515 Clay Street, Suite 1400</td>
<td>San Francisco Municipal Transportation Agency</td>
</tr>
<tr>
<td>Oakland, CA 94612</td>
<td>1 South Van Ness, 7th Floor</td>
</tr>
<tr>
<td></td>
<td>San Francisco, CA 94103</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Brendan Thompson</th>
<th>Federal Transit Administration, Region IX</th>
</tr>
</thead>
<tbody>
<tr>
<td>California RWQCB (San Francisco Bay Region)</td>
<td>201 Mission Street, Suite 2210</td>
</tr>
<tr>
<td>1515 Clay Street, Suite 1400</td>
<td>San Francisco, CA 94105</td>
</tr>
<tr>
<td>Oakland, CA 94612</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 8 – Distribution List

Director,
Office of Environmental Policy and Compliance
Department of the Interior
Main Interior Building, MS 2340
1849 “C” Street, NW
Washington, DC 20240

National Oceanic and Atmospheric Administration
Field Offices for the South West Region:
Sacramento Field Office:
National Marine Fisheries Services
650 Capitol Mall, Suite 8-300
Sacramento, CA 95814-4708

Milford Wayne Donaldson
Office of Historic Preservation
1725 23rd Street, Suite 100
Sacramento, CA 95816

Susan Stratton, Project Review Unit Sup.
California Dept. of Parks and Recreation
Office of Historic Preservation
1725 23rd Street, Suite 100
Sacramento, CA 95816

Director,
Office of Environmental Compliance
U.S. Department of Energy
1000 Independence Ave., SW, Rm. 4G-064
Washington, DC 20585

Director
Office of Environmental Affairs
Department of Health and Human Services
200 Independence Ave. SW, Rm. 537 F
Washington, DC 20201

U.S. Army Corps of Engineers, San Francisco District
Attention: CESPN-CO-R
333 Market Street, 8th floor
San Francisco, CA 94105-2197

Environmental Clearance Officer
Department of Housing and Urban Development
450 Golden Gate Avenue
P.O. Box 36003
San Francisco, CA 94102

Natural Resources Conservation Service
Area II
318 Cayuga Street, Suite 206
Salinas, CA 93901

Bay Area Rapid Transit District (BART)
Attn: Val Menotti
300 Lakeside Dr., 16th Floor
Oakland, CA 94612

California Transportation Commission
Commission Chair
1120 N Street
Room 2221 (MS-52)
Sacramento, CA 95814

Headquarters Environmental Program
1120 N Street, Mail Station 27
POB 942874
Sacramento, CA 94274-0001

Caltrans
Division of Environmental Analysis
NEPA Delegation Office — MS 27
P.O. Box 942874
Sacramento, CA 94274-0001

Metropolitan Transportation Commission
Attn: Craig Goldbratt
101 – 8th Street
Oakland, CA 94607

Jane Hicks, Regulatory
U.S. Army Corps of Engineers Civil Works Office
1455 Market Street
San Francisco, CA 94103-1398

Metropolitan Transportation Commission
Attn: Steve Heminger, Executive Director
101 – 8th Street
Oakland, CA 94607

Regional Air Pollution Control District
Santa Barbara County APCD
260 N San Antonio Rd. Suite A
Santa Barbara, CA 93110-1315

John Barna, Executive Director
California Transportation Commission
1120 N Street, Room 2221 (MS-52)
Sacramento, CA 95814

California Native Plant Society
2707 K Street, Suite 1
Sacramento, CA 95816-5113

Jane Hicks, Regulatory
U.S. Army Corps of Engineers Civil Works Office
1455 Market Street
San Francisco, CA 94103-1398

Association of Bay Area Governments
Attn: Suzan Ryder
PO Box 2050
Oakland, CA 94604-2050

Yerba Buena Island Ramps EIR/EIS 8-2 October 2011
Chapter 8 – Distribution List

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bay Area Air Quality Management District Attn: Joseph Steinberger</td>
<td>939 Ellis Street San Francisco, CA 94109</td>
</tr>
<tr>
<td>David Burch, Principal Environmental Planner</td>
<td>Bay Area Air Quality Management District 939 Ellis Street San Francisco, CA 94109</td>
</tr>
<tr>
<td>California Wildlife Federation</td>
<td>1012 J Street Sacramento, CA 95814</td>
</tr>
<tr>
<td>Leah Shahum, Executive Director</td>
<td>San Francisco Bicycle Coalition 995 Market St., #1550 San Francisco, CA 94103</td>
</tr>
<tr>
<td>Maureen Gaffney</td>
<td>San Francisco Bay Trail P.O. Box 2050 Oakland, CA 94604-2050</td>
</tr>
<tr>
<td>State Clearinghouse</td>
<td>1400 Tenth Street Sacramento, CA 95814</td>
</tr>
<tr>
<td>Director State Department of Housing and Community Development</td>
<td>MS 0000 P.O. Box 997413 Sacramento, CA 95899-7413</td>
</tr>
<tr>
<td>Director Department of Fish and Game</td>
<td>1416 Ninth Street Sacramento, CA 95814</td>
</tr>
<tr>
<td>L.A. Lozano</td>
<td>California Department of Fish and Game Central Coast Region – Habitat Conservation P.O. Box 47 Yountville, CA 94599</td>
</tr>
<tr>
<td>Executive Officer State Water Resources Control Board</td>
<td>1001 I Street Sacramento, CA 95814</td>
</tr>
<tr>
<td>Executive Officer Integrated Waste Management Board</td>
<td>8800 Cal Center Drive Sacramento, CA 95826</td>
</tr>
<tr>
<td>Sierra Club</td>
<td>2530 San Pablo Ave Berkeley, CA 94702</td>
</tr>
<tr>
<td>Robert Raburn</td>
<td>East Bay Bicycle Coalition P.O. Box 1736 Oakland, CA 94604</td>
</tr>
<tr>
<td>Business Manager</td>
<td>Operating Engineers Local #3 474 Valencia Street San Francisco, CA 94103</td>
</tr>
<tr>
<td>California Highway Patrol Commander</td>
<td>Golden Gate Division 455 Eighth Street San Francisco, CA</td>
</tr>
<tr>
<td>Director Department of Parks and Recreation</td>
<td>915 I Street, 5th Floor Sacramento, CA 95814</td>
</tr>
<tr>
<td>Jack Gold, Executive Director San Francisco Architectural Heritage</td>
<td>2007 Franklin St. San Francisco, CA 94109</td>
</tr>
<tr>
<td>Director Department of Conservation</td>
<td>801 K Street, MS 24-01 Sacramento, CA 95814</td>
</tr>
<tr>
<td>Secretary Resources Agency</td>
<td>1416 Ninth Street Sacramento, CA 95814</td>
</tr>
</tbody>
</table>
| Jack Gold, Executive Director Integrated Waste Management Board | 1516 Ninth Street Sacramento, CA 95814
Chapter 8 – Distribution List

Executive Officer
State Air Resources Board
1001 I Street
P.O Box 2815
Sacramento, CA 95812

Executive Secretary
Native American Heritage Commission
915 Capitol Mall, Rm 364
Sacramento, CA 95814

Director
Department of Health Services
714/744 P Street
Sacramento, CA 95814

12th Coast Guard District
Coast Guard Island
Alameda, CA 94501

National Park Service
Pacific Great Basin System Support Office
1111 Jackson Street, Suite 700
Oakland, CA 94607

Karen Weiss, Bob Batha, Rafael Montes
BCDC
50 California Street, Suite 2600
San Francisco, CA 94111

Chief,
Airports Branch
Federal Aviation Administration
831 Mitten Road
Burlingame, CA 94010

An Bui
BRAC PMO West
1455 Frazee Road, Suite 900
San Diego, CA 92108

Department of the Navy Western Division
Real Estate Officer
900 Commodore Drive
San Bruno, CA 94066

Wastewater Enterprise
SFPUC
Attn: Ed Ho
1145 Market Street, 5th Floor
San Francisco, CA 94103

Bill Wycko, Environmental Review Officer
San Francisco Planning Department
1650 Mission Street, Suite 400
San Francisco, CA 94103

Owen Stephens, President
Treasure Island Development Authority
410 Ave. of the Palms, Bldg. 1, 2nd Floor
San Francisco, CA 94130

Janice Shambray
San Francisco Planning Department
1650 Mission Street, Suite 400
San Francisco, CA 94103

Adrienne Pon, Director
Mayor’s Office of Community Development
1 South Van Ness, 5th Floor
San Francisco, CA 94103

Jack Sylvan
San Francisco Mayor’s Office of Base Reuse & Dev.
City Hall, Room 448
1 Dr. Carlton B. Goodlett Place
San Francisco, CA 94102

San Francisco Fire Department
Attn: Barbara Schultheis, fire Marshall
698 Second Street, Room 109
San Francisco, CA 94107-2015

Stormwater Management
SFPUC
Attn: Rosey Jencks
1145 Market Street, 5th Floor
San Francisco, CA 94103

San Francisco Chamber of Commerce
235 Montgomery Street, 12th Floor
San Francisco, CA 94104-2902

Greg Kelley
San Francisco Documents Librarian
Government Information Center
San Francisco Public Library
100 Larkin Street
San Francisco, CA 94102

Oakland Main Public Library,
125 14th Street
Oakland, CA 94612
Chapter 8 – Distribution List

<table>
<thead>
<tr>
<th>Address</th>
<th>Name</th>
<th>Organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caltrans Transportation Library, 111 Grand Avenue, Room 12-639, Oakland, CA 94612</td>
<td>Eve Bach</td>
<td>Arc Ecology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4634 Third Street, San Francisco, CA 94124</td>
</tr>
<tr>
<td>Federal Highway Administration (FHWA)</td>
<td>Paul Svedersky</td>
<td></td>
</tr>
<tr>
<td>1200 New Jersey Ave., SE, Washington, DC 20590</td>
<td></td>
<td>229 14th Street, San Francisco, CA 94103</td>
</tr>
</tbody>
</table>
APPENDIX A

CEQA CHECKLIST
This checklist identifies physical, biological, social and economic factors that might be affected by the proposed project. In many cases, background studies performed in connection with the projects indicate no impacts. A NO IMPACT answer in the last column reflects this determination. Where there is a need for clarifying discussion, the discussion is included either following the applicable section of the checklist or is within the body of the environmental document itself. The words "significant" and "significance" used throughout the following checklist are related to CEQA, not NEPA, impacts. The questions in this form are intended to encourage the thoughtful assessment of impacts and do not represent thresholds of significance.

<table>
<thead>
<tr>
<th>I. AESTHETICS: Would the project:</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Have a substantial adverse effect on a scenic vista</td>
<td>□</td>
<td>□</td>
<td>X</td>
<td>□</td>
</tr>
<tr>
<td>b) Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway</td>
<td>□</td>
<td>□</td>
<td>X</td>
<td>□</td>
</tr>
<tr>
<td>c) Substantially degrade the existing visual character or quality of the site and its surroundings?</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>d) Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>X</td>
</tr>
</tbody>
</table>

| II. AGRICULTURE AND FOREST RESOURCES: In determining whether impacts to agricultural resources are significant environmental effects, lead agencies may refer to the California Agricultural Land Evaluation and Site Assessment Model (1997) prepared by the California Dept. of Conservation as an optional model to use in assessing impacts on agriculture and farmland. In determining whether impacts to forest resources, including timberland, are significant environmental effects, lead agencies may refer to information compiled by the California Department of Forestry and Fire Protection regarding the state’s inventory of forest land, including the Forest and Range Assessment Project and the Forest Legacy Assessment Project; and the forest carbon measurement methodology provided in Forest Protocols adopted by the California Air Resources Board. Would the project: |
|---------------------------------|-------------------------------|-------------------------------------|-------------------------------|-----------|
| a) Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use? | □ | □ | □ | X |
| b) Conflict with existing zoning for agricultural use, or a Williamson Act contract? | □ | □ | □ | X |
c) Conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code section 12220(g)), timberland (as defined by Public Resources Code section 4526), or timberland zoned Timberland Production (as defined by Government Code section 51104(g))?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
</tbody>
</table>

d) Result in the loss of forest land or conversion of forest land to non-forest use?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
</tbody>
</table>

e) Involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland, to non-agricultural use or conversion of forest land to non-forest use?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
</tbody>
</table>

III. AIR QUALITY

Where available, the significance criteria established by the applicable air quality management or air pollution control district may be relied upon to make the following determinations. Would the project:

a) Conflict with or obstruct implementation of the applicable air quality plan?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
</tbody>
</table>

b) Violate any air quality standard or contribute substantially to an existing or projected air quality violation?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
</tbody>
</table>

c) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors)?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
</tbody>
</table>

d) Expose sensitive receptors to substantial pollutant concentrations?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
</tbody>
</table>

e) Create objectionable odors affecting a substantial number of people?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
</tbody>
</table>

IV. BIOLOGICAL RESOURCES

Would the project:

a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
</tbody>
</table>

b) Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations or by the California Department of Fish and Game or US Fish and Wildlife Service?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
</tbody>
</table>
c) Have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

e) Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

f) Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

V. CULTURAL RESOURCES: Would the project:

a) Cause a substantial adverse change in the significance of a historical resource as defined in §15064.5?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

b) Cause a substantial adverse change in the significance of an archaeological resource pursuant to §15064.5?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

c) Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

d) Disturb any human remains, including those interred outside of formal cemeteries?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

VI. GEOLOGY AND SOILS: Would the project:

a) Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving:

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

i) Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault? Refer to Division of Mines and Geology Special Publication 42?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

ii) Strong seismic ground shaking?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

iii) Seismic-related ground failure, including liquefaction?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>Potentially Significant Impact</td>
<td>Less Than Significant with Mitigation</td>
<td>Less Than Significant Impact</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------</td>
<td>--------------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>iv) Landslides?</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>b) Result in substantial soil erosion or the loss of topsoil?</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>c) Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction or collapse?</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>d) Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial risks to life or property?</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>e) Have soils incapable of adequately supporting the use of septic tanks or alternative waste water disposal systems where sewers are not available for the disposal of waste water?</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

VII. GREENHOUSE GAS EMISSIONS: Would the project:

a) Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?

An assessment of the greenhouse gas emissions and climate change is included in the body of environmental document. While Caltrans has included this good faith effort in order to provide the public and decision-makers as much information as possible about the project, it is Caltrans determination that in the absence of further regulatory or scientific information related to GHG emissions and CEQA significance, it is too speculative to make a significance determination regarding the project’s direct and indirect impact with respect to climate change. Caltrans does remain firmly committed to implementing measures to help reduce the potential effects of the project. These measures are outlined in the body of the environmental document.

b) Conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of greenhouse gases?

VIII. HAZARDS AND HAZARDOUS MATERIALS: Would the project:

a) Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?

b) Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?

c) Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?
d) Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard for people residing or working in the project area?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

f) For a project within the vicinity of a private airstrip, would the project result in a safety hazard for people residing or working in the project area?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

g) Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

h) Expose people or structures to a significant risk of loss, injury or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

IX. HYDROLOGY AND WATER QUALITY: Would the project:

a) Violate any water quality standards or waste discharge requirements?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

b) Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level which would not support existing land uses or planned uses for which permits have been granted)?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

c) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner which would result in substantial erosion or siltation on- or off-site?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

d) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or off-site?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

e) Create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

f) Otherwise substantially degrade water quality?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>
X. LAND USE AND PLANNING: Would the project:

a) Physically divide an established community?

b) Conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including, but not limited to the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect?

c) Conflict with any applicable habitat conservation plan or natural community conservation plan?

XI. MINERAL RESOURCES: Would the project:

a) Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?

b) Result in the loss of availability of a locally-important mineral resource recovery site delineated on a local general plan, specific plan or other land use plan?

XII. NOISE: Would the project result in:

a) Exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?

b) Exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels?

c) A substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project?
d) A substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project?

- Potentially Significant Impact
- Less Than Significant with Mitigation
- Less Than Significant Impact
- No Impact

XIII. POPULATION AND HOUSING: Would the project:

a) Induce substantial population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?

- Potentially Significant Impact
- Less Than Significant with Mitigation
- Less Than Significant Impact
- No Impact

b) Displace substantial numbers of existing housing, necessitating the construction of replacement housing elsewhere?

- Potentially Significant Impact
- Less Than Significant with Mitigation
- Less Than Significant Impact
- No Impact

c) Displace substantial numbers of people, necessitating the construction of replacement housing elsewhere?

- Potentially Significant Impact
- Less Than Significant with Mitigation
- Less Than Significant Impact
- No Impact

XIV. PUBLIC SERVICES:

a) Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for any of the public services:

- Fire protection?
- Police protection?
- Schools?
- Parks?
- Other public facilities?

- Potentially Significant Impact
- Less Than Significant with Mitigation
- Less Than Significant Impact
- No Impact
XV. RECREATION:

<table>
<thead>
<tr>
<th>a) Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>☑</td>
</tr>
</tbody>
</table>

b) Does the project include recreational facilities or require the construction or expansion of recreational facilities which might have an adverse physical effect on the environment?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>☑</td>
</tr>
</tbody>
</table>

XVI. TRANSPORTATION/TRAFFIC: Would the project:

a) Conflict with an applicable plan, ordinance or policy establishing measures of effectiveness for the performance of the circulation system, taking into account all modes of transportation including mass transit and non-motorized travel and relevant components of the circulation system, including but not limited to intersections, streets, highways and freeways, pedestrian and bicycle paths, and mass transit?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>☑</td>
</tr>
</tbody>
</table>

b) Conflict with an applicable congestion management program, including, but not limited to level of service standards and travel demand measures, or other standards established by the county congestion management agency for designated roads or highways?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>☑</td>
</tr>
</tbody>
</table>

c) Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>☑</td>
</tr>
</tbody>
</table>

d) Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>☑</td>
</tr>
</tbody>
</table>
e) Result in inadequate emergency access?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>☑</td>
</tr>
</tbody>
</table>
f) Conflict with adopted policies, plans or programs regarding public transit, bicycle, or pedestrian facilities, or otherwise decrease the performance or safety of such facilities?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>☑</td>
</tr>
</tbody>
</table>

XVII. UTILITIES AND SERVICE SYSTEMS: Would the project:

a) Exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>☑</td>
</tr>
</tbody>
</table>

b) Require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>☑</td>
</tr>
</tbody>
</table>
c) Require or result in the construction of new storm water drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
</tr>
</tbody>
</table>

d) Have sufficient water supplies available to serve the project from existing entitlements and resources, or are new or expanded entitlements needed?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
</tr>
</tbody>
</table>

e) Result in a determination by the wastewater treatment provider which serves or may serve the project that it has adequate capacity to serve the project’s projected demand in addition to the provider’s existing commitments?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
</tr>
</tbody>
</table>

f) Be served by a landfill with sufficient permitted capacity to accommodate the project’s solid waste disposal needs?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
</tr>
</tbody>
</table>

g) Comply with federal, state, and local statutes and regulations related to solid waste?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
</tr>
</tbody>
</table>

XVIII. MANDATORY FINDINGS OF SIGNIFICANCE

a) Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, substantially reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
</tr>
</tbody>
</table>

b) Does the project have impacts that are individually limited, but cumulatively considerable? (*"Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
</tr>
</tbody>
</table>

c) Does the project have environmental effects which will cause substantial adverse effects on human beings, either directly or indirectly?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
</tr>
</tbody>
</table>
APPENDIX B
Final
SECTION 4(F) EVALUATION

Yerba Buena Ramps Improvement Project
San Francisco, California

District 04-SF-80-KP 12.3/13.2 (PM 7.6/8.1)
Federal Project #: BRLS-6272(023) EA-04-3A640K

The environmental review, consultation, and any other action required in accordance with applicable federal laws for this project is being, or has been, carried out by Caltrans under its assumption of responsibility pursuant to 23 U.S.C. 327.

October 2011
TABLE OF CONTENTS

1.0 INTRODUCTION .. 1
1.1 Section 4(f) .. 1
1.2 Section 4(f) and Section 106 .. 2

2.0 DESCRIPTION OF THE PROPOSED PROJECT .. 5
2.1 Purpose and Need for Project .. 5
2.2 Project Description ... 7
2.2.1 Build Alternatives ... 8
2.2.2 No-Build Alternative .. 9
2.2.3 Construction Activities .. 9
2.2.4 Temporary Detours on Yerba Buena Island ..10

3.0 LIST AND DESCRIPTION OF SECTION 4(f) PROPERTIES ..11
3.1 Senior Officers’ Quarters Historic District..11
3.2 Quarters 1/Nimitz House...12
3.3 Quarters 10 (and Building 267)...13

4.0 IMPACTS TO SECTION 4(f) PROPERTIES BY ALTERNATIVE15
4.1 No-Build Alternative ..15
4.2 Alternative 2b ..15
4.2.1 Senior Officers’ Quarters Historic District ..15
4.2.2 Quarters 1/Nimitz House ...17
4.2.3 Quarters 10 (including Building 267) ...19
4.3 Alternative 4 ..19
4.3.1 Senior Officers’ Quarters Historic District ..20
4.3.2 Quarters 1/Nimitz House ...21
4.3.3 Quarters 10 (and Building 267) ...22
4.4 Summary of Project Uses of Section 4(f) Resources, by Alternative23
4.4.1 No Build Alternative ...24
4.4.2 Alternative 2b ..24
4.4.3 Alternative 4 ..24

5.0 AVOIDANCE ALTERNATIVES ..27
5.1 Development of Potential Avoidance Alternatives ...27
5.2 No-Build Alternative ..28
5.3 Avoidance Alternative 6 ..29

6.0 MEASURES TO MINIMIZE HARM ..35
6.1 Alternative Development Process ...35
6.2 Alternative Features That Minimize Harm ..35
6.3 Measures to Minimize Effects to Historic Properties ..35
6.3.1 Senior Officers' Quarters Historic District and Quarters 1/Nimitz House ...36
6.3.2 Quarters 10 (and Building 267) ...37

7.0 COORDINATION ...39
7.1 Public Involvement Program Overview ...39
 7.1.1 Agency Early Consultation ..39
 7.1.2 Release of the Draft EIR/EIS ...42
7.2 Historic Resources ...42

8.0 LEAST HARM ANALYSIS AND CONCLUDING STATEMENT..........................45

9.0 OTHER PARK, RECREATIONAL FACILITIES, AND HISTORIC PROPERTIES EVALUATED RELATIVE TO THE REQUIREMENTS OF SECTION 4(f)57
 9.1 Public Park and Recreation Facilities ...57
 9.1.1 Proposed Transbay Segment of San Francisco Bay Trail57
 9.1.2 Other Potential Recreational Facilities ...58
 9.2 Historic Resources ...60
 9.2.1 San Francisco Oakland Bay Bridge and Associated Contributing Elements ..60
 9.2.2 Quarters 8 ...60
 9.2.3 Archaeological Site CA-SFr-04/H ..61
 9.2.4 Conclusion ...61

10.0 REFERENCES CITED ..63
List of Tables

Table 4-1: Section 4(f) Use by Alternative ...24
Table 5-1: Application of Prudence Standards to Potential Avoidance Alternatives
 (Section 774.17) ...34
Table 8-1: Summary of Non-Section 4(f) Impacts ...52
Table 8-2: Cost Comparisons – Alternative 2B and Alternative 454
Table 8-3: Summary of Least Harm Balancing ..55

ATTACHMENT A: FIGURES 1 – 10

FIGURE 1: REGIONAL LOCATION
FIGURE 2: PROJECT VICINITY
FIGURE 3: ALTERNATIVE 2B AND SECTION 4(F) PROPERTIES
FIGURE 4: ALTERNATIVE 4 AND SECTION 4(F) PROPERTIES
FIGURE 5: LOCATION OF SENIOR OFFICERS’ QUARTERS HISTORIC DISTRICT AND
 QUARTERS 1
FIGURE 6: LOCATION OF QUARTERS 10 AND BUILDING 267
FIGURE 7: ALTERNATIVE 2B IN RELATION TO THE SENIOR OFFICERS’ QUARTERS
 HISTORIC DISTRICT AND THE INDIVIDUALLY LISTED QUARTERS 1
FIGURE 8: ALTERNATIVE 2B IN RELATION TO QUARTERS 10 AND BUILDING 267
FIGURE 9: ALTERNATIVE 4 IN RELATION TO THE SENIOR OFFICERS’ QUARTERS
 HISTORIC DISTRICT AND THE INDIVIDUALLY LISTED QUARTERS 1
FIGURE 10: ALTERNATIVE 4 IN RELATION TO QUARTERS 10 AND BUILDING 267
FIGURE 11: VICINITY OPEN SPACE

ATTACHMENT B: CORRESPONDENCE/CONCURRENCE LETTERS

ATTACHMENT C: RENDERINGS AND SIMULATIONS

ATTACHMENT D: NON-VIABLE ALTERNATIVES
This page intentionally left blank.
1.0 INTRODUCTION

This Final Section 4(f) Evaluation is an update and refinement of the Draft Section 4(f) Evaluation that was circulated for public and agency comment as part of the Draft Environmental Impact Report/Environmental Impact Statement (EIR/EIS) in February 2011. Following the publication of the Draft EIR/EIS, the sponsor agencies:

- Provided a public comment period from February 25, 2011 to April 11, 2011 where interested parties submitted written comments on the Draft EIR/EIS;
- Conducted a public hearing on the Draft EIR/EIS on March 16, 2011;
- Identified a preferred alternative (April 2011); and
- the Locally Preferred Alternative, Alternative 2b was adopted by the SFCTA on May 19, 2011 (Resolution 11-56).

Following release of the Draft EIR/EIS in February 2011, agency staff provided 13 comments regarding the environmental analysis and project alternatives. It was determined that Alternative 2b would best meet the purpose and need of the YBI Ramps Improvement Project.

1.1 Section 4(f)

Section 4(f) of the Department of Transportation Act of 1966, codified in federal law at 49 U.S.C. 303, declares that “it is the policy of the United States Government that special effort should be made to preserve the natural beauty of the countryside and public park and recreation lands, wildlife and waterfowl refuges, and historic sites.”

Section 4(f) specifies that the Secretary [of Transportation] may approve a transportation program or project requiring the use of publicly owned land or a public park, recreation area, or wildlife and waterfowl refuge of national, State, or local significance, or land of an historic site of national, state, or local significance (as determined by the federal, state, or local officials having jurisdiction over the park, area, refuge, or site) only if:

- There is no prudent and feasible alternative to the use of the land from the Section 4(f) property; and
- The program or project includes all possible planning to minimize harm to the Section 4(f) property resulting from the use.

Section 4(f) further requires consultation with the Department of the Interior and, as appropriate, the involved offices of the Departments of Agriculture and Housing and Urban Development in developing transportation projects and programs that use lands protected by Section 4(f). If historic sites are involved, then coordination with the State Historic Preservation Officer is also needed.

Consultation with the U.S. Department of Agriculture (USDA) would occur whenever a project uses Section 4(f) land from the National Forest System. Consultation with the U.S. Department of Housing and Urban Development (HUD) would occur whenever a project uses Section 4(f) land for/on which certain HUD funding had been utilized. Since neither of these conditions applies to the proposed project, consultation with USDA and HUD is not required.
In general, a Section 4(f) “use” occurs when:

1) Section 4(f) land is permanently incorporated into a transportation facility;

2) there is a temporary occupancy of Section 4(f) land that is adverse in terms of the Section 4(f) preservationist purposes as determined by specified criteria (23 CFR §774.13[d]; and

3) Section 4(f) land is not incorporated into the transportation project, but the project’s proximity impacts are so severe that the protected activities, features, or attributes that qualify a resource for protection under Section 4(f) are substantially impaired (constructive use) (23 CFR §774.15[a]).

This Final Section 4(f) Evaluation has been prepared in compliance with Part 774.

1.2 Section 4(f) and Section 106

The consideration of historic properties under Section 4(f) differs from their consideration under Section 106. The results of the Section 106 process produces a list of resources determined to be significant, and the potential impacts that the proposed project would have on those resources. Those resources are then considered in the Section 4(f) evaluation. One key difference between the two regulations and processes is that Section 106 requires a consultation process between the federal agency and the State Historic Preservation Office (SHPO) in order to identify cultural resources, evaluate significance, evaluate effects, and then consult on ways to avoid, minimize or mitigate those effects. The Section 4(f) process requires federal agencies to avoid the “use” of significant cultural resources unless there is no “prudent or feasible” alternative. Thus the Section 106 process is more consultative, while the Section 4(f) process is much stronger.

Section 4(f) applies only to programs and projects undertaken by the U.S. Department of Transportation and only to publicly owned public parks, recreation areas, and wildlife refuges, and to historic sites listed on or eligible for the National Register of Historic Places (NRHP). For protected historic sites, Section 4(f) is triggered by the “use” or occupancy of an historic site by a proposed project. There is also the situation in which a project does not permanently incorporate land from a historic site, but because of proximity impacts to the historic site, is determined by the U.S. Department of Transportation to substantially impair the qualities that made the historic site eligible for the NRHP. This is referred to as a “constructive use.”

Section 106 of the National Historic Preservation Act (NHPA) is a separate federal regulation that requires any federal agency undertaking a federal action (either by funding or permitting) to consider the effects of their project on significant cultural resources. Section 106 addresses direct and indirect “effects” of an action on historic properties. Section 106 evaluates “effects” on a historic site, while Section 4(f) protects a historic site from “use” by a project. Therefore, even though there may be an “adverse effect” under Section 106 because of the effects upon the site, the provisions of Section 4(f) are not triggered if the project would not result in an “actual use” (permanent or certain temporary occupancy of land) or a “constructive use” (substantial impairment of the features or attributes which qualified the site for the NRHP).

With regard to archaeological sites, Section 4(f) applies to all archaeological sites listed on or eligible for inclusion on the NRHP, except those that are important chiefly because of what can
be learned by data recovery and have minimal value for preservation in place (23 CFR 774.13(b)(1)).

Most importantly, except in the case of de minimis uses, Section 4(f) requires avoidance of a protected site unless there are no feasible and prudent alternatives, and, if avoidance is not feasible and prudent, requires “all planning to minimize harm.” Section 106 does not include a specific avoidance or minimization of harm requirement, but consultation agreements under Section 106 often involve extensive mitigation activities when adverse effects to historic properties cannot be avoided or minimized.

Finally, Section 4(f) has a requirement that when there are no “prudent and feasible” avoidance alternatives to the “use” of Section 4(f) properties, the lead federal agency must choose the alternative that causes the “least overall harm” based on the criteria listed in Section 774.3(c). Section 774.3(c)(1) requires a balancing of seven factors when determining which alternative causes the “least overall harm.”

The least overall harm is determined by balancing the following factors:

 i. The ability to mitigate adverse impacts to each Section 4(f) property (including any measures that result in benefits to the property);
 ii. The relative severity of the remaining harm, after mitigation, to the protected activities, attributes, or features that qualify each Section 4(f) property for protection;
 iii. The relative significance of each Section 4(f) property;
 iv. The views of the official(s) with jurisdiction over each Section 4(f) property;
 v. The degree to which each alternative meets the purpose and need for the project;
 vi. After reasonable mitigation, the magnitude of any adverse impacts to resources not protected by Section 4(f); and
 vii. Substantial differences in costs among the alternatives.

Section 106 does not require this “least harm analysis” as does Section 4(f).
This page intentionally left blank.
2.0 DESCRIPTION OF THE PROPOSED PROJECT

The San Francisco County Transportation Authority (SFCTA) and the California Department of Transportation (Caltrans) are proposing to improve the traffic safety of the westbound on- and off-ramps located on the east side of Yerba Buena Island (YBI). The SFCTA is the lead agency under the California Environmental Quality Act (CEQA) and Caltrans is the lead agency under the National Environmental Policy Act (NEPA). In cooperation with Caltrans, the SFCTA has prepared this Final Environmental Impact Report/Environmental Impact Statement (EIR/EIS) pursuant to the NEPA and CEQA for the proposed YBI Ramps Improvement Project.

The YBI Ramps, built in the early 1960s, provide access to YBI and Treasure Island (TI) for motorists traveling to and from the San Francisco-Oakland Bay Bridge (SFOBB) portion of Interstate 80 (I-80). The ramps need to be upgraded to meet current safety standards. The nonstandard features of the ramps, current accident safety records, and the projected build-out growth have increased the need to reconstruct the ramps. The project is located along I-80 and extends 0.8 kilometer (0.5 mile) from the east end of the YBI Tunnel to the beginning of the self-anchored suspension (SAS) structure of the new SFOBB East Span. Figures 1 and 2 in Attachment A show the project location and vicinity maps. The project is included in the Metropolitan Transportation Commission’s (MTC’s) 2009 Regional Transportation Plan as project reference number 230555, Transportation 2035 Plan for the San Francisco Bay Area (MTC 2009).

The project calls for the replacement of the westbound on- and off-ramps of the SFOBB stretch of I-80. YBI is located in the San Francisco Bay approximately halfway between Oakland and San Francisco, and is only accessible to vehicular traffic via the SFOBB (Figure 1: Regional Location Map, located in Attachment A). It provides the only vehicle access to YBI, the active U.S. Coast Guard (USCG) facilities located on the south side of the island, and Treasure Island, located immediately north of YBI (Figure 2: Project Vicinity, located in Attachment A).

2.1 Purpose and Need for Project

Purpose and Need

The purpose of the proposed project is to improve:

- Traffic safety for drivers using the westbound on- and off-ramps
- Geometric design of the westbound on- and off-ramps on the east side of YBI to and from I-80
- Traffic operation levels of service (LOS) on the westbound on- and off-ramps.

The proposed project is needed for the reasons listed below and explained in subsequent paragraphs:

- **Safety:** The accident rate for the on- and off-ramps is higher than the statewide rate for similar facilities.
Geometric Design: The westbound on-ramp merge lengths and off-ramp deceleration lengths on the east side of YBI do not meet current Caltrans standards.

Operations: Projections of 2035 traffic volumes indicate ramp operations at a failing LOS F on both the on- and off-ramps in both the morning and evening peak hours.

Safety: The accident rate for the existing on- and off-ramps is higher than the statewide rate for similar facilities. The accident rate based on data collected over a 3-year period between April 1, 2003 and March 31, 2006 on YBI exceeded the statewide average rate (per million vehicle miles) for total collisions (sum of fatalities, injuries, and property damage) (TASAS Selective Accident Retrieval, Table B). This 3-year period is the latest data available for the existing on- and off-ramps because these ramps have been closed for the construction of the SFOBB ESSSP project. The Actual Accident Rate for the existing westbound on-ramp is 0.75 per million vehicle miles compared to a rate of 0.60 for similar facilities statewide. For the existing westbound off-ramp, the accident rate is 1.4 rate per million vehicle miles compared to a 1.15 for similar facilities statewide. The distance available for westbound on-ramp traffic to merge with mainline traffic is very short and results in abrupt maneuvers of westbound on-ramp and mainline traffic. These factors affect the traffic operations of the facilities and motorists traveling on the freeway mainline and on-ramp. The proposed ramps have been designed to accommodate future traffic operations for the 20-year design horizon as required by Caltrans standards HDM Section 103.2. This would improve the LOS and is anticipated to decrease the accident rate potential. In particular, the potential for rear end collisions on the westbound on-ramp are expected to decrease under the proposed project, which has been the predominant type of accident that has occurred at in the past.

