Appendix D Example 28 - Pile Penetration Failure - Type II Bent

Refer to Falsework Manual, Section -8-6.06A, Failure to Attain Required Penetration. When the D/H ratio is less than 0.75 but greater than or equal to 0.45 for pile foundations an alternative procedure is used for analysis of piles (Reference Section 86.06A). This condition will increase rotation of the falsework bent which will reduce bending resistance and overall load-carrying capacity. This example demonstrates the alternate procedure for pile analysis.

Given Information

Refer the example in Section D-25, Type II Pile, and assume the critical pile in this example has the following as-driven values:

	Planned	Actual
D	$14 \mathrm{ft}(\min)$	10 ft
Δ	6 in (max.)	6 in
e_{1}	4 in (max.)	8 in at 60° angle (relative brg.) with \triangle

Determine Adequacy of Pile (See Section 8-6.05E(2))

1. Check adequacy of pile penetration
$\frac{\mathrm{D}}{\mathrm{H}}=\frac{10}{16}=0.625$
$0.45 \leq 0.625 \leq 0.75 \quad$ Determine stiffness reducing coefficient (Q)
From Figure 8-29, $\mathrm{Q}=1.10$ (for normal soil)
2. Find new values for Y_{2} and L_{2}
$Y_{2}=Q\left(Y_{2}\right)=(1.10)(6.25)=6.88 \mathrm{ft}$
$L_{2}=H+Y_{2}=16.0+6.88=22.88 \mathrm{ft}$
3. Check bent type

$$
\begin{aligned}
& \mathrm{L}_{u}=\text { Dist. FG to Brace }+\mathrm{Y}_{2}=6+6.88=12.88 \mathrm{ft} \\
& \frac{\mathrm{~L}_{\mathrm{u}}}{\mathrm{~d}}=\frac{(12.88)(12)}{15}=10.30 \quad 8<10.3 \leq 15(\text { Eq 8-6.05E-2) Still Type II bent }
\end{aligned}
$$

4. Calculate stress due to pile pull

$$
\begin{aligned}
& F_{2}=\frac{3 \mathrm{EI} \triangle}{\left(12 L_{2}\right)^{3}}=\frac{3\left(1.7 \times 10^{6}\right)(2485)(6)}{(12 \times 22.88)^{3}}=3674 \mathrm{lbs} \\
& f_{b p(2)}=\frac{\mathrm{F}_{2}\left(12 \mathrm{~L}_{2}\right)}{\mathrm{S}}=\frac{(3674)(12 \times 22.88)}{331}=3048 \mathrm{psi}
\end{aligned}
$$

Note that it is not necessary to calculate the initial bending stress for this pile because Δ is unchanged. (The longer L_{1} length will give a corresponding lower value for $\left.f_{b p(1)}\right)$.
5. Calculate stress due to pile lean (see example D-25 for vertical load)

$$
f_{b e(1)}=\frac{P_{v}\left(e_{1}\right)}{S}=\frac{(36000)(8)}{331}=870 \mathrm{psi}
$$

6. Calculate stress resultant - See Section 8-6.06C

$f_{b p(2)}=3048 \mathrm{psi}$
$2 \mathrm{fbe}(1)=1740 \mathrm{psi}($ load factor $=2)$
Solve stress vector triangles to find the resultant stress
$\mathrm{f}_{\mathrm{bR}}=\sqrt{3048^{2}+1740^{2}+2(3048)(1740) \operatorname{Cos} 60}$
$\mathrm{f}_{\mathrm{bR}}=4198 \mathrm{psi}$
7. Calculate stress due to design horizontal load (H)
$\mathrm{H}=720 \mathrm{lbs}(2 \%(\mathrm{DL})$ from example D-25)
$\mathrm{Lu}_{\mathrm{u}}=12.88 \mathrm{ft}($ See step 3)

$$
f_{b H}=\frac{H\left(12 L_{u}\right)}{S}=\frac{(720)(12)(12.88)}{331}=336 \mathrm{psi}
$$

