November 7, 2005

Addendum No. 3

Dear Contractor:

This addendum is being issued to the contract for construction on State highway in SAN FRANCISCO COUNTY IN SAN FRANCISCO FROM 0.6 KM TO 1.3 KM EAST OF THE YERBA BUENA TUNNEL EAST PORTAL.

Submit bids for this work with the understanding and full consideration of this addendum. The revisions declared in this addendum are an essential part of the contract.

Bids for this work will be opened on February 1, 2006.

This addendum is being issued to revise the Project Plans, the Notice to Contractors and Special Provisions and provide a copy of the Information Handout.

Project Plan Sheets 1162, 1164, 1165 and 1166 are deleted.

In the NOTICE TO CONTRACTORS, the sixth paragraph is revised as follows:

"The following meetings are planned:

1. Technical outreach meeting will be held on August 16, 2005 at 8:30a.m. (Pacific Time) at the Waterfront Plaza Hotel, Jack London Square, 10 Washington Street, Oakland, California, USA.
2. Disadvantaged Business Enterprise (DBE), Small Business, and Disabled Veteran Business Enterprise (DVBE) outreach meeting will be held on August 31, 2005 at 8:30 a.m. (Pacific Time) at the Waterfront Plaza Hotel, Jack London Square, 10 Washington Street, Oakland, California, USA.
3. Technical outreach meeting will be held on September 23, 2005 at 8:30 a.m. (Pacific Time) at the Waterfront Plaza Hotel, Jack London Square, 10 Washington Street, Oakland, California, USA.
4. Technical outreach meeting will be held on November 30, 2005 at 8:30 a.m. (Pacific Time) at the Waterfront Plaza Hotel, Jack London Square, 10 Washington Street, Oakland, California, USA."

In the Special Provisions, Section 1, "SPECIFICATIONS AND PLANS," the "AMENDMENTS TO JULY 1999 STANDARD SPECIFICATIONS," is replaced as attached.
In the Special Provisions, Section 5-1.13, "PROJECT INFORMATION," subsection "DISTRICT MATERIALS INFORMATION," listing J is revised as follows:

"J. Plot Map titled, "Pier 7 – Area for Contractor’s Use" and Port of Oakland Pier 7 Utility Contacts"

In the Special Provisions, Section 5-1.13, "PROJECT INFORMATION," subsection "DISTRICT MATERIALS INFORMATION," listing P is added as follows:

"P. Quitclaim Easement Deed, between the Federal Highway Administration and the State of California Department of Transportation, dated February 11, 2002"

In the Special Provisions, Section 5-1.18, "AREAS FOR CONTRACTOR’S USE," is revised as attached.

In the Special Provisions, Section 5-1.25, "PAYMENTS," the fifth and sixth paragraphs are revised as follows:

"Materials furnished but not incorporated into the work in fenced areas with locked gates or in locked warehouses will be eligible for partial payment if the Contractor furnishes evidence satisfactory to the Engineer that its storage is subject to or under the control of the Department and that it has been designated or fabricated specifically for this project. Such materials are not required to be stored within the State of California.

The total amount paid for materials furnished but not incorporated in the work shall not exceed 40 percent of the total contract amount."

In the Special Provisions, Section 5-1.39, "INSURANCE," the second paragraph is revised as follows:

"The umbrella or excess liability coverage required in Section 7-12B (4)(b), "Liability Limits/Additional Insureds," Subsection (D) of the Standard Specifications is revised for this contract number 04-0120F4 to $50,000,000."

In the Special Provisions, Section 8-3.01, "WELDING," subsection "GENERAL," the second paragraph is replaced by the following paragraphs:

"The Engineer shall, at all times, have safe access to the work during its construction, and shall be furnished with every reasonable facility to photograph, video, or otherwise document that the materials and the workmanship are in accordance with the requirements of these special provisions and the plans.

Wherever reference is made to the following AWS welding codes in the Standard Specifications, on the plans, or in these special provisions, the year of adoption for these codes shall be as listed:

<table>
<thead>
<tr>
<th>AWS Code</th>
<th>Year of Adoption</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1.1</td>
<td>2002</td>
</tr>
<tr>
<td>D1.4</td>
<td>1998</td>
</tr>
<tr>
<td>D1.5 (metric only)</td>
<td>2002</td>
</tr>
<tr>
<td>D1.6</td>
<td>1999</td>
</tr>
</tbody>
</table>
In the Special Provisions, Section 8-3.01, "WELDING," subsection "GENERAL," the sixteenth paragraph is revised as follows:

"When joint details that are not prequalified to the details of Section 3 of AWS D1.1 or the details of Figure 2.4 or 2.5 of AWS D1.5 are proposed for use in the work, the joint details, their intended locations, and proposed welding parameters and essential variables shall be approved by the Engineer. The Engineer shall have 14 days to complete the review of the proposed joint detail locations. In the event the Engineer fails to complete the review within the time allowed, and if, in the opinion of the Engineer, completion of the work is delayed or interfered with by reason of the Engineer's delay in completing the review, the Contractor will be compensated for any resulting costs, and an extension of time will be granted, in the same manner as provided for in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. Upon approval of the joint detail locations, and qualification of the non-standard joint details, welders and welding operators using these details shall perform a qualification test plate using the Weld Procedure Specification (WPS) variables and the joint detail to be used in production. The test plate shall have the maximum thickness to be used in production and shall have a minimum length of 180 mm. The test plate shall be mechanically and radiographically tested. Mechanical and radiographic testing and acceptance criteria shall be as specified in the applicable AWS codes."

In the Special Provisions, Section 8-3.01, "WELDING," subsection "GENERAL," the last paragraph is revised as follows:

"In addition to the requirements of AWS D1.5 Sections 5.12 or 5.13, the following requirements shall be met when qualifying welding procedures:

- Unless considered prequalified, fillet welds, including reinforcing fillet welds, shall be qualified in each position. The fillet weld soundness test shall be conducted using the essential variables of the WPS as established by the Procedure Qualification Record (PQR).
- Tests to qualify a groove weld WPS shall use Figure 5.1.
- For qualification of joints that do not conform to Figures 2.4 and 2.5 of AWS D1.5, a minimum of two WPS qualification tests are required. The tests shall be conducted using both Figure 5.1 and Figure 5.3. The test conforming to Figure 5.1 shall be conducted in conformance with AWS D1.5, Section 5.12 or 5.13. The test conforming to Figure 5.3 shall be conducted using the welding electrical parameters that were established for the test conducted conforming to Figure 5.1. The ranges of welding electrical parameters established during the test conforming to Figure 5.1 in conformance with AWS D1.5, Section 5.12 or 5.13 shall be further restricted according to the limits in Table 5.3 during the welding of Figure 5.3.
- The travel speed, amperage and voltage values that are used for tests conducted per Section 5.12 or 5.13 shall be consistent for each pass in a weld joint. Multiple zones within a weld joint may be qualified with the approval of the Engineer. The travel speed, amperage, and voltage values shall in no case vary by more than plus or minus 10% for travel speed, plus or minus 10% for amperage, and plus or minus 7% for voltage as measured from a pre-determined target value or average within each weld pass or zone. The travel speed shall in no case increase or decrease by more than 15 percent when using Submerged Arc Welding.
- For WPS qualified per Section 5.13, the values to be used for calculating ranges for amperage, voltage, and travel speed are to be based on the average of all weld passes made in the test. Heat input shall be calculated using the average of amperage, voltage, and travel speed of all weld passes made in the test for WPS qualified per Section 5.12 or 5.13.
- 3 Macroetch tests are required for all WPS qualification tests. Acceptance is per Section 5.19.3.
- When a non-standard weld joint is to be made using a combination of WPSs, the Contractor has the option of (1) performing multiple tests conforming to Figure 5.3 or (2) running a single test conforming to Figure 5.3 while combining the WPSs to be used in production provided the essential variables, including weld bead placement, of each process are limited to those established in Table 5.3.
Prior to preparing mechanical test specimens, the PQR welds shall be inspected visually and by radiographic tests. Backing bar shall be 75 mm in width and remain in place during NDT testing. Results of the visual and radiographic tests are to comply with Section 6.26.2, excluding Section 6.26.2.2. Test plates that do not comply with both tests are not to be used.

In the Special Provisions, Section 8-3.01, "WELDING," subsection "WELDING QUALITY CONTROL," the fourteenth paragraph is revised as follows:

"Each WQCP shall include the following items, as determined by the Engineer. The WQCP shall be divided into the designated sections with each revision and addendum clearly annotated and numbered. Each welding and NDT firm shall have separate sections for each firm.

Organization
A. The name of the welding firm.
B. Name of QCM hired by Contractor, if applicable.
C. Name of Quality Control Inspection Firm hired by Contractor, if applicable.
D. Name of NDT Firm hired by Contractor, if applicable.
E. Organizational chart showing the QCM, all subcontractors performing welding, QC firms and personnel, and NDT firms and personnel.

Qualifications / Certifications
F. Copy of AISC Category III Certification, if applicable.
G. Name, qualifications, and copies of certifications for the following individuals:
 i. QCM, if applicable.
 ii. QC Inspectors
 iii. Assistant QC Inspectors
H. Copies of all certifications for welders for each welding process and position that will be used, and the joint detail. Certifications shall list the filler metals used, test position, base metal and thickness, tests performed, and the witnessing authority. The submitted documentation shall be approved by the Engineer prior to any project welding being performed by a welder or welding operator.
I. A master list of qualified welders that will document the welders and welding operators name, ID, the qualified welding process, welding position, and the date for each individual qualification and person qualified.
J. The written description of the contractor's process for maintaining and providing the Engineer a current master list of qualified welders and welding operators that documents the names of each welder with the process, position, and date qualified as described in item "I" above.

QC Procedures
K. The methods and frequencies for performing all required visual inspections and documentation by which continuous visual inspection will not lapse for a period exceeding 30 minutes.
L. A written description of the system and method of documentation the contractor will use for the identification and tracking of all welds, NDT, any required repairs, and re-inspection of non-conforming welds. The contractors system shall include provisions for permanently identifying each weld and the person who performed the weld, NDT, inspection, and repair.
M. Copies of the Quality Control forms to be used to include certificates of compliance, daily production logs, daily reports, and visual inspection report forms.
N. Documentation of the Filler metal, flux, Filler metal Flux combination and shielding gas certifications to be used in the work and documentation of manufacturer's recommended filler metal operating ranges.
O. Authorized copy or original codebook for each of all AWS welding codes and the FCP, which are applicable to the welding being performed.
P. Standard procedures for performing weld repairs that do not require prior Engineer approval.
Q. Standard procedures for straightening members distorted by welding that do not require prior Engineer approval.
R. The methods, procedures, and log to track rejected lengths of weld by welder, position, process, joint configuration, and piece number.

WPS and PQR
S. Pre-qualified Welding Procedure Specifications (WPS), if applicable.
T. Documentation, when applicable, of Procedure Qualification Record (PQR) tests within the allowable period of effectiveness.
U. Name of independent third party who performed or witnessed qualification tests, if applicable.
V. Non-prequalified Welding Procedure Specifications (WPSs) supported by PQR testing.
W. Documentation from the Engineer approving any deviation from non-standard joint details, code requirements or other contract documents.

NDT Other Than Visual Procedures
X. Written Practice of the NDT inspection personnel or firm.
Y. Name of certifying authority and outside Level III, if applicable.
Z. Names, qualifications, and documentation of certifications of NDT personnel to be used to include level of certifications and expiration date.
AA. List of NDT equipment, calibration procedures, frequencies and current qualification/calibration documentation of equipment to be used.
BB. Procedures, methods and frequencies for performing all required NDT as required by the specification to include minimum amounts required.
CC. Code of Safe Practices when Radiographic Testing (RT) is performed.
DD. A written description of the system for placing all identification and tracking information on each radiograph when Radiographic Testing (RT) is performed.
EE. Copies of NDT report forms to be used.

In the Special Provisions, Section 8-3.01, "WELDING," subsection "WELDING QUALITY CONTROL," the eighteenth and nineteenth paragraphs are revised as follows:

"The following items shall be included in a Welding Report that is to be submitted to the Engineer within 10 days following the performance of any welding:

A. Reports of all visual weld inspections and NDT.
B. Radiographs and radiographic reports, and other required NDT reports.
C. Documentation that the Contractor has evaluated all radiographs and other nondestructive tests and corrected all rejectable deficiencies, and all repaired welds have been reexamined by the required NDT and found acceptable.
D. Reports of each incident of heat straightening
E. Daily production log.
F. Summarized log listing the rejected lengths of weld by welder, position, process, joint configuration, and piece number.

Radiographic envelopes shall have clearly written on the outside of the envelope the following information: name of the QCM, name of the nondestructive testing firm, name of the radiographer, date, contract number, complete part description, and all included weld numbers, report numbers, and station markers or views, as detailed in the WQCP. In addition, all innerleaves shall have clearly written on them the part description and all included weld numbers, as detailed in the WQCP."
In the Special Provisions, Section 8-3.01, "WELDING," subsection "WELDING QUALITY CONTROL," the twenty-third paragraph is replaced by the following paragraphs:

"In addition to the provisions in AWS D1.5, Section 3.7.4 and Section 12.17, third-time repairs of welds or base metal, regardless of NDT method, and all repairs of cracks require prior approval of the Engineer. The Engineer shall be notified immediately in writing when welding problems, deficiencies, base metal repairs, or any other type of repairs not submitted in the WQCP are discovered and also of the proposed repair procedures to correct them. For requests to perform repairs, the Contractor shall include an engineering evaluation of the proposed repair. The engineering evaluation, at a minimum, shall include what is causing the defects, why the repairs will not degrade the material properties, and what steps are being taken to prevent similar defects from happening again in the future. The Contractor shall allow the Engineer 5 days to review these procedures. No remedial work shall begin until the repair procedures are approved in writing by the Engineer. In the event the Engineer fails to complete the review within the time allowed, and if, in the opinion of the Engineer, completion of the work is delayed or interfered with by reason of the Engineer's delay in completing the review, the Contractor will be compensated for any resulting loss, and an extension of time will be granted, in the same manner as provided for in Section 8-1.09, "Right of Way Delays," of the Standard Specifications.

For material less than or equal to 16 mm thick, the Contractor shall not heat straighten members more than 6 in 1000 without prior approval of the Engineer. For material more than 16 mm, the Contractor shall not heat straighten members more than 3 in 1000 without prior approval of the Engineer. The Engineer shall be notified immediately when weld distortion occurs that cannot be corrected using the standard procedures for heat straightening submitted in the WQCP. Requests to heat straighten shall be in writing and include 1) sketches of each distorted member showing the dimensions, length of weld, out of tolerance values, and locations where heat will be applied, 2) estimate of the number of applications of heat to bring the material back into conformance, and 3) explanation of how distortion control procedures will be modified and improved. The Contractor shall allow the Engineer 5 days to review these procedures. No remedial work shall begin until the repair procedures are approved in writing by the Engineer. In the event the Engineer fails to complete the review within the time allowed, and if, in the opinion of the Engineer, completion of the work is delayed or interfered with by reason of the Engineer's delay in completing the review, the Contractor will be compensated for any resulting loss, and an extension of time will be granted, in the same manner as provided for in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. Non-destructive testing (NDT) shall not be performed until after heat straightening has been completed."

In the Special Provisions, Section 10-1.20, "DOCUMENT MANAGEMENT SYSTEM," subsection, "DELIVERY AND SETUP," the second paragraph is revised as follows:

"Upon approval by the Engineer, the Contractor shall furnish, install, set up, and maintain the computer system ready-for-use, and provide network copier supplies as necessary during the course of the project at a location determined by the Engineer. The Document Management System technical support and repair shall be performed by a 3rd party vendor selected by the Contractor. The hardware and software shall be installed and ready for use within 30 days of approval of the contract. Software maintenance, including licensing and other fees shall be maintained for the duration of the project until 30 days after receiving of the final estimate by the Contractor. The Contractor shall instruct and assist the Engineer in the use of the hardware and software. Hardware repairs shall be made within 48 hours of notification by the Engineer, or replacement equipment shall be furnished and installed by the Contractor until repairs have been completed."
In the Special Provisions, Section 10-1.40, "EPOXY ASPHALT CONCRETE SURFACING," subsection, "SOLE SOURCE SUPPLIER," is revised as follows:

"SOLE SOURCE SUPPLIER

The components for epoxy asphalt binder and epoxy asphalt bond coat shall be obtained from the following manufacturer:

<table>
<thead>
<tr>
<th>VENDOR ADDRESS AND PHONE NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEMCO SYSTEMS, INC</td>
</tr>
<tr>
<td>2800 BAY ROAD</td>
</tr>
<tr>
<td>REDWOOD CITY, CA 94063</td>
</tr>
<tr>
<td>TEL: 650-261-3790</td>
</tr>
<tr>
<td>FAX: 650-261-3799</td>
</tr>
</tbody>
</table>

The price quoted by the manufacturer for epoxy asphalt binder and epoxy asphalt bond coat are as follows:

- Epoxy asphalt binder: $5.96 per kilogram
- Epoxy asphalt bond coat: $5.96 per kilogram

Epoxy asphalt binder and epoxy asphalt bond coat prices include delivery to the batch plant site. The above unit prices are based on a minimum combined quantity of binder and bond coat of 250,000 kilograms, delivered in bulk to any site within 64 kilometers of the San Francisco-Oakland Bay Bridge. Prices do not include sales tax. Payment terms are net 45 days after delivery of material.

Price and conditions quoted include all discounts and will be firm for all orders placed on or before December 31, 2006 provided delivery is accepted within 12 months after the order is placed. Total price will be increased by 5% for orders placed with ChemCo Systems, Inc. for each year thereafter, provided that delivery is accepted within 12 months after the order is placed.

The epoxy asphalt bond coat and epoxy asphalt binder prices quoted include all materials, technical advice, and inspections by a qualified representative of the manufacturer, both at the batch plant and during installation, along with a final inspection of the in-place epoxy asphalt concrete. The prices also include consultation on the quality control plan and manufacturer's certificates of compliance for both the epoxy asphalt binder and epoxy asphalt bond coat. The prices also include the rental of a meter/mix machine to process the epoxy asphalt binder at the batch plant the rental of a spray distributor machine to apply the bond coat, each for a period of 60 continuous days."

In the Special Provisions, Section 10-1.41, "TEMPORARY TOWERS," subsection, "GENERAL," is revised as follows:

"GENERAL

Attention is directed to the following sections of these special provisions regarding permit restrictions and regulations that may impact temporary tower design and construction:

1. Relations with U. S. Coast Guard
2. Relations with Regional Water Quality Control Board
3. Relations with United States Fish and Wildlife Service
4. Relations with California Department of Fish and Game
5. Relations with National Marine Fisheries Service
6. Maintaining Traffic
7. Relations with Bay Conservation Development Commission
8. Relations with Army Corps of Engineers
Temporary tower foundation information and piling design procedures (including example calculations) are included in the "Information Handout" available to the Contractor as provided for in "Project Information" of these special provisions and Section 2-1.03, "Examination of Plans, Specifications, Contract, and Site of Work," of the Standard Specifications.

Attention is directed to "Marine Pile Driving Energy Attenuator," of these special provisions.

In the Special Provisions, Section 10-1.41, "TEMPORARY TOWERS," subsection, "TEMPORARY TOWER FOUNDATIONS," is revised as follows:

"The types of foundations used for the temporary towers will vary along the length of the bridge. Spread footings, footing tie-downs, driven piling and cast-in-drilled-hole (CIDH) piling may be used, depending on the surficial materials and the depth to bedrock. The recommendations presented in the Information Handout for the allowable bearing pressures, tie-down bond strength, CIDH bearing capacity and driven piling capacity shall be adopted in the design of these types of foundations. Blasting, including the use of explosives for excavation of foundations, will not be permitted."

In the Special Provisions, Section 10-1.41, "TEMPORARY TOWERS," subsection, "DRIVEN PILING," the third paragraph is revised as follows:

"Driven piling shall be of such length as required to develop the minimum bearing value, as defined in the Information Handout and to obtain the design penetration as shown on the approved working drawings. Attention is directed to the use of Pile Dynamic Monitoring of piles which are designed to be tipped into rock to obtain end bearing capacity."

In the Special Provisions, Section 10-1.41, "TEMPORARY TOWERS," subsection, "DRIVEN PILING," under "Bearing Criteria," the first paragraph is revised as follows:

"The first and second paragraphs in Section 49-1.08 "Bearing Value and Penetration," of the Standard Specifications shall not apply. Pile tip elevation and bearing capacity shall be determined as shown in the Information Handout using capacity curves where appropriate. Where the locations of the temporary towers are outside the limits shown in the Information Handout, the Contractor shall determine the bearing capacity of the piles at that location, using the same method specified in the Information Handout and this capacity shall be submitted to the Engineer for approval."

In the Special Provisions, Section 10-1.41, "TEMPORARY TOWERS," subsection, "TEMPORARY TOWER DESIGN," the first through the fourteenth paragraphs are replaced by the following paragraphs:

"Temporary towers shall consist of ductile steel braced frames with welded or bolted connections used for field erection splices. Welded connections performed in the field or in the Contractor’s fabrication facilities shall be designed in accordance with AISC or API RP2A for hot rolled sections and steel tubular sections, respectively. The Contractor shall provide 2 copies of the stated codes to the Engineer. Timber walkways and decks will be permitted. Cable bracing and tie-rod bracing will not be permitted. Timber connections shall be designed in conformance with the procedures, stresses and loads permitted in the Falsework Manual as published by the California Department of Transportation, Division of Structures, Division of Structure Construction.

The construction equipment loads shall be the actual weight of the construction equipment, material and personnel, but in no case shall be less than 960 N/m2 of deck surface area and 1100 N/m along the deck edges.
The design of temporary towers shall conform to both the design service load and ultimate limit state criteria set in these special provisions. The service load criteria will be met by the load combinations stated in "Design Load Combinations for Load Factor Design" and the ultimate limit state criteria will be met by the pushover analyses in "Seismic Design Loads".

The following codes shall be used to detail and to establish temporary tower capacities:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Design Code or Reference</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural Steel – All Members and Connections except Tubular Members**</td>
<td>AISC-LRFD*</td>
<td>1999</td>
</tr>
<tr>
<td>Structural Steel – Tubular Members and Connections**</td>
<td>API RP2A-LRFD</td>
<td>July 1993</td>
</tr>
<tr>
<td>Concrete</td>
<td>AASHTO-LRFD</td>
<td>2nd Edition</td>
</tr>
<tr>
<td>Falsework</td>
<td>State of California Dept. of Transportation – Falsework Manual</td>
<td>Revision 32, November 2001</td>
</tr>
</tbody>
</table>

** All connections shall be designed to be stronger than the connected members. For connections between rolled sections and tubular members the most stringent code of AISC-LRFD and API RP2A-LRFD shall govern.

A single code, specification or recommended practice shall be applied consistently for a specific structure type or load.

Design of temporary towers shall account for any change in the loads imposed on the tower by the bridge superstructure due to the construction sequence of the bridge.

Temporary towers shall be designed to adequately support the superstructure of the bridge without exceeding a demand-to-capacity ratio in the box girder of 1.0 for all design load combinations.

The temporary tower design calculations shall demonstrate that the total design settlement of temporary towers does not exceed 25 mm at the mudline for the governing design load combination.

The twentieth paragraph of Section 51-1.06A "Falsework Design and Drawings," of the Standard Specifications shall not apply.

The design of temporary towers shall be based on assumed loads that are equal to or greater than those described in this section.

The Contractor shall be responsible for the proper evaluation of the falsework materials and design of the falsework to safely carry the actual loads imposed.

The fifth and sixth paragraphs of Section 51-1.06A(1), "Design Loads," of the Standard Specifications shall not apply.

"Vertical Loads"

Temporary towers and their foundations shall be designed to carry the anticipated total effective tower load. The total effective tower load shall be determined including, at a minimum, the effects of the following:

A. Tower and foundation, including fenders;
B. Load from supported bridge; and
C. Contractor’s equipment and live load.

The vertical loads from the supported bridge shall be calculated by the Contractor for the selected construction method. Vertical loads shown on the plans are for information only.
Seismic Design Loads

Temporary towers shall be designed to be ductile and to resist horizontal seismic loads as defined below in combination with the appropriate vertical loads covering controlling construction stages. The seismic analyses shall consider the interactions of the temporary towers with the bridge superstructure at all appropriate stages. Seismic design loads need not be considered during lifting operations.

The temporary towers shall remain serviceable and capable of carrying the design loads.

Analysis and design calculations shall correctly incorporate all contributing mass, stiffness, loading and energy dissipation characteristics of the temporary towers including geotechnical and structural components and hydrodynamic added mass. P-delta effects shall be considered in the analyses. Assumed scour depth shall be 0.5 m plus one pile diameter.

Modal spectral analysis with sufficient number of modes to capture at least 90% of the mass of the structure shall be used to establish the peak seismic displacements. To establish the ultimate limit state, a longitudinal and transverse static push-over analyses shall be used to verify the stability of the temporary tower and its ductility. Tower vertical load carrying members and connections shall remain elastic. Structural steel of the bracing members may yield. Extreme fibers of the structural steel piles may yield to a maximum of 2% strain. The temporary tower displacement capacity shall exceed the demands corresponding to 1.50 times the peak seismic displacements. Pushover analyses of the temporary towers shall be carried out based upon displaced shapes defined, at a minimum, as the primary transverse and longitudinal mode shapes. The mode shapes shall be determined from modal analyses of the temporary towers and the supported bridge superstructure.

Seismic demands shall be determined for two independent horizontal loading conditions in perpendicular directions. The directions are defined to be in the longitudinal axis of the bridge and the transverse axis of the bridge. In order to account for directional uncertainty of earthquake motions, the demands resulting from analyses of the two perpendicular seismic loading directions shall be combined into two load cases as follows:

- EQ load case 1: 1.0 longitudinal and 0.3 transverse
- EQ load case 2: 0.3 longitudinal and 1.0 transverse

Acceleration levels applied to the temporary towers shall be generated using the Acceleration Response Spectrum shown on plan sheet "Construction Sequence 2." The response spectrum can be used for all locations along the length of the self-anchored suspension bridge as input motion. These lateral loadings supersede the 0.02 g lateral load requirement in the California Department of Transportation Falsework Manual.

These Seismic Design Loads are the minimum required during construction. The Contractor may elect to design and construct the temporary towers for a greater level of loading. No additional compensation will be allowed nor extension of time will be granted due to the Contractor’s use of loading that exceeds the required minimum.

Within 90 days of contract award, the Contractor shall hold a meeting between the Engineer, the Contractor and the Contractor's designer of the temporary towers. The Contractor shall present to the Engineer preliminary temporary tower design and details and methods of analyses he proposes to use.

Vessel Impact Design Loads

Temporary towers shall be designed for accidental vessel impact and coincident wind, and current loads calculated in accordance with API RP2A. Tide and current information are included in Section 3.4 of the Ship Collision Report contained in the Information Handout.

Temporary towers shall be designed to resist loads from impact of the Contractor’s equipment. At a minimum, temporary towers shall be designed to resist an accidental impact load of 7.6 MN from any direction caused by a barge, acting between elevation +7.6 m and –1.8 m NGVD.

The rake of the bow of a 76 m x 14 m hopper barge shall be used to determine whether the impact force will occur on the fenders or whether the vessel will impact the tower substructure or foundation. Temporary towers shall not be used for mooring the Contractor’s vessels, unless they are specifically designed for mooring loads, including the effects of the eccentric application of these loads.
In lieu of designing the temporary towers for a static accidental impact load of 7.6 MN, the Contractor may design and supply an impact energy absorption system in order to prevent damage to the temporary tower structures at no additional cost to the State. The minimum impact force associated with an empty hopper barge, having a displacement of 800 Tonnes, drifting into the temporary tower from any direction at a design current of 2.0 knots (1.029m/sec), shall be used for design. The barge mass as well as the hydrodynamic added mass shall be considered acting between elevation +7.6 m and –1.8 m NGVD. The rake of the bow of a 76 m x 14 m hopper barge shall be used to determine whether the impact force will occur on the fenders or whether the vessel will impact the tower substructure or foundation.

Wind Loads

Temporary towers shall be designed to resist horizontal wind loads as determined from the wind criteria set forth in Section 10-1.59, "Steel Structures," subsection "ASSEMBLY," of these special provisions and the ANSI/ASCE 7-95 code.

The temporary towers shall have an Importance Factor of 1.15 per ANSI/ASCE 7-95, for wind load purposes only.

Design Load Combinations for Load Factor Design

Temporary towers shall be designed using the following load combinations:

- 1.4 DL
- 1.1 DL + 1.3 LL
- 1.0 DL + 1.0 LL + 0.5 Wind + 1.0 Current + 1.0 Vessel Impact
- 1.0 DL + 1.0 LL + 1.0 EQ
- 1.0 DL + 1.0 LL + 1.0 Wind + 1.3 (Wave & Current)

In the Special Provisions, Section 10-1.41, "TEMPORARY TOWERS," subsection "CONSTRUCTION," the seventh paragraph is revised as follows:

"Adequate means shall be employed to prevent unplanned lateral and longitudinal movement of the temporary tower during jacking. The temporary towers, jacks, and the superstructure shall be stable during all phases of the operation. The jacking system shall be designed such that pressure loss of any hydraulic system cannot cause movement after jacking operations. This may be accomplished by means of a mechanical lock off of the jacks, replacement of the jacks by supports that can be cast in, or alternative methods. The Contractor's jacking methods shall include provisions for blocking up the superstructure from the temporary towers such that the gap between the temporary tower and the superstructure during all phases of the jacking operation does not exceed 25 mm."

In the Special Provisions, Section 10-1.41, "TEMPORARY TOWERS," subsection "MEASUREMENT AND PAYMENT," the first paragraph is revised as follows:

"The contract lump sum price paid for furnish and remove temporary towers, shall include full compensation for furnishing all labor, materials, tools, equipment and incidentals, and for doing all the work involved in furnishing and removing temporary towers, including designing, constructing and maintaining temporary towers, furnishing and installing temporary tower foundations, temporary tower foundation installation submittals, monitoring and redriving piles, necessary grade adjustment and displacement monitoring, as shown on the plans, and all work involved with slope restoration, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. Section 49-6, "Measurement and Payment," of the Standard Specifications shall not apply."
In the Special Provisions, Section 10-1.41, "TEMPORARY TOWERS," subsection, "MARINE PILE DRIVING ENERGY ATTENUATOR," is added as follows:

"MARINE PILE DRIVING ENERGY ATTENUATOR

This work shall consist of designing, furnishing, installing, operating, monitoring, maintaining, and removing an air bubble curtain system to attenuate underwater energy generated by driving piles that are 2.5 meters or greater in diameter for the temporary towers. For purposes of this specification, pile installation refers to all the activities involved with driving a single pile; pile driving refers to the time when the hammer is physically driving the pile.

Attention is directed to "Relations with United States Coast Guard," of these special provisions regarding navigation requirements.

Attention is directed to the following sections of these special provisions regarding permit restrictions and regulations that may impact attenuator system design, operation, and removal:

A. Relations with California Department of Fish and Game
B. Relations with Regional Water Quality Control Board
C. Relations with U.S. Army Corps of Engineers
D. Relations with Bay Conservation Development Commission
E. Relations with United States Coast Guard
F. Relations with United Fish and Wildlife Service
G. Relations with National Marine Fisheries Service
H. Maintaining Traffic

The approved attenuator system shall be operating prior to beginning pile driving at any given pile location. If the attenuator fails, as determined by the Engineer, pile driving shall immediately stop. Piling driving at any given location shall not resume until the attenuator system at that location is again operating in conformance with the requirements of this section, as determined by the Engineer.

Failure of the attenuator system shall include, but not be limited to, the following methods of failure as determined by the Engineer:

A. The pressure or flow rate in any meter falls below 90% of its determined operating value during the pile driving operation. Operating values based on calculated data will be determined during the performance test.
B. During inspection of the perforated pipe the Engineer determines that erosion of the holes or debris has clogged the holes that will degrade the performance of the system.

The Contractor shall make provisions for the Engineer to inspect the bubble curtain system for proper operation before each deployment and as necessary during deployment. Proper operation during deployment will be determined by observation of the digital meters (air flow) and analog gauges (pressure) in the monitoring station and by other methods developed by the Engineer.

The Contractor shall provide adequate means to prevent light from pile driving operations from shining directly into the water. At least 15 minutes prior to and during pile driving operations, the Contractor shall not shine light directly into the water in areas adjacent to piles being driven.

General

An air bubble curtain system is generally composed of an air compressor(s), supply lines to deliver the air, distribution manifolds or headers, perforated aeration pipes, and a frame. The frame facilitates transport and placement of the system, keeps the aeration pipes stable, and provides ballast to counteract the buoyancy of the aeration pipes in operation.
Air bubble curtain system shall conform to the following:

A. Air bubble system shall consist of multiple and concentric layers of perforated aeration pipes stacked vertically in accordance with the following:

<table>
<thead>
<tr>
<th>Water Depth (m)</th>
<th>No. of Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to less than 5</td>
<td>2</td>
</tr>
<tr>
<td>5 to less than 10</td>
<td>4</td>
</tr>
<tr>
<td>10 to less than 15</td>
<td>7</td>
</tr>
<tr>
<td>15 to less than 20</td>
<td>10</td>
</tr>
<tr>
<td>20 to less than 25</td>
<td>13</td>
</tr>
</tbody>
</table>

B. Pipes in any layer shall be arranged in a geometric pattern, which shall allow for the pile driving operation to be completely enclosed by bubbles for the full depth of the water column and for a radial dimension of no more than 0.5 meters as measured from the outside surface of the pile.

C. The lowest layer of perforated aeration pipes shall be designed to ensure contact with the mudline without sinking into the bay mud.

D. The system shall provide a bubble flux of 2.0 cubic meters per minute per linear meter of pipe in each layer. Air holes shall be 1.6 mm in diameter and shall be spaced approximately 20 mm apart. Air holes shall be placed in four adjacent rows along the pipe to provide uniform bubble flux.

E. Meters shall be provided in accordance with the following:

1. Pressure meters shall be installed at all inlets to aeration pipelines (manifolds) and at points of lowest pressure in each branch of the aeration pipeline pipelines (manifolds).
2. The Flow meters shall be installed in the main line at each compressor and at each branch of the aeration pipelines (manifold). In applications where the feedline from the compressor is continuous from the compressor to the aeration pipe inlet, the flow meter at the compressor can be eliminated.
3. Flow meters shall be installed according to the manufacturer’s recommendation based on either laminar flow or non-laminar flow, which ever applies.

Gauges shall be installed above the water line and shall be easily accessible to the Engineer. The Contractor shall keep a continuous electronic log of all meters and gauges when the system is operating. Readings shall be logged every 1 minute and at other times, as determined by the Engineer, when variation in the readings exceed 10%. The Contractor shall maintain a graphical plot showing the variation of the meter readings with time.

Air pressure and air flow meters and gauges shall be calibrated by a private laboratory approved by the Engineer prior to use in the attenuator system. Meters shall be accurate to within 2 percent.

The contractor shall conduct a performance test of the bubble curtain, prior to any pile driving operations, in order to confirm the calculated pressures and flow rates at each manifold ring.

The Contractor shall submit an inspection/performance report in conformance with "Working Drawings," of these special provisions within 72 hours following the performance test.

The Contractor shall monitor the condition of the attenuator system and prepare inspection reports daily during pile installation operations and no less than every other day during periods of no activity.

The Contractor's design, installation, maintenance, monitoring, operation and removal of the attenuator system shall take into account the site conditions and the requirements of pile installation. Factors to be taken into account include anchoring, moving, and dismantling the system; configuration of bay bottom; water velocity; water-surface conditions; air and water temperatures; and positioning of pile and pile-driving equipment relative to the bubble curtain system.
Water velocity at the site is expected to vary from zero to 3 knots and vary in direction due to changes in tidal flow. The design of the system shall ensure that the system extends from bay bottom to the water surface during maximum water-current conditions and accommodates tidal changes.

The pile-driving barge shall be isolated from the noise-producing operations. This isolation shall be such that noise from the pile driving operation is not transmitted through the barge to the water column. The barge deploying or containing the pile-driving equipment is not required to be contained within the system.

The Contractor shall completely remove the attenuator system at the completion of the project and the system will remain the property of the Contractor.

Working Drawings

The Contractor shall submit working drawings with supplement for the attenuator system to the Engineer for approval in conformance with the provisions in "Working Drawings," of these special provisions, except as otherwise noted.

Working drawings with supplement shall be signed by a Mechanical Engineer who is registered in the State of California. Working drawings shall include the following:

A. Complete details of the system including mechanical and structural details.
B. Details of anchorage components, air compressors, supply lines, distribution manifolds, aeration pipes and frame.
C. Details of proposed means of isolating noise-producing systems on the pile-driving barge.
D. Details of meters, gauges, and recording devices.
E. Description of measures taken to avoid shining light into the water during pile driving operations.
F. Details of the manufacturer's recommendations for installation of the flow meters in conditions of laminar flow and non-laminar flow.

The supplement to the working drawing shall include the following:

A. Independently checked design calculations.
B. Materials list including the name of the manufacturer and the source, model number, description, and standard of manufacture.
C. Manufacturer's descriptive data and catalog cuts for all products proposed for the system including air compressors.
D. Calculations showing pressure loss in the piping system and estimated flows from the most removed orifice of the aeration piping.

Within 40 days after the approval of the contract, the Contractor shall submit working drawings, with supplements, to the Engineer. The Contractor shall allow the Engineer 20 days to review the working drawings. If revisions are required, as determined by the Engineer, the Contractor shall revise and resubmit the working drawings within 15 days of receipt of the Engineer's comments. The Contractor shall allow the Engineer 10 days to review the revised working drawings.

The Contractor shall submit inspection reports in conformance with "Working Drawings," of these special provisions within 48 hours following inspection.

Full compensation for furnishing all labor, materials, tools, equipment, and incidentals and for doing all the work involved in furnishing marine pile driving energy attenuators, complete in place, including designing, installing, inspecting, operating, maintaining, monitoring, recording, and removing the attenuator system, as specified in these special provisions, and as directed by the Engineer shall be considered as included in the contract lump sum price paid for temporary towers and no additional compensation will be allowed therefor.
Full compensation for isolation of pile-driving barge from pile installation noise shall be considered as included in the contract lump sum price paid for temporary towers and no additional compensation will be allowed therefor."

In the Special Provisions, Section 10-1.50, "SHEAR KEY (PIER E2)," the subsection, "SHEAR KEY STORAGE," is deleted.

In the Special Provisions, Section 10-1.59, "STEEL STRUCTURES," the second paragraph is revised as follows:

"Fabricators and suppliers shall be certified under the AISC Quality Certification Program, Category Cbr, Major Steel Bridges, with endorsement F, Fracture Critical members, except that certification will not be required for fabrication of the tower strut façade and tower skirt. Alternatively, ISO 9001:2000 certification standard may be substituted for the AISC Quality Certification Program."

In the Special Provisions, Section 10-1.59, "STEEL STRUCTURES," subsection, "GENERAL," the first and second paragraphs are replaced with the following paragraphs:

"Attention is directed to "Construction Surveying," of these special provisions. For purposes of the final survey of the structure, the following conditions shall apply:

A. The entire top surface of the completed orthotropic deck shall be constructed true to the required grade within a tolerance of one millimeter per meter of span length. Span lengths are defined as follows:

1. 180 meters between panel points 8 and 42
2. 385 meters between panel points 43 and 119
3. 45 meters between panel points 120 and 128

B. The deviation from the cross-slope measured between girder lines W2 and E2 shall not exceed 1:500."

In the Special Provisions, Section 10-1.59, "STEEL STRUCTURES," subsection, "WORKING DRAWINGS," in the sixth paragraph, Items B and D are replaced with the following:

"B. Details of fabrication jigs, aids, fixtures and measurement templates (orthotropic box girder only);
D. Details of temporary lugs, bracing or brackets and methods of handling large elements;"

In the Special Provisions, Section 10-1.59, "STEEL STRUCTURES," subsection, "TEMPLATE," the following paragraph is added after the second paragraph:

"At the option of the Contractor, working drawings for the tower may be submitted prior to receiving the state-furnished working drawings for the as-fabricated tower footing and steel template."
In the Special Provisions, Section 10-1.59, "STEEL STRUCTURES," subsection, "SEA TRANSPORTATION," is revised as follows:

"SEA TRANSPORTATION"

Steel segments for the tower, box girder, crossbeams and bikepath shall be adequately supported, fastened and braced during transportation to prevent damage and fatigue.