Geometric Design: The existing westbound on-ramp merge lengths and off-ramp deceleration lengths on the east side of YBI do not meet current Caltrans standards. The existing westbound on-ramp on the east side of YBI has a very short merge distance of approximately 43 meters (141 feet) which calculates to a 1:11 transition rate. It has a steep entrance grade of approximately 10 percent leading to a 122-meter (400 feet) long crest vertical curve, resulting in a 30 km/h (18.6 mph) design speed. Therefore, traffic cannot accelerate to a proper mainline speed of 80 km/h (50 mph) to merge with through traffic. The existing westbound off-ramp diverges from the left-side freeway lane. The left-side exit lane is nonstandard (Highway Design Manual Section 504.2) and is signed for 48 km/h (20 mph). Its geometry includes a short deceleration length and sharp curve upon exiting the mainline, and presents challenges for motorists and large vehicles to maneuver. The proposed ramps would meet Caltrans standards by providing standard lane and shoulder widths and other geometric features such as the divergence angle, acceleration length, and turning radius that would improve the LOS and safety of the ramp. LOS is a qualitative description of a ramp segment or intersection performance based on the criteria outlined in the Highway Capacity Manual (HCM). LOS ranges from A, which indicates free flow or excellent conditions with short delays, to F, which indicates congested or overloaded conditions with extremely long delays. Caltrans criteria are used to establish a goal of LOS C, when possible.

1 TASAS Table B reports for accident data calculations are available for any highway or section of highway, any or all ramps, any or all intersections for any time period specified. The report shows both actual and average rates. The report also shows total accidents, fatalities, injuries, multi-vehicles, wet, dark, persons killed and injured and the significance. Table B was generated for all six ramps on YBI and included in the Draft Project Report (DPR) prepared for this project.
Operations: The existing westbound off-ramp diverges from the left lane of I-80. This left-lane exit requires exiting vehicles to travel in and across the “fast” lanes to exit the freeway. These maneuvers negatively affect the flow of mainline traffic. The distance available for westbound on-ramp traffic to merge with mainline traffic is very short and results in abrupt maneuvers of westbound on-ramp and mainline traffic. These factors negatively affect the traffic operations of the facilities and they compromise the safety of motorists traveling on the freeway mainline and on-ramp. Projections of 2035 traffic volumes indicate ramp operations at a failing LOS F on both the on- and off-ramps in both the morning and evening peak hours. Currently, the westbound left-lane off-ramp operates at LOS D in the morning peak hour and at LOS C in the evening peak hour. The existing westbound, on-ramp operates at LOS D in both the morning and the evening peak hours. In the future (2035) no build condition, both the westbound off-ramp and on-ramp would operate at LOS F in both the morning and the evening peak hours. Under the 2035 build condition without ramp meters for, the westbound off-ramp would operate at LOS F in both peak hours, and the westbound on-ramp would operate at LOS F in the morning peak hour and LOS E in the evening peak hour. In the 2035 build condition with ramp meters, the proposed westbound on-ramp would operate at LOS C in both peak hours. The proposed westbound off-ramp without meters would operate at LOS E in both peak hours.

2.2 Project Description

The proposed project is located between Kilometer Post (KP) 12.3/13.2 (Post Mile [PM] 7.6 and 8.1) beginning at the east portal of the existing YBI tunnel, east to the west end of the SAS (Figure 3: Alternative 2b and Section 4(f) Properties and Figure 4: Alternative 4 and Section 4(f) Properties, located in Attachment A). The proposed SFOBB Transition Structure is an elevated structure that would connect the waterside portion of the new bridge with the landside approaches to the tunnel. The SFOBB Transition Structure would be located between KP 12.7/13.2 (PM 7.9/8.2). The SFOBB Transition Structure would connect the bridge to YBI and provide the transition between the bridge’s side-by-side road decks and the upper and lower decks of the YBI tunnel and landside approaches.

Connections between existing roadways on YBI and the existing I-80 bridge and tunnel system are made via Hillcrest Road and Macalla Road, located very close to the tunnel portal (EIR/EIS Figure 1-3 Existing Ramp Layout). The tunnel portal is located at a high elevation on YBI. The topography of the island slopes dramatically toward the water, resulting in existing land uses on either side of the corridor at varying elevations. The development and evaluation of new ramp alternatives necessitated consideration of many factors including: the high elevation of the bridge and tunnel; the existing roadway network on the island; design requirements for structures, traffic operations, safety; existing land uses and natural environment resources; right-of-way requirements; and project cost.

As described in Chapter 2 of the YBI Ramps Improvement Project EIR/EIS, as well as in Section 6.5 of this document, a variety of alternatives were considered during project development to provide better westbound on-ramp and off-ramp interconnections between YBI and the I-80 system.

The performance of each alternative was assessed in light of the foregoing factors, resulting in the rejection of some as nonviable and, ultimately, the retention of two potentially viable build alternatives and the No-Build Alternative. The three alternatives include the No-Build, Alternative 2b, and Alternative 4, which are briefly described below. Figures 3 and 4, located in Attachment A, show the alignments of Alternatives 2b and 4. More detail regarding the alternatives may be found in Chapter 2 of the YBI Ramps Improvement Project EIR/EIS.
2.2.1 Build Alternatives

The No-Build Alternative assumes that the existing westbound on- and off-ramps would remain in place and no further action or improvements would occur. The No-Build Alternative would not address any of the elements of the project Purpose and Need.

Preferred Alternative: Alternative 2b

Following release of the Draft EIR/EIS in February 2011, agency staff provided 13 comments regarding the environmental analysis and project alternatives. The YBI Ramps Improvement Project Development Team (PDT), which is comprised of the lead, cooperating, and responsible agencies, and the SFCTA held a meeting in April 2011 to consider and select the preferred alternative. The unanimous decision was that Alternative 2b would best meet the purpose and need of the YBI Ramps Improvement Project. The relocation site of Quarters 10/Building 267 was determined following the selection of the preferred alternative as described below. Alternative 2b would include removal of the existing westbound on- and off-ramps on the east side of YBI, construction of a new westbound loop on-ramp from Macalla Road on the east side of YBI, and construction of a new westbound off-ramp to Macalla Road on the east side of YBI (Figure 3: Alternative 2b and Section 4(f) Properties, located in Attachment A).

Alternative 2b proposes to reconstruct two of the existing six on- and off-ramps at the I-80/YBI interchange. The proposed on- and off-ramps in Alternative 2b would provide standard shoulder widths, and would include the following features:

- Westbound on-ramp on the east side of YBI - The ramp would begin at a “T” intersection at Macalla Road, loop east (right) with a tight radius, and merge onto the north side of the Bay Bridge. The length of the ramp would be approximately 267 meters (876 feet). The ramp would have two traffic lanes, merging into one as it connects to the SFOBB. One lane would be a high occupancy vehicle (HOV) lane and the other a mixed-flow lane (a mixed-flow lane is a general purpose travel lane with no traffic restrictions).

- Westbound off-ramp on the east side of YBI - The ramp would diverge from the new SFOBB Transition Structure between bents W3 and W4 and terminate at a “T” intersection at Macalla Road. The length of this ramp would be approximately 340 meters (1,115 feet). A stop sign is proposed at the ramp terminus at Macalla Road.

- The north side of the upper section of Macalla Road would be widened for approximately 202 meters (660 feet) adjacent to the terminus of the westbound on- and off-ramps. The existing roadway is about 6 meters (20 feet) wide near the ramp terminus. The roadway widening is required to accommodate a 3.7 meter wide (12-foot-wide) multi-use pedestrian/bike path and two 3.7 meter wide (12-foot-wide) lanes within the Caltrans right-of-way. A retaining wall would be constructed along the south side of Macalla Road to provide the required width. The height of the retaining wall would vary from 1.2 to 4.9 meters (4 to 16 feet) and would retain the hillside above Macalla Road. The stairway adjacent to the Caltrans Substation would be relocated to the west side of the building to make room for the new retaining wall. The roadway width would vary around the curve at South Gate Road to provide proper width for truck turning movements.

- The westbound on- and off-ramps would terminate at Macalla Road where two structures known as Quarters 10 and Building 267 are currently located. Quarters 10 and Building 267 would be removed by Alternative 2b. Quarters 10/Building 267 will be
relocated to a new location on YBI as part of the mitigation of effects on historic properties. The relocation will occur prior to the construction of the ramps at Macalla Road. The relocation site for these buildings is on YBI as identified on Figure 3.21-1 in the Final EIR/EIS to a site on the north end of YBI adjacent to Treasure Island Road and Macalla Road. The procedure and mitigation shall be followed in accordance with the stipulations of the project’s Memorandum of Agreement (MOA).

Alternative 4

Alternative 4 would remove the existing westbound on- and off-ramps on the east side of YBI, construct a new westbound on-ramp from South Gate Road, and construct a new westbound off-ramp to Macalla Road on the east side of YBI. (Figure 4: Alternative 4 and Section 4(f) Properties, located in Attachment A).

This alternative proposes to reconstruct two of the existing six on- and off-ramps at the I-80/YBI interchange. The proposed on- and off-ramps would provide standard lane and shoulder widths, and would include the following features:

- **Westbound on-ramp on the east side of YBI** - The ramp would begin at South Gate Road, proceed east paralleling the eastbound on-ramp, and loop under the new SFOBB Transition Structure near its eastern end to provide adequate merging distances. The ramp would then cross over the westbound off-ramp along the north side of the SFOBB. The length of this ramp would be approximately 879 meters (2,883 feet). An HOV lane would not be provided under Alternative 4.

- **Westbound off-ramp on the east side of YBI** - The ramp would diverge from the new SFOBB Transition Structure between bents W2 and W3, parallel the Transition Structure, cross under the westbound on-ramp and terminate at a “T” intersection at North Gate Road. The length of the ramp would be approximately 356 meters (1,168 feet). A stop sign is proposed at the ramp terminus.

- **Pavement reconstruction on Macalla Road and South Gate Road at the ramp intersections** is proposed to ensure a proper pavement conformity and truck turning movements.

- **Quarters 10 and Building 267** and its associated landscaping would not be impacted and would remain in place.

2.2.2 No-Build Alternative

The No-Build Alternative represents the future year conditions if no other actions are taken in the study area beyond what is already in place. The exception is the eastbound on-ramps, the replacement of which is part of the SFOBB ESSSP.

2.2.3 Construction Activities

Both build alternatives would involve standard construction techniques and require large-scale construction equipment and labor-intensive activities. General activities would include demolition, excavation, grading, vegetation removal, utility relocation, false work erection, roadway/structure construction, landscaping, and demobilization.
The contractor will determine the means and methods of construction but typical construction equipment would include drill rigs, backhoes, cranes, concrete trucks, forklifts, paving vehicles, and delivery trucks.

Construction of any of the alternatives would be performed in stages. The staging areas for both Alternative 2b and Alternative 4 would be the same. Both alternatives would utilize the staging areas used for the SFOBB ESSSP. The primary staging area is located east of the Officer’s Quarters Historic District and north of the SFOBB. Each alternative would use a secondary staging area south of the SFOBB and north of the USCG facilities. Storage of equipment and materials on-site would be limited to the staging and construction areas to minimize ground disturbance. Access for construction vehicles and equipment would be via Macalla Road, South Gate Road, and North Gate Road.

The overall construction duration for Alternative 2b would be three years. The overall construction duration for Alternative 4 would be three and one-half years.

2.2.4 Temporary Detours on Yerba Buena Island

Temporary detours would be required on YBI to carry traffic during construction of either build alternative. It is anticipated that all detours would utilize existing roads and no new detour roads or structures would be constructed. Implementation of the build alternatives would result in temporary detours and single-lane road closures. These impacts would be minimized through coordination with the USCG and emergency service providers. Access to the islands would be maintained throughout project construction.

During project construction, efforts would be made to concentrate the majority of road closures and construction activity during off-peak hours to reduce traffic impacts. During the lane closure on Macalla Road, two-way traffic would be diverted to one side of the road and traffic would be controlled by flaggers stationed at both ends of the closure. Similar traffic handling is currently being used on Macalla Road with the ongoing SFOBB construction by Caltrans. It is also anticipated that there would be a full closure of the existing westbound on-ramp on the east side of the tunnel. Traffic would be diverted to the westbound on-ramp on the west side of YBI. The duration of this closure would be determined as construction plans develop further. Construction on Macalla Road would also require shifting traffic from one side of the road to the other.

For Alternative 4, it is anticipated that the westbound on-ramp would require temporary closure, similar to Alternative 2b. There are no other anticipated full closures. The purpose of these temporary closures would be to reroute traffic around the construction areas, maintain access to the SFOBB, while allowing the construction of the new ramps. The temporary detours would have no impact or require the use of any Section 4(f) properties.
3.0 LIST AND DESCRIPTION OF SECTION 4(f) PROPERTIES

Studies were undertaken during the environmental process for this project to identify all known publicly owned parks, recreational facilities, wildlife and waterfowl refuges, and historic sites within the project limits (see Chapter 3 of the YBI Ramps Improvement Project EIR/EIS). No publicly owned parks, recreational facilities, wildlife or waterfowl refuges were identified in this area.

There are three Section 4(f) properties within the project area (Figures 3 and 4, located in Attachment A): Senior Officers’ Quarters Historic District; Quarters 1/Nimitz House (individually listed on the National Register of Historic Places (NRHP) and also a contributing resource within the Senior Officers’ Quarters Historic District); and Quarters 10 (which includes Building 267). The Senior Officers’ Quarters Historic District, Quarters 1/Nimitz House, and Quarters 10, are listed in the NRHP and the California Register of Historical Resources (CRHR).

All of the historic properties are located in close proximity to one another, on the east side of YBI. The Senior Officers’ Quarters Historic District, Quarters 1/Nimitz House, and Quarters 10 are located immediately to the northwest of the SFOBB. The Navy constructed all of the buildings between 1900 and 1948 as part of its YBI installation. The completion of the SFOBB in 1936 bisected YBI and the buildings on the east side of the island, and today the bridge provides an accepted division of the north and south side of the island. Concurrence letters regarding these resources can be found in Attachment B. The documentation of these resources can be found in the Historic Property Survey Report (Caltrans 2009).

3.1 Senior Officers’ Quarters Historic District

Address
North Gate Drive, Whiting Way, Yerba Buena Island, San Francisco, California 94130

Ownership
US Navy, Base Realignment and Closure, Program Management Office West, 1455 Frazee Road, Suite 900, San Diego, CA 92108-4310

Description
The Senior Officers’ Quarters Historic District is listed in the NRHP (listed 2/26/2008). The district includes eleven contributing elements: seven residences (Quarters 1/Nimitz House through Quarters 7), two apartments/garages (Buildings 83 and 230), a five-car garage (Building 205), and the landscape that surrounds the district. The district is generally bounded by North Gate Road on the west and north, the greensward on the east, the SFOBB and hillside on the south, and the southern edge of the informal landscaping south of Building 230 and directly west of Quarters 1/Nimitz House.

The majority of these wood frame buildings were constructed around the turn of the twentieth century, with the exception of Buildings 83, 230, and 205, which were built in 1918, 1936, and 1944, respectively. The three-story Classical Revival-style officer’s quarters (Quarters 1/Nimitz House through Quarters 7) were built between 1901-1903 and have square or rectangular footprints, concrete or brick foundations, clapboard or weatherboard wood siding, hip roofs with dormers and double-hung wood windows. Buildings 83 and 230 are two–story, wood frame buildings with concrete foundations, gable roofs and double hung wood windows. Both Buildings
83 and 230 consists of garages on the first floor and a second-story residence. Building 83 has weatherboard wood siding, open eaves and triangular knee braces, while Building 230 has drop wood siding and roof dormers. Building 205, a five-bay garage, is the only one–story building within the district. It has a rectangular footprint, sits on a concrete foundation with lap wood siding and gable roof. All of the buildings are surrounded by different landscape features: greensward on the west of Quarters 1-6, formal terraced garden west of Quarters 1-5, formal terraced garden west of Quarters 1/Nimitz House, and a terraced garden west of Quarters 2-5).

The property is significant at the local level under Criterion A (association with significant historic events and broad patterns of history), for its association with the early development of military facilities on the West Coast, and under Criterion C (architectural, design, or artistic significance), as significant examples of Classical Revival/Colonial Revival residential architecture. The character-defining features of the district include its setting: relationship between each contributing building, size and massing of buildings, landscaping (greensward in front of Quarters 1-3, formal terraced garden behind Quarters 1/Nimitz House, central terraced garden behind Quarters 2-5, planting beds adjacent to each building, and hardscape, such as walkways, patios, masonry walls, and roadways; historic integrity of individual contributors (Quarters 1/Nimitz House through Quarters 7, Quarters 10, Buildings 267, 83, 205 and 230, and the landscape within the district boundary); the Classical Revival/Colonial Revival architecture; and the viewshed from Quarters 1-5.

Since 1936, when the original eastern span of the SFOBB was built, both the district and the individual buildings have been in close proximity to a large highway bridge structure.

National Register Boundary
The Senior Officers’ Quarters Historic District is located on the north side of I-80 and roughly forms a triangular-shaped district on the northeast side of Yerba Buena Island. Beginning at the intersection of Whiting Way and North Gate Road, the district boundary follows North Gate Road northwest just past Whiting Way, where the greensward, which extends southwest to the San Francisco-Oakland Bay Bridge, forms the easternmost boundary of the district. The southeastern boundary is located on the south side of Building 230 and encompasses informal landscaping located on the south side of the building (Figure 5: Location of Senior Officers’ Quarters Historic District and Quarters 1, located in Attachment A).

3.2 Quarters 1/Nimitz House

Address
North Gate Road, Whiting Way, Yerba Buena Island, San Francisco, California 94130

Ownership
US Navy, Base Realignment and Closure, Program Management Office West, 1455 Frazee Road, Suite 900, San Diego, CA 92108-4310

Description
Quarters 1, known as the “Nimitz House,” is the largest and most architecturally detailed of the Officers’ Quarters. It is a contributing resource within the Senior Officers’ Quarters Historic District, but is also listed in the NRHP as an individual property (listed 9/10/1991). The building was built in 1900 as part of the initial wave of building construction that established the Naval Training Station as an active base between 1900 and 1925. Quarters 1/Nimitz House is significant under Criterion A for its association with the development of West Coast military
facilities, and under Criterion C, as an important example of Classical Revival architecture. The SFOBB has been a visual presence in this general location since its construction in 1936.

National Register Boundary
Quarters 1/Nimitz House is located on the north side of I-80 on the northeast side of Yerba Buena Island (*Figure 5: Location of Senior Officers’ Quarters Historic District and Quarters 1*, located in Attachment A). There is no individual NRHP boundary for this building, but it is included within the larger Senior Officers’ Quarters Historic District. The property is described in the documentation as being “placed on the hillside at the southern edge of the district, facing east toward the bay. A greensward sweeps down the hill in front of the house, and formal gardens are built into the hillside behind the house.” It can be inferred that these elements would be specifically contributing elements to this individual property.

3.3 Quarters 10 (and Building 267)

Address
Macalla Road, Yerba Buena Island, San Francisco, California 94130

Ownership
US Navy, Base Realignment and Closure, Program Management Office West, 1455 Frazee Road, Suite 900, San Diego, CA 92108-4310

Description
Quarters 10 was constructed in 1948 and is a mixture of three modern architectural styles: Moderne, International, and Bay Region. Quarters 10, and its contributing garage (Building 267) are listed on the NRHP (listed 2/26/2008). The property is significant at the local level under Criterion C, as a significant example of mid twentieth century residential architecture. The property boundary includes Quarters 10, Building 267 and the landscape immediately adjacent to these buildings including lawn, garden, driveway and the northern retaining wall. Character-defining features of Quarters 10 include its setting and landscape, and those distinctive architectural characteristics of the International, Moderne and Bay (Regional) Tradition styles: flat roof with overhanging eaves supported by slender pipe columns; exposed rafters; corner windows; casement windows with horizontal muntins; curved east wall; board formed concrete wall surface; and lap wood siding. Character defining features of Building 267 are similar to Quarters 10 and include the lap wood siding, board formed concrete wall surface, flat roof with overhanging eaves, and exposed rafter tails. The SFOBB has been a visual presence in this general location since its construction in 1936.

National Register Boundary
The boundary for this property includes Quarters 10, Building 267, as well the immediate grounds, including the adjacent lawns and garden areas, the driveway and retaining wall on the north side of the property (*Figure 6: Location of Quarters 10 and Building 267*, located in Attachment A). This area is roughly triangular in shape, bounded by retaining walls on three sides, two along Macalla Road and one at the west side of the property.
This page intentionally left blank.
4.0 IMPACTS TO SECTION 4(f) PROPERTIES BY ALTERNATIVE

The Section 106 Finding of Effect Report (FOE) prepared for this project concluded that Alternative 2b would result in direct and indirect adverse effects to the Senior Officer’s Quarters Historic District, Quarters 1/Nimitz House, and Quarters 10/Building 267 under 36 CFR 800.5.

Alternative 4 would result in indirect adverse effects to Quarters 10; the Senior Officers’ Quarters Historic District and Quarters 1/ Nimitz House under 36 CFR 800.5. There was no Section 106 finding for the No-Build Alternative. The FOE has been reviewed and the Adverse Effect finding was concurred with by SHPO on February 8th, 2010.

Potential Section 4(f) uses by the project are discussed below as they relate to the Yerba Buena Island Ramps Improvement Project.

4.1 No-Build Alternative

The No-Build Alternative was determined to have no effect on historic properties in the FOE because it represents the existing YBI interchange condition with no project-related activities. Effects analysis resulted in a finding of no historic properties affected.

4.2 Alternative 2b

Project actions for Alternative 2b would include the construction of elevated westbound on-ramp and off-ramps in the immediate vicinity of the three historic properties (the Senior Officers’ Quarters Historic District, Quarters 1/Nimitz House, and Quarters 10 (including Building 267). Under Alternative 2b, Macalla Road would be widened and a retaining wall would be constructed along the south side of the road. The structure would require approximately 13 support columns. One column will be located within the boundary of two resources: Senior Officers’ Quarters Historic District and Quarters 1/Nimitz House. Visual simulations and renderings of Alternative 2b illustrating the appearance of the alternative from all view points are provided in Attachment C.

According to the FOE, Alternative 2b would result in indirect and direct adverse effects to the Senior Officers’ Quarters Historic District, Quarters 1/Nimitz House, and Quarters 10 (including Building 267). As a result, use of Section 4(f) properties have been identified and are described below.

4.2.1 Senior Officers’ Quarters Historic District

Section 106 Finding of Effect

Alternative 2b would cause a direct and indirect adverse effect to the Senior Officers’ Quarters Historic District by physically destroying or damaging contributing elements and character-defining features of the district. Figure 3 (located in Attachment A) shows the overall relationship between the Senior Officers’ Quarters Historic District and Alternative 2b. Figure 7: Alternative 2b in Relation to the Senior Officers’ Quarters Historic District and the

Final Section 4(f) Evaluation 15 October 2011
Individually Listed Quarters 1 (located in Attachment A) shows the specific relationship between the ramps, piers, and the resource.

The westbound off-ramp proposed for Alternative 2b is located southwest of the historic district (and Quarters 1/Nimitz House), and its construction would cause a direct and indirect adverse effect. A structural pier (Bent W7) would be constructed immediately southeast of the Quarters 1/Nimitz House (a contributing resource within the historic district) and would remove and/or damage a portion of the district’s historic landscape, including grass and border hedge of the greensward in front of Quarters 1-3, and paved driveway and curbing southeast of Quarters 1/Nimitz House. A structural pier (Bent W8) would be constructed within the formal terraced garden behind Quarters 1/Nimitz House and would destroy much of the third level of the terrace garden. Alternative 2b could include removing or altering plantings and trees, the gradual upward slope of the land, and brick retaining walls, planters, and stairs that lead to this third garden tier.

Construction activities for the westbound on-ramp under Alternative 2b would be conducted outside of the boundaries of the historic district. Therefore, there would be no direct adverse effects from the on-ramp.

Alternative 2b may also cause an indirect effect on the historic district by introducing a potential risk of damage to the historic properties’ significant features from construction vibration. For the off-ramp structure, construction activities for structural piers (Bents W7 and W8) would be approximately 4.5 meters (15 feet) and 11.5 meters (35 feet), respectively, from Quarters 1/Nimitz House. Construction activities for structural pier (Bent W9) would be located approximately 22 meters (75 feet) from Building 230. Similarly, two on-ramp piers (Bents W8 and W7) would be approximately 30 meters (100 feet) and 25 meters (82 feet), respectively, from Quarters 1/Nimitz House and two piers (Bents W6 and W7) would be approximately 30 meters (100 feet) from Building 230. Because the ramp structural members would be located less than 30 meters (100 feet) from Quarters 1/Nimitz House and Building 230, as well as the historic landscape, all of which contribute to the historic district’s significance, Alternative 2b has the potential to cause damage to those buildings and structures. It should be noted that Caltrans provides construction staff and contractors to follow specific guidance regarding on-site monitoring of vibrations caused by construction, which includes special provisions for historic structures and buildings. This monitoring procedure allows Caltrans (or the contractor) to respond to any potential damage caused by construction vibrations by modifying work methods or using different equipment, in order to minimize and/or avoid adverse effects.

Alternative 2b would also cause an indirect adverse effect on the historic district by the introduction of visual or atmospheric elements that diminish the integrity of the property’s significant historic features. The construction of the ramps, which would rise between approximately 16.7 and 30.5 meters (55 and 100 feet) above the historic district, and its structural members that would be built immediately adjacent to contributing features, would alter the view of the historic property (see Visual Simulation Nos. 3 and 4, located in Attachment C). The size, scale, and massing of such a structure is not consistent with historic design, setting, location, feeling, or setting of the historic district and would diminish the historic integrity of the historic property. The viewshed from Quarters 1-5 would be minimally adversely affected by the construction of Alternative 2b as the view from these buildings has already been changed by the current construction of the new SFOBB East Span project (see Visual Simulation No. 2, located in Attachment C). The views from these resources would not be materially altered.
Additionally, because the on- and off-ramps would be elevated above the historic district, Alternative 2b has the potential to cause new shade and shadows in those areas beneath and adjacent to the new ramp structures. This would include Quarters 1/Nimitz House (a contributing resource within the historic district) and its adjacent planting beds, the formal terraced garden behind the building, and the greensward. This potential new shade may cause damage to, or alter the plantings, and may alter the use of the historic landscape areas, diminishing the integrity of these contributing features.

Section 4(f) Evaluation

Alternative 2b would require the permanent use of a portion of land 0.089 hectare (0.22 acres) from within the Senior Officers’ Quarters Historic District by constructing a portion of the project within the boundary of the property. The 0.089 hectare (0.22 acres) of land includes Bent W8 (0.036 hectare [0.09 acres]) as well as the footprint of the off-ramp structure above the historic district (0.053 hectare [0.13 acres]). Right of way beneath the ramp north of the SFOBB is currently owned by the Navy and is in the process of being transferred to the City of San Francisco. Property rights for the YBI Ramps interchange would then be transferred to Caltrans in fee title. Alternative 2b would incorporate a portion of the property into the transportation facility. In addition, Alternative 2b would impact the Senior Officers’ Quarters Historic District by permanently affecting viewsheds and introducing shading.

Due to the identification of potential vibration impacts to the historic resource, the construction technique for excavation in this area (Bents 7 and 8) has been modified to reduce the potential for damage to the masonry foundations that could otherwise be caused by excessive vibration. The cast-in-drilled-hole piles would involve auguring rather than pile-driving, eliminating the vast majority of the vibration during construction. The only vibration would come from the equipment being operated at the site, and the large auger moving soil up and out of the hole. Based upon this change in technology, there will be no vibration impacts to the nearby historic resource, and thus the potential for permanent use of the resource has been eliminated. Caltrans will follow standard procedures regarding the monitoring of vibration during construction to avoid or minimize any potential impacts.

4.2.2 Quarters 1/Nimitz House

Section 106 Finding of Effect

Alternative 2b would cause a direct and indirect adverse effect to Quarters 1/Nimitz House by physically destroying or damaging contributing elements and character-defining features of the resource. Figure 3 (located in Attachment A) shows the overall relationship between Quarters 1/Nimitz House and Alternative 2b. Figure 7 (located in Attachment A) shows the specific relationship between the ramps, piers, and the resource.

The westbound off-ramp proposed for Alternative 2b would be constructed directly through the southeastern boundary of the historic resource. A structural pier (Bent W7) would be constructed immediately southeast of Quarters 1/Nimitz House and would remove and/or damage a portion of the historic landscape, including grass and border hedge of the greensward in front of Quarters 1/Nimitz House, and paved driveway and curbing southeast of Quarters 1/Nimitz House. Another structural pier (Bent W8) would be constructed within the formal terraced garden behind Quarters 1/Nimitz House and would destroy much of the third level of the terrace garden. Alternative 2b could include removing or altering plantings and trees, the gradual upward slope of the land, and brick retaining walls, planters, and stairs that lead to this third garden tier.
Construction activities for the westbound on-ramp under Alternative 2b would be conducted outside of the boundaries of the historic district. Therefore, there would be no direct adverse effects from its construction.

Alternative 2b may also cause an indirect effect on Quarters 1/Nimitz House by potentially causing damage to the historic property’s significant features from construction vibration. For the off-ramp structure, construction activities for two piers (Bents W7 and W8) would be approximately 4.5 meters (15 feet) and 11.5 meters (35 feet), respectively, from Quarters 1/Nimitz House. Similarly, on-ramp piers (Bents W8 and W7) would be approximately 30 meters (100 feet) and 25 meters (82 feet), respectively, from Quarters 1/Nimitz House. Because the ramp structural members would be located less than 30 meters (100 feet) from Quarters 1/Nimitz House, Alternative 2b has the potential to cause damage to this building from vibration during construction. It should be noted that Caltrans provides construction staff and requires contractors to follow specific guidance regarding on-site monitoring of vibrations caused by construction, which includes special provisions for historic structures and buildings. This monitoring procedure allows Caltrans (or the contractor) to respond to any potential damage caused by construction vibrations by modifying work methods or using different equipment, in order to minimize and/or avoid adverse effects.

Alternative 2b would also cause an indirect adverse effect on Quarters 1/Nimitz House by the introduction of visual or atmospheric elements that diminish the integrity of the property’s significant historic features. The construction of the ramps, which would rise between approximately 16.7 and 30.5 meters (55 and 100 feet) above Quarters 1/Nimitz House, and its structural members that would be built immediately adjacent to contributing features, would alter the view of the historic property (see Visual Simulation Nos. 3 and 4, Attachment C). The size, scale, and massing of such a structure is not consistent with historic design, setting, location, feeling, or setting of the historic property and would diminish its historic integrity.

The viewshed from Quarters 1/Nimitz House would not be adversely affected by the construction of Alternative 2b as the view from this building has already been changed by the current construction of the new SFOBB East Span project (see Visual Simulation No. 2, located in Attachment C). The views from this resource would not be materially altered. Because the on- and off-ramps would be elevated above the resource, Alternative 2b has the potential to cause new shade and shadows in those areas beneath and adjacent to the new ramp structures. This would include Quarters 1/Nimitz House and its adjacent planting beds, the formal terraced garden behind Quarters 1/Nimitz House, and the greensward. This potential new shade may cause damage to, or alter the plantings, and may alter the use of the historic landscape areas, diminishing the integrity of these contributing features.

Section 4(f) Evaluation

Alternative 2b would cause a permanent Section 4(f) use of Quarters 1/Nimitz House by constructing a portion of the project within the boundary of the property (acquiring approximately 0.089 hectare; 0.22 acres from within the boundary). The 0.089 hectare (0.22 acres) of land includes BentW8 (0.036 hectare [0.09 acres]) as well as the footprint of the off-ramp structure above the resource (0.053 hectare [0.13 acres]). The right of way north of the SFOBB, beneath the ramp, is currently owned by the Navy and is in the process of being transferred to the City of San Francisco. Property rights for the YBI Ramps interchange would then be transferred to Caltrans in fee title and incorporated into the project. In addition, Alternative 2b would also impact Quarters 1/Nimitz House by permanently affecting the viewsheds and introducing shading.
Due to potential vibration impacts to the historic resource, the construction technique in this area (Bents W7 and W8) has been modified to reduce the potential for damage to the masonry foundations that could otherwise be caused by excessive vibration. The cast-in-drilled-holes piles would involve auguring rather than pile-driving, eliminating the vast majority of the vibration during construction. The only vibration would come from the equipment being operated at the site, and the large auger moving soil up and out of the hole. Based upon this change in technology, there will be no vibration impacts to the nearby historic resource and thus the potential for permanent use of the resource has been eliminated. Caltrans will follow standard procedures regarding the monitoring of vibration during construction to avoid or minimize any potential impacts.

4.2.3 Quarters 10 (including Building 267)

Section 106 Finding of Effect

Alternative 2b would cause a direct adverse effect by the removal of two buildings (Quarters 10 and its associated garage [Building 267]) on the property from their historic location. Figure 3 (located in Attachment A) shows the overall relationship between the Quarters 10 (and Building 267) and Alternative 2b. Figure 8: Alternative 2b in Relation to Quarters 10 and Building 267 (located in Attachment A) shows the specific relationship between the ramps, piers, and the resource.

Quarters 10 (and Building 267) would be removed to accommodate the construction of both on- and off-ramps and an abutment along the south side of Macalla Road. As mitigation under Section 106, the buildings would be moved to the north end of YBI adjacent to Treasure Island Road and Macalla Road. Alternative 2b would require the use of all of the Quarters 10 (including Building 267) property by incorporating all of the land into the transportation facility and removing the historic buildings from the property.

Section 4(f) Evaluation

Alternative 2b would cause a permanent Section 4(f) use of Quarters 10 (and Building 267) by using the property 0.182 hectare (0.45 acres) and removing the two buildings. Right of way beneath the ramp north of the SFOBB is currently owned by the Navy and is in the process of being transferred to the City of San Francisco. Property rights for the YBI Ramps interchange would then be transferred to Caltrans in fee title. Quarters 10 and Building 267 would be relocated to the north end of YBI. Following implementation of the mitigation measures prescribed in the MOA, there would be minimal remaining harm to the Section 4(f) resources Quarters 10/Building 267, under Alternative 2b.