8. Calculate horizontal displacement

$$
X=\frac{H\left(12 L_{u}\right)^{3}}{3 E I}=\frac{(720)(12 \times 12.88)^{3}}{3\left(1.7 \times 10^{6}\right)(2485)}=0.21 \text { in }=e_{2}
$$

9. Calculate stress due to e_{2}

$$
f_{b e(2)}=\frac{P_{v}\left(e_{2}\right)}{S}=\frac{(36000)(0.21)}{331}=22.8 \mathrm{psi}
$$

10. Determine allowable compressive stress

Note: actual f_{c} is unchanged at 203 psi (see step 6 example D-25)
$L_{u}=L_{2}=22.88 \mathrm{ft}$ (long. direction governs)
Capacity in compression:
Reference design value in compression $\mathrm{F}_{\mathrm{c}}=1300 \mathrm{psi}$ (NDS supplement table 6A)

Adjustment factors from NDS table 6.3.1:

$$
\begin{array}{ll}
C_{D}=1.25 & \text { Duration Factor for 2\% lateral loading } \\
C_{M}=1.0 & \text { Wet Service Factor NDS 6.3.3 } \\
C_{t}=1.0 & \text { Temperature Factor NDS 6.3.4 (Temp up to 100 }{ }^{\circ} \text {) } \\
C_{c t}=1.0 & \text { Conditioning Treatment Factor NDS 6.3.5 (air dried) } \\
C_{c s}=1.01 & \text { Critical Section Factor NDS 6.3.9 (} L_{c}=3.12 \text { ft) } \\
C_{P}=0.577 & \text { Column Stability Factor NDS 3.7.1 (Eff length 22.88 } \\
C_{l s}=1.11 & \text { Load sharing Factor NDS 6.3.11 }
\end{array}
$$

Adjusted design compression value $\mathrm{F}_{\mathrm{c}}{ }^{\prime}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{CD}_{\mathrm{D}}\right)\left(\mathrm{Cm}_{\mathrm{m}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{ct}}\right)\left(\mathrm{C}_{\mathrm{cs}}\right)\left(\mathrm{C}_{\mathrm{p}}\right)\left(\mathrm{C}_{\mathrm{ls}}\right)=$ 1051 psi

Capacity in compression:
Reference design value $\mathrm{Fb}=2050$ psi (NDS supplement table 6A)

Adjustment factors from NDS table 6.3.1:
$C_{D}=1.25 \quad$ Duration Factor for 2\% lateral loading NDS 6.3.2
$\mathrm{C}_{\mathrm{t}}=1.0 \quad$ Temperature Factor NDS 6.3.4 (Temp up to $100^{\circ} \mathrm{F}$)
$\mathrm{C}_{\mathrm{ct}}=1.0 \quad$ Condition Treatment factor NDS 6.3.5
$C_{F}=0.99 \quad$ Size Factor NDS 6.3.7
$\mathrm{C}_{\mathrm{ls}}=1.08 \quad$ Load Sharing Factor NDS 6.3.11 (analyze individual pile capacity)

Adjusted design compression value $\mathrm{F}_{\mathrm{b}^{\prime}}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{ct}}\right)\left(\mathrm{C}_{\mathrm{F}}\right)\left(\mathrm{C}_{\mathrm{ls}}\right)=2740 \mathrm{psi}$
Solve combined stress equation
$\frac{\mathrm{f}_{\mathrm{bR}}+2\left(\mathrm{f}_{\mathrm{bH}}+\mathrm{f}_{\mathrm{be}(2)}\right)}{3 \mathrm{~F}^{\prime}{ }_{\mathrm{b}}}+\frac{2 \mathrm{f}_{\mathrm{c}}}{3 \mathrm{~F}^{\prime}{ }_{\mathrm{c}}} \leq 1.0$
$\frac{4198+2(336+22.8)}{3(2740)}+\frac{2(203)}{3(1051)} \leq 1.0$
$0.60+0.13=0.73 \leq 1.0 \quad \underline{O K}$