At least sixty days prior to loading the segments for shipment, the Contractor shall submit to the Engineer a transportation plan for the steel segments. The transportation plan shall include details of the support and tie down system, analysis and design calculations for the segments, the interaction between the vessel and the segments and the assumed sea conditions used to develop the transportation plan. At a minimum, sea conditions shall include wave height, speed, frequency and direction, wind speed and direction and the route to be taken by the transport vessel. In addition, the transportation plan submittal shall include a letter of certification signed by the fabricator of the steel segments certifying that he has reviewed and concurs with the transportation plan. The calculations shall show that the segment stresses are within the allowable stresses during construction as specified in Section 2.8 of the San Francisco-Oakland Bay Bridge Design Criteria, available in "Project Information" of these special provisions, and the fatigue stress levels are within the constant-amplitude fatigue threshold per AASHTO Bridge Design Code. The transportation plan shall be signed by a licensed Naval Architect or a certified Naval Architect with a graduate degree in Naval Architecture and minimum 5 years of qualifying professional experience practicing Naval Architecture.

Upon arrival at the project site, the Contractor shall submit to the Engineer a daily log of actual sea conditions corresponding to those used in developing the transportation plan for the route taken by the transport ship as published by the National Oceanic and Atmospheric Administration. In addition, the submittal shall include the route taken by the transport ship and shall also state whether or not the actual sea conditions exceeded the assumed sea conditions used in the transportation plan.

After arrival at the project site, the Contractor's welding Quality Control Manager (QCM) shall perform a visual inspection of the steel segments for loose bolts, cracks or other damage. The QCM shall provide a verbal inspection report to the Engineer after completing inspection of each segment and shall submit a written inspection report prior to erection of the steel segments or within 14 days of the inspection, whichever comes first.

Prior to erection, the Engineer will perform a visual inspection of the steel segments. The Contractor shall notify the Engineer at least 5 days before the segments are ready for inspection. The Contractor's inspection of each segment shall be complete prior to the Engineer's inspection. The Contractor shall provide all necessary and safe access for the Engineer's inspection including removal of bracing and fastening members. The Engineer will perform a visual inspection of the steel segments for loose bolts, cracks or other damage. If damage is discovered, the Engineer will have the discretion to perform further investigation of the damage, including the use of magnetic particle (MT) or liquid penetrant (PT) testing. The Contractor shall allow 3 days for the Engineer's inspection for each shipment of steel segments.

Damaged segments will be rejected and the Contractor shall submit to the Engineer a repair plan. The repair plan shall include the cause of the damage, a log identifying each instance of damage, including each individual crack by marking and location, an analysis of the extent of the damage and the proposed method for repair, including the location and support conditions of the segment during repair, the method of inspection for the repair, the resulting stresses on the area subject to repair, and the schedule for repair. If the repairs are to be carried out after the damaged segments have been placed on temporary supports, the repairs shall be complete and approved before any subsequent bolting, welding, or assembly of the segment occurs except any temporary bolting or connection as is necessary to secure the segment on the temporary supports. The Contractor shall obtain the Engineer’s approval prior to placing a damaged segment on temporary supports. The Contractor shall allow 14 days for the Engineer’s review and approval of the repair plan. The Contractor shall also submit a mitigation plan to the Engineer for approval. The mitigation
plan shall include measures to be taken by the Contractor to prevent damage from occurring in the remaining segments. The Contractor shall allow 21 days for the Engineer’s review and approval of the mitigation plan.

Should actual sea conditions be more severe than those used in the transportation plan analysis, the steel segments will be rejected unless the Contractor can demonstrate through submittal of a revised transportation plan that stresses are within the allowable stresses during construction as specified in Section 2.8 of the San Francisco-Oakland Bay Bridge Design Criteria and the fatigue stress levels are within the constant-amplitude fatigue threshold per AASHTO Bridge Design Code. The Contractor shall allow 30 days for the Engineer’s review and approval of the revised transportation plan. Should the Engineer approve the Contractor’s revised transportation plan, the Engineer will perform a visual inspection of the steel segments as stated above.

The Engineer's approval of the transportation plan, mitigation plan, or revised transportation plan, in no way relieves the Contractor of his responsibility to transport the steel segments without damage and without exceeding the fatigue stress levels as specified herein.

Full compensation for transportation of the steel segments without damage, including the transportation plan and any revisions required thereto, repair plans, repair of rejected segments, mitigation plans and providing access for the Engineer's inspection shall be considered as included in the contract prices paid for the items of work involved and no additional compensation will be allowed therefor.

In the Special Provisions, Section 10-1.59, "STEEL STRUCTURES," subsection, "ERECTION PLAN," the last paragraph is revised as follows:

"After erection, all temporary attachments shall be removed from the tower and orthotropic box girder. Removal of welds shall not damage the permanent steel structure materials. All remaining welds shall be ground flush and damaged areas shall be repaired in accordance with the requirements of ANSI/AASHTO/AWS D1.5. Areas of damaged paint shall be cleaned and painted as specified in "Clean and Paint Structural Steel," of these special provisions."

In the Special Provisions, Section 10-1.59, "STEEL STRUCTURES," subsection, "MATERIALS," the first paragraph is revised as follows:

"Structural steel shall conform to ASTM Designation: A709M with Supplementary Requirement S84 "Fracture-Critical, F, Material; Toughness Testing and Marking" for members shown on the plans as SPCMs, as well as box girder and crossbeam shell plating, as modified below. Supplementary Requirement S83 "Non-Fracture-Critical, T, Material; Toughness Test and Marking" shall be specified for other members, as modified below. Charpy V-notch (CVN) impact values for steel procurement shall be reported on the mill test report and shall conform to ASTM Designation: A 709M for Zone 2 except as stated in this section "Materials." The Carbon Equivalent (CE) shall not exceed 0.52% where CE = C + (Mn + Si)/6 + (Cr + Mo + V)/5 + (Ni + Cu)/15 for Grade 345 unless otherwise noted."

In the Special Provisions, Section 10-1.59, "STEEL STRUCTURES," subsection, "MATERIALS," in the eighth paragraph, Item B is revised as follows:

"B. The sulfur content shall not exceed 0.01% by weight. The Carbon Equivalent (CE) shall not exceed 0.52%, where CE = C + (Mn+Si)/6 + (Cr + Mo + V)/5 + (Ni + Cu)/15."
In the Special Provisions, Section 10-1.59, "STEEL STRUCTURES," subsection "FABRICATION," subsection, "Dimensional Verification," is added after subsection "Quality of Workmanship," as follows:

"Dimensional Verification

For the fabrication of the tower, cross beams, and box girders the Contractor shall submit to the Engineer for approval in accordance with the requirements in "Working Drawings" of these special provisions, written, detailed dimensional verification procedures. The procedures shall include the methodology, type of three-dimensional surveying equipment, computer post-processing methods, algorithms, derivation of coordinate standard deviations, schedule of surveys, and the ancillary documentation to support the findings of each survey. The procedures shall be capable of identifying, to a precision at the 95% level of confidence for each tolerance, coordinate differences between the survey results and approved working drawings."

In the Special Provisions, Section 10-1.59, "STEEL STRUCTURES," subsection, "FABRICATION," subsection "Fabrication/Erection Procedure and Mock-Ups," the first paragraph is revised as follows:

"The Contractor shall submit to the Engineer for approval in accordance with the requirements in "Working Drawings" of these special provisions, written, detailed procedures for the fabrication and erection of the complex assemblies listed below. Procedures shall include the assembly and welding sequence, and bolt tightening procedure and shall be of sufficient detail to demonstrate the proposed fabrication procedure. Fabrication procedures shall verify the inspectability of welds, include inspection holds points, and reference the dimensional verification procedures, specified elsewhere in these special provisions. Only one set of mockups will be required for multiple fabrication facilities using the same fabrication/erection procedures."

In the Special Provisions, Section 10-1.59, "STEEL STRUCTURES," subsection, "FABRICATION," subsection "Fabrication/Erection Procedure and Mock-Ups," the fourth paragraph is revised as follows:

"The Contractor shall prepare steel mock-ups, unless otherwise noted, of the following details to demonstrate the proposed fabrication procedure and verify the inspectability of each weld. The Contractor may propose alternative steel grade for preparation of the mock-ups, as approved by the Engineer.

A. Tower Saddle (steel mock-up not required)
B. Tower Diaphragm Type 3B
C. Tower lift erection splice – bolted or welded
D. Hinge K Assembly (steel mock-up not required)
E. Deck plate section – (For welding requirements of closed ribs to deck plate, see "Welding of Closed Ribs to Box Shell Plates" below.)
F. Tower section"

In the Special Provisions, Section 10-1.59, "STEEL STRUCTURES," subsection, "FABRICATION," subsection "Fabrication/Erection Procedure and Mock-Ups," in the seventh paragraph, Item A is revised as follows:

"A. For the rib to deck PJP connections, satisfactory mock-ups shall be defined as mock-ups that meet the UT verification of depth of penetration and the visual and macroetch criteria specified under "Welding of Closed Ribs to Box Shell Plates" below. No repairs of the rib to deck PJP connections will be allowed in the mock-up. Failure to achieve a satisfactory mock-up will require the Contractor to make any necessary adjustments to his fabrication procedures and then fabricate a new mock-up that will be subject to the same criteria."
In the Special Provisions, Section 10-1.59, "STEEL STRUCTURES," subsection, "FABRICATION," subsection, "Rib Plates," is revised as follows:

"Rib Plates

Cold-bent steel closed rib plates for the orthotropic deck shall conform to the following:

A. The axis of bending shall be parallel to the direction of plate rolling. The entire length of rib shall be formed simultaneously. Progressive forming methods such as roll forming will not be permitted.
B. The radius of bend of closed rib plates, measured to the concave face of the metal shall be as shown on the plans.
C. Before bending, the corners of the plate perpendicular to the axis of the bend shall be rounded to a radius of 2 mm.

The Contractor’s proposed method shall be capable of bending the plates without introducing cracks at the edges or along the bent section. The Contractor shall demonstrate to the Engineer that the proposed method results in satisfactory bends. The Engineer will determine if the proposed method is acceptable. Acceptance of the Contractor’s proposed bending method will be based on nondestructive tests on ten ribs and destructive tests on three of the ribs previously tested nondestructively. Ribs for the demonstration tests shall be formed in the longest length to be used in production. If ribs will be welded before bending in production, the demonstration test shall include the welds. The Contractor shall perform the following tests:

A. Visual examination of the bends using a 5x magnifying lens.
B. Magnetic Particle testing of all termination edges at rib ends and 15% of the bent parts of the ribs at locations selected by the Engineer. No cracks will be permitted.
C. Destructive testing of up to three ribs, with 5 samples per rib, at locations selected by the Engineer.

The Contractor shall bend and trim ribs and shell plating to ensure that the geometric tolerances shown on the plans are met."

In the Special Provisions, Section 10-1.59, "STEEL STRUCTURES," subsection, "ASSEMBLY," subsection, "Tower," the last paragraph is revised as follows:

"Shear stresses shall not be induced in the tower struts at any time during the tower erection. At the option of the Contractor, cross bracing and shear links may be used to obtain the required tolerances between shafts provided the axial loads in the cross bracing or shear links, after complete erection of tower, do not exceed 1 MN per member and the locked-in stresses along the entire length of each shaft does not exceed 5% of yield stress. The Contractor shall estimate the force and stresses in these members, including the locked-in stresses in each shaft after complete erection of tower, based on the approved erection plan and submit the calculations to the Engineer for review and approval. Bolt holes for the shear link connection plates may be field drilled subject to review and approval by the Engineer. If the Contractor elects to field drill bolt holes for the shear link connection plates, trial assembly of tower struts will not be required. Pin holes for the cross bracing may be field bored or shop bored to match field measurements subject to review and approval by the Engineer. The layout of the bolt holes shall be submitted to the Engineer for approval."
In the Special Provisions, Section 10-1.59, "STEEL STRUCTURES," subsection, "ASSEMBLY," subsection, "Box Girder," the second and third paragraphs are replaced by the following paragraphs:

"Before shipping, segments and lifts shall be straight and square in accordance with the dimensions and tolerances shown on the plans and these special provisions, except as required by camber. Segments shall be measured in the shop for compliance with geometry requirements. As a minimum, the preassembly procedure shall consist of assembling three contiguous segments accurately adjusted for line and camber. Successive assemblies shall consist of at least one section of the previous assembly plus two or more sections added at the advancing end. This requirement shall also apply to segments shipped from the fabrication site to an assembly site where the segments will be joined into lifts. Proposed support condition details shall be submitted with the erection plan and supported by calculations showing the effect of the support conditions on dimensional tolerances and segment-to-segment fit-up tolerances. The supports shall follow the camber profile.

For the splices at the East Anchorage crossbeam, the Contractor shall field drill the bolt holes in one or both sides of each splice during final erection to ensure fit up, to accommodate the 15 mm deflection due to the transverse jacking of the box girders. The Contractor may propose an alternative system to jack the girders. Additional holes in the box girder and crossbeam will be permitted provided the location, size and associated stresses are calculated by the Contractor and approved by the Engineer in accordance with the requirements under "Erection Plan," of these special provisions.

When no longer required by the Contractor, the transverse jacking system shall be removed. Temporary holes shall be repaired. Repairs shall develop the full strength of the member."

In the Special Provisions, Section 10-1.59, "STEEL STRUCTURES," subsection, "SHOP WELDING," subsection, "Design Details," Items D through F are revised as follows:

"D. Tightly adhering weld spatter shall be removed by power brush or grinding except that occasional individual particles of rounded tight weld spatter may remain.

E. Gouging for back gouging or for repair shall be done by an approved arc method and /or by grinding. Oxygen cutting will not be permitted for any form of gouging. Procedures to avoid retention of carbon deposits, slag or dross shall be used. Air-carbon-arc gouged surfaces shall be ground or filed to bright metal.

F. Repairs to SPCMs, including welds connecting SPCM's to other members, shall be as specified in AWS D1.5, "AASHTO/AWS Fracture Control Plan (FCP) for Nonredundant Member," Section 12.17, as modified herein."

In the Special Provisions, Section 10-1.59, "STEEL STRUCTURES," subsection, "SHOP WELDING," subsection, "Design Details," in Item G, line "a" of item 3 is revised as follows:

"a. The tolerance on the depth of the box girder and crossbeam shall be +8 mm / -5 mm."
In the Special Provisions, Section 10-1.59, "STEEL STRUCTURES," subsection, "INSPECTION AND TESTING," in the fifth paragraph, the tables for "3. TOWER" and "OTHER WELDS NOT SPECIFIED ABOVE" and the table "Notes" are revised as follows:

<table>
<thead>
<tr>
<th>3. TOWER</th>
<th>Weld Type</th>
<th>Extent & Type of Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin plate butt welds: Horizontal</td>
<td>X</td>
<td>100%</td>
</tr>
<tr>
<td>Skin plate butt welds: Vertical</td>
<td>X</td>
<td>25%</td>
</tr>
<tr>
<td>Longitudinal Stiffener butt welds</td>
<td>X</td>
<td>100%</td>
</tr>
<tr>
<td>Longitudinal stiffener to skin plate</td>
<td>X X X</td>
<td>100% 25% 25%</td>
</tr>
<tr>
<td>Diaphragm butt welds</td>
<td>X</td>
<td>100%</td>
</tr>
<tr>
<td>Diaphragm to Skin Plate</td>
<td>X X X</td>
<td>100% 25% 25%</td>
</tr>
<tr>
<td>Diaphragm to Longitudinal Stiffener (incl. Fit Lugs)</td>
<td>X X X</td>
<td>100% 25% 25%</td>
</tr>
<tr>
<td>Tower Strut Welds & Cross Bracing Welds</td>
<td>X X X</td>
<td>100% 100% 100%</td>
</tr>
<tr>
<td>Grillage welds</td>
<td>X X X</td>
<td>***** *** *** 25%</td>
</tr>
<tr>
<td>Tower Saddle welds</td>
<td>X X X</td>
<td>100% 100% 100%</td>
</tr>
<tr>
<td>Skin Plate to Tower Base Plate</td>
<td>X X</td>
<td>25% 50%</td>
</tr>
<tr>
<td>Bearing Stiffener Welds at Tower Base Anchor Bolt Assemblies</td>
<td>X X X</td>
<td>25% 25%</td>
</tr>
<tr>
<td>Other Tower welds</td>
<td>X X X</td>
<td>25% 10% 10%</td>
</tr>
<tr>
<td>Tower Base Shear Plates to the Skin Plate</td>
<td>X X</td>
<td>**** **** **** ****</td>
</tr>
</tbody>
</table>
4. OTHER WELDS NOT SPECIFIED ABOVE

<table>
<thead>
<tr>
<th>Welds in SPCMs</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>15%*</th>
<th>100%</th>
<th>0%</th>
<th>0%</th>
<th>0%</th>
<th>* RT+UT for butt welds (% shown) & butt repairs (100%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other welds</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>25%</td>
<td>10%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ends of welds at locations of required grinding for full length of grinding plus 50mm each end</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>10%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Additional to NDT specified for weld</td>
</tr>
</tbody>
</table>

Notes:
1) Vertical butt joints marked ** in the table shall be tested as follows:
 (a) 1/6 of the web depth beginning at each end of weld, unless otherwise noted, shall be tested 100%
 (b) 25% of the remainder shall be tested.

Welds marked *** in the table shall be tested as follows:
 (a) 1/4 of the weld length beginning at each end of weld shall be tested 100%
 (b) 25% of the remainder shall be tested.

Welds marked **** in the table shall be tested as follows:
 (a) 1/4 of the weld length beginning at the top of the weld shall be tested 100%
 (b) 25% of the remainder shall be tested.

2) If unacceptable discontinuities are found in a joint with 100% NDT, the repairs shall be completed and then re-examined by the same NDT method along with an additional 50 mm at each end of the weld repair, for a minimum total additional length of 100 mm.

3) If unacceptable discontinuities are found in a joint with a specified percentage of testing of NDT less than 100%, including RT examination of butt weld repairs, the repairs shall be completed and then re-examined by the same NDT method along with an additional 50mm at each end of the weld repair, for a minimum total additional length of 100mm for the repair re-examination. Two additional previously untested segments, each at least 10% of the total weld length, on each side of the repair, for a total additional length of 20%, shall be tested with the same NDT method. If additional unacceptable discontinuities are found as a result of this testing, then 100% of the remaining untested portion of the weld shall be tested with the same NDT method. All weld repairs shall be tested with the same NDT method that located the original defect.

4) Where the specified percentage of testing is greater than 25%, the specified length of each weld shall be tested.
5) Where the specified percentage of testing is 25%, each weld that is 1.5 m long or more shall be examined over 25% of the weld length. Welds under the same table category in the same component that are less than 1.5 m long may be lot examined by testing one weld 100% for each lot of four welds.
6) Where the specified percentage of testing is 15%, each weld that is 2.5 m long or more shall be tested over 15% of the weld length. Welds under the same table category in the same component that are less than 2.5 m long may be lot examined by testing one weld 100% for each lot of seven welds.
7) Where the specified percentage of testing is 10%, each weld that is 4.0 m long or more shall be examined over 10% of the weld length. Welds under the same table category in the same component that are less than 4.0 m long may be lot examined by testing one weld 100% for each lot of ten welds.
8) For lot examination, if unacceptable discontinuities are found in the weld tested, the remainder of that weld shall be tested, and a second weld in the lot will be chosen by the Engineer and shall be tested. If unacceptable discontinuities are found in the second weld, the entire lot shall be tested.

9) No UT examination is required for PJP weld sizes up to 25 mm except for the closed rib PJP welds. For PJP weld sizes greater than 25 mm, UT examination shall confirm that the specified minimum weld size has been achieved. UT examination is not required provided all of the following conditions are met:

(a) Minimum weld size, excluding reinforcement, is increased by a minimum of 5 mm over that required by the contract plans;
(b) Specific inspection hold points are established after the root pass is completed and after the weld is completed, in which the QC inspector completes and documents 100% visual inspection and 100% magnetic particle testing. These hold points are in addition to the continuous QC inspections required elsewhere in these specifications.

10) Welds, and adjacent parent material within 10 mm of all accessible areas surrounding the weld, in grades with strength levels of 485 and above shall be tested 100% by MT in addition to other specified inspection. The timing of visual and any method of NDT for welds in these steels shall be in accordance with AWS D1.5, Section 12.16.4.

11) Welds made by either the electroslag or electrogas processes shall be examined 10% by radiographic and 100% by ultrasonic testing. Radiographic testing is not required for Tee and corner joints.

12) Scanning for ultrasonic examination of corner, tee and cruciform welds in thicknesses greater than 50 mm shall include base metal behind and adjacent to the welds. Lamellar tearing discontinuities that exceed 3 mm or that lie within 10 mm of the surface shall be repaired.

13) SPCMs shall include welds connecting SPCM's to other members.

In the Special Provisions, Section 10-1.59, "STEEL STRUCTURES," subsection, "FIELD WELDING," the fifth paragraph is revised as follows:

"The Contractor shall perform all trial welding and procedure development prior to production field welding of transverse welds of the orthotropic box girder. During production field welding of the transverse joint, the Contractor shall completely weld, inspect and perform the NDT required at the first joint and submit the results to the Engineer for approval prior to proceeding to the next joint. If the NDT rejection rate exceeds 30% of the weld length, the Contractor shall revise his procedure and submit a formal report to the Engineer stating the reason for the defects and a plan to prevent these defects from recurring and to reduce the rejection rate to less than 10 percent of the entire welded length in subsequent welds. The Contractor will then be allowed to proceed to completely weld, inspect and perform the NDT required at the second joint with the revised procedures. If the NDT testing indicates that defects are present in less than 10 percent of the entire transverse weld length, the Contractor will be allowed to weld multiple transverse joints simultaneously. If during the welding of the second transverse weld joint, there are defects found in 10 percent or more of the weld joint length the Contractor shall furnish a formal report stating the reason for the defects and a plan to prevent these defects from recurring.

If after completion of a weld joint with less than 10 percent defects, the Contractor chooses to change any essential variables in the welding process, and that process is approved by the Engineer, the Contractor may not weld multiple weld joints until one weld joint is successfully welded and NDT testing of the joint is performed that reveals defects in less than 10 percent of the length of the weld."
In the Special Provisions, Section 10-1.59, "STEEL STRUCTURES," subsection "MEASUREMENT AND PAYMENT," the third paragraph is revised as follows:

"The contract price paid per kilogram for furnish structural steel of the types listed in the Engineer’s Estimate shall include full compensation for furnishing all labor, materials, tools, equipment and incidentals, and for doing all the work involved in furnishing, fabricating and delivering structural steel to the job site, ready for erection, including furnishing all bolts, nuts and washers, stud connectors, welding materials, asbestos sheet packing, preformed fabric pads and elastomeric bearing pads, or other materials required for the erection and connection or splicing of the structural steel; galvanizing the structural steel when galvanizing is required by the specifications or plans; developing of UT procedures and acceptance criteria to examine PJP welds, and conforming to the qualification and testing requirements associated with member fabrication; as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer."

In the Special Provisions, Section 10-1.60, "CABLE SYSTEM," subsection, "MATERIALS AND FABRICATION," subsection "Cable Wire," the second and third paragraphs are deleted.

In the Special Provisions, Section 10-1.60, "CABLE SYSTEM," subsection, "MATERIALS AND FABRICATION," subsection, "Shop Prefabricated Parallel Wire Strand (PWS)," is revised as follows:

"Shop Prefabricated Parallel Wire Strand (PWS)

The shop fabrication of PWS shall account for the angle changes occurring at cable saddles and within the cable geometry as shown on the plans. Wire length within a strand shall be calculated according to the assigned radii. The top or side of a strand shall be marked for the purpose of orienting it in the field.

Parallel wire strands shall be shop fabricated by bundling cable wires in parallel and drawing through a former that shapes and compacts the cable wires into a hexagonal shape strand. Strands shall be made with continuous wires free of welds, couplers, or any other type of splice. The cable wires shall be arranged parallel with each other within the strand and the strand shall be free of intersections or wire crossings. The strand shall be free of loose wires, flaws, or other defects.

Each strand shall be banded with reinforced plastic tape at approximately 1.5-m intervals. Plastic bands shall be sufficient in strength and ductility to maintain the strand wires in a compact group during strand fabrication, reeling, storage, transportation, and erection. Strand clamps shall be used at appropriate locations where the strand must conform to saddle curvatures to firmly clamp the cable wires from moving longitudinally to each other. Plastic bands and strand clamps shall not prevent proper compaction of the cable.

One outside gauge wire at an apex of the hexagonal cross section of each strand shall be colored and precision-measured for its entire length. Based on the gauge wire, circumferential marks shall be placed on each strand at the theoretical centerline positions of tower saddles, deviation saddles, jacking saddle and splay saddles. The theoretical length is the total cable length calculated based on the dead load state of the bridge as established by the erection plan developed by the Contractor and approved by the Engineer. At the option of the Contractor, the length-measured gauge wire may be separate from the colored wire, provided it can be easily identified along the length of the strand.

Each end of the strand shall be socketed with zinc or zinc-copper alloy. The strand sockets shall conform to ASTM Designation: A148M Grade 620-415. Zinc for socketing the strands shall conform to ASTM Designation: B6, High Grade. At the point of socketing, strand wires shall be tightly clamped together. The actual end-to-end length of each socketed strand shall be socketed to an accuracy within plus or minus 1/15,000 of its theoretical length.
The Contractor shall submit the strand socket details and socketing procedure specification, which is proposed as the standard of his operation. The Contractor shall submit a socket strength test procedure to the Engineer for approval. The procedure shall consist of tensioning the assembly of strands, sockets, and strand anchor rods. The Contractor shall prepare five specimens in accordance with the stated procedure. The specimen shall then be strength tested as follows:

The load shall be increased at a slow rate as approved by the Engineer up to 50% of the breaking strength. The Contractor shall keep records of load and elongation for at least 15 load points, if not continuously. While the loading is stopped, measure the extent that the cones have pulled through the mouth of the socket (pull-out).

The load shall be continued to failure. The load deformation shall be recorded by recording the distance between the sockets with each load, until the strand reaches the ultimate strength.

The average pull-out at 50% of breaking strength shall not be greater than 8 mm with a maximum pull-out not greater than 12 mm.

The pull-out at failure shall not exceed 20 mm nor shall any wire fail or pull-out of the socket before the minimum specified capacity of the strand has been attained. Failure to meet these conditions may be cause for rejection of the socketing procedure, pending further evaluation of the cones.

The Contractor shall remove all the cones from the socket shells and cut them in any direction that the Engineer deems necessary to evaluate the voids in the cones or wire slippage.

Upon an evaluation of the cones, the Engineer may require an improved socketing procedure before production of the strands is allowed to proceed. Two additional specimens shall be manufactured to test the revised socketing procedure and both strands shall meet the stated requirements. Production strands shall not proceed without an approved socketing procedure.

The Contractor shall submit the revised socketing procedure to the Engineer in accordance with the requirements in "Working Drawings" of these special provisions.

The sockets shall be manufactured in accordance with the approved socketing procedure. The end sections of socketed strands shall be proof tested by loading to 900 MPa to ensure no socket slippage and no damage to strand zinc coating. Each proof test shall include the socket plus a minimum of 3 meters of the socketed strand. The Contractor shall demonstrate to the satisfaction of the Engineer that proof testing will not damage strand zinc coating. The Contractor may propose alternative socket proof testing procedures, as approved by the Engineer. The proposed alternative socket proof testing procedure shall be performed on the strand specimens prior to the strength testing required. If part A of the strength test demonstrates elongation of the strand with no sign of slippage, then the proposed alternative socket proof testing procedure may be used as the socket proof test for the strand socket.

Strands shall be wound on reels with a minimum diameter of 2.0 m. The strands shall be wound transversally in a manner that will permit unreeling continuously without damage to the strand. The reels shall be constructed to withstand shipping and strand reeling and unreeling, without damage to the strand."

In the Special Provisions, Section 10-1.60, "CABLE SYSTEM," subsection, "ERECTION," subsection, "PWS Cables," the first paragraph is revised as follows:

"To provide access to the cables during erection, the Contractor shall construct a footbridge system below the line of each cable before beginning cable erection. The footbridges shall be stiffened by a storm system and cross bridges between the footbridges shall be provided. The footbridge system and the storm system shall meet the requirements of ANSI/ASCE Standards 7-95 and 19-96. The Contractor may propose an alternative code for the structural design of the footbridge and storm system, subject to Cal-OSHA, AISC and other applicable minimum standards, as approved by the Engineer. The Contractor may propose alternative details for the storm system as part of the cable system working drawings. The Contractor shall submit to the Engineer, for review and approval, complete cable system construction engineering documents in conformance with "Working Drawings" of this section."
In the Special Provisions, Section 10-1.60, "CABLE SYSTEM," subsection, "ERECTION," subsection, "Wrapping Cable," the sixth paragraph is revised as follows:

"Wrapping wire splicing shall follow the wrapping wire manufacturer's specifications."

In the Special Provisions, Section 10-1.63, "TRAVELER SCAFFOLDS," subsection, "TRAVELER SCAFFOLD MECHANICAL," subsection, "Products," the table for item "R. Linear Actuators," is revised as follows:

<table>
<thead>
<tr>
<th>VENDOR ADDRESS AND PHONE NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMPLETON KENLY</td>
</tr>
<tr>
<td>SIMPLEX (A Division of Templeton Kenly)</td>
</tr>
<tr>
<td>2525 Gardner Road</td>
</tr>
<tr>
<td>Broadview, IL 60155</td>
</tr>
<tr>
<td>Phone: 800-275-5225</td>
</tr>
<tr>
<td>Fax: 708-865-0894</td>
</tr>
<tr>
<td>NOOK INDUSTRIES, INC.</td>
</tr>
<tr>
<td>4950 East 49th Street</td>
</tr>
<tr>
<td>Cleveland, Ohio 44125-1016</td>
</tr>
<tr>
<td>Phone: 216-271-7900</td>
</tr>
<tr>
<td>Fax: 216-271-7020</td>
</tr>
<tr>
<td>JOYCE-DAYTON CORP.</td>
</tr>
<tr>
<td>P.O. Box 1630</td>
</tr>
<tr>
<td>Dayton, Ohio 45401</td>
</tr>
<tr>
<td>Phone: 937-294-6261</td>
</tr>
<tr>
<td>Fax: 937-297-7173</td>
</tr>
</tbody>
</table>
In the Special Provisions, Section 10-1.63, "TRAVELER SCAFFOLDS," subsection, "TRAVELER SCAFFOLD MECHANICAL," subsection, "Products," the table for item "S. Actuator Drive Air Motors," is revised as follows:

<table>
<thead>
<tr>
<th>VENDOR ADDRESS AND PHONE NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>INGERSOLL-RAND</td>
</tr>
<tr>
<td>Ingersoll-Rand Productivity Solutions Group</td>
</tr>
<tr>
<td>510 Hester Drive</td>
</tr>
<tr>
<td>Whitehouse, TN 37188</td>
</tr>
<tr>
<td>Phone: 800-866-5457</td>
</tr>
<tr>
<td>Fax: 615-672-7678</td>
</tr>
<tr>
<td>COOPERTOOLS</td>
</tr>
<tr>
<td>6500 West Sam Houston Parkway North, Suite 200</td>
</tr>
<tr>
<td>Houston, TX 77041</td>
</tr>
<tr>
<td>Phone: 713-849-2364</td>
</tr>
<tr>
<td>Fax: 713-849-2647</td>
</tr>
<tr>
<td>PSI AUTOMATION</td>
</tr>
<tr>
<td>2113 Seabrook Circle</td>
</tr>
<tr>
<td>Seabrook, TX 77586</td>
</tr>
<tr>
<td>Phone: 800-392-3602</td>
</tr>
<tr>
<td>Fax: 281-280-8795</td>
</tr>
</tbody>
</table>

In the Special Provisions, Section 10-1.69, "CLEAN AND PAINT STRUCTURAL STEEL," subsection, "APPLICATION," the following paragraph is added after the first paragraph:

"Airless spray methods shall not be used except on the outside of the shell plate of the deck and outside flat surfaces of the tower."

To Proposal and Contract book holders:

Attached is a copy of the Information Handout containing a plot map titled, "Pier 7- Areas for Contractor's Use" and the Quitclaim Easement Deed document.

Inquiries or questions in regard to this addendum must be communicated as a bidder inquiry and must be made as noted in the NOTICE TO CONTRACTORS section of the Notice to Contractors and Special Provisions.

Indicate receipt of this addendum by filling in the number of this addendum in the space provided on the signature page of the proposal.

Submit bids in the Proposal and Contract book you now possess. Holders who have already mailed their book will be contacted to arrange for the return of their book.

Inform subcontractors and suppliers as necessary.
This office is sending this addendum by UPS overnight mail to Proposal and Contract book holders to ensure that each receives it. A copy of this addendum is available for the contractor's use on the Internet Site:

http://www.dot.ca.gov/hq/esc/oe/weekly_ads/addendum_page.html

If you are not a Proposal and Contract book holder, but request a book to bid on this project, you must comply with the requirements of this letter before submitting your bid.

Sincerely,

ORIGINAL SIGNED BY

REBECCA D. HARNAGEL, Chief
Office of Plans, Specifications & Estimates
Office Engineer

Attachments
AMENDMENTS TO JULY 1999 STANDARD SPECIFICATIONS

UPDATED OCTOBER 8, 2005

Amendments to the Standard Specifications set forth in these special provisions shall be considered as part of the Standard Specifications for the purposes set forth in Section 5-1.04, "Coordination and Interpretation of Plans, Standard Specifications and Special Provisions," of the Standard Specifications. Whenever either the term "Standard Specifications is amended" or the term "Standard Specifications are amended" is used in the special provisions, the text or table following the term shall be considered an amendment to the Standard Specifications. In case of conflict between such amendments and the Standard Specifications, the amendments shall take precedence over and be used in lieu of the conflicting portions.

SECTION 1: DEFINITIONS AND TERMS

Issue Date: January 31, 2005

Section 1-1.265, "Manual of Traffic Controls," of the Standard Specifications is amended to read:

1-1.265 MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES
• The Manual on Uniform Traffic Control Devices for Streets and Highways, 2003 Edition (MUTCD) is administered by the Federal Highway Administration.

Section 1, "Definitions and Terms," of the Standard Specifications is amended by adding the following section:

1-1.266 MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES CALIFORNIA SUPPLEMENT
• The MUTCD 2003 California Supplement (MUTCD California Supplement) is issued by the Department of Transportation to provide amendments to the MUTCD. The MUTCD and MUTCD California Supplement supersede the Department's Manual of Traffic Controls.

SECTION 2: PROPOSAL REQUIREMENTS AND CONDITIONS

Issue Date: June 19, 2003

Section 2-1.03, "Examination of Plans, Specifications, Contract, and Site of Work," of the Standard Specifications is amended to read:

2-1.03 Examination of Plans, Specifications, Contract, and Site of Work
• The bidder shall examine carefully the site of the work contemplated, the plans and specifications, and the proposal and contract forms therefor. The submission of a bid shall be conclusive evidence that the bidder has investigated and is satisfied as to the general and local conditions to be encountered, as to the character, quality and scope of work to be performed, the quantities of materials to be furnished and as to the requirements of the proposal, plans, specifications and the contract.
• The submission of a bid shall also be conclusive evidence that the bidder is satisfied as to the character, quality and quantity of surface and subsurface materials or obstacles to be encountered insofar as this information was reasonably ascertainable from an inspection of the site and the records of exploratory work done by the Department as shown in the bid documents, as well as from the plans and specifications made a part of the contract.
• Where the Department has made investigations of site conditions including subsurface conditions in areas where work is to be performed under the contract, or in other areas, some of which may constitute possible local material sources, bidders or contractors may, upon written request, inspect the records of the Department as to those investigations subject to and upon the conditions hereinafter set forth.
• Where there has been prior construction by the Department or other public agencies within the project limits, records of the prior construction that are currently in the possession of the Department and which have been used by, or are known to, the designers and administrators of the project will be made available for inspection by bidders or contractors, upon written request, subject to the conditions hereinafter set forth. The records may include, but are not limited to, as-built drawings, design calculations, foundation and site studies, project reports and other data assembled in connection with the investigation, design, construction and maintenance of the prior projects.
• Inspection of the records of investigations and project records may be made at the office of the district in which the work is situated, or in the case of records of investigations related to structure work, at the Transportation Laboratory in Sacramento, California.

• When a log of test borings or other record of geotechnical data obtained by the Department's investigation of surface and subsurface conditions is included with the contract plans, it is furnished for the bidders' or Contractor's information and its use shall be subject to the conditions and limitations set forth in this Section 2-1.03.

• In some instances, information considered by the Department to be of possible interest to bidders or contractors has been compiled as "Materials Information." The use of the "Materials Information" shall be subject to the conditions and limitations set forth in this Section 2-1.03 and Section 6-2, "Local Materials."

• When cross sections are not included with the plans, but are available, bidders or contractors may inspect the cross sections and obtain copies for their use, at their expense.

• When cross sections are included with the contract plans, it is expressly understood and agreed that the cross sections do not constitute part of the contract, do not necessarily represent actual site conditions or show location, character, dimensions and details of work to be performed, and are included in the plans only for the convenience of bidders and their use is subject to the conditions and limitations set forth in this Section 2-1.03.

• When contour maps were used in the design of the project, the bidders may inspect those maps, and if available, they may obtain copies for their use.

• The availability or use of information described in this Section 2-1.03 is not to be construed in any way as a waiver of the provisions of the first paragraph in this Section 2-1.03 and bidders and contractors are cautioned to make independent investigations and examinations as they deem necessary to be satisfied as to conditions to be encountered in the performance of the work and, with respect to possible local material sources, the quality and quantity of material available from the property and the type and extent of processing that may be required in order to produce material conforming to the requirements of the specifications.

• The Department assumes no responsibility for conclusions or interpretations made by a bidder or contractor based on the information or data made available by the Department. The Department does not assume responsibility for representation made by its officers or agents before the execution of the contract concerning surface or subsurface conditions, unless that representation is expressly stated in the contract.

• No conclusions or interpretations made by a bidder or contractor from the information and data made available by the Department will relieve a bidder or contractor from properly fulfilling the terms of the contract.

SECTION 3: AWARD AND EXECUTION OF CONTRACT

Issue Date: October 8, 2005

Section 3, "Award and Execution of Contract," of the Standard Specifications is amended by adding the following section after Section 3-1.02, "Contract Bonds."

3-1.025 INSURANCE POLICIES

• The successful bidder shall submit:

A. A copy of its commercial general liability policy and its excess policy, including the declarations page, all amendments, riders, endorsements, and other modifications in effect at the time of contract execution. Standard ISO form No. CG 0001 or similar exclusions are allowed if not inconsistent with Section 7-1.12B, "Insurance." Allowance of any additional exclusions is at the discretion of the Department.

B. A Certificate of Insurance showing all other required coverages. Certificates of Insurance, as evidence of required insurance for the auto liability and any other required policy shall set forth deductible amounts applicable to each policy and all exclusions that are added by endorsement to each policy. The evidence of insurance shall provide that no cancellation, lapse, or reduction of coverage will occur without 30 days prior written notice to the Department.

• If the successful bidder uses any form of self-insurance, it shall submit:

A. A notice of election to self-insure.
B. The coverages for which self-insurance applies.
C. The amount of self-insurance.
D. A declaration under the penalty of perjury by a certified public accountant certifying the accountant has applied Generally Accepted Accounting Principles (GAAP) guidelines and the successful bidder has sufficient funds or other resources to cover the self-insurance amounts.

CONTRACT NO. 04-0120F4
REPLACED PER ADDENDUM NO. 3 DATED NOVEMBER 7, 2005
E. A copy of its commercial general liability policy and its excess policy, including the declarations page, all amendments, riders, endorsements and other modifications in effect at the time of contract execution, for those amounts not covered by self-insurance.

Section 3-1.03, "Execution of Contract," of the Standard Specifications is amended to read:

3-1.03 EXECUTION OF CONTRACT
• The contract shall be signed by the successful bidder and returned, together with the contract bonds, insurance policies, and Certificate of Insurance, within 10 days, not including Saturdays and legal holidays, after the bidder has received the contract for execution.