4.3 Alternative 4

Alternative 4 includes the removal of the existing westbound on- and off-ramps on the east side of YBI, construction of a new westbound on-ramp from South Gate Road, and construction of a new westbound off-ramp to Macalla Road on the east side of YBI. Visual Simulations and renderings of Alternative 4 illustrating the appearance of the alternative from all points of view are provided in Attachment C. According to the FOE, Alternative 4 would result in indirect adverse effects to Quarters 10, the Senior Officers’ Quarters Historic District, and Quarters 1/Nimitz House. The structure would require approximately 23 support columns. Two columns will be located within the boundary of two resources: Senior Officers’ Quarters Historic District and Quarters 1/Nimitz House. Alternative 4 introduces a massive visual intrusion into the
viewshed in this area in front of both the Senior Officers’ Quarters Historic District as well as Quarters 1/Nimitz House, and also acquires land from within the boundaries of both of those resources.

4.3.1 Senior Officers’ Quarters Historic District

Section 106 Finding of Effect

Alternative 4 would cause indirect adverse effects to the Senior Officers’ Quarters Historic District because of the construction of the ramp over a portion of the district. The ramp proposed for Alternative 4 would be constructed directly over the southern edge of the historic district, and the land beneath the ramp, within the resource, would be acquired by Caltrans. Alternative 4 would cause damage and alteration to the physical features that contribute to the resource’s significance. Figure 4 (located in Attachment A) shows the overall relationship between the Senior Officers’ Quarters Historic District and Alternative 4. Figure 9: Alternative 4 in Relation to the Senior Officers’ Quarters Historic District and the Individually Listed Quarters 1 (located in Attachment A) shows the specific relationship between the ramps, piers, and the resource.

Alternative 4 may cause an indirect adverse effect on the historic district by causing potential damage to the historic properties’ significant features through construction vibration. For the off-ramp structure, one pier (Bent 1) would be constructed approximately 20 meters (65 feet) southeast of Quarters 1/Nimitz House. Potential construction activities that may occur in this area (pavement breaking or extensive pile driving) have the potential to cause damage to historic buildings or structures. It should be noted that Caltrans requires construction staff and contractors to follow specific guidance regarding on-site monitoring of vibrations caused by construction, which includes special provisions for historic structures and buildings. This monitoring procedure allows Caltrans (or the contractor) to respond to any potential damage caused by construction vibrations by modifying work methods or using different equipment, in order to minimize and/or avoid adverse effects.

Alternative 4 would also cause an indirect adverse effect on the historic district by the introduction of visual elements that diminish the integrity of the property’s significant historic features (see Simulations 2, 3, and 4, located in Attachment C). The westbound on-ramp structure would be parallel to and west of the new SFOBB Transition Structure. It would be 30 meters (131 feet) wide at its widest location (near Bent 4) and would be elevated approximately 10 meters (32 feet) above Quarters 1/Nimitz House and approximately 150 feet above the greensward. The size, scale, and massing of the structure would not be consistent with the historic design, setting, location, feeling or setting, of the historic district and would constitute the introduction of a new visual element.

Additionally, the ramp deck and bents would obstruct the eastward view from Quarters 1/Nimitz House (a contributing resource within the Senior Officers’ Quarters Historic District) and, because the view from this building is a character-defining feature, Alternative 4 would diminish the integrity of this contributing resource within the historic district. The introduction of the ramp structures would cause an adverse effect to the Senior Officers’ Quarters Historic District.

Section 4(f) Evaluation

Alternative 4 would cause a permanent Section 4(f) use of the Senior Officers’ Quarters Historic District by constructing a portion of the project within the boundary of the property (acquiring approximately 0.089 hectare [0.22 acres] from within the boundary). The 0.089 hectare (0.22
acres) of land includes 0.045 hectare (0.11 acres) of physical impact from the construction of two columns, as well as 0.045 hectare (0.11 acres) of easement beneath the footprint of the off-ramp structure above the historic district. Right of way beneath the ramp north of the SFOBB is currently owned by the Navy and is in the process of being transferred to the City of San Francisco. Right of way south of the SFOBB is generally owned by the USCG. Property rights for the YBI Ramps interchange north of the SFOBB would be transferred to Caltrans in fee title, while the property rights south of the SFOBB would consist of an aerial easement over USCG property. In addition, Alternative 4 would also impact the historic district by permanently affecting the viewsheds (which are character-defining features), and introducing shading.

Due to potential vibration impacts to the historic resource, the construction technique in this area (Bent 1) has been modified to reduce the potential for damage to the masonry foundations that could otherwise be caused by excessive vibration. The cast-in-drilled-hole piles would involve auguring rather than pile-driving, eliminating the vast majority of the vibration during construction. The only vibration would come from the equipment being operated at the site, and the large auger moving soil up and out of the hole. Based upon this change in technology, there will be no vibration impacts to the nearby historic resource and thus the potential for permanent use of the resource has been eliminated. Caltrans will follow standard BMP procedures regarding the monitoring of vibration during construction to avoid or minimize any potential impacts.

4.3.2 Quarters 1/Nimitz House

Section 106 Finding of Effect

Alternative 4 would cause indirect adverse effects to Quarters 1/Nimitz House because of the construction of the ramp over a portion of the resource. The ramp proposed for Alternative 4 would be constructed directly over the southern edge of the resource, and the land beneath the ramp would be acquired by Caltrans. Alternative 4 would cause damage and alteration to the physical features that contribute to the resource's significance. Figure 4 (located in Attachment A) shows the overall relationship between Quarters 1/Nimitz House and Alternative 4. Figure 9 (located in Attachment A) shows the specific relationship between the ramps, piers, and the resource.

Alternative 4 may cause an indirect adverse effect on Quarters 1/Nimitz House by causing potential damage to the historic property's significant features through construction vibration. For the off-ramp structure, one pier (Bent 1) would be constructed approximately 20 meters (65 feet) southeast of Quarters 1/Nimitz House. Potential construction activities that may occur in this area (pavement breaking or extensive pile driving) have the potential to cause damage to historic buildings or structures. It should be noted that Caltrans provides construction staff and requires contractors to follow specific guidance regarding on-site monitoring of vibrations caused by construction, which includes special provisions for historic structures and buildings. This monitoring procedure allows Caltrans (or the contractor) to respond to any potential damage caused by construction vibrations by modifying work methods or using different equipment, in order to minimize and/or avoid adverse effects.

Alternative 4 would also cause an indirect adverse effect on Quarters 1/Nimitz House by the introduction of visual elements that diminish the integrity of the property's significant historic features (see Simulations 2, 3 and 4, located in Attachment C). The on-ramp structure would extend northwest approximately 20 meters (65 feet) from the new east span of SFOBB at Bent 2 (which is located just west of Quarters 1/Nimitz House). It would be 30 meters (131 feet)
wide at its widest location (near Bent 4) and would be elevated approximately 10 meters (32 feet) above Quarters 1/Nimitz House and approximately 150 feet above the greensward. The size, scale, and massing of such a structure is not consistent with the historic design, setting, location, feeling or setting, of Quarters 1/Nimitz House and would constitute the introduction of a new visual element.

Additionally, the ramp deck and bents would obstruct the primary view from the front façade and porch of Quarters 1/Nimitz House. As this view from Quarters 1/Nimitz House is a character-defining feature, Alternative 4 would diminish the integrity of this historic resource. The introduction of the ramp structures would thus cause an adverse effect to Quarters 1/Nimitz House.

Section 4(f) Evaluation

Alternative 4 would cause a permanent Section 4(f) use of Quarters 1/Nimitz House by constructing a portion of the project within the boundary of the property (acquiring approximately 0.089 hectare; 0.22 acres from within the boundary). The 0.089 hectare (0.22 acres) of land includes 0.045 hectare (0.11 acres) of physical impact from the construction of two columns as well as 0.045 hectare (0.11 acres) of easement beneath the footprint of the off-ramp structure above the resource. Right of way beneath the ramp north of the SFOBB is currently owned by the Navy and is in the process of being transferred to the City of San Francisco. Right of way south of the SFOBB is generally owned by the USCG. Property rights for the YBI Ramps interchange north of the SFOBB would be transferred to Caltrans in fee title, while the property rights south of the SFOBB would consist of an aerial easement over USCG property. In addition, Alternative 4 would impact the resource by permanently affecting the viewsheds (character-defining features of this resource), and introducing shading.

Due to potential vibration impacts to the historic resource, the construction technique in this area (Bent 1) has been modified to reduce the potential for damage to the masonry foundations that could otherwise be caused by excessive vibration. The cast-in-drilled-hole piles would involve auguring rather than pile-driving, eliminating the vast majority of the vibration during construction. The only vibration would come from the equipment being operated at the site, and the large auger moving soil up and out of the hole. Based upon this change in technology, there will be no vibration impacts to the nearby historic resource and thus the potential for permanent use of the resource has been eliminated. Caltrans will follow standard procedures regarding the monitoring of vibration during construction to avoid or minimize any potential impacts.

4.3.3 Quarters 10 (and Building 267)

Section 106 Finding of Effect

Alternative 4 would not cause any direct adverse effects to Quarters 10 because all construction activities for the on- and off- ramps would be conducted at a distance greater than approximately 20 meters (65 feet) from the National Register boundary of the historic property. All Macalla Road improvements would be restricted to the south side of the road and at a distance of more than 6 meters (20 feet) from the historic property boundary. Once constructed, the new ramp will be over 25 meters (85 feet) from the resource. Neither the ramps nor the widening of Macalla Road would cause any damage or alteration to the physical features that contribute to the property’s significance, nor would it change the property’s use or setting. Figure 4 (located in Attachment A) shows the overall relationship between Quarters 10 (and Building 267) and Alternative 4. Figure 10: Alternative 4 in Relation to Quarters 10 and
Building 267 (located in Attachment A) shows the specific relationship between the ramps, piers, and the resource.

Alternative 4 may cause an indirect adverse effect to Quarters 10 and Building 267 by potentially causing damage to the historic properties’ significant features through construction vibration. Because construction of the ramps project will involve widening of the Transition Structure where the new ramps connect, approximately 25 meters (85 feet) from Building 267, it would have the potential to damage that historic property and/or damage hardscape features (driveway, concrete planters, retaining wall, etc.) within the property boundary. It should be noted that Caltrans requires construction staff and contractors to follow specific guidance regarding on-site monitoring of vibrations caused by construction, which includes special provisions for historic structures and buildings. This monitoring procedure allows Caltrans (or the contractor) to respond to any potential damage caused by construction vibrations by modifying work methods or using different equipment, in order to minimize and/or avoid adverse effects.

Quarters 10 (and Building 267) are oriented with the main views toward the southeast, primarily from Quarters 10 and its windowed overlook. This key character defining view is currently obscured by the existing bridge, as well as by mature trees on the property. Views to the north and to the east from these buildings are obscured by mature trees as well. The view to the west is open across Macalla Road, toward the substation, with little visual quality. There would be no anticipated indirect adverse effects to this historic property from the introduction of new visual elements. The historic property is generally surrounded on all sides by dense shrubs and trees which would block the view of the on- and off-ramps when looking south from the historic property. There would be relatively little change in the quality of the view looking east and south, respectively (see Simulations 3 and 6, located in Attachment C).

Section 4(f) Evaluation

Alternative 4 would not result in a permanent, temporary, or constructive use of Quarters 10 (and Building 267). No property from within the National Register boundary of the resource would be incorporated into the transportation facility. Although construction activities will occur in the vicinity of the property, it is not anticipated that the proximity impacts would be “so severe that the protected activities, features, or attributes that qualify the property for protection under Section 4(f) are substantially impaired. Substantial impairment occurs only when the protected activities, features, or attributes of the property are substantially diminished (23 CFR 774.15 (a)).” Quarters 10 (and Building 267) will remain on the property and will retain their architectural qualities that contribute to the resource’s significance. Caltrans will follow standard procedures regarding the monitoring of vibration during construction to avoid or minimize any potential impacts to the property.

4.4 Summary of Project Uses of Section 4(f) Resources, by Alternative

The No-Build Alternative would not use any Section 4(f) resources. Both build alternatives would result in a Section 4(f) use, though each build alternative would not result in the use of the same number of Section 4(f) properties. Table 4-1 below summarizes the Section 4(f) properties that would be used by the project alternatives. There are three definitions of “use” within the Section 4(f) regulation. A permanent use involves the incorporation of land and/or a resource into a transportation structure or system. A temporary use occurs when there is a temporary occupancy of land from a Section 4(f) resource that causes adverse harm to the resource.
Project activities that occur in proximity to a Section 4(f) resource can result in a constructive use if they cause substantial impairment of the activities, features, or attributes that qualify the resource as a Section 4(f) property.

Table 4-1: Section 4(f) Use by Alternative

<table>
<thead>
<tr>
<th>Section 4(f) Properties</th>
<th>No-Build</th>
<th>Alternative 2b</th>
<th>Alternative 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Officers’ Quarters Historic District</td>
<td>-</td>
<td>Permanent</td>
<td>Permanent</td>
</tr>
<tr>
<td>Quarters 1/Nimitz House</td>
<td>-</td>
<td>Permanent</td>
<td>Permanent</td>
</tr>
<tr>
<td>Quarters 10 (and Building 267)</td>
<td>-</td>
<td>Permanent</td>
<td>No Use</td>
</tr>
<tr>
<td>TOTAL SECTION 4(f) IMPACTS</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

4.4.1 No Build Alternative

The No-Build Alternative would not use any Section 4(f) properties.

4.4.2 Alternative 2b

Alternative 2b would result in the permanent use of three Section 4(f) properties: the Senior Officers’ Quarters Historic District, Quarters 1/Nimitz House, and Quarters 10 (and Building 267). The land from within the boundaries of these resources is currently owned by the Navy and is in the process of being transferred to the City of San Francisco. Property rights for this land will then be transferred to Caltrans in fee title. Alternative 2b would require the permanent incorporation of 0.089 hectare (0.22 acre) of the Senior Officers’ Quarters Historic District into the transportation facility. It is assumed that the same amount of land would be required from within the boundary of Quarters 1/Nimitz House. Alternative 2b would require the permanent incorporation of 0.182 hectare (0.450 acre) of Quarters 10 (including Building 267) as it requires the removal of both buildings.

4.4.3 Alternative 4

Alternative 4 would result in the permanent use of two Section 4(f) properties: the Senior Officers’ Quarters Historic District, and Quarters 1/Nimitz House. The land from within the boundaries of these two resources is currently owned by the Navy and is in the process of being transferred to the City of San Francisco. Property rights for this land will then be transferred to Caltrans in fee title. Alternative 4 would require the permanent incorporation of 0.089 hectare (0.22 acre) of the Senior Officers’ Quarters Historic District and from Quarters 1/Nimitz House into the transportation facility. This land will be acquired beneath the ramps from within the resource boundaries.

Construction activities for Alternative 4 would take place over 25 meters (82 feet) from the closest boundary of the Senior Officer’s Quarters Historic District and Quarters 1/Nimitz House, at its eastern edge. There will be no construction activities or staging within the boundary of the resource, nor would access or use be restricted.

Construction activities in the vicinity of Quarters 10 (and Building 267) will be mitigated and monitored during the construction phase to avoid any impacts to the historic resource. Caltrans, SHPO, and SFCTA have developed an MOA that outlines the requirements for relocation as well as methods to mitigate these effects. 23 C.F.R. Part 774.15 (f)(8) states that “The Administration… determined that a constructive use does not occur when: Vibration levels from
project construction activities are mitigated, through advance planning and monitoring of the activities, to levels that do not cause a substantial impairment of protected activities, features, or attributes of the Section 4(f) property.” The significance of this resource, its architectural merit as a significant example of mid twentieth century residential architecture, will not be “substantially impaired” by the construction of Alternative 4. Alternative 4 would not have a constructive use of Quarters 10 (and Building 267).
This page intentionally left blank.
5.0 AVOIDANCE ALTERNATIVES

This analysis of avoidance alternatives used the feasible and prudent standards of Section 4(f). This assessment is based on the definition of “feasible and prudent avoidance alternative” in Section 774.17 of the regulations. The regulations state that an avoidance alternative is feasible and prudent if it “does not cause other severe problems of a magnitude that substantially outweighs the importance of protecting the Section 4(f) property. An alternative is not feasible “if it cannot be built as a matter of sound engineering judgment.”

The regulations do not provide a single clear definition of “prudence.” Instead, they list a series of findings that can support a finding that an alternative is imprudent. This approach allows a wide range of factors to support a finding of imprudence. The definition of “feasible and prudent avoidance alternative” in Section 774.17 provides the following direction for determining whether an alternative is prudent:

An alternative is not prudent if:

i. It compromises the project to a degree that it is unreasonable to proceed with the project in light of its stated purpose and need;

ii. It results in unacceptable safety or operational problems;

iii. After reasonable mitigation, still causes;
 a) Severe social, economic, or environmental impacts;
 b) Severe disruption to established communities;
 c) Severe disproportionate impacts to minority or low income populations; or
 d) Severe impacts to other federally protected resources;

iv. It results in additional construction, maintenance, or operational costs of an extraordinary magnitude;

v. It causes other unique problems or unusual factors; or

vi. It involves multiple factors listed above that while individually minor, cumulatively causes unique problems of extraordinary magnitude.

5.1 Development of Potential Avoidance Alternatives

The Purpose and Need, engineering constraints, safety requirements, and need to avoid or minimize impacts on environmental resources described in the EIR/EIS formed the basis for the development of alternatives. The combination of these elements limited the opportunity to develop alternatives that could completely avoid impacts to Section 4(f) properties. In particular, the development and evaluation of alternatives considered the unusual geographic and topographic characteristics of the project area, and the presence of multiple Section 4(f) properties.
The planning process for identifying, designing and screening alternatives began with the study of many alternatives from a conceptual feasibility perspective in 2002. A number of build alternatives were presented to stakeholders and the public during several meetings by the project development team to solicit comments and suggestions on the design. Nonstandard features of the design were discussed and the results were used to further refine the alternatives in the Project Study Report (PSR) approved by Caltrans in December 2007. The PSR included a summary of the results of the alternatives evaluation.

Throughout the planning process, many potential avoidance configurations were explored in order to attempt to avoid Section 4(f) properties, consisting of listed and eligible historic properties in close proximity to the ramp project locations. The challenge for finding an avoidance alternative is that the area designated to locate the new ramp is a tight confined space, and the Section 4(f) properties are located immediately adjacent to the SFOBB, with which the ramps must connect to meet the project’s purpose and need. This required exploration of alternatives that considered creative ramp geometric solutions in order to avoid using 4(f) properties.

The No-Build Alternative and Avoidance Alternative 6 would avoid use of Section 4(f) properties. An evaluation of those alternatives as avoidance alternatives is presented below. Table 5-1 presents a summary of the prudence standards that would not be met by the avoidance alternatives. The rationale for these determinations is provided in the discussion below.

5.2 No-Build Alternative

The No-Build Alternative avoids effects to all Section 4(f) properties and therefore would not cause a Section 4(f) use. Although this alternative avoids any Section 4(f) uses of historic properties, it is not considered to be viable in the EIS/EIR because it would not satisfy the purpose and need of the proposed project. In accordance with 23 CFR 774.17, the six Section 4(f) standards were considered when evaluating whether the No-Build alternative would be prudent (Table 5-1).

The No-Build Alternative represents conditions if no other actions are taken. The No-Build Alternative assumes that the existing westbound on and off-ramps on the east side of YBI would remain in place and no further action or improvements would occur. The westbound on- and off-ramps would continue to operate as they are currently. The No-Build Alternative would not improve: traffic safety for drivers using the westbound on- and off-ramps; geometric design of the westbound on- and off-ramps on the east side of YBI; and traffic operations levels of service on the westbound on- and off-ramps. The No-Build Alternative would not meet the project need because:

- The westbound on-ramp would remain as-is with a very short merge distance of approximately 43 meters (141 feet). It would remain a steep entrance grade (10 percent) leading to a 122-meter-long (400 feet) crest vertical curve resulting in a 30 km/h (18.6 mph) design speed. The westbound on-ramp would not allow traffic to accelerate to a proper mainline speed of 80 km/h (50 mph) to merge with through traffic. The westbound off-ramp would remain as a left-side exit lane and would remain nonstandard (Highway Design Manual Section 504.2).

- The westbound on- and off-ramps would continue to operate at LOS F in both morning and evening peak hours.
• No geometric improvements would be made to the existing ramps and they would remain less compliant with Caltrans standards. Therefore, accident rates are likely to remain higher than the statewide average.

While the retention of the existing ramps in their current configuration would avoid any effects to Section 4(f) properties, it would not address the need to connect the new SFOBB to YBI via a ramp system nor would it address the existing safety deficiencies related to the geometrics and operations (prudence standard ii). Therefore, it would not meet the purpose and need of the project (prudence standard i).

5.3 Avoidance Alternative 6

i. It compromises the project to a degree that it is unreasonable to proceed with the project in light of its stated purpose and need

The Avoidance Alternative is to protect Historic 4(f) Resources and minimize potential environmental impacts to the extent possible. After careful design investigations, one build alternative was developed that avoided use of all Section 4(f) properties. Avoidance Alternative 6 would not use any Section 4(f) properties. Avoidance Alternative 6 proposes westbound on- and off-ramps and a substantial tunnel system, which would allow traffic to enter and exit the new SFOBB from YBI. However, the design has multiple shortcomings. In accordance with 23 CFR 774.17, the viability of Avoidance Alternative 6 as an avoidance alternative was evaluated by applying the six standards of prudence and feasibility, described below. Avoidance Alternative 6 does not meet the first standard.

As stated in the Purpose and Need section, the needs of the project are to improve traffic operations and safety by improving the geometric configurations of the on and off-ramps.

Table 2-3, in Chapter 2 of the EIR/EIS, presents a screening matrix of the nine build alternatives, including the recommended Alternatives 2b and 4, that were considered during the planning process and eliminated from further study for various reasons. Nonviable alternatives considered reconstructing the eastbound off-ramp but it was deemed infeasible due to the mandatory closure of the SFOBB, geometric challenges, effects on land use, excessive cost and safety concerns.

Despite a creative and exhaustive design approach to create Avoidance Alternative 6, it is not an acceptable alternative from a traffic safety and geometric design perspective, and therefore it would not meet the Purpose and Need of the project.

In order to make the alternative function, the ramps had to be designed with several non-standard geometric features. Many of the non-standard features are identified on Alternative 6 in Attachment D and further described below including: 1) excessive divergence angle; 2) short on-ramp acceleration length; 3) short vertical curve lengths; and 4) short superelevation transition length.

The non-standard geometric features that are included in the Avoidance Alternative introduce degradation of traffic operations and significant safety concerns. Major challenges associated with this alternative include geometric design flaws, traffic operational issues and safety problems.
Avoidance Alternative 6 proposes to construct a westbound on-ramp and westbound off-ramp as depicted in Attachment D. The ramps would be comprised of elevated bridge sections as well as tunnel sections that would be mined through this portion of Yerba Buena Island. The tunnel for the off-ramp exit would be approximately 152.4 meters (500 feet) long and the tunnel for the on-ramp would be approximately 128 meters (420 feet) long. Due to the relatively short length and curved alignment for both of the tunnels, a tunnel boring machine cannot be used since it cannot accommodate tight radius curves. Tunnels would be constructed using tunnel liner plates.

Westbound Exit Ramp

The proposed westbound ramp alignments as depicted in Attachment D do not meet Caltrans design standards criteria. Following are some of the non-standard features, and associated safety repercussions of the proposed westbound exit ramp:

- **Vertical Curve Lengths**
 - At the ramp exit, a sag vertical curve is needed to accommodate the ramp grade change so that the off-ramp can cross up and over the proposed westbound on-ramp. Due to the limited space, the proposed sag curve would be 61 meter (200 foot) long, less than 15% of the standard 426.7 meter (1,400-foot) length. The design speed of the off-ramp where it departs from the mainline would be 27.4 km/h (17 mph); the exit design speed would be one third of the standard 80.5 km/h (50 mph). The non-standard design speed at the exit gore may have an impact on mainline traffic as vehicles destined for the off-ramp slow down on the mainline to negotiate the curve. This may negatively affect traffic operations as well as introduce unsafe braking conditions.
 - As the ramp passes over the westbound on-ramp, a crest vertical curve in the off-ramp profile would be needed to bring the ramp back down. However the distance available for the crest vertical curve would be only 182.9 meters (600 feet) and result in a 45.1 km/h (28 mph) ramp design speed; the proposed curve would be approximately one half of the standard 344.4 meter (1,130 foot) curve length. The non-standard crest vertical curve would reduce the distance the driver could see along the off-ramp, prohibiting the driver from having adequate sight stopping distance. This is an undesirable geometric feature and has likely potential to contribute to accidents because it provides inadequate time for the driver to recognize a problem ahead, react and stop the vehicle. [Reference HDM: Chapter 204.4, 504.2]
 - As the westbound off-ramp ties into Macalla Road, it would be very steep and would not have the standard vertical curve required as the ramp approaches the intersection. The alternative would have a 100 foot vertical curve which correlates with a 24.1 km/h (15 mph) design speed. The standard design speed at the base of an off-ramp is 40.2 km/h (25 mph).

- **Excessive Roadway Grades**
 - The westbound off-ramp crosses over the westbound on-ramp twice. At the first crossing, both ramps are bridge structures; at the second crossing, both ramps are tunnels.
 - At the first crossing of the ramps, the off-ramp must be approximately 6.1 to 7.6 meters (20 to 25 feet) above the on-ramp. This requires that the off-ramp grade be
approximately 16%; the grade would be twice the allowable 8% grade as it climbs up and over the on-ramp. This steep grade may contribute to unsafe traffic operations as trucks and cars attempt to navigate the steep ramp, resulting in safety concerns.

- At the second crossing of the ramps, both roadways would be inside individual tunnels. The vertical separation required as they cross would need to be significant (12.2 to 15.2 meters [40 to 50 feet]) to avoid unbalanced loads on the lower tunnel and meet structural requirements. As the off-ramp crosses over, it would descend down to meet Macalla Road with a steep 8% grade. A non-standard 30.5 meter (100 foot) vertical curve would intersect Macalla Road; no flat area at the intersection stop bar would be available. This condition would be especially unsafe for heavy vehicles during deceleration. [Reference HDM: Chapter 204.4] The on-ramp would descend from Macalla Road towards the mainline at 10% grade to cross underneath the off-ramp tunnel. The 10% grade would be above the allowable grade standard of 8% affect larger vehicles as they navigate the ramp.

- Superelevation Transition
 - The tight horizontal geometry of the westbound ramp would not allow for adequate distance required for the standard length transition from the standard roadway cross-slope to the curve cross-slope. These sharp transition changes have a tendency to disorient drivers because they have to slow down on the curved segment and tend to speed up on the straight-away segment. [Reference HDM: Chapter 202.2 & 202.5]

- Exit Ramp Geometry
 - The divergence angle for the ramp would not follow 504.2B of the HDM criteria and would be 1.5 times larger than the standard. An abrupt departure angle would be needed so the westbound exit off-ramp could achieve enough separation from the mainline to start reaching the elevation and climb of the entrance ramp tunnel. These drastic angles of departure may be challenging to drivers and are likely to slow them down and increase the accident potential. [Reference HDM: Chapter 504.2]

Westbound Entrance Ramp

The proposed westbound entrance ramp as depicted in Attachment D would not meet several of Caltrans' design standard criteria. Following are some of the non-standard features and safety concerns:

- Entrance Gore to Mainline
 - The standard on-ramp design, as it approaches the mainline, has several criteria that must be met to allow for a safe merge.
 - The standard on-ramp merge design requires an acceleration lane to be 355.7 meters (1,167-foot) long. However, due to space limitations within a constrained area, the proposed ramp acceleration length would be approximately 79.2 meters (260 feet) long; it would be less than 25% of the standard length and require drivers to merge very quickly onto the mainline freeway. This design is similar to the existing ramp condition. The available acceleration distance is important because the merge must be completed prior to the entrance of the YBI tunnel.
 - The space available allows for a merge ratio (merge length divided by ramp width) of only 12:1, in contrast to the design standard minimum of a 50:1 ratio. The “lane-drop” portion of the merge would be 47.5 meters (156 feet) long versus the 182.9 meter
(600 foot) standard. This is similar to the existing condition; the existing “lane drop” is 141 feet long; and would not be an improvement. Drivers would be challenged to safely maneuver within such an abrupt merge condition. Additionally, there would not be any shoulder area inside the new tunnel resulting in no margin for a driving error. These conditions may make driving difficult and unsafe, especially for heavy vehicles that would use the ramp. [Reference HDM: Chapter 504.2]

- Approach Speed
 - Due to physical constraints, the proposed alignment has a 28.3 meter (93-foot radius) (24.1 km/h [15 mph]) curve prior to the entrance gore. This 24.1 km/h (15 mph) curve leads to the non-standard merge distance mentioned above. At the point where the on-ramp starts to merge with the mainline, standard design calls for a 80.5 km/h (50 mph) design speed to safely merge onto the mainline. The differential in speeds would contribute to unsafe freeway merges, reduction of mainline freeway operations, and increase the potential for accidents. [Reference HDM: Chapter 504.2]

- Superelevation Transition
 - Since the proposed alignment has a tight horizontal curve just prior to the merge, a superelevation transition would need to be carried well into the gore area with the mainline. This configuration may make drivers anxious as they gain speed to match mainline traffic, increasing the potential for an accident while merging. [Reference HDM: Chapter 202.2 & 202.5]

Macalla Road

Improvements would have to be made to Macalla Road in order for it to tie into Avoidance Alternative 6. This would include widening the road to allow for two full lanes, the introduction of a traffic signal, as well as the removal of buildings 62 and 240 to make room for the interchange termini. Neither of these buildings are historic. The design alterations that would be required for Macalla Road to work effectively with Avoidance Alternative 6 would result in reduced sight distances, potential traffic operational issues (back-ups on ramps and on the road), and could lead to potential decreased safety for users of the road. [Reference HDM: Chapter 504.3]

ii. It results in unacceptable safety or operational problems

Design refinements to Avoidance Alternative 6 were explored through the planning process to reduce the geometric, traffic, and safety deficiencies described above, however, the steep site conditions within a confined area limited by the space between the Senior Officers’ Quarters District and the existing Yerba Buena Island Tunnel entrance made it difficult to overcome nonstandard conditions. Therefore, the Avoidance Alternative would not meet Caltrans standards and would not meet the project’s purpose and need because it would create unacceptable safety and operational problems. Although there are some nonstandard features under the proposed Alternatives 2b and 4, Alternative 6 contains non-standard features that directly compromise safety including non-standard sight distance, merge distance, and excessive grades. Additional discussion about Alternatives 2b and 4 in contained Section

iii. After reasonable mitigation, still causes:

- **a) Severe social, economic, or environmental impacts**
No severe social, economic or environmental impacts are anticipated by Avoidance Alternative 6, therefore this factor is not applicable (NA).

b) **Severe disruption to established communities**

No severe disruption of established communities are anticipated by Avoidance Alternative 6, therefore this factor is not applicable (NA).

c) **Severe disproportionate impacts to minority or low income populations**

No severe disproportionate impacts are anticipated to minority or low income populations by Avoidance Alternative 6, therefore this factor is not applicable (NA).

d) **Severe impacts to other federally protected resources**

There would be no severe impacts to other federally protected resources by Avoidance Alternative, therefore this factor is not applicable (NA).

iv. **It results in additional construction, maintenance, or operational costs of an extraordinary magnitude**

Avoidance Alternative 6 proposes westbound on- and off-ramps, the design has multiple downfalls that would result in additional construction, maintenance and operational costs. In order for Avoidance Alternative 6 to avoid Section 4(f) properties, the west-bound off-ramp would start the descent from the Bay Bridge right after passing the Section 4(f) properties (Senior Officers’ Quarters Historic District as well as the Quarters One/Nimitz House), and would involve excavation into the steep hillside. Two tunnels would need to be excavated and constructed as curved structures, further complicating the design implementation. The overall estimated cost of Avoidance Alternative 6 would range from 7 to nearly 13 times as much as the other alternatives. For instance, the cost for Alternative 2b is estimated to be $60 million, compared to the estimated cost of Avoidance Alternative 6 estimated to range from approximately $420 to $770 million dollars. The cost estimates of the other alternatives considered in the planning process are included in Table 2-3 of the EIR/EIS. In addition, annual maintenance costs for tunnels are high and can cost as much as $750,000 per mile because of the need for security cameras, continuous lighting, ventilation systems, drainage features and finish materials. Therefore, it is estimated that maintenance for this alternative could be as much as $125,000 to $175,000 annually, which is 5 to 7 times more than the cost of maintenance for a standard road configuration.

v. **It causes other unique problems or unusual factors**

Due to complex excavation to construct the tunnels into the hillside and the amount of material to be removed Avoidance Alternative 6 could take as long as 5 years to implement. Table 2-3 of the EIR/EIS provides a comparison of the durations estimated for the preliminary alternatives considered in the planning process. As indicated in Table 2-3 of the EIR/EIS, Alternative 2b is estimated to only take 3 years and Alternative 4 is estimated to take 3.5 years.

vi. **It involves multiple factors listed above that while individually minor, cumulatively causes unique problems of extraordinary magnitude**

Alternative 6 would not cumulatively cause unique problems of extraordinary magnitude, therefore this factor is not applicable (NA).
In summary, Avoidance Alternative 6 was determined to be not feasible and prudent as it would not address the project’s purpose and need (prudence standard i); would result in substantial safety issues (prudence standard ii); cost factors of extraordinary magnitude (prudence standard iv); and other unique problems (extensive schedule delays) (prudence standard v).

In consideration of these findings, there is no feasible and prudent avoidance alternative to the use of Section 4(f) properties.

Table 5-1: Application of Prudence Standards to Potential Avoidance Alternatives (Section 774.17)

<table>
<thead>
<tr>
<th>Prudence Standards</th>
<th>No-Build Alternative</th>
<th>Avoidance Alternative 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prudence Standard i: Compromises the project so that it is unreasonable given the purpose and need</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Prudence Standard ii: Results in unacceptable safety or operational problems</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Prudence Standard iii: Causes: Severe social, economic, environmental, community, or minority/low income impacts</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Prudence Standard iv: Results in additional construction, maintenance, or operational costs of extraordinary magnitude</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Prudence Standard v: Causes other unique problems or unusual factors</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Prudence Standard vi: Involves multiple factors that may cause cumulative impacts or impacts of extraordinary magnitude</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>
6.0 MEASURES TO MINIMIZE HARM

6.1 Alternative Development Process

Measures to minimize harm were part of the planning and development process. In particular, historic Section 4(f) features were identified at the start of the process and were considered throughout the planning and design development phases while exploring alternatives. A range of alternatives developed and discussed in the PSR was focused on reconstruction of the ramps on the east side of the YBI tunnel. Nonviable alternatives considered reconstructing the eastbound off-ramp, but it was deemed infeasible due to the mandatory closure of the SFOBB, geometric challenges, effects on land use, excessive cost and safety concerns. The ramps west of the YBI tunnel have not been considered for reconstruction because the space available is insufficient to provide enough room for the ramps to be designed and reconstructed to meet current geometric standards. Table 2-3 in the Final EIR/EIS presents the range of alternatives that were developed and screened through the planning process.

