

INNOVATION AND SYSTEM INFORMATION

TRANSFORMING IDEAS INTO SOLUTIONS

Advanced Research

MAY 2023

Project Title: Connected and Automated Vehicle (CAV) Application Development

Task Number: 3747

Start Date: June 29, 2020

Completion Date: March 28, 2023

Task Manager: Steven Turner Transportation Engineer (Electrical) steven.turner@dot.ca.gov

Caltrans[,]

DRISI provides solutions and knowledge that improves California's transportation system Research

Notes

MMITSS Phase III Extension for Additional Enhancements

A research project by University of California at Berkeley (UCB) California Partners for Advanced Transportation Technology (PATH) program to add traffic adaptive and multimodal aspect enhancements to Multi-Modal Intelligent Traffic Signal System (MMITSS) for improved mobility and safety.

WHAT IS THE NEED?

The Multi-Modal Intelligent Traffic Signal System (MMITSS) is the next generation of traffic signal systems that seeks to provide a comprehensive traffic information framework to service all modes of transportation, including general vehicles, transit, emergency vehicles, freight fleets, and pedestrians and bicyclists in a connected vehicle environment. Under the sponsorship of the Connected Vehicle Pooled Fund Study (CV PFS) and Federal Highway Administration (FHWA), MMITSS has been deployed in the California CV Test Bed. Caltrans statewide Traffic Signal Control Program (TSCP) has been enhanced to support MMITSS operations, including SPaT broadcasts, CV-based vehicular service calls and actuations, pedestrian service calls, CV-based signal priority, and dynamic force-off to adapt signal timing to the prevailing traffic conditions. However, due to the low market penetration of connected vehicles and the lack of multimodal road user detection and classification data, the effectiveness of traffic adaptive features cannot be tested and evaluated in realworld condition.

The current coordinated traffic control systems utilize a few timeof-day timing plans (cycle length, green split, and offset) for time-based coordination and utilize loop detectors for phase service calls and vehicle actuations. The time-of-day timing plans are preset based on traffic data collected through site surveys. Inductive loops are usually installed near the intersection stopline and cannot detect and measure the fluctuation of traffic demand in real-time so that the traffic control systems are not well informed about the state of the traffic and are unable to select the appropriate timing plan that adapts to the prevailing traffic conditions. Furthermore, in the current systems, pedestrian service requests are detected by pedestrian pushbuttons, the systems are not necessarily aware of how many pedestrians and their location on the crosswalk.

ADA Notice: Users with accessibility issues may contact the California Department of Transportation, Division of Research, Innovation and System Information. For TTY assistance, call the California Relay Service at 711, email: pm2.communications@dot.ca.gov or write Caltrans, DRISI – MS-83, P.O. Box 942873 Sacramento, CA 94273-0001

MMITSS Phase III Extension for Additional Enhancements

Research

Notes

In a CV environment where equipped vehicles and pedestrians communicate their state (type, location, speed, heading, etc.) to the roadside infrastructure via Basic Safety Messages (BSM – vehicle) and Personal Safety Messages (PSM – pedestrian), this rich data set allows the traffic control systems to measure the fluctuation of traffic demand in real-time, adapt timing plan to the prevailing traffic conditions, and provide cooperative services to each mode.

Although the anticipated benefits of CV technologies on improving safety and mobility are promising, due to the low market penetration rate of connected vehicles, the benefits of CV technologies are difficult to assess in a real-world condition.

WHAT ARE WE DOING?

The objectives of this project are:

- Enhance Traffic Control Features: Utilize multimodal road user detection and classification data (e.g., vehicles, pedestrians, and bicyclists) of NoTraffic Smart Sensors and adaptive signal timing features of the existing TSCP to add additional enhancements to MMITSS for improved mobility and safety;
- 2. Enhance the Deployability of MMITSS Vehicle-Resident Applications: Modularize the existing vehicle-resident CV application software and develop an application programming interface (API) to support a hardwareagnostic solution, that the vehicle-resident CV applications run on a separate computer and interface with an OBU (either a Dedicated Short Range Communications (DSRC) or a Cellular-V2X device) via the API for transmitting and receiving over-the-air messages. The API will support the use of OBUs from multiple vendors.
- 3. Conduct Field Testing with Augmented Market Penetration: Field testing will comprise both equipped Santa Clara Valley Transportation Authority (VTA) buses and PATH testing vehicles. PATH testing vehicles will collect the

ground-truth travel time and delay data, which provide inputs to the before-and-after analysis on impacts of market penetration.

WHAT IS OUR GOAL?

The goal of this project is to add traffic adaptive and multimodal aspect enhancements to MMITSS for improved mobility and safety.

WHAT IS THE BENEFIT?

The State would be able to better assess the effectiveness of traffic adaptive features that support multimodal transport and impacts of market penetration of CVs and providing better safety and mobility for all modes of travel.

WHAT IS THE PROGRESS TO DATE?

Task 4 was to conduct field testing with augmented market penetration. PATH developed an active control strategy that adjusts the offsets at targeted intersections according to the changing traffic conditions observed from the detectors. PATH has evaluated the performance of the proposed control strategy through simulations in the California CV Testbed Aimsun model. The simulation results show that the reduction in network-level delay (at all 16 intersections) is about 2% with a limited set of offset changes applied to the four targeted intersections:

- Embarcadero RdCurtner Ave
- Charleston Rd/Arastradero Rd
- Dinahs Ct.

Task 5 was to provide a final report. PATH has submitted the draft of the final report on April 10.A final presentation was conducted on May 11, 2023.

The contents of this document reflect the views of the authors, who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the California Department of Transportation, the State of California, or the Federal Highway Administration. This document does not constitute a standard, specification, or regulation. No part of this publication should be construed as an endorsement for a commercial product, manufacturer, contractor, or consultant. Any trade names or photos of commercial products appearing in this document are for clarity only.