SECTION 5: CONTROL OF WORK

Issue Date: December 31, 2001

Section 5-1.02A, "Trench Excavation Safety Plans," of the Standard Specifications is amended to read:

5-1.02A Excavation Safety Plans
• The Construction Safety Orders of the Division of Occupational Safety and Health shall apply to all excavations. For all excavations 1.5 m or more in depth, the Contractor shall submit to the Engineer a detailed plan showing the design and details of the protective systems to be provided for worker protection from the hazard of caving ground during excavation. The detailed plan shall include any tabulated data and any design calculations used in the preparation of the plan. Excavation shall not begin until the detailed plan has been reviewed and approved by the Engineer.
 • Detailed plans of protective systems for which the Construction Safety Orders require design by a registered professional engineer shall be prepared and signed by an engineer who is registered as a Civil Engineer in the State of California, and shall include the soil classification, soil properties, soil design calculations that demonstrate adequate stability of the protective system, and any other design calculations used in the preparation of the plan.
 • No plan shall allow the use of a protective system less effective than that required by the Construction Safety Orders.
 • If the detailed plan includes designs of protective systems developed only from the allowable configurations and slopes, or Appendices, contained in the Construction Safety Orders, the plan shall be submitted at least 5 days before the Contractor intends to begin excavation. If the detailed plan includes designs of protective systems developed from tabulated data, or designs for which design by a registered professional engineer is required, the plan shall be submitted at least 3 weeks before the Contractor intends to begin excavation.
 • Attention is directed to Section 7-1.01E, "Trench Safety."

SECTION 7: LEGAL RELATIONS AND RESPONSIBILITY

Issue Date: October 8, 2005

The eighth paragraph of Section 7-1.09, "Public Safety" of the Standard Specifications is amended to read:

 • Signs, lights, flags, and other warning and safety devices and their use shall conform to the requirements set forth in Part 6 of the MUTCD and of the MUTCD California Supplement. Signs or other protective devices furnished and erected by the Contractor, at the Contractor's expense, as above provided, shall not obscure the visibility of, nor conflict in intent, meaning and function of either existing signs, lights and traffic control devices or any construction area signs and traffic control devices for which furnishing of, or payment for, is provided elsewhere in the specifications. Signs furnished and erected by the Contractor, at the Contractor's expense, shall be approved by the Engineer as to size, wording and location.

The fourteenth paragraph of Section 7-1.09, "Public Safety," of the Standard Specifications is amended to read:

 • The Contractor shall notify the Engineer not less than 18 days and no more than 90 days prior to the anticipated start of an operation that will change the vertical or horizontal clearance available to public traffic (including shoulders).

CONTRACT NO. 04-0120F4
REPLACED PER ADDENDUM NO. 3 DATED NOVEMBER 7, 2005
The sixteenth paragraph of Section 7-1.09, "Public Safety," of the Standard Specifications is amended to read:

- When vertical clearance is temporarily reduced to 4.72 m or less, low clearance warning signs shall be placed in accordance with Part 2 of the MUTCD and the MUTCD California Supplement, and as directed by the Engineer. Signs shall conform to the dimensions, color, and legend requirements of the MUTCD, the MUTCD California Supplement, and these specifications except that the signs shall have black letters and numbers on an orange retroreflective background. W12-2P signs shall be illuminated so that the signs are clearly visible.

Section 7-1.01A(6), "Workers' Compensation," of the Standard Specifications is deleted.

Section 7-1.12A, "Indemnification," of the Standard Specifications is replaced with the following:

- The Contractor shall defend, indemnify, and save harmless the State, including its officers, employees, and agents (excluding agents who are design professionals) from any and all claims, demands, causes of action, damages, costs, expenses, actual attorneys' fees, losses or liabilities, in law or in equity (Section 7-1.12A Claims) arising out of or in connection with the Contractor's performance of this contract for:

 A. Bodily injury including, but not limited to, bodily injury, sickness or disease, emotional injury or death to persons, including, but not limited to, the public, any employees or agents of the Contractor, the State, or any other contractor and;

 B. Damage to property of anyone including loss of use thereof; caused or alleged to be caused in whole or in part by any negligent or otherwise legally actionable act or omission of the Contractor or anyone directly or indirectly employed by the Contractor or anyone for whose acts the Contractor may be liable.

- Except as otherwise provided by law, these requirements apply regardless of the existence or degree of fault of the State. The Contractor is not obligated to indemnify the State for Claims arising from conduct delineated in Civil Code Section 2782 and to Claims arising from any defective or substandard condition of the highway that existed at or before the start of work, unless this condition has been changed by the work or the scope of the work requires the Contractor to maintain existing highway facilities and the Claim arises from the Contractor's failure to maintain. The Contractor's defense and indemnity obligation shall extend to Claims arising after the work is completed and accepted if the Claims are directly related to alleged acts or omissions by the Contractor that occurred during the course of the work. No inspection by the State is a waiver of full compliance with these requirements.

- The Contractor's obligation to defend and indemnify is not excused because of the Contractor's inability to evaluate liability or because the Contractor evaluates liability and determine that the Contractor is not liable. The Contractor shall respond within 30 days to the tender of any Claim for defense and indemnity by the State, unless this time has been extended by the State. If the Contractor fails to accept or reject a tender of defense and indemnity within 30 days, in addition to any other remedy authorized by law, the Department may withhold such funds the State reasonably considers necessary for its defense and indemnity until disposition has been made of the Claim or until the Contractor accepts or rejects the tender of defense, whichever occurs first.

- With respect to third-party claims against the Contractor, the Contractor waives all rights of any type to express or implied indemnity against the State, its officers, employees, or agents (excluding agents who are design professionals).

- Nothing in the Contract is intended to establish a standard of care owed to any member of the public or to extend to the public the status of a third-party beneficiary for any of these indemnification specifications.

Section 7-1.12B, "Insurance," of the Standard Specifications is replaced by the following:

7-1.12B Insurance

7-1.12B(1) General

- Nothing in the Contract is intended to establish a standard of care owed to any member of the public or to extend to the public the status of a third-party beneficiary for any of these insurance specifications.
7-1.12B(2) Casualty Insurance

- The Contractor shall procure and maintain insurance on all of its operations with companies acceptable to the State as follows:

 A. The Contractor shall keep all insurance in full force and effect from the beginning of the work through Contract acceptance.

 B. All insurance shall be with an insurance company with a rating from A.M. Best Financial Strength Rating of A- or better and a Financial Size Category of VII or better.

 C. The Contractor shall maintain completed operations coverage with a carrier acceptable to the State through the expiration of the patent deficiency in construction statute of repose set forth in Code of Civil Procedure Section 337.1.

7-1.12B(3) Workers' Compensation and Employer's Liability Insurance

- In accordance with Labor Code Section 1860, the Contractor shall secure the payment of worker's compensation in accordance with Labor Code Section 3700.
- In accordance with Labor Code Section 1861, the Contractor shall submit to the Department the following certification before performing the work:

 I am aware of the provisions of Section 3700 of the Labor Code which require every employer to be insured against liability for workers' compensation or to undertake self-insurance in accordance with the provisions of that code, and I will comply with such provisions before commencing the performance of the work of this contract.

 - Contract execution constitutes certification submittal.
 - The Contractor shall provide Employer's Liability Insurance in amounts not less than:

 A. $1,000,000 for each accident for bodily injury by accident.

 B. $1,000,000 policy limit for bodily injury by disease.

 C. $1,000,000 for each employee for bodily injury by disease.

- If there is an exposure of injury to the Contractor's employees under the U.S. Longshoremen's and Harbor Workers' Compensation Act, the Jones Act, or under laws, regulations, or statutes applicable to maritime employees, coverage shall be included for such injuries or claims.

7-1.12B(4) Liability Insurance

7-1.12B(4)(a) General

- The Contractor shall carry General Liability and Umbrella or Excess Liability Insurance covering all operations by or on behalf of the Contractor providing insurance for bodily injury liability and property damage liability for the following limits and including coverage for:

 A. Premises, operations and mobile equipment.

 B. Products and completed operations.

 C. Broad form property damage (including completed operations).

 D. Explosion, collapse and underground hazards.

 E. Personal injury.

 F. Contractual liability.

7-1.12B(4)(b) Liability Limits/Additional Insureds

- The limits of liability shall be at least:

 A. $10,000,000 for each occurrence (combined single limit for bodily injury and property damage).

 B. $2,000,000 aggregate for products-completed operations.

 C. $20,000,000 general aggregate. This general aggregate limit shall apply separately to the Contractor's work under this Contract.

 D. $25,000,000 umbrella or excess liability. The umbrella or excess policy shall contain a clause stating that it takes effect (drops down) in the event the primary limits are impaired or exhausted.

CONTRACT NO. 04-0120F4
REPLACED PER ADDENDUM NO. 3 DATED NOVEMBER 7, 2005
• The State, including its officers, directors, agents, and employees, shall be named as additional insureds under the General Liability and Umbrella Liability Policies with respect to liability arising out of or connected with work or operations performed by or on behalf of the Contractor under this Contract. Coverage for such additional insureds does not extend to liability:

A. Arising from any defective or substandard condition of the roadway which existed at or before the time the Contractor started work, unless such condition has been changed by the work or the scope of the work requires the Contractor to maintain existing roadway facilities and the claim arises from the Contractor's failure to maintain;

B. Arising from any design errors or omissions by design professionals;

C. For claims occurring after the work is completed and accepted unless these claims are directly related to alleged acts or omissions of the Contractor that occurred during the course of the work; or

D. To the extent prohibited by Insurance Code Section 11580.04.

• Additional insured coverage shall be provided by a policy provision or by an endorsement providing coverage at least as broad as Additional Insured (Form B) endorsement form CG 2010, as published by the Insurance Services Office (ISO), or other form designated by the Department.

7-1.12B(4)(c) Contractor's Insurance Policy is Primary

• The policy shall stipulate that the insurance afforded the additional insureds applies as primary insurance. Any other insurance or self-insurance maintained by the State is excess only and shall not be called upon to contribute with this insurance.

7-1.12B(5) Automobile Liability Insurance

• The Contractor shall carry automobile liability insurance, including coverage for all owned, hired, and nonowned automobiles. The primary limits of liability shall be not less than $1,000,000 combined single limit each accident for bodily injury and property damage. The umbrella or excess liability coverage required under Section 7-1.12B(4)(b) also applies to automobile liability.

7-1.12B(6) Policy Forms, Endorsements, and Certificates

• The Contractor shall provide its General Liability Insurance under Commercial General Liability policy form No. CG0001 as published by the Insurance Services Office (ISO) or under a policy form at least as broad as policy form No. CG0001.

7-1.12B(7) Deductibles

• The State may expressly allow deductible clauses, which it does not consider excessive, overly broad, or harmful to the interests of the State. Regardless of the allowance of exclusions or deductions by the State, the Contractor is responsible for any deductible amount and shall warrant that the coverage provided to the State is in accordance with Section 7-1.12B, "Insurance."

7-1.12B(8) Enforcement

• The Department may assure the Contractor's compliance with its insurance obligations. Thirty days before an insurance policy lapses or is canceled during the Contract period the Contractor shall submit to the Department evidence of renewal or replacement of the policy.

• If the Contractor fails to maintain any required insurance coverage, the Department may maintain this coverage and withhold or charge the expense to the Contractor or terminate this Contract.

• The Contractor is not relieved of its duties and responsibilities to indemnify, defend, and hold harmless the State, its officers, agents, and employees by the Department's acceptance of insurance policies and certificates.

• Minimum insurance coverage amounts do not relieve the Contractor for liability in excess of such coverage, nor do they preclude the State from taking other actions available to it, including the withholding of funds under this Contract.

7-1.12B(9) Self-Insurance

• Self-insurance programs and self-insured retentions in insurance policies are subject to separate annual review and approval by the State.
• If the Contractor uses a self-insurance program or self-insured retention, the Contractor shall provide the State with the same protection from liability and defense of suits as would be afforded by first-dollar insurance. Execution of the Contract is the Contractor's acknowledgement that the Contractor will be bound by all laws as if the Contractor were an insurer as defined under Insurance Code Section 23 and that the self-insurance program or self-insured retention shall operate as insurance as defined under Insurance Code Section 22.

Section 71.125, "Legal Actions Against the Department," of the Standard Specifications is replaced with the following:

7-1.125 Legal Actions Against the Department

• If legal action is brought against the Department over compliance with a state or federal law, rule, or regulation applicable to highway work, then:

 A. If by court order the Department prohibits the Contractor from performing work, the resulting delay is a suspension related to the Contractor's performance as specified in Section 8-1.05C, "Suspensions Related to Contractor Performance," unless the Department terminates the contract.

 B. If a court order other than an order to show cause or the final judgement in the action prohibits the Department from requiring you to perform work, the Department may delete the prohibited work or terminate the contract.

SECTION 9: MEASUREMENT AND PAYMENT

Issue Date: November 17, 2004

Section 9-1.04, "Notice of Potential Claim," of the Standard Specifications is amended to read:

9-1.04 NOTICE OF POTENTIAL CLAIM

• It is the intention of this section that disputes between the parties arising under and by virtue of the contract be brought to the attention of the Engineer at the earliest possible time in order that the matters may be resolved, if possible, or other appropriate action promptly taken.

• Disputes will not be considered unless the Contractor has first complied with specified notice or protest requirements, including Section 4-1.03, "Changes," Section 5-1.116, "Differing Site Conditions," Section 8-1.06, "Time of Completion," Section 8-1.07, "Liquidated Damages," and Section 8-1.10, "Utility and Non-Highway Facilities."

• For disputes arising under and by virtue of the contract, including an act or failure to act by the Engineer, the Contractor shall provide a signed written initial notice of potential claim to the Engineer within 5 days from the date the dispute first arose. The initial notice of potential claim shall provide the nature and circumstances involved in the dispute which shall remain consistent through the dispute. The initial notice of potential claim shall be submitted on Form CEM-6201A furnished by the Department and shall be certified with reference to the California False Claims Act, Government Code Sections 12650-12655. The Contractor shall assign an exclusive identification number for each dispute, determined by chronological sequencing, based on the date of the dispute.

• The exclusive identification number for each dispute shall be used on the following corresponding documents:

 A. Initial notice of potential claim.
 B. Supplemental notice of potential claim.
 C. Full and final documentation of potential claim.
 D. Corresponding claim included in the Contractor's written statement of claims.

• The Contractor shall provide the Engineer the opportunity to examine the site of work within 5 days from the date of the initial notice of potential claim. The Contractor shall proceed with the performance of contract work unless otherwise specified or directed by the Engineer.

• Throughout the disputed work, the Contractor shall maintain records that provide a clear distinction between the incurred direct costs of disputed work and that of undisputed work. The Contractor shall allow the Engineer access to the Contractor's project records deemed necessary by the Engineer to evaluate the potential claim within 20 days of the date of the Engineer's written request.

• Within 15 days of submitting the initial notice of potential claim, the Contractor shall provide a signed supplemental notice of potential claim to the Engineer that provides the following information:

 A. The complete nature and circumstances of the dispute which caused the potential claim.
 B. The contract provisions that provide the basis of claim.

CONTRACT NO. 04-0120F4
REPLACED PER ADDENDUM NO. 3 DATED NOVEMBER 7, 2005
C. The estimated cost of the potential claim, including an itemized breakdown of individual costs and how the estimate was determined.

D. A time impact analysis of the project schedule that illustrates the effect on the scheduled completion date due to schedule changes or disruptions where a request for adjustment of contract time is made.

- The information provided in items A and B above shall provide the Contractor's complete reasoning for additional compensation or adjustments.

- The supplemental notice of potential claim shall be submitted on Form CEM-6201B furnished by the Department and shall be certified with reference to the California False Claims Act, Government Code Sections 12650-12655. The Engineer will evaluate the information presented in the supplemental notice of potential claim and provide a written response to the Contractor within 20 days of its receipt. If the estimated cost or effect on the scheduled completion date changes, the Contractor shall update information in items C and D above as soon as the change is recognized and submit this information to the Engineer.

- Within 30 days of the completion of work related to the potential claim, the Contractor shall provide the full and final documentation of potential claim to the Engineer that provides the following information:

 A. A detailed factual narration of events fully describing the nature and circumstances that caused the dispute, including, but not limited to, necessary dates, locations, and items of work affected by the dispute.

 B. The specific provisions of the contract that support the potential claim and a statement of the reasons these provisions support and provide a basis for entitlement of the potential claim.

 C. When additional monetary compensation is requested, the exact amount requested calculated in conformance with Section 9-1.03, "Force Account Payment," or Section 8-1.09, "Right of Way Delays," including an itemized breakdown of individual costs. These costs shall be segregated into the following cost categories:

 1. Labor – A listing of individuals, classifications, regular hours and overtime hours worked, dates worked, and other pertinent information related to the requested reimbursement of labor costs.

 2. Materials – Invoices, purchase orders, location of materials either stored or incorporated into the work, dates materials were transported to the project or incorporated into the work, and other pertinent information related to the requested reimbursement of material costs.

 3. Equipment – Listing of detailed description (make, model, and serial number), hours of use, dates of use and equipment rates. Equipment rates shall be at the applicable State rental rate as listed in the Department of Transportation publication entitled "Labor Surcharge and Equipment Rental Rates," in effect when the affected work related to the dispute was performed.

 4. Other categories as specified by the Contractor or the Engineer.

 D. When an adjustment of contract time is requested the following information shall be provided:

 1. The specific dates for which contract time is being requested.

 2. The specific reasons for entitlement to a contract time adjustment.

 3. The specific provisions of the contract that provide the basis for the requested contract time adjustment.

 4. A detailed time impact analysis of the project schedule. The time impact analysis shall show the effect of changes or disruptions on the scheduled completion date to demonstrate entitlement to a contract time adjustment.

 E. The identification and copies of the Contractor's documents and the substance of oral communications that support the potential claim.

- The full and final documentation of the potential claim shall be submitted on Form CEM-6201C furnished by the Department and shall be certified with reference to the California False Claims Act, Government Code Sections 12650-12655.

- Pertinent information, references, arguments, and data to support the potential claim shall be included in the full and final documentation of potential claim. Information submitted subsequent to the full and final documentation submittal will not be considered. Information required in the full and final documentation of potential claim, as listed in items A to E above, that is not applicable to the dispute may be exempted as determined by the Engineer. No full and final documentation of potential claim will be considered that does not have the same nature and circumstances, and basis of claim as those specified on the initial and supplemental notices of potential claim.

CONTRACT NO. 04-0120F4
REPLACED PER ADDENDUM NO. 3 DATED NOVEMBER 7, 2005
The Engineer will evaluate the information presented in the full and final documentation of potential claim and provide a written response to the Contractor within 30 days of its receipt unless otherwise specified. The Engineer's receipt of the full and final documentation of potential claim shall be evidenced by postal receipt or the Engineer's written receipt if delivered by hand. If the full and final documentation of potential claim is submitted by the Contractor after acceptance of the work by the Director, the Engineer need not provide a written response.

Provisions in this section shall not apply to those claims for overhead costs and administrative disputes that occur after issuance of the proposed final estimate. Administrative disputes are disputes of administrative deductions or retentions, contract item quantities, contract item adjustments, interest payments, protests of contract change orders as provided in Section 4-1.03A, "Procedure and Protest," and protests of the weekly statement of working days as provided in Section 8-1.06, "Time of Completion." Administrative disputes that occur prior to issuance of the proposed final estimate shall follow applicable requirements of this section. Information listed in the supplemental notice and full and final documentation of potential claim that is not applicable to the administrative dispute may be exempted as determined by the Engineer.

Unless otherwise specified in the special provisions, the Contractor may pursue the administrative claim process pursuant to Section 9-1.07B, "Final Payment and Claims," for any potential claim found by the Engineer to be without merit.

Failure of the Contractor to conform to specified dispute procedures shall constitute a failure to pursue diligently and exhaust the administrative procedures in the contract, and is deemed as the Contractor's waiver of the potential claim and a waiver of the right to a corresponding claim for the disputed work in the administrative claim process in conformance with Section 9-1.07B, "Final Payment of Claims," and shall operate as a bar to arbitration pursuant to Section 10240.2 of the California Public Contract Code.

Section 9-1.07B, "Final Payment and Claims," of the Standard Specifications is amended to read:

9-1.07B Final Payment and Claims

• After acceptance by the Director, the Engineer will make a proposed final estimate in writing of the total amount payable to the Contractor, including an itemization of the total amount, segregated by contract item quantities, extra work and other bases for payment, and shall also show each deduction made or to be made for prior payments and amounts to be kept or retained under the provisions of the contract. Prior estimates and payments shall be subject to correction in the proposed final estimate. The Contractor shall submit written approval of the proposed final estimate or a written statement of claims arising under or by virtue of the contract so that the Engineer receives the written approval or statement of claims no later than close of business of the thirtieth day after receiving the proposed final estimate. If the thirtieth day falls on a Saturday, Sunday or legal holiday, then receipt of the written approval or statement of claims by the Engineer shall not be later than close of business of the next business day. The Contractor's receipt of the proposed final estimate shall be evidenced by postal receipt. The Engineer's receipt of the Contractor's written approval or statement of claims shall be evidenced by postal receipt or the Engineer's written receipt if delivered by hand.

• On the Contractor's approval, or if the Contractor files no claim within the specified period of 30 days, the Engineer will issue a final estimate in writing in conformance with the proposed final estimate submitted to the Contractor, and within 30 days thereafter the State will pay the entire sum so found to be due. That final estimate and payment thereon shall be conclusive and binding against both parties to the contract on all questions relating to the amount of work done and the compensation payable therefor, except as otherwise provided in Sections 9-1.03C, "Records," and 9-1.09, "Clerical Errors."

• If the Contractor within the specified period of 30 days files claims, the Engineer will issue a semifinal estimate in conformance with the proposed final estimate submitted to the Contractor and within 30 days thereafter the State will pay the sum found to be due. The semifinal estimate and corresponding payment shall be conclusive and binding against both parties to the contract on each question relating to the amount of work done and the compensation payable therefor, except insofar as affected by the claims filed within the time and in the manner required hereunder and except as otherwise provided in Sections 9-1.03C, "Records," and 9-1.09, "Clerical Errors."

• Except for claims for overhead costs and administrative disputes that occur after issuance of the proposed final estimate, the Contractor shall only provide the following two items of information for each claim:

 A. The exclusive identification number that corresponds to the supporting full and final documentation of potential claim.
 B. The final amount of requested additional compensation.

• If the final amount of requested additional compensation is different than the amount of requested compensation included in the full and final documentation of potential claim, the Contractor shall provide in the written statement of claims the reasons for the changed amount, the specific provisions of the contract which support the changed amount, and a statement of the reasons the provisions support and provide a basis for the changed amount. If the Contractor's claim fails to provide an exclusive identification number or if there is a disparity in the provided exclusive identification number, the

CONTRACT NO. 04-0120F4
REPLACED PER ADDENDUM NO. 3 DATED NOVEMBER 7, 2005
Engineer will notify the Contractor of the omission or disparity. The Contractor shall have 15 days after receiving notification from the Engineer to correct the omission or disparity. If after the 15 days has elapsed, there is still an omission or disparity of the exclusive identification number assigned to the claim, the Engineer will assign the number. No claim will be considered that has any of the following deficiencies:

A. The claim does not have the same nature, circumstances, and basis as the corresponding full and final documentation of potential claim.
B. The claim does not have a corresponding full and final documentation of potential claim.
C. The claim was not included in the written statement of claims.
D. The Contractor did not comply with applicable notice or protest requirements of Sections 4-1.03, "Changes," 5-1.16, "Differing Site Condition," 8-1.06, "Time of Completion," 8-1.07, "Liquidated Damages," 8-1.10, "Utility and Non-Highway Facilities," and 9-1.04, "Notice of Potential Claim."

- Administrative disputes that occur after issuance of the proposed final estimate shall be included in the Contractor's written statement of claims in sufficient detail to enable the Engineer to ascertain the basis and amounts of those claims.
- The Contractor shall keep full and complete records of the costs and additional time incurred for work for which a claim for additional compensation is made. The Engineer or designated claim investigators or auditors shall have access to those records and any other records as may be required by the Engineer to determine the facts or contentions involved in the claims. Failure to permit access to those records shall be sufficient cause for denying the claims.
- The written statement of claims submitted by the Contractor shall be accompanied by a notarized certificate containing the following language:

 Under the penalty of law for perjury or falsification and with specific reference to the California False Claims Act, Government Code Section 12650 et. seq., the undersigned,

 (name)

 of

 (title)

 (company)

 hereby certifies that the claim for the additional compensation and time, if any, made herein for the work on this contract is a true statement of the actual costs incurred and time sought, and is fully documented and supported under the contract between parties.

 Dated ____________________________

 /s/ ____________________________

 Subscribed and sworn before me this _________ day

 of ____________________________.

 (Notary Public)

 My Commission

 Expires ____________________________

 • Failure to submit the notarized certificate will be sufficient cause for denying the claim.

 • Claims for overhead type expenses or costs, in addition to being certified as stated above, shall be supported and accompanied by an audit report of an independent Certified Public Accountant. Omission of a supporting audit report of an independent Certified Public Accountant shall result in denial of the claim and shall operate as a bar to arbitration, as to the claim, in conformance with the requirements in Section 10240.2 of the California Public Contract Code. Claims for overhead type expenses or costs shall be subject to audit by the State at its discretion. The costs of performing an audit examination and submitting the report shall be borne by the Contractor. The Certified Public Accountant's audit examination shall be
performed in conformance with the requirements of the American Institute of Certified Public Accountants Attestation Standards. The audit examination and report shall depict the Contractor's project and company-wide financial records and shall specify the actual overall average daily rates for both field and home office overhead for the entire duration of the project, and whether the costs have been properly allocated. The rates of field and home office overhead shall exclude unallowable costs as determined in Title 48 of the Federal Acquisition Regulations, Chapter 1, Part 31. The audit examination and report shall determine if the rates of field and home office overhead are:

A. Allowable in conformance with the requirements in Title 48 of the Federal Acquisition Regulations, Chapter 1, Part 31.
B. Adequately supported by reliable documentation.
C. Related solely to the project under examination.

• Costs or expenses incurred by the State in reviewing or auditing claims that are not supported by the Contractor's cost accounting or other records shall be deemed to be damages incurred by the State within the meaning of the California False Claims Act.
• If the Engineer determines that a claim requires additional analysis, the Engineer will schedule a board of review meeting. The Contractor shall meet with the review board or person and make a presentation in support of the claim. Attendance by the Contractor at the board of review meeting shall be mandatory.
• The District Director of the District that administered the contract will make the final determination of any claims which remain in dispute after completion of claim review by the Engineer or board of review meeting.

The final determination of claims will be sent to the Contractor by hand delivery or deposit in the U.S. mail. The Engineer will then make and issue the Engineer's final estimate in writing and within 30 days thereafter the State will pay the entire sum, if any, found due thereon. That final estimate shall be conclusive and binding against both parties to the contract on all questions relating to the amount of work done and the compensation payable therefor, except as otherwise provided in Sections 9-1.03C, "Records," and 9-1.09, "Clerical Errors."
• Failure of the Contractor to conform to the specified dispute procedures shall constitute a failure to pursue diligently and exhaust the administrative procedures in the contract and shall operate as a bar to arbitration in conformance with the requirements in Section 10240.2 of the California Public Contract Code.

SECTION 12: CONSTRUCTION AREA TRAFFIC CONTROL DEVICES

Issue Date: November 2, 2004

The second paragraph of Section 12-1.01, "Description," of the Standard Specifications is amended to read:

• Attention is directed to Part 6 of the MUTCD and of the MUTCD California Supplement. Nothing in this Section 12 is to be construed as to reduce the minimum standards in these manuals.

Section 12-2.01, "Flaggers," of the Standard Specifications is amended to read:

• Flaggers while on duty and assigned to traffic control or to give warning to the public that the highway is under construction and of any dangerous conditions to be encountered as a result thereof, shall perform their duties and shall be provided with the necessary equipment in conformance with Part 6 of the MUTCD and of the MUTCD California Supplement. The equipment shall be furnished and kept clean and in good repair by the Contractor at the Contractor's expense.

The first paragraph of Section 12-3.01, "General," of the Standard Specifications is amended to read:

• In addition to the requirements in Part 6 of the MUTCD and of the MUTCD California Supplement, all devices used by the Contractor in the performance of the work shall conform to the provisions in this Section 12-3.

The first paragraph of Section 12-3.06, "Construction Area Signs," of the Standard Specifications is amended to read:

• The term "Construction Area Signs" shall include all temporary signs required for the direction of public traffic through or around the work during construction. Construction area signs are shown in or referred to in Part 6 of the MUTCD and of the MUTCD California Supplement.
The fourth paragraph of Section 12-3.06, "Construction Area Signs," of the Standard Specifications is amended to read:

- All construction area signs shall conform to the dimensions, color and legend requirements of the plans, Part 6 of the MUTCD, Part 6 of the MUTCD California Supplement, and these specifications. All sign panels shall be the product of a commercial sign manufacturer, and shall be as specified in these specifications.

The eighth paragraph of Section 12-3.06, "Construction Area Signs," of the Standard Specifications is amended to read:

- Used signs with the specified sheeting material will be considered satisfactory if they conform to the requirements for visibility and legibility and the colors conform to the requirements in Part 6 of the MUTCD and of the MUTCD California Supplement. A significant difference between day and nighttime retroreflective color will be grounds for rejecting signs.

Section 12-3.06A, "Stationary Mounted Signs," of the Standard Specifications is amended by deleting the third, fourth, fifth, and sixth paragraphs.

SECTION 19: EARTHWORK

Issue Date: December 31, 2001

The third paragraph of Section 19-1.02, "Preservation of Property," of the Standard Specifications is amended to read:

- In addition to the provisions in Sections 5-1.02, "Plans and Working Drawings," and 5-1.02A, "Excavation Safety Plans," detailed plans of the protective systems for excavations on or affecting railroad property will be reviewed for adequacy of protection provided for railroad facilities, property, and traffic. These plans shall be submitted at least 9 weeks before the Contractor intends to begin excavation requiring the protective systems. Approval by the Engineer of the detailed plans for the protective systems will be contingent upon the plans being satisfactory to the railroad company involved.

SECTION 42: GROOVE AND GRIND PAVEMENT

Issue Date: December 31, 2001

The last sentence of the first subparagraph of the third paragraph in Section 42-2.02, "Construction," of the Standard Specifications is amended to read:

- After grinding has been completed, the pavement shall conform to the straightedge and profile requirements specified in Section 40-1.10, "Final Finishing."

SECTION 49: PILING

Issue Date: November 2, 2004

The first paragraph in Section 49-1.03, "Determination of Length," of the Standard Specifications is amended to read:

- Foundation piles of any material shall be of such length as is required to obtain the specified penetration, and to extend into the cap or footing block as shown on the plans, or specified in the special provisions.

The fourth paragraph in Section 49-1.03, "Determination of Length," of the Standard Specifications is amended to read:

- Modification to the specified installation methods and specified pile tip elevation will not be considered at locations where tension or lateral load demands control design pile tip elevations or when the plans state that specified pile tip elevation shall not be revised.
The sixth and seventh paragraphs in Section 49-1.03, "Determination of Length," of the Standard Specifications are amended to read:

- Indicator compression pile load testing shall conform to the requirements in ASTM Designation: D 1143. The pile shall sustain the first compression test load applied which is equal to the nominal resistance in compression, as shown on the plans, with no more than 13 mm total vertical movement at the top of the pile measured relative to the top of the pile prior to the start of compression load testing.
- Indicator tension pile load testing shall conform to the requirements in ASTM Designation: D 3689. The loading apparatus described as "Load Applied to Pile by Hydraulic Jack(s) Acting at One End of Test Beam(s) Anchored to the Pile" shall not be used. The pile shall sustain the first tension test load applied which is equal to the nominal resistance in tension, as shown on the plans, with no more than 13 mm total vertical movement at the top of the pile measured relative to the top of the pile prior to the start of tension load testing.

The ninth paragraph in Section 49-1.03, "Determination of Length," of the Standard Specifications is amended to read:

- For driven piling, the Contractor shall furnish piling of sufficient length to obtain the specified tip elevation shown on the plans or specified in the special provisions. For cast-in-drilled-hole concrete piling, the Contractor shall construct piling of such length to develop the nominal resistance in compression and to obtain the specified tip elevation shown on the plans or specified in the special provisions.

The tenth paragraph in Section 49-1.03, "Determination of Length," of the Standard Specifications is deleted.

The fourth paragraph in Section 49-1.04, "Load Test Piles," of the Standard Specifications is amended to read:

- Load test piles and anchor piles which are not to be incorporated in the completed structure shall be removed in conformance with the provisions in Section 15-4.02, "Removal Methods," and the remaining holes shall be backfilled with earth or other suitable material approved by the Engineer.

The fifth paragraph in Section 49-1.04, "Load Test Piles," of the Standard Specifications is amended to read:

- Load test anchorages in piles used as anchor piles shall conform to the following requirements:
 A. High strength threaded steel rods shall conform to the provisions for bars in Section 50-1.05, "Prestressing Steel," except Type II bars shall be used.
 B. High strength steel plates shall conform to the requirements in ASTM Designation: A 709/A 709M, Grade 345.
 C. Anchor nuts shall conform to the provisions in the second paragraph in Section 50-1.06, "Anchorages and Distribution."

The first paragraph in Section 49-1.05, "Driving Equipment," of the Standard Specifications is amended to read:

- Driven piles shall be installed with impact hammers that are approved in writing by the Engineer. Impact hammers shall be steam, hydraulic, air or diesel hammers. Impact hammers shall develop sufficient energy to drive the piles at a penetration rate of not less than 3 mm per blow at the specified nominal resistance.

The seventh paragraph in Section 49-1.05, "Driving Equipment," of the Standard Specifications is amended to read:

- When necessary to obtain the specified penetration and when authorized by the Engineer, the Contractor may supply and operate one or more water jets and pumps, or furnish the necessary drilling apparatus and drill holes not greater than the least dimension of the pile to the proper depth and drive the piles therein. Jets shall not be used at locations where the stability of embankments or other improvements would be endangered. In addition, for steel piles, steel shells, or steel casings, when necessary to obtain the specified penetration or to prevent damage to the pile during installation, the Contractor shall provide special driving tips or heavier pile sections or take other measures as approved by the Engineer.
• The use of followers or underwater hammers for driving piles will be permitted if authorized in writing by the
Engineer. When a follower or underwater hammer is used, its efficiency shall be verified by furnishing the first pile in each
bent or footing sufficiently long and driving the pile without the use of a follower or underwater hammer.

The second paragraph in Section 49-1.07, "Driving," of the Standard Specifications is amended to read:

• Timber piles shall be fresh-headed and square and when permitted by the Engineer, the heads of the piles may be
protected by means of heavy steel or wrought iron rings. During driving operations timber piling shall be restrained from
lateral movement at intervals not to exceed 6 m over the length between the driving head and the ground surface. During
driving operations, the timber pile shall be kept moving by continuous operation of the hammer. When the blow count
exceeds either 2 times the blow count required in 300 mm, or 3 times the blow count required in 75 mm for the nominal
resistance as shown on the plans, computed in conformance with the provisions in Section 49-1.08, "Pile Driving Acceptance
Criteria," additional aids shall be used to obtain the specified penetration. These aids may include the use of water jets or
drilling, where permitted, or the use of a larger hammer employing a heavy ram striking with a low velocity.

Section 49-1.08, "Bearing Value and Penetration," of the Standard Specifications is amended to read:

49-1.08 PILE DRIVING ACCEPTANCE CRITERIA

• Except for piles to be load tested, driven piles shall be driven to a value of not less than the nominal resistance
shown on the plans unless otherwise specified in the special provisions or permitted in writing by the Engineer. In addition,
when a pile tip elevation is specified, driven piles shall penetrate at least to the specified tip elevation, unless otherwise
permitted in writing by the Engineer. Piles to be load tested shall be driven to the specified tip elevation.
• When the pile nominal resistance is omitted from the plans or the special provisions, timber piles shall be driven to a
nominal resistance of 800 kN, and steel and concrete piles shall be driven to a nominal resistance of 1250 kN.
• The nominal resistance for driven piles shall be determined from the following formula in which "R_u" is the nominal
resistance in kilonewtons, "E_r" is the manufacturer's rating for joules of energy developed by the hammer at the observed
field drop height, and "N" is the number of hammer blows in the last 300 millimeters. (maximum value to be used for N is
100):

\[R_u = (7 \times (E_r)^{1/2} \times \log_{10} (0.83 \times N)) - 550 \]

The first paragraph in Section 49-2.03, "Requirements," of the Standard Specifications is amended to read:

• When preservative treatment of timber piles is required by the plans or specified in the special provisions, the
treatment shall conform to the provisions in Section 58, "Preservative Treatment of Lumber, Timber and Piling," and the
applicable AWPA Use Category.

The first paragraph in Section 49-2.04, "Treatment of Pile Heads," of the Standard Specifications is amended to read:

A. An application of wood preservative conforming to the provisions in Section 58-1.04, "Wood Preservative for
Manual Treatment," shall first be applied to the head of the pile and a protective cap shall then be built up by
applying alternate layers of loosely woven fabric and hot asphalt or tar similar to membrane waterproofing, using 3
layers of asphalt or tar and 2 layers of fabric. The fabric shall measure at least 150 mm more in each direction than
the diameter of the pile and shall be turned down over the pile and the edges secured by binding with 2 turns of No.
10 galvanized wire. The fabric shall be wired in advance of the application of the final layer of asphalt or tar, which
shall extend down over the wiring.

B. The sawed surface shall be covered with 3 applications of a hot mixture of 60 percent creosote and 40 percent
roofing pitch, or thoroughly brushcoated with 3 applications of hot creosote and covered with hot roofing pitch. A
covering of 3.50-mm nominal thickness galvanized steel sheet shall be placed over the coating and bent down over
the sides of each pile to shed water.

Section 49-3.01, "Description," of the Standard Specifications is amended by deleting the fifth paragraph.
The sixth and seventh paragraphs in Section 49-3.01, "Description," of the Standard Specifications are amended to read:

- Except for precast prestressed concrete piles in a corrosive environment, lifting anchors used in precast prestressed concrete piles shall be removed, and the holes filled in conformance with the provisions in Section 51-1.18A, "Ordinary Surface Finish."
- Lifting anchors used in precast prestressed concrete piles in a corrosive environment shall be removed to a depth of at least 25 mm below the surface of the concrete, and the resulting hole shall be filled with epoxy adhesive before the piles are delivered to the job site. The epoxy adhesive shall conform to the provisions in Sections 95-1, "General," and 95-2.01, "Binder (Adhesive), Epoxy Resin Base (State Specification 8040-03)."

The first and second paragraphs in Section 49-4.01, "Description," of the Standard Specifications are amended to read:

- Cast-in-place concrete piles shall consist of one of the following:
 A. Steel shells driven permanently to the required nominal resistance and penetration and filled with concrete.
 B. Steel casings installed permanently to the required penetration and filled with concrete.
 C. Drilled holes filled with concrete.
 D. Rock sockets filled with concrete.

- The drilling of holes shall conform to the provisions in these specifications. Concrete filling for cast-in-place concrete piles is designated by compressive strength and shall have a minimum 28-day compressive strength of 25 MPa. At the option of the Contractor, the combined aggregate grading for the concrete shall be either the 25-mm maximum grading, the 12.5-mm maximum grading, or the 9.5-mm maximum grading. Concrete shall conform to the provisions in Section 90, "Portland Cement Concrete," and Section 51, "Concrete Structures." Reinforcement shall conform to the provisions in Section 52, "Reinforcement."

The fourth paragraph in Section 49-4.03, "Drilled Holes," of the Standard Specifications is amended to read:

- After placing reinforcement and prior to placing concrete in the drilled hole, if caving occurs or deteriorated foundation material accumulates on the bottom of the hole, the bottom of the drilled hole shall be cleaned. The Contractor shall verify that the bottom of the drilled hole is clean.

The first and second paragraphs in Section 49-4.04, "Steel Shells," of the Standard Specifications are amended to read:

- Steel shells shall be sufficiently watertight to exclude water during the placing of concrete. The shells may be cylindrical or tapered, step-tapered, or a combination of either, with cylindrical sections.

The first paragraph in Section 49-4.05, "Inspection," of the Standard Specifications is amended to read:

- After being driven and prior to placing reinforcement and concrete therein, the steel shells shall be examined for collapse or reduced diameter at any point. Any shell which is improperly driven or broken or shows partial collapse to such an extent as to materially decrease its nominal resistance will be rejected. Rejected shells shall be removed and replaced, or a new shell shall be driven adjacent to the rejected shell. Rejected shells which cannot be removed shall be filled with concrete by the Contractor at the Contractor's expense. When a new shell is driven to replace a rejected shell, the Contractor, at the Contractor's expense, shall enlarge the footing as determined necessary by the Engineer.

The third paragraph in Section 49-5.01, "Description," of the Standard Specifications is amended to read:

- Steel pipe piles shall conform to the following requirements:
 1. Steel pipe piles less than 360 mm in diameter shall conform to the requirements in ASTM Designation: A 252, Grade 2 or 3.
 2. Steel pipe piles 360 mm and greater in diameter shall conform to the requirements in ASTM Designation: A 252, Grade 3.
 3. Steel pipe piles shall be of the nominal diameter and nominal wall thickness shown on the plans or specified in the special provisions.
4. The carbon equivalency (CE) of steel for steel pipe piles, as defined in AWS D 1.1, Section XI5.1, shall not exceed 0.45.
5. The sulfur content of steel for steel pipe piles shall not exceed 0.05-percent.
6. Seams in steel pipe piles shall be complete penetration welds.