6.2 Alternative Features That Minimize Harm

The constraints associated with the development of project alternatives in accordance with the purpose and need limited the opportunity to design alternatives that could completely avoid affecting Section 4(f) resources. The range of alternatives was developed to try to avoid or minimize impacts to Section 4(f) resources while providing feasible concepts that responded to the project’s requirements. Additional minimization efforts involved the aesthetics of the designs. The design elements for the proposed project were refined so that they contextually match the rhythm and style of the new SFOBB in order to help integrate the structure and improve the appearance of the visual environment.

6.3 Measures to Minimize Effects to Historic Properties

In order to mitigate the adverse effect of the build alternatives on the historic properties, a MOA was developed through consultation between Caltrans, SHPO, SFCTA, TIDA, the United States Navy, and the United States Coast Guard. The MOA stipulates various activities that will be conducted to address adverse effects the build alternatives would have on Section 4(f) resources. It should be noted that Native American tribes and the NAHC were invited to participate in the Section 106 process in a letter dated November 4, 2009 that included their contacts and addresses (see Attachment B, address list, page 3 of letter). No responses were received from the Native American tribes or the NAHC. The executed MOA stipulates the commitments that the signatories have made to mitigate the proposed project’s adverse effects on historic properties including development of historic structures reports for Quarters 10 and Building 267 and for the Quarters 1 Nimitz House, an historic landscape report for the Senior Officers’ Quarters Historic District, relocation of Quarters 10 and Building 267, installation of interpretive signs, measures to protect historic buildings and landscape elements from damage during construction, requirements to repair inadvertent damage in accordance with the Secretary of the Interior’s standards for the treatment of historic properties, and protection of known and as yet undiscovered archaeological sites.

The mitigation measures to be implemented for this project add to and compliment both previous and on-going mitigation measures being undertaken as part of the East Span project.
Caltrans and SFCTA will carry out mitigation commitments within the APE are protected and monitored before and during construction.

6.3.1 Senior Officers’ Quarters Historic District and Quarters 1/Nimitz House

Alternative 2b: Alternative 2b would result in a permanent Section 4(f) use of the Senior Officers’ Quarters Historic District. It would place permanent columns and support structures within the boundary of the district and in landscaped areas that contribute to the significance of the property. It is estimated that 0.089 hectare (0.22 acres) of the property would be permanently incorporated into the transportation facility. This land includes the footprint of both the column and footprint of the off-ramp structure above the historic district. This 0.089 hectare (0.22 acres) will become state-owned (Caltrans) right-of-way. Alternative 2b would also cause impacts to the resource related to setting and views.

Alternative 2b would also result in a permanent Section 4(f) use of Quarters 1/Nimitz House. The resource is individually significant, and also a contributing resource within the Senior Officers’ Quarters Historic District, and included within that boundary. In relation to the project, the southern boundary of Quarters 1/Nimitz House follows the boundary of the district, along the SFOBB. The land from within the boundary of this resource is currently owned by the Navy and is in the process of being transferred to the City of San Francisco. Property rights for this land will then be transferred to Caltrans in fee title.

Measures to minimize harm include:

- Caltrans and the SFCTA will implement protective measures including, but not limited to: fencing, scaffolding and debris netting of the limits of work to prevent damage; conduct vibration studies prior to the commencement of any construction activity; develop construction procedures to avoid and minimize vibration impacts; and undertaking vibration monitoring during construction to ensure protection of the resource; preparation of a Historic Structures Report (HSR) and conditions assessment of Quarters 1/Nimitz House; and stabilization, monitoring, and security procedures for the historic structures and cultural landscape elements during construction.

- Caltrans and the SFCTA will repair any damage caused by the project in accordance with the Secretary of the Interior’s Standards for Rehabilitation; and

- Caltrans and the SFCTA will restore the grounds, including but not limited to placement of new sod in grass areas, replacement of shrubbery and trees, regrading and re-vegetation of disturbed slopes, and repair or replacement of damaged paving, sidewalks, and curbs.

Alternative 4: Alternative 4 would result in a permanent Section 4(f) use of the Senior Officer’s Quarters Historic District. It is estimated that 0.089 hectare (0.22 acres) of the property, the land directly beneath the ramps, would be permanently incorporated into the transportation facility. Two columns would also be constructed within the boundary of the resource. In addition, Alternative 4 would introduce new visual elements that would substantially impair the property. The introduction of numerous new piers supporting the ramps associated with this alternative creates a dominant visual element that changes the viewshed. The numerous piers obstruct the view from the resource to the east and southeast. The piers would also obstruct the view of the resource.
Alternative 4 would also result in a permanent Section 4(f) use of Quarters 1/Nimitz House. The land from within the boundary of this resource is currently owned by the Navy and is in the process of being transferred to the City of San Francisco. Property rights for this land will then be transferred to Caltrans in fee title. This land would become state-owned (Caltrans) right-of-way. Alternative 4 would introduce new visual elements that would substantially impact the property.

Measures to minimize harm include:

- Caltrans and the SFCTA will develop and implement protective measures including, but not limited to: fencing, scaffolding and debris netting of the limits of work to prevent damage; conduct vibration studies prior to the commencement of any construction activity; develop construction procedures to avoid and minimize vibration impacts; and undertaking vibration monitoring during construction to ensure protection of the resource; preparation of a Historic Structures Report (HSR) and conditions assessment; and stabilization, monitoring, and security procedures for the historic structures and cultural landscape elements during construction.

- Caltrans and the SFCTA will repair any damage caused by the project in accordance with the Secretary of the Interior’s Standards for Rehabilitation;

- Caltrans and the SFCTA will restore the grounds, including but not limited to placement of new sod in grass areas, replacement of shrubbery and trees, regrading and re-vegetation of disturbed slopes, and repair or replacement of damaged paving, sidewalks, and curbs; and

- Caltrans and the SFCTA will use form liners and/or context sensitive solutions in the design of the piers, as well as screen plantings and landscape designs to minimize visual impacts.

6.3.2 Quarters 10 (and Building 267)

Alternative 2b: Alternative 2b would result in a permanent Section 4(f) use of Quarters 10 (and Building 267). Quarters 10 and its associated garage (Building 267) would be removed to accommodate the construction of both on- and off-ramps and an abutment along the south side of Macalla Road. The buildings would be moved to an appropriate site on YBI in the vicinity of its current location. Approximately 0.182 hectare (0.450 acres) would be incorporated into the transportation facility. The land from within the boundary of this resource is currently owned by the Navy and is in the process of being transferred to the City of San Francisco.

As discussed in more detail in Section 3.21 of the Final EIR/EIS, these buildings would be relocated to an area above the south side of Clipper Cove with the implementation of Alternative 2b. The buildings will be relocated and reconstructed in accordance with the Secretary of the Interior’s Standards for the Treatment of Historic Properties: Standards for Preservation, Rehabilitation, Restoration, and Reconstruction (1995). The process for moving these buildings would follow the approach outlined in Moving Historic Buildings (Curtis 1979). In addition, Quarters 10/Building 267 would be relocated by a professional mover with demonstrated experience in the successful movement of historic buildings.

Appropriate steps will also be taken to ensure that buildings will be protected prior to moving to accommodate construction activities. Quarters 10/Building 267 will be protected in place until they are relocated. Measures taken for Quarters 10/Building 267 will include providing security
before, during, and following its relocation for a period of time agreed to by Caltrans and the SFCTA.

Alternative 4: Alternative 4 would not result in a Section 4(f) use of Quarters 10 (and Building 267). The potential impacts from vibration during construction do not rise to the level of “substantial impairment” and can be minimized and mitigated by Caltrans utilizing standard vibration monitoring protocols and adapting construction methods to minimize vibration impacts.
7.0 COORDINATION

7.1 Public Involvement Program Overview

A public involvement program was developed to guide this project through the comprehensive public information and outreach process. The public involvement program provided a variety of communication methods educating the public on the scope of the study, including impacts and benefits. Information was provided to the public about the study, at project milestones and the project team solicited input and feedback from the public and agencies as to their specific needs, issues, concerns, and recommendations. By educating through a variety of informative communication tools, the community and agencies were well-equipped to provide meaningful public input.

Key elements of the public involvement plan included:

- Educating the public and agencies through effective communication tools
- Providing multiple opportunities for input on study alternatives
- Managing and organizing comments received, and presenting input in a concise manner to decision makers

Additional details of this public involvement process undertaken for the YBI Ramps Improvement Project can be found in Chapter 5 of the Final EIR/EIS.

7.1.1 Agency Early Consultation

The scoping process was launched with the publication of the NEPA NOI and CEQA Notice of Preparation (NOP). The NOI was published in the Federal Register on September 8, 2008, and the NOP was published on September 5, 2008 in local newspapers. The NOP was circulated to stakeholder agencies through the California State Clearinghouse on September 5, 2008, and to additional agencies, organizations, and the general public through direct mail. The NOP was advertised in local newspapers (San Francisco Chronicle, Contra Costa Times, and Oakland Tribune) on September 5, 2008, along with information about the scoping meeting and scoping comment period. In November 2010, Caltrans sent out an invitation to agencies and local interest groups for an opportunity to hear an update on the project alternatives and potential environmental impacts, which was held on December 7, 2010. At this meeting the participating agencies were provided an update on the project overview, purpose and need, alternatives, analyses conducted and methodologies and potential environmental impacts.

In addition, the following meetings and presentations have been conducted with public agencies in support of the YBI environmental review:

Caltrans

- More than 35 project development team meetings and numerous focused technical meetings have been held with Caltrans to discuss design issues pertaining to geometry, drainage, utilities, lighting, traffic, right-of-way, aesthetics, and structures. Each meeting resulted in valuable input to complete the respective design.
• Attendance at monthly project meetings with the City of San Francisco Mayor’s Office, the SFCTA, and TIDA to share information and discuss coordination issues.

• Meetings with the Caltrans Seismic PEER Review Panel on 11/21/08, 1/30/09, 4/24/09, and 6/26/09 to discuss the seismic response of the ramps and their impacts to the YBITS 1 project.

• Meetings with the Caltrans Project Management Team on 11/3/08, 1/12/09, 9/14/09, and 10/2/10 to discuss project funding, schedule, and construction staging of the YBI Ramps Improvement Project with the SFOBB.

SFCTA

• Meeting with the SFCTA Community Advisory Committee on 4/22/09 and 4/27/11 to present the project alternatives, solicit comments from the members, and provide updates on selection of the preferred alternative and project schedule.

BCDC

• Meetings with BCDC occurred on 2/11/09, 6/4/09, 10/5/09, and 6/7/10.

• Presentation to agencies on 12/7/10 to present a summary of project alternatives and potential environmental impacts.

USCG

• Meeting with USCG on 2/9/10 to discuss project impacts to the USCG right-of-way and project responsibilities between Caltrans, TIDA, and SFCTA.

• Meeting with USCG on 3/23/09 to discuss the Hillcrest/South Gate Road intersection configuration and truck turning on Macalla Road.

• Meeting with USCG on 3/23/09 to discuss the Hillcrest/South Gate Road intersection configuration and truck turning on Macalla Road. Presentation to agencies on 12/7/10 to present a summary of project alternatives and potential environmental impacts.

US Navy

• Meeting with the U.S. Navy on 5/19/10 to discuss right-of-way.

• Presentation to agencies on 12/7/10 to present a summary of project alternatives and potential environmental impacts.

TIDA

• Presentations to the TIDA Community Advisory Board on 4/6/09 and TIDA Board on 4/8/09 to brief them on the project and answer questions.
SHPO

- Meeting with SHPO on 7/23/09 to discuss impacts of the relocation of Buildings 10 and 267 and effects of Alternatives 2b and 4 on the historic district.

- Meeting and site visit with SHPO on 9/24/09 to discuss impacts of the relocation of Buildings 10 and 267.

Toll Bridge Program Oversight Committee

- Meeting with the Toll Bridge Program Oversight Committee (TBPOC) on 4/2/09, 10/16/09 and 10/6/10 to provide project updates, gain consensus on aesthetics, and obtain structural Contract Change Order (COO) approval.

FHWA

- Meeting with FHWA on 12/1/09 to provide an update on the project.

- PM$_{2.5}$ interagency consultation and concurrence on the conformity analysis on 6/10/11.

Department of Homeland Security

- Meeting with the Department of Homeland Security on 1/12/10 to discuss Bridge security.

SFPUC

- Meetings with SFPUC on 1/26/09, 3/19/09, 7/1/10, and 1/31/11 to discuss potential impacts to utilities. Meeting resulted in positive feedback and information to identify impacted utilities.

USEPA

- Presentation to agencies on 12/7/10 to present a summary of project alternatives and potential environmental impacts.

RWQCB

- Presentation to agencies on 12/7/10 to present a summary of project alternatives and potential environmental impacts.

Metropolitan Transportation Commission Air Quality Conformity Task Force

- PM$_{2.5}$ interagency consultation and determination that the project is not Project of Air Quality Concern on 4/29/11.
7.1.2 Release of the Draft EIR/EIS

The Draft EIR/EIS was issued for public review on February 25, 2011. Advertisements were issued in the San Francisco Chronicle, Contra Costa Times, and Oakland Tribune notifying the public, agencies, and interested parties regarding the comment period and identifying where comments should be sent. The release of the Draft EIR/EIS provided an opportunity for public involvement and education. The environmental impacts, including visual, historic, and cultural resources, were fully disclosed to the public. The review period of the Draft EIR/EIS provided the opportunity for the public, agencies, and organizations to comment during a 45-day period, ending on April 11, 2011. A Public Hearing was held on March 16, 2011.

7.1.3 Final EIR/EIS

During the formal comment period of the Draft EIR/EIS, the document was sent to key agencies including the U.S. Department of the Interior Office (DOI) Office of Environmental Policy and Compliance (Washington D.C.) for concurrence on the Section 4(f) resources findings as required by 23 C.F.R. 774. A total of five comment letters were received from the U.S. Department of the Interior Office of Environmental Policy and Compliance (Pacific Southwest Region), United States Navy, U.S. Environmental Protection Agency, California Regional Water Quality Control Board San Francisco Bay Region, and the U.S. Coast Guard.

All comments provided on the Draft EIR/EIS are addressed in Chapter 5 of this Final EIR/EIS.

7.2 Historic Resources

There have been substantial coordination efforts during the course of this project related to historic resources and these efforts remain ongoing. To date, efforts to involve the public and inform them of the proposed project and potential environmental impacts have included:

- San Francisco County Transportation Authority (SFCTA) issued a Notice of Preparation (NOP) on September 5, 2008.
- A Public Scoping meeting was held at the Port of San Francisco office, Bayside Conference Room, Pier 1, San Francisco, on September 24, 2008.
- San Francisco Bay Conservation and Development Commission (BCDC) – Design Review Board held a public hearing on April 6, 2008. SFCTA gave an informational presentation on the project and its progress.
- During preparation of the HRER, letters were sent out on December 11, 2008 informing area planning agencies, local governments, historical societies, museums, and other interested parties of the proposed project. The following organizations received the letter: San Francisco Architectural Heritage; San Francisco Landmark Preservation Advisory Board; Preservation Coordinator, San Francisco Planning Department; San Francisco History Association; San Francisco Museum and Historical Society; California Historical Society; San Francisco Beautiful; California Heritage Council; California Preservation Foundation; National Trust for Historic Preservation Western Office; National Park Service, Pacific West Region Office; Oakland Heritage Alliance; Oakland...
Landmarks Preservation Advisory Board; Oakland Cultural Heritage Survey; Alameda County Historical Society; Alameda County Parks, Recreation and Historical Commission.

- The Historic Property Survey Report (HPSR), including Historical Resources Evaluation Report (HRER) and updated DPR523 forms, was submitted to Caltrans in March 2009. Final documents were submitted on September 23, 2009 and approved by Caltrans on October 22, 2009.

- The Final Finding of Effect Report (FOE) was approved by Caltrans in October 2009.

- On November 4, 2009, Caltrans and SFCTA issued a letter to all interested parties to inform them of the submittal of the FOE to the State Office of Historic Preservation (SHPO), notifying interested parties that the project would have an adverse effect on historic properties, and to solicit their input, complying with Section 106. No responses were received from that mailing.

- On February 8, 2010, the SHPO concurred with the findings of the Federal Highway Administration (FHWA) as presented in the FOE that the project would have an Adverse Effect on cultural resources.

- Caltrans has completed consultation with SHPO following 36 CFR 800.6, to arrive at a resolution of the adverse effects. Caltrans, SFCTA, and SHPO have developed a MOA pursuant to Section 106 of the NHPA, which formalizes measures that would mitigate the adverse effects this undertaking would have on the historic properties.

- SHPO signed the MOA on April 14, 2011, concurring with the content and measures included in the MOA. The executed MOA stipulates commitments made by the following signatories: Caltrans, SHPO, SFCTA, United States Navy, United States Coast Guard, and TIDA.

Caltrans has been coordinating with the U.S. Navy throughout the Draft EIR/EIS process.
8.0 LEAST HARM ANALYSIS AND CONCLUDING STATEMENT

In the EIR/EIS process, Caltrans has made a reasonable effort to identify a full range of potentially feasible alternatives to address the project purpose and need. These alternatives have been described within this Section 4(f) Evaluation. During the alternatives evaluation process, eight build alternatives were developed along with one no-build alternative.

As presented in Section 5.0, there are no feasible and prudent avoidance alternatives, there are unique problems involved that preclude developing an alternative that would avoid the use of any Section 4(f) properties in the project area. All potential build alternatives require a connection between the tunnel portal on the east end of YBI and the SFOBB, and all must connect from the raised elevation of the main bridge span to the ground level on the island between 55 feet (17 meters) and 100 feet (30 meters). The terrain in this location and the configuration of existing roadways and surrounding structures played a major role in limiting design options. In addition, the tunnel portal itself is a NRHP eligible contributing resource and part of the SFOBB.

Because there are no feasible and prudent avoidance alternatives to the project, during the evaluation of the build alternatives several factors will be considered so as to identify the alternative that causes the least overall harm in light of the Section 4(f) preservation purposes.

The least overall harm is determined by balancing the following factors:

1. **The ability to mitigate adverse impacts to each Section 4(f) property:**

 As discussed in Section 4.0 above, both Alternative 2b and Alternative 4 would require the permanent use of portions of the land occupied by the Senior Officers’ Quarters Historic District and the Quarters 1/Nimitz House; in addition, Alternative 2b would also require use of the area occupied by Quarters 10 (and Building 267).

 Senior Officers’ Quarters and the Quarters 1/Nimitz House

 With respect to the Senior Officers’ Quarters and the Quarters 1/Nimitz House both alternatives would have similar mitigation measures. Measures that are common for both build alternatives are:

 - Caltrans and the SFCTA will implement protective measures including, but not limited to: fencing, scaffolding and debris netting of the limits of work to prevent damage; conduct vibration studies prior to the commencement of any construction activity; develop construction procedures to avoid and minimize vibration impacts; and undertaking vibration monitoring during construction to ensure protection of the resource; preparation of a Historic Structures Report (HSR) and conditions assessment of Quarters 1/Nimitz House; and stabilization, monitoring, and security procedures for the historic structures and cultural landscape elements during construction.
Caltrans and the SFCTA will repair any damage caused by the project in accordance with the Secretary of the Interior’s Standards for Rehabilitation; and

Caltrans and the SFCTA will restore the grounds, including but not limited to placement of new sod in grass areas, replacement of shrubbery and trees, re-grading and re-vegetation of disturbed slopes, and repair or replacement of damaged paving, sidewalks, and curbs.

Alternative 4 would have the following additional measure:

Caltrans and the SFCTA will use form liners and/or context sensitive solutions in the design of the piers, as well as screen plantings and landscape designs to minimize visual impacts.

In terms of their ability to mitigate the adverse impacts to the Senior Officers’ Quarters and the Quarters 1/Nimitz House, both alternatives are substantially similar.

Quarters 10 (and Building 267)

Alternative 2b would require use of Quarters 10 (and Building 267). As discussed in Section 6.3.2 of this evaluation and in Section 3.21 of the Final EIR/EIS, these buildings would be relocated to an area above the south side of Clipper Cove (See also Figure 3-21.2 in Final EIR/EIS). The Clipper Cove area will be less subject to the visual impacts caused by the project. Moving these buildings to this area, therefore, means that these resources are less subjected to the visual impacts of the project.

Section 3.7.5.2 of the FEIR/EIS discusses the visual impacts of the proposed project and includes the following statement regarding the project’s impacts on the viewshed: “Construction of the Alternative 4 design would in some cases have significant impacts on the visual quality of some areas when these areas are observed from certain viewpoints... Given the large scale of the ramps, it would be difficult to screen or sufficiently offset their visual impacts without in the process causing secondary significant visual impacts.” While these visual impacts were not found to rise to the level of substantial impairment and therefore do not amount to constructive use, these visual impacts are relevant to this balancing factor. The overall conclusion regarding the visual impact of Alternative 2b and Alternative 4 are similar; however, Alternative 4 has more columns in the area of Quarters 10 and Building 267 and does not blend into the existing SFOBB structures as well as Alternative 2b. Because Quarters 10 (and Building 267) would remain in their current location under this alternative, the visual impacts to Quarters 10 (and Building 267) would remain with Alternative 4 even with the above measures incorporated into the project. As stated previously, if Alternative 2b is implemented, the Quarters 10 (and Building 267) would be moved and would not remain subjected to the visual impacts of the proposed project.

Summary

The overall conclusion for this factor is that Alternative 2b is slightly better in its ability to mitigate the adverse affects to the Section 4(f) resources. They both mitigate the impacts to Senior Officers’ Quarters and the Quarters 1/Nimitz House to a similar degree and in the same manner. Although Alternative 2b would entail the relocation of Quarters 10 (and Building 267), Alternative 2b moves these resources to an area that has less visual disturbance (see Section 3.21 of the Final EIR/EIS for additional details regarding
the relocation). Under Alternative 4, those resources will remain subject to the visual intrusion caused by SFOBB and this project.

2. The relative severity of the remaining harm, after mitigation, to the protected activities, attributes, or features that qualify each Section 4(f) property for protection:

Senior Officers’ Quarters and the Quarters 1/Nimitz House

As described in Section 3.8.2.4 of Final EIR/EIS, the Senior Officers’ Quarters and the Quarters 1/Nimitz House qualify for protection under Section 4(f) because of their association with the early development of military facilities on the west coast, and because they represent significant examples of Classical Revival/Colonial Revival residential architecture.

Section 3.8.3.2 of the Final EIR/EIS summarizes the impacts of the two build alternatives on the Senior Officers’ Quarters and the Quarters 1/Nimitz House and includes a comparison of their effects to these resources. While both build alternatives would introduce inconsistent visual elements within the boundaries of these properties, the completed structures and alignment of Alternative 2b would more closely resemble the existing facility. Alternative 2b would adversely affect contributing features in geographically smaller areas than Alternative 4, thus having less impact on the integrity of the Senior Officers’ Quarters Historic District.

As discussed under factor 1 above, both Alternative 2b and Alternative 4 have virtually the same package of mitigation measures for the use of the Senior Officers’ Quarters and the Quarters 1/Nimitz House. Thus, the difference in relative harm after mitigation between Alternative 2b and Alternative 4 is a result of the initial impacts, not the mitigation measures. In which case, although the alternatives are relatively equal, Alternative 4 would have slightly greater remaining harm since it has a larger geographic impact and is less consistent with the SFOBB structures.

Quarters 10 (and Building 267)

Because this resource is significant as an example of mid-twentieth-century residential architecture under Criterion C, it is protected by Section 4(f). (See Section 3.8.2.4 of the Final EIR/EIS for additional information.)

Alternative 2b may have an appearance of greater remaining harm, since the Quarters 10 and Building 267 resource would be physically moved to another location in that alternative. Under Alternative 2b, Quarters 10/Building 267 cannot remain in place because the terminus of the new design alignment of Alternative 2b intersects at the location of these historic structures. There is no possible way to maintain Quarters 10 and Building 267 and implement Alternative 2b. The relocation of Quarters 10 and Building 267 does take the buildings out of their original setting; however, the new site location allows the important historic features to be retained. Specifically, the new site will still allow for an unobstructed view of the bay. This is important because the rounded architecture and orientation of the house was designed specifically to emphasize the bay view. The new site allows the Quarters 10 and Building 267 to have the same site orientation and relationship to the San Francisco Bay as it did originally.
but without the visual intrusions caused by SFOBB and the proposed project. This outweighs the negative impact of taking the structures out of their original setting.

As discussed in Section 3.8.3.2 of the Final EIR/EIS, Alternative 4 would cause indirect adverse effects to the Senior Officers' Quarters Historic District, as well as to individual historic properties (including Quarters 1/Nimitz House, Quarters 10/Building 267). Because Quarters 10/Building 267 would remain in their current location under Alternative 4, the buildings would remain subject to the indirect adverse effects caused by the more visually intrusive effects of Alternative 4. Under Alternative 4, the ramp deck and 23 support columns would be built around the Quarters 10/Building 267 which would remain in place. While this would allow the historic structure to stay at its original location, the physical and visual effect would diminish the integrity of the Quarters 10/Building 267 property's significant historic features blocking the visual orientation to the San Francisco Bay. The size and scale of the proposed ramp structure is not consistent with the historic setting of Quarters 10/Building 267 or with the historic district and would constitute introduction of a new visual element. In addition, because the ramp design of Alternative 4 is long and linear, the deck and support columns continue past the Quarters 10/Building 267 and surround Quarters 1/Nimitz House. This impacts the integrity of the structures, described above, by obstructing the eastward views toward the San Francisco Bay, which is a character-defining feature.

Therefore, moving the Quarters 10/Building 267 under Alternative 2b actually results in lesser harm to the key features and attributes that qualify this Section 4(f) resource for protection because its architecture, its orientation and its bay view will still remain intact; in terms of its significance under Criterion C, those are of primary importance.

Therefore, it can be asserted that Alternative 4 results in greater remaining harm to Quarters 10/Building 267 than Alternative 2b.

Summary

While both build alternatives have somewhat similar mitigations measures for the Senior Officers’ Quarters and the Quarters 1/Nimitz House, as discussed above, Alternative 2b results in slightly less remaining harm to those resources. Similarly, despite the relocation under Alternative 2b of Quarters 10 and Building 267, Alternative 2b has less remaining harm to that resource as well. Therefore, Alternative 2b results in relatively less remaining harm after mitigation to the features and attributes that make these resources eligible for protection under Section 4(f).

3. The relative significance of each Section 4(f) property:

This factor is about balancing the relative significance of each Section 4(f) property. This factor becomes important in situations where the build alternatives impact different Section 4(f) properties and/or different types of Section 4(f) properties. With respect to the YBI Ramp Improvement Project, the alternatives do not have those kind of differences.

Senior Officers’ Quarters and the Quarters 1/Nimitz House

As stated in Section 3.8.2.4 of the Final EIR/EIS, the Senior Officers' Quarters Historic District includes 11 contributing elements: seven residences (Quarters 1 through 7), two
Apartments/garages (Buildings 83 and 230), a five-car garage (Building 205), and the landscape that surrounds the district. The district is generally bounded by Northgate Road on the west and north, the greensward on the east, the SFOBB and hillside on the south, and the southern edge of the informal landscaping south of Building 230 and directly west of Quarters 1/Nimitz House. The majority of these wood-frame buildings were constructed around the turn of the twentieth century, with the exception of Buildings 83, 230, and 205, which were built in 1918, 1936, and 1944, respectively. The property is significant at the local level under Criterion A, for its association with the early development of military facilities on the west coast, and under Criterion C, as significant examples of Classical Revival/Colonial Revival residential architecture.

As described in Section 3.8.2.3 of the Final EIR/EIS, Quarters 1/Nimitz House is also individually eligible under Criterion A for its association with the development of West Coast military facilities as well as an under Criterion C as an important example of Classical Revival architecture.

Quarters 10 (and Building 267)

Quarters 10 (and Building 267) was constructed in 1948 and is a mixture of three modern architectural styles: Moderne, International, and Bay Region. Building 267, a garage associated with Quarters 10, is similar in design and construction. The property is significant at the local level under Criterion C, as a significant example of mid-twentieth-century residential architecture.

Summary

Alternative 2B would result in direct impacts to (permanent use of): Senior Officers’ Quarters Historic District, Quarters 1/Nimitz House, and Quarters 10 (and Building 267). Alternative 4 would result in direct impacts to (permanent use of) the Senior Officers’ Quarters Historic District and Quarters 1/Nimitz House.

All the resources used by the two build alternatives are listed in the National Register of Historic Places, each for their own historical significance and physical character. They are relatively comparable and equally significant as Section 4(f) resources.

4. The views of the officials with jurisdiction over each Section 4(f) property:

In accordance with the definition of “Official with Jurisdiction” contained in 23 CFR 774.17, the State Historic Preservation Officer (SHPO) is the official with jurisdiction over the Senior Officers’ Quarters Historic District, the Quarters 1/Nimitz House, and Quarters 10/Building 267.

On April 14, 2011, the SHPO signed the Memorandum of Agreement (MOA) for this proposed project. The MOA is the culmination of the coordination and negotiations that occurred during the Section 106 process. The MOA was executed based on the identification of Alternative 2b as the preferred alternative and included discussion of the Senior Officers’ Quarters Historic District, Quarters 1/Nimitz House, and Quarters 10/Building 267. The MOA resolves the adverse effects for the purpose of Section 106 through agreement that a series of mitigation measures will be implemented (see Appendix R of the Final EIR/EIS for a copy of the MOA). The SHPO’s signature on the MOA constitutes the SHPO’s agreement in the identification of effects on historic
properties, recognition of the preferred alternative (Alternative 2b), and agreement with the proposed mitigation measures.

Although they are not officials with jurisdiction for purposes of Section 4(f), the US Navy, the USCG, and TIDA also signed the MOA as well. The US Navy is the current owner of the properties discussed in this section and TIDA, on behalf of the City of San Francisco, will be the future owner and both have been partners in the development of the mitigation associated with the effects of Alternative 2b including the relocation of Quarters 10 (and Building 267).

Summary

Since the MOA was executed based on Alternative 2b, this represents important evidence that the SHPO agreed with the conclusion that Alternative 2b is the preferred alternative.

5. The degree to which each alternative meets the purpose and need for the project:

As discussed in Section 1.5 of the Final EIR/EIS, the purpose of the proposed project is to improve:

- Traffic safety for drivers using the westbound on- and off-ramps
- Geometric design of the westbound on- and off-ramps on the east side of YBI to and from I-80
- Traffic operation levels of service (LOS) on the westbound on- and off-ramps.

The proposed project is needed for the reasons listed below and explained in more detail in Section 1.5.2 of the Final EIR/EIS:

- Safety: The accident rate for the on- and off-ramps is higher than the statewide rate for similar facilities.
- Geometric Design: The westbound on-ramp merge lengths and off-ramp deceleration lengths on the east side of YBI do not meet current Caltrans standards.
- Operations: Projections of 2035 traffic volumes indicate ramp operations at a failing LOS F on both the on- and off-ramps in both the morning and evening peak hours.

Both Alternative 2b and Alternative 4 meet the purpose and need for the proposed project and are similar in the improvements they make to traffic safety, geometric design and operations. The following text summarizes the key differences in the two alternatives’ ability to meet purpose and need.

Safety

No key distinctions between the two designs. Both alternatives will provide better safety than existing conditions.
Geometric Design

Geometric design in this instance means how closely a configuration meets Caltrans standards for roadway layouts. The biggest distinction between Alternative 2b and Alternative 4 is the configuration of the westbound off-ramp. Under Alternative 2b the off-ramp is a tight loop which requires continuous turning movements while under Alternative 4 the off-ramp is a linear, longer ramp which provides a straighter road section for the driver. Alternative 4 more closely conforms to Caltrans design standards, notably design curves, which provides slightly better geometrics.

Operations

As discussed in Section 3.6.3.2, the only key difference in the operations of the two build alternatives is that Alternative 2b does allow for an HOV bypass on the westbound on-ramp; Alternative 4 does not. This distinction means that Alternative 2b is able to include the HOV bypass lane that is mandated by the Caltrans Ramp Meter Design Manual. Additionally, Alternative 2b locates the ramp terminals near each other on Macalla Road on the north side of I-80, while Alternative 4 locates the westbound on-ramp terminal on the south side of I-80 near the eastbound on- and off-ramps, which reduces operational efficiency. This reduces the length of travel under Alternative 2b, which is more intuitively obvious for driver orientation. Thus, Alternative 2b is slightly better from an operational standpoint.

Summary

Overall, Alternative 2b and Alternative 4 are substantially equal in the degree to which they meet the purpose and need for the proposed project. Alternative 4 is slightly better geometrically while Alternative 2b is slightly better operationally.
6. After reasonable mitigation, the magnitude of any adverse impacts to resources not protected by Section 4(f):

The two build alternatives under consideration have substantial similar impacts to non-Section 4(f) resources. Based on the information contained in Table 2-3 of the Final EIR/EIS, the following table provides a brief summary of the potential impacts of the two alternatives to some of resources not protected by Section 4(f):

Table 8-1: Summary of Non-Section 4(f) Impacts

<table>
<thead>
<tr>
<th>Environmental Resource</th>
<th>Alternative 2B</th>
<th>Alternative 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land Use</td>
<td>Land use impacted where Quarters 10 (and Building 267) would change due to relocation and addition of ramps at Macalla Road grade. Ramps pass over planned institutional areas and open space land planned for future under the TI/YBI Project.</td>
<td>Ramps pass over a portion of the historic district and planned mix-use, institutional, and open space areas intended for future use under the TI/YBI Project. In addition, the ramps would be directly above BCDC jurisdictonal 30.5 meter (100-foot) band.</td>
</tr>
<tr>
<td>Visual</td>
<td>Substantial negative visual changes to setting of the resources, including views to and from resources. Introduces 13 support columns into the landscape, obstructing views. Lesser visual impacts than the ramp features associated with Alternative 4 (see Final EIR/EIS Sections 3.7.4 and 3.8.3.2).</td>
<td>Substantial negative visual changes to setting of the resources, including views to and from resources. Introduces 23 support columns into the landscape, obstructing views.</td>
</tr>
<tr>
<td>Noise</td>
<td>Construction impacts for limited time to noise. Minimal change in operational noise anticipated, 0-1 dBA Leq modeled noise increase at receivers.</td>
<td>Construction impacts for limited time to noise. Minimal change in operational noise anticipated, 0-1 dBA Leq modeled noise increase at receivers.</td>
</tr>
<tr>
<td>Air Quality</td>
<td>Construction impacts for limited time. No change in operational air quality anticipated.</td>
<td>Construction impacts for limited time. No change in operational air quality anticipated.</td>
</tr>
<tr>
<td>Biological Resources</td>
<td>Impacts on biological resources north of I-80 confined to limited area due to ramp design.</td>
<td>Potential impacts on biological resources north of I-80 within shoreline band, adjacent to S.F.Bay</td>
</tr>
</tbody>
</table>

Discussion

Overall, Alternative 2b has slightly less impact to non-Section 4(f) resources than Alternative 4, although for most resources the alternatives are equivalent in their potential impacts. As summarized in the table above and in Table 2-3 of the Final EIR/EIS, Alternative 2b results in low impacts to Land Use while Alternative 4, because of its intrusion into the BCDC boundary, results in medium impacts. As discussed above for factors 1 and 2 of this balancing, while the summary conclusion about the level of
overall visual impact is the same for Alternative 2b and Alternative 4, Alternative 2b does have less visual impacts associated with its ramp features; it has 10 less columns and would blend better with the SFOBB structures. Furthermore, Section 3.8.3.2 Cultural Resources, states in the Comparison of Effects subsection, “The completed structures and alignment of Alternative 2b would more closely resemble the existing facility. Alternative 2b would adversely affect contributing features in geographically smaller areas than Alternative 4, thus having less impact on the integrity of the Senior Officers' Quarters Historic District.” Noise and air quality impacts are substantially the same for each alternative. The same is true for the biological impacts.