The first paragraph in Section 49-6.01, "Measurement," of the Standard Specifications is amended to read:

• The length of timber, steel, and precast prestressed concrete piles, and of cast-in-place concrete piles consisting of driven shells filled with concrete, shall be the greater of the following:

A. The total length in place in the completed work, measured along the longest side, from the tip of the pile to the plane of pile cut-off.
B. The length measured along the longest side, from the tip elevation shown on the plans or the tip elevation ordered by the Engineer, to the plane of pile cut-off.

The third paragraph in Section 49-6.02, "Payment," of the Standard Specifications is amended to read:

• The contract price paid per meter for cast-in-drilled-hole concrete piling shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all work involved in drilling holes, disposing of material resulting from drilling holes, temporarily casing holes and removing water when necessary, furnishing and placing concrete and reinforcement, and constructing reinforced concrete extensions, complete in place, to the required penetration, as shown on the plans, as specified in these specifications and in the special provisions, and as directed by the Engineer.

The seventh paragraph in Section 49-6.02, "Payment," of the Standard Specifications is amended to read:

• The contract unit price paid for drive pile shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in driving timber, concrete and steel piles, driving steel shells for cast-in-place concrete piles, placing filling materials for cast-in-place concrete piles and cutting off piles, all complete in place to the required nominal resistance and penetration as shown on the plans and as specified in these specifications and the special provisions, and as directed by the Engineer.

The ninth paragraph in Section 49-6.02, "Payment," of the Standard Specifications is amended to read:

• Full compensation for all jetting, drilling, providing special driving tips or heavier sections for steel piles or shells, or other work necessary to obtain the specified penetration and nominal resistance of the piles, for predrilling holes through embankment and filling the space remaining around the pile with sand or pea gravel, for disposing of material resulting from jetting, drilling or predrilling holes, and for all excavation and backfill involved in constructing concrete extensions as shown on the plans, and as specified in these specifications and the special provisions, and as directed by the Engineer shall be considered as included in the contract unit price paid for drive pile or in the contract price paid per meter for cast-in-drilled-hole concrete piling, and no additional compensation will be allowed therefor.

Section 49-6.02, "Payment," of the Standard Specifications is amended by adding the following paragraphs:

Full compensation for furnishing and placing additional testing reinforcement, for load test anchorages, and for cutting off test piles, shall be considered as included in the contract price paid for piling of the type or class shown in the Engineer's Estimate, and no additional compensation will be allowed.

No additional compensation or extension of time will be made for additional foundation investigation, installation and testing of indicator piling, cutting off piling and restoring the foundation investigation and indicator pile sites, and review of request by the Engineer.
SECTION 50: PRESTRESSING CONCRETE

Issue Date: November 18, 2002

Section 50-1.02, "Drawings," of the Standard Specifications is amended by adding the following paragraph after the second paragraph:

- Each working drawing submittal shall consist of plans for a single bridge or portion thereof. For multi-frame bridges, each frame shall require a separate working drawing submittal.

Section 50-1.05, "Prestressing Steel," of the Standard Specifications is amended to read:

- Prestressing steel shall be high-tensile wire conforming to the requirements in ASTM Designation: A 421, including Supplement I; high-tensile seven-wire strand conforming to the requirements in ASTM Designation: A 416; or uncoated high-strength steel bars conforming to the requirements in ASTM Designation: A 722, including all supplementary requirements. The maximum mass requirement of ASTM Designation: A 722 will not apply.
- In addition to the requirements of ASTM Designation: A 722, for deformed bars, the reduction of area shall be determined from a bar from which the deformations have been removed. The bar shall be machined no more than necessary to remove the deformations over a length of 300 mm, and reduction will be based on the area of the machined portion.
- In addition to the requirements specified herein, epoxy-coated seven-wire prestressing steel strand shall be grit impregnated and filled in conformance with the requirements in ASTM Designation: A 882/A 882M, including Supplement I, and the following:

A. The coating material shall be on the Department's list of approved coating materials for epoxy-coated strand, available from the Transportation Laboratory.
B. The film thickness of the coating after curing shall be 381 µm to 1143 µm.
C. Prior to coating the strand, the Contractor shall furnish to the Transportation Laboratory a representative 230-g sample from each batch of epoxy coating material to be used. Each sample shall be packaged in an airtight container identified with the manufacturer's name and batch number.
D. Prior to use of the epoxy-coated strand in the work, written certifications referenced in ASTM Designation: A 882/A 882M, including a representative load-elongation curve for each size and grade of strand to be used and a copy of the quality control tests performed by the manufacturer, shall be furnished to the Engineer.
E. In addition to the requirements in Section 50-1.10, "Samples for Testing," four 1.5-m long samples of coated strand and one 1.5-m long sample of uncoated strand of each size and reel shall be furnished to the Engineer for testing. These samples, as selected by the Engineer, shall be representative of the material to be used in the work.
F. Epoxy-coated strand shall be cut using an abrasive saw.
G. All visible damage to coatings caused by shipping and handling, or during installation, including cut ends, shall be repaired in conformance with the requirements in ASTM Designation: A 882/A 882M. The patching material shall be furnished by the manufacturer of the epoxy powder and shall be applied in conformance with the manufacturer's written recommendations. The patching material shall be compatible with the original epoxy coating material and shall be inert in concrete.

- All bars in any individual member shall be of the same grade, unless otherwise permitted by the Engineer.
- When bars are to be extended by the use of couplers, the assembled units shall have a tensile strength of not less than the manufacturer's minimum guaranteed ultimate tensile strength of the bars. Failure of any one sample to meet this requirement will be cause for rejection of the heat of bars and lot of couplers. The location of couplers in the member shall be subject to approval by the Engineer.
- Wires shall be straightened if necessary to produce equal stress in all wires or wire groups or parallel lay cables that are to be stressed simultaneously or when necessary to ensure proper positioning in the ducts.
- Where wires are to be button-headed, the buttons shall be cold formed symmetrically about the axes of the wires. The buttons shall develop the minimum guaranteed ultimate tensile strength of the wire. No cold forming process shall be used that causes indentations in the wire. Buttonheads shall not contain wide open splits, more than 2 splits per head, or splits not parallel with the axis of the wire.
- Prestressing steel shall be protected against physical damage and rust or other results of corrosion at all times from manufacture to grouting or encasing in concrete. Prestressing steel that has sustained physical damage at any time shall be rejected. The development of visible rust or other results of corrosion shall be cause for rejection, when ordered by the Engineer.

CONTRACT NO. 04-0120F4
REPLACED PER ADDENDUM NO. 3 DATED NOVEMBER 7, 2005
• Epoxy-coated prestressing steel strand shall be covered with an opaque polyethylene sheeting or other suitable protective material to protect the strand from exposure to sunlight, salt spray, and weather. For stacked coils, the protective covering shall be draped around the perimeter of the stack. The covering shall be adequately secured; however, it should allow for air circulation around the strand to prevent condensation under the covering. Epoxy-coated strand shall not be stored within 300 m of ocean or tidal water for more than 2 months.

• Prestressing steel shall be packaged in containers or shipping forms for the protection of the steel against physical damage and corrosion during shipping and storage. Except for epoxy-coated strand, a corrosion inhibitor which prevents rust or other results of corrosion, shall be placed in the package or form, or shall be incorporated in a corrosion inhibitor carrier type packaging material, or when permitted by the Engineer, may be applied directly to the steel. The corrosion inhibitor shall have no deleterious effect on the steel or concrete or bond strength of steel to concrete. Packaging or forms damaged from any cause shall be immediately replaced or restored to original condition.

• The shipping package or form shall be clearly marked with a statement that the package contains high-strength prestressing steel, and the type of corrosion inhibitor used, including the date packaged.

• Prestressing steel for post-tensioning which is installed in members prior to placing and curing of the concrete, and which is not epoxy-coated, shall be continuously protected against rust or other results of corrosion, until grouted, by means of a corrosion inhibitor placed in the ducts or applied to the steel in the duct. The corrosion inhibitor shall conform to the provisions specified herein.

• When steam curing is used, prestressing steel for post-tensioning shall not be installed until the steam curing is completed.

• Water used for flushing ducts shall contain either quick lime (calcium oxide) or slaked lime (calcium hydroxide) in the amount of 0.01-kg/L. Compressed air used to blow out ducts shall be oil free.

• When prestressing steel for post-tensioning is installed in the ducts after completion of concrete curing, and if stressing and grouting are completed within 10 days after the installation of the prestressing steel, rust which may form during those 10 days will not be cause for rejection of the steel. Prestressing steel installed, tensioned, and grouted in this manner, all within 10 days, will not require the use of a corrosion inhibitor in the duct following installation of the prestressing steel. Prestressing steel installed as above but not grouted within 10 days shall be subject to all the requirements in this section pertaining to corrosion protection and rejection because of rust. The requirements in this section pertaining to tensioning and grouting within 10 days shall not apply to epoxy-coated prestressing steel strand.

• Any time prestressing steel for pretensioning is placed in the stressing bed and is exposed to the elements for more than 36 hours prior to encasement in concrete, adequate measures shall be taken by the Contractor, as approved by the Engineer, to protect the steel from contamination or corrosion.

• After final fabrication of the seven-wire prestressing steel strand, no electric welding of any form shall be performed on the prestressing steel. Whenever electric welding is performed on or near members containing prestressing steel, the welding ground shall be attached directly to the steel being welded.

• Pretensioned prestressing steel shall be cut off flush with the end of the member. For epoxy-coated prestressing steel, only abrasive saws shall be used to cut the steel. The exposed ends of the prestressing steel and a 25-mm strip of adjoining concrete shall be cleaned and painted. Cleaning shall be by wire brushing or abrasive blast cleaning to remove all dirt and residue on the metal or concrete surfaces. Immediately after cleaning, the surfaces shall be covered with one application of unthinned zinc-rich primer (organic vehicle type) conforming to the provisions in Section 91, "Paint," except that 2 applications shall be applied to surfaces which will not be covered by concrete or mortar. Aerosol cans shall not be used. The paint shall be thoroughly mixed at the time of application and shall be worked into any voids in the prestressing tendons.

The thirteenth paragraph in Section 50-1.08, "Prestressing," of the Standard Specifications is amended to read:

• Prestressing steel in pretensioned members shall not be cut or released until the concrete in the member has attained a compressive strength of not less than the value shown on the plans or 28 MPa, whichever is greater. In addition to these concrete strength requirements, when epoxy-coated prestressing steel strand is used, the steel shall not be cut or released until the temperature of the concrete surrounding the strand is less than 65°C, and falling.
The fifth paragraph in Section 50-1.10, "Samples for Testing," of the Standard Specifications is amended to read:

- The following samples of materials and tendons, selected by the Engineer from the prestressing steel at the plant or jobsite, shall be furnished by the Contractor to the Engineer well in advance of anticipated use:

 A. For wire or bars, one 2-m long sample and for strand, one 1.5-m long sample, of each size shall be furnished for each heat or reel.
 B. For epoxy-coated strand, one 1.5-m long sample of uncoated strand of each size shall be furnished for each reel.
 C. If the prestressing tendon is a bar, one 2-m long sample shall be furnished and in addition, if couplers are to be used with the bar, two 1.25-m long samples of bar, equipped with one coupler and fabricated to fit the coupler, shall be furnished.

The second paragraph in Section 50-1.11, "Payment," of the Standard Specifications is amended to read:

- The contract lump sum prices paid for prestressing cast-in-place concrete of the types listed in the Engineer's Estimate shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all work involved in furnishing, placing, and tensioning the prestressing steel in cast-in-place concrete structures, complete in place, as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer.

SECTION 51: CONCRETE STRUCTURES

Issue Date: January 31, 2005

The eleventh paragraph in Section 51-1.05, "Forms," of the Standard Specifications is amended to read:

- Form panels for exposed surfaces shall be furnished and placed in uniform widths of not less than 0.9-m and in uniform lengths of not less than 1.8 m, except at the end of continuously formed surfaces where the final panel length required is less than 1.8 m. Where the width of the member formed is less than 0.9-m, the width of the panels shall be not less than the width of the member. Panels shall be arranged in symmetrical patterns conforming to the general lines of the structure. Except when otherwise provided herein or shown on the plans, panels for vertical surfaces shall be placed with the long dimension horizontal and with horizontal joints level and continuous. Form panels for curved surfaces of columns shall be continuous for a minimum of one quarter of the circumference, or 1.8 m. For walls with sloping footings which do not abut other walls, panels may be placed with the long dimension parallel to the footing. Form panels on each side of the panel joint shall be precisely aligned, by means of supports or fasteners common to both panels, to result in a continuous unbroken concrete plane surface. When prefabricated soffit panels are used, form filler panels joining prefabricated panels shall have a uniform minimum width of 0.3-m and shall produce a smooth uniform surface with consistent longitudinal joint lines between the prefabricated panels.

The first and second paragraph in Section 51-1.06A, "Falsework Design and Drawings," of the Standard Specifications are amended to read:

- The Contractor shall submit to the Engineer working drawings and design calculations for falsework proposed for use at bridges. For bridges where the height of any portion of the falsework, as measured from the ground line to the soffit of the superstructure, exceeds 4.25 m; or where any individual falsework clear span length exceeds 4.85 m; or where provision for vehicular, pedestrian, or railroad traffic through the falsework is made; the drawings shall be signed by an engineer who is registered as a Civil Engineer in the State of California. Six sets of the working drawings and 2 copies of the design calculations shall be furnished. Additional working drawings and design calculations shall be submitted to the Engineer when specified in "Railroad Relations and Insurance" of the special provisions.
 - The falsework drawings shall include details of the falsework erection and removal operations showing the methods and sequences of erection and removal and the equipment to be used. The details of the falsework erection and removal operations shall demonstrate the stability of all or any portions of the falsework during all stages of the erection and removal operations.
The seventh paragraph in Section 51-1.06A, "Falsework Design and Drawings," of the Standard Specifications is amended to read:

- In the event that several falsework plans are submitted simultaneously, or an additional plan is submitted for review before the review of a previously submitted plan has been completed, the Contractor shall designate the sequence in which the plans are to be reviewed. In such event, the time to be provided for the review of any plan in the sequence shall be not less than the review time specified above for that plan, plus 2 weeks for each plan of higher priority which is still under review. A falsework plan submittal shall consist of plans for a single bridge or portion thereof. For multi-frame bridges, each frame shall require a separate falsework plan submittal.

Section 51-1.06A, "Falsework Design and Drawings," of the Standard Specifications is amended by adding the following paragraphs:

- If structural composite lumber is proposed for use, the falsework drawings shall clearly identify the structural composite lumber members by grade (E value), species, and type. The Contractor shall provide technical data from the manufacturer showing the tabulated working stress values of the composite lumber. The Contractor shall furnish a certificate of compliance as specified in Section 6-1.07, "Certificates of Compliance," for each delivery of structural composite lumber to the project site.
- For falsework piles with a calculated loading capacity greater than 900 kN, the falsework piles shall be designed by an engineer who is registered as either a Civil Engineer or a Geotechnical Engineer in the State of California, and the calculations shall be submitted to the Engineer.

The first paragraph in Section 51-1.06A(1), "Design Loads," of the Standard Specifications is amended to read:

- The design load for falsework shall consist of the sum of dead and live vertical loads, and an assumed horizontal load. The minimum total design load for any falsework, including members that support walkways, shall be not less than 4800 N/m² for the combined live and dead load regardless of slab thickness.

The eighth paragraph in Section 51-1.06A(1), "Design Loads," of the Standard Specifications is amended to read:

- In addition to the minimum requirements specified in this Section 51-1.06A, falsework for box girder structures with internal falsework bracing systems using flexible members capable of withstanding tensile forces only, shall be designed to include the vertical effects caused by the elongation of the flexible member and the design horizontal load combined with the dead and live loads imposed by concrete placement for the girder stems and connected bottom slabs. Falsework comprised of individual steel towers with bracing systems using flexible members capable of withstanding tensile forces only to resist overturning, shall be exempt from these additional requirements.

The third paragraph in Section 51-1.06B, "Falsework Construction," of the Standard Specifications is amended to read:

- When falsework is supported on piles, the piles shall be driven and the actual nominal resistance assessed in conformance with the provisions in Section 49, "Piling."

Section 51-1.06B, "Falsework Construction," of the Standard Specifications is amended by adding the following paragraphs:

- For falsework piles with a calculated nominal resistance greater than 1800 kN, the Contractor shall conduct dynamic monitoring of pile driving and generate field acceptance criteria based on a wave equation analysis. These analyses shall be signed by an engineer who is registered as a Civil Engineer in the State of California and submitted to the Engineer prior to completion of falsework erection.
- Prior to the placement of falsework members above the stringers, the final bracing system for the falsework shall be installed.
Section 51-1.06C, "Removing Falsework," of the Standard Specifications is amended by adding the following paragraph:

- The falsework removal operation shall be conducted in such a manner that any portion of the falsework not yet removed remains in a stable condition at all times.

The sixth paragraph in Section 51-1.09, "Placing Concrete," of the Standard Specifications is amended to read:

- Vibrators used to consolidate concrete containing epoxy-coated bar reinforcement or epoxy-coated prestressing steel shall have a resilient covering to prevent damage to the epoxy-coating on the reinforcement or prestressing steel.

The third sentence of the fourth paragraph in Section 51-1.12D, "Sheet Packing, Preformed Pads and Board Fillers," of the Standard Specifications is amended to read:

Surfaces of expanded polystyrene against which concrete is placed shall be faced with hardboard.

Section 51-1.12F, "Sealed Joints," of the Standard Specifications is amended by adding the following paragraph:

- The opening of the joints at the time of placing shall be that shown on the plans adjusted for temperature. Care shall be taken to avoid impairment of the clearance in any manner.

The first paragraph in Section 51-1.12F, "Sealed Joints," of the Standard Specifications is amended to read:

- Where shown on the plans, joints in structures shall be sealed with joint seals, joint seal assemblies, or seismic joints in conformance with the details shown on the plans, the provisions in these specifications, and the special provisions.

The fourth paragraph in Section 51-1.12F, "Sealed Joints," of the Standard Specifications is amended to read:

- Joint seal assemblies and seismic joints shall consist of metal or metal and elastomeric assemblies which are anchored or cast into a recess in the concrete over the joint. Strip seal joint seal assemblies consist of only one joint cell. Modular unit joint seal assemblies consist of more than one joint cell.

The fifth paragraph in Section 51-1.12F, "Sealed Joints," of the Standard Specifications is amended to read:

- The Movement Rating (MR) shall be measured normal to the longitudinal axis of the joint. The type of seal to be used for the MR shown on the plans shall be as follows:

<table>
<thead>
<tr>
<th>Movement Rating (MR)</th>
<th>Seal Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>MR ≤ 15 mm</td>
<td>Type A or Type B</td>
</tr>
<tr>
<td>15 mm < MR ≤ 30 mm</td>
<td>Type A (silicone only) or Type B</td>
</tr>
<tr>
<td>30 mm < MR ≤ 50 mm</td>
<td>Type B</td>
</tr>
<tr>
<td>50 mm < MR ≤ 100 mm</td>
<td>Joint Seal Assembly (Strip Seal)</td>
</tr>
<tr>
<td>MR > 100 mm</td>
<td>Joint Seal Assembly (Modular Unit) or Seismic Joint</td>
</tr>
</tbody>
</table>

The second paragraph in Section 51-1.12F(3)(b), "Type B Seal," of the Standard Specifications is amended to read:

- The preformed elastomeric joint seal shall conform to the requirements in ASTM Designation: D 2628 and the following:

A. The seal shall consist of a multi-channel, nonporous, homogeneous material furnished in a finished extruded form.
B. The minimum depth of the seal, measured at the contact surface, shall be at least 95 percent of the minimum uncompressed width of the seal as designated by the manufacturer.
C. When tested in conformance with the requirements in California Test 673 for Type B seals, joint seals shall provide a Movement Rating (MR) of not less than that shown on the plans.
D. The top and bottom edges of the joint seal shall maintain continuous contact with the sides of the groove over the entire range of joint movement.

E. The seal shall be furnished full length for each joint with no more than one shop splice in any 18-m length of seal.

F. The Contractor shall demonstrate the adequacy of the procedures to be used in the work before installing seals in the joints.

G. Shop splices and field splices shall have no visible offset of exterior surfaces, and shall show no evidence of bond failure.

H. At all open ends of the seal that would admit water or debris, each cell shall be filled to a depth of 80 mm with commercial quality open cell polyurethane foam, or closed by other means subject to approval by the Engineer.

Section 51-1.12F(3)(c), "Joint Seal Assemblies," of the Standard Specifications is amended to read:

(c) Joint Seal Assemblies and Seismic Joints

• Joint seal assemblies and seismic joints shall be furnished and installed in joints in bridge decks as shown on the plans and as specified in the special provisions.

The eighth paragraph in Section 51-1.12H(1), "Plain and Fabric Reinforced Elastomeric Bearing Pads," of the Standard Specifications is amended to read:

• The elastomer, as determined from test specimens, shall conform to the following:

<table>
<thead>
<tr>
<th>Test</th>
<th>ASTM Designation</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength, MPa</td>
<td>D 412</td>
<td>15.5 Min.</td>
</tr>
<tr>
<td>Elongation at break, percent</td>
<td>D 412</td>
<td>350 Min.</td>
</tr>
<tr>
<td>Compression set, 22 h at 70°C, percent</td>
<td>D 395 (Method B)</td>
<td>25 Max.</td>
</tr>
<tr>
<td>Tear strength, kN/m</td>
<td>D 624 (Die C)</td>
<td>31.5 Min.</td>
</tr>
<tr>
<td>Hardness (Type A)</td>
<td>D 2240 with 2 kg. mass</td>
<td>55 ±5</td>
</tr>
<tr>
<td>Ozone resistance 20% strain, 100 h at 40°C ±2°C</td>
<td>D 1149 (except 100 ±20 parts per 100 000 000)</td>
<td>No cracks</td>
</tr>
<tr>
<td>Instantaneous thermal stiffening at -40°C</td>
<td>D 1043</td>
<td>Shall not exceed 4 times the stiffness measured at 23°C</td>
</tr>
<tr>
<td>Low temperature brittleness at -40°C</td>
<td>D 746 (Procedure B)</td>
<td>Pass</td>
</tr>
</tbody>
</table>

The table in the ninth paragraph of Section 51-1.12H(1), "Plain and Fabric Reinforced Elastomeric Bearing Pads," of the Standard Specifications is amended to read:

Tensile strength, percent	-15
Elongation at break, percent	-40; but not less than 300% total elongation of the material
Hardness, points	+10

The first paragraph in Section 51-1.12H(2), "Steel Reinforced Elastomeric Bearings," of the Standard Specifications is amended to read:

• Steel reinforced elastomeric bearings shall conform to the requirements for steel-laminated elastomeric bearings in ASTM Designation: D 4014 and the following:

A. The bearings shall consist of alternating steel laminates and internal elastomer laminates with top and bottom elastomer covers. Steel laminates shall have a nominal thickness of 1.9 mm (14 gage). Internal elastomer laminates shall have a thickness of 12 mm, and top and bottom elastomer covers shall each have a thickness of 6 mm. The
combined thickness of internal elastomer laminates and top and bottom elastomer covers shall be equal to the bearing pad thickness shown on the plans. The elastomer cover to the steel laminates at the sides of the bearing shall be 3 mm. If guide pins or other devices are used to control the side cover over the steel laminates, any exposed portions of the steel laminates shall be sealed by vulcanized patching. The length, width, or diameter of the bearings shall be as shown on the plans.

B. The total thickness of the bearings shall be equal to the thickness of elastomer laminates and covers plus the thickness of the steel laminates.

C. Elastomer for steel reinforced elastomeric bearings shall conform to the provisions for elastomer in Section 51-1.12H(1), "Plain and Fabric Reinforced Elastomeric Bearing Pads."

D. A Certificate of Compliance conforming to the provisions in Section 6-1.07, "Certificates of Compliance," shall be furnished to the Engineer certifying that the bearings to be furnished conform to all of the above provisions. The Certificate of Compliance shall be supported by a certified copy of the results of tests performed by the manufacturer on the bearings.

E. One sample bearing shall be furnished to the Engineer from each lot of bearings to be furnished for the contract. Samples shall be available at least 3 weeks in advance of intended use. The sample bearing shall be one of the following:

<table>
<thead>
<tr>
<th>Bearing Pad Thickness as Shown on the Plans</th>
<th>Sample Bearing</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 50 mm</td>
<td>Smallest complete bearing shown on the plans</td>
</tr>
<tr>
<td>> 50 mm</td>
<td>* 57 ± 3 mm thick sample not less than 200 mm x 305 mm in plan and cut by the manufacturer from the center of one of the thickest complete bearings</td>
</tr>
</tbody>
</table>

* The sample bearing plus remnant parts of the complete bearing shall be furnished to the Engineer.

F. A test specimen taken from the sample furnished to the Engineer will be tested in conformance with the requirements in California Test 663. Specimens tested shall show no indication of loss of bond between the elastomer and steel laminates.

The fourth paragraph in Section 51-1.14, "Waterstops," of the Standard Specifications is amended to read:

- Neoprene shall be manufactured from a vulcanized elastomeric compound containing neoprene as the sole elastomer and shall conform to the following:

<table>
<thead>
<tr>
<th>Test</th>
<th>ASTM Designation</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength, MPa</td>
<td>D 412</td>
<td>13.8 Min.</td>
</tr>
<tr>
<td>Elongation at break, percent</td>
<td>D 412</td>
<td>300 Min.</td>
</tr>
<tr>
<td>Compression set, 22 h at 70°C, percent</td>
<td>D 395 (Method B)</td>
<td>30 Max.</td>
</tr>
<tr>
<td>Tear strength, kN/m</td>
<td>D 624 (Die C)</td>
<td>26.3 Min.</td>
</tr>
<tr>
<td>Hardness (Type A)</td>
<td>D 2240</td>
<td>55±5</td>
</tr>
<tr>
<td>Ozone resistance 20% strain, 100 h at 38°C ±1°C</td>
<td>D 1149 (except 100±20 parts per 100 000 000)</td>
<td>No cracks</td>
</tr>
<tr>
<td>Low temperature brittleness at -40°C</td>
<td>D 746 (Procedure B)</td>
<td>Pass</td>
</tr>
<tr>
<td>Flame resistance</td>
<td>C 542</td>
<td>Must not propagate flame</td>
</tr>
<tr>
<td>Oil Swell, ASTM Oil #3, 70 h at 100°C, volume change, percent</td>
<td>D 471</td>
<td>80 Max.</td>
</tr>
<tr>
<td>Water absorption, immersed 7 days at 70°C, change in mass, percent</td>
<td>D 471</td>
<td>15 Max.</td>
</tr>
</tbody>
</table>

CONTRACT NO. 04-0120F4
REPLACED PER ADDENDUM NO. 3 DATED NOVEMBER 7, 2005
The first sentence of the fourth paragraph in Section 51-1.17, "Finish Bridge Decks," of the Standard Specifications is amended to read:

- The smoothness of completed roadway surfaces of structures, approach slabs and the adjacent 15 m of approach pavement, and the top surfaces of concrete decks which are to be covered with another material, will be tested by the Engineer with a bridge profilograph in conformance with the requirements in California Test 547 and the requirements herein.

Section 51-1.17, "Finishing Bridge Decks," of the Standard Specifications is amended by deleting the seventh, thirteenth and fourteenth paragraphs.

The fourteenth paragraph in Section 51-1.23, "Payment," of the Standard Specifications is amended by deleting "and injecting epoxy in cracks".

SECTION 52: REINFORCEMENT

Issue Date: November 2, 2004

The first paragraph in Section 52-1.02A, "Bar Reinforcement," of the Standard Specifications is amended to read:

- Reinforcing bars shall be low-alloy steel deformed bars conforming to the requirements in ASTM Designation: A 706/A 706M, except that deformed or plain billet-steel bars conforming to the requirements in ASTM Designation: A 615/A 615M, Grade 280 or 420, may be used as reinforcement in the following 5 categories:
 A. Slope and channel paving,
 B. Minor structures,
 C. Sign and signal foundations (pile and spread footing types),
 D. Roadside rest facilities, and
 E. Concrete barrier Type 50 and Type 60 series and temporary railing.

The third paragraph in Section 52-1.04, "Inspection," of the Standard Specifications is amended to read:

- A Certificate of Compliance conforming to the provisions in Section 6-1.07, "Certificates of Compliance," shall also be furnished for each shipment of epoxy-coated bar reinforcement or wire reinforcement certifying that the coated reinforcement conforms to the requirements in ASTM Designation: A 775/A 775M or A 884/A 884M respectively, and the provisions in Section 52-1.02B, "Epoxy-coated Reinforcement." The Certificate of Compliance shall include all of the certifications specified in ASTM Designation: A 775/A 775M or A 884/A 884M respectively.

Section 52-1.07 "Placing," of the Standard Specifications is amended by deleting item C of the third paragraph.

The eleventh paragraph in Section 52-1.07, "Placing," of the Standard Specifications is amended to read:

- Attention is directed to the provisions in Section 7-1.09, "Public Safety." Whenever a portion of an assemblage of bar reinforcing steel that is not encased in concrete exceeds 6 m in height, the Contractor shall submit to the Engineer for approval, in accordance with the provisions in Section 5-1.02, "Plans and Working Drawings," working drawings and design calculations for the temporary support system to be used. The working drawings and design calculations shall be signed by an engineer who is registered as a Civil Engineer in the State of California. The temporary support system shall be designed to resist all expected loads and shall be adequate to prevent collapse or overturning of the assemblage. If the installation of
forms or other work requires revisions to or temporary release of any portion of the temporary support system, the working drawings shall show the support system to be used during each phase of construction. The minimum horizontal wind load to be applied to the bar reinforcing steel assemblage, or to a combined assemblage of reinforcing steel and forms, shall be the sum of the products of the wind impact area and the applicable wind pressure value for each height zone. The wind impact area is the total projected area of the cage normal to the direction of the applied wind. Wind pressure values shall be determined from the following table:

<table>
<thead>
<tr>
<th>Height Zone (Meters above ground)</th>
<th>Wind Pressure Value (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-9.0</td>
<td>960</td>
</tr>
<tr>
<td>9.1-15.0</td>
<td>1200</td>
</tr>
<tr>
<td>15.1-30.0</td>
<td>1440</td>
</tr>
<tr>
<td>Over 30</td>
<td>1675</td>
</tr>
</tbody>
</table>

Section 52-1.08 "Splicing," of the Standard Specifications is amended to read:

52-1.08 SPICING

- Splices of reinforcing bars shall consist of lap splices, service splices, or ultimate butt splices.
- Splicing of reinforcing bars will not be permitted at a location designated on the plans as a "No-Splice Zone." At the option of the Contractor, reinforcing bars may be continuous at locations where splices are shown on the plans. The location of splices, except where shown on the plans, shall be determined by the Contractor using available commercial lengths where practicable.
- Unless otherwise shown on the plans, splices in adjacent reinforcing bars at any particular section shall be staggered. The minimum distance between staggered lap splices or mechanical lap splices shall be the same as the length required for a lap splice in the largest bar. The minimum distance between staggered butt splices shall be 600 mm, measured between the midpoints of the splices along a line which is centered between the axes of the adjacent bars.

52-1.08A Lap Splicing Requirements

- Splices made by lapping shall consist of placing reinforcing bars in contact and wiring them together, maintaining the alignment of the bars and the minimum clearances. Should the Contractor elect to use a butt welded or mechanical splice at a location not designated on the plans as requiring a service or ultimate butt splice, this splice shall conform to the testing requirements for service splice.
- Reinforcing bars shall not be spliced by lapping at locations where the concrete section is not sufficient to provide a minimum clear distance of 50 mm between the splice and the nearest adjacent bar. The clearance to the surface of the concrete specified in Section 52-1.07, "Placing," shall not be reduced.
- Reinforcing bars Nos. 43 and 57 shall not be spliced by lapping.
- Where ASTM Designations: A 615/A 615M, Grade 420 or A 706/A 706M reinforcing bars are required, the length of lap splices shall be as follows: Reinforcing bars No. 25 or smaller shall be lapped at least 45 diameters of the smaller bar joined; and reinforcing bars Nos. 29, 32, and 36 shall be lapped at least 60 diameters of the smaller bar joined, except when otherwise shown on the plans.
- Where ASTM Designation: A 615/A 615M, Grade 280 reinforcing bars are permitted, the length of lap splices shall be as follows: Reinforcing bars No. 25 or smaller shall be lapped at least 30 diameters of the smaller bar joined; and reinforcing bars Nos. 29, 32, and 36 shall be lapped at least 45 diameters of the smaller bar joined, except when otherwise shown on the plans.
- Splices in bundled bars shall conform to the following:
 A. In bundles of 2 bars, the length of the lap splice shall be the same as the length of a single bar lap splice.
 B. In bundles of 3 bars, the length of the lap splice shall be 1.2 times the length of a single bar lap splice.
- Welded wire fabric shall be lapped such that the overlap between the outermost cross wires is not less than the larger of:
 A. 150 mm,
 B. The spacing of the cross wires plus 50 mm, or
 C. The numerical value of the longitudinal wire size (MW-Size Number) times 370 divided by the spacing of the longitudinal wires in millimeters.

CONTRACT NO. 04-0120F4
REPLACED PER ADDENDUM NO. 3 DATED NOVEMBER 7, 2005
52-1.08B Service Splicing and Ultimate Butt Splicing Requirements

- Service splices and ultimate butt splices shall be either butt welded or mechanical splices, shall be used at the locations shown on the plans, and shall conform to the requirements of these specifications and the special provisions.

52-1.08B(1) Mechanical Splices

- Mechanical splices to be used in the work shall be on the Department's current prequalified list before use. The prequalified list can be obtained from the Department's internet site listed in the special provisions or by contacting the Transportation Laboratory directly.
- When tested in conformance with the requirements in California Test 670, the total slip shall not exceed the values listed in the following table:

<table>
<thead>
<tr>
<th>Reinforcing Bar Number</th>
<th>Total Slip (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>250</td>
</tr>
<tr>
<td>16</td>
<td>250</td>
</tr>
<tr>
<td>19</td>
<td>250</td>
</tr>
<tr>
<td>22</td>
<td>350</td>
</tr>
<tr>
<td>25</td>
<td>350</td>
</tr>
<tr>
<td>29</td>
<td>350</td>
</tr>
<tr>
<td>32</td>
<td>450</td>
</tr>
<tr>
<td>36</td>
<td>450</td>
</tr>
<tr>
<td>43</td>
<td>600</td>
</tr>
<tr>
<td>57</td>
<td>750</td>
</tr>
</tbody>
</table>

- Slip requirements shall not apply to mechanical lap splices, splices that are welded, or splices that are used on hoops.
- Splicing procedures shall be in conformance with the manufacturer's recommendations, except as modified in this section. Splices shall be made using the manufacturer's standard equipment, jigs, clamps, and other required accessories.
- Splice devices shall have a clear coverage of not less than 40 mm measured from the surface of the concrete to the outside of the splice device. Stirrups, ties, and other reinforcement shall be adjusted or relocated, and additional reinforcement shall be placed, if necessary, to provide the specified clear coverage to reinforcement.
- The Contractor shall furnish the following information for each shipment of splice material in conformance with the provisions in Section 6-1.07, "Certificates of Compliance:"
 A. The type or series identification of the splice material including tracking information for traceability.
 B. The bar grade and size number to be spliced.
 C. A copy of the manufacturer's product literature giving complete data on the splice material and installation procedures.
 D. A statement that the splicing systems and materials used in conformance with the manufacturer's installation procedures will develop the required tensile strengths, based on the nominal bar area, and will conform to the total slip requirements and the other requirements in these specifications.
 E. A statement that the splice material conforms to the type of mechanical splice in the Department's current prequalified list.

52-1.08B(2) Butt Welded Splices

- Except for resistance butt welds, butt welded splices of reinforcing bars shall be complete joint penetration butt welds conforming to the requirements in AWS D 1.4, and these specifications.
 - Welders and welding procedures shall be qualified in conformance with the requirements in AWS D 1.4.
 - Only the joint details and dimensions as shown in Figure 3.2, "Direct Butt Joints," of AWS D 1.4, shall be used for making complete joint penetration butt welds of bar reinforcement. Split pipe backing shall not be used.
 - Butt welds shall be made with multiple weld passes using a stringer bead without an appreciable weaving motion. The maximum stringer bead width shall be 2.5 times the diameter of the electrode and slagging shall be performed between each weld pass. Weld reinforcement shall not exceed 4 mm in convexity.
 - Electrodes used for welding shall meet the minimum Charpy V-notch impact requirement of 27°J at –20°C.
• For welding of bars conforming to the requirements of ASTM Designation: A 615/A 615M, Grade 280 or Grade 420, the requirements of Table 5.2, "Minimum Preheat and Interpass Temperatures," of AWS D 1.4 are superseded by the following:

The minimum preheat and interpass temperatures shall be 200°C for Grade 280 bars and 300°C for Grade 420 bars. Immediately after completing the welding, at least 150 mm of the bar on each side of the splice shall be covered by an insulated wrapping to control the rate of cooling. The insulated wrapping shall remain in place until the bar has cooled below 90°C.

• When welding different grades of reinforcing bars, the electrode shall conform to Grade 280 bar requirements and the preheat shall conform to the Grade 420 bar requirements.
 • In the event that any of the specified preheat, interpass, and post weld cooling temperatures are not met, all weld and heat affected zone metal shall be removed and the splice rewelded.
 • Welding shall be protected from air currents, drafts, and precipitation to prevent loss of heat or loss of arc shielding. The method of protecting the welding area from loss of heat or loss of arc shielding shall be subject to approval by the Engineer.
 • Reinforcing bars shall not be direct butt spliced by thermite welding.
 • Procedures to be used in making welded splices in reinforcing bars, and welders employed to make splices in reinforcing bars, shall be qualified by tests performed by the Contractor on sample splices of the type to be used, before making splices to be used in the work.

52-1.08B(3) Resistance Butt Welds
• Shop produced resistance butt welds shall be produced by a fabricator who is approved by the Transportation Laboratory. The list of approved fabricators can be obtained from the Department’s internet site or by contacting the Transportation Laboratory directly.
 • Before manufacturing hoops using resistance butt welding, the Contractor shall submit to the Engineer the manufacturer's Quality Control (QC) manual for the fabrication of hoops. As a minimum, the QC manual shall include the following:
 A. The pre-production procedures for the qualification of material and equipment.
 B. The methods and frequencies for performing QC procedures during production.
 C. The calibration procedures and calibration frequency for all equipment.
 D. The welding procedure specification (WPS) for resistance welding.
 E. The method for identifying and tracking lots.

52-1.08C Service Splice and Ultimate Butt Splice Testing Requirements
• The Contractor shall designate in writing a splicing Quality Control Manager (QCM). The QCM shall be responsible directly to the Contractor for 1) the quality of all service and ultimate butt splicing including the inspection of materials and workmanship performed by the Contractor and all subcontractors; and 2) submitting, receiving, and approving all correspondence, required submittals, and reports regarding service and ultimate splicing to and from the Engineer.
 • The QCM shall not be employed or compensated by any subcontractor, or by other persons or entities hired by subcontractors, who will provide other services or materials for the project. The QCM may be an employee of the Contractor.
 • Testing on prequalification and production sample splices shall be performed at the Contractor's expense, at an independent qualified testing laboratory. The laboratory shall not be employed or compensated by any subcontractor, or by other persons or entities hired by subcontractors who will provide other services or materials for the project, and shall have the following:
 A. Proper facilities, including a tensile testing machine capable of breaking the largest size of reinforcing bar to be tested with minimum lengths as shown in this section.
 B. A device for measuring the total slip of the reinforcing bars across the splice to the nearest 25 µm, that, when placed parallel to the longitudinal axis of the bar is able to simultaneously measure movement across the splice at 2 locations 180 degrees apart.
 C. Operators who have received formal training for performing the testing requirements of ASTM Designation: A 370 and California Test 670.
D. A record of annual calibration of testing equipment performed by an independent third party that has 1) standards that are traceable to the National Institute of Standards and Technology, and 2) a formal reporting procedure, including published test forms.

- The Contractor shall provide samples for quality assurance testing in conformance with the provisions in these specifications and the special provisions.
 - Prequalification and production sample splices shall be 1) a minimum length of 1.5 meters for reinforcing bars No. 25 or smaller, and 2 meters for reinforcing bars No. 29 or larger, with the splice located at mid-point; and 2) suitably identified before shipment with weatherproof markings that do not interfere with the Engineer's tamper-proof markings or seals. Splices that show signs of tampering will be rejected.
 - Shorter length sample splice bars may be furnished if approved in writing by the Engineer.
- The Contractor shall ensure that sample splices are properly secured and transported to the testing laboratory in such a manner that no alterations to the physical conditions occur during transportation. Sample splices shall be tested in the same condition as received. No modifications to the sample splices shall be made before testing.
 - Each set or sample splice, as defined herein, shall be identified as representing either a prequalification or production test sample splice.
 - For the purpose of production testing, a lot of either service splices or ultimate butt splices is defined as 1) 150, or fraction thereof, of the same type of mechanical splices used for each bar size and each bar deformation pattern that is used in the work, or 2) 150, or fraction thereof, of complete joint penetration butt welded splices or resistance butt welded splices for each bar size used in the work. If different diameters of hoop reinforcement are shown on the plans, separate lots shall be used for each different hoop diameter.
 - Whenever a lot of splices is rejected, the rejected lot and subsequent lots of splices shall not be used in the work until 1) the QCM performs a complete review of the Contractor's quality control process for these splices, 2) a written report is submitted to the Engineer describing the cause of failure for the splices in this lot and provisions for preventing similar failures in future lots, and 3) the Engineer has provided the Contractor with written notification that the report is acceptable. The Engineer shall have 3 working days after receipt of the report to provide notification to the Contractor. In the event the Engineer fails to provide notification within the time allowed, and if, in the opinion of the Engineer, completion of the work is delayed or interfered with by reason of the Engineer's delay in providing notification, the Contractor will be compensated for any resulting loss, and an extension of time will be granted in the same manner as provided for in Section 8-1.09, "Right of Way Delays."

52-1.08C(1) Splice Prequalification Report

- Before using any service splices or ultimate butt splices in the work, the Contractor shall submit a Splice Prequalification Report. The report shall include splice material information, names of the operators who will be performing the splicing, and descriptions of the positions, locations, equipment, and procedures that will be used in the work.
- The Splice Prequalification Report shall also include certifications from the fabricator for prequalifications of operators and procedures based on sample tests performed no more than 2 years before submitting the report. Each operator shall be certified by performing 2 sample splices for each bar size of each splice type that the operator will be performing in the work. For deformation-dependent types of splice devices, each operator shall be certified by performing 2 additional samples for each bar size and deformation pattern that will be used in the work.
- Prequalification sample splices shall be tested by an independent qualified testing laboratory and shall conform to the appropriate production test criteria and slip requirements specified herein. When epoxy-coated reinforcement is required, resistance butt welded sample splices shall have the weld flash removed by the same procedure as will be used in the work, before coating and testing. The Splice Prequalification Report shall include the certified test results for all prequalification sample splices.
- The QCM shall review and approve the Splice Prequalification Report before submitting it to the Engineer for approval. The Contractor shall allow 2 weeks for the review and approval of a complete report before performing any service splicing or ultimate butt splicing in the work. In the event the Engineer fails to complete the review within the time allowed, and in the opinion of the Engineer, completion of the work is delayed or interfered with by reason of the Engineer's delay in completing the review, the Contractor will be compensated for any resulting loss, and an extension of time will be granted, in the same manner as provided for in Section 8-1.09, "Right of Way Delays."
52-1.08C(2) Service Splice Test Criteria

- Service production and quality assurance sample splices shall be tensile tested in conformance with the requirements in ASTM Designation: A 370 and California Test 670 and shall develop a minimum tensile strength of not less than 550 MPa.

52-1.08C(2)(a) Production Test Requirements for Service Splices

- Production tests shall be performed by the Contractor's independent laboratory for all service splices used in the work. A production test shall consist of testing 4 sample splices prepared for each lot of completed splices. The samples shall be prepared by the Contractor using the same splice material, position, operators, location, and equipment, and following the same procedure as used in the work.
- At least one week before testing, the Contractor shall notify the Engineer in writing of the date when and the location where the testing of the samples will be performed.
- The 4 samples from each production test shall be securely bundled together and identified with a completed sample identification card before shipment to the independent laboratory. The card will be furnished by the Engineer. Bundles of samples containing fewer than 4 samples of splices shall not be tested.
- Before performing any tensile tests on production test sample splices, one of the 4 samples shall be tested for, and shall conform to, the requirements for total slip. Should this sample not meet the total slip requirements, one retest, in which the 3 remaining samples are tested for total slip, will be allowed. Should any of the 3 remaining samples not conform to the total slip requirements, all splices in the lot represented by this production test will be rejected.
- If 3 or more sample splices from a production test conform to the provisions in this Section 52-1.08C(2), "Service Splice Test Criteria," all splices in the lot represented by this production test will be considered acceptable, provided each of the 4 samples develops a minimum tensile strength of not less than 420 MPa.
- Should only 2 sample splices from a production test conform to the provisions in this Section 52-1.08C(2), "Service Splice Test Criteria," one additional production test shall be performed on the same lot of splices. This additional production test shall consist of testing 4 samples splices that have been randomly selected by the Engineer and removed by the Contractor from the actual completed lot of splices. Should any of the 4 splices from this additional test fail to conform to these provisions, all splices in the lot represented by these production tests will be rejected.
- If only one sample splice from a production test conforms to the provisions in this Section 52-1.08C(2), "Service Splice Test Criteria," all splices in the lot represented by this production test will be rejected.
- If a production test for a lot fails, the Contractor shall repair or replace all reinforcing bars, from which sample splices were removed, before the Engineer selects additional splices from this lot for further testing.

52-1.08C(2)(b) Quality Assurance Test Requirements for Service Splices

- For the first production test performed, and for at least one, randomly selected by the Engineer, of every 5 subsequent production tests, or portion thereof, the Contractor shall concurrently prepare 4 additional service quality assurance sample splices. These service quality assurance sample splices shall be prepared in the same manner as specified herein for service production sample splices.
- These 4 additional quality assurance sample splices shall be shipped to the Transportation Laboratory for quality assurance testing. The 4 sample splices shall be securely bundled together and identified by location and contract number with weatherproof markings before shipment. Bundles containing fewer than 4 samples of splices will not be tested. Sample splices not accompanied by the supporting documentation required in Section 52-1.08B(1), for mechanical splices, or in Section 52-1.08B(3), for resistance butt welds, will not be tested.
- Quality assurance testing will be performed in conformance with the requirements for service production sample splices in Section 52-1.08C(2)(a), "Production Test Requirements for Service Splices."

52-1.08C(3) Ultimate Butt Splice Test Criteria

- Ultimate production and quality assurance sample splices shall be tensile tested in conformance with the requirements described in ASTM Designation: A 370 and California Test 670.
- A minimum of one control bar shall be removed from the same bar as, and adjacent to, all ultimate production, and quality assurance sample splices. Control bars shall be 1) a minimum length of one meter for reinforcing bars No. 25 or smaller and 1.5 meters for reinforcing bars No. 29 or larger, and 2) suitably identified before shipment with weatherproof markings that do not interfere with the Engineer's tamper-proof markings or seals. The portion of adjacent bar remaining in the work shall also be identified with weatherproof markings that correspond to its adjacent control bar.
- Each sample splice and its associated control bar shall be identified and marked as a set. Each set shall be identified as representing a prequalification, production, or quality assurance sample splice.
- The portion of hoop reinforcing bar, removed to obtain a sample splice and control bar, shall be replaced using a prequalified ultimate mechanical butt splice, or the hoop shall be replaced in kind.
Reinforcing bars, other than hoops, from which sample splices are removed, shall be repaired using ultimate mechanical butt splices conforming to the provisions in Section 52-1.08C(1), "Splice Prequalification Report," or the bars shall be replaced in kind. These bars shall be repaired or replaced such that no splices are located in any "No Splice Zone" shown on the plans.

Ultimate production and quality assurance sample splices shall rupture in the reinforcing bar either: 1) outside of the affected zone or 2) within the affected zone, provided that the sample splice has achieved at least 95 percent of the ultimate tensile strength of the control bar associated with the sample splice. In addition, necking of the bar, as defined in California Test 670, shall be evident at rupture regardless of whether the bar breaks inside or outside the affected zone.

The affected zone is the portion of the reinforcing bar where any properties of the bar, including the physical, metallurgical, or material characteristics, have been altered by fabrication or installation of the splice.

The ultimate tensile strength shall be determined for all control bars by tensile testing the bars to rupture, regardless of where each sample splice ruptures. If 2 control bars are tested for one sample splice, the bar with the lower ultimate tensile strength shall be considered the control bar.

Ultimate production and quality assurance sample splices shall rupture in the reinforcing bar either: 1) outside of the affected zone or 2) within the affected zone, provided that the sample splice has achieved at least 95 percent of the ultimate tensile strength of the control bar associated with the sample splice. In addition, necking of the bar, as defined in California Test 670, shall be evident at rupture regardless of whether the bar breaks inside or outside the affected zone.

The affected zone is the portion of the reinforcing bar where any properties of the bar, including the physical, metallurgical, or material characteristics, have been altered by fabrication or installation of the splice.

The ultimate tensile strength shall be determined for all control bars by tensile testing the bars to rupture, regardless of where each sample splice ruptures. If 2 control bars are tested for one sample splice, the bar with the lower ultimate tensile strength shall be considered the control bar.

52-1.08C(3)(a) Production Test Requirements for Ultimate Butt Splices

- Production tests shall be performed for all ultimate butt splices used in the work. A production test shall consist of testing 4 sets of sample splices and control bars removed from each lot of completed splices, except when quality assurance tests are performed.
 - After the splices in a lot have been completed, and the bars have been epoxy-coated when required, the QCM shall notify the Engineer in writing that the splices in this lot conform to the specifications and are ready for testing. Except for hoops, sample splices will be selected by the Engineer at the job site. Sample splices for hoops will be selected by the Engineer either at the job site or a fabrication facility.
 - After notification has been received, the Engineer will randomly select the 4 sample splices to be removed from the lot and place tamper-proof markings or seals on them. The Contractor shall select the adjacent control bar for each sample splice bar, and the Engineer will place tamper-proof markings or seals on them. These ultimate production sample splices and control bars shall be removed by the Contractor, and tested by an independent qualified testing laboratory.
 - At least one week before testing, the Contractor shall notify the Engineer in writing of the date when and the location where the testing of the samples will be performed.
 - A sample splice or control bar from any set will be rejected if a tamper-proof marking or seal is disturbed before testing.
 - The 4 sets from each production test shall be securely bundled together and identified with a completed sample identification card before shipment to the independent laboratory. The card will be furnished by the Engineer. Bundles of samples containing fewer than 4 sets of splices shall not be tested.
 - Before performing any tensile tests on production test sample splices, one of the 4 sample splices shall be tested for, and shall conform to, the requirements for total slip. Should this sample splice not meet these requirements, one retest, in which the 3 remaining sample splices are tested for total slip, will be allowed. Should any of the 3 remaining sample splices not conform to these requirements, all splices in the lot represented by this production test will be rejected.
 - If 3 or more sample splices from a production test conform to the provisions in Section 52-1.08C(3), "Ultimate Butt Splice Test Criteria," all splices in the lot represented by this production test will be considered acceptable.
 - Should only 2 sample splices from a production test conform to the provisions in Section 52-1.08C(3), "Ultimate Butt Splice Test Criteria," one additional production test shall be performed on the same lot of splices. Should any of the 4 sample splices from this additional test fail to conform to these provisions, all splices in the lot represented by these production tests will be rejected.
 - If only one sample splice from a production test conforms to the provisions in Section 52-1.08C(3), "Ultimate Butt Splice Test Criteria," all splices in the lot represented by this production test will be rejected.
 - If a production test for a lot fails, the Contractor shall repair or replace all reinforcing bars from which sample splices were removed, complete in place, before the Engineer selects additional splices from this lot for further testing.
 - Production tests will not be required on repaired splices from a lot, regardless of the type of prequalified ultimate mechanical butt splice used to make the repair. However, should an additional production test be required, the Engineer may select any repaired splice for the additional production test.

52-1.08C(3)(b) Quality Assurance Test Requirements for Ultimate Butt Splices

- For the first production test performed, and for at least one, randomly selected by the Engineer, of every 5 subsequent production tests, or portion thereof, the Contractor shall concurrently prepare 4 additional ultimate quality assurance sample splices along with associated control bars.
• Each time 4 additional ultimate quality assurance sample splices are prepared, 2 of these quality assurance sample splice and associated control bar sets and 2 of the production sample splice and associated control bar sets, together, shall conform to the requirements for ultimate production sample splices in Section 52-1.08C(3)(a), "Production Test Requirements for Ultimate Butt Splices."
 • The 2 remaining quality assurance sample splice and associated control bar sets, along with the 2 remaining production sample splice and associated control bar sets shall be shipped to the Transportation Laboratory for quality assurance testing. The 4 sets shall be securely bundled together and identified by location and contract number with weatherproof markings before shipment. Bundles containing fewer than 4 sets will not be tested.
 • Quality assurance testing will be performed in conformance with the requirements for ultimate production sample splices in Section 52-1.08C(3)(a), "Production Test Requirements for Ultimate Butt Splices."

52-1.08C(3)(c) Nondestructive Splice Tests

• When the specifications allow for welded sample splices to be taken from other than the completed lot of splices, the Contractor shall meet the following additional requirements.
 • Except for resistance butt welded splices, radiographic examinations shall be performed on 25 percent of all complete joint penetration butt welded splices from a production lot. The size of a production lot will be a maximum of 150 splices. The Engineer will select the splices which will compose the production lot and also the splices within each production lot to be radiographically examined.
 • All required radiographic examinations of complete joint penetration butt welded splices shall be performed by the Contractor in conformance with the requirements in AWS D 1.4 and these specifications.
 • Before radiographic examination, welds shall conform to the requirements in Section 4.4, "Quality of Welds," of AWS D 1.4.
 • Should more than 12 percent of the splices which have been radiographically examined in any production lot be defective, an additional 25 percent of the splices, selected by the Engineer from the same production lot, shall be radiographically examined. Should more than 12 percent of the cumulative total of splices tested from the same production lot be defective, all remaining splices in the lot shall be radiographically examined.
 • Additional radiographic examinations performed due to the identification of defective splices shall be at the Contractor's expense.
 • All defects shall be repaired in conformance with the requirements in AWS D 1.4.
 • The Contractor shall notify the Engineer in writing 48 hours before performing any radiographic examinations.
 • The radiographic procedure used shall conform to the requirements in AWS D1.1, AWS D1.4, and the following:

Two exposures shall be made for each complete joint penetration butt welded splice. For each of the 2 exposures, the radiation source shall be centered on each bar to be radiographed. The first exposure shall be made with the radiation source placed at zero degrees from the top of the weld and perpendicular to the weld root and identified with a station mark of "0." The second exposure shall be at 90 degrees to the "0" station mark and shall be identified with a station mark of "90." When obstructions prevent a 90 degree placement of the radiation source for the second exposure, and when approved in writing by the Engineer, the source may be rotated, around the centerline of the reinforcing bar, a maximum of 25 degrees.

For field produced complete joint penetration butt welds, no more than one weld shall be radiographed during one exposure. For shop produced complete joint penetration butt welds, if more than one weld is to be radiographed during one exposure, the angle between the root line of each weld and the direction to the radiation source shall be not less than 65 degrees.

Radiographs shall be made by either X-ray or gamma ray. Radiographs made by X-ray or gamma rays shall have densities of not less than 2.3 nor more than 3.5 in the area of interest. A tolerance of 0.05 in density is allowed for densitometer variations. Gamma rays shall be from the iridium 192 isotope and the emitting specimen shall not exceed 4.45 mm in the greatest diagonal dimension.

The radiographic film shall be placed perpendicular to the radiation source at all times; parallel to the root line of the weld unless source placement determines that the film must be turned; and as close to the root of the weld as possible. The minimum source to film distance shall be maintained so as to ensure that all radiographs maintain a maximum geometric unsharpness of 0.020 at all times, regardless of the size of the reinforcing bars.

Penetrameters shall be placed on the source side of the bar and perpendicular to the radiation source at all times. One penetratramer shall be placed in the center of each bar to be radiographed, perpendicular to the weld root, and adjacent to the weld. Penetrameter images shall not appear in the weld area.
When radiography of more than one weld is being performed per exposure, each exposure shall have a minimum of one penetrameter per bar, or 3 penetrameters per exposure. When 3 penetrameters per exposure are used, one penetrameter shall be placed on each of the 2 outermost bars of the exposure, and the remaining penetrameter shall be placed on a centrally located bar.

An allowable weld buildup of 4 mm may be added to the total material thickness when determining the proper penetrameter selection. No image quality indicator equivalency will be accepted. Wire penetrameters or penetrameter blocks shall not be used.

Penetrameters shall be sufficiently shimmed using a radiographically identical material. Penetrameter image densities shall be a minimum of 2.0 and a maximum of 3.6.

Radiographic film shall be Class 1, regardless of the size of reinforcing bars.

Radiographs shall be free of film artifacts and processing defects, including, but not limited to, streaks, scratches, pressure marks or marks made for the purpose of identifying film or welding indications.

Each splice shall be clearly identified on each radiograph and the radiograph identification and marking system shall be established between the Contractor and the Engineer before radiographic inspection begins. Film shall be identified by lead numbers only; etching, flashing or writing in identifications of any type will not be permitted. Each piece of film identification information shall be legible and shall include, as a minimum, the following information: Contractor's name, date, name of nondestructive testing firm, initials of radiographer, contract number, part number and weld number. The letter "R" and repair number shall be placed directly after the weld number to designate a radiograph of a repaired weld.

Radiographic film shall be developed within a time range of one minute less to one minute more than the film manufacturer's recommended maximum development time. Sight development will not be allowed.

Processing chemistry shall be done with a consistent mixture and quality, and processing rinses and tanks shall be clean to ensure proper results. Records of all developing processes and any chemical changes to the developing processes shall be kept and furnished to the Engineer upon request. The Engineer may request, at any time, that a sheet of unexposed film be processed in the presence of the Engineer to verify processing chemical and rinse quality.

The results of all radiographic interpretations shall be recorded on a signed certification and a copy kept with the film packet.

Technique sheets prepared in conformance with the requirements in ASME Boiler and Pressure Vessels Code, Section V, Article 2 Section T-291 shall also contain the developer temperature, developing time, fixing duration and all rinse times.

52-1.08D Reporting Test Results

- A Production Test Report for all testing performed on each lot shall be prepared by the independent testing laboratory performing the testing and submitted to the QCM for review and approval. The report shall be signed by an engineer who represents the laboratory and is registered as a Civil Engineer in the State of California. The report shall include, as a minimum, the following information for each test: contract number, bridge number, lot number and location, bar size, type of splice, length of mechanical splice, length of test specimen, physical condition of test sample splice and any associated control bar, any notable defects, total measured slip, ultimate tensile strength of each splice, and for ultimate butt splices, limits of affected zone, location of visible necking area, ultimate tensile strength and 95 percent of this ultimate tensile strength for each control bar, and a comparison between 95 percent of the ultimate tensile strength of each control bar and the ultimate tensile strength of its associated splice.

- The QCM must review, approve, and forward each Production Test Report to the Engineer for review before the splices represented by the report are encased in concrete. The Engineer will have 3 working days to review each Production Test Report and respond in writing after a complete report has been received. Should the Contractor elect to encase any splices before receiving notification from the Engineer, it is expressly understood that the Contractor will not be relieved of the responsibility for incorporating material in the work that conforms to the requirements of the plans and specifications. Material not conforming to these requirements will be subject to rejection. Should the Contractor elect to wait to encase splices pending notification by the Engineer, and in the event the Engineer fails to complete the review and provide notification within the time allowed, and if, in the opinion of the Engineer, the work is delayed or interfered with by reason of the Engineer's delay in completing the review, the Contractor will be compensated for any resulting loss, and an extension of time will be granted, in the same manner as provided for in Section 8-1.09, "Right of Way Delays."

- Quality assurance test results for each bundle of 4 sets or 4 samples of splices will be reported in writing to the Contractor within 3 working days after receipt of the bundle by the Transportation Laboratory. In the event that more than one bundle is received on the same day, 2 additional working days shall be allowed for providing test results for each additional bundle received. A test report will be made for each bundle received. Should the Contractor elect to encase splices before receiving notification from the Engineer, it is expressly understood that the Contractor will not be relieved of

CONTRACT NO. 04-0120F4
REPLACED PER ADDENDUM NO. 3 DATED NOVEMBER 7, 2005
the responsibility for incorporating material in the work that conforms to the requirements of the plans and specifications. Material not conforming to these requirements will be subject to rejection. Should the Contractor elect to wait to encase splices pending notification by the Engineer, and in the event the Engineer fails to complete the review within the time allowed, and in the opinion of the Engineer, completion of the work is delayed or interfered with by reason of the Engineer's delay in completing the review, the Contractor will be compensated for any resulting loss, and an extension of time will be granted, in the same manner as provided for in Section 8-1.09, "Right of Way Delays."

Section 52-1.11, "Payment," of the Standard Specifications is amended by adding the following paragraph after the seventh paragraph:

• If a portion or all of the reinforcing steel is epoxy-coated more than 480 air line kilometers from both Sacramento and Los Angeles, additional shop inspection expenses will be sustained by the State. Whereas it is and will be impracticable and extremely difficult to ascertain and determine the actual increase in these expenses, it is agreed that payment to the Contractor for furnishing the epoxy-coated reinforcement will be reduced $5000 for each epoxy-coating facility located more than 480 air line kilometers from both Sacramento and Los Angeles and an additional $3000 ($8000 total) for each epoxy-coating facility located more than 4800 air line kilometers from both Sacramento and Los Angeles.

SECTION 55: STEEL STRUCTURES

Issue Date: December 31, 2001

Section 55-3.14, "Bolted Connections," of the Standard Specifications is amended by adding the following after the ninth paragraph:

• If a torque multiplier is used in conjunction with a calibrated wrench as a method for tightening fastener assemblies to the required tension, both the multiplier and the wrench shall be calibrated together as a system. The same length input and output sockets and extensions that will be used in the work shall also be included in the calibration of the system. The manufacturer's torque multiplication ratio shall be adjusted during calibration of the system, such that when this adjusted ratio is multiplied by the actual input calibrated wrench reading, the product is a calculated output torque that is within 2 percent of the true output torque. When this system is used in the work to perform any installation tension testing, rotational capacity testing, fastener tightening, or tension verification, it shall be used, intact as calibrated.

The sixth paragraph of Section 55-4.02, "Payment," of the Standard Specifications is amended to read:

• If a portion or all of the structural steel is fabricated more than 480 air line kilometers from both Sacramento and Los Angeles, additional shop inspection expenses will be sustained by the State. Whereas it is and will be impracticable and extremely difficult to ascertain and determine the actual increase in these expenses, it is agreed that payment to the Contractor for furnishing the structural steel from each fabrication site located more than 480 air line kilometers from both Sacramento and Los Angeles will be reduced $5000 or by an amount computed at $0.044 per kilogram of structural steel fabricated, whichever is greater, or in the case of each fabrication site located more than 4800 air line kilometers from both Sacramento and Los Angeles, payment will be reduced $8000 or by $0.079 per kilogram of structural steel fabricated, whichever is greater.

SECTION 56: SIGNS

Issue Date: November 2, 2004

Section 56-1.01, "Description," of the Standard Specifications is amended by deleting the third paragraph.

Section 56-1.02A, "Bars, Plates and Shapes," of the Standard Specifications is amended to read:

56-1.02A Bars, Plates, Shapes, and Structural Tubing

• Bars, plates, and shapes shall be structural steel conforming to the requirements in ASTM Designation: A 36/A 36M, except, at the option of the Contractor, the light fixture mounting channel shall be continuous-slot steel channel conforming to the requirements in ASTM Designation: A 1011/A 1011M, Designation SS, Grade 33[230], or aluminum Alloy 6063-T6 extruded aluminum conforming to the requirements in ASTM Designation: B 221 or B 221M.
• Structural tubing shall be structural steel conforming to the requirements in ASTM Designation: A 500, Grade B.
• Removable sign panel frames shall be constructed of structural steel conforming to the requirements in ASTM Designation: A 36/A 36M.

Section 56-1.02B, "Sheets," of the Standard Specifications is amended to read:

56-1.02B Sheets
• Sheets shall be carbon-steel sheets conforming to the requirements in ASTM Designation: A 1011/A 1011M, Designation SS, Grade 33[230].
• Ribbed sheet metal for box beam-closed truss sign structures shall be fabricated from galvanized sheet steel conforming to the requirements in ASTM Designation: A 653/A 653M, Designation SS, Grade 33[230]. Sheet metal panels shall be G 165 coating designation in conformance with the requirements in ASTM Designation: A 653/A 653M.

Section 56-1.02F, "Steel Walkway Gratings," of the Standard Specifications is amended to read:

56-1.02F Steel Walkway Gratings
• Steel walkway gratings shall be furnished and installed in conformance with the details shown on the plans and the following provisions:
 A. Gratings shall be the standard product of an established grating manufacturer.
 B. Material for gratings shall be structural steel conforming to the requirements in ASTM Designation: A 1011/A 1011M, Designation CS, Type B.
 C. For welded type gratings, each joint shall be full resistance welded under pressure, to provide a sound, completely beaded joint.
 D. For mechanically locked gratings, the method of fabrication and interlocking of the members shall be approved by the Engineer, and the fabricated grating shall be equal in strength to the welded type.
 E. Gratings shall be accurately fabricated and free from warps, twists, or other defects affecting their appearance or serviceability. Ends of all rectangular panels shall be square. The tops of the bearing bars and cross members shall be in the same plane. Gratings distorted by the galvanizing process shall be straightened.

The sixth through the thirteenth paragraphs in Section 56-1.03, "Fabrication," of the Standard Specifications are amended to read:

• High-strength bolted connections, where shown on the plans, shall conform to the provisions in Section 55-3.14, "Bolted Connections," except that only fastener assemblies consisting of a high-strength bolt, nut, hardened washer, and direct tension indicator shall be used.
• High-strength fastener assemblies, and any other bolts, nuts, and washers attached to sign structures shall be zinc-coated by the mechanical deposition process.
• Nuts for high-strength bolts designated as snug-tight shall not be lubricated.
• An alternating snugging and tensioning pattern for anchor bolts and high-strength bolted splices shall be used. Once tensioned, high-strength fastener components and direct tension indicators shall not be reused.
• For bolt diameters less than 10 mm, the diameter of the bolt hole shall be not more than 0.80-mm larger than the nominal bolt diameter. For bolt diameters greater than or equal to 10 mm, the diameter of the bolt hole shall be not more than 1.6 mm larger than the nominal bolt diameter.
• Sign structures shall be fabricated into the largest practical sections prior to galvanizing.
• Ribbed sheet metal panels for box beam closed truss sign structures shall be fastened to the truss members by cap screws or bolts as shown on the plans, or by 4.76 mm stainless steel blind rivets conforming to Industrial Fasteners Institute, Standard IFI-114, Grade 51. The outside diameter of the large flange rivet head shall be not less than 15.88 mm in diameter. Web splices in ribbed sheet metal panels may be made with similar type blind rivets of a size suitable for the thickness of material being connected.
• Spalling or chipping of concrete structures shall be repaired by the Contractor at the Contractor's expense.
• Overhead sign supports shall have an aluminum identification plate permanently attached near the base, adjacent to the traffic side on one of the vertical posts, using either stainless steel rivets or stainless steel screws. As a minimum, the information on the plate shall include the name of the manufacturer, the date of manufacture and the contract number.

CONTRACT NO. 04-0120F4
REPLACED PER ADDENDUM NO. 3 DATED NOVEMBER 7, 2005
The fifth paragraph of Section 56-2.02B, "Wood Posts," of the Standard Specifications is amended to read:

- Douglas fir and Hem-Fir posts shall be treated in conformance with the provisions in Section 58, "Preservative Treatment of Lumber, Timber and Piling," and in conformance with AWPA Use Category System: UC4A, Commodity Specification A. Posts shall be incised and the minimum retention of preservative shall be as specified in AWPA Standards.

SECTION 57: TIMBER STRUCTURES

Issue Date: October 12, 2004

The second paragraph of Section 57-1.02A, "Structural Timber and Lumber," of the Standard Specifications is amended to read:

- When preservative treatment of timber and lumber is required, the treatment shall conform to the provisions in Section 58, "Preservative Treatment of Lumber, Timber and Piling," and AWPA's Use Category 4B. The type of treatment to be used will be shown on the plans or specified in the special provisions.

SECTION 58: PRESERVATIVE TREATMENT OF LUMBER, TIMBER AND PILING

Issue Date: November 2, 2004

The first paragraph of Section 58-1.02, "Treatment and Retention," of the Standard Specifications is amended to read:

- Unless otherwise permitted by the Engineer or otherwise specified in the special provisions, the timber, lumber and piling shall be pressure treated after all millwork is completed. The preservatives, treatment and results of treatment shall be in conformance with AWPA Standards U1-03, "User Specification for Treated Wood," and T1-03, "Processing and Treatment." Except as provided below, treatment of lumber and timber shall conform to the specified AWPA Use Category. The type of treatment to be used shall be one of those named in the special provisions, on the plans, or elsewhere in these specifications.

The second paragraph of Section 58-1.02, "Treatment and Retention," of the Standard Specifications is deleted.

SECTION 59: PAINTING

Issue Date: December 31, 2001

Section 59-2.01, "General," of the Standard Specifications is amended by adding the following paragraphs after the first paragraph:

- Unless otherwise specified, no painting Contractors or subcontractors will be permitted to commence work without having the following current "SSPC: The Society for Protective Coatings" (formerly the Steel Structures Painting Council) certifications in good standing:

 A. For cleaning and painting structural steel in the field, certification in conformance with the requirements in Qualification Procedure No. 1, "Standard Procedure For Evaluating Painting Contractors (Field Application to Complex Industrial Structures)" (SSPC-QP 1).

 B. For removing paint from structural steel, certification in conformance with the requirements in Qualification Procedure No. 2, "Standard Procedure For Evaluating Painting Contractors (Field Removal of Hazardous Coatings from Complex Structures)" (SSPC-QP 2).

 C. For cleaning and painting structural steel in a permanent painting facility, certification in conformance with the requirements in Qualification Procedure No. 3, "Standard Procedure For Evaluating Qualifications of Shop Painting Applicators" (SSPC-QP 3). The AISC's Sophisticated Paint Endorsement (SPE) quality program will be considered equivalent to SSPC-QP 3.
The third paragraph of Section 59-2.03, "Blast Cleaning," of the Standard Specifications is amended to read:

- Exposed steel or other metal surfaces to be blast cleaned shall be cleaned in conformance with the requirements in Surface Preparation Specification No. 6, "Commercial Blast Cleaning," of the "SSPC: The Society for Protective Coatings." Blast cleaning shall leave all surfaces with a dense, uniform, angular anchor pattern of not less than 35 µm as measured in conformance with the requirements in ASTM Designation: D 4417.

The first paragraph of Section 59-2.06, "Hand Cleaning," of the Standard Specifications is amended to read:

- Dirt, loose rust and mill scale, or paint which is not firmly bonded to the surfaces shall be removed in conformance with the requirements in Surface Preparation Specification No. 2, "Hand Tool Cleaning," of the "SSPC: The Society for Protective Coatings." Edges of old remaining paint shall be feathered.

The fourth paragraph of Section 59-2.12, "Painting," of the Standard Specifications is amended to read:

- The dry film thickness of the paint will be measured in place with a calibrated Type 2 magnetic film thickness gage in conformance with the requirements of specification SSPC-PA2 of the "SSPC: The Society for Protective Coatings."

SECTION 75: MISCELLANEOUS METAL

Issue Date: November 2, 2004

The table in the tenth paragraph of Section 75-1.02, "Miscellaneous Iron and Steel," of the Standard Specifications is amended to read:

<table>
<thead>
<tr>
<th>Material</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel bars, plates and shapes</td>
<td>ASTM Designation: A 36/A 36M or A 575, A 576 (AISI or M Grades 1016 through 1030)</td>
</tr>
<tr>
<td>Steel fastener components for general applications:</td>
<td></td>
</tr>
<tr>
<td>Bolts and studs</td>
<td>ASTM Designation: A 307</td>
</tr>
<tr>
<td>Headed anchor bolts</td>
<td>ASTM Designation: A 307, Grade B, including S1 supplementary requirements</td>
</tr>
<tr>
<td>Nonheaded anchor bolts</td>
<td>ASTM Designation: A 307, Grade C, including S1 supplementary requirements and S1.6 of AASHTO Designation: M 314 supplementary requirements or AASHTO Designation: M 314, Grade 36 or 55, including S1 supplementary requirements</td>
</tr>
<tr>
<td>High-strength bolts and studs, threaded rods, and nonheaded anchor bolts</td>
<td>ASTM Designation: A 449, Type 1</td>
</tr>
<tr>
<td>Nuts</td>
<td>ASTM Designation: A 563, including Appendix X1*</td>
</tr>
<tr>
<td>Washers</td>
<td>ASTM Designation: F 844</td>
</tr>
<tr>
<td>Components of high-strength steel fastener assemblies for use in structural steel joints:</td>
<td></td>
</tr>
<tr>
<td>Bolts</td>
<td>ASTM Designation: A 325, Type 1</td>
</tr>
<tr>
<td>Tension control bolts</td>
<td>ASTM Designation: F 1852, Type 1</td>
</tr>
<tr>
<td>Nuts</td>
<td>ASTM Designation: A 563, including Appendix X1*</td>
</tr>
<tr>
<td>Hardened washers</td>
<td>ASTM Designation: F 436, Type 1, Circular, including S1 supplementary requirements</td>
</tr>
</tbody>
</table>

CONTRACT NO. 04-0120F4
REPLACED PER ADDENDUM NO. 3 DATED NOVEMBER 7, 2005
Direct tension indicators

<table>
<thead>
<tr>
<th>Stainless steel fasteners (Alloys 304 & 316) for general applications:</th>
<th>ASTM Designation: F 959, Type 325, zinc-coated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolts, screws, studs, threaded rods, and nonheaded anchor bolts</td>
<td>ASTM Designation: F 593 or F 738M</td>
</tr>
<tr>
<td>Nuts</td>
<td>ASTM Designation: F 594 or F 836M</td>
</tr>
<tr>
<td>Washers</td>
<td>ASTM Designation: A 240/A 240M and ANSI B 18.22M</td>
</tr>
<tr>
<td>Carbon-steel castings</td>
<td>ASTM Designation: A 27/A 27M, Grade 65-35 [450-240], Class 1</td>
</tr>
<tr>
<td>Malleable iron castings</td>
<td>ASTM Designation: A 47, Grade 32510 or A 47M, Grade 22010</td>
</tr>
<tr>
<td>Gray iron castings</td>
<td>ASTM Designation: A 48, Class 30B</td>
</tr>
<tr>
<td>Ductile iron castings</td>
<td>ASTM Designation: A 536, Grade 65-45-12</td>
</tr>
<tr>
<td>Cast iron pipe</td>
<td>Commercial quality</td>
</tr>
<tr>
<td>Steel pipe</td>
<td>Commercial quality, welded or extruded</td>
</tr>
<tr>
<td>Other parts for general applications</td>
<td>Commercial quality</td>
</tr>
</tbody>
</table>

* Zinc-coated nuts that will be tightened beyond snug or wrench tight shall be furnished with a dyed dry lubricant conforming to Supplementary Requirement S2 in ASTM Designation: A 563.

The second paragraph in Section 75-1.03, "Miscellaneous Bridge Metal," of the Standard Specifications is amended to read:

- Miscellaneous bridge metal shall consist of the following, except as further provided in Section 51-1.19, "Utility Facilities," and in the special provisions:

 A. Bearing assemblies, equalizing bolts and expansion joint armor in concrete structures.
 B. Expansion joint armor in steel structures.
 C. Manhole frames and covers, frames and grates, ladder rungs, guard posts and access door assemblies.
 D. Deck drains, area drains, retaining wall drains, and drainage piping, except drainage items identified as "Bridge Deck Drainage System" in the special provisions.

The table in the eighteenth paragraph of Section 75-1.03, "Miscellaneous Bridge Metal," of the Standard Specifications is amended to read:

<table>
<thead>
<tr>
<th>Stud Diameter (millimeters)</th>
<th>Sustained Tension Test Load (kilonewtons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.01-33.00</td>
<td>137.9</td>
</tr>
<tr>
<td>23.01-29.00</td>
<td>79.6</td>
</tr>
<tr>
<td>21.01-23.00</td>
<td>64.1</td>
</tr>
<tr>
<td>* 18.01-21.00</td>
<td>22.2</td>
</tr>
<tr>
<td>15.01-18.00</td>
<td>18.2</td>
</tr>
<tr>
<td>12.01-15.00</td>
<td>14.2</td>
</tr>
<tr>
<td>9.01-12.00</td>
<td>9.34</td>
</tr>
<tr>
<td>6.00-9.00</td>
<td>4.23</td>
</tr>
</tbody>
</table>

* Maximum stud diameter permitted for mechanical expansion anchors.
The table in the nineteenth paragraph of Section 75-1.03, "Miscellaneous Bridge Metal," of the Standard Specifications is amended to read:

<table>
<thead>
<tr>
<th>Stud Diameter (millimeters)</th>
<th>Ultimate Tensile Load (kilonewtons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.01-33.00</td>
<td>112.1</td>
</tr>
<tr>
<td>27.01-30.00</td>
<td>88.1</td>
</tr>
<tr>
<td>23.01-27.00</td>
<td>71.2</td>
</tr>
<tr>
<td>20.01-23.00</td>
<td>51.6</td>
</tr>
<tr>
<td>16.01-20.00</td>
<td>32.0</td>
</tr>
<tr>
<td>14.01-16.00</td>
<td>29.4</td>
</tr>
<tr>
<td>12.00-14.00</td>
<td>18.7</td>
</tr>
</tbody>
</table>

The table in the twenty-second paragraph of Section 75-1.03, "Miscellaneous Bridge Metal," of the Standard Specifications is amended to read:

<table>
<thead>
<tr>
<th>Stud Diameter (millimeters)</th>
<th>Shell Type Mechanical Expansion Anchors</th>
<th>Integral Stud Type Mechanical Expansion Anchors</th>
<th>Resin Capsule Anchors and Cast-in-Place Inserts</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.01-33.00</td>
<td>—</td>
<td>—</td>
<td>540</td>
</tr>
<tr>
<td>23.01-29.00</td>
<td>—</td>
<td>—</td>
<td>315</td>
</tr>
<tr>
<td>21.01-23.00</td>
<td>—</td>
<td>—</td>
<td>235</td>
</tr>
<tr>
<td>18.01-21.00</td>
<td>110</td>
<td>235</td>
<td>200</td>
</tr>
<tr>
<td>15.01-18.00</td>
<td>45</td>
<td>120</td>
<td>100</td>
</tr>
<tr>
<td>12.01-15.00</td>
<td>30</td>
<td>65</td>
<td>40</td>
</tr>
<tr>
<td>9.01-12.00</td>
<td>15</td>
<td>35</td>
<td>24</td>
</tr>
<tr>
<td>6.00-9.00</td>
<td>5</td>
<td>10</td>
<td>—</td>
</tr>
</tbody>
</table>

The third paragraph in Section 75-1.035, "Bridge Joint Restrainer Units," of the Standard Specifications is amended to read:

- Cables shall be 19 mm preformed, 6 x 19, wire strand core or independent wire rope core (IWRC), galvanized, and in conformance with the requirements in Federal Specification RR-W-410D, right regular lay, manufactured of improved plow steel with a minimum breaking strength of 200 kN. Two certified copies of mill test reports of each manufactured length of cable used shall be furnished to the Engineer.

The second paragraph in Section 75-1.05, "Galvanizing," of the Standard Specifications is amended to read:

At the option of the Contractor, material thinner than 3.2 mm shall be galvanized either before fabrication in conformance with the requirements of ASTM Designation: A 653/A 653M, Coating Designation Z600, or after fabrication in conformance with the requirements of ASTM Designation: A 123, except that the weight of zinc coating shall average not less than 365 g per square meter of actual surface area with no individual specimen having a coating weight of less than 305 g per square meter.

SECTION 80: FENCES

Issue Date: October 12, 2004

The second paragraph of Section 80-3.01B(2), "Treated Wood Posts and Braces," of the Standard Specifications is amended to read:

CONTRACT NO. 04-0120F4
REPLACED PER ADDENDUM NO. 3 DATED NOVEMBER 7, 2005
• Posts and braces to be treated shall be pressure treated in conformance with the provisions in Section 58, "Preservative Treatment of Lumber, Timber and Piling," and AWPA Use Category System: UC4A, Commodity Specification A or B.