Summary

Based on the information presented above, while the two alternatives are substantially similar for most environmental resources, Alternative 2b is slightly better based on differences in the potential impacts to land use, visual, and biological resources.

7. **Substantial differences in costs among the alternatives:**

As expressed in the Table 8-2 below, Alternative 4 was determined to be a roughly two times as costly as Alternative 2b. Because of the extensive ramp structures necessary to meet design requirements, costs for roadway, structures, right-of-way, and engineering are approximately double the cost of Alternative 2b. The estimated construction, right-of-way acquisition and engineering costs for Alternative 4 are $158,521,500, and $79,665 for Alternative 2b.
Table 8-2: Cost Comparisons – Alternative 2B and Alternative 4

<table>
<thead>
<tr>
<th></th>
<th>Alt 2b</th>
<th>Alt 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital Cost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roadway</td>
<td>$7,370,000</td>
<td>$6,400,000</td>
</tr>
<tr>
<td>Structures</td>
<td>$50,600,000</td>
<td>$114,830,000</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$57,970,000</td>
<td>$121,230,000</td>
</tr>
<tr>
<td>Right-of-Way Cost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right-of-Way</td>
<td>$500,000</td>
<td>$3,407,000</td>
</tr>
<tr>
<td>Relocate Utilities</td>
<td>$500,000</td>
<td>$200,000</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$1,000,000</td>
<td>$3,607,000</td>
</tr>
<tr>
<td>Total Capital Outlay</td>
<td>$58,970,000</td>
<td>$124,837,000</td>
</tr>
<tr>
<td>Engineering Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering (PAED, PS&E)</td>
<td>$12,000,000</td>
<td>$15,500,000</td>
</tr>
<tr>
<td>Construction Administration @ 15%</td>
<td>$8,695,500</td>
<td>$18,184,500</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$20,695,500</td>
<td>$33,684,500</td>
</tr>
<tr>
<td>Total</td>
<td>$79,665,500</td>
<td>$158,521,500</td>
</tr>
</tbody>
</table>

1 The right-of-way capital cost includes temporary and permanent easements from the USCG for both alternatives.

Summary

Based on the fact that Alternative 4 is roughly twice as costly as Alternative 2b, this factor is balanced in favor of Alternative 2b.
Balancing Summary and Concluding Statement

Balancing Summary

Section 4(f) requires a clear analysis of impacts when choosing among alternatives that all use Section 4(f) properties. Section 774.3(c)(1) requires a “balancing of seven factors when determining which alternative causes the “least overall harm.” That balancing was the subject of the discussion provided above and the results are briefly summarized in Table 8-2 below.

Table 8-3: Summary of Least Harm Balancing

<table>
<thead>
<tr>
<th>Balancing Factor</th>
<th>Balance in Favor of:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alt. 2B</td>
</tr>
<tr>
<td>Ability to mitigate adverse impacts to each Section 4(f) property</td>
<td>Slight</td>
</tr>
<tr>
<td>Relative severity of the remaining harm</td>
<td>Slight</td>
</tr>
<tr>
<td>Relative significance of each Section 4(f) property</td>
<td>Equal</td>
</tr>
<tr>
<td>Views of the officials with jurisdiction</td>
<td>Better</td>
</tr>
<tr>
<td>Degree to which each alternative meets the purpose and need for the project</td>
<td>Equal</td>
</tr>
<tr>
<td>Magnitude of any adverse impacts to resources not protected by Section 4(f)</td>
<td>Slight</td>
</tr>
<tr>
<td>Substantial differences in costs</td>
<td>Better</td>
</tr>
</tbody>
</table>

Alternative 2b and Alternative 4 are equal in the balancing results for “relative significance of each Section 4(f) property” and the “degree to which each alternative meets the purpose and need.” Both alternatives involve the same Section 4(f) properties—the Senior Officers’ Quarters Historic District and Quarters 10 (and Building 267)—and both alternatives meet the overall purpose and need equally (Alternative 2b is slightly better operationally and Alternative 4 is slightly better geometrically).

Alternative 2b is slightly better in terms of its “ability to mitigate adverse impacts to each Section 4(f) property” and to its “relative severity of remaining harm.” As discussed above, this slight balancing in favor of Alternative 2b is due to the relocation of the Quarters 10 (and Building 267) to the Clipper Cove area where they will be less subject to the overall visual impacts caused by the project. Also, related to the slight difference in visual impacts, Alternative 2b gains a slight advantage in its “magnitude of any adverse impacts to resources not protected by Section 4(f).” This is due to the reduced number of columns with Alternative 2b and its more consistent design in relation to the SFOBB structures.

Lastly, the balancing is in favor of Alternative 2b with respect to the “views of the officials with jurisdiction” and the “substantial differences in costs.” The SHPO signed the MOA recognizing Alternative 2b as the preferred alternative. In addition with respect to cost, Alternative 2b is roughly half the cost of Alternative 4.

For all of above reasons, Alternative 2b is the alternative that causes the least overall harm.
Concluding Statement

Based on the above considerations, there is no feasible and prudent alternative to the use of land from the Senior Officers’ Quarters Historic District and the Quarters 1/Nimitz House and from Quarters 10 (and Building 267) and the proposed action (Alternative 2b) includes all possible planning to minimize harm to the Senior Officers’ Quarters and the Quarters 1/Nimitz House and from Quarters 10 (and Building 267) resulting from such use and causes the least overall harm in light of the statutes preservation purpose.
9.0 OTHER PARK, RECREATIONAL FACILITIES, AND HISTORIC PROPERTIES EVALUATED RELATIVE TO THE REQUIREMENTS OF SECTION 4(f)

This section of the document discusses parks, recreational facilities, and historic properties found within or adjacent to the project area that do not trigger Section 4(f) protection either because: 1) they are not publicly owned, 2) they are not open to the public, 3) they are not eligible historic properties, 4) the project does not permanently use the property and does not hinder the preservation of the property, or 5) the proximity impacts do not result in constructive use.

The following properties discussed below were identified in the project vicinity:

- Existing or Proposed Park and Recreational Facilities Evaluated
 - Proposed Transbay segment of the Bay Trail
 - Relocation site for Quarters 10 and Building 267

- Other Historic Sites Evaluated
 - Quarters 8
 - San Francisco-Oakland Bay Bridge and Associated Contributing Elements
 - Prehistoric Component of Archaeological Site CA-SFr-04/H

The discussion of each property in this section documents:

- Why the property is not protected by the provisions of Section 4(f) or

- If it is protected by Section 4(f), why none of the alternatives under consideration would cause a Section 4(f) use by:
 - permanently incorporating land into the project,
 - temporary occupancy of land that is adverse to the preservationist purposes of Section 4(f), or
 - constructive use of land from the property.

9.1 Public Park and Recreation Facilities

9.1.1 Proposed Transbay Segment of San Francisco Bay Trail

A proposed transbay segment of the San Francisco Bay Trail is located near the project area. In 1989, the Association of Bay Area Governments (ABAG) prepared the Bay Trail Plan. This plan established policies and proposed alignments for a bicycle and pedestrian trail system around the perimeter of San Francisco and San Pablo Bays. It provides a recommended route for a continuous trail and policies to guide the selection of alignments and trail design and implementation. ABAG provides planning input but does not fund Bay Trail segments. Individual projects to implement segments of the Bay Trail are funded by other agencies and
organizations. Such projects are subject to independent environmental review as well as applicable permitting from San Francisco Bay Conservation Development Commission (BCDC) or other agencies that may have jurisdiction.

The Bay Trail Plan designated many existing trails as segments of the Bay Trail, and it proposed new trail segments that would make the Bay Trail continuous. It did not specify the exact locations, features, and connections of future trail segments. Existing segments of the Bay Trail, as recreational trails on publicly-owned land or easements, are Section 4(f) properties.

ABAG’s Bay Trail Plan proposed that segments of the Bay Trail cross San Francisco Bay via all transbay bridges, including the SFOBB. There is currently no Bay Trail crossing of the Bay via the SFOBB. The plans for the East Span Project of the SFOBB call for the inclusion of a bicycle/pedestrian path. That project is currently under construction.

Currently, no portion of the Bay Trail exists in the proposed YBI Ramps Improvement Project area, nor is it included in this project. The YBI Ramps Improvement Project does not include the installation of a shared pedestrian/bike lane and a contra-flow bike lane on Macalla Road, but the project does include widening and construction of sidewalks along Macalla Road that could accommodate those types of facilities in the future.

The shared pedestrian/bike path coming off the SFOBB on the eastbound on-ramp is part of Caltrans' YBITS2 project and not part of the YBI Ramps Improvement Project. That pedestrian/bike path runs around South Gate Road, underneath the SFOBB, and terminates at Macalla Road. If the pedestrian/bike path is constructed on YBI, it may ultimately be designated as part of the Bay Trail at some point in the future. There are no parks, paths, trails, or bike lanes that are part of the YBI Ramps Improvement Project. Therefore it has been determined that no impacts on any of these resources would take place, or require Section 4(f) protection, and the provisions of 4(f) are not triggered.

9.1.2 Other Potential Recreational Facilities

Recreation and open space uses are located nearby on Treasure Island (TI) and include water-related recreation and boating facilities; indoor and outdoor recreation facilities; and a variety of walking, bike trails, and picnic areas (City and County of San Francisco 2006:3-5). Some of the features including open space are identified on Figure 11, included in Attachment A. Other boating facilities include two recreational boat ramps (Piers 11 and 12) on the southern edge of TI and a fishing pier (Pier 23) on the west side of TI (City and County of San Francisco 2006:3-5). Outdoor recreation facilities include baseball fields, a pitching green, miniature golf course, two tennis courts, basketball courts, and two playgrounds concentrated in the interior of TI, which are located approximately 1 mile from the proposed project site. Open space areas on TI include four parks and picnic areas, and walking and bike trails. The dike around TI is also used as a jogging trail (City and County of San Francisco 2006:3-5). Certain appropriately marked areas of the islands are considered off-limits to the public due to SFOBB-related construction and ongoing environmental remediation (City and County of San Francisco 2009d).² The YBI Ramps Improvement Project would not impact these recreational areas.

² The Navy is in the process of completing a soil remediation project in an effort to clean up contaminated soils in the area and dispose of hazardous substances. The remedial action plan is in its final stages and is expected to be completed in 2009. The project is referred to as the Action Memorandum / Interim Remedial Action Plan: Non-Time Critical Removal Action for Solid Waste Disposal Areas, Installation
Water-related recreational facilities are concentrated around Clipper Cove, a public marina often utilized as a sailing venue for events such as regattas for dinghies and small keel boats (Treasure Island Sailing Center 2009). The previous Navy land use map and documentation classified most of the land on Yerba Buena Island that is not occupied by housing, public works, storage or roads, as open space/recreation. As discussed extensively in Section 3.21 of the Final EIR/EIS, the southern area above Clipper Cove is the proposed relocation site for Quarters 10 (and Building 267). In April and May, 2011, the Navy, Caltrans (FHWA assigned), SHPO, and SFCTA signed an MOA that includes the relocation of Quarters 10 and Building 267; the future function of the relocated buildings at their new site has not been determined. A narrow beach area is located on the south edge of Clipper Cove, which is located at a lower elevation on Yerba Buena Island, just below the proposed relocation site. There is also an informal picnic area with two picnic tables that is located adjacent to the proposed relocation site. The relocation site has not been formally designated as a park, but, for purposes of this project, it has been considered as a park based on its current informal use and future planned use proposed by the City in their recently approved Treasure Island Yerba Buena Island Parks and Open Space Plan.

As discussed in 23 CFR 774.17 a “use” of Section 4(f) property occurs: (1) When land is permanently incorporated into a transportation facility. In the case of the relocation of Quarters 10 (and Building 267) to an area above the south side of Clipper Cove, there is no Section 4(f) use because the land on which the buildings will be relocated is not being permanently incorporated into a transportation facility. The buildings are not transportation facilities. This is further supported by Question and Answer 22 in the FHWA Section 4(f) policy paper, which states:

22. Non-Transportation Use of 4(f) Resources

Question: Does the expenditure of Title 23 funds for mitigation or non-transportation activities on a 4(f) resource trigger the requirements of Section 4(f)?

Answer: No. Section 4(f) only applies where land is permanently incorporated into a transportation facility and when the primary purpose of the activity on the 4(f) resource is for transportation. If activities are proposed within a 4(f) resource solely for the protection, preservation, or enhancement of the resource and the official with jurisdiction has been consulted and concurs with this finding (in writing) then the provisions of Section 4(f) do not apply.

For example, consider the construction or improvement of any type of recreational facility in a park or recreation area (see Question 24) or the construction of a permanent structural erosion control feature, such as a detention basin. Where these activities are for the enhancement or protection of the 4(f) resource, do not permanently incorporate land into a transportation facility, do not appreciably change the use of the property and the officials having jurisdiction agree, Section 4(f) would not apply.

Another example involves the enhancement, rehabilitation or creation of wetland within a park or other 4(f) resource as part of the mitigation for a transportation project’s

Restoration Site 12, Old Bunker Area, Naval Station Treasure Island, San Francisco, California (AM/IRAP) (Sullivan 2009).
wetland impacts. Where this work is consistent with the function of the existing park and considered an enhancement of the 4(f) resource by the official having jurisdiction, then Section 4(f) would not apply. In this case the 4(f) land is not permanently incorporated into the transportation facility, even though it is a part of the project as mitigation. If activities funded with Title 23 funds result in a substantial change in the purpose, function or change the ownership from a 4(f) resource to transportation, then Section 4(f) will apply.

The relocation of Quarters 10 (and Building 267) is not for transportation purposes but for the purpose of protecting these resources and the relocation of these buildings to Clipper Cove does not appreciably change the Clipper Cove area. Both the Navy and TIDA have agreed with the relocation of the buildings to this site and are aware that the relocation is for preservation purposes and would not change the nature of the Clipper Cove area. Substantiation for this is found in their signing of the Section 106 MOA (see Appendix R) as well as their attendance at numerous PDT meetings during which the relocation was discussed and agreed upon as a practical location (March 18, 2011; April 12, 2011; and July 19, 2011).

As such, the land from above the Clipper Cove area will not be permanently incorporated into a transportation project and therefore, the provisions of Section 4(f) are not triggered.

9.2 Historic Resources

In addition to the Senior Officers’ Quarters Historic District, Quarters 1/Nimitz House, Quarters 10 (and Building 267), there are three other historic properties within the Area of Potential Effect as defined by the implementing regulations of the NHPA.

9.2.1 San Francisco Oakland Bay Bridge and Associated Contributing Elements

The San Francisco Oakland Bay Bridge (SFOBB) is a multi-component property listed in the NRHP and the CRHR. The resource was inventoried, evaluated, and documented as part of the SFOBB East Span Seismic Safety Project, and was listed in 2001. The YBI tunnel is a contributing component to this resource. The two project build alternatives, 2b and 4, would not result in a Section 4(f) use of this resource. No land would be permanently incorporated into the project, nor would any land be temporarily occupied by it. The build alternatives would not have a severe impact that substantially impairs the historic quality of the resource. The proposed project would not cause a constructive use of the SFOBB or the contributing tunnel because the proximity impacts would not substantially impair the protected activities, features, or attributes of the historic resource.

9.2.2 Quarters 8

Quarters 8, a three-story Mediterranean style residence built in 1905, was determined to be eligible for listing on the NRHP and the CRHR in 1998. The resource was inventoried, evaluated, and documented as part of the SFOBB East Span Seismic Safety Project. The two project build alternatives, 2b and 4, would not result in a Section 4(f) use of this resource. No land would be permanently incorporated into the project, nor would any land be temporarily occupied by it. The build alternatives would not have a severe impact that substantially impairs the historic quality of the resource. The proposed project would not cause a constructive use of Quarters 8 because the proximity impacts would not substantially impair the protected activities, features, or attributes of the historic resource.
9.2.3 Archaeological Site CA-SFr-04/H

Section 4(f) applies to all archaeological sites on, or eligible for, inclusion on the NRHP, except when the archaeological property is important chiefly because of what can be learned by data recovery and it has minimal value for preservation in place (23 CFR 774.13 (b)(1 and 2)). The archaeological site on YBI, CA-SFr-04/H, is potentially eligible for the NRHP listing under Criterion D, and since this site has yielded and may again yield human remains, the SHPO concluded that its potential significance may extend beyond Criterion D. Evaluation of the site concluded that the site is important chiefly for the information it contains. It did not warrant preservation in place, therefore Section 4(f) does not apply to this archaeological site.

The two project build alternatives, 2b and 4, would not result in a Section 4(f) use of this resource. No land would be permanently incorporated into the project, nor would any land be temporarily occupied by it. The build alternatives would not have a severe impact that substantially impairs the historic quality of the resource. The proposed project would not cause a constructive use of the site because the proximity impacts would not substantially impair the protected activities, features, or attributes of the resource.

No project elements will impact the archaeological site, it does not warrant preservation in place, and it will be protected by an Environmentally Sensitive Area (ESA).

9.2.4 Conclusion

After review of parks, recreational facilities, and historic properties found within or adjacent to the project area it has been determined that the YBI Ramp Improvement Project will not have an impact on any of these resources that would require Section 4(f) protection, therefore the provisions of 4(f) are not triggered.
10.0 REFERENCES CITED

City and County of San Francisco. “Treasure Island/Yerba Buena Island Redevelopment Project EIR Comments and Responses.” Prepared by the San Francisco Planning Department. April 2011.

As part of the environmental studies for this project, a number of Section 106 cultural resources documents have been prepared. These have included:

- Notice of Preparation (September 5, 2008)
- Notice of Intent (September 5, 2008)
- Public Scoping Meeting (September 24, 2008);
- Interested Parties Letter Distribution (December, 2008)
- Draft Historic Property Survey Report (Draft HPSR – March 2009)
- Final Historic Property Survey Report (September 2009)
- Final Finding of Effect Report (October 2009)
- Interested Parties Letter Distribution (November 2009)
ATTACHMENT A
(Figures 1-11)
This page intentionally left blank.
Figure 1: Regional Location
Figure 5: Location of Senior Officers’ Quarters Historic District and Quarters 1 (Individually Listed on the National Register of Historic Places).
Figure 6: Location of Quarters 10 and Building 267 (Individually eligible for the National Register).
Figure 7: Alternative 2B in Relation to the Senior Officers’ Quarters Historic District and the individually listed Quarters 1. Quarters 1 is also a contributing resource within the Historic District.
Figure 8: Alternative 2B in Relation to Quarters 10 and Building 267. Alternative would require the removal of both buildings.
Figure 9: Alternative 4 in Relation to the Senior Officers’ Quarters Historic District and individually listed Quarters 1. Alternative 4 would span the Historic District and Quarters 1, with piers (bents) to the immediate south of the resources.
Figure 10: Alternative 4 in relation to Quarters 10 and Building 267.
Figure 11
Vicinity Open Space

Source: Google, EDAW/AECOM 2009
ATTACHMENT B

(Correspondence/Concurrence Letters)
This page intentionally left blank.
May 1, 2008

Douglas E. Gilkey
1455 Frazee Road, Suite 900
San Diego, California 92108-4310

RE: Senior Officers Quarters Historic District, Yerba Buena Island Listing on the National Register of Historic Places

Dear Mr. Gilkey:

I am pleased to notify you that on February 26, 2008, the above-named property was placed on the National Register of Historic Places (National Register). As a result of being placed on the National Register, this property has also been listed in the California Register of Historical Resources, pursuant to Section 4851(a)(2) of the Public Resources Code.

Placement on the National Register affords a property the honor of inclusion in the nation’s official list of cultural resources worthy of preservation and provides a degree of protection from adverse affects resulting from federally funded or licensed projects. Registration provides a number of incentives for preservation of historic properties, including special building codes to facilitate the restoration of historic structures, and certain tax advantages.

There are no restrictions placed upon a private property owner with regard to normal use, maintenance, or sale of a property listed in the National Register. However, a project that may cause substantial adverse changes in the significance of a registered property may require compliance with local ordinances or the California Environmental Quality Act. In addition, registered properties damaged due to a natural disaster may be subject to the provisions of Section 5028 of the Public Resources Code regarding demolition or significant alterations, if imminent threat to life safety does not exist.

If you have any questions or require further information, please contact the Registration Unit at (916) 653-6624.

Sincerely,

[Signature]

Milford Wayne Donaldson, FAIA
State Historic Preservation Officer
April 25, 2008

The Director of the National Park Service is pleased to send you the following announcements and actions on properties for the National Register of Historic Places. For further information contact Edson Beall via voice (202) 354-2255, or E-mail: <Edson_Beall@nps.gov> This and past Weekly Lists are also available here: http://www.nps.gov/history/nr/nrlist.htm

Our physical location address is:

National Park Service 2280, 8th floor
National Register of Historic Places
1201 "I" (Eye) Street, NW,
Washington D.C. 20005

Please have any Fed Ex, UPS packages sent to the above address. Please continue to use alternate carriers, as all mail delivered to us via United States Postal Service is irradiated and subsequently damaged.

Landscape Architecture Month:
http://www.nps.gov/history/nr/feature/landscape/index.htm

WEEKLY LIST OF ACTIONS TAKEN ON PROPERTIES: 4/14/08 THROUGH 4/18/08

KEY: State, County, Property Name, Address/Boundary, City, Vicinity, Reference Number, NHL, Action, Date, Multiple Name

CALIFORNIA, SAN FRANCISCO COUNTY,
Administration Building, Treasure Island, SE Corner of Avenue of the Palms and California Ave., Treasure Island, 08000081, LISTED, 2/26/08

CALIFORNIA, SAN FRANCISCO COUNTY,
Hall of Transportation, Treasure Island, SE Side of California Ave. between Avenue D and Avenue F, Treasure Island, 08000082, LISTED, 2/26/08

CALIFORNIA, SAN FRANCISCO COUNTY,
Palace of Fine and Decorative Arts, Treasure Island, SE Side of California Ave. between Avenue F and Avenue I, Treasure Island, 08000083, LISTED, 2/26/08

CALIFORNIA, SAN FRANCISCO COUNTY,
November 4, 2009

Interested Parties
Yerba Buena Island Ramps Improvement Project

Subject: National Historic Preservation Act (Section 106) compliance for the Yerba Buena Island Ramps Improvement Project (04-SF-80 PM 7.6/8.1, EA 3A640)

Dear Interested Parties:

This letter is a follow-up letter to the letter you received last December regarding this project. California Department of Transportation (Caltrans) and the San Francisco County Transportation Authority (Authority) propose the replacement of westbound on- and off-ramps on the east side of Yerba Buena Island (YBI). The new ramps would maintain the functional role of the current ramps, while satisfying seismic requirements and highway design standards, and improve traffic operations and safety. The project begins at the east portal of the YBI tunnel and ends at the east side of the transition structure portion of the new San Francisco-Oakland Bay Bridge (SFOBB) currently under construction. The proposed project would not change the existing exit and entrance ramps on the west side of the YBI tunnel.

With this letter, Caltrans and the Authority notify you of the findings of historic properties identified within the project’s Areas of Potential Effect (APE), in compliance with Section 106 of the National Historic Preservation Act. This study is part of the environmental studies for this project which are being conducted as part of Caltrans’ and the Federal Highway Administration’s compliance with the National Environmental Policy Act (NEPA), the California Environmental Quality Act (CEQA), and other applicable environmental laws and regulations. Historic properties are those identified during environmental studies as listed on or eligible for the National Register of Historic Places. These also qualify as historical resources under CEQA. The project’s effects on such properties are then given careful consideration during environmental review for federally funded projects.

Historic properties within the current project APEs were previously identified and evaluated during the Section 106 process for the SFOBB East Span Seismic Safety Project in 1998. The following historic properties have been previously determined eligible for, and/or listed in, the National Register of Historic Places and the California Register of Historical Resources:

- Senior Officers’ Quarters Historic District (listed 2/26/08), including the Nimitz House (Quarters 1) (individually eligible);
- Quarters 8 (determined eligible 9/1998);
- Quarters 10 (and contributing building 267) (listed 2/26/08);
- CA-SFr-04/H (archaeological site determined eligible 8/13/1998);
- San Francisco-Oakland Bay Bridge (listed 8/13/01).
Caltrans and the Authority have applied the Criteria of Adverse Effect pursuant to the National Historic Preservation Act (set forth at 36 CFR 800.5(a)(1)). The Finding of Effect report (FOE) concludes that the undertaking will have an adverse effect on historic properties.

Neither alternative would affect archaeological site CA-SFr_04/H which will be protected by establishing an ESA (environmentally sensitive area) around it.

Alternative 2B would have direct adverse effects to the Senior Officers' Quarters Historic District, and Quarters 10 (with Building 267). Quarters 10 and Building 267 would be removed under this alternative. There would be no effect on Quarters 8.

Alternative 4 would have indirect adverse effects to Quarters 10 and Building 267; the Senior Officers' Quarters Historic District; and Quarters 1. The indirect effect would be caused by introduction of visual elements (elevated ramps) to the Senior Officers' Quarters Historic District that diminish the integrity of the district's historic features.

Because the new East Span of the SFOBB is currently under construction and the east span of the National Register-listed SFOBB will be removed, neither alternative of the YBI Ramps project has the potential to affect any components of the existing SFOBB.

If you wish to review a copy of the Historic Property Survey Report or the Finding of Effect report, you may contact Eric Cordoba, Project Manager; San Francisco County Transportation Authority; 100 Van Ness Avenue, 26th Floor; San Francisco, CA 94102; (925) 671-5458. E-mail: eric@cordobaconsulting.com. If you have comments on cultural resources and the project's effects on them, please contact Elizabeth Krase Greene at Caltrans District 4 Office of Cultural Resource Studies, 111 Grand Avenue, Oakland, CA 94612; (510) 286-5612. E-mail: elizabeth.greene@dot.ca.gov.

We have submitted the Finding of Effect Report to the State Office of Historic Preservation (SHPO). We hope to forward any comments you may have to SHPO and therefore we would appreciate your response within 30 days.

Caltrans and the Authority will be drafting a Memorandum of Agreement to mitigate the adverse effects on historic properties in the near future. You are welcome to provide input.

Sincerely,

José Luis Mostovitch
Executive Director

cc: E. Greene – Caltrans
 LS, EC – Chron, File: Yerba Buena Island Ramps Project
An Bui
BRAC PMO West
1455 Frazee Road, Suite 900
San Diego, CA 92108

Constance M. Callahan JD
U.S. Coast Guard
Maintenance Logistics Command, Pacific
1301 Clay Street, Suite 700N
Oakland, CA 94612

Jack Gold, Executive Director
San Francisco Architectural Heritage
2007 Franklin Street
San Francisco, CA 94109

Linda Avery, Commission Secretary
San Francisco Historic Preservation Commission, Planning Department
1650 Mission Street, Ste 400
San Francisco, CA 94103

Mark Luellen, Preservation Coordinator
San Francisco Planning Department
1650 Mission Street, Suite 400
San Francisco, CA 94103

Ron Ross, President
San Francisco History Association
PO Box 31907
San Francisco, CA 94131

Erik Christoffersen, Executive Director
San Francisco Museum and Historical Society
P.O. Box 420470
San Francisco, CA 94142-0470

David Crosson, Executive Director
California Historical Society
678 Mission Street
San Francisco CA 94105

Sheila Kolenc, Interim Executive Director
San Francisco Beautiful
100 Bush Street, Suite 1580
San Francisco, CA 94104
Address updated name, address and re-sent 11.9.09

William Applegate, President
California Heritage Council
P.O. Box 475046
San Francisco, CA 94147

Cindy Heitzman, Executive Director
California Preservation Foundation
5 Third St., Ste 424
San Francisco, CA 94103

Anthea Hartig Ph.D., Director
National Trust for Historic Preservation Western Office
5 Third Street, Suite 707
San Francisco, California 94103

John J. Reynolds, Director
National Park Service, Pacific West Region Office
1111 Jackson Street, Suite 700
Oakland, California 94607

Valerie Garry, President
Oakland Heritage Alliance
446 17th Street, Suite 301
Oakland, CA 94612

Oakland Landmarks Preservation Advisory Board
Joann Pavlinec, Secretary & Historic Preservation Planner
250 Frank H. Ogawa Plaza, Suite 3315
Oakland, CA 94612

Betty Marvin, Planner
Oakland Cultural Heritage Survey
250 Frank Ogawa Plaza, Suite 3330
Oakland, CA 94612

Winton "Mac" McKibben, President
Alameda County Historical Society
PMB 307
484 Lake Park Ave.
Oakland, CA 94610-2730

Alameda County Parks, Recreation and Historical Commission
224 West Winton Ave., #111
Hayward, CA 94544

Rosemary Cambra, Chairperson
PO Box 360791
Milpitas, CA 95036

The Ohlone Indian Tribe
Andrew Galvan
PO Box 3152
Fremont, CA 94539

Trina Marine Ruano Family
Ramona Garibay, Representative
16010 Halmar Lane
Lathrop, CA 95330

Jakki Kehl
1307 Horizon Lane
Patterson, CA 95363

Indian Canyon Mutsun Band of Costanoan
Ann Marie Sayers, Chairperson
P.O. Box 28
Hollister, CA 95024

Amah/Mutsun Tribal Band
Irene Zwierlein, Chairperson
789 Canada Road
Woodside, CA 94062

California Native American Heritage Commission
Debbie Pilas-Treadway
915 Capitol Mall, Room 364
Sacramento, CA 95814

Alan Martinez, Commissioner
San Francisco Historic Preservation Commission
149 Ninth Street, Suite 205
San Francisco, CA 94103

Andrew Wolfram, Commissioner
San Francisco Historic Preservation Commission
Perkins + Will
185 Berry St. Lobby One Suite 5100
San Francisco, CA 94107

Charles Edwin Chase, Interim President
San Francisco Historic Preservation Commission
Architectural Resource Group
Pier 9, Embarcadero
San Francisco, CA 94111

James M. Buckley, Commissioner
San Francisco Historic Preservation Commission
1650 Mission Street Suite 400
San Francisco, CA 94103

Courtney Damkroger, Interim Vice President
San Francisco Historic Preservation Commission
2626 Hyde Street
San Francisco, CA 94109
February 8, 2010

Anmarie Medin, Chief
Cultural and Community Studies Office
Caltrans Division of Environmental Analysis
PO Box 942874
Sacramento, CA 94274-0001

Re: Findings of Effect for the Proposed Yerba Buena Island Ramps Improvement Project, San Francisco County, CA

Dear Ms. Medin:

Thank you for consulting with me about the subject undertaking in accordance with the Programmatic Agreement Among the Federal Highway Administration, the Advisory Council on Historic Preservation, the California State Historic Preservation Officer, and the California Department of Transportation Regarding Compliance with Section 106 of the National Historic Preservation Act, as it Pertains to the Administration of the Federal-Aid Highway Program in California (PA).

The Federal Highway Administration (FHWA) has determined that the proposed project will have an adverse effect on historic properties. Based on my review of the proposed documentation, I concur.

Thank you for considering historic properties as part of your project planning. If you have any questions, please contact Natalie Lindquist of my staff at your earliest convenience at (916) 654-0631 or e-mail at nlindquist@parks.ca.gov.

Sincerely,

Susan K. Stratton for

Milford Wayne Donaldson, FAIA
State Historic Preservation Officer
ATTACHMENT C

(Renderings and Simulations)
This page intentionally left blank.
Simulation 1: Alternative 2B
Key Viewpoint 1: Macalla Road at North Gate Road Intersection

- Rendered View

Alternative 2B Ramp Components: Blue highlighting distinguishes Alt. 2B ramp components from SFOBB East Span project components.

Yerba Buena Island Ramps Improvement Project
Appendix C: Renderings and Simulations

- Quarters 10 to be relocated as part of Alt. 2B
- Building 267 to be relocated as part of Alt. 2B
Quarters 10 and Building 267 (garage): white buildings with blue trim partially visible north of Macalla Road. Structures at right are existing SFOBB components.
Simulation 2: Alternative 2B
Key Viewpoint 2: Nimitz House

Existing View

Rendered View

Alternative 2B Ramp Components: Blue highlighting distinguishes Alt. 2B ramp components from SFOBB East Span project components.
Simulation 3: Alternative 2B
Key Viewpoint 3: Officers’ Quarters Open Space

Simulated View

Alternative 2B Ramp Components: Blue highlighting distinguishes Alt. 2B ramp components from SFOBB East Span project components.