SECTION 83: RAILINGS AND BARRIERS

Issue Date: January 31, 2005

The ninth paragraph in Section 83-1.02B, "Metal Beam Guard Railing," of the Standard Specifications is amended to read:

• The grades and species of wood posts and blocks shall be No. 1 timbers (also known as No. 1 structural) Douglas fir or No. 1 timbers Southern yellow pine. Wood posts and blocks shall be graded in conformance with the provisions in Section 57-2, "Structural Timber," of the Standard Specifications, except allowances for shrinkage after mill cutting shall in no case exceed 5 percent of the American Lumber Standards minimum sizes, at the time of installation.

The eleventh paragraph in Section 83-1.02B, "Metal Beam Guard Railing," of the Standard Specifications is amended to read:

• After fabrication, wood posts and blocks shall be pressure treated in conformance with Section 58, "Preservative Treatment of Lumber, Timber and Piling," and AWPA Use Category System: UC4A, Commodity Specification A.

The twelfth paragraph in Section 83-1.02B, "Metal Beam Guard Railing," of the Standard Specifications is amended to read:

• If copper naphthenate, ammoniacal copper arsenate, chromated copper arsenate, ammoniacal copper zinc arsenate, ammoniacal copper quat or copper azole is used to treat the wood posts and blocks, the bolt holes shall be treated as follows:

 A. Before the bolts are inserted, bolt holes shall be filled with a grease, recommended by the manufacturer for corrosion protection, which will not melt or run at a temperature of 65°C.

The second paragraph in Section 83-1.02D, "Steel Bridge Railing," of the Standard Specifications is amended to read:

• Structural shapes, tubing, plates, bars, bolts, nuts, and washers shall be structural steel conforming to the provisions in Section 55-2, "Materials." Other fittings shall be commercial quality.

The second and third paragraphs in Section 83-1.02E, "Cable Railing," of the Standard Specifications are replaced with the following paragraph:

• Pipe for posts and braces shall be standard steel pipe or pipe that conforms to the provisions in Section 80-4.01A, "Posts and Braces."

The fourteenth paragraph in Section 83-1.02I, "Chain Link Railing," of the Standard Specifications is amended to read:

• Chain link fabric shall be either 11-gage Type I zinc coated fabric conforming to the requirements in AASHTO Designation: M 181 or 11-gage Type IV polyvinyl chloride (PVC) coated fabric conforming to the requirements in Federal Specification RR-F-191/1D.

The first paragraph in Section 83-2.02D(2), "Materials," of the Standard Specifications is amended to read:

• Type 50 and 60 series concrete barriers shall be constructed of minor concrete conforming to the provisions in Section 90-10, "Minor Concrete," except as follows:

 a. The maximum size of aggregate used for extruded or slip-formed concrete barriers shall be at the option of the Contractor, but in no case shall the maximum size be larger than 37.5-mm or smaller than 9.5-mm.

CONTRACT NO. 04-0120F4
REPLACED PER ADDENDUM NO. 3 DATED NOVEMBER 7, 2005
b. If the 9.5-mm maximum size aggregate grading is used to construct extruded or slip-formed concrete barriers, the cementitious material content of the minor concrete shall be not less than 400 kg/m³.

The third paragraph in Section 83-2.02D(2), "Materials," of the Standard Specifications is amended to read:

- The concrete paving between the tops of the 2 walls of concrete barrier (Types 50E, 60E, 60GE, and 60SE) and the optional concrete slab at the base between the 2 walls of concrete barrier (Types 50E, 60E, 60GE, and 60SE) shall be constructed of minor concrete conforming to the provisions of Section 90-10, except that the minor concrete shall contain not less than 300 kg of cementitious material per cubic meter.

The fourth paragraph in Section 83-2.04, "Payments," of the Standard Specifications is amended to read:

- Steel plate barrier attached to concrete barrier at overhead sign foundations, electroliers, drainage structures, and other locations shown on the plans will be measured and paid for as the type of concrete barrier attached thereto.

SECTION 85: PAVEMENT MARKERS

Issue Date: May 16, 2003

The second through fifth paragraphs in Section 85-1.03, "Sampling, Tolerances and Packaging," of the Standard Specifications are amended to read:

Sampling

- Twenty markers selected at random will constitute a representative sample for each lot of markers.
- The lot size shall not exceed 25000 markers.

Tolerances

- Three test specimens will be randomly selected from the sample for each test and tested in conformance with these specifications. Should any one of the 3 specimens fail to conform with the requirements in these specifications, 6 additional specimens will be tested. The failure of any one of these 6 specimens shall be cause for rejection of the entire lot or shipment represented by the sample.
- The entire sample of retroreflective pavement markers will be tested for reflectance. The failure of 10 percent or more of the original sampling shall be cause for rejection.

Section 85-1.04, "Non-Reflective Pavement Markers," of the Standard Specifications is amended to read:

85-1.04 Non-Reflective Pavement Markers

- Non-reflective pavement markers (Types A and AY) shall be, at the option of the Contractor, either ceramic or plastic conforming to these specifications.
 - The top surface of the marker shall be convex with a gradual change in curvature. The top, bottom and sides shall be free of objectionable marks or discoloration that will affect adhesion or appearance.
 - The bottom of markers shall have areas of integrally formed protrusions or indentations, which will increase the effective bonding surface area of adhesive. The bottom surface of the marker shall not deviate more than 1.5 mm from a flat surface. The areas of protrusion shall have faces parallel to the bottom of the marker and shall project approximately one mm from the bottom.

The second through fourth paragraphs of Section 85-1.04A, "Non-Reflective Pavement Markers (Ceramic)," of the Standard Specifications are deleted.

The table in the fifth paragraph in Section 85-1.04A, "Non-Reflective Pavement Markers (Ceramic)," of the Standard Specifications is amended to read:

CONTRACT NO. 04-0120F4
REPLACED PER ADDENDUM NO. 3 DATED NOVEMBER 7, 2005
Testing

- Tests shall be performed in conformance with the requirements in California Test 669.

<table>
<thead>
<tr>
<th>Test</th>
<th>Test Description</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Bond strength</td>
<td>4.8 MPa, min.</td>
</tr>
<tr>
<td>b</td>
<td>Glaze thickness</td>
<td>180 µm, min.</td>
</tr>
<tr>
<td>c</td>
<td>Hardness</td>
<td>6 Moh, min.</td>
</tr>
<tr>
<td>d</td>
<td>Luminance factor, Type A, white markers only, glazed surface</td>
<td>75, min.</td>
</tr>
<tr>
<td>e</td>
<td>Yellowness index, Type A, white markers only, glazed surface</td>
<td>7, max.</td>
</tr>
<tr>
<td>f</td>
<td>Color-yellow, Type AY, yellow markers only. The chromaticity coordinates shall be within a color box defined in CTM 669</td>
<td>Pass</td>
</tr>
<tr>
<td>g</td>
<td>Compressive strength</td>
<td>6700 N, min.</td>
</tr>
<tr>
<td>h</td>
<td>Water absorption</td>
<td>2.0 %, max.</td>
</tr>
<tr>
<td>i</td>
<td>Artificial weathering, 500 hours exposure, yellowness index</td>
<td>20, max.</td>
</tr>
</tbody>
</table>

Section 85-1.04B, "Non-Reflective Pavement Markers (Plastic)," of the Standard Specifications is amended to read:

85-1.04B Non-Reflective Pavement Markers (Plastic)

- Plastic non-reflective pavement markers Types A and AY shall be, at the option of the Contractor, either polypropylene or acrylonitrile-butadiene-styrene (ABS) plastic type.
- Plastic markers shall conform to the testing requirements specified in Section 85-1.04A, "Non-Reflective Pavement Markers (Ceramic)," except that Tests a, b, c, and h shall not apply. The plastic markers shall not be coated with substances that interfere with the ability of the adhesive bonding to the marker.

The sixth and seventh paragraphs in Section 85-1.05, "Retroreflective Pavement Markers," of the Standard Specifications are amended to read:
Testing

- Tests shall be performed in conformance with the requirements in California Test 669.

<table>
<thead>
<tr>
<th>Test Description</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bond strength(^a)</td>
<td>3.4 MPa, min.</td>
</tr>
<tr>
<td>Compressive strength(^b)</td>
<td>8900 N, min.</td>
</tr>
<tr>
<td>Abrasion resistance, marker must meet the respective specific intensity minimum requirements after abrasion.</td>
<td>Pass</td>
</tr>
<tr>
<td>Water Soak Resistance</td>
<td>No delamination of the body or lens system of the marker nor loss of reflectance</td>
</tr>
<tr>
<td>Reflectance</td>
<td>Specific Intensity</td>
</tr>
<tr>
<td>(0^\circ) Incidence Angle, min.</td>
<td>Clear 1.2</td>
</tr>
<tr>
<td>(20^\circ) Incidence Angle, min.</td>
<td>0.30</td>
</tr>
<tr>
<td>After one year field evaluation</td>
<td>0.30</td>
</tr>
</tbody>
</table>

\(^a\) Failure of the marker body or filler material prior to reaching 3.4 MPa shall constitute a failing bond strength test.

\(^b\) Deformation of the marker of more than 3 mm at a load of less than 8900 N or delamination of the shell and the filler material of more than 3 mm regardless of the load required to break the marker shall be cause for rejection of the markers as specified in Section 85-1.03, "Sampling, Tolerances and Packaging."

- Pavement markers to be placed in pavement recesses shall conform to the above requirements for retroreflective pavement markers except that the minimum compressive strength requirement shall be 5338 N.

The eighth paragraph of Section 85-1.05, "Retroreflective Pavement Markers" of the Standard Specifications is deleted.

The eighth paragraph in Section 85-1.06, "Replacement," of the Standard Specifications is amended to read:

- Epoxy adhesive shall not be used to apply non-reflective plastic pavement markers.

SECTION 86: SIGNALS, LIGHTING AND ELECTRICAL SYSTEMS

Issue Date: January 31, 2005

The first paragraph of Section 86-2.03, "Foundations," of the Standard Specifications is amended to read:

- Except for concrete for cast-in-drilled-hole concrete pile foundations, portland cement concrete shall conform to Section 90-10, "Minor Concrete."

The fifth paragraph of Section 86-2.03, "Foundations," of the Standard Specifications is amended to read:

- Reinforced cast-in-drilled-hole concrete pile foundations for traffic signal and lighting standards shall conform to the provisions in Section 49, "Piling," with the following exceptions: 1) Material resulting from drilling holes shall be disposed of in conformance with the provisions in Section 86-2.01, "Excavating and Backfilling," and 2) Concrete filling for cast-in-drilled-hole concrete piles will not be considered as designated by compressive strength.
The seventh paragraph of Section 86-2.03, "Foundations," of the Standard Specifications is amended to read:

- Forms shall be true to line and grade. Tops of foundations for posts and standards, except special foundations, shall be finished to curb or sidewalk grade or as directed by the Engineer. Forms shall be rigid and securely braced in place. Conduit ends and anchor bolts shall be placed in proper position and to proper height, and anchor bolts shall be held in place by means of rigid top and bottom templates. The bottom template shall be made of steel. The bottom template shall provide proper spacing and alignment of the anchor bolts near their bottom embedded end. The bottom template shall be installed before placing footing concrete. Anchor bolts shall not be installed more than 1:40 from vertical.

Section 86-2.03, "Foundations," of the Standard Specifications is amended by deleting the eighth paragraph.

The twelfth paragraph of Section 86-2.03, "Foundations," of the Standard Specifications is amended to read:

- Plumbing of the standards shall be accomplished by adjusting the leveling nuts before placing the mortar or before the foundation is finished to final grade. Shims or other similar devices shall not be used for plumbing or raking of posts, standards, or pedestals. After final adjustments of both top nuts and leveling nuts on anchorage assemblies have been made, firm contact shall exist between all bearing surfaces of the anchor bolt nuts, washers, and the base plates.

The first paragraph of Section 86-2.04, "Standards, Steel Pedestals and Posts," of the Standard Specifications is amended to read:

86-2.04 STANDARDS, STEEL PEDESTALS, AND POSTS

- Standards for traffic signals and lighting, and steel pedestals for cabinets and other similar equipment, shall be located as shown on the plans. Bolts, nuts and washers, and anchor bolts for use in signal and lighting support structures shall conform to the provisions in Section 55-2, "Materials." Except when bearing-type connections or slipbases are specified, high-strength bolted connections shall conform to the provisions in Section 55-3.14, "Bolted Connections." Welding, nondestructive testing (NDT) of welds, and acceptance and repair criteria for NDT of steel members shall conform to the requirements of AWS D1.1 and the contract special provisions.

The second paragraph of Section 86-2.04, "Standards, Steel Pedestals and Posts," of the Standard Specifications is amended to read:

- On each lighting standard except Type 1, one rectangular corrosion resistant metal identification tag shall be permanently attached above the hand hole, near the base of the standard, using stainless steel rivets. On each signal pole support, two corrosion resistant metal identification tags shall be attached, one above the hand hole near the base of the vertical standard and one on the underside of the signal mast arm near the arm plate. As a minimum, the information on each identification tag shall include the name of the manufacturer, the date of manufacture, the identification number as shown on the plans, the contract number, and a unique identification code assigned by the fabricator. This number shall be traceable to a particular contract and the welds on that component, and shall be readable after the support structure is coated and installed. The lettering shall be a minimum of 7 mm high. The information may be either depressed or raised, and shall be legible.

The fourth paragraph of Section 86-2.04, "Standards, Steel Pedestals and Posts," of the Standard Specifications is amended to read:

- Ferrous metal parts of standards, with shaft length of 4.6 m and longer, shall conform to the provisions in Section 55-2, "Materials," except as otherwise noted, and the following requirements:

 Except as otherwise specified, standards shall be fabricated from sheet steel of weldable grade having a minimum yield strength, after fabrication, of 276 MPa. Certified test reports which verify conformance to the minimum yield strength requirements shall be submitted to the Engineer. The test reports may be the mill test reports for the as-received steel or, when the as-received steel has a lower yield strength than required, the Contractor shall provide supportive test data which provides assurance that the Contractor's method of cold forming will consistently increase the tensile properties of the steel to meet the specified minimum yield strength. The supportive test data shall include tensile properties of the steel after cold forming for specific heats and thicknesses.
When a single-ply 8-mm thick pole is specified, a 2-ply pole with equivalent section modulus may be substituted.

Standards may be fabricated of full-length sheets or shorter sections. Each section shall be fabricated from not more than 2 pieces of sheet steel. Where 2 pieces are used, the longitudinal welded seams shall be directly opposite one another. When the sections are butt-welded together, the longitudinal welded seams on adjacent sections shall be placed to form continuous straight seams from base to top of standard.

Butt-welded circumferential joints of tubular sections requiring CJP groove welds shall be made using a metal sleeve backing ring inside each joint. The sleeve shall be 3-mm nominal thickness, or thicker, and manufactured from steel having the same chemical composition as the steel in the tubular sections to be joined. When the sections to be joined have different specified minimum yield strengths, the steel in the sleeve shall have the same chemical composition as the tubular section having the higher minimum yield strength. The width of the metal sleeve shall be consistent with the type of NDT chosen and shall be a minimum width of 25 mm. The sleeve shall be centered at the joint and be in contact with the tubular section at the point of the weld at time of fit-up.

Welds shall be continuous.

During fabrication, longitudinal seams on vertical tubular members of cantilevered support structures shall be centered on and along the side of the pole that the pole plate is located. Longitudinal seams on horizontal tubular members, including signal and luminaire arms, shall be within +/-45 degrees of the bottom of the arm.

The longitudinal seam welds in steel tubular sections may be made by the electric resistance welding process. Longitudinal seam welds shall have 60 percent minimum penetration, except that within 150 mm of circumferential welds, longitudinal seam welds shall be CJP groove welds. In addition, longitudinal seam welds on lighting support structures having telescopic pole segment splices shall be CJP groove welds on the female end for a length on each end equal to the designated slip fit splice length plus 150 mm.

Exposed circumferential welds, except fillet and fatigue-resistant welds, shall be ground flush (-0, +2mm) with the base metal prior to galvanizing or painting.

Circumferential welds and base plate-to-pole welds may be repaired only one time without written permission from the Engineer.

Exposed edges of the plates that make up the base assembly shall be finished smooth and exposed corners of the plates shall be broken unless otherwise shown on the plans. Shafts shall be provided with slip-fitter shaft caps.

Flatness of surfaces of 1) base plates that are to come in contact with concrete, grout, or washers and leveling nuts; 2) plates in high-strength bolted connections; 3) plates in joints where cap screws are used to secure luminaire and signal arms; and 4) plates used for breakaway slip base assemblies shall conform to the requirements in ASTM A6.

Standards shall be straight, with a permissive variation not to exceed 25 mm measured at the midpoint of a 9-m or 11-m standard and not to exceed 20 mm measured at the midpoint of a 5-m through 6-m standard. Variation shall not exceed 25 mm at a point 4.5 m above the base plate for Type 35 and Type 36 standards.

Zinc-coated nuts used on fastener assemblies having a specified preload (obtained by specifying a prescribed tension, torque value, or degree of turn) shall be provided with a colored lubricant that is clean and dry to the touch. The color of the lubricant shall be in contrast to the zinc coating on the nut so that the presence of the lubricant is visually obvious. In addition, either the lubricant shall be insoluble in water, or fastener components shall be shipped to the job site in a sealed container.

No holes shall be made in structural members unless the holes are shown on the plans or are approved in writing by the Engineer.

Standards with an outside diameter of 300 mm or less shall be round. Standards with an outside diameter greater than 300 mm shall be round or multisided. Multisided standards shall have a minimum of 12 sides which shall be convex and shall have a minimum bend radius of 100 mm.

Mast arms for standards shall be fabricated from material as specified for standards, and shall conform to the dimensions shown on the plans.

The cast steel option for slip bases shall be fabricated from material conforming to the requirements in ASTM Designation: A 27/A 27M, Grade 70-40. Other comparable material may be used if written permission is given by the Engineer. The casting tolerances shall be in conformance with the Steel Founder's Society of America recommendations (green sand molding).

One casting from each lot of 50 castings or less shall be subject to radiographic inspection, in conformance with the requirements in ASTM Designation: E 94. The castings shall comply with the acceptance criteria severity level 3 or better for the types and categories of discontinuities in conformance with the requirements in ASTM Designations: E 186 and E 446. If the one casting fails to pass the inspection, 2 additional castings shall be radiographed. Both of these castings shall pass the inspection, or the entire lot of 50 will be rejected.
Material certifications, consisting of physical and chemical properties, and radiographic films of the castings shall be filed at the manufacturer's office. These certifications and films shall be available for inspection upon request.

High-strength bolts, nuts, and flat washers used to connect slip base plates shall conform to the requirements in ASTM Designation: A 325 or A 325M and shall be galvanized in conformance with the provisions in Section 75-1.05, "Galvanizing."

Plate washers shall be fabricated by saw cutting and drilling steel plate conforming to the requirements in AISI Designation: 1018, and be galvanized in conformance with the provisions in Section 75-1.05, "Galvanizing." Prior to galvanizing, burrs and sharp edges shall be removed and holes shall be chamfered sufficiently on each side to allow the bolt head to make full contact with the washer without tension on the bolt.

High-strength cap screws shown on the plans for attaching arms to standards shall conform to the requirements in ASTM Designation: A 325, A 325M, or A 449, and shall comply with the mechanical requirements in ASTM Designation: A 325 or A 325M after galvanizing. The cap screws shall be galvanized in conformance with the provisions in Section 75-1.05, "Galvanizing." The threads of the cap screws shall be coated with a colored lubricant that is clean and dry to the touch. The color of the lubricant shall be in contrast to the color of the zinc coating on the cap screw so that presence of the lubricant is visually obvious. In addition, either the lubricant shall be insoluble in water, or fastener components shall be shipped to the job site in a sealed container.

Unless otherwise specified, bolted connections attaching signal or luminaire arms to poles shall be considered slip critical. Galvanized faying surfaces on plates on luminaire and signal arms and matching plate surfaces on poles shall be roughened by hand using a wire brush prior to assembly and shall conform to the requirements for Class C surface conditions for slip-critical connections in "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts," a specification approved by the Research Council on Structural Connections (RCSC) of the Engineering Foundation. For faying surfaces required to be painted, the paint shall be an approved type, brand, and thickness that has been tested and approved according to the RCSC Specification as a Class B coating.

Samples of fastener components will be randomly taken from each production lot by the Engineer and submitted, along with test reports required by appropriate ASTM fastener specifications, for QA testing and evaluation. Sample sizes for each fastener component shall be as determined by the Engineer.

The seventh paragraph of Section 86-2.04, "Standards, Steel Pedestals and Posts," of the Standard Specifications is amended to read:

- To avoid interference of arm plate-to-tube welds with cap screw heads, and to ensure cap screw heads can be turned using conventional installation tools, fabricators shall make necessary adjustments to details prior to fabrication and properly locate the position of arm tubes on arm plates during fabrication.

The sixth and seventh paragraphs of 86-2.12, "Wood Poles," of the Standard Specifications are amended to read:

- After fabrication, wood poles shall be pressure treated in conformance with the provisions in Section 58, "Preservative Treatment of Lumber, Timber and Piling," and AWPA Use Category System: UC4B, Commodity Specification D.
- Wood poles, when specified in the special provisions to be painted, shall be treated with waterborne wood preservatives.

The first paragraph of Section 86-2.15, "Galvanizing," of the Standard Specifications is amended to read:

- Galvanizing shall be in conformance with the provisions in Section 75-1.05, "Galvanizing," except that cabinets may be constructed of material galvanized prior to fabrication in conformance with the requirements in ASTM Designation: A 653/653M, Coating Designation G 90, in which case all cut or damaged edges shall be painted with at least 2 applications of approved unthinned zinc-rich primer (organic vehicle type) conforming to the provisions in Section 91, "Paint." Aerosol cans shall not be used. Other types of protective coating must be approved by the Engineer prior to installation.

The first paragraph of Section 86-4.06, "Pedestrian Signal Faces" of the Standard Specifications is amended to read:

- Message symbols for pedestrian signal faces shall be white WALKING PERSON and Portland orange UPRaised HAND conforming to the requirements in the Institute of Transportation Engineers Standards: "Pedestrian Traffic Control Signal Indications," "Manual on Uniform Traffic Control Devices," and "MUTCD California Supplement." The height of each symbol shall be not less than 250 mm and the width of each symbol shall be not less than 165 mm.
The tenth paragraph of Section 86-4.07, "Light Emitting Diode Pedestrian Signal Face 'Upraised Hand' Module" of the Standard Specifications is amended to read:

- The luminance of the "UPRAISED HAND" symbol shall be 3750 cd/m² minimum. The color of "UPRAISED HAND" shall be Portland orange conforming to the requirements of the Institute of Transportation Engineers Standards: "Pedestrian Traffic Control Signal Indications," "Manual on Uniform Traffic Control Devices," and "MUTCD California Supplement." The height of each symbol shall be not less than 250 mm and the width of each symbol shall be not less than 165 mm.

Section 86-8.01, "Payment," of the Standard Specifications is amended by adding the following paragraph after the first paragraph:

- If a portion or all of the poles for signal, lighting and electrical systems pursuant to Standard Specification Section 86, "Signals, Lighting and Electrical Systems," is fabricated more than 480 air line kilometers from both Sacramento and Los Angeles, additional shop inspection expenses will be sustained by the State. Whereas it is and will be impracticable and extremely difficult to ascertain and determine the actual increase in such expenses, it is agreed that payment to the Contractor for furnishing such items from each fabrication site located more than 480 air line kilometers from both Sacramento and Los Angeles will be reduced $5000; in addition, in the case where a fabrication site is located more than 4800 air line kilometers from both Sacramento and Los Angeles, payment will be reduced an additional $3000 per each fabrication site ($8000 total per site).

SECTION 88: ENGINEERING FABRIC

Issue Date: January 15, 2002

Section 88-1.02, "Pavement Reinforcing Fabric," of the Standard Specifications is amended to read:

- Pavement reinforcing fabric shall be 100 percent polypropylene staple fiber fabric material, needle-punched, thermally bonded on one side, and conform to the following:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight, grams per square meter</td>
<td>140</td>
</tr>
<tr>
<td>ASTM Designation: D 5261</td>
<td></td>
</tr>
<tr>
<td>Grab tensile strength (25-mm grip), kilonewtons, min. in each direction</td>
<td>0.45</td>
</tr>
<tr>
<td>ASTM Designation: D 4632</td>
<td></td>
</tr>
<tr>
<td>Elongation at break, percent min.</td>
<td>50</td>
</tr>
<tr>
<td>ASTM Designation: D 4632</td>
<td></td>
</tr>
<tr>
<td>Asphalt retention by fabric, grams per square meter. (Residual Minimum)</td>
<td>900</td>
</tr>
<tr>
<td>ASTM Designation: D 6140</td>
<td></td>
</tr>
</tbody>
</table>

Note: Weight, grab, elongation and asphalt retention are based on Minimum Average Roll Value (MARV)

SECTION 90: PORTLAND CEMENT CONCRETE

Issue Date: November 2, 2004

Section 90, "Portland Cement Concrete," of the Standard Specifications is amended to read:

SECTION 90: PORTLAND CEMENT CONCRETE

90-1 GENERAL

90-1.01 DESCRIPTION

- Portland cement concrete shall be composed of cementitious material, fine aggregate, coarse aggregate, admixtures if used, and water, proportioned and mixed as specified in these specifications.

CONTRACT NO. 04-0120F4
REPLACED PER ADDENDUM NO. 3 DATED NOVEMBER 7, 2005
The Contractor shall determine the mix proportions for concrete in conformance with these specifications. Unless otherwise specified, cementitious material shall be a combination of cement and mineral admixture. Cementitious material shall be either:

1. "Type IP (MS) Modified" cement; or
2. A combination of "Type II Modified" portland cement and mineral admixture; or
3. A combination of Type V portland cement and mineral admixture.

Type III portland cement shall be used only as allowed in the special provisions or with the approval of the Engineer.

- Class 1 concrete shall contain not less than 400 kg of cementitious material per cubic meter.
- Class 2 concrete shall contain not less than 350 kg of cementitious material per cubic meter.
- Class 3 concrete shall contain not less than 300 kg of cementitious material per cubic meter.
- Class 4 concrete shall contain not less than 250 kg of cementitious material per cubic meter.
- Minor concrete shall contain not less than 325 kg of cementitious material per cubic meter unless otherwise specified in these specifications or the special provisions.

Unless otherwise designated on the plans or specified in these specifications or the special provisions, the amount of cementitious material used per cubic meter of concrete in structures or portions of structures shall conform to the following:

<table>
<thead>
<tr>
<th>Use</th>
<th>Cementitious Material Content (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete designated by compressive strength:</td>
<td></td>
</tr>
<tr>
<td>Deck slabs and slab spans of bridges</td>
<td>400 min., 475 max.</td>
</tr>
<tr>
<td>Roof sections of exposed top box culverts</td>
<td>400 min., 475 max.</td>
</tr>
<tr>
<td>Other portions of structures</td>
<td>350 min., 475 max.</td>
</tr>
<tr>
<td>Concrete not designated by compressive strength:</td>
<td></td>
</tr>
<tr>
<td>Deck slabs and slab spans of bridges</td>
<td>400 min.</td>
</tr>
<tr>
<td>Roof sections of exposed top box culverts</td>
<td>400 min.</td>
</tr>
<tr>
<td>Prestressed members</td>
<td>400 min.</td>
</tr>
<tr>
<td>Seal courses</td>
<td>400 min.</td>
</tr>
<tr>
<td>Other portions of structures</td>
<td>350 min.</td>
</tr>
<tr>
<td>Concrete for precast members</td>
<td>350 min., 550 max.</td>
</tr>
</tbody>
</table>

Whenever the 28-day compressive strength shown on the plans is greater than 25 MPa, the concrete shall be designated by compressive strength. If the plans show a 28-day compressive strength that is 28 MPa or greater, an additional 14 days will be allowed to obtain the specified strength. The 28-day compressive strengths shown on the plans that are 25 MPa or less are shown for design information only and are not a requirement for acceptance of the concrete.

Concrete designated by compressive strength shall be proportioned such that the concrete will attain the strength shown on the plans or specified in the special provisions.

Before using concrete for which the mix proportions have been determined by the Contractor, or in advance of revising those mix proportions, the Contractor shall submit in writing to the Engineer a copy of the mix design.

Compliance with cementitious material content requirements will be verified in conformance with procedures described in California Test 518 for cement content. For testing purposes, mineral admixture shall be considered to be cement. Batch proportions shall be adjusted as necessary to produce concrete having the specified cementitious material content.

If any concrete has a cementitious material, portland cement, or mineral admixture content that is less than the minimum required, the concrete shall be removed. However, if the Engineer determines that the concrete is structurally adequate, the concrete may remain in place and the Contractor shall pay to the State $0.55 for each kilogram of cementitious material, portland cement, or mineral admixture that is less than the minimum required. The Department may deduct the amount from any moneys due, or that may become due, the Contractor under the contract. The deductions will not be made unless the difference between the contents required and those actually provided exceeds the batching tolerances permitted by Section 90-5, "Proportioning." No deductions will be made based on the results of California Test 518.

The requirements of the preceding paragraph shall not apply to minor concrete or commercial quality concrete.
90-2 MATERIALS

90-2.01 CEMENT

- Unless otherwise specified, cement shall be either "Type IP (MS) Modified" cement, "Type II Modified" portland cement or Type V portland cement.
- "Type IP (MS) Modified" cement shall conform to the requirements for Type IP (MS) cement in ASTM Designation: C 595, and shall be comprised of an intimate and uniform blend of Type II cement and not more than 35 percent by mass of mineral admixture. The type and minimum amount of mineral admixture used in the manufacture of "Type IP (MS) Modified" cement shall be in conformance with the provisions in Section 90-4.08, "Required Use of Mineral Admixtures."
 - "Type II Modified" portland cement shall conform to the requirements for Type II portland cement in ASTM Designation: C 150-02a.
 - In addition, "Type IP (MS) Modified" cement and "Type II Modified" portland cement shall conform to the following requirements:
 A. The cement shall not contain more than 0.60-percent by mass of alkalies, calculated as the percentage of Na₂O plus 0.658 times the percentage of K₂O, when determined by either direct intensity flame photometry or by the atomic absorption method. The instrument and procedure used shall be qualified as to precision and accuracy in conformance with the requirements in ASTM Designation: C 114;
 B. The autoclave expansion shall not exceed 0.50-percent; and
 C. Mortar, containing the cement to be used and Ottawa sand, when tested in conformance with California Test 527, shall not expand in water more than 0.010 percent and shall not contract in air more than 0.048 percent, except that when cement is to be used for precast prestressed concrete piling, precast prestressed concrete members, or steam cured concrete products, the mortar shall not contract in air more than 0.053 percent.

- Type III and Type V portland cements shall conform to the requirements in ASTM Designation: C 150-02a and the additional requirements listed above for "Type II Modified" portland cement, except that when tested in conformance with California Test 527, mortar containing Type III portland cement shall not contract in air more than 0.075 percent.

• Cement used in the manufacture of cast-in-place concrete for exposed surfaces of like elements of a structure shall be from the same cement mill.
• Cement shall be protected from exposure to moisture until used. Sacked cement shall be piled to permit access for tally, inspection, and identification of each shipment.
• Adequate facilities shall be provided to assure that cement meeting the provisions specified in this Section 90-2.01 shall be kept separate from other cement in order to prevent any but the specified cement from entering the work. Safe and suitable facilities for sampling cement shall be provided at the weigh hopper or in the feed line immediately in advance of the hopper, in conformance with California Test 125.

• If cement is used prior to sampling and testing as provided in Section 6-1.07, "Certificates of Compliance," and the cement is delivered directly to the site of the work, the Certificate of Compliance shall be signed by the cement manufacturer or supplier of the cement. If the cement is used in ready-mixed concrete or in precast concrete products purchased as such by the Contractor, the Certificate of Compliance shall be signed by the manufacturer of the concrete or product.
• Cement furnished without a Certificate of Compliance shall not be used in the work until the Engineer has had sufficient time to make appropriate tests and has approved the cement for use.

90-2.02 AGGREGATES

• Aggregates shall be free from deleterious coatings, clay balls, roots, bark, sticks, rags, and other extraneous material.
• Natural aggregates shall be thoroughly and uniformly washed before use.
• The Contractor, at the Contractor's expense, shall provide safe and suitable facilities, including necessary splitting devices for obtaining samples of aggregates, in conformance with California Test 125.
• Aggregates shall be of such character that it will be possible to produce workable concrete within the limits of water content provided in Section 90-6.06, "Amount of Water and Penetration."
• Aggregates shall have not more than 10 percent loss when tested for soundness in conformance with the requirements in California Test 214. The soundness requirement for fine aggregate will be waived, provided that the durability index, Dₖ, of the fine aggregate is 60, or greater, when tested for durability in conformance with California Test 229.

CONTRACT NO. 04-0120F4
REPLACED PER ADDENDUM NO. 3 DATED NOVEMBER 7, 2005
If the results of any one or more of the Cleanness Value, Sand Equivalent, or aggregate grading tests do not meet the requirements specified for "Operating Range" but all meet the "Contract Compliance" requirements, the placement of concrete shall be suspended at the completion of the current pour until tests or other information indicate that the next material to be used in the work will comply with the requirements specified for "Operating Range."

If the results of either or both the Cleanness Value and coarse aggregate grading tests do not meet the requirements specified for "Contract Compliance," the concrete that is represented by the tests shall be removed. However, if the Engineer determines that the concrete is structurally adequate, the concrete may remain in place, and the Contractor shall pay to the State $4.60 per cubic meter for paving concrete and $7.20 per cubic meter for all other concrete for the concrete represented by these tests and left in place. The Department may deduct the amount from any moneys due, or that may become due, the Contractor under the contract.

If the results of either or both the Sand Equivalent and fine aggregate grading tests do not meet the requirements specified for "Contract Compliance," the concrete which is represented by the tests shall be removed. However, if the Engineer determines that the concrete is structurally adequate, the concrete may remain in place, and the Contractor shall pay to the State $4.60 per cubic meter for paving concrete and $7.20 per cubic meter for all other concrete for the concrete represented by these tests and left in place. The Department may deduct the amount from any moneys due, or that may become due, the Contractor under the contract.

The 2 preceding paragraphs apply individually to the "Contract Compliance" requirements for coarse aggregate and fine aggregate. When both coarse aggregate and fine aggregate do not conform to the "Contract Compliance" requirements, both paragraphs shall apply. The payments specified in those paragraphs shall be in addition to any payments made in conformance with the provisions in Section 90-1.01, "Description."

No single Cleanness Value, Sand Equivalent or aggregate grading test shall represent more than 250 m³ of concrete or one day's pour, whichever is smaller.

When the source of an aggregate is changed, the Contract or shall adjust the mix proportions and submit in writing to the Engineer a copy of the mix design before using the aggregates.

90-2.02A Coarse Aggregate

Coarse aggregate shall consist of gravel, crushed gravel, crushed rock, crushed air-cooled iron blast furnace slag or combinations thereof. Crushed air-cooled blast furnace slag shall not be used in reinforced or prestressed concrete.

Coarse aggregate shall conform to the following quality requirements:

<table>
<thead>
<tr>
<th>Tests</th>
<th>California Test</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss in Los Angeles Rattler (after 500 revolutions)</td>
<td>211</td>
<td>45% max.</td>
</tr>
<tr>
<td>Cleanness Value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Range</td>
<td>227</td>
<td>75 min.</td>
</tr>
<tr>
<td>Contract Compliance</td>
<td>227</td>
<td>71 min.</td>
</tr>
</tbody>
</table>

In lieu of the above Cleanness Value requirements, a Cleanness Value "Operating Range" limit of 71, minimum, and a Cleanness Value "Contract Compliance" limit of 68, minimum, will be used to determine the acceptability of the coarse aggregate if the Contractor furnishes a Certificate of Compliance, as provided in Section 6-1.07, "Certificates of Compliance," certifying that:

1. coarse aggregate sampled at the completion of processing at the aggregate production plant had a Cleanness Value of not less than 82 when tested by California Test 227; and
2. prequalification tests performed in conformance with the requirements in California Test 549 indicated that the aggregate would develop a relative strength of not less than 95 percent and would have a relative shrinkage not greater than 105 percent, based on concrete.

90-2.02B Fine Aggregate

Fine aggregate shall consist of natural sand, manufactured sand produced from larger aggregate or a combination thereof. Manufactured sand shall be well graded.

Fine aggregate shall conform to the following quality requirements:

CONTRACT NO. 04-0120F4
REPLACED PER ADDENDUM NO. 3 DATED NOVEMBER 7, 2005
<table>
<thead>
<tr>
<th>Test</th>
<th>California Test</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic Impurities</td>
<td>213</td>
<td>Satisfactory⁷</td>
</tr>
<tr>
<td>Mortar Strengths Relative to Ottawa Sand</td>
<td>515</td>
<td>95%, min.</td>
</tr>
<tr>
<td>Sand Equivalent:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Range</td>
<td>217</td>
<td>75, min.</td>
</tr>
<tr>
<td>Contract Compliance</td>
<td>217</td>
<td>71, min.</td>
</tr>
</tbody>
</table>

a Fine aggregate developing a color darker than the reference standard color solution may be accepted if it is determined by the Engineer, from mortar strength tests, that a darker color is acceptable.

- In lieu of the above Sand Equivalent requirements, a Sand Equivalent "Operating Range" limit of 71 minimum and a Sand Equivalent "Contract Compliance" limit of 68 minimum will be used to determine the acceptability of the fine aggregate if the Contractor furnishes a Certificate of Compliance, as provided in Section 6-1.07, "Certificates of Compliance," certifying that:
 1. fine aggregate sampled at the completion of processing at the aggregate production plant had a Sand Equivalent value of not less than 82 when tested by California Test 217; and
 2. prequalification tests performed in conformance with California Test 549 indicated that the aggregate would develop a relative strength of not less than 95 percent and would have a relative shrinkage not greater than 105 percent, based on concrete.

90-2.03 WATER
- In conventionally reinforced concrete work, the water for curing, for washing aggregates, and for mixing shall be free from oil and shall not contain more than 1000 parts per million of chlorides as Cl, when tested in conformance with California Test 422, nor more than 1300 parts per million of sulfates as SO₄, when tested in conformance with California Test 417. In prestressed concrete work, the water for curing, for washing aggregates, and for mixing shall be free from oil and shall not contain more than 650 parts per million of chlorides as Cl, when tested in conformance with California Test 422, nor more than 1300 parts per million of sulfates as SO₄, when tested in conformance with California Test 417. In no case shall the water contain an amount of impurities that will cause either: 1) a change in the setting time of cement of more than 25 percent when tested in conformance with the requirements in ASTM Designation: C 191 or ASTM Designation: C 266 or 2) a reduction in the compressive strength of mortar at 14 days of more than 5 percent, when tested in conformance with the requirements in ASTM Designation: C 109, when compared to the results obtained with distilled water or deionized water, tested in conformance with the requirements in ASTM Designation: C 109.
- In non-reinforced concrete work, the water for curing, for washing aggregates and for mixing shall be free from oil and shall not contain more than 2000 parts per million of chlorides as Cl, when tested in conformance with California Test 422, or more than 1500 parts per million of sulfates as SO₄, when tested in conformance with California Test 417.
- In addition to the above provisions, water for curing concrete shall not contain impurities in a sufficient amount to cause discoloration of the concrete or produce etching of the surface.
- Water reclaimed from mixer wash-out operations may be used in mixing concrete. The water shall not contain coloring agents or more than 300 parts per million of alkalis (Na₂O + 0.658 K₂O) as determined on the filtrate. The specific gravity of the water shall not exceed 1.03 and shall not vary more than ±0.010 during a day's operations.

90-2.04 ADMIXTURE MATERIALS
- Admixture materials shall conform to the requirements in the following ASTM Designations:
 A. Chemical Admixtures—ASTM Designation: C 494.
 C. Calcium Chloride—ASTM Designation: D 98.
 D. Mineral Admixtures—Coal fly ash; raw or calcined natural pozzolan as specified in ASTM Designation: C 618; silica fume conforming to the requirements in ASTM Designation: C 1240, with reduction of mortar expansion of 80 percent, minimum, using the cement from the proposed mix design.

- Unless otherwise specified in the special provisions, mineral admixtures shall be used in conformance with the provisions in Section 90-4.08, "Required Use of Mineral Admixtures."