Existing View

Yerba Buena Island Ramps Improvement Project
Appendix C: Renderings and Simulations

Appendix C: Renderings and Simulations
Simulation 4: Alternative 2B
Key Viewpoint 4: North Gate Road Staging Area

Existing View

Alternate 2B Ramp Components: Blue highlighting distinguishes Alt. 2B ramp components from SFOBB East Span project components.
Simulation 5: Alternative 2B
Key Viewpoint 5: Treasure Island

Yerba Buena Island Ramps Improvement Project
Appendix C: Renderings and Simulations

Existing View

Simulated View

Alternative 2B Ramp Components: Blue highlighting distinguishes Alt. 2B ramp components from SFOBB East Span project components.
Simulation 6: Alternative 2B
Key Viewpoint 6: Yerba Buena Island Waterborne Approach

Yerba Buena Island Ramps Improvement Project
Appendix C: Renderings and Simulations

Existing View

Simulated View

Alternative 2B Ramp Components: Blue highlighting distinguishes Alt. 2B ramp components from SFOBB East Span project components.
Simulation 7: Alternative 2B
Key Viewpoint 7: Oakland Touchdown

Simulated View

Existing View

Simulated View

Existing View

Alternative 2B Ramp Components: Blue highlighting distinguishes Alt. 2B ramp components from SFOBB East Span project components.
Simulation 8: Alternative 2B
Key Viewpoint 8: San Francisco-Oakland Bay Bridge Transition Structure

Alternative 2B Ramp Components: Blue highlighting distinguishes Alt. 2B ramp components from SFOBB East Span project components.
Simulation 9: Alternative 4
Key Viewpoint 1: Macalla Road at North Gate Road Intersection

Yerba Buena Island Ramps Improvement Project
Appendix C: Renderings and Simulations

Simulated View

Alternative 4 Ramp Components: Orange highlighting distinguishes Alt. 2B ramp components from SFOBB East Span project components.
Simulation 10: Alternative 4
Key Viewpoint 2: Nimitz House

Yerba Buena Island Ramps Improvement Project
Appendix C: Renderings and Simulations

Simulated View

Existing View

Alternative 4 Ramp Components: Orange highlighting distinguishes Alt. 4 ramp components from SFOBB East Span project components.
Simulation 11: Alternative 4
Key Viewpoint 3: Officers’ Quarters Open Space

Simulated View

Existing View

Yerba Buena Island Ramps Improvement Project
Appendix C: Renderings and Simulations

Alternative 4 Ramp Components: Orange highlighting distinguishes Alt. 4 ramp components from SFOBB East Span project components.
Simulation 12: Alternative 4
Key Viewpoint 4: North Gate Road Staging Area

Yerba Buena Island Ramps Improvement Project
Appendix C: Renderings and Simulations

Existing View

Simulated View

Alternative 4 Ramp Components: Orange highlighting distinguishes Alt. 4 ramp components from SFOBB East Span project components.
Simulation 13: Alternative 4
Key Viewpoint 5: Treasure Island

Yerba Buena Island Ramps Improvement Project
Appendix C: Renderings and Simulations

Existing View

Simulated View

Alternative 4 Ramp Components: Orange highlighting distinguishes Alt. 4 ramp components from SFOBB East Span project components.
Simulation 14: Alternative 4
Key Viewpoint 6: Eastern Yerba Buena Island Waterborne Approach

Yerba Buena Island Ramps Improvement Project
Appendix C: Renderings and Simulations

Existing View

Simulated View

Alternative 4 Ramp Components: Orange highlighting distinguishes Alt. 4 ramp components from SFOBB East Span project components.
Simulation 15: Alternative 4
Key Viewpoint 7: Oakland Touchdown

Existing View

Simulated View

Alternative 4 Ramp Components: Orange highlighting distinguishes Alt. 4 ramp components from SFOBB East Span project components.

Yerba Buena Island Ramps Improvement Project
Appendix C: Renderings and Simulations
Simulation 16: Alternative 4
Key Viewpoint 8: San Francisco-Oakland Bay Bridge Transition Structure

Simulated View

Alternative 4 Ramp Components: Orange highlighting distinguishes Alt. 4 ramp components from SFOBB East Span project components.

Yerba Buena Island Ramps Improvement Project
Appendix C: Renderings and Simulations
ATTACHMENT D
(Non-viable Alternatives)
APPENDIX C

TITLE VI
July 20, 2010

TITLE VI
POLICY STATEMENT

The California Department of Transportation, under Title VI of the Civil Rights Act of 1964 and related statutes, ensures that no person in the State of California shall, on the grounds of race, color, national origin, sex, disability, or age, be excluded from participation in, be denied the benefits of, or be otherwise subjected to discrimination under any program or activity it administers.

For information or guidance on how to file a complaint based on the grounds of race, color, national origin, sex, disability, or age, please visit the following web page: http://www.dot.ca.gov/hq/bep/title_vi/t6_violated.htm.

Additionally, if you need this information in an alternate format, such as in Braille or in a language other than English, please contact Charles Wahnon, Manager, Title VI and Americans with Disabilities Act Program, California Department of Transportation, 1823 14th Street, MS-79, Sacramento, CA 95811. Phone: (916) 324-1353 or toll free 1-866-810-6346 (voice), TTY 711, fax (916) 324-1869, or via email: charles_wahnon@dot.ca.gov.

CINDY McKIM
Director

"Caltrans improves mobility across California"
APPENDIX D

SUMMARY OF MINIMIZATION AND MITIGATION MEASURES
Appendix D
Minimization and Mitigation Summary

Yerba Buena Island Ramps Project Minimization, Avoidance, and Mitigation Measures

This section comprises a summary of the minimization, avoidance, and mitigation measures for the Yerba Buena Island Ramps Improvement Project. Both California Environmental Quality Act (CEQA) and/or National Environmental Policy Act (NEPA) regulations require an enforceable mitigation monitoring program be developed for the project. Per CEQA Guideline 15907(a), “In order to ensure that the mitigation measures and project revisions identified in the EIR are implemented, the public agency shall adopt a program for monitoring or reporting on the revisions which it has required in the project and the measures it has imposed to mitigate or avoid significant environmental effects.” Under NEPA regulations, “A monitoring and enforcement program shall be adopted and summarized where applicable for any mitigation” (Section 1505.2(c)). The project proponents have committed to implementing several measures as part of the project to minimize and avoid impacts with construction of the proposed YBI ramps. These measures include but are not limited to elements which would be designed into the new facility, continued coordination with affected parties, and implementation of best management practices during construction. The final mitigation measures will be developed in coordination with San Francisco County Transportation Authority (Authority) and the California Department of Transportation (Caltrans) and subject to approval by the Authority and Caltrans.

Additional measures are proposed to mitigate the impacts associated with project implementation. Mitigation is defined by both CEQA and NEPA as a measure which:

- Avoids the impact altogether by not taking a certain action or parts of an action;
- Minimizes impacts by limiting the degree or magnitude of the action and its implementation;
- Rectifies the impact by repairing, rehabilitating, or restoring the impacted environment;
- Reduces or eliminates the impact over time by preservation and maintenance operations during the life of the project; and
- Compensates for the impacts by replacing or providing substitute resources or environments.

Summary of Avoidance and Minimization Measures

Table D-1 presents the measures committed to by the project proponents to avoid and minimize impacts associated with the project. Table D-1 is comprised of the following columns:

- Resource Area
- Conflict/Impact to Be Avoided
- Minimization/Avoidance Measure
Summary of Mitigation Measures

Table D-2 presents the measures developed to mitigate the impacts associated with the project. Table D-2 is comprised of the following columns:

- Resource Area
- Impact to Be Mitigated
- Mitigation Measure
<table>
<thead>
<tr>
<th>Resource Area</th>
<th>Conflict/Impact to be Avoided</th>
<th>Avoidance/Minimization Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land Use</td>
<td>Conflicts with existing and future land uses, plans and policies</td>
<td>Coordination with TIDA, the U.S. Coast Guard, and other agencies regarding location and duration of construction activities and their potential temporary influence on existing operations and uses would be carried out prior to the initiation of construction.</td>
</tr>
<tr>
<td>Parks and Recreation</td>
<td>Temporary road closures, detours and increased noise levels during construction</td>
<td>Coordination with TIDA, the U.S. Coast Guard, and other agencies regarding location and duration of construction activities and their potential temporary influence on existing operations and uses would be carried out prior to the initiation of construction.</td>
</tr>
<tr>
<td>Growth</td>
<td>Inducement of direct or indirect unplanned growth</td>
<td>The No Build and two build alternatives would not result in a need to implement avoidance minimization, compensation, or mitigation measures resulting from project-related impacts to growth on YBI and T1.</td>
</tr>
<tr>
<td>Community Impacts</td>
<td>Impacts on the community</td>
<td>No avoidance, minimization or mitigation measures are necessary since there would be no community character-or cohesion-related impacts as a result of the proposed build alternatives.</td>
</tr>
<tr>
<td>Relocations</td>
<td>Impacts to buildings</td>
<td>No avoidance, minimization, or mitigation measures are necessary since, other than the two unoccupied buildings identified, no relocation impacts to existing businesses, residential structures, or activity centers would occur.</td>
</tr>
<tr>
<td>Environmental Justice</td>
<td>Disproportionately high impacts on minority or low-income populations</td>
<td>The proposed project would not cause disproportionately high and adverse effects on any minority or low-income populations per E.O. 12898 regarding environmental justice. Therefore, no avoidance, minimization or mitigation measures are necessary.</td>
</tr>
<tr>
<td>Emergency Services</td>
<td>Temporary road closures, detours and increased response times during construction</td>
<td>Implementation of the build alternatives would result in temporary detours and road closures. These impacts would be minimized through coordination with emergency service providers and access to the islands would be maintained throughout project construction.</td>
</tr>
<tr>
<td>Utilities</td>
<td>Relocation of utility infrastructure</td>
<td>Implementation of the build alternatives and potential relocations of utilities would be conducted in coordination with the applicable utility providers.</td>
</tr>
</tbody>
</table>
Table D-1
Summary of Avoidance and Minimization Measures

<table>
<thead>
<tr>
<th>Resource Area</th>
<th>Conflict/Impact to be Avoided</th>
<th>Avoidance/Minimization Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic and Transportation/Pedestrian and Bicycle Facilities</td>
<td>Traffic and transportation flow during construction</td>
<td>Construction activities would result in temporary detours and single-lane closures. These impacts would be minimized through coordination with the USCG and emergency service providers. Efforts would be made to concentrate the majority of road closures and construction activity during off-peak hours to reduce traffic impacts. Traffic would be diverted to one side of the road and traffic would be controlled by flaggers stationed at both ends of the closure. Similar traffic handling is currently being used on Macalla Road with the ongoing SFOBB construction by Caltrans. Macalla Road primarily serves the USCG and access to their facilities will be maintained at all times before, during, and after construction.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Construction is expected to be completed in five stages. For the first four stages, the existing westbound entrance ramp on the east side of YBI would remain open and therefore little impact is expected on traffic. The last stage of construction is expected to require the closure of the existing westbound entrance ramp (by Macalla Road) on the east side of YBI and thus requiring a detour to the existing westbound entrance on the west side of YBI via Treasure Island Road. This proposed detour would be part of the final TMP, which would need to be reviewed and approved by the Fire Department. The expected detoured traffic of 110 vehicles in the AM peak hour and 130 vehicles in the PM peak hour (about 2 vehicles per minute) is not expected to degrade roadway segment LOS or substantially increase response time for emergency services on YBI.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The YBI Ramps Improvement Project would result in the construction of westbound on-and off-ramps on the east side of YBI. The other four ramps would not have their capacity limited so therefore, no further analysis of impacts or issues is needed pertaining to the remaining ramps.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The analysis of the ramps on the east side of YBI without ramp metering concludes that the average operating speed on the SFOBB would be lower because the capacity of the new on-ramp would increase to 1,200 vph from 330 vph. Without ramp metering, on-ramp traffic would be allowed to enter the mainline unimpeded, thus reducing queuing on the on-ramp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>However, because Caltrans requires ramp metering, long delays and queues are expected on the approaches to the on-ramp, though it is expected that mainline speeds would improve. With ramp metering, the metering rates can be coordinated such that the number of vehicles entering the mainline would be based on the number of vehicles exiting the mainline. Additionally, the mainline metering lights for westbound traffic (just west of the toll booths) could be coordinated with the on-ramp, such that the traffic entering the SFOBB could be</td>
</tr>
</tbody>
</table>
Table D-1
Summary of Avoidance and Minimization Measures

<table>
<thead>
<tr>
<th>Resource Area</th>
<th>Conflict/Impact to be Avoided</th>
<th>Avoidance/Minimization Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>reduced while the metering rate for the on-ramp is increased, and vice versa.</td>
</tr>
<tr>
<td></td>
<td>Volumes on the northbound Macalla Road approach to the westbound loop on-ramp are expected</td>
<td>Volumes on the northbound Macalla Road approach to the westbound loop on-ramp are expected</td>
</tr>
<tr>
<td></td>
<td>to be 879 vehicles in the AM peak hour and 1,119 vehicles (with 1,104 turning right onto</td>
<td>to be 879 vehicles in the AM peak hour and 1,119 vehicles (with 1,104 turning right onto</td>
</tr>
<tr>
<td></td>
<td>ramp) in the PM peak hour in 2035. If the metering rate is set to the expected off-ramp</td>
<td>ramp) in the PM peak hour in 2035. If the metering rate is set to the expected off-ramp</td>
</tr>
<tr>
<td></td>
<td>volume of only 578 vph during the PM peak hour, a queue is expected to form on the Macalla</td>
<td>volume of only 578 vph during the PM peak hour, a queue is expected to form on the Macalla</td>
</tr>
<tr>
<td></td>
<td>Road approach to the on-ramp. To reduce such a queue, the metering rate may need to be</td>
<td>Road approach to the on-ramp. To reduce such a queue, the metering rate may need to be</td>
</tr>
<tr>
<td></td>
<td>increased to about 1,100 vph (which is still less than the 1,200 vph capacity assumed for the</td>
<td>increased to about 1,100 vph (which is still less than the 1,200 vph capacity assumed for the</td>
</tr>
<tr>
<td></td>
<td>loop on-ramp).</td>
<td>loop on-ramp).</td>
</tr>
<tr>
<td></td>
<td>The southbound South Gate Road approach to the eastbound loop on-ramp is expected to be</td>
<td>The southbound South Gate Road approach to the eastbound loop on-ramp is expected to be</td>
</tr>
<tr>
<td></td>
<td>490 in the AM peak hour and 604 in the PM peak hour in 2035. If the metering rate is set to</td>
<td>490 in the AM peak hour and 604 in the PM peak hour in 2035. If the metering rate is set to</td>
</tr>
<tr>
<td></td>
<td>the expected off-ramp volume of only 255 vph during the AM peak hour and 533 during the PM</td>
<td>the expected off-ramp volume of only 255 vph during the AM peak hour and 533 during the PM</td>
</tr>
<tr>
<td></td>
<td>peak hour, the on-ramp queue is expected to be extensive on South Gate Road (especially</td>
<td>peak hour, the on-ramp queue is expected to be extensive on South Gate Road (especially</td>
</tr>
<tr>
<td></td>
<td>during the AM peak hour). To reduce these queues, the metering rate may need to be increased</td>
<td>during the AM peak hour). To reduce these queues, the metering rate may need to be increased</td>
</tr>
<tr>
<td></td>
<td>to about 500 vph during the AM peak hour and 600 vph during the PM peak hour (which is still</td>
<td>to about 500 vph during the AM peak hour and 600 vph during the PM peak hour (which is still</td>
</tr>
<tr>
<td></td>
<td>less than the 1,500 vph capacity assumed for this loop on-ramp).</td>
<td>less than the 1,500 vph capacity assumed for this loop on-ramp).</td>
</tr>
<tr>
<td>Cultural Resources</td>
<td>Cultural resources impacts</td>
<td>The SFCTA and Caltrans worked closely with SHPO to ensure appropriate measures were</td>
</tr>
<tr>
<td></td>
<td></td>
<td>developed under a Memorandum of Agreement (MOA), which was signed by all participating</td>
</tr>
<tr>
<td></td>
<td></td>
<td>parties by May 13, 2011. The Advisory Council on Historic Preservation (ACHP) was also</td>
</tr>
<tr>
<td></td>
<td></td>
<td>notified of the adverse impact to cultural resources and has declined to participate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Johnson 2010). The MOA describes the procedures that would be followed to ensure that the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>one known archaeological site (CA-SFR-04/H) is protected and how any inadvertent discoveries</td>
</tr>
<tr>
<td></td>
<td></td>
<td>of archaeological sites will be addressed (see 3.8.4.1 below). Additionally, the MOA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>describes how adverse effects to historically significant buildings and cultural</td>
</tr>
<tr>
<td></td>
<td></td>
<td>landscapes will be addressed (see 3.8.4.2 below).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Archaeological Monitoring/ESA Action Plan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>An Environmental Sensitive Area (ESA) Action plan will be developed and implemented to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>outline the avoidance and protection measures that will be taken to protect the known</td>
</tr>
<tr>
<td></td>
<td></td>
<td>archaeological site (CA-SFR-04/H) and to address inadvertent discovery of unknown</td>
</tr>
<tr>
<td></td>
<td></td>
<td>archaeological resources. A professional archaeologist who meets the Secretary of the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interior’s Professional Qualification Standards (48 FR 44738-9) will work with Caltrans</td>
</tr>
<tr>
<td></td>
<td></td>
<td>staff archaeologist in preparing the plan and ensuring the plan is implemented in the field.</td>
</tr>
</tbody>
</table>

D-5
and data recovery conducted during the SFOBB East Span project clearly defined the site boundaries of the prehistoric component of CA-SFr-04/H, which will continue to be marked as an Environmental Sensitive Area (ESA). In the unlikelihood that prehistoric and/or historic-era materials are encountered within the project area outside of the ESA during construction, it is Caltrans policy that all earth-moving activity within and around the immediate discovery area would be diverted until a qualified archaeologist can assess the nature and significance of the find.

If human remains are discovered, State Health and Safety Code Section 7050.5 states that further disturbances and activities shall cease in any area or nearby area suspected to overlie remains, and the County Coroner contacted. Pursuant to Public Resources Code Section 5097.98, if the remains are thought to be Native American, the coroner would notify the NAHC who would then notify the Most Likely Descendent (MLD). At this time, the person who discovered the remains would contact the Caltrans staff archaeologist so that they may work with the MLD on the respectful treatment and disposition of the remains. Further provisions of PRC 5097.98 are to be followed as applicable.

<table>
<thead>
<tr>
<th>Resource Area</th>
<th>Conflict/Impact to be Avoided</th>
<th>Avoidance/Minimization Measure</th>
</tr>
</thead>
</table>
| Hydrology and Floodplains | Flooding and hydrologic impacts | Flooding Minimization
As the ramps under either build alternative would be constructed above an elevation of 2.7 meters (8.85 feet) NGVD, the project would not increase flood risk to YBI. However, for both alternatives, the proposed drainage system and bioswale would be designed to convey flood flows, and the project engineers would coordinate with the San Francisco Bay Regional Water Quality Control Board to ensure that the design capacity of the constructed storm drain system is adequate (AECOM 2009d).
Hydrologic Minimization
For both alternatives, bioswales would be designed to capture the increased flow rate due to the additional impervious surface. For Alternative 2b, the bioswale would be designed to capture and treat 0.03 m³/s (1.06 ft³/s) of runoff and for Alternative 4, the bioswale would be designed to capture and treat 0.04 m³/s (1.4 ft³/s) of runoff. |
| Water Quality and Storm Water Runoff | Water quality impacts resulting from construction dewatering and runoff; increase in | In compliance with EO 13112 and subsequent guidance from FHWA, the landscaping and erosion control measures included in the project would not use species listed as noxious or invasive weeds by the California Department of Food and Agriculture list. Disturbed areas |
Table D-1
Summary of Avoidance and Minimization Measures

<table>
<thead>
<tr>
<th>Resource Area</th>
<th>Conflict/Impact to be Avoided</th>
<th>Avoidance/Minimization Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>stormwater runoff due to increase in impervious surfaces</td>
<td>would be reseeded after construction activities are complete.</td>
</tr>
<tr>
<td>Geology/Soils/Seismic/Topography</td>
<td>Slope stability and erosion impacts</td>
<td>The preliminary foundation memorandum (Preliminary Foundation Memorandum – Yerba Buena Island Ramps Improvement Project On East Side of the Island, Oakland, California, 2010) provides site-specific conclusions and recommendations about conditions at the YBI project site. Final determination of specific construction activities and design features planned at the project site would occur once a preferred project alternative is identified. Once an alternative has been selected, Caltrans would retain California-licensed geologists and geotechnical engineers to prepare a draft and final foundation report and to conduct a site-specific geotechnical study for the preferred alternative. This study would identify for the preferred alternative ramp alignment the presence of the hazards or conditions, as appropriate, including fault rupture hazard, soft-ground conditions, slope stability and landslides, strong seismic shaking, liquefaction and lateral spreading, settlement, and corrosive or expansive soil to affect concrete and steel. As part of the study, the geotechnical engineer would review the project plans and specifications to ascertain that geotechnical aspects of the project are addressed appropriately, including identifying corrective actions to avoid the hazard or support the design of engineering control measures. A liquefaction analysis would be conducted if the water table is determined to be above bedrock in loose to medium dense sands and the potential for liquefaction is of concern to the project design. Pile specifications would be developed, based on the results of the site-specific geotechnical study, along the proposed on-ramp and off-ramp alignment. Caltrans would document compliance with necessary avoidance and minimization measures prior to the final project design and final foundation report. The engineers would prepare a summary report that would document the investigation and detail the specific design support alternatives and protection measures that would be implemented. The ramps project in coordination with Caltrans would ensure that slope stability impacting USCG property, or its 365/24/7 access, will be maintained. The geotechnical engineer would conduct inspections and testing during the following stages of construction:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Grading operations, including excavations and compacted fill placement,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Shoring installation,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Removal or installation of support of buried utilities or structures,</td>
</tr>
</tbody>
</table>
Table D-1
Summary of Avoidance and Minimization Measures

<table>
<thead>
<tr>
<th>Resource Area</th>
<th>Conflict/Impact to be Avoided</th>
<th>Avoidance/Minimization Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• Pile installation,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• CIDH drilling prior to placement of steel reinforcement,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Preparation of subgrade prior to placement of any overlying materials.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Foundation construction,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Backdrain construction,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• When any unusual subsurface conditions are encountered.</td>
</tr>
<tr>
<td>Paleontology</td>
<td>Potential impacts to paleontological resources</td>
<td>In general, avoidance and minimization are not feasible with regard to addressing significant impacts on paleontological resources. Geologic formations are usually extensive, and project design cannot be adjusted sufficiently to effectively avoid or minimize paleontological impacts. As a result, mitigation is the approach generally taken to address paleontological impacts. A Paleontological Mitigation Plan (PMP) would be prepared under the direction of a qualified Principal Paleontologist and including: general fieldwork and laboratory methods proposed, curation requirements, report format and content, distribution and proposed staff and their qualifications. The PMP would include mitigation measures adequate for the recovery of samples and would also serve as a basis for obtaining any necessary permits from other agencies. Caltrans will retain a qualified principal paleontologist (MS or PhD in paleontology or geology familiar with paleontological procedures and techniques). The paleontologist will review the selected alternative alignment and design, once a preferred project alternative is identified; determine the potential for discovery of significant fossils; and identify specific mitigation measures as needed. Caltrans will implement the following mitigation measures as applicable to the selected alternative:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a. A qualified paleontologist will be present to consult with grading and excavation contractors at pre-grading meetings.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. A paleontological monitor, under the direction of the qualified principal paleontologist, will be on site to inspect cuts for fossils at all times during original grading involving</td>
</tr>
</tbody>
</table>
In addition, the following mitigation measures should be implemented during the appropriate periods of project implementation.

Onsite Training
Onsite training should be conducted for all construction personnel who will work in excavation areas of the project area. Training will discuss the types of paleontological resources that could be encountered on the project and the procedures to be followed if they are discovered.

Monitoring of Construction Activities
Ground disturbing excavations include pile driving and column foundation construction. The minimum excavation depth for these construction activities is approximately 12.2 meters (40 feet). Ground disturbing activities are expected to penetrate paleontologically sensitive units throughout the PSA.

Monitoring of project-related, ground-disturbing activities within the Franciscan Complex and the overlying Colma formation should occur. Specific monitoring locations will depend on project design and be finalized in the PMP, however the following includes the areas and depth parameters where monitoring should occur:

- In areas where the Franciscan Bedrock is mapped and will be disturbed by project

<table>
<thead>
<tr>
<th>Resource Area</th>
<th>Conflict/Impact to be Avoided</th>
<th>Avoidance/Minimization Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>sensitive geologic formations.</td>
</tr>
<tr>
<td></td>
<td>c. When fossils are discovered, the paleontologist (or paleontological monitor) will recover them. Construction work in these areas will be halted or diverted to allow recovery of fossil remains in a timely manner.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Fossil remains collected during the monitoring and salvage portion of the mitigation program will be prepared to the point of identification, sorted, and cataloged.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. Prepared fossils, along with copies of all pertinent field notes, photos, and maps, will then be deposited in a scientific institution with paleontological collections.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>f. A final report will be completed that outlines the results of the mitigation program.</td>
<td></td>
</tr>
</tbody>
</table>

Table D-1
Summary of Avoidance and Minimization Measures
Table D-1
Summary of Avoidance and Minimization Measures

<table>
<thead>
<tr>
<th>Resource Area</th>
<th>Conflict/Impact to be Avoided</th>
<th>Avoidance/Minimization Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>activities (as shown on Figure 1, Appendix P).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• If ground disturbances exceed 2 meters (6.5 feet) in depth in the areas mapped as Dune Sand and Alluvium (as shown on Figure 1, Appendix P).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• If ground disturbances exceed 2.6 meters (8.5 feet) where Colluvium and Landslide Debris are mapped (2 meters [6.5 feet] for Dune Sands and 0.6 meters [2 feet] for Landslides) (as shown on Figure 1, Appendix P).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• If ground disturbances exceed 9.1 meters (30 feet) in depth the southern saddle area where Manmade Fill is mapped (as shown on Figure 1, Appendix P).</td>
<td></td>
</tr>
</tbody>
</table>

Monitoring should continue until a paleontologist has determined that the paleontologically sensitive units are not being impacted or do not contain paleontological materials. Periodic sampling of excavated material of the Franciscan Complex and Colma Formation will determine whether they contain sensitive paleontological resources. Monitoring, sampling, data recovery, reporting, and curation activities should take place in accordance with the professional standards determined by the Society of Vertebrate Paleontology (Conformable Impact Mitigation Guidelines Committee 1995).

Unanticipated Discovery

In the event fossils are discovered in an area where monitoring is not being performed, the following guidelines should be followed:

• Stop all construction work within a 15.24 meter (50 foot) radius of the find until a qualified paleontologist can assess the significance of the find. If the discovery is significant or potentially significant, then potential mitigation will include:

 o Data recovery and analysis,

 o Preparation of a data recovery report, and

 o Accessioning recovered fossil material to an accredited paleontological repository, such as the University of California’s Museum of Paleontology.
Table D-1
Summary of Avoidance and Minimization Measures

<table>
<thead>
<tr>
<th>Resource Area</th>
<th>Conflict/Impact to be Avoided</th>
<th>Avoidance/Minimization Measure</th>
</tr>
</thead>
</table>
| Hazardous Waste/Materials | Potential to expose workers to hazardous materials during construction | Final determination of specific construction activities planned on or near a potential contaminant source would occur once a preferred project alternative is identified. Once a preferred alternative is identified, additional site-specific delineation of any remaining areas of unabated contamination would be performed to finalize details of construction, to detail procedures for handling of contaminated media, and to ensure worker safety during construction. This would include performance of a Phase 1 Hazardous Materials Site Assessment by qualified professional (e.g., a California Registered Environmental Assessor) in conformance with American Society for Testing and Materials standards. If the Phase I Environmental Site Assessment indicates that a release of hazardous materials could have affected soil or groundwater quality at the site, then the SFCTA would retain a qualified environmental professional to conduct a Phase II Environmental Site Assessment to determine the presence and extent of contamination at the site, in conformance with state and local guidelines and regulations. If the results of a Phase II assessment indicated the presence of hazardous materials, alteration of the project’s design or a limited site remediation would be included in project specifications.

The SFCTA would require that its contractors comply with applicable requirements for worker safety during construction activities in the presence of contaminated soils.

Compliance with required laws and regulations through the project design and construction specifications would ensure that potential impacts associated with contaminated soils are minimized or avoided if possible.

As required by the Navy’s Finding of Suitability for Transfer (FOST) (2005), the proposed deed for transfer of the YBI transfer parcel will contain applicable CERCLA 120(h) notices, covenants, and warranties, as well as the additional notifications and restrictions indicated in the FOST. These are notices of the presence of hazardous substances, asbestos-containing material in buildings and structures (for which cleanup has been completed, as described below), lead-based paint adjacent to Quarters 1 through 7 and 10 (reevaluated every 2 years), residual petroleum contamination at UST 66 (not part of the project site), ongoing petroleum corrective actions at YF3 (not part of the project site), and PCBs in Buildings 118 and 200 (not part of the project site). The FOST includes restrictions on groundwater use near YF3, restrictions regarding use of structures with ACM, and occupancy restrictions on two vault rooms with elevated levels of PCBs (not part of the project site). Regardless of which alternative is selected, the responsibility and cost of the remediation would be incurred by the
Table D-1
Summary of Avoidance and Minimization Measures

<table>
<thead>
<tr>
<th>Resource Area</th>
<th>Conflict/Impact to be Avoided</th>
<th>Avoidance/Minimization Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>responsible party as determined by hazardous waste laws.</td>
</tr>
</tbody>
</table>

Additional Measures for Alternative 2b

Building Relocations. All known instances of LBP and ACM at YBI have been abated and removed (U.S. Navy 2008). The measures listed below would be applied to ensure safety from any ACM that may be discovered if the buildings were moved. Contract specifications for relocation of Quarters 10/Building 267 would include procedures for the abatement, handling, and disposal of LBP and ACM (if this proves necessary during building relocation activity), as well as the health and safety of workers and nearby residents (including USCG and U.S. Navy personnel). Prior to building relocation, ACM and LBP surveys would be performed to identify these materials. All procedures and permitting requirements would be consistent with Caltrans’ guidelines and all Federal, state, and local laws and regulations and coordinated with responsible parties and regulatory agencies. Notices and restrictions related to asbestos were identified in the U.S. Navy’s Finding of Suitability to Transfer (FOST) for YBI dated March 23, 2006, and these restrictions would be complied with during construction and operations.

If surveys identify additional sources of LBP and/or ACM, workers performing activities on-site that may involve contact with contaminated soil, LBP, ACM, or groundwater would be required to have appropriate health and safety training in accordance with Federal and state regulations. To reduce the risk of exposure, a Worker Health and Safety Plan would be prepared and implemented during construction by a Certified Industrial Hygienist (CIH). The Health and Safety Plan would meet requirements of the Bay Area Air Quality Management District or other agencies as determined necessary for asbestos abatement and would include provisions for:

- Conducting preliminary site investigations and analysis of potential job hazards, including identification and removal of the potential UST;
- Personal protective equipment;
- Safe work practices;
- Site control;
Table D-1
Summary of Avoidance and Minimization Measures

<table>
<thead>
<tr>
<th>Resource Area</th>
<th>Conflict/Impact to be Avoided</th>
<th>Avoidance/Minimization Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Quality</td>
<td>Construction-related impacts</td>
<td>The contractor would be required to implement these “Basic Control Measures” during all construction activities. The abatement measures listed in the Yerba Buena Island Ramps Improvement Project Air Quality Analysis (Appendix J) are also required to be implemented during construction activities. In addition, the project site is approximately 1.62 hectares (4 acres); therefore, according to the BAAQMD CEQA Guidelines, the contractor is required to implement the BAAQMD’s “Enhanced Control Measures.” The following “Basic Control Measures” are required for all construction activities:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Water all active construction areas at least twice daily.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cover all trucks hauling soil, sand, and other loose materials or require all trucks to maintain at least 61 centimeters (24 inches) of freeboard.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Pave, apply water three times daily, or apply (nontoxic) soil stabilizers on all unpaved access roads, parking areas, and staging areas at construction sites.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Sweep daily (with water sweepers) all paved access roads, parking areas, and staging areas at construction sites.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Sweep streets daily (with water sweepers) if visible soil material is carried onto adjacent public streets.</td>
</tr>
</tbody>
</table>

- Exposure monitoring;
- Decontamination procedures; and
- Emergency response actions.