CONTRACT NO. 04-0120F4
REPLACED PER ADDENDUM NO. 3 DATED NOVEMBER 7, 2005
90-3 AGGREGATE GRADINGS

90-3.01 GENERAL

• Before beginning concrete work, the Contractor shall submit in writing to the Engineer the gradation of the primary aggregate nominal sizes that the Contractor proposes to furnish. If a primary coarse aggregate or the fine aggregate is separated into 2 or more sizes, the proposed gradation shall consist of the gradation for each individual size, and the proposed proportions of each individual size, combined mathematically to indicate one proposed gradation. The proposed gradation shall meet the grading requirements shown in the table in this section, and shall show the percentage passing each of the sieve sizes used in determining the end result.

• The Engineer may waive, in writing, the gradation requirements in this Section 90-3.01 and in Sections 90-3.02, "Coarse Aggregate Grading," 90-3.03, "Fine Aggregate Grading," and 90-3.04, "Combined Aggregate Gradings," if, in the Engineer's opinion, furnishing the gradation is not necessary for the type or amount of concrete work to be constructed.

• Gradations proposed by the Contractor shall be within the following percentage passing limits:

<table>
<thead>
<tr>
<th>Primary Aggregate Nominal Size</th>
<th>Sieve Size</th>
<th>Limits of Proposed Gradation</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.5-mm x 19-mm</td>
<td>25-mm</td>
<td>19 - 41</td>
</tr>
<tr>
<td>25-mm x 4.75-mm</td>
<td>19-mm</td>
<td>52 - 85</td>
</tr>
<tr>
<td>25-mm x 4.75-mm</td>
<td>9.5-mm</td>
<td>15 - 38</td>
</tr>
<tr>
<td>12.5-mm x 4.75-mm</td>
<td>9.5-mm</td>
<td>40 - 78</td>
</tr>
<tr>
<td>9.5-mm x 2.36-mm</td>
<td>9.5-mm</td>
<td>50 - 85</td>
</tr>
<tr>
<td>Fine Aggregate</td>
<td>1.18-mm</td>
<td>55 - 75</td>
</tr>
<tr>
<td>Fine Aggregate</td>
<td>600-µm</td>
<td>34 - 46</td>
</tr>
<tr>
<td>Fine Aggregate</td>
<td>300-µm</td>
<td>16 - 29</td>
</tr>
</tbody>
</table>

• Should the Contractor change the source of supply, the Contractor shall submit in writing to the Engineer the new gradations before their intended use.

90-3.02 COARSE AGGREGATE GRADING

• The grading requirements for coarse aggregates are shown in the following table for each size of coarse aggregate:

<table>
<thead>
<tr>
<th>Sieve Sizes</th>
<th>Percentage Passing Primary Aggregate Nominal Sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>37.5-mm x 19-mm</td>
</tr>
<tr>
<td>50-mm</td>
<td>100</td>
</tr>
<tr>
<td>37.5-mm</td>
<td>88-100</td>
</tr>
<tr>
<td>25-mm</td>
<td>x ± 18</td>
</tr>
<tr>
<td>19-mm</td>
<td>0-17</td>
</tr>
<tr>
<td>12.5-mm</td>
<td>--</td>
</tr>
<tr>
<td>9.5-mm</td>
<td>0-7</td>
</tr>
<tr>
<td>4.75-mm</td>
<td>--</td>
</tr>
<tr>
<td>2.36-mm</td>
<td>--</td>
</tr>
</tbody>
</table>

• In the above table, the symbol X is the gradation that the Contractor proposes to furnish for the specific sieve size as provided in Section 90-3.01, "General."

• Coarse aggregate for the 37.5-mm, maximum, combined aggregate grading as provided in Section 90-3.04, "Combined Aggregate Gradings," shall be furnished in 2 or more primary aggregate nominal sizes. Each primary aggregate nominal size may be separated into 2 sizes and stored separately, provided that the combined material conforms to the grading requirements for that particular primary aggregate nominal size.

CONTRACT NO. 04-0120F4
REPLACED PER ADDENDUM NO. 3 DATED NOVEMBER 7, 2005
• When the 25-mm, maximum, combined aggregate grading as provided in Section 90-3.04, "Combined Aggregate Gradings," is to be used, the coarse aggregate may be separated into 2 sizes and stored separately, provided that the combined material shall conform to the grading requirements for the 25-mm x 4.75-mm primary aggregate nominal size.

90-3.03 FINE AGGREGATE GRADING

• Fine aggregate shall be graded within the following limits:

<table>
<thead>
<tr>
<th>Sieve Sizes</th>
<th>Percentage Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operating Range</td>
</tr>
<tr>
<td>9.5-mm</td>
<td>100</td>
</tr>
<tr>
<td>4.75-mm</td>
<td>95-100</td>
</tr>
<tr>
<td>2.36-mm</td>
<td>65-95</td>
</tr>
<tr>
<td>1.18-mm</td>
<td>X ± 10</td>
</tr>
<tr>
<td>600-µm</td>
<td>X ± 9</td>
</tr>
<tr>
<td>300-µm</td>
<td>X ± 6</td>
</tr>
<tr>
<td>150-µm</td>
<td>2-12</td>
</tr>
<tr>
<td>75-µm</td>
<td>0-8</td>
</tr>
</tbody>
</table>

• In the above table, the symbol X is the gradation that the Contractor proposes to furnish for the specific sieve size as provided in Section 90-3.01, "General."
• In addition to the above required grading analysis, the distribution of the fine aggregate sizes shall be such that the difference between the total percentage passing the 1.18-mm sieve and the total percentage passing the 600-µm sieve shall be between 10 and 40, and the difference between the percentage passing the 600-µm and 300-µm sieves shall be between 10 and 40.
• Fine aggregate may be separated into 2 or more sizes and stored separately, provided that the combined material conforms to the grading requirements specified in this Section 90-3.03.

90-3.04 COMBINED AGGREGATE GRADINGS

• Combined aggregate grading limits shall be used only for the design of concrete mixes. Concrete mixes shall be designed so that aggregates are combined in proportions that shall produce a mixture within the grading limits for combined aggregates as specified herein.
• The combined aggregate grading, except when otherwise specified in these specifications or the special provisions, shall be either the 37.5-mm, maximum grading, or the 25-mm, maximum grading, at the option of the Contractor.

Grading Limits of Combined Aggregates

<table>
<thead>
<tr>
<th>Sieve Sizes</th>
<th>Percentage Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>37.5-mm Max.</td>
</tr>
<tr>
<td>50-mm</td>
<td>100</td>
</tr>
<tr>
<td>37.5-mm</td>
<td>90-100</td>
</tr>
<tr>
<td>25-mm</td>
<td>50-86</td>
</tr>
<tr>
<td>19-mm</td>
<td>45-75</td>
</tr>
<tr>
<td>12.5-mm</td>
<td>—</td>
</tr>
<tr>
<td>9.5-mm</td>
<td>38-55</td>
</tr>
<tr>
<td>4.75-mm</td>
<td>30-45</td>
</tr>
<tr>
<td>2.36-mm</td>
<td>23-38</td>
</tr>
<tr>
<td>1.18-mm</td>
<td>17-33</td>
</tr>
<tr>
<td>600-µm</td>
<td>10-22</td>
</tr>
<tr>
<td>300-µm</td>
<td>4-10</td>
</tr>
<tr>
<td>150-µm</td>
<td>1-6</td>
</tr>
<tr>
<td>75-µm</td>
<td>0-3</td>
</tr>
</tbody>
</table>

• Changes from one grading to another shall not be made during the progress of the work unless permitted by the Engineer.

CONTRACT NO. 04-0120F4
REPLACED PER ADDENDUM NO. 3 DATED NOVEMBER 7, 2005
90-4 ADMIXTURES

90-4.01 GENERAL

- Admixtures used in portland cement concrete shall conform to and be used in conformance with the provisions in this Section 90-4 and the special provisions. Admixtures shall be used when specified or ordered by the Engineer and may be used at the Contractor's option as provided herein.
 - Chemical admixtures and air-entraining admixtures containing chlorides as Cl in excess of one percent by mass of admixture, as determined by California Test 415, shall not be used in prestressed or reinforced concrete.
 - Calcium chloride shall not be used in concrete except when otherwise specified.
 - Mineral admixture used in concrete for exposed surfaces of like elements of a structure shall be from the same source and of the same percentage.
 - Admixtures shall be uniform in properties throughout their use in the work. Should it be found that an admixture as furnished is not uniform in properties, its use shall be discontinued.
 - If more than one admixture is used, the admixtures shall be compatible with each other so that the desirable effects of all admixtures used will be realized.

90-4.02 MATERIALS

- Admixture materials shall conform to the provisions in Section 90–2.04, "Admixture Materials."

90-4.03 ADMIXTURE APPROVAL

- No admixture brand shall be used in the work unless it is on the Department's current list of approved brands for the type of admixture involved.
- Admixture brands will be considered for addition to the approved list if the manufacturer of the admixture submits to the Transportation Laboratory a sample of the admixture accompanied by certified test results demonstrating that the admixture complies with the requirements in the appropriate ASTM Designation and these specifications. The sample shall be sufficient to permit performance of all required tests. Approval of admixture brands will be dependent upon a determination as to compliance with the requirements, based on the certified test results submitted, together with tests the Department may elect to perform.
 - When the Contractor proposes to use an admixture of a brand and type on the current list of approved admixture brands, the Contractor shall furnish a Certificate of Compliance from the manufacturer, as provided in Section 6-1.07, "Certificates of Compliance," certifying that the admixture furnished is the same as that previously approved. If a previously approved admixture is not accompanied by a Certificate of Compliance, the admixture shall not be used in the work until the Engineer has had sufficient time to make the appropriate tests and has approved the admixture for use. The Engineer may take samples for testing at any time, whether or not the admixture has been accompanied by a Certificate of Compliance.
 - If a mineral admixture is delivered directly to the site of the work, the Certificate of Compliance shall be signed by the manufacturer or supplier of the mineral admixture. If the mineral admixture is used in ready-mix concrete or in precast concrete products purchased as such by the Contractor, the Certificate of Compliance shall be signed by the manufacturer of the concrete or product.

90-4.04 REQUIRED USE OF CHEMICAL ADMIXTURES AND CALCIUM CHLORIDE

- When the use of a chemical admixture or calcium chloride is specified, the admixture shall be used at the dosage specified, except that if no dosage is specified, the admixture shall be used at the dosage normally recommended by the manufacturer of the admixture.
 - Calcium chloride shall be dispensed in liquid, flake, or pellet form. Calcium chloride dispensed in liquid form shall conform to the provisions for dispensing liquid admixtures in Section 90-4.10, "Proportioning and Dispensing Liquid Admixtures."

90-4.05 OPTIONAL USE OF CHEMICAL ADMIXTURES

- The Contractor will be permitted to use Type A or F, water-reducing; Type B, retarding; or Type D or G, water-reducing and retarding admixtures as described in ASTM Designation: C 494 to conserve cementitious material or to facilitate any concrete construction application subject to the following conditions:
 A. When a water-reducing admixture or a water-reducing and retarding admixture is used, the cementitious material content specified or ordered may be reduced by a maximum of 5 percent by mass, except that the resultant cementitious material content shall be not less than 300 kilograms per cubic meter; and
B. When a reduction in cementitious material content is made, the dosage of admixture used shall be the dosage used in determining approval of the admixture.

- Unless otherwise specified, a Type C accelerating chemical admixture conforming to the requirements in ASTM Designation: C 494, may be used in portland cement concrete. Inclusion in the mix design submitted for approval will not be required provided that the admixture is added to counteract changing conditions that contribute to delayed setting of the portland cement concrete, and the use or change in dosage of the admixture is approved in writing by the Engineer.

90-4.06 REQUIRED USE OF AIR-ENTRAINING ADMIXTURES
- When air-entrainment is specified or ordered by the Engineer, the air-entraining admixture shall be used in amounts to produce a concrete having the specified air content as determined by California Test 504.

90-4.07 OPTIONAL USE OF AIR-ENTRAINING ADMIXTURES
- When air-entrainment has not been specified or ordered by the Engineer, the Contractor will be permitted to use an air-entraining admixture to facilitate the use of any construction procedure or equipment provided that the average air content, as determined by California Test 504, of 3 successive tests does not exceed 4 percent, and no single test value exceeds 5.5 percent. If the Contractor elects to use an air-entraining admixture in concrete for pavement, the Contractor shall so indicate at the time the Contractor designates the source of aggregate as provided in Section 40-1.015, "Cement Content."

90-4.08 REQUIRED USE OF MINERAL ADMIXTURES
- Unless otherwise specified, mineral admixture shall be combined with cement to make cementitious material.
- The calcium oxide content shall not exceed 10 percent when determined in conformance with the requirements in ASTM Designation: C 114. The available alkali content (as sodium oxide equivalent) shall not exceed 1.5 percent when determined in conformance with the requirements in ASTM Designation: C 311, or the total alkali content (as sodium oxide equivalent) shall not exceed 5.0 percent when determined in conformance with the requirements in ASTM Designation: D 4326.
- The amounts of cement and mineral admixture used in cementitious material shall be sufficient to satisfy the minimum cementitious material content requirements specified in Section 90-1.01, "Description," or Section 90-4.05, "Optional Use of Chemical Admixtures," and shall conform to the following:

A. The minimum amount of cement shall not be less than 75 percent by mass of the specified minimum cementitious material content;
B. The minimum amount of mineral admixture to be combined with cement shall be determined using one of the following criteria:
 1. When the calcium oxide content of a mineral admixture is equal to or less than 2 percent by mass, the amount of mineral admixture shall not be less than 15 percent by mass of the total amount of cementitious material to be used in the mix;
 2. When the calcium oxide content of a mineral admixture is greater than 2 percent, the amount of mineral admixture shall not be less than 25 percent by mass of the total amount of cementitious material to be used in the mix;
 3. When a mineral admixture that conforms to the provisions for silica fume in Section 90-2.04, "Admixture Materials," is used, the amount of mineral admixture shall not be less than 10 percent by mass of the total amount of cementitious material to be used in the mix.

C. The total amount of mineral admixture shall not exceed 35 percent by mass of the total amount of cementitious material to be used in the mix. Where Section 90-1.01, "Description," specifies a maximum cementitious content in kilograms per cubic meter, the total mass of cement and mineral admixture per cubic meter shall not exceed the specified maximum cementitious material content.

90-4.09 BLANK
90-4.10 PROPORTIONING AND DISPENSING LIQUID ADMIXTURES

- Chemical admixtures and air-entraining admixtures shall be dispensed in liquid form. Dispensers for liquid admixtures shall have sufficient capacity to measure at one time the prescribed quantity required for each batch of concrete. Each dispenser shall include a graduated measuring unit into which liquid admixtures are measured to within ±5 percent of the prescribed quantity for each batch. Dispensers shall be located and maintained so that the graduations can be accurately read from the point at which proportioning operations are controlled to permit a visual check of batching accuracy prior to discharge. Each measuring unit shall be clearly marked for the type and quantity of admixture.
 - Each liquid admixture dispensing system shall be equipped with a sampling device consisting of a valve located in a safe and readily accessible position such that a sample of the admixture may be withdrawn slowly by the Engineer.
 - If more than one liquid admixture is used in the concrete mix, each liquid admixture shall have a separate measuring unit and shall be dispensed by injecting equipment located in such a manner that the admixtures are not mixed at high concentrations and do not interfere with the effectiveness of each other. When air-entraining admixtures are used in conjunction with other liquid admixtures, the air-entraining admixture shall be the first to be incorporated into the mix.
 - When automatic proportioning devices are required for concrete pavement, dispensers for liquid admixtures shall operate automatically with the batching control equipment. The dispensers shall be equipped with an automatic warning system in good operating condition that will provide a visible or audible signal at the point at which proportioning operations are controlled when the quantity of admixture measured for each batch of concrete varies from the preselected dosage by more than 5 percent, or when the entire contents of the measuring unit are not emptied from the dispenser into each batch of concrete.
 - Unless liquid admixtures are added to premeasured water for the batch, their discharge into the batch shall be arranged to flow into the stream of water so that the admixtures are well dispersed throughout the batch, except that air-entraining admixtures may be dispensed directly into moist sand in the batching bins provided that adequate control of the air content of the concrete can be maintained.
 - Liquid admixtures requiring dosages greater than 2.5 L/m³ shall be considered to be water when determining the total amount of free water as specified in Section 90-6.06, "Amount of Water and Penetration."
 - Special admixtures, such as "high range" water reducers that may contribute to a high rate of slump loss, shall be measured and dispensed as recommended by the admixture manufacturer and as approved by the Engineer.

90-4.11 STORAGE, PROPORTIONING, AND DISPENSING OF MINERAL ADMIXTURES

- Mineral admixtures shall be protected from exposure to moisture until used. Sacked material shall be piled to permit access for tally, inspection and identification for each shipment.
 - Adequate facilities shall be provided to assure that mineral admixtures meeting the specified requirements are kept separate from other mineral admixtures in order to prevent any but the specified mineral admixtures from entering the work. Safe and suitable facilities for sampling mineral admixtures shall be provided at the weigh hopper or in the feed line immediately in advance of the hopper.
 - Mineral admixtures shall be incorporated into concrete using equipment conforming to the requirements for cement weigh hoppers, and charging and discharging mechanisms in ASTM Designation: C 94, in Section 90-5.03, "Proportioning," and in this Section 90-4.11.
 - When concrete is completely mixed in stationary paving mixers, the mineral admixture shall be weighed in a separate weigh hopper conforming to the provisions for cement weigh hoppers and charging and discharging mechanisms in Section 90-5.03A, "Proportioning for Pavement," and the mineral admixture and cement shall be introduced simultaneously into the mixer proportionately with the aggregate. If the mineral admixture is not weighed in a separate weigh hopper, the Contractor shall provide certification that the stationary mixer is capable of mixing the cement, admixture, aggregates and water uniformly prior to discharge. Certification shall contain the following:

A. Test results for 2 compressive strength test cylinders of concrete taken within the first one-third and 2 compressive strength test cylinders of concrete taken within the last one-third of the concrete discharged from a single batch from the stationary paving mixer. Strength tests and cylinder preparation will be in conformance with the provisions of Section 90-9, "Compressive Strength;"
B. Calculations demonstrating that the difference in the averages of 2 compressive strengths taken in the first one-third is no greater than 7.5 percent different than the averages of 2 compressive strengths taken in the last one-third of the concrete discharged from a single batch from the stationary paving mixer. Strength tests and cylinder preparation will be in conformance with the provisions of Section 90-9, "Compressive Strength;" and
C. The mixer rotation speed and time of mixing prior to discharge that are required to produce a mix that meets the requirements above.

90-5 PROPORTIONING

90-5.01 STORAGE OF AGGREGATES

- Aggregates shall be stored or stockpiled in such a manner that separation of coarse and fine particles of each size shall be avoided and also that the various sizes shall not become intermixed before proportioning.
- Aggregates shall be stored or stockpiled and handled in a manner that shall prevent contamination by foreign materials. In addition, storage of aggregates at batching or mixing facilities that are erected subsequent to the award of the contract and that furnish concrete to the project shall conform to the following:

A. Intermingling of the different sizes of aggregates shall be positively prevented. The Contractor shall take the necessary measures to prevent intermingling. The preventive measures may include, but are not necessarily limited to, physical separation of stockpiles or construction of bulkheads of adequate length and height; and
B. Contamination of aggregates by contact with the ground shall be positively prevented. The Contractor shall take the necessary measures to prevent contamination. The preventive measures shall include, but are not necessarily limited to, placing aggregates on wooden platforms or on hardened surfaces consisting of portland cement concrete, asphalt concrete, or cement treated material.

- In placing aggregates in storage or in moving the aggregates from storage to the weigh hopper of the batching plant, any method that may cause segregation, degradation, or the combining of materials of different gradings that will result in any size of aggregate at the weigh hopper failing to meet the grading requirements, shall be discontinued. Any method of handling aggregates that results in excessive breakage of particles shall be discontinued. The use of suitable devices to reduce impact of falling aggregates may be required by the Engineer.

90-5.02 PROPORTIONING DEVICES

- Weighing, measuring, or metering devices used for proportioning materials shall conform to the requirements in Section 9-1.01, "Measurement of Quantities," and this Section 90-5.02. In addition, automatic weighing systems shall comply with the requirements for automatic proportioning devices in Section 90-5.03A, "Proportioning for Pavement." Automatic devices shall be automatic to the extent that the only manual operation required for proportioning the aggregates, cement, and mineral admixture for one batch of concrete is a single operation of a switch or starter.
- Proportioning devices shall be tested at the expense of the Contractor as frequently as the Engineer may deem necessary to ensure their accuracy.
- Weighing equipment shall be insulated against vibration or movement of other operating equipment in the plant. When the plant is in operation, the mass of each batch of material shall not vary from the mass designated by the Engineer by more than the tolerances specified herein.
- Equipment for cumulative weighing of aggregate shall have a zero tolerance of ±0.5 percent of the designated total batch mass of the aggregate. For systems with individual weigh hoppers for the various sizes of aggregate, the zero tolerance shall be ±0.5 percent of the individual batch mass designated for each size of aggregate. Equipment for cumulative weighing of cement and mineral admixtures shall have a zero tolerance of ±0.5 percent of the designated total batch mass of the cement and mineral admixture. Equipment for weighing cement or mineral admixture separately shall have a zero tolerance of ±0.5 percent of their designated individual batch masses. Equipment for measuring water shall have a zero tolerance of ±0.5 percent of its designated mass or volume.
- The mass indicated for any batch of material shall not vary from the preselected scale setting by more than the following:

A. Aggregate weighed cumulatively shall be within 1.0 percent of the designated total batch mass of the aggregate. Aggregates weighed individually shall be within 1.5 percent of their respective designated batch masses; and
B. Cement shall be within 1.0 percent of its designated batch mass. When weighed individually, mineral admixture shall be within 1.0 percent of its designated batch mass. When mineral admixture and cement are permitted to be weighed cumulatively, cement shall be weighed first to within 1.0 percent of its designated batch mass, and the total for cement and mineral admixture shall be within 1.0 percent of the sum of their designated batch masses; and
C. Water shall be within 1.5 percent of its designated mass or volume.

CONTRACT NO. 04-0120F4
REPLACED PER ADDENDUM NO. 3 DATED NOVEMBER 7, 2005
• Each scale graduation shall be approximately 0.001 of the total capacity of the scale. The capacity of scales for weighing cement, mineral admixture, or cement plus mineral admixture and aggregates shall not exceed that of commercially available scales having single graduations indicating a mass not exceeding the maximum permissible mass variation above, except that no scale shall be required having a capacity of less than 500 kg, with 0.5-kg graduations.

90-5.03 PROPORTIONING

• Proportioning shall consist of dividing the aggregates into the specified sizes, each stored in a separate bin, and combining them with cement, mineral admixture, and water as provided in these specifications. Aggregates shall be proportioned by mass.
 • At the time of batching, aggregates shall have been dried or drained sufficiently to result in a stable moisture content such that no visible separation of water from aggregate will take place during transportation from the proportioning plant to the point of mixing. In no event shall the free moisture content of the fine aggregate at the time of batching exceed 8 percent of its saturated, surface-dry mass.
 • Should separate supplies of aggregate material of the same size group, but of different moisture content or specific gravity or surface characteristics affecting workability, be available at the proportioning plant, withdrawals shall be made from one supply exclusively and the materials therein completely exhausted before starting upon another.
 • Bulk "Type IP (MS) Modified" cement shall be weighed in an individual hopper and shall be kept separate from the aggregates until the ingredients are released for discharge into the mixer.
 • Bulk cement and mineral admixture may be weighed in separate, individual weigh hoppers or may be weighed in the same weigh hopper and shall be kept separate from the aggregates until the ingredients are released for discharge into the mixer. If the cement and mineral admixture are weighed cumulatively, the cement shall be weighed first.
 • When cement and mineral admixtures are weighed in separate weigh hoppers, the weigh systems for the proportioning of the aggregate, the cement, and the mineral admixture shall be individual and distinct from all other weigh systems. Each weigh system shall be equipped with a hopper, a lever system, and an indicator to constitute an individual and independent material weighing device. The cement and the mineral admixture shall be discharged into the mixer simultaneously with the aggregate.
 • The scales and weigh hoppers for bulk weighing cement, mineral admixture, or cement plus mineral admixture shall be separate and distinct from the aggregate weighing equipment.
 • For batches with a volume of one cubic meter or more, the batching equipment shall conform to one of the following combinations:
 A. Separate boxes and separate scale and indicator for weighing each size of aggregate.
 B. Single box and scale indicator for all aggregates.
 C. Single box or separate boxes and automatic weighing mechanism for all aggregates.
 • In order to check the accuracy of batch masses, the gross mass and tare mass of batch trucks, truck mixers, truck agitators, and non-agitating hauling equipment shall be determined when ordered by the Engineer. The equipment shall be weighed at the Contractor’s expense on scales designated by the Engineer.

90-5.03A Proportioning for Pavement

• Aggregates and bulk cement, mineral admixture, and cement plus mineral admixture for use in pavement shall be proportioned by mass by means of automatic proportioning devices of approved type conforming to these specifications.
 • The Contractor shall install and maintain in operating condition an electronically actuated moisture meter that will indicate, on a readily visible scale, changes in the moisture content of the fine aggregate as it is batched within a sensitivity of 0.5 percent by mass of the fine aggregate.
 • The batching of cement, mineral admixture, or cement plus mineral admixture and aggregate shall be interlocked so that a new batch cannot be started until all weigh hoppers are empty, the proportioning devices are within zero tolerance, and the discharge gates are closed. The interlock shall permit no part of the batch to be discharged until all aggregate hoppers and the cement and mineral admixture hoppers or the cement plus mineral admixture hopper are charged with masses that are within the tolerances specified in Section 90-5.02, "Proportioning Devices."
 • When interlocks are required for cement and mineral admixture charging mechanisms and cement and mineral admixtures are weighed cumulatively, their charging mechanisms shall be interlocked to prevent the introduction of mineral admixture until the mass of cement in the cement weigh hopper is within the tolerances specified in Section 90-5.02, "Proportioning Devices."

CONTRACT NO. 04-0120F4
REPLACED PER ADDENDUM NO. 3 DATED NOVEMBER 7, 2005
• The discharge gate on the cement and mineral admixture hoppers or the cement plus mineral admixture hopper shall be designed to permit regulating the flow of cement, mineral admixture, or cement plus mineral admixture into the aggregate as directed by the Engineer.
 • When separate weigh boxes are used for each size of aggregate, the discharge gates shall permit regulating the flow of each size of aggregate as directed by the Engineer.
 • Material discharged from the several bins shall be controlled by gates or by mechanical conveyors. The means of withdrawal from the several bins, and of discharge from the weigh box, shall be interlocked so that not more than one bin can discharge at a time, and so that the weigh box cannot be tripped until the required quantity from each of the several bins has been deposited therein. Should a separate weigh box be used for each size of aggregate, all may be operated and discharged simultaneously.
 • When the discharge from the several bins is controlled by gates, each gate shall be actuated automatically so that the required mass is discharged into the weigh box, after which the gate shall automatically close and lock.
 • The automatic weighing system shall be designed so that all proportions required may be set on the weighing controller at the same time.

90-6 MIXING AND TRANSPORTING

90-6.01 GENERAL
 • Concrete shall be mixed in mechanically operated mixers, except that when permitted by the Engineer, batches not exceeding 0.25 m³ may be mixed by hand methods in conformance with the provisions in Section 90-6.05, "Hand-Mixing."
 • Equipment having components made of aluminum or magnesium alloys that would have contact with plastic concrete during mixing, transporting, or pumping of portland cement concrete shall not be used.
 • Concrete shall be homogeneous and thoroughly mixed, and there shall be no lumps or evidence of undispersed cement, mineral admixture, or cement plus mineral admixture.
 • Uniformity of concrete mixtures will be determined by differences in penetration as determined by California Test 533, or slump as determined by ASTM Designation: C 143, and by variations in the proportion of coarse aggregate as determined by California Test 529.
 • When the mix design specifies a penetration value, the difference in penetration, determined by comparing penetration tests on 2 samples of mixed concrete from the same batch or truck mixer load, shall not exceed 10 mm. When the mix design specifies a slump value, the difference in slump, determined by comparing slump tests on 2 samples of mixed concrete from the same batch or truck mixer load, shall not exceed the values given in the table below. Variation in the proportion of coarse aggregate will be determined by comparing the results of tests of 2 samples of mixed concrete from the same batch or truck mixer load and the difference between the 2 results shall not exceed 100 kg per cubic meter of concrete.

<table>
<thead>
<tr>
<th>Average Slump</th>
<th>Maximum Permissible Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 100-mm</td>
<td>25-mm</td>
</tr>
<tr>
<td>100-mm to 150-mm</td>
<td>38-mm</td>
</tr>
<tr>
<td>Greater than 150-mm to 225-mm</td>
<td>50-mm</td>
</tr>
</tbody>
</table>

 • The Contractor, at the Contractor's expense, shall furnish samples of the freshly mixed concrete and provide satisfactory facilities for obtaining the samples.

90-6.02 MACHINE MIXING
 • Concrete mixers may be of the revolving drum or the revolving blade type, and the mixing drum or blades shall be operated uniformly at the mixing speed recommended by the manufacturer. Mixers and agitators that have an accumulation of hard concrete or mortar shall not be used.
 • The temperature of mixed concrete, immediately before placing, shall be not less than 10°C or more than 32°C. Aggregates and water shall be heated or cooled as necessary to produce concrete within these temperature limits. Neither aggregates nor mixing water shall be heated to exceed 65°C. If ice is used to cool the concrete, discharge of the mixer will not be permitted until all ice is melted.
 • The batch shall be so charged into the mixer that some water will enter in advance of cementitious materials and aggregates. All water shall be in the drum by the end of the first one-fourth of the specified mixing time.
 • Cementitious materials shall be batched and charged into the mixer by means that will not result either in loss of cementitious materials due to the effect of wind, in accumulation of cementitious materials on surfaces of conveyors or hoppers, or in other conditions that reduce or vary the required quantity of cementitious material in the concrete mixture.

CONTRACT NO. 04-0120F4
REPLACED PER ADDENDUM NO. 3 DATED NOVEMBER 7, 2005
• Paving and stationary mixers shall be operated with an automatic timing device. The timing device and discharge mechanism shall be interlocked so that during normal operation no part of the batch will be discharged until the specified mixing time has elapsed.
• The total elapsed time between the intermingling of damp aggregates and all cementitious materials and the start of mixing shall not exceed 30 minutes.
• The size of batch shall not exceed the manufacturer's guaranteed capacity.
• When producing concrete for pavement or base, suitable batch counters shall be installed and maintained in good operating condition at jobsite batching plants and stationary mixers. The batch counters shall indicate the exact number of batches proportioned and mixed.
• Concrete shall be mixed and delivered to the jobsite by means of one of the following combinations of operations:

A. Mixed completely in a stationary mixer and the mixed concrete transported to the point of delivery in truck agitators or in non-agitating hauling equipment (central-mixed concrete).
B. Mixed partially in a stationary mixer, and the mixing completed in a truck mixer (shrink-mixed concrete).
C. Mixed completely in a truck mixer (transit-mixed concrete).
D. Mixed completely in a paving mixer.

• Agitators may be truck mixers operating at agitating speed or truck agitators. Each mixer and agitator shall have attached thereto in a prominent place a metal plate or plates on which is plainly marked the various uses for which the equipment is designed, the manufacturer's guaranteed capacity of the drum or container in terms of the volume of mixed concrete and the speed of rotation of the mixing drum or blades.
• Truck mixers shall be equipped with electrically or mechanically actuated revolution counters by which the number of revolutions of the drum or blades may readily be verified.
• When shrink-mixed concrete is furnished, concrete that has been partially mixed at a central plant shall be transferred to a truck mixer and all requirements for transit-mixed concrete shall apply. No credit in the number of revolutions at mixing speed shall be allowed for partial mixing in a central plant.

90-6.03 TRANSPORTING MIXED CONCRETE
• Mixed concrete may be transported to the delivery point in truck agitators or truck mixers operating at the speed designated by the manufacturer of the equipment as agitating speed, or in non-agitating hauling equipment, provided the consistency and workability of the mixed concrete upon discharge at the delivery point is suitable for adequate placement and consolidation in place, and provided the mixed concrete after hauling to the delivery point conforms to the provisions in Section 90-6.01, "General."
• Truck agitators shall be loaded not to exceed the manufacturer's guaranteed capacity and shall maintain the mixed concrete in a thoroughly mixed and uniform mass during hauling.
• Bodies of non-agitating hauling equipment shall be constructed so that leakage of the concrete mix, or any part thereof, will not occur at any time.
• Concrete hauled in open-top vehicles shall be protected during hauling against rain or against exposure to the sun for more than 20 minutes when the ambient temperature exceeds 24°C.
• No additional mixing water shall be incorporated into the concrete during hauling or after arrival at the delivery point, unless authorized by the Engineer. If the Engineer authorizes additional water to be incorporated into the concrete, the drum shall be revolved not less than 30 revolutions at mixing speed after the water is added and before discharge is commenced.
• The rate of discharge of mixed concrete from truck mixer-agitators shall be controlled by the speed of rotation of the drum in the discharge direction with the discharge gate fully open.
• When a truck mixer or agitator is used for transporting concrete to the delivery point, discharge shall be completed within 1.5 hours or before 250 revolutions of the drum or blades, whichever occurs first, after the introduction of the cement to the aggregates. Under conditions contributing to quick stiffening of the concrete, or when the temperature of the concrete is 30°C or above, the time allowed may be less than 1.5 hours.
• When non-agitating hauling equipment is used for transporting concrete to the delivery point, discharge shall be completed within one hour after the addition of the cement to the aggregates. Under conditions contributing to quick stiffening of the concrete, or when the temperature of the concrete is 30°C or above, the time between the introduction of cement to the aggregates and discharge shall not exceed 45 minutes.
• Each load of concrete delivered at the jobsite shall be accompanied by a weighmaster certificate showing the mix identification number, non-repeating load number, date and time at which the materials were batched, the total amount of water added to the load, and for transit-mixed concrete, the reading of the revolution counter at the time the truck mixer is charged with cement. This weighmaster certificate shall also show the actual scale masses (kilograms) for the ingredients batched. Theoretical or target batch masses shall not be used as a substitute for actual scale masses.

• Weighmaster certificates shall be provided in printed form, or if approved by the Engineer, the data may be submitted in electronic media. Electronic media shall be presented in a tab-delimited format on a 90 mm diskette with a capacity of at least 1.4 megabytes. Captured data, for the ingredients represented by each batch shall be "line feed, carriage return" (LFCR) and "one line, separate record" with allowances for sufficient fields to satisfy the amount of data required by these specifications.

• The Contractor may furnish a weighmaster certificate accompanied by a separate certificate that lists the actual batch masses or measurements for a load of concrete provided that both certificates are imprinted with the same non-repeating load number that is unique to the contract and delivered to the jobsite with the load.

• Weighmaster certificates furnished by the Contractor shall conform to the provisions in Section 9-1.01, "Measurement of Quantities."

90-6.04 TIME OR AMOUNT OF MIXING

• Mixing of concrete in paving or stationary mixers shall continue for the required mixing time after all ingredients, except water and admixture, if added with the water, are in the mixing compartment of the mixer before any part of the batch is released. Transfer time in multiple drum mixers shall not be counted as part of the required mixing time.

• The required mixing time, in paving or stationary mixers, of concrete used for concrete structures, except minor structures, shall be not less than 90 seconds or more than 5 minutes, except that when directed by the Engineer in writing, the requirements of the following paragraph shall apply.

• The required mixing time, in paving or stationary mixers, except as provided in the preceding paragraph, shall be not less than 50 seconds or more than 5 minutes.

• The minimum required revolutions at the mixing speed for transit-mixed concrete shall not be less than that recommended by the mixer manufacturer, but in no case shall the number of revolutions be less than that required to consistently produce concrete conforming to the provisions for uniformity in Section 90-6.01, "General."

90-6.05 HAND-MIXING

• Hand-mixed concrete shall be made in batches of not more than 0.25 m³ and shall be mixed on a watertight, level platform. The proper amount of coarse aggregate shall be measured in measuring boxes and spread on the platform and the fine aggregate shall be spread on this layer, the 2 layers being not more than 0.3 meters in total depth. On this mixture shall be spread the dry cement and mineral admixture and the whole mass turned no fewer than 2 times dry; then sufficient clean water shall be added, evenly distributed, and the whole mass again turned no fewer than 3 times, not including placing in the carriers or forms.

90-6.06 AMOUNT OF WATER AND PENETRATION

• The amount of water used in concrete mixes shall be regulated so that the penetration of the concrete as determined by California Test 533 or the slump of the concrete as determined by ASTM Designation: C 143 is within the "Nominal" values shown in the following table. When the penetration or slump of the concrete is found to exceed the nominal values listed, the mixture of subsequent batches shall be adjusted to reduce the penetration or slump to a value within the nominal range shown. Batches of concrete with a penetration or slump exceeding the maximum values listed shall not be used in the work. When Type F or Type G chemical admixtures are added to the mix, the penetration requirements shall not apply and the slump shall not exceed 225 mm after the chemical admixtures are added.

<table>
<thead>
<tr>
<th>Type of Work</th>
<th>Nominal Penetration (mm)</th>
<th>Slump (mm)</th>
<th>Maximum Penetration (mm)</th>
<th>Slump (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete Pavement</td>
<td>0-25</td>
<td>—</td>
<td>40</td>
<td>—</td>
</tr>
<tr>
<td>Non-reinforced concrete facilities</td>
<td>0-35</td>
<td>—</td>
<td>50</td>
<td>—</td>
</tr>
<tr>
<td>Reinforced concrete structures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sections over 300-mm thick</td>
<td>0-35</td>
<td>—</td>
<td>65</td>
<td>—</td>
</tr>
<tr>
<td>Sections 300-mm thick or less</td>
<td>0-50</td>
<td>—</td>
<td>75</td>
<td>—</td>
</tr>
<tr>
<td>Concrete placed under water</td>
<td>—</td>
<td>150-200</td>
<td>—</td>
<td>225</td>
</tr>
<tr>
<td>Cast-in-place concrete piles</td>
<td>65-90</td>
<td>130-180</td>
<td>100</td>
<td>200</td>
</tr>
</tbody>
</table>
The amount of free water used in concrete shall not exceed 183 kg/m³, plus 20 kg for each required 100 kg of cementitious material in excess of 325 kg/m³.

The term free water is defined as the total water in the mixture minus the water absorbed by the aggregates in reaching a saturated surface-dry condition.

Where there are adverse or difficult conditions that affect the placing of concrete, the above specified penetration and free water content limitations may be exceeded providing the Contractor is granted permission by the Engineer in writing to increase the cementitious material content per cubic meter of concrete. The increase in water and cementitious material shall be at a ratio not to exceed 30 kg of water per added 100 kg of cementitious material per cubic meter. The cost of additional cementitious material and water added under these conditions shall be at the Contractor’s expense and no additional compensation will be allowed therefor.

The equipment for supplying water to the mixer shall be constructed and arranged so that the amount of water added can be measured accurately. Any method of discharging water into the mixer for a batch shall be accurate within 1.5 percent of the quantity of water required to be added to the mix for any position of the mixer. Tanks used to measure water shall be designed so that water cannot enter while water is being discharged into the mixer and discharge into the mixer shall be made rapidly in one operation without dribbling. All equipment shall be arranged so as to permit checking the amount of water delivered by discharging into measured containers.

90-7 CURING CONCRETE

90-7.01 METHODS OF CURING

Newly placed concrete shall be cured by the methods specified in this Section 90-7.01 and the special provisions.

90-7.01A Water Method

The concrete shall be kept continuously wet by the application of water for a minimum curing period of 7 days after the concrete has been placed.

When a curing medium consisting of cotton mats, rugs, carpets, or earth or sand blankets is to be used to retain the moisture, the entire surface of the concrete shall be kept damp by applying water with a nozzle that so atomizes the flow that a mist and not a spray is formed, until the surface of the concrete is covered with the curing medium. The moisture from the nozzle shall not be applied under pressure directly upon the concrete and shall not be allowed to accumulate on the concrete in a quantity sufficient to cause a flow or wash the surface. At the expiration of the curing period, the concrete surfaces shall be cleared of all curing mediums.

At the option of the Contractor, a curing medium consisting of white opaque polyethylene sheeting extruded onto burlap may be used to cure concrete structures. The polyethylene sheeting shall have a minimum thickness of 100 µm, and shall be extruded onto 283.5 gram burlap.

At the option of the Contractor, a curing medium consisting of polyethylene sheeting may be used to cure concrete columns. The polyethylene sheeting shall have a minimum thickness of 250 µm achieved in a single layer of material.

If the Contractor chooses to use polyethylene sheeting or polyethylene sheeting on burlap as a curing medium as specified above, these mediums and any joints therein shall be secured as necessary to provide moisture retention and shall be within 75 mm of the concrete at all points along the surface being cured. When these mediums are used, the temperature of the concrete shall be monitored during curing. If the temperature of the concrete cannot be maintained below 60°C, this method of curing shall be discontinued, and one of the other curing methods allowed for the concrete shall be used.

When concrete bridge decks and flat slabs are to be cured without the use of a curing medium, the entire surface of the bridge deck or slab shall be kept damp by the application of water with an atomizing nozzle as specified in the preceding paragraph, until the concrete has set, after which the entire surface of the concrete shall be sprinkled continuously with water for a period of not less than 7 days.

90-7.01B Curing Compound Method

Surfaces of the concrete that are exposed to the air shall be sprayed uniformly with a curing compound.

Curing compounds to be used shall be as follows:

1. Pigmented curing compound conforming to the requirements in ASTM Designation: C 309, Type 2, Class B, except the resin type shall be poly-alpha-methylstyrene.
2. Pigmented curing compound conforming to the requirements in ASTM Designation: C 309, Type 2, Class B.
3. Pigmented curing compound conforming to the requirements in ASTM Designation: C 309, Type 2, Class A.
4. Non-pigmented curing compound conforming to the requirements in ASTM Designation: C 309, Type 1, Class B.
5. Non-pigmented curing compound conforming to the requirements in ASTM Designation: C 309, Type 1, Class A.
6. Non-pigmented curing compound with fugitive dye conforming to the requirements in ASTM Designation: C 309, Type 1-D, Class A.

- The infrared scan for the dried vehicle from curing compound (1) shall match the infrared scan on file at the Transportation Laboratory.
- The loss of water for each type of curing compound, when tested in conformance with the requirements in California Test 534, shall not be more than 0.15-kg/m² in 24 hours.
- The curing compound to be used will be specified elsewhere in these specifications or in the special provisions.
 - When the use of curing compound is required or permitted elsewhere in these specifications or in the special provisions and no specific kind is specified, any of the curing compounds listed above may be used.
 - Curing compound shall be applied at a nominal rate of 3.7 m²/L, unless otherwise specified.
 - At any point, the application rate shall be within ±1.2 m²/L of the nominal rate specified, and the average application rate shall be within ±0.5 m²/L of the nominal rate specified when tested in conformance with the requirements in California Test 535. Runs, sags, thin areas, skips, or holidays in the applied curing compound shall be evidence that the application is not satisfactory.
 - Curing compounds shall be applied using power operated spray equipment. The power operated spraying equipment shall be equipped with an operational pressure gage and a means of controlling the pressure. Hand spraying of small and irregular areas that are not reasonably accessible to mechanical spraying equipment, in the opinion of the Engineer, may be permitted.
 - The curing compound shall be applied to the concrete following the surface finishing operation, immediately before the moisture sheen disappears from the surface, but before any drying shrinkage or craze cracks begin to appear. In the event of any drying or cracking of the surface, application of water with an atomizing nozzle as specified in Section 90-7.01A, "Water Method," shall be started immediately and shall be continued until application of the compound is resumed or started; however, the compound shall not be applied over any resulting freestanding water. Should the film of compound be damaged from any cause before the expiration of 7 days after the concrete is placed in the case of structures and 72 hours in the case of pavement, the damaged portion shall be repaired immediately with additional compound.
 - At the time of use, compounds containing pigments shall be in a thoroughly mixed condition with the pigment uniformly dispersed throughout the vehicle. A paddle shall be used to loosen all settled pigment from the bottom of the container, and a power driven agitator shall be used to disperse the pigment uniformly throughout the vehicle.
 - Agitation shall not introduce air or other foreign substance into the curing compound.
 - The manufacturer shall include in the curing compound the necessary additives for control of sagging, pigment settling, leveling, de-emulsification, or other requisite qualities of a satisfactory working material. Pigmented curing compounds shall be manufactured so that the pigment does not settle badly, does not cake or thicken in the container, and does not become granular or curdled. Settlement of pigment shall be a thoroughly wetted, soft, mushy mass permitting the complete and easy vertical penetration of a paddle. Settled pigment shall be easily redispersed, with minimum resistance to the sideways manual motion of the paddle across the bottom of the container, to form a smooth uniform product of the proper consistency.
 - Curing compounds shall remain sprayable at temperatures above 4°C and shall not be diluted or altered after manufacture.
 - The curing compound shall be packaged in clean 1040-L totes, 210-L barrels or 19-L pails shall be supplied from a suitable storage tank located at the jobsite. The containers shall comply with "Title 49, Code of Federal Regulations, Hazardous Materials Regulations." The 1040-L totes and the 210-L barrels shall have removable lids and airtight fasteners. The 19-L pails shall be round and have standard full open head and bail. Lids with bungholes shall not be permitted. Settling or separation of solids in containers, except tanks, must be completely redispersed with low speed mixing prior to use, in conformance with these specifications and the manufacturer's recommendations. Mixing shall be accomplished either manually by use of a paddle or by use of a mixing blade driven by a drill motor, at low speed. Mixing blades shall be the type used for mixing paint. On site storage tanks shall be kept clean and free of contaminants. Each tank shall have a permanent system designed to completely redispurse settled material without introducing air or other foreign substances.
 - Steel containers and lids shall be lined with a coating that will prevent destructive action by the compound or chemical agents in the air space above the compound. The coating shall not come off the container or lid as skins. Containers shall be filled in a manner that will prevent skimming. Plastic containers shall not react with the compound.
• Each container shall be labeled with the manufacturer's name, kind of curing compound, batch number, volume, date of manufacture, and volatile organic compound (VOC) content. The label shall also warn that the curing compound containing pigment shall be well stirred before use. Precautions concerning the handling and the application of curing compound shall be shown on the label of the curing compound containers in conformance with the Construction Safety Orders and General Industry Safety Orders of the State of California.

• Containers of curing compound shall be labeled to indicate that the contents fully comply with the rules and regulations concerning air pollution control in the State of California.

• When the curing compound is shipped in tanks or tank trucks, a shipping invoice shall accompany each load. The invoice shall contain the same information as that required herein for container labels.

• Curing compound will be sampled by the Engineer at the source of supply or at the jobsite or at both locations.

• Curing compound shall be formulated so as to maintain the specified properties for a minimum of one year. The Engineer may require additional testing before use to determine compliance with these specifications if the compound has not been used within one year or whenever the Engineer has reason to believe the compound is no longer satisfactory.

• Tests will be conducted in conformance with the latest ASTM test methods and methods in use by the Transportation Laboratory.

90-7.01C Waterproof Membrane Method

• The exposed finished surfaces of concrete shall be sprayed with water, using a nozzle that so atomizes the flow that a mist and not a spray is formed, until the concrete has set, after which the curing membrane shall be placed. The curing membrane shall remain in place for a period of not less than 72 hours.

• Sheeting material for curing concrete shall conform to the requirements in AASHTO Designation: M 171 for white reflective materials.

• The sheeting material shall be fabricated into sheets of such width as to provide a complete cover for the entire concrete surface. Joints in the sheets shall be securely cemented together in such a manner as to provide a waterproof joint. The joint seams shall have a minimum lap of 100 mm.

• The sheets shall be securely weighted down by placing a bank of earth on the edges of the sheets or by other means satisfactory to the Engineer.

• Should any portion of the sheets be broken or damaged before the expiration of 72 hours after being placed, the broken or damaged portions shall be immediately repaired with new sheets properly cemented into place.

• Sections of membrane that have lost their waterproof qualities or have been damaged to such an extent as to render them unfit for curing the concrete shall not be used.

90-7.01D Forms-In-Place Method

• Formed surfaces of concrete may be cured by retaining the forms in place. The forms shall remain in place for a minimum period of 7 days after the concrete has been placed, except that for members over 0.5-m in least dimension the forms shall remain in place for a minimum period of 5 days.

• Joints in the forms and the joints between the end of forms and concrete shall be kept moisture tight during the curing period. Cracks in the forms and cracks between the forms and the concrete shall be resealed by methods subject to the approval of the Engineer.

90-7.02 CURING PAVEMENT

• The entire exposed area of the pavement, including edges, shall be cured by the waterproof membrane method, or curing compound method using curing compound (1) or (2) as the Contractor may elect. Should the side forms be removed before the expiration of 72 hours following the start of curing, the exposed pavement edges shall also be cured. If the pavement is cured by means of the curing compound method, the sawcut and all portions of the curing compound that have been disturbed by sawing operations shall be restored by spraying with additional curing compound.

• Curing shall commence as soon as the finishing process provided in Section 40-1.10, "Final Finishing," has been completed. The method selected shall conform to the provisions in Section 90-7.01, "Methods of Curing."

• When the curing compound method is used, the compound shall be applied to the entire pavement surface by mechanical sprayers. Spraying equipment shall be of the fully atomizing type equipped with a tank agitator that provides for continual agitation of the curing compound during the time of application. The spray shall be adequately protected against wind, and the nozzles shall be so oriented or moved mechanically transversely as to result in the minimum specified rate of coverage being applied uniformly on exposed faces. Hand spraying of small and irregular areas, and areas inaccessible to mechanical spraying equipment, in the opinion of the Engineer, will be permitted. When the ambient air temperature is
above 15°C, the Contractor shall fog the surface of the concrete with a fine spray of water as specified in Section 90-7.01A, "Water Method." The surface of the pavement shall be kept moist between the hours of 10:00 a.m. and 4:30 p.m. on the day the concrete is placed. However, the fogging done after the curing compound has been applied shall not begin until the compound has set sufficiently to prevent displacement. Fogging shall be discontinued if ordered in writing by the Engineer.

90-7.03 CURING STRUCTURES

- Newly placed concrete for cast-in-place structures, other than highway bridge decks, shall be cured by the water method, the forms-in-place method, or, as permitted herein, by the curing compound method, in conformance with the provisions in Section 90-7.01, "Methods of Curing."
 - The curing compound method using a pigmented curing compound may be used on concrete surfaces of construction joints, surfaces that are to be buried underground, and surfaces where only Ordinary Surface Finish is to be applied and on which a uniform color is not required and that will not be visible from a public traveled way. If the Contractor elects to use the curing compound method on the bottom slab of box girder spans, the curing compound shall be curing compound (1).
 - The top surface of highway bridge decks shall be cured by both the curing compound method and the water method. The curing compound shall be curing compound (1).
 - Concrete surfaces of minor structures, as defined in Section 51-1.02, "Minor Structures," shall be cured by the water method, the forms-in-place method or the curing compound method.
 - When deemed necessary by the Engineer during periods of hot weather, water shall be applied to concrete surfaces being cured by the curing compound method or by the forms-in-place method, until the Engineer determines that a cooling effect is no longer required. Application of water for this purpose will be paid for as extra work as provided in Section 4-1.03D, "Extra Work."

90-7.04 CURING PRECAST CONCRETE MEMBERS

- Precast concrete members shall be cured in conformance with any of the methods specified in Section 90-7.01, "Methods of Curing." Curing shall be provided for the minimum time specified for each method or until the concrete reaches its design strength, whichever is less. Steam curing may also be used for precast members and shall conform to the following provisions:
 A. After placement of the concrete, members shall be held for a minimum 4-hour presteaming period. If the ambient air temperature is below 10°C, steam shall be applied during the presteaming period to hold the air surrounding the member at a temperature between 10°C and 32°C.
 B. To prevent moisture loss on exposed surfaces during the presteaming period, members shall be covered as soon as possible after casting or the exposed surfaces shall be kept wet by fog spray or wet blankets.
 C. Enclosures for steam curing shall allow free circulation of steam about the member and shall be constructed to contain the live steam with a minimum moisture loss. The use of tarpaulins or similar flexible covers will be permitted, provided they are kept in good repair and secured in such a manner as to prevent the loss of steam and moisture.
 D. Steam at the jets shall be at low pressure and in a saturated condition. Steam jets shall not impinge directly on the concrete, test cylinders, or forms. During application of the steam, the temperature rise within the enclosure shall not exceed 22°C per hour. The curing temperature throughout the enclosure shall not exceed 65°C and shall be maintained at a constant level for a sufficient time necessary to develop the required transfer strength. Control cylinders shall be covered to prevent moisture loss and shall be placed in a location where temperature is representative of the average temperature of the enclosure.
 E. Temperature recording devices that will provide an accurate, continuous, permanent record of the curing temperature shall be provided. A minimum of one temperature recording device per 60 m of continuous bed length will be required for checking temperature.
 F. Members in pretension beds shall be detensioned immediately after the termination of steam curing while the concrete and forms are still warm, or the temperature under the enclosure shall be maintained above 15°C until the stress is transferred to the concrete.
 G. Curing of precast concrete will be considered completed after termination of the steam curing cycle.

90-7.05 CURING PRECAST Prestressed CONCRETE PILES

- Newly placed concrete for precast prestressed concrete piles shall be cured in conformance with the provisions in Section 90-7.04, "Curing Precast Concrete Members," except that piles in a corrosive environment shall be cured as follows:
A. Piles shall be either steam cured or water cured. If water curing is used, the piles shall be kept continuously wet by the application of water in conformance with the provisions in Section 90-7.01A, "Water Method."

B. If steam curing is used, the steam curing provisions in Section 90-7.04, "Curing Precast Concrete Members," shall apply except that the piles shall be kept continuously wet for their entire length for a period of not less than 3 days, including the holding and steam curing periods.

90-7.06 CURING SLOPE PROTECTION

- Concrete slope protection shall be cured in conformance with any of the methods specified in Section 90-7.01, "Methods of Curing."
- Concreted-rock slope protection shall be cured in conformance with any of the methods specified in Section 90-7.01, "Methods of Curing," or with a blanket of earth kept wet for 72 hours, or by sprinkling with a fine spray of water every 2 hours during the daytime for a period of 3 days.

90-7.07 CURING MISCELLANEOUS CONCRETE WORK

- Exposed surfaces of curbs shall be cured by pigmented curing compounds as specified in Section 90-7.01B, "Curing Compound Method."
- Concrete sidewalks, gutter depressions, island paving, curb ramps, driveways, and other miscellaneous concrete areas shall be cured in conformance with any of the methods specified in Section 90-7.01, "Methods of Curing."
- Shotcrete shall be cured for at least 72 hours by spraying with water, or by a moist earth blanket, or by any of the methods provided in Section 90-7.01, "Methods of Curing."
- Mortar and grout shall be cured by keeping the surface damp for 3 days.
- After placing, the exposed surfaces of sign structure foundations, including pedestal portions, if constructed, shall be cured for at least 72 hours by spraying with water, or by a moist earth blanket, or by any of the methods provided in Section 90-7.01, "Methods of Curing."

90-8 PROTECTING CONCRETE

90-8.01 GENERAL

- In addition to the provisions in Section 7-1.16, "Contractor's Responsibility for the Work and Materials," the Contractor shall protect concrete as provided in this Section 90-8.
- Concrete shall not be placed on frozen or ice-coated ground or subgrade nor on ice-coated forms, reinforcing steel, structural steel, conduits, precast members, or construction joints.
- Under rainy conditions, placing of concrete shall be stopped before the quantity of surface water is sufficient to damage surface mortar or cause a flow or wash of the concrete surface, unless the Contractor provides adequate protection against damage.
- Concrete that has been frozen or damaged by other causes, as determined by the Engineer, shall be removed and replaced by the Contractor at the Contractor's expense.

90-8.02 PROTECTING CONCRETE STRUCTURES

- Structure concrete and shotcrete used as structure concrete shall be maintained at a temperature of not less than 7°C for 72 hours after placing and at not less than 4°C for an additional 4 days. When required by the Engineer, the Contractor shall submit a written outline of the proposed methods for protecting the concrete.

90-8.03 PROTECTING CONCRETE PAVEMENT

- Pavement concrete shall be maintained at a temperature of not less than 4°C for 72 hours. When required by the Engineer, the Contractor shall submit a written outline of the proposed methods for protecting the concrete.
- Except as provided in Section 7-1.08, "Public Convenience," the Contractor shall protect concrete pavement against construction and other activities that abrade, scar, discolor, reduce texture depth, lower coefficient of friction, or otherwise damage the surface. Stockpiling, drifting, or excessive spillage of soil, gravel, petroleum products, and concrete or asphalt mixes on the surface of concrete pavement is prohibited unless otherwise specified in these specifications, the special provisions or permitted by the Engineer.
- When ordered by the Engineer or shown on the plans or specified in the special provisions, pavement crossings shall be constructed for the convenience of public traffic. The material and work necessary for the construction of the crossings, and their subsequent removal and disposal, will be paid for at the contract unit prices for the items of work involved and if
there are no contract items for the work involved, payment for pavement crossings will be made by extra work as provided in Section 4-1.03D, "Extra Work.". Where public traffic will be required to cross over the new pavement, Type III portland cement may be used in concrete, if permitted in writing by the Engineer. The pavement may be opened to traffic as soon as the concrete has developed a modulus of rupture of 3.8 MPa. The modulus of rupture will be determined by California Test 522.

• No traffic or Contractor's equipment, except as hereinafter provided, will be permitted on the pavement before a period of 10 days has elapsed after the concrete has been placed, nor before the concrete has developed a modulus of rupture of at least 3.8 MPa. Concrete that fails to attain a modulus of rupture of 3.8 MPa within 10 days shall not be opened to traffic until directed by the Engineer.

• Equipment for sawing weakened plane joints will be permitted on the pavement as specified in Section 40-1.08B, "Weakened Plane Joints."

• When requested in writing by the Contractor, the tracks on one side of paving equipment will be permitted on the pavement after a modulus of rupture of 2.4 MPa has been attained, provided that:

 A. Unit pressure exerted on the pavement by the paver shall not exceed 135 kPa;
 B. Tracks with cleats, grousers, or similar protuberances shall be modified or shall travel on planks or equivalent protective material, so that the pavement is not damaged; and
 C. No part of the track shall be closer than 0.3-m from the edge of pavement.

• In case of visible cracking of, or other damage to the pavement, operation of the paving equipment on the pavement shall be immediately discontinued.

• Damage to the pavement resulting from early use of pavement by the Contractor's equipment as provided above shall be repaired by the Contractor at the Contractor's expense.

• The State will furnish the molds and machines for testing the concrete for modulus of rupture, and the Contractor, at the Contractor's expense, shall furnish the material and whatever labor the Engineer may require.

90-9 COMPRESSIVE STRENGTH

90-9.01 GENERAL

• Concrete compressive strength requirements consist of a minimum strength that shall be attained before various loads or stresses are applied to the concrete and, for concrete designated by strength, a minimum strength at the age of 28 days or at the age otherwise allowed in Section 90-1.01, "Description." The various strengths required are specified in these specifications or the special provisions or are shown on the plans.

• The compressive strength of concrete will be determined from test cylinders that have been fabricated from concrete sampled in conformance with the requirements of California Test 539. Test cylinders will be molded and initially field cured in conformance with California Test 540. Test cylinders will be cured and tested after receipt at the testing laboratory in conformance with the requirements of California Test 521. A strength test shall consist of the average strength of 2 cylinders fabricated from material taken from a single load of concrete, except that, if any cylinder should show evidence of improper sampling, molding, or testing, that cylinder shall be discarded and the strength test shall consist of the strength of the remaining cylinder.

• When concrete compressive strength is specified as a prerequisite to applying loads or stresses to a concrete structure or member, test cylinders for other than steam cured concrete will be cured in conformance with Method 1 of California Test 540. The compressive strength of concrete determined for these purposes will be evaluated on the basis of individual tests.

• When concrete is designated by 28-day compressive strength rather than by cementitious material content, the concrete strength to be used as a basis for acceptance of other than steam cured concrete will be determined from cylinders cured in conformance with Method 1 of California Test 540. If the result of a single compressive strength test at the maximum age specified or allowed is below the specified strength but is 95 percent or more of the specified strength, the Contractor shall, at the Contractor’s expense, make corrective changes, subject to approval of the Engineer, in the mix proportions or in the concrete fabrication procedures, before placing additional concrete, and shall pay to the State $14 for each in-place cubic meter of concrete represented by the deficient test. If the result of a single compressive strength test at the maximum age specified or allowed is below 95 percent of the specified strength, but is 85 percent or more of the specified strength, the Contractor shall make the corrective changes specified above, and shall pay to the State $20 for each in place cubic meter of concrete represented by the deficient test. In addition, such corrective changes shall be made when the compressive strength of concrete tested at 7 days indicates, in the judgment of the Engineer, that the concrete will not attain
the required compressive strength at the maximum age specified or allowed. Concrete represented by a single test that indicates a compressive strength of less than 85 percent of the specified 28-day compressive strength will be rejected in conformance with the provisions in Section 6-1.04, "Defective Materials."

- If the test result indicates that the compressive strength at the maximum curing age specified or allowed is below the specified strength, but is 85 percent or more of the specified strength, payments to the State as required above shall be made, unless the Contractor, at the Contractor’s expense, obtains and submits evidence acceptable to the Engineer that the strength of the concrete placed in the work meets or exceeds the specified 28-day compressive strength. If the test result indicates a compressive strength at the maximum curing age specified or allowed below 85 percent, the concrete represented by that test will be rejected, unless the Contractor, at the Contractor’s expense, obtains and submits evidence acceptable to the Engineer that the strength and quality of the concrete placed in the work are acceptable. If the evidence consists of tests made on cores taken from the work, the cores shall be obtained and tested in conformance with the requirements in ASTM Designation: C 42.

- No single compressive strength test shall represent more than 250 m³.

- When a precast concrete member is steam cured, the compressive strength of the concrete will be determined from test cylinders that have been handled and stored in conformance with Method 3 of California Test 540. The compressive strength of steam cured concrete will be evaluated on the basis of individual tests representing specific portions of production. When the concrete is designated by 28-day compressive strength rather than by cementitious material content, the concrete shall be considered to be acceptable whenever its compressive strength reaches the specified 28-day compressive strength provided that strength is reached in not more than the maximum number of days specified or allowed after the member is cast.

- When concrete is specified by compressive strength, prequalification of materials, mix proportions, mixing equipment, and procedures proposed for use will be required prior to placement of the concrete. Prequalification shall be accomplished by the submission of acceptable certified test data or trial batch reports by the Contractor. Prequalification data shall be based on the use of materials, mix proportions, mixing equipment, procedures, and size of batch proposed for use in the work.

- Certified test data, in order to be acceptable, shall indicate that not less than 90 percent of at least 20 consecutive tests exceed the specified strength at the maximum number of cure days specified or allowed, and none of those tests are less than 95 percent of specified strength. Strength tests included in the data shall be the most recent tests made on concrete of the proposed mix design and all shall have been made within one year of the proposed use of the concrete.

- Trial batch test reports, in order to be acceptable, shall indicate that the average compressive strength of 5 consecutive concrete cylinders, taken from a single batch, at not more than 28 days (or the maximum age allowed) after molding shall be at least 4 MPa greater than the specified 28-day compressive strength, and no individual cylinder shall have a strength less than the specified strength at the maximum age specified or allowed. Data contained in the report shall be from trial batches that were produced within one year of the proposed use of specified strength concrete in the project. Whenever air-entrainment is required, the air content of trial batches shall be equal to or greater than the air content specified for the concrete without reduction due to tolerances.

- Tests shall be performed in conformance with either the appropriate California Test methods or the comparable ASTM test methods. Equipment employed in testing shall be in good condition and shall be properly calibrated. If the tests are performed during the life of the contract, the Engineer shall be notified sufficiently in advance of performing the tests in order to witness the test procedures.

- The certified test data and trial batch test reports shall include the following information:

A. Date of mixing.
B. Mixing equipment and procedures used.
C. The size of batch in cubic meters and the mass, type, and source of all ingredients used.
D. Penetration of the concrete.
E. The air content of the concrete if an air-entraining admixture is used.
F. The age at time of testing and strength of all concrete cylinders tested.

- Certified test data and trial batch test reports shall be signed by an official of the firm that performed the tests.

- When approved by the Engineer, concrete from trial batches may be used in the work at locations where concrete of a lower quality is required and the concrete will be paid for as the type or class of concrete required at that location.

- After materials, mix proportions, mixing equipment, and procedures for concrete have been prequalified for use, additional prequalification by testing of trial batches will be required prior to making changes that, in the judgment of the Engineer, could result in a strength of concrete below that specified.

- The Contractor’s attention is directed to the time required to test trial batches and the Contractor shall be responsible for production of trial batches at a sufficiently early date so that the progress of the work is not delayed.
When precast concrete members are manufactured at the plant of an established manufacturer of precast concrete members, the mix proportions of the concrete shall be determined by the Contractor, and a trial batch and prequalification of the materials, mix proportions, mixing equipment, and procedures will not be required.

90-10 MINOR CONCRETE

90-10.01 GENERAL
- Concrete for minor structures, slope paving, curbs, sidewalks and other concrete work, when designated as minor concrete on the plans, in the specifications, or in the contract item, shall conform to the provisions specified herein.
- The Engineer, at the Engineer's discretion, will inspect and test the facilities, materials and methods for producing the concrete to ensure that minor concrete of the quality suitable for use in the work is obtained.

90-10.02 MATERIALS
- Minor concrete shall conform to the following requirements:

 90-10.02A Cementitious Material
 - Cementitious material shall conform to the provisions in Section 90-1.01, "Description."

 90-10.02B Aggregate
 - Aggregate shall be clean and free from deleterious coatings, clay balls, roots, and other extraneous materials.
 - The Contractor shall submit to the Engineer for approval, a grading of the combined aggregate proposed for use in the minor concrete. After acceptance of the grading, aggregate furnished for minor concrete shall conform to that grading, unless a change is authorized in writing by the Engineer.
 - The Engineer may require the Contractor to furnish periodic test reports of the aggregate grading furnished. The maximum size of aggregate used shall be at the option of the Contractor, but in no case shall the maximum size be larger than 37.5 mm or smaller than 19 mm.
 - The Engineer may waive, in writing, the gradation requirements in this Section 90-10.02B, if, in the Engineer's opinion, the furnishing of the gradation is not necessary for the type or amount of concrete work to be constructed.

 90-10.02C Water
 - Water used for washing, mixing, and curing shall be free from oil, salts, and other impurities that would discolor or etch the surface or have an adverse affect on the quality of the concrete.

 90-10.02D Admixtures
 - The use of admixtures shall conform to the provisions in Section 90-4, "Admixtures."

90-10.03 PRODUCTION
- Cementitious material, water, aggregate, and admixtures shall be stored, proportioned, mixed, transported, and discharged in conformance with recognized standards of good practice that will result in concrete that is thoroughly and uniformly mixed, that is suitable for the use intended, and that conforms to requirements specified herein. Recognized standards of good practice are outlined in various industry publications such as are issued by American Concrete Institute, AASHTO, or the Department.
- The cementitious material content of minor concrete shall conform to the provisions in Section 90-1.01, "Description."
- The amount of water used shall result in a consistency of concrete conforming to the provisions in Section 90-6.06, "Amount of Water and Penetration." Additional mixing water shall not be incorporated into the concrete during hauling or after arrival at the delivery point, unless authorized by the Engineer.
- Discharge of ready-mixed concrete from the transporting vehicle shall be made while the concrete is still plastic and before stiffening occurs. An elapsed time of 1.5 hours (one hour in non-agitating hauling equipment), or more than 250 revolutions of the drum or blades, after the introduction of the cementitious material to the aggregates, or a temperature of concrete of more than 32°C will be considered conditions contributing to the quick stiffening of concrete. The Contractor shall take whatever action is necessary to eliminate quick stiffening, except that the addition of water will not be permitted.

CONTRACT NO. 04-0120F4
REPLACED PER ADDENDUM NO. 3 DATED NOVEMBER 7, 2005
• The required mixing time in stationary mixers shall be not less than 50 seconds or more than 5 minutes.
• The minimum required revolutions at mixing speed for transit-mixed concrete shall be not less than that recommended by the mixer manufacturer, and shall be increased, if necessary, to produce thoroughly and uniformly mixed concrete.
• Each load of ready-mixed concrete shall be accompanied by a weighmaster certificate that shall be delivered to the Engineer at the discharge location of the concrete, unless otherwise directed by the Engineer. The weighmaster certificate shall be clearly marked with the date and time of day when the load left the batching plant and, if hauled in truck mixers or agitators, the time the mixing cycle started.
• A Certificate of Compliance conforming to the provisions in Section 6–1.07, "Certificates of Compliance," shall be furnished to the Engineer, prior to placing minor concrete from a source not previously used on the contract, stating that minor concrete to be furnished meets contract requirements, including minimum cementitious material content specified.

90-10.04 CURING MINOR CONCRETE
• Curing minor concrete shall conform to the provisions in Section 90-7, "Curing Concrete."

90-10.05 PROTECTING MINOR CONCRETE
• Protecting minor concrete shall conform to the provisions in Section 90-8, "Protecting Concrete," except the concrete shall be maintained at a temperature of not less than 4°C for 72 hours after placing.

90-10.06 MEASUREMENT AND PAYMENT
• Minor concrete will be measured and paid for in conformance with the provisions specified in the various sections of these specifications covering concrete construction when minor concrete is specified in the specifications, shown on the plans, or indicated by contract item in the Engineer's Estimate.

90-11 MEASUREMENT AND PAYMENT

90-11.01 MEASUREMENT
• Portland cement concrete will be measured in conformance with the provisions specified in the various sections of these specifications covering construction requiring concrete.
• When it is provided that concrete will be measured at the mixer, the volume in cubic meters shall be computed as the total mass of the batch in kilograms divided by the density of the concrete in kilograms per cubic meter. The total mass of the batch shall be calculated as the sum of all materials, including water, entering the batch. The density of the concrete will be determined in conformance with the requirements in California Test 518.

90-11.02 PAYMENT
• Portland cement concrete will be paid for in conformance with the provisions specified in the various sections of these specifications covering construction requiring concrete.
• Full compensation for furnishing and incorporating admixtures required by these specifications or the special provisions will be considered as included in the contract prices paid for the concrete involved and no additional compensation will be allowed therefor.
• Should the Engineer order the Contractor to incorporate any admixtures in the concrete when their use is not required by these specifications or the special provisions, furnishing the admixtures and adding them to the concrete will be paid for as extra work as provided in Section 4-1.03D, "Extra Work."
• Should the Contractor use admixtures in conformance with the provisions in Section 90-4.05, "Optional Use of Chemical Admixtures," or Section 90-4.07, "Optional Use of Air-entraining Admixtures," or should the Contractor request and obtain permission to use other admixtures for the Contractor’s benefit, the Contractor shall furnish those admixtures and incorporate them into the concrete at the Contractor’s expense and no additional compensation will be allowed therefor.

END OF AMENDMENTS
5-1.18 AREAS FOR CONTRACTOR'S USE

Attention is directed to the requirements specified in the project plans "Construction Details - Areas for Contractor Use", Section 7-1.19, "Rights in Land and Improvements," of the Standard Specifications, Section 10-1.10, "Cooperation," of these special provisions.

The Contractor shall have use of the areas as indicated on the plans and as follows and shall plan his work accordingly:

"Area EF" is primarily available to Contract 04-0120E4 until March 31, 2008, and then to this contract after that date. Prior to March 31, 2008, the Contractor shall coordinate any planned work in "Area EF" with the Engineer and Contract 04-0120E4 contractor. Additionally, footings at tower T1 and footing and piers at Pier E2 to be constructed by others under Contract 04-0120E4 will be substantially complete by March 31, 2008, to allow the Contractor to complete the tower and E2 work specified under the contract.

"Area CE" is designated for use by Contract 04-0120E4 until March 31, 2008. The Contractor shall have access through "Area CE" to the work area at Pier W2. After March 31, 2008, "Area CE" becomes a part of the area provided to the 04-0120P4 contractor. The Contractor shall continue to have access through the area to the work area at Pier W2.

"Area FPR" is primarily available to Contract 04-0120R4 until May 1, 2007. Prior to May 1, 2007, the Contractor shall coordinate any planned work in "Area FPR" with the Engineer and 04-0120R4 contractor. After May 1, 2007. "Area FPR" shall be considered a part of "Area FP."

"Area FP" is available for use by this contract until the completion of Phase 1 activities as described in Section 10-1.01 "Order of Work" and Section 4 "Beginning of Work, Time of Completion and Liquidated Damages" of these special provisions. "Area FP" shall then be made available to the 04-0120P4 contractor until the expiration of 450 working days after completion of Phase 1 work. After the expiration of 450 working days after completion of Phase 1 work, "Area FP" is available to this contractor to complete Phase 2 activities as described in Section 10-1.01 "Order of Work" and Section 4 "Beginning of Work, Time of Completion and Liquidated Damages" of these special provisions. After completion of Phase 2 activities, "Area FP" shall be made available to 04-0120P4 contractor. The Contractor shall coordinate any planned work in "Area FP" during the time periods allocated to Contract 04-0120P4 with the Engineer and Contract 04-0120P4 contractor. The Contractor shall allow the 04-0120E4 contractor a minimum 1.6 meter wide pedestrian access through "Area FP" to the slope area above Building No. 262 (Torpedo Factory).

Attention is directed to "Maintaining Traffic," and "Cooperation," of these special provisions. The contractor shall have access on Macalla Road and Torpedo Factory Road for the duration of the contract. Access to Macalla Road and Torpedo Factory Road may be limited from time to time by the activities of others; access requirements shall be coordinated with the Engineer and 04-0120R4 and 04-0120P4 contractors.

The western portion of the Skyway constructed by others under Contract 04-012024 will be substantially complete by July 1, 2007, in order to allow the Contractor to complete the Hinge A connection and other work specified under the contract.

The Contractor's access to/from the work area may be limited by closures of the Westbound YBI onramp to I-80 and Southgate Road during the contract period. The Contractor will have access to the work area during these closures via posted detours.

The highway right of way shall be used only for purposes that are necessary to perform the required work. The Contractor shall not occupy the right of way, or allow others to occupy the right of way, for purposes which are not necessary to perform the required work.

No area is available within the contract limits for the exclusive use of the Contractor. However, temporary storage of equipment and materials on State property may be arranged with the Engineer, subject to the prior demands of State maintenance forces and to other contract requirements. Use of the Contractor's work areas and other State-owned property shall be at the Contractor's own risk. The State shall not be held liable for damage to or loss of materials or equipment located within these areas.

The Contractor shall remove the equipment, materials, and rubbish from the work areas and other State-owned property which the Contractor occupies and shall leave the areas in a presentable condition, in conformance with the provisions in Section 4-1.02, "Final Cleaning Up," of the Standard Specifications.

The Contractor shall secure, at the Contractor's own expense, areas required for storage of plant, equipment, and materials, or for other purposes if sufficient area is not available to the Contractor within the contract limits, except as stated in subsection "Port of Oakland Pier 7."

CONTRACT NO. 04-0120F4
REVISED PER ADDENDUM NO. 3 DATED NOVEMBER 7, 2005
Port of Oakland Pier 7

The Department intends to occupy and make available to contractors portions of Port of Oakland Pier 7 for the duration of the contract.

Attention is directed to Section 10-1.16, "Working Drawing Campus," of these special provisions. Attention is also directed to Section 5-1.13, "Project Information," for reference to plot map titled, "Pier 7 — Area for Contractor’s Use," "Settlement Agreement regarding Burma Road Easement and Pier 7 Temporary Construction Easement," and the "Quitclaim Easement Deed."

Portions of Pier 7 are currently occupied by others. Referring to the areas identified on the information handout "Pier 7 — Areas for Contractor’s Use," space on the pier is expected to be made available to the Contractor at no rental cost, on or before the following schedule:

Area 1: July 15, 2008
Area 2: April 1, 2006
Area 3: At 04-0120F4 contract award
Area 4: Will not be made available to the 04-0120F4 contractor.
Area 5: January 1, 2007
Area 6: Will not be made available to the 04-0120F4 contractor.

Areas not available to the 04-0120F4 contractor or designated as "Caltrans" shall not be used by the Contractor except for access via Burma Road and as otherwise permitted by the Engineer in writing. Area 1 includes use of the existing rail mounted crane.

The Contractor shall locate the Working Drawing Campus within area 2 or area 3.

By using the area provided at Pier 7, the Contractor agrees to the following terms of usage:

1. The Contractor may only use the designated areas for work exclusive to the 04-0120F4 contract for the following purposes only:
 a. Administration offices and parking for employees of the Contractor
 b. Storage of material and fabrication and assembly of elements

2. Contractor shall agree to accept the property on an "as is" basis. The Contractor shall not call on the Department to make any improvements or repairs on the property, but the Contractor hereby specifically covenants and agrees to keep the property including furnishings and equipment, in good order and condition
3. The existing warehouse building and crane, when available, shall not be removed or demolished, although they may be modified if approved in writing by the Engineer.
4. The Contractor shall comply with the terms of the contract as well as all State laws and local ordinances concerning said property and the use thereof.
5. The Department or its agents shall at all times have the right to enter the property for purposes of inspection of the property and to serve or to post thereon any notice required or permitted by law for protection of any right or interest of the Department.
6. The Contractor shall be responsible for coordinating with other contractors with regard to water access along the pier.
7. Prior to occupying an area of the pier, the Contractor shall conduct a survey of the property, including photos, describing the current condition of the property and submit the survey for the approval of the Engineer. Along with the survey, the Contractor shall submit for the information of the Engineer a site map identifying the planned uses of the property. Material storage sites shall be identified and shown on the site map and a listing of all materials used and stored on the property, or transported to and through the pier shall be included. Material Safety Data Sheets for the hazardous materials stored on the property shall be submitted to the Engineer.
8. The Contractor shall comply with the provisions in "Water Pollution Control," of these special provisions. The Contractor shall not commit, suffer, or permit the accumulation of waste on the property and shall provide an adequate number of garbage and trash receptacles in clean condition and good repair.
9. In no case shall the Contractor cause or allow the deposit or disposal of hazardous materials on the property. The Contractor shall be responsible for and bear the entire cost of removal and disposal of hazardous materials or waste introduced to the property during the Contractor’s period of use and possession as owner, operator or occupier of the property. The Contractor shall also be responsible for any cleanup and decontamination on or off the property necessitated by such materials or waste.

10. There is limited additional utility capacity available at Pier 7, including but not limited to, power, telecommunications, and sewer capacity. The public water source on the pier is being used at its full capacity. The Contractor shall develop its own water source, and shall not use the public water source. The Contractor shall investigate the other utility capacity to support the needs of any use of the pier. The Contractor shall pay when due all water, electric, gas, and other lighting, heating, power, and charges accruing or payable in connection with said property, during the term of use.

11. At the expiration of the term, the Contractor shall quit and surrender possession of the property and its appurtenances to the Department in as good order and condition as the property was delivered to the Contractor, reasonable wear and tear and damage by the elements excepted.

12. The Contractor shall not encumber, assign, or sublet the pier 7 property in any manner whatsoever.

13. The Department will not keep the property insured against fire or any other insurable risk, and the Contractor will make no claim of any nature against the Department by reason of any damage to the Contractor's property in the event it is damaged or destroyed by fire or by any other cause.

14. Indemnification: The Contractor shall indemnify, defend and hold harmless the Department, its officers, agents and employees to the same extent as required by Section 7-1.12A of the Standard Specifications.

15. Liability and Property Damage Insurance: Insurance shall conform to the requirements of Section 7-1.12B of the Standard Specifications.

16. Hazardous substances may be present on the property in the areas shown as Environmentally Sensitive Areas (ESAs) as shown on the plot map titled "Pier 7 – Area for Contractor’s Use" and in all drainage inlets. The Contractor shall have no permanent anchorage or occupation on or near these potentially hazardous materials locations and shall vacate said areas within 48 hours notice of the Engineer. The Contractor shall cooperate and coordinate with the Department, or its agents or contractors or third parties, including, but not limited to the City of Oakland, the United States Department of the Army and the California Department of Toxic Substances Control in the remediation of said potentially hazardous materials locations. It is expected that any necessary hazardous material remediation of hazardous materials locations by others will occur during the duration of contract 04-0120F4 and that the Contractor will be required to vacate minor portions of the pier around the potentially hazardous materials locations to facilitate access.

The Department reserves the right to terminate the Contractor’s use of pier 7 or take other appropriate action at no cost to the Department, if the terms of the above usage agreement are not complied with. Provided that the terms of the above usage agreement are complied with, should the Department order the Contractor to vacate significant portions of Pier 7 early, the additional relocation costs as directed by the Engineer will be paid for as extra work as provided in Section 4-1.03D, "Extra Work," of the Standard Specifications. The Contractor shall be responsible for all costs related to occupying and operating at Pier 7 including, but not limited to, compliance with the above usage agreement terms, utility connections, maintenance and operational cost of utilities, improvements needed for intended use including use of the crane, relocation of occupation or operations to facilitate hazardous material remediation, and cost related to vacate and restore property to original conditions at the termination of the occupancy agreement.