The plan would address reduction of potential worker, U.S. Navy and USCG personnel, and public exposure to airborne contaminants by incorporating dust suppression techniques in construction procedures. Procedures would be in place to handle contaminated soils and groundwater, and if encountered, would follow applicable regulations.
Table D-1
Summary of Avoidance and Minimization Measures

<table>
<thead>
<tr>
<th>Resource Area</th>
<th>Conflict/Impact to be Avoided</th>
<th>Avoidance/Minimization Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>These additional “Enhanced Control Measures” should be implemented if the project site would exceed 1.62 hectares (4 acres):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Include all “Basic” control measures listed above.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Hydroweed or apply (nontoxic) soil stabilizers to inactive construction areas (previously graded areas inactive for 10 days or more).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Enclose, cover, water twice daily, or apply (nontoxic) soil binders to exposed stockpiles (dirt, sand, etc.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Limit traffic speeds on unpaved roads to 24 kilometers (14.9 miles) per hour.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Install sandbags or other erosion control measures to prevent silt runoff to public roadways.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Replant vegetation in disturbed areas as quickly as possible.</td>
</tr>
<tr>
<td>Noise</td>
<td>Construction-related impacts</td>
<td>As required by the Caltrans’ Standard Specification 14-8.02, “Noise Control”:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Each internal combustion engine shall be equipped with a muffler of a type recommended by the manufacturer. No internal combustion engine shall be operated on the project without said muffler.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No construction is proposed for the No Build Alternative. Therefore, construction noise abatement would not be required. The following measures are recommended to avoid or minimize construction noise impacts associated with Alternatives 2b and 4:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Work in staging areas that generate loud noises, such as equipment maintenance, shall not occur during the hours prohibited for construction work.</td>
</tr>
</tbody>
</table>
| | | • If traffic control and construction signs that require power for lighting or flashing are located near residential units, the source of power would be batteries, solar cells, or another quiet source. Gas- or diesel-fueled internal combustion engines would not be
Table D-1
Summary of Avoidance and Minimization Measures

<table>
<thead>
<tr>
<th>Resource Area</th>
<th>Conflict/Impact to be Avoided</th>
<th>Avoidance/Minimization Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Due to the proximity of the USCG Sector San Francisco facility to the construction area, a Memorandum of Understanding (MOU)/Memorandum of Agreement (MOA) shall be prepared detailing limitations on noise and impact activities prior to construction commencing.</td>
</tr>
<tr>
<td>Energy</td>
<td>Increase in energy consumption</td>
<td>The two Build Alternatives (2B and 4) would not result in a need to implement avoidance minimization, compensation, or mitigation measures resulting from project-related impacts to growth on YBI and TI, given that energy consumption would be reduced.</td>
</tr>
<tr>
<td>Natural Communities</td>
<td>Impacts to natural communities</td>
<td>With implementation of the avoidance and minimization measures described below, both project alternatives would not result in impacts to northern foredune and central coast riparian scrub vegetation. Potential impacts during construction activities would be avoided by placement of ESA exclusion fencing 3 meters (10 feet) from the perimeter of these communities. Contractor education would be conducted, bright-colored ESA fencing and signage shall be implemented, and a construction monitor shall confirm the fence integrity on a daily basis to protect the area from accidental equipment damage. If necessary, fence repair and/or reinforcements shall be completed immediately.</td>
</tr>
<tr>
<td>Wetlands and Other Waters</td>
<td>Impacts to wetlands and other waters</td>
<td>For both alternatives, the tidal waters of the Bay would be avoided by temporary construction features and permanent project features. Tidal waters would also not be affected by temporary construction activities due to implementation of standard construction BMPs to treat and minimize discharge into the Bay (Figures 3.17-3 and 3.17-4). Existing SFOBB project staging areas that are present within the BSA and addressed herein would be largely utilized for construction staging and access. Standard construction BMPs, including placement of straw wattles or silt fencing along the boundary of the project area, would be implemented according to an erosion control plan, which would be prepared to avoid discharge into the waters of the Bay during staging and construction of the ramps. Catch basin inlet protection and installation of straw wattles (fiber rolls) would be implemented throughout the site during construction. Other construction BMPs that would be reviewed and coordinated with the RWQCB for implementation during work near the Bay waters are discussed in Section 3.9, Hydrology and Floodplains.</td>
</tr>
<tr>
<td>Resource Area</td>
<td>Conflict/Impact to be Avoided</td>
<td>Avoidance/Minimization Measure</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Plant Species</td>
<td>Impacts to plant species</td>
<td>Stinging Phacelia
Stinging phacelia shall be avoided to the extent feasible by the chosen project alternative and protected during construction. The permanent and temporary impacts associated with Alternative 2b and Alternative 4 will avoid more than 99% of the population occurring on site (Figures 3.17-6 and 3.17-7). Where avoidance is not feasible, minimization measures will be implemented.
Potential impacts during construction activities shall be avoided to the extent feasible by placement of exclusion fencing 3 meters (10 feet) from the perimeter of the stinging phacelia stands outside the temporary and permanent impact area. Contractor education shall be conducted, bright-colored ESA fencing and signage shall be implemented, and a construction monitor shall confirm the fence integrity on a daily basis to protect the area from accidental equipment damage. Fence repair and/or reinforcements shall be completed immediately.
Unavoidable impacts to stinging phacelia will be offset by implementation of a woodland habitat revegetation plan as described in Section 2.2.4 of this Final EIR/EIS. Stinging phacelia plants removed in permanent and temporary disturbance areas will be replanted at a 1:1 ratio based on the area of occupied habitat affected. Woodland habitat removed in permanent and temporary disturbance areas will also be replanted. Compensatory measures are not proposed.</td>
</tr>
<tr>
<td>Plant Species</td>
<td>Impacts to plant species</td>
<td>Large Flowered Sand-Spurrey
Large flowered sand-spurrey shall be avoided to the extent feasible by the chosen project alternative and protected during construction.
Potential impacts during construction activities shall be avoided by placement of exclusion fencing 3 meters (10 feet) from the perimeter of the large flowered sand-spurrey stand outside the temporary and permanent impact area. Contractor education shall be conducted, bright-colored ESA fencing and signage shall be implemented, and a construction monitor shall confirm the fence integrity on a daily basis to protect the area from accidental equipment damage. Fence repair and/or reinforcements shall be completed immediately. Loss of individuals is not anticipated; therefore, compensatory measures are not proposed.</td>
</tr>
<tr>
<td>Resource Area</td>
<td>Conflict/Impact to be Avoided</td>
<td>Avoidance/Minimization Measure</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Animal Species | Impacts to invertebrates | **Sandy Beach Tiger Beetle**
Even though no direct impacts are anticipated for the Sandy Beach Tiger Beetle as discussed in 3.17.4.2, the following measures will be incorporated into the project as an extra precaution. Exclusion fencing will be placed around sandy dune habitats and contractor education will be conducted to prevent encroachment of construction activities.
Impacts to potential sandy beach tiger beetle habitat are not anticipated. In addition, the potential habitat within the BSA is considered marginal and the species has a very low potential to be present based on habitat quality and lack of occurrences in the vicinity. Compensatory measures are not proposed. |
| Animal Species | Impacts to invertebrates | **Monarch Butterfly**
Prior to the onset of construction activities, a qualified biologist would conduct focused surveys for monarch butterfly to determine presence or absence within the proposed project areas. If monarch butterfly winter roost sites are determined to be present during focused surveys, occupied habitat would be avoided to the extent feasible, or it would be disturbed outside of the winter roost season, which is typically from September through March. ESA exclusion fencing would be placed around avoided habitats and contractor education would be conducted to prevent encroachment of construction activities. Bright-colored ESA fencing and signage would be implemented and a construction monitor would confirm the fence integrity on a daily basis to protect the area from accidental equipment damage. Fence repair and/or reinforcements would be completed immediately. If a new roost site is discovered during construction, the biological monitor would be contacted to implement avoidance procedures before construction resumes in the area.
Removal of eucalyptus woodland and mixed broadleaf conifer forest habitat that may provide roost sites for monarch butterfly will be offset by implementation of the woodland habitat revegetation plan described in Section 2.2.4. Trees removed will be replaced at a 1:1 ratio providing potential habitat that may benefit the species longer term. Compensatory measures are not proposed. |
| Animal Species | Impacts to invertebrates | **Gummifera Leaf-Cutter Bee**
Prior to the onset of construction activities, a qualified biologist would conduct focused surveys |
<table>
<thead>
<tr>
<th>Resource Area</th>
<th>Conflict/Impact to be Avoided</th>
<th>Avoidance/Minimization Measure</th>
</tr>
</thead>
</table>
| Animal Species | Impacts to invertebrates | **San Francisco Lacewing**
Prior to the onset of construction activities, a qualified biologist would conduct focused surveys for San Francisco lacewing to determine presence or absence within the proposed project areas. If any individuals are determined to be present during focused surveys, occupied habitat would be avoided to the extent feasible. ESA exclusion fencing would be placed around avoided habitats and contractor education would be conducted to prevent encroachment of construction activities. Bright-colored ESA fencing and signage would be implemented and a construction monitor would confirm the fence integrity on a daily basis to protect the area from accidental equipment damage. Fence repair and/or reinforcements would be completed immediately. If the species is discovered during construction, the biological monitor would be contacted to implement avoidance procedures before construction resumes in the area.

Removal of eucalyptus woodland and mixed broadleaf conifer forest habitat that may provide habitat for San Francisco lacewing will be offset by implementation of the woodland habitat revegetation plan described in Section 2.2.4. Trees removed will be replaced at a 1:1 ratio providing potential habitat that may benefit the species longer term. Compensatory measures are not proposed. |
<table>
<thead>
<tr>
<th>Resource Area</th>
<th>Conflict/Impact to be Avoided</th>
<th>Avoidance/Minimization Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Species</td>
<td>Impacts to fish</td>
<td>The project is designed so that construction activities are located an adequate distance from the bay and therefore fish would be not be affected by construction activities. Construction noise levels, including pile driving, would be well below established thresholds to avoid potential injury to fish located in aquatic habitats adjacent to the site. The project would not result in the loss of any Essential Fish Habitat and therefore compensatory measures are not proposed.</td>
</tr>
<tr>
<td>Animal Species</td>
<td>Impacts to raptors</td>
<td>American Peregrine Falcon Peregrine falcons have the potential to nest in proximity to the BSA and have a high potential to use the BSA for foraging. Construction activities within the vicinity of active raptor nests could result in nest abandonment, nest failure, or premature fledging. Destruction or disturbance of active nests would be in violation of the MBTA and Fish and Game Code. In addition, peregrines are protected under CESA. Therefore, the following minimization measures would be implemented to avoid project-related impacts to potentially nesting peregrine falcons:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Throughout project construction, monitoring of the potential peregrine falcon nest sites on the columns of the existing SFOBB would be continued following the methodology outlined in the Final Revised Bird Monitoring and Management Plan (LSA 2003).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. If removal of structures occurs, or construction begins between December 15 and August 31 (the nesting season), a nesting bird survey would be performed by a qualified biologist within 15 days prior to the removal of potential nesting structures, or prior to disturbance of areas in the vicinity of potential nest sites.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. If an active peregrine falcon nest is discovered on the bridge or other structures within the project area or within 457.2 meters (1,500 feet) of the project area boundary, a nondisturbance buffer zone would be established in coordination with CDFG as necessary. Contractor education would be conducted by a qualified biologist for nesting bird avoidance. Observations would be conducted by a qualified biologist to confirm that work occurring outside of the buffer zone is not disturbing the nesting</td>
</tr>
</tbody>
</table>
Table D-1
Summary of Avoidance and Minimization Measures

<table>
<thead>
<tr>
<th>Resource Area</th>
<th>Conflict/Impact to be Avoided</th>
<th>Avoidance/Minimization Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>pair. If necessary, buffer zones would be adjusted to reduce distress to birds.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. CDFG would be consulted for clearance before construction activities resume within the buffer zone.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. ESA exclusion fencing would be placed around avoided habitats and contractor education would be conducted to prevent encroachment of construction activities. Bright-colored ESA fencing and signage would be implemented and a construction monitor would confirm the fence integrity on a daily basis to protect the area from accidental equipment damage. Fence repair and/or reinforcements would be completed immediately. If a new nest site is discovered during construction, the biological monitor would be contacted to implement avoidance procedures in coordination with CDFG before construction resumes in the area.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No compensatory measures are proposed for this species.</td>
</tr>
<tr>
<td>Animal Species</td>
<td>Impacts to raptors</td>
<td>Cooper’s Hawk, Golden Eagle, White-Tailed Kite, and Other Nesting Raptors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cooper’s hawks, golden eagle, white-tailed kite, and common raptor species such as red-tailed hawk have the potential to nest within habitats on-site. Any removal of trees, buildings, or other structures, or construction activities within the vicinity of active raptor nests could result in nest abandonment, nest failure, or premature fledging. Destruction or disturbance of active nests would be in violation of the MBTA and Fish and Game Code. Therefore, the following minimization measures would be implemented to avoid project-related impacts to potentially nesting raptors, in coordination with CDFG:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. To the extent feasible, potential nest trees will be avoided.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. To the extent feasible, the necessary removal of any trees or structures would occur from September 1 through December 15, outside the breeding season. If removal of trees or structures occurs, or construction begins between December 15 and August 31 (the nesting season), a nesting bird survey would be performed by a qualified biologist within 15 days prior to the removal of potential nesting trees or structures, or prior to disturbance of areas in the vicinity of potential nest sites.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. All trees or structures with active nests would be flagged and a nondisturbance buffer</td>
</tr>
</tbody>
</table>
Table D-1

Summary of Avoidance and Minimization Measures

<table>
<thead>
<tr>
<th>Resource Area</th>
<th>Conflict/Impact to be Avoided</th>
<th>Avoidance/Minimization Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>zone established around the nest site in coordination with CDFG. Additionally, if any nests are found on the bridge or other structures within the project area or within 152.4 meters (500 feet) of the project area boundary, these nests shall be flagged and a nondisturbance buffer zone established. Buffer zones typically range between 61 and 152.4 meters (200 and 500 feet) depending on the species involved, site conditions, nesting stage, and type of work in proximity. Contractor education would be conducted for nesting bird avoidance. Observations would be conducted by a qualified biologist to confirm that work occurring outside of the buffer zone is not disturbing nesting pairs. If necessary, buffer zones would be adjusted to reduce distress to birds.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Active nests would be regularly monitored by a qualified biologist in coordination with CDFG to determine when the young have fledged and are feeding on their own. CDFG would be consulted for clearance before construction activities resume within the buffer zone. CDFG will be notified if any nest is disturbed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. ESA exclusion fencing would be placed around avoided habitats and contractor education would be conducted to prevent encroachment of construction activities. Bright-colored ESA fencing and signage would be implemented and a construction monitor would confirm the fence integrity on a daily basis to protect the area from accidental equipment damage. Fence repair and/or reinforcements would be completed immediately. If a new nest site is discovered during construction, the biological monitor would be contacted to implement avoidance procedures, in coordination with CDFG, before construction resumes in the area.</td>
</tr>
</tbody>
</table>

Temporarily disturbed woodland and forested areas will be restored after completion of construction activities. Removal of eucalyptus woodland and mixed broadleaf conifer forest habitat that may provide nest sites for Cooper’s hawk will be offset by implementation of the woodland habitat revegetation plan described in Section 2.2.4. Trees removed will be replaced at a minimum 1:1 ratio, with natives to the island replaced at a 3:1 ratio. Compensatory measures are not proposed.

<table>
<thead>
<tr>
<th>Animal Species</th>
<th>Impacts to birds (non-raptors)</th>
<th>Passerines and Nonpasserine Landbirds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Several special-status and common passerine and nonpasserine landbirds, listed above, have at least some potential to nest and forage on-site. Any removal of structures, trees, or shrubs,</td>
</tr>
</tbody>
</table>
Table D-1
Summary of Avoidance and Minimization Measures

<table>
<thead>
<tr>
<th>Resource Area</th>
<th>Conflict/Impact to be Avoided</th>
<th>Avoidance/Minimization Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>or construction activities in the vicinity of active nests could result in nest abandonment, nest failure, or premature fledging. Destruction or disturbance of active nests would be in violation of the MBTA and Fish and Game Code. In addition, due to its Fully Protected status under Fish and Game Code, incidental take of individuals or nests is not authorized. Therefore, the following minimization measures would be implemented to avoid project-related impacts to potentially nesting passerine and nonpasserine landbirds, in coordination with CDFG:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. The removal of any structures, trees, or shrubs would occur from September 1 through February 1, outside the passerine and nonpasserine landbird breeding season. If removal of trees or shrubs occurs, or construction begins between February 1 and August 31 (the nesting season), a nesting bird survey would be performed by a qualified biologist within 15 days prior to the removal of potential nesting structures, trees, or shrubs, or prior to disturbance of areas in the vicinity of potential nest sites, i.e., trees and shrubs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. All active nests would be flagged and a nondisturbance buffer zone established around the nesting tree (or other nesting substrate) in coordination with the CDFG. Buffer zones for passerines and nonpasserine land birds typically range between 15.2 and 27.4 meters (50 and 90 feet) depending on the species involved, site conditions, and type of work proposed in the vicinity. Contractor education would be conducted for nesting birds, including a discussion of avoidance and protection measures.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Active nests would be monitored by a qualified biologist in coordination with CDFG to determine when the young have fledged and are feeding on their own. The project biologist would be consulted for clearance before construction activities resume in the vicinity.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. If a new nest site is discovered during construction, the biological monitor would be contacted to implement avoidance procedures, in coordination with CDFG, before construction resumes in the area.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No compensatory measures are proposed for these species.</td>
</tr>
</tbody>
</table>

Animal Species | Impacts to birds (non-raptors) | Shorebirds, Marshbirds, and Waterbirds
Suitable nesting and foraging habitat is present on-site for several species of wading birds,
Table D-1
Summary of Avoidance and Minimization Measures

<table>
<thead>
<tr>
<th>Resource Area</th>
<th>Conflict/Impact to be Avoided</th>
<th>Avoidance/Minimization Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>including snowy egret, great blue heron, great egret, and black-crowned night-heron. Therefore, the following minimization measures would be implemented to avoid project-related impacts to potentially nesting birds, in coordination with CDFG:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. The removal of any structures, trees, or shrubs would occur from September 1 through February 1, outside the breeding season. If removal of trees or shrubs occurs, or construction begins between February 1 and August 31 (the nesting season), a nesting bird survey would be performed by a qualified biologist within 15 days prior to the removal of potential nesting structures, trees, or shrubs, or prior to disturbance of areas in the vicinity of potential nest sites, i.e., trees and shrubs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. All active nests would be flagged and a nondisturbance buffer zone established around the nesting tree in coordination with the CDFG. Buffer zones for wading birds typically range between 30.5 and 61 meters (100 and 200 feet) depending on the species involved, site conditions, and type of work proposed in the vicinity. Contractor education would be conducted for nesting birds, including a discussion of avoidance and protection measures.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Active nests would be monitored by a qualified biologist in coordination with CDFG to determine when the young have fledged and are feeding on their own. The project biologist would be consulted for clearance before construction activities resume in the vicinity.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. ESA exclusion fencing would be placed around avoided habitats and contractor education would be conducted to prevent encroachment of construction activities. Bright-colored ESA fencing and signage would be implemented and a construction monitor would confirm the fence integrity on a daily basis to protect the area from accidental equipment damage. Fence repair and/or reinforcements would be completed immediately. If a new nest or roost site is discovered during construction, the biological monitor would be contacted to implement avoidance procedures in coordination with CDFG before construction resumes in the area.</td>
</tr>
</tbody>
</table>

Temporarily disturbed woodland and forested areas will be restored after completion of construction activities. Removal of eucalyptus woodland and mixed broadleaf conifer forest habitat that may provide nest sites for waterbirds such as herons and egrets will be offset by implementation of the woodland habitat revegetation plan described in Section 2.2.4. Trees
Table D-1
Summary of Avoidance and Minimization Measures

<table>
<thead>
<tr>
<th>Resource Area</th>
<th>Conflict/Impact to be Avoided</th>
<th>Avoidance/Minimization Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>removed will be replaced at a minimum 1:1 ratio, with natives to the island replaced at a 3:1 ratio. Compensatory measures are not proposed.</td>
</tr>
</tbody>
</table>

Animal Species

<table>
<thead>
<tr>
<th>Animal Species</th>
<th>Impacts to birds (non-raptors)</th>
<th>California Brown Pelican</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>California brown pelicans have a high potential to roost adjacent to the construction envelope. Construction activities immediately adjacent to their roosting habitat could cause disturbance or flushing of individuals. Therefore, the following minimization measure would be implemented to avoid project-related impacts to California brown pelican, in coordination with CDFG:</td>
</tr>
</tbody>
</table>

1. Exclusion fencing would be placed around the construction footprint to prevent construction equipment from entering areas where the pelicans may roost. Contractor education would be conducted, including a discussion of avoidance and protection measures. A construction monitor would confirm the fence integrity on a daily basis to protect the area from accidental equipment damage. Fence repair and/or reinforcements would be completed immediately. If a new roost site is discovered during construction, the biological monitor would be contacted to implement avoidance procedures in coordination with CDFG before construction resumes in the area. |

No compensatory measures are proposed due to the lack of permanent impacts. |

<table>
<thead>
<tr>
<th>Animal Species</th>
<th>Impacts to birds (non-raptors)</th>
<th>Double-Crested Cormorant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Double-crested cormorants have potential to nest and forage on-site. Construction activities on or adjacent to the existing bridge structure or the eastern border of the BSA could potentially disturb cormorants. Therefore, the following minimization measures are recommended to avoid project-related impacts to double-crested cormorants, in coordination with CDFG:</td>
</tr>
</tbody>
</table>

1. Throughout project construction, monitoring of the potential cormorant nest sites on the existing SFOBB would be continued following the methodology outlined in the Final Revised Bird Monitoring and Management Plan (2003). |

2. If construction activities begin between February 1 and August 31 (the nesting
Table D-1
Summary of Avoidance and Minimization Measures

<table>
<thead>
<tr>
<th>Resource Area</th>
<th>Conflict/Impact to be Avoided</th>
<th>Avoidance/Minimization Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>season), a nesting bird survey of the on-site bridge structure would be performed by a qualified biologist within 15 days prior to onset of construction to ensure that no cormorants have begun to nest in the structure or within 61 meters (200 feet) of the project disturbance footprint.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. All active nests would be flagged or mapped and a nondisturbance buffer zone established around the nest in coordination with the CDFG. Buffer zones typically range between 30.5 and 61 meters (100 and 200 feet) for wading and waterbirds depending on the species involved, site conditions, and type of work proposed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Active nests would be monitored by a qualified biologist in coordination with CDFG to determine when the young have fledged and are feeding on their own. CDFG would be consulted for clearance before construction activities resume.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Exclusion fencing would be placed around the construction footprint to prevent construction equipment for entering areas where the cormorants may roost. A construction monitor would confirm the fence integrity on a daily basis to protect the area from accidental equipment damage. Fence repair and/or reinforcements would be completed immediately.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. If a new roost or nest site is discovered during construction, the biological monitor would be contacted to implement avoidance procedures in coordination with CDFG before construction resumes in the area.</td>
</tr>
<tr>
<td></td>
<td>No compensatory measures are proposed for this species.</td>
<td></td>
</tr>
</tbody>
</table>

Animal Species Impacts to terrestrial mammals

<table>
<thead>
<tr>
<th>Animal Species</th>
<th>Impacts to terrestrial mammals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special-Status Bats</td>
<td>A preconstruction survey for roosting bats would be performed by a qualified biologist within 30 days prior to any removal of trees or structures on the site. If no active roosts are found, then no further action would be proposed. If either a maternity roost or hibernacula (structures used by bats for hibernation) is present, the following minimization measures would be implemented:</td>
</tr>
<tr>
<td></td>
<td>1. If active maternity roosts or hibernacula are found in trees or structures that would be removed or disturbed as part of project construction, the roost would be avoided by</td>
</tr>
<tr>
<td>Resource Area</td>
<td>Conflict/Impact to be Avoided</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table D-1
Summary of Avoidance and Minimization Measures

<table>
<thead>
<tr>
<th>Resource Area</th>
<th>Conflict/Impact to be Avoided</th>
<th>Avoidance/Minimization Measure</th>
</tr>
</thead>
</table>
| **Animal Species** | Impacts to terrestrial mammals | **San Francisco Dusky Footed Woodrat**
A preconstruction survey for San Francisco dusky-footed woodrat and associated woodrat houses would be performed by a qualified biologist within 30 days prior to any removal of trees or other vegetation on the site and within 30.5 meters (100 feet) of planned construction activities. If no active houses are found, then no further action would be proposed. If active woodrat houses are found in or below trees and vegetation that would be removed or temporarily disturbed as part of project construction, the project would be redesigned to avoid the loss of the occupied habitat and disturbance to woodrats to the extent feasible. If the project cannot be redesigned to avoid removal of the occupied habitat, the woodrat house may be relocated to a suitable location as close to the original house as possible while maintaining an adequate buffer of construction activities in coordination with CDFG. Animal exclusion fencing would be placed around the construction area, to prevent woodrat ingress, and contractor education would be conducted. A construction monitor would confirm the fence integrity on a daily basis to protect the area from accidental equipment damage. Fence repair and/or reinforcements would be completed immediately. If a new nest site is discovered during construction, the biological monitor would be contacted to implement avoidance procedures in coordination with CDFG before construction resumes in the area.

If San Francisco dusky-footed woodrat houses are found within portions of the project site that require permanent or temporary disturbance or if occupied habitat is accidentally damaged during construction, appropriate replacement houses/nests would be created at a 1:1 ratio at a suitable location on-site or off-site in coordination with a qualified biologist, Caltrans, and/or CDFG. Follow-up monitoring efforts would be conducted to evaluate relocation success and additional measures may be proposed if relocated houses are not successful. |
| **Threatened and Endangered Species** | Impacts to threatened and endangered species | **Fish**
The project design is such that protected fish would be not be affected by construction activities. Construction noise levels, including pile driving, would be below established thresholds to avoid potential injury to protected fish located in aquatic habitats adjacent to the site.

The project would not result in the loss of any habitat for Federally listed fish species and therefore compensatory measures are not proposed. |
Table D-1
Summary of Avoidance and Minimization Measures

<table>
<thead>
<tr>
<th>Resource Area</th>
<th>Conflict/Impact to be Avoided</th>
<th>Avoidance/Minimization Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threatened and Endangered Species</td>
<td>Impacts to threatened and endangered species</td>
<td>Bank Swallow
Any removal of structures, trees, or shrubs, or construction activities in the vicinity of active nests could result in nest abandonment, nest failure, or premature fledging. Destruction or disturbance of active nests would be in violation of the MBTA and Fish and Game Code. Therefore, the following measures would be implemented to avoid project-related impacts to potentially nesting bank swallows in proximity to construction areas, in coordination with CDFG:
1. The removal of any structures, trees, or shrubs would occur from September 1 through February 1, outside the passerine and nonpasserine landbird breeding season. If removal of trees or shrubs occurs, or construction begins between February 1 and August 31 (the nesting season), a nesting bird survey would be performed by a qualified biologist within 15 days prior to the removal of potential nesting structures, trees, or shrubs, or prior to disturbance of areas in the vicinity of potential nest sites, i.e., hillsides and trees.
2. All active nests would be flagged and a nondisturbance buffer zone established around the nesting tree (or other nesting substrate) in coordination with CDFG. Buffer zones for passerines and nonpasserine land birds typically range between 15.2 to 27.4 meters (50 and 90 feet) depending on the species involved, site conditions, and type of work proposed in the vicinity. Contractor education would be conducted for nesting birds, including a discussion of avoidance and protection measures.
3. Active nests would be monitored by a qualified biologist in coordination with CDFG to determine when the young have fledged and are feeding on their own. The project biologist would be consulted for clearance before construction activities resume in the vicinity.
4. If a new nest site is discovered during construction, the biological monitor would be contacted to implement avoidance procedures in coordination with CDFG before construction resumes in the area.
No compensatory measures are proposed for this species.</td>
</tr>
</tbody>
</table>
Table D-1
Summary of Avoidance and Minimization Measures

<table>
<thead>
<tr>
<th>Resource Area</th>
<th>Conflict/Impact to be Avoided</th>
<th>Avoidance/Minimization Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threatened and Endangered</td>
<td>Impacts to threatened and endangered species</td>
<td>Harbor Seal</td>
</tr>
<tr>
<td>Species</td>
<td></td>
<td>The project design is such that harbor seal habitat and individuals will be avoided by construction activities. Based on the hydroacoustic analysis (Memo: Yerba Buena Island – Pile Driving Noise Descriptions. January 3, 2011a; E-Mail Correspondence: Airborne Noise from Pile Driving. January 6, 2011b), no avoidance measures are proposed. The project would not result in loss of any harbor seal habitat and therefore compensatory measures are not proposed.</td>
</tr>
<tr>
<td>Threatened and Endangered</td>
<td>Impacts to threatened and endangered species</td>
<td>California Sea Lion</td>
</tr>
<tr>
<td>Species</td>
<td></td>
<td>The project design is such that sea lion habitat and individuals will be avoided by construction activities. Based on the hydroacoustic analysis (Memo: Yerba Buena Island – Pile Driving Noise Descriptions. January 3, 2011a; E-Mail Correspondence: Airborne Noise from Pile Driving. January 6, 2011b), no avoidance measures are proposed. The project would not result in loss of any sea lion habitat and therefore compensatory measures are not proposed.</td>
</tr>
<tr>
<td>Invasive Species</td>
<td>Limit spread of invasive species</td>
<td>To avoid the environmental consequences outlined above, there would be a multilayered approach to avoid, minimize, and/or compensate the project’s effects. In compliance with EO 13112, and subsequent guidance from FHWA, the landscaping and erosion control measures included in the project would not use species listed as noxious or invasive weeds by the California Department of Food and Agriculture (CDFA 2010). In areas of particular sensitivity, extra precautions would be taken if invasive species are found in or adjacent to the construction areas. These include the inspection and cleaning of construction equipment and eradication strategies to be implemented should an invasion occur. For botanical resources, hydrosowing and replanting for erosion control and revegetation of slopes would be verified for being invasive plant/weed-free before application by an established, approved, licensed, and insured contractor. Local native plant ecotypes would be used for replanting in affected areas. Standard BMPs would be implemented. To minimize attracting non-native/nuisance wildlife, garbage generated on-site would be appropriately disposed of in garbage cans placed throughout the site and deposited into large and secure garbage cans.</td>
</tr>
</tbody>
</table>

D-29
<table>
<thead>
<tr>
<th>Resource Area</th>
<th>Conflict/Impact to be Avoided</th>
<th>Avoidance/Minimization Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dumpsters daily. These dumpsters would be emptied on a weekly basis before dusk. On-site toilets would be maintained daily for site sanitation and to avoid attracting more nuisance wildlife. Worker education would focus on the diminishment and disposal of on-site garbage and the factors associated with decreasing invasive species potential on-site. By encouraging proper and timely sanitation of construction-generated waste (especially food), invasive rodent (e.g., mice and rat) activity would be controlled. In most urbanized environments random food scraps and overgrown or salvage areas provide abundant forage and habitat for rodents. Neat, off-the-ground storage of pipes, girders, cable, wire, and lumber would help reduce the suitability of the area for rats and would also make rodent detection easier. Garbage and trash, and all garbage receptacles, would have tight-fitting covers. Feral pets should not be encouraged through provision of food for feeding. This food may become a ready supply of food for rats and mice, or other nuisance wildlife. Overall, the introduction and spread of exotic and invasive plant and wildlife species would be avoided to the maximum extent possible. BMPs, as identified by the SFRWQCB and described in Section 3.17.2.4, would be implemented to control erosion while not increasing the spread of invasive plant or wildlife species. In some cases, hydroseeding or rapid replanting measures can increase the spread of weed/invasive grass species through lack of seed purity or insufficient preparation of the seed mix. Revegetation contractors would implement standard quality assurance/quality control measures to verify the purity of native seed mix and the site appropriateness of ecotypes for revegetation utilizing container plants.</td>
<td></td>
</tr>
</tbody>
</table>
Table D-2
Summary of Mitigation Measures

<table>
<thead>
<tr>
<th>Resource Area</th>
<th>Impact to be Mitigated</th>
<th>Mitigation Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cultural Resources</td>
<td>Impacts to historic resources.</td>
<td>Mitigation Stipulated Under MOA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The MOA has been developed with input from SHPO (Appendix R). It dictates a variety</td>
</tr>
<tr>
<td></td>
<td></td>
<td>of tasks intended to avoid, minimize, or mitigate for impacts to the built</td>
</tr>
<tr>
<td></td>
<td></td>
<td>environment. The MOA includes the following mitigation measures:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Develop Protective Measures for Historic Buildings</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prior to the commencement of any construction activity, measures will be developed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for the protection of the buildings of the Senior Officers’ Quarters Historic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>District (including the Quarters 1/Nimitz House) and Quarters 10/Building 267</td>
</tr>
<tr>
<td></td>
<td></td>
<td>from potential damage due to construction activities. Existing analysis derived</td>
</tr>
<tr>
<td></td>
<td></td>
<td>from the SFOBB ESSSP could be used to inform the need for changes in construction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>methodology, shoring, and/or building stabilization, if consultation among the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SHPO, SFCTA, and Caltrans/FHWA requires it. Caltrans will also ensure that any</td>
</tr>
<tr>
<td></td>
<td></td>
<td>damage to historic properties resulting from the project or the relocation of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quarters 10/Building 267 will be repaired in accordance with the Secretary of the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interior’s standards for the treatment of historic properties.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prepare Historic Structures Reports and Conditions Assessments</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Historic Structure Reports (HSRs) would be prepared for Quarters 1/Nimitz House and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quarters 10/Building 267. Detailed information is needed to assess what avoidance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and protection measures are required to prevent adverse effects. The HSRs would</td>
</tr>
<tr>
<td></td>
<td></td>
<td>include a history of the property/building, construction history, archaeology,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>architectural evaluation, conditions assessment, maintenance requirements,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>recommendations for proposed work, copies of original drawings and specifications</td>
</tr>
<tr>
<td></td>
<td></td>
<td>if available, current drawings if different from the original, and historic and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>current photographs. Such information would also help facilitate future owners or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>operators’ adaptive reuse of these buildings and structures.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interpretation of Historic Properties</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SFCTA, in consultation with Caltrans, will develop and install interpretive signs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>incorporating narrative and images relating to the historic Navy buildings on</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yerba Buena Island. Interpretive signage would be coordinated with that already</td>
</tr>
<tr>
<td></td>
<td></td>
<td>planned by Caltrans as mitigation for the SFOBB ESSSP.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Relocation</td>
</tr>
</tbody>
</table>

D-31
With the identification of Alternative 2b as the Preferred Alternative, Quarters 10/Building 267 shall be relocated and reconstructed in accordance with the Secretary of the Interior’s *Standards for the Treatment of Historic Properties: Standards for Preservation, Rehabilitation, Restoration, and Reconstruction* (1995). The process for moving these buildings would follow the approach outlined in *Moving Historic Buildings* (Curtis 1979). In addition, Quarters 10/Building 267 would be relocated by a professional mover with demonstrated experience in the successful movement of historic buildings.

Appropriate steps will also be taken to ensure that buildings will be protected prior to moving to accommodate construction. Quarters 10/Building 267 will be protected in place until they are relocated. Measures taken for Quarters 10/Building 267 will include providing security before, during, and following its relocation for a period of time agreed to by Caltrans and the SFCTA.

Historic Landscape Report and Landscaping Plan

To aid in planning for future use and landscaping of the properties within the Senior Officers’ Quarters Historic District, a Historic Landscape Report will be prepared. The scope will be developed in consultation with Caltrans, the Navy, and TIDA and will generally follow the guidelines for the Historic American Landscape Survey described in the National Park Service publication “HALS Guidelines.” In addition, a landscaping plan for the Senior Officers’ Quarters Historic District will be prepared to address areas where the existing landscaping features will be disturbed by construction activities.

Conduct Postconstruction Condition Assessment, and a Reevaluation of Resources

Following completion of construction of the YBI Ramps, a postconstruction conditions assessment and reevaluation will be conducted to determine whether NRHP- listed resources continued to adequately meet listing criteria. This reevaluation would apply to Quarters 10/Building 267 to assess whether the property still retains sufficient historical integrity to convey its significance. This reevaluation will take place prior to the Yerba Buena Ramps Improvement Project completion.

Archaeological Monitoring

In order to avoid potentially adverse effects on archaeological site CA-SFR-04/H, an Environmentally Sensitive Area (ESA) will be established around the boundary of the site. The ESA will be established and maintained in accordance with the detailed implementation
Table D-2
Summary of Mitigation Measures

<table>
<thead>
<tr>
<th>Resource Area</th>
<th>Impact to be Mitigated</th>
<th>Mitigation Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>measures included in the ESA Action Plan (attached to the MOA) and will be thoroughly described on the final construction plans for the project. No construction activity or related ground disturbance will take place within the ESA.</td>
<td></td>
</tr>
</tbody>
</table>
| Visual/Aesthetics | Change in visual character, removal of vegetation and increased light and glare during construction | Caltrans and FHWA mandate that a qualitative/aesthetic approach should be taken to mitigate for visual quality loss in the project area. This approach fulfills the letter and the spirit of FHWA requirements because it addresses the actual cumulative loss of visual quality that would occur in the project viewshed if the project was implemented along with the SFOBB. It also constitutes mitigation that can more readily generate public acceptance of the project. Visual mitigation for adverse project impacts addressed in the key viewpoint assessments and summarized in the previous section would consist of adhering to the following design requirements in cooperation with the District Landscape Architect. **Alternative 2b** Construction of the Alternative 2b design would in some cases have significant impacts on the visual quality of some areas when these areas are observed from certain viewpoints. This would be noticeable in cases where views toward or from the Senior Officers’ Quarters Historic District would be dominated and/or obstructed by the ramp structures. Alternative 2b would require the removal of woodland vegetation, mostly mature eucalyptus trees, within the project’s construction limits. Most of the trees that would be removed are located in the area southwest of the Nimitz House, which is where the off-ramp would end and the on-ramp would begin. These are mature tall trees that add to the island’s appearance and shield the ramps partially from view. The removal of this vegetation would constitute a substantial visual impact, and a number of years would be required before the vegetation could reestablish itself to the density that exists today. Given the large scale of the ramps, it would be difficult to screen or sufficiently offset their visual impacts without in the process causing secondary significant visual impacts. Design requirements including ribbing to match the existing and proposed adjacent structures would be implemented under Alternative 2b. To promote a seamless interaction between the ramps and the SFOBB Transition Structure, the ramps would utilize a ribbed design that is consistent with the structural form and architectural vocabulary of the new SFOBB East Span. The intent
Table D-2
Summary of Mitigation Measures

<table>
<thead>
<tr>
<th>Resource Area</th>
<th>Impact to be Mitigated</th>
<th>Mitigation Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>is to blend the structure such that both components appear to be integrated as one project.</td>
<td>A landscaping plan for the project area would be developed in cooperation with Caltrans’ District 4 Landscape Architect and is still being designed. While the goal would be to aesthetically enhance the project site, bridge security may limit the range of options that can be considered. However, some new vegetation will be planted in appropriate locations. The landscaping alone will not fully mitigate the visual impact. The landscaping plan would incorporate the use of native plants such as Coast live oak, Toyon, Coyote brush, Snowberry, Blue elderberry, California blackberry, and Miner’s lettuce, and would be developed in coordination with Caltrans’ SFOBB landscape plan. In addition TIDA’s best management practices (BMPs) identified in the Yerba Buena Island Habitat Management Plan would also be considered. The BMPs consist of revegetation, protection of sensitive resource areas, invasive plant removal and prevention, and hazard tree removal. The landscaping plan would be in compliance with the invasive species provisions outlined in the Biological Resources section of this EIR/EIS. In compliance with EO 13112 and subsequent guidance from FHWA, the landscaping and erosion control measures included in the project would not use species listed as noxious or invasive weeds by the California Department of Food and Agriculture. Construction lighting will be oriented away from nearby uses and portable construction lighting would be required to be down-focused whenever feasible to reduce potential nighttime disturbance. Alternative 4 Construction of the Alternative 4 design would in some cases have significant impacts on the visual quality of some areas when these areas are observed from certain viewpoints. This would be noticeable in cases where views toward or from the Senior Officers’ Quarters Historic District would be dominated and/or obstructed by the ramp structures. Alternative 4 would require the removal of woodland vegetation, mostly mature eucalyptus trees, within the project’s construction limits. Most of the trees that would be removed are located in the area at the northeastern tip of YBI southwest. These are mature tall trees that add to the island’s appearance and shield the ramps partially from view. The removal of this vegetation would constitute a substantial visual impact, and a number of years would be required before the vegetation could reestablish itself to the density that exists today.</td>
</tr>
</tbody>
</table>
Table D-2
Summary of Mitigation Measures

<table>
<thead>
<tr>
<th>Resource Area</th>
<th>Impact to be Mitigated</th>
<th>Mitigation Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Design requirements including ribbing to match the existing and proposed adjacent structures would be implemented under Alternative 4. To promote a seamless interaction between the ramps and the SFOBB Transition Structure, the ramps would utilize a ribbed design that is consistent with the structural form and architectural vocabulary of the new SFOBB East Span. The intent is to blend the structure such that both components appear to be integrated as one project. Given the large scale of the ramps, it would be difficult to screen or sufficiently offset their visual impacts without in the process causing secondary significant visual impacts. As described in Section 2.2.4, trees and sensitive plants removed during construction would be replaced with the intent to restore disturbed areas with similar landscape that would screen portions of the ramp structure (i.e. columns, column foundations) from surrounding viewpoints over time, to the extent feasible. A landscaping plan for the project area would be developed in cooperation with Caltrans’ District 4 Landscape Architect and is still being designed. While, the goal would be to aesthetically enhance the project site, bridge security may limit the range of options that can be considered. However, some new vegetation will be planted in appropriate locations. The landscaping plan alone will not fully mitigate the visual impact. The landscaping plan would incorporate the use of native plants such as Coast live oak, Toyon, Coyote brush, Snowberry, Blue elderberry, California blackberry, and Miner’s lettuce, and would be developed in coordination with Caltrans’ SFOBB landscape plan. In addition, TIDA’s best management practices (BMPs) identified in the Yerba Buena Island Habitat Management Plan would also be considered. The BMPs consist of revegetation, protection of sensitive resource areas, invasive plant removal and prevention, and hazard tree removal. The landscaping plan would be in compliance with the invasive species provisions outlined in the Biological Resources section of this EIR/EIS. In compliance with EO 13112 and subsequent guidance from FHWA, the landscaping and erosion control measures included in the project would not use species listed as noxious or invasive weeds by the California Department of Food and Agriculture. Construction lighting will be oriented away from nearby uses and portable construction lighting would be required to be down-focused whenever feasible to reduce potential nighttime disturbance.</td>
</tr>
</tbody>
</table>
APPENDIX E

LIST OF ACRONYMS
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AADT</td>
<td>annual average daily traffic</td>
</tr>
<tr>
<td>AB</td>
<td>Assembly Bill</td>
</tr>
<tr>
<td>ABAG</td>
<td>Association of Bay Area Governments</td>
</tr>
<tr>
<td>ACHP</td>
<td>Advisory Council on Historic Preservation</td>
</tr>
<tr>
<td>ACM</td>
<td>asbestos-containing material</td>
</tr>
<tr>
<td>ADA</td>
<td>Americans with Disabilities Act</td>
</tr>
<tr>
<td>ADI</td>
<td>Area of Direct Impacts</td>
</tr>
<tr>
<td>ADL</td>
<td>Aerially Deposited Lead</td>
</tr>
<tr>
<td>ADT</td>
<td>average daily traffic</td>
</tr>
<tr>
<td>AEP</td>
<td>Association of Environmental Professionals</td>
</tr>
<tr>
<td>AM/IRAP</td>
<td>Action Memorandum / Interim Remedial Action Plan</td>
</tr>
<tr>
<td>APE</td>
<td>area of potential effects</td>
</tr>
<tr>
<td>ARB</td>
<td>Air Resources Board</td>
</tr>
<tr>
<td>ARPA</td>
<td>Archaeological Resources Protection Act of 1979</td>
</tr>
<tr>
<td>ASR</td>
<td>Archaeological Survey Report</td>
</tr>
<tr>
<td>ATCM</td>
<td>Airborne Toxics Control Measure</td>
</tr>
<tr>
<td>ATG</td>
<td>Allied Technology Group</td>
</tr>
<tr>
<td>AWQC</td>
<td>ambient water quality concentrations</td>
</tr>
<tr>
<td>BAAQMD</td>
<td>Bay Area Air Quality Management District</td>
</tr>
<tr>
<td>BACT</td>
<td>best available control technology</td>
</tr>
<tr>
<td>BCDC</td>
<td>San Francisco Bay Conservation and Development Commission</td>
</tr>
<tr>
<td>BETP</td>
<td>Built Environment Treatment Plan</td>
</tr>
<tr>
<td>BGS</td>
<td>below ground surface</td>
</tr>
<tr>
<td>BMP</td>
<td>best management practice</td>
</tr>
<tr>
<td>BRAC</td>
<td>Defense Base Closure and Realignment Commission</td>
</tr>
<tr>
<td>CAA</td>
<td>Clean Air Act</td>
</tr>
<tr>
<td>CAAA</td>
<td>Clean Air Act Amendments</td>
</tr>
<tr>
<td>CAAQS</td>
<td>California Ambient Air Quality Standards</td>
</tr>
<tr>
<td>CAFE</td>
<td>Corporate Average Fuel Economy</td>
</tr>
<tr>
<td>Cal/EPA</td>
<td>California Environmental Protection Agency</td>
</tr>
<tr>
<td>Caltrans</td>
<td>California Department of Transportation</td>
</tr>
<tr>
<td>CAP</td>
<td>Clean Air Plan</td>
</tr>
<tr>
<td>CARE</td>
<td>Community Air Risk Evaluation</td>
</tr>
<tr>
<td>CATS</td>
<td>Consolidated Area Telephone System</td>
</tr>
<tr>
<td>CCA</td>
<td>California Clean Air Act</td>
</tr>
<tr>
<td>CCO</td>
<td>contract change order</td>
</tr>
<tr>
<td>CDFG</td>
<td>California Department of Fish and Game</td>
</tr>
<tr>
<td>CDMG</td>
<td>California Division of Mines and Geology</td>
</tr>
<tr>
<td>CEQ</td>
<td>Council on Environmental Quality</td>
</tr>
<tr>
<td>CEQA</td>
<td>California Environmental Quality Act</td>
</tr>
<tr>
<td>CERCLA</td>
<td>Comprehensive Environmental Response Compensation and Liability Act</td>
</tr>
<tr>
<td>CERFA</td>
<td>Community Environmental Response Facilitation Act</td>
</tr>
<tr>
<td>CESA</td>
<td>California Endangered Species Act</td>
</tr>
<tr>
<td>C.F.R.</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>CGS</td>
<td>California State Geological Survey</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>CHP</td>
<td>California Highway Patrol</td>
</tr>
<tr>
<td>CIH</td>
<td>Certified Industrial Hygienist</td>
</tr>
<tr>
<td>CNDBB</td>
<td>California Natural Diversity Database</td>
</tr>
<tr>
<td>CNPS</td>
<td>California Native Plant Society</td>
</tr>
<tr>
<td>CO</td>
<td>carbon monoxide</td>
</tr>
<tr>
<td>CRHR</td>
<td>California Register of Historical Resources</td>
</tr>
<tr>
<td>CTM</td>
<td>Construction Traffic Manager</td>
</tr>
<tr>
<td>CWA</td>
<td>Clean Water Act</td>
</tr>
<tr>
<td>dBA</td>
<td>A-weighted decibel</td>
</tr>
<tr>
<td>DIB</td>
<td>Design Information Bulletin</td>
</tr>
<tr>
<td>DOD</td>
<td>Department of Defense</td>
</tr>
<tr>
<td>DSA</td>
<td>disturbed soil area</td>
</tr>
<tr>
<td>DTSC</td>
<td>California Department of Toxic Substances Control</td>
</tr>
<tr>
<td>EBMUD</td>
<td>East Bay Municipal Utility District</td>
</tr>
<tr>
<td>EBRPD</td>
<td>East Bay Regional Park District</td>
</tr>
<tr>
<td>EIR</td>
<td>Environmental Impact Report</td>
</tr>
<tr>
<td>EIS</td>
<td>Environmental Impact Statement</td>
</tr>
<tr>
<td>EO</td>
<td>Executive Order</td>
</tr>
<tr>
<td>ERIIS</td>
<td>Environmental Risk Information & Imaging Services</td>
</tr>
<tr>
<td>ESA</td>
<td>Environmentally Sensitive Area</td>
</tr>
<tr>
<td>ESSSP</td>
<td>East Span Seismic Safety Project</td>
</tr>
<tr>
<td>FEMA</td>
<td>Federal Emergency Management Agency</td>
</tr>
<tr>
<td>FESA</td>
<td>Federal Endangered Species Act</td>
</tr>
<tr>
<td>FHWA</td>
<td>Federal Highway Administration</td>
</tr>
<tr>
<td>FIFRA</td>
<td>Federal Insecticide, Fungicide, and Rodenticide Act</td>
</tr>
<tr>
<td>FIRM</td>
<td>Flood Insurance Rate Map</td>
</tr>
<tr>
<td>FOE</td>
<td>Finding of Effect</td>
</tr>
<tr>
<td>FOST</td>
<td>Finding of Suitability to Transfer</td>
</tr>
<tr>
<td>FTA</td>
<td>Federal Transit Administration</td>
</tr>
<tr>
<td>GHG</td>
<td>greenhouse gas</td>
</tr>
<tr>
<td>HABS</td>
<td>Historic American Building Survey</td>
</tr>
<tr>
<td>HAER</td>
<td>Historic American Engineering Record</td>
</tr>
<tr>
<td>HAP</td>
<td>hazardous air pollutant</td>
</tr>
<tr>
<td>HBP</td>
<td>Highway and Bridge Program</td>
</tr>
<tr>
<td>HCM</td>
<td>Highway Capacity Manual</td>
</tr>
<tr>
<td>HOV</td>
<td>High Occupancy Vehicle</td>
</tr>
<tr>
<td>HPSR</td>
<td>Historic Property Survey Report</td>
</tr>
<tr>
<td>HRA</td>
<td>health risk assessment</td>
</tr>
<tr>
<td>HRER</td>
<td>Historic Resources Evaluation Report</td>
</tr>
<tr>
<td>HUD</td>
<td>U.S. Department of Housing and Urban Development</td>
</tr>
<tr>
<td>HWA</td>
<td>Hazardous Waste Assessment</td>
</tr>
<tr>
<td>I-80</td>
<td>Interstate 80</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>IR</td>
<td>Installation Restoration</td>
</tr>
<tr>
<td>IRP</td>
<td>Installation Restoration Program</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>kV</td>
<td>kilovolt</td>
</tr>
<tr>
<td>LBP</td>
<td>lead-based paint</td>
</tr>
<tr>
<td>LID</td>
<td>Low Impact Development</td>
</tr>
<tr>
<td>LOS</td>
<td>Level of Service</td>
</tr>
<tr>
<td>LUST</td>
<td>Leaking Underground Storage Tank</td>
</tr>
<tr>
<td>MACT</td>
<td>maximum achievable control technology</td>
</tr>
<tr>
<td>MBTA</td>
<td>Migratory Bird Treaty Act</td>
</tr>
<tr>
<td>MCE</td>
<td>Maximum Credible Earthquake</td>
</tr>
<tr>
<td>MGD</td>
<td>million gallons per day</td>
</tr>
<tr>
<td>MOA</td>
<td>Memorandum of Agreement</td>
</tr>
<tr>
<td>MOU</td>
<td>Memorandum of Understanding</td>
</tr>
<tr>
<td>mph</td>
<td>miles per hour</td>
</tr>
<tr>
<td>MS4</td>
<td>San Francisco Municipal Separate Storm Sewer System</td>
</tr>
<tr>
<td>MSAT</td>
<td>mobile source air toxic</td>
</tr>
<tr>
<td>MSC</td>
<td>Maps Service Center</td>
</tr>
<tr>
<td>MTC</td>
<td>Metropolitan Transportation Commission</td>
</tr>
<tr>
<td>m³/s</td>
<td>cubic meters per second</td>
</tr>
<tr>
<td>NAAQS</td>
<td>National Ambient Air Quality Standards</td>
</tr>
<tr>
<td>NAC</td>
<td>noise abatement criteria</td>
</tr>
<tr>
<td>NAGPRA</td>
<td>Native American Graves Protection and Repatriation Act</td>
</tr>
<tr>
<td>NAVSTA-TI</td>
<td>Naval Station Treasure Island</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Policy Act</td>
</tr>
<tr>
<td>NERT</td>
<td>Neighborhood Emergency Response Team</td>
</tr>
<tr>
<td>NES</td>
<td>Natural Environment Study</td>
</tr>
<tr>
<td>NESHAP</td>
<td>National Emissions Standards for Hazardous Air Pollutants</td>
</tr>
<tr>
<td>NFA</td>
<td>No Further Action</td>
</tr>
<tr>
<td>NFIP</td>
<td>National Flood Insurance Program</td>
</tr>
<tr>
<td>NGVD</td>
<td>National Geodetic Vertical Datum</td>
</tr>
<tr>
<td>NHPA</td>
<td>National Historic Preservation Act</td>
</tr>
<tr>
<td>NO</td>
<td>nitric oxide</td>
</tr>
<tr>
<td>NO₂</td>
<td>nitrogen dioxide</td>
</tr>
<tr>
<td>NOₓ</td>
<td>nitrogen oxides</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>NOD</td>
<td>Notice of Determination</td>
</tr>
<tr>
<td>NOI</td>
<td>Notice of Intent</td>
</tr>
<tr>
<td>NOP</td>
<td>Notice of Preparation</td>
</tr>
<tr>
<td>NPDES</td>
<td>National Pollutant Discharge Elimination System</td>
</tr>
<tr>
<td>NPL</td>
<td>National Priorities List</td>
</tr>
<tr>
<td>NRHP</td>
<td>National Register of Historic Places</td>
</tr>
<tr>
<td>NSR</td>
<td>Noise Study Report</td>
</tr>
<tr>
<td>NSTI</td>
<td>Naval Station Treasure Island</td>
</tr>
<tr>
<td>OAP</td>
<td>ozone attainment plan</td>
</tr>
<tr>
<td>OES</td>
<td>Office of Emergency Services</td>
</tr>
<tr>
<td>OSHA</td>
<td>Occupational Safety and Health Act</td>
</tr>
<tr>
<td>PA</td>
<td>Programmatic Agreement</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>PAH</td>
<td>polycyclic aromatic hydrocarbon</td>
</tr>
<tr>
<td>PCB</td>
<td>polychlorinated biphenyls</td>
</tr>
<tr>
<td>PEAR</td>
<td>Preliminary Environmental Analysis Report</td>
</tr>
<tr>
<td>PeMS</td>
<td>Freeway Performance Measurement System</td>
</tr>
<tr>
<td>PG&E</td>
<td>Pacific Gas & Electric</td>
</tr>
<tr>
<td>PM</td>
<td>particulate matter</td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td>Respirable Particulate Matter</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>Fine Particulate Matter</td>
</tr>
<tr>
<td>POAQC</td>
<td>project of air quality concern</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>PSR</td>
<td>Project Study Report</td>
</tr>
<tr>
<td>RAP</td>
<td>Relocation Assistance Program</td>
</tr>
<tr>
<td>RCRA</td>
<td>Resource Conservation and Recovery Act</td>
</tr>
<tr>
<td>RE</td>
<td>Resident Engineer</td>
</tr>
<tr>
<td>RI</td>
<td>Remedial Investigation</td>
</tr>
<tr>
<td>ROD</td>
<td>Record of Decision</td>
</tr>
<tr>
<td>ROG</td>
<td>reactive organic gas</td>
</tr>
<tr>
<td>ROI</td>
<td>Region of Influence</td>
</tr>
<tr>
<td>RTIP</td>
<td>Regional Transportation Improvement Plan</td>
</tr>
<tr>
<td>RTP</td>
<td>Regional Transportation Plan</td>
</tr>
<tr>
<td>RWQCB</td>
<td>Regional Water Quality Control Board</td>
</tr>
<tr>
<td>SAFETEA-LU</td>
<td>Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users</td>
</tr>
<tr>
<td>SAS</td>
<td>Self-Anchored Suspension</td>
</tr>
<tr>
<td>SCPBRG</td>
<td>Santa Cruz Predatory Bird Research Group</td>
</tr>
<tr>
<td>SFAAB</td>
<td>San Francisco Bay Area Air Basin</td>
</tr>
<tr>
<td>SFBRWQCB</td>
<td>San Francisco Bay Regional Water Quality Control Board</td>
</tr>
<tr>
<td>SFCTA</td>
<td>San Francisco County Transportation Authority</td>
</tr>
<tr>
<td>SFFD</td>
<td>San Francisco Fire Department</td>
</tr>
<tr>
<td>SFOBB</td>
<td>San Francisco-Oakland Bay Bridge</td>
</tr>
<tr>
<td>SFPD</td>
<td>San Francisco Police Department</td>
</tr>
<tr>
<td>SFPUC</td>
<td>San Francisco Public Utilities Commission</td>
</tr>
<tr>
<td>SFWD</td>
<td>San Francisco Water Department</td>
</tr>
<tr>
<td>SHPO</td>
<td>State Historic Preservation Officer</td>
</tr>
<tr>
<td>SI</td>
<td>Site Investigation</td>
</tr>
<tr>
<td>SIP</td>
<td>State Implementation Plan</td>
</tr>
<tr>
<td>SMP</td>
<td>Site Management Plan</td>
</tr>
<tr>
<td>SO$_2$</td>
<td>sulfur dioxide</td>
</tr>
<tr>
<td>SO$_x$</td>
<td>sulfur oxides</td>
</tr>
<tr>
<td>SOMA</td>
<td>South of Market Neighborhood of San Francisco</td>
</tr>
<tr>
<td>SVOC</td>
<td>semivolatile organic compound</td>
</tr>
<tr>
<td>SWDR</td>
<td>Storm Water Data Report</td>
</tr>
<tr>
<td>SWMP</td>
<td>Storm Water Management Program</td>
</tr>
<tr>
<td>SWPPP</td>
<td>Storm Water Pollution Prevention Plan</td>
</tr>
<tr>
<td>SWRCB</td>
<td>State Water Resources Control Board</td>
</tr>
<tr>
<td>TAC</td>
<td>toxic air contaminant</td>
</tr>
<tr>
<td>T-BACT</td>
<td>toxics best available control technology</td>
</tr>
<tr>
<td>TDM</td>
<td>Travel Demand Management</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>TI</td>
<td>Treasure Island</td>
</tr>
<tr>
<td>TICD</td>
<td>Treasure Island Community Development</td>
</tr>
<tr>
<td>TIDA</td>
<td>Treasure Island Development Authority</td>
</tr>
<tr>
<td>TMDL</td>
<td>Total Maximum Daily Load</td>
</tr>
<tr>
<td>TMP</td>
<td>Transportation Management Plan</td>
</tr>
<tr>
<td>TPH</td>
<td>total petroleum hydrocarbons</td>
</tr>
<tr>
<td>tpy</td>
<td>tons per year</td>
</tr>
<tr>
<td>TRPH</td>
<td>total recoverable petroleum hydrocarbons</td>
</tr>
<tr>
<td>TSCA</td>
<td>Toxic Substances Control Act</td>
</tr>
<tr>
<td>USACE</td>
<td>U.S. Army Corps of Engineers</td>
</tr>
<tr>
<td>USCG</td>
<td>United States Coast Guard</td>
</tr>
<tr>
<td>USDT</td>
<td>United States Department of Transportation</td>
</tr>
<tr>
<td>USEPA</td>
<td>U.S. Environmental Protection Agency</td>
</tr>
<tr>
<td>USFWS</td>
<td>U.S. Fish and Wildlife Service</td>
</tr>
<tr>
<td>USGS</td>
<td>U.S. Geological Survey</td>
</tr>
<tr>
<td>UST</td>
<td>Underground Storage Tank</td>
</tr>
<tr>
<td>VIA</td>
<td>Visual Impact Assessment</td>
</tr>
<tr>
<td>VMT</td>
<td>vehicle miles traveled</td>
</tr>
<tr>
<td>VOC</td>
<td>volatile organic compound</td>
</tr>
<tr>
<td>vph</td>
<td>vehicles per hour</td>
</tr>
<tr>
<td>vphpl</td>
<td>vehicles per hour per lane</td>
</tr>
<tr>
<td>VTS</td>
<td>Vessel Trafficking Service</td>
</tr>
<tr>
<td>YBI</td>
<td>Yerba Buena Island</td>
</tr>
<tr>
<td>YBITS</td>
<td>Yerba Buena Island Transition Structure</td>
</tr>
<tr>
<td>μg/kg</td>
<td>micrograms per kilogram</td>
</tr>
<tr>
<td>μg/L</td>
<td>micrograms per liter</td>
</tr>
</tbody>
</table>
This page intentionally left blank.
United States Department of the Interior
FISH AND WILDLIFE SERVICE
Sacramento Fish and Wildlife Office
2800 Cottage Way, Room W-2605
Sacramento, California 95825

July 21, 2011

Document Number: 110721040746

Angie Harbin-Ireland
AECOM
1422 Kettner Blvd., Suite 500
San Diego, CA 92101

Subject: Species List for Yerba Buena Island Ramps Project

Dear: Ms. Harbin-Ireland

We are sending this official species list in response to your July 21, 2011 request for information about endangered and threatened species. The list covers the California counties and/or U.S. Geological Survey 7½ minute quad or quads you requested.

Our database was developed primarily to assist Federal agencies that are consulting with us. Therefore, our lists include all of the sensitive species that have been found in a certain area and also ones that may be affected by projects in the area. For example, a fish may be on the list for a quad if it lives somewhere downstream from that quad. Birds are included even if they only migrate through an area. In other words, we include all of the species we want people to consider when they do something that affects the environment.

Please read Important Information About Your Species List (below). It explains how we made the list and describes your responsibilities under the Endangered Species Act.

Our database is constantly updated as species are proposed, listed and delisted. If you address proposed and candidate species in your planning, this should not be a problem. However, we recommend that you get an updated list every 90 days. That would be October 19, 2011.

Please contact us if your project may affect endangered or threatened species or if you have any questions about the attached list or your responsibilities under the Endangered Species Act. A list of Endangered Species Program contacts can be found at

Endangered Species Division

Quad Lists

Listed Species

Invertebrates

Branchinecta lynchi
 vernal pool fairy shrimp (T)

Euphydryas editha bayensis
 Critical habitat, bay checkerspot butterfly (X)

Haliotes cracherodii
 black abalone (E) (NMFS)

Haliotes sorenseni
 white abalone (E) (NMFS)

Icaricia icarioides missionensis
 mission blue butterfly (E)

Speyeria callippe callippe
 callippe silverspot butterfly (E)

Speyeria zerene myrtleae
 Myrtle’s silverspot butterfly (E)

Fish

Acipenser medirostris
 green sturgeon (T) (NMFS)

Eucyclogobius newberryi
 tidewater goby (E)

Hypomesus transpacificus
 Critical habitat, delta smelt (X)
 delta smelt (T)

Oncorhynchus kisutch
 coho salmon - central CA coast (E) (NMFS)
 Critical habitat, coho salmon - central CA coast (X) (NMFS)

Oncorhynchus mykiss
 Central California Coastal steelhead (T) (NMFS)
 Central Valley steelhead (T) (NMFS)
 Critical habitat, Central California coastal steelhead (X) (NMFS)
 Critical habitat, Central Valley steelhead (X) (NMFS)

Oncorhynchus tshawytscha
 Central Valley spring-run chinook salmon (T) (NMFS)

The California brown pelican has been delisted since this list was generated.
Critical habitat, winter-run chinook salmon (X) (NMFS)
winter-run chinook salmon, Sacramento River (E) (NMFS)

Amphibians

Ambystoma californiense
California tiger salamander, central population (T)

Rana draytonii
California red-legged frog (T)
Critical habitat, California red-legged frog (X)

Reptiles

Caretta caretta
loggerhead turtle (T) (NMFS)

Chelonia mydas (incl. agassizi)
green turtle (T) (NMFS)

Dermochelys coriacea
leatherback turtle (E) (NMFS)

Lepidochelys olivacea
olive (=Pacific) ridley sea turtle (T) (NMFS)

Masticophis lateralis euryxanthus
Alameda whipsnake [=striped racer] (T)
Critical habitat, Alameda whipsnake (X)

Thamnophis sirtalis tetrateaenia
San Francisco garter snake (E)

Birds

Brachyramphus marmoratus
marbled murrelet (T)

Charadrius alexandrinus nivosus
western snowy plover (T)

Diomedea albatrus
short-tailed albatross (E)

Pelecanus occidentalis californicus
California brown pelican (E)

Rallus longirostris obsoletus
California clapper rail (E)

Sternula antillarum (=Sterna, =albifrons) browni
California least tern (E)

Mammals

Arctocephalus townsendi
Guadalupe fur seal (T) (NMFS)

Balaenoptera borealis
sei whale (E) (NMFS)

Balaenoptera musculus
blue whale (E) (NMFS)

Balaenoptera physalus
finback (=fin) whale (E) (NMFS)

The California brown pelican has been delisted since this list was generated.
Enhydra lutris nereis
 southern sea otter (T)

Eubalaena (=Balaena) glacialis
 right whale (E) (NMFS)

Eumetopias jubatus
 Critical Habitat, Steller (=northern) sea-lion (X) (NMFS)
 Steller (=northern) sea-lion (T) (NMFS)

Physeter catodon (=macrocephalus)
 sperm whale (E) (NMFS)

Reithrodontomys raviventris
 salt marsh harvest mouse (E)

Plants

Arctostaphylos hookeri ssp. ravenii
 Presidio (=Raven’s) manzanita (E)

Arctostaphylos pallida
 pallid manzanita (=Alameda or Oakland Hills manzanita) (T)

Calochortus tiburonensis
 Tiburon mariposa lily (T)

Castilleja affinis ssp. neglecta
 Tiburon paintbrush (E)

Clarkia franciscana
 Presidio clarkia (E)

Hesperolinon congestum
 Marin dwarf-flax (=western flax) (T)

Holocarpha macradenia
 Critical habitat, Santa Cruz tarplant (X)
 Santa Cruz tarplant (T)

Lasthenia conjugens
 Contra Costa goldfields (E)

Lessingia germanorum
 San Francisco lessingia (E)

Streptanthus niger
 Tiburon jewelflower (E)

Suaeda californica
 California sea blite (E)

Proposed Species

Amphibians

Rana draytonii
 Critical habitat, California red-legged frog (PX)

Quads Containing Listed, Proposed or Candidate Species:

SAN LEANDRO (447B)
HUNTERS POINT (448A)
SAN FRANCISCO SOUTH (448B)
BRIONES VALLEY (465B)

The California brown pelican has been delisted since this list was generated.
County Lists
No county species lists requested.

Key:

(E) Endangered - Listed as being in danger of extinction.
(T) Threatened - Listed as likely to become endangered within the foreseeable future.
(P) Proposed - Officially proposed in the Federal Register for listing as endangered or threatened.
(NMFS) Species under the Jurisdiction of the National Oceanic & Atmospheric Administration Fisheries Service. Consult with them directly about these species.
(Critical Habitat - Area essential to the conservation of a species.
(PX) Proposed Critical Habitat - The species is already listed. Critical habitat is being proposed for it.
(C) Candidate - Candidate to become a proposed species.
(V) Vacated by a court order. Not currently in effect. Being reviewed by the Service.
(X) Critical Habitat designated for this species

Important Information About Your Species List

How We Make Species Lists
We store information about endangered and threatened species lists by U.S. Geological Survey 7½ minute quads. The United States is divided into these quads, which are about the size of San Francisco.

The animals on your species list are ones that occur within, or may be affected by projects within, the quads covered by the list.

- Fish and other aquatic species appear on your list if they are in the same watershed as your quad or if water use in your quad might affect them.
- Amphibians will be on the list for a quad or county if pesticides applied in that area may be carried to their habitat by air currents.
- Birds are shown regardless of whether they are resident or migratory. Relevant birds on the county list should be considered regardless of whether they appear on a quad list.

Plants
Any plants on your list are ones that have actually been observed in the area covered by the list. Plants may exist in an area without ever having been detected there. You can find out what's in the surrounding quads through the California Native Plant Society's online Inventory of Rare and Endangered Plants.

Surveying
Some of the species on your list may not be affected by your project. A trained biologist and/or botanist, familiar with the habitat requirements of the species on your list, should determine whether they or habitats suitable for them may be affected by your project. We recommend that your surveys include any proposed and candidate species on your list.

**The California brown pelican has been delisted since this list was generated.
See our Protocol and Recovery Permits pages.

For plant surveys, we recommend using the Guidelines for Conducting and Reporting Botanical Inventories. The results of your surveys should be published in any environmental documents prepared for your project.

Your Responsibilities Under the Endangered Species Act

All animals identified as listed above are fully protected under the Endangered Species Act of 1973, as amended. Section 9 of the Act and its implementing regulations prohibit the take of a federally listed wildlife species. Take is defined by the Act as "to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect" any such animal.

Take may include significant habitat modification or degradation where it actually kills or injures wildlife by significantly impairing essential behavioral patterns, including breeding, feeding, or shelter (50 CFR §17.3).

Take incidental to an otherwise lawful activity may be authorized by one of two procedures:

- If a Federal agency is involved with the permitting, funding, or carrying out of a project that may result in take, then that agency must engage in a formal consultation with the Service.

 During formal consultation, the Federal agency, the applicant and the Service work together to avoid or minimize the impact on listed species and their habitat. Such consultation would result in a biological opinion by the Service addressing the anticipated effect of the project on listed and proposed species. The opinion may authorize a limited level of incidental take.

- If no Federal agency is involved with the project, and federally listed species may be taken as part of the project, then you, the applicant, should apply for an incidental take permit. The Service may issue such a permit if you submit a satisfactory conservation plan for the species that would be affected by your project.

 Should your survey determine that federally listed or proposed species occur in the area and are likely to be affected by the project, we recommend that you work with this office and the California Department of Fish and Game to develop a plan that minimizes the project's direct and indirect impacts to listed species and compensates for project-related loss of habitat. You should include the plan in any environmental documents you file.

Critical Habitat

When a species is listed as endangered or threatened, areas of habitat considered essential to its conservation may be designated as critical habitat. These areas may require special management considerations or protection. They provide needed space for growth and normal behavior; food, water, air, light, other nutritional or physiological requirements; cover or shelter; and sites for breeding, reproduction, rearing of offspring, germination or seed dispersal.

Although critical habitat may be designated on private or State lands, activities on these lands are not restricted unless there is Federal involvement in the activities or direct harm to listed wildlife.

If any species has proposed or designated critical habitat within a quad, there will be a separate line for this on the species list. Boundary descriptions of the critical habitat may be found in the Federal Register. The information is also reprinted in the Code of Federal Regulations (50 CFR 17.95). See our Map Room page.

Candidate Species

We recommend that you address impacts to candidate species. We put plants and animals on our candidate list when we have enough scientific information to eventually propose them

The California brown pelican has been delisted since this list was generated.
for listing as threatened or endangered. By considering these species early in your planning process you may be able to avoid the problems that could develop if one of these candidates was listed before the end of your project.

Species of Concern
The Sacramento Fish & Wildlife Office no longer maintains a list of species of concern. However, various other agencies and organizations maintain lists of at-risk species. These lists provide essential information for land management planning and conservation efforts. More info

Wetlands
If your project will impact wetlands, riparian habitat, or other jurisdictional waters as defined by section 404 of the Clean Water Act and/or section 10 of the Rivers and Harbors Act, you will need to obtain a permit from the U.S. Army Corps of Engineers. Impacts to wetland habitats require site specific mitigation and monitoring. For questions regarding wetlands, please contact Mark Littlefield of this office at (916) 414-6520.

Updates
Our database is constantly updated as species are proposed, listed and delisted. If you address proposed and candidate species in your planning, this should not be a problem. However, we recommend that you get an updated list every 90 days. That would be October 19, 2011.

**The California brown pelican has been delisted since this list was generated.
APPENDIX G

FLOODPLAIN FORM
SUMMARY FLOODPLAIN ENCROACHMENT REPORT*

Dist. 4 Co. SF Rte. 80 P.M. 7.6-8.1

Project No.: A640K Bridge No.

Limits:

Floodplain Description: YBI was identified as Zone X, which is an area of minimal flood hazard, and outside the 500-year flood level. The project site is not located within a designated flood zone on the floodplain maps.

1. Is the proposed action a longitudinal encroachment of the base floodplain? No Yes

2. Are the risks associated with the implementation of the proposed action significant? No Yes

3. Will the proposed action support probable incompatible floodplain development? No Yes

4. Are there any significant impacts on natural and beneficial floodplain values? No Yes

5. Routine construction procedures are required to minimize impacts on the floodplain. Are there any special mitigation measures necessary to minimize impacts or restore and preserve natural and beneficial floodplain values? If yes, explain.

6. Does the proposed action constitute a significant floodplain encroachment as defined in 23 CFR, Section 650.105(q). No Yes

7. Are Location Hydraulic Studies that document the above answers on file? If not explain. No Yes

Floodplain encroachment is not anticipated. Therefore a Location Hydraulic Study is not required.

PREPARED BY:

[Signature] - Dist. Project Engineer [2-7-